
NASA-TM-111943

Life Supp & Biosph Sci, Vol. I, pp. 129-140 © Cognizant Comm. Corp. 1995, Printed in the USA

' C- ,S.,:; i" .-

106%9422/95 $5.00 + .00

J/ /", t

INCINERATION AS A METHOD FOR RESOURCE RECOVERY

FROM INEDIBLE BIOMASS IN A CONTROLLED ECOLOGICAL

LIFE SUPPORT SYSTEM
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Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and

achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and

inedible biomass will represent significant sources of secondary raw materials necessary for support of

crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water
extraction have been investigated as candidate processes for recovery of these important resources from

inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic compo-

nents and this product can be directly utilized by plants. Water is concomitantly produced, requiring only

a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the

incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35%
of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and

non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with

acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental

retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10%

for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of

that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and

because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of
inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by

water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for

pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic compo-

nent of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases,
additional processors would be required to provide products equivalent to those resulting from incinera-

tion alone. The carbon, water, and inorganic resources of inedible biomass are effectively separated and
output in usable forms through incineration.
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INTRODUCTION

TheNASAControlledEcologicalLifeSupport
System(CELSS)programwasinitiatedto provide
self-sufficiencyand safetyfor humansduring
long-termmissionsin space.Self-sufficiencydic-
tatesthatthegreatestpracticallevelof massrecy-
clebeachieved.Thistaskrequirestheproduction
of food,air,andwaterof appropriatequalityand
quantityto supporthumansthroughtherecycle
of resourcesrecoveredfromwastestreams.Green
plantsarekeyin sucha system,astheyrepresent
theonlypotentialfor food productionwhileat
thesametimeproducingoxygenandwaterand
removingCO2fromtheatmosphere.In aCELSS,
humanproductsandinediblebiomasswill repre-
sentsignificantsourcesof secondaryrawmaterials
necessaryfor supportof cropproduction(carbon,
water,andinorganicplantnutrients).Thelikely
qualityandgenerationratesof secondaryrawma-
terialsto beexpectedin a crewedspacehabitat
aresummarizedinTable1(GolubandWydeven,
1992;WydevenandGolub,1991).

Wateris a componentof everywastestream
andrepresentsthe largestsingleresourcemass,
comprising93°7oof totalmass(GolubandWyde-
ven,1992;WydevenandGolub,1991;Wydeven
etal., 1989).Thedrymassof streamspotentially
providingCO2and inorganicnutrients(toilet
waste,inediblebiomass,and food preparation
waste)generatedeachdayis lessthan1 kg per
person.Inediblebiomasshasbeenestimatedtobe
the dominantresource(Goluband Wydeven,

Table 1. Primary Waste Streams and Estimated

Generation Rates in a CELSS

Mass Generated

Waste Stream kg person _ d

Hygiene water 23.4
Toilet waste 2.7

Inedible biomass 6.4

Humidity condensate 2.4

Food preparation waste 0.1
Trash 0.9

Source of data: Golub and Wydeven (1992J, Wyde-

yen and Golub (1991), and Wydeven et al. (1989).

1992; Wydeven and Golub, 1991) with a dry com-

position of approximately 43% oxygen, 43°70 car-

bon, 6o7o hydrogen, and 8070 other inorganic

elements (Salisbury and Ross, 1985). Several phys-
ical, chemical, and biological waste treatment pro-

cesses have been considered for use as the primary

processor in a resource recovery system for

CELSS (Bubenheim, 1991; Jagow, 1972; Johnson

and Wydeven, 1985; Oakley et al., 1989; Wyde-
ven, 1988). These technologies have been reviewed

several times in the past few years (Wydeven et al.,

1989; Wydeven, 1988; Bubenheim and Wydeven,

1994). Research into resource recovery from solid,
secondary raw materials such as inedible biomass

has emphasized development of physical/chemical
processors. The speed with which wastes can be

oxidized by physical/chemical oxidation and the

resulting purity of separated output streams (CO2,

H20, and inorganics) makes these technologies

very desirable. Recovery of inorganic plant nutri-
ents is considered a function of the resource recov-

ery system.

However, the ability of most candidate proces-
sors to provide inorganic nutrients in an appro-

priate form for crop production is not well de-
fined.

The primary candidates for treatment of inedi-

ble biomass are the thermal oxidation processes of
super-critical water oxidation (SCWO), wet oxida-

tion, and incineration. Thermal/chemical degra-

dation of biomass through pyrolysis is of interest,

especially given the recent development of com-

mercial hardware (Suzuki et al., 1990). In pyroly-

sis the thermal/chemical decomposition occurs in

the absence of oxygen and results in the produc-

tion of volatile gases and nonvolatile char and ash.

In toxic waste treatment, a second step is added
to pyrolysis where the volatiles are oxidized by

incineration. However, some carbon remains in

the char that is not in a usable form, at least not

in support of plant growth.

Both incineration and SCWO offer the poten-

tial of a single-step oxidation process that provides

high-quality waste-derived products. In the case of

incineration, carbon from the organic waste com-

ponents is converted to CO2, a desirable and easily
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recoveredproduct.Wateris evaporatedandcan
becondensedfromtheexhaustgasstream,and
theinorganicsareseparatedasa low massash.
SCWOhasmanyof thesamefeaturesandhas
beenthesubjectof recentCELSSresourcerecov-
eryresearch(Bramletteet al., 1990).Application
of SCWOisstill limitedbyseveralsignificantob-
staclesin theengineeringof operationalsystems
andlackof aclearunderstandingof howto con-
troltheprocesstoproducethedesiredproducts.

Incineratorsareoperationalaroundtheworld
andareusedto processtoxicwastesaswellas
typicaldomesticcommunitywastes.Giventhead-
vancedlevelof hardwareandexperiencewithin-
cinerationin solidwasteprocessing,it is appro-
priateto explorethepotentialapplicationof this
technologyin a CELSS(Labak,Remus,and
Shapira,1972;Upadhye,Wignarajah,andWyde-
yen,1993).Wedecidedto investigatetheability
to recoversecondaryrawmaterialsfrominedible
biomassthroughthethermaloxidationprocessof
incineration.Theemphasisof thisarticleisonre-
coveryof inorganicsfor thepurposeof supplying
nutrientsfor utilizationin thehydroponiccrop
growthsystemof aCELSS.

In this articleweattemptto characterizethe
inorganicmassbalanceassociatedwith incinera-
tionof inediblebiomassfromwheat.Wealsoat-
temptto definetheefficiencyof inorganicrecov-
eryprovidedby incinerationfollowedby water
solubilizationof theash.Comparisonsof recovery
efficienciesaremadeamongincineration,pyroly-
sis,waterextractionof biomass,andwaterand
acidsolubilizationof ash.

MATERIALSANDMETHODS

Biomass

Wheat straw was used as the inedible biomass

source. The wheat was grown in controlled envi-
ronment production chambers at Ames Research
Center. The environmental conditions were main-

tained at a temperature of 22°C, 24-h photope-
riod, 1200 _mol m 2 s ' photosynthetic photon

flux, and CO2 concentration of 1200 p.moi mol _.

The nutrient solution composition is listed in Ta-
ble 2.

Wheat was grown to maturity and harvested.

Seed heads were separated from stems, leaves, and
roots. The stem and leaves were combined, dried

at 70°C in a draught oven, ground to pass through
a 40 mesh screen using a Wiley mill, and thor-

oughly mixed to ensure homogeneity of the sam-

ple. A portion of the leaves and stem tissue re-

mained unground to be used in particle size

studies. Inorganic content of the biomass was

characterized using inductive coupled plasma

(ICP), ion chromatography (IC), and thermal arc

spectroscopy analyses.

Thermal Gravimetric Analysis (TGA)

Ground wheat samples were subjected to ther-

mal gravimetric analysis in an atmosphere of air

to mimic incineration, and in the presence of ni-

trogen to mimic pyrolysis. A linear heating rate of
10°C min _ was used in all cases. The end-point

temperature reached in air was 600°C, whereas in
nitrogen the heating was continued to 1100°C.

The analysis was carried out on a DuPont differ-

ential thermal analyzer with 15-mg samples of the
inedible biomass.

Table 2. Elemental Composition of

Hydroponic Nutrient Solution Used in
Production of Wheat in Controlled

Environment Production

Solution Concentration

Element 0_mol kg _)

N 14400

P 1000

K 4000

Ca 1250

Mg 650
Na 150

Zn 2.5

Cu 0.75

Fe 10

Mn 5

B 20

Mo 0.25
Si 75
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Incineration Conditions

A laboratory muffle furnace was used to per-
form the incineration. Ceramic crucibles were

used to hold 4 g of ground biomass for incinera-

tion. Temperature of the samples was maintained
at 1000°C. This temperature has been recom-

mended by Upadhye et al. (1993) primarily to

avoid the production of dioxins, which are re-

ported as products of combustion at temperatures

lower than 750°C. Temperature was maintained

for specified periods of time ranging from 1 to 4 h
and the majority of the data is presented for a l-h

incineration period. For each treatment a mini-

mum of five replicate samples were incinerated.

Water Extraction of Biomass and Incinerated Ash

Water extraction was utilized as the method to

recover water-soluble inorganics from ground bio-
mass and from incinerated biomass ash. The solid

samples, 100 mg of ground biomass and approxi-

mately 250 mg of ash, were placed in centrifuge

tubes, 50 ml of boiling water added, shaken for 30
min, and then centrifuged at 2500 × g for 1 min

to separate solid and liquid phases. The inorganic

content of the liquid was analyzed using IC and
ICP and total organic carbon (TOC) determined;

solid samples were analyzed using thermal arc

spectroscopy.

Acid Extraction

Acid extractions were performed on ground
biomass, ash following incineration, and the non-
water-soluble fraction of the incinerated ash.

Samples were dissolved in 1.5 M (10°10) nitric acid,

which extracts all the inorganic elements (Brad-

ford et al., 1976) and the resulting solution was

characterized using IC and ICP.

Treatment Replication and Statistical Analysis

Analytical results were determined for a mini-

mum of five replicate samples for each treatment.

In the case of incineration, three replicate samples

(separate crucibles) were included during each of
the five runs of the incinerator. Differences

among the three samples in any run of the inciner-

ator were extremely small; the differences among
runs of the incinerator are included in the results.

Means, standard errors, and standard deviation

were calculated for each treatment. In most cases,
1 standard deviation was less than 1.5°70 of the

mean value and in no case was the standard devia-

tion greater than 2.5°7o. Calculated percentages

are reported for the most part in the article.

RESULTS AND DISCUSSION

Thermal Gravimetric A nalysis During

Incineration and Pyrolysis of Biomass

Plant tissue is primarily composed of polysac-

charides (such as cellulose and hemicellulose),

proteins, phenolic compounds (such as lignin),
oils, inorganics, and water. During incineration

(thermal decomposition in the presence of air) of
the inedible biomass of wheat, the decomposition

and oxidation of many of these components can

be identified in the TGA curve (Fig. 1). The initial

small decline in mass with initiation of increasing
temperature is associated with water loss. A 78%

mass loss occurs sharply at 200°C and plateaus

at 295°C, characteristic of cellulose combustion

(Tang, 1967; Tang and Neill, 1968). Again, be-

tween 400 ° and 450°C a sharp decline in mass is
observed, characteristic of combustion of the

large molecular weight components such as lignin.

The relative magnitude of the two sharp points of
declining mass are approximately proportional to

the cellulose/hemicellulose and lignin content of
wheat straw. The shallow decline in mass at tem-

peratures greater than 450°C is the likely result of

continued thermal decomposition of difficult-to-

oxidize compounds. At a temperature of 600°C,

approximately 8°7o of the original mass remained.
If the atmosphere of the TGA apparatus is

maintained with nitrogen rather than air, as was

the case for incineration, pyrolysis of the sample

can be estimated. During pyrolysis it appears that

the thermal decomposition of polysaccharides

again is characterized by a sharp decline in mass

but it is initiated at a temperature approximately

50°C greater than observed in incineration. The

mass decline resulting from decomposition of the

polysaccharides during pyrolysis is approximately
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Figure 1. Thermal gravimetric analysis (TGA) of inedible biomass of wheat during incineration and pyrolysis.

75% of that observed during incineration. Further

decomposition during pyrolysis is characterized by

a shallow decline in mass. As the temperature was

increased to 1000°C during pyrolysis (data not

shown), the mass had decreased to approximately

15% of the original mass, never reaching the 8%
level observed for incineration at 600°C.

Although the gaseous products of incineration

and pyrolysis were not analyzed in these studies,

CO2 is a likely product of incineration, containing

a significant amount of an important resource,

carbon. Because pyrolysis occurs in the absence of
oxygen, only minimal oxidation can occur. The

likely composition of carbon compounds resulting

from pyrolysis could be estimated (Alger, 1972),

but CO2 would not be present in large amounts.

Recovery of the carbon as CO2 would require fur-

ther incineration of the gaseous products. In this
regard, there appear to be several disadvantages

of pyrolysis when compared with incineration. A

second thermal process is required to oxidize the

gaseous carbon, significantly higher temperature

is required, and the mass of the remaining ash

(char) residue is almost twice that resulting from

incineration. A large percentage of that char re-

sulting from pyrolysis would be carbon.

Biomass Elemental Composition and Retention

During Incineration

Analysis of the elemental composition of the

inedible wheat biomass showed that inorganics

represented 7.5% of the dry mass (Table 3). Ap-

proximately 80% of the total inorganic content

was potassium.

Following incineration of the biomass samples,
the remaining ash was consistently 7% of the orig-

inal sample mass. If none of the inorganics were

lost during incineration and if perfect oxidation

was accomplished, we would expect the mass of

the remaining ash to be slightly greater than the

sum of all inorganics in the original biomass, as
the oxidized products would have gained the mass

of the oxygen.

Although the degree of oxidation was not fully

determined, organic carbon was completely lost

during incineration. Approximately 8% of the to-

tal biomass was carbon present as soluble organic
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Table 3. Element Composition of Hydroponic Nutrient
Solution Used in Production of Wheat in Controlled

Environment Production

Elemental Composition

Element (mg kg _ Dry Mass)

Elemental

Retention in

Incinerator

Ash (%

Biomass

Content)

K 6.1 +_ 0.185" 90

Ca 1.0 +_ 0.019 100
P 0.21 _+ 0.0024 100

Mg 0.13 _+ 0.0008 100
Na 0.01 _+ 0.0002 100

Fe 0.01 _+ 0.0001 35

Mn 0.004 + 0.0001 100

Zn 0.003 +_ 0.0005 10

Cu 0.0008 _+ 0.00004 55
Si 0.04 +_ 0.001 100

Total inorganic 7.5 91
Total organic carbon 8. I 0

*Standard errors; n = 5.

carbon. The 35°/0 of total biomass making up the
remainder of the carbon balance was in other

forms, such as cellulose.

Loss of potential resources resulting from the

process of incineration was quantified by deter-

mining the retention of inorganics in the ash com-

pared with the original biomass content.
The retention of the larger mass fraction com-

ponents of the biomass (K, Ca, Mg, and P) is

high, resulting in an overall retention for inorgan-

ics of 92°/o. Some of the inorganics are clearly lost

during incineration at 1000°C, probably through
volatilization. Retention of several of the elements

in the ash was very low; zinc retention was only

10%0 of that present in the biomass. Potassium,
which is abundant in biomass, is known to be sub-

ject to volatilization during biomass combustion
(Humphries, 1956). Elemental analysis procedures

for plant material dictate that temperatures must

remain below 480°C to retain all potassium. Our

results indicate that longer exposure periods at a

temperature of 1000°C also result in increasing

potassium volatilization.

Incineration Duration and Elemental Retention

The inorganic content of incinerator ash de-

creased with increasing processing time at 1000°C.

Following ! h of incineration, 910/0 of the inor-

ganic mass of the original biomass was measured

in the ash, with this percentage decreasing to 87°'/o

after 4 h (Fig. 2). Although the total amount of
inorganics decreased, not all elements responded

in the same manner. Calcium and magnesium con-

tent in the ash actually increased with increased
incineration time. Calcium increased from 45% to

70% and magnesium from 57% to 86% of that

measured in the original biomass, with 1- and 4-h

incineration periods. Reaction with the ceramic
crucible was originally thought to have caused the

decrease in Ca, Mg, and Fe. However, acid rinsing

of crucibles has not resulted in recovery. We con-

tinue to pursue an explanation. Potassium in the

ash decreased as expected from 90% after 1 h to

74% after 4 h at 1000°C. Phosphorus decreased

only slightly with incineration time, from near
100% at 1 h to 93% after 4 h. Potassium repre-

sents such a large fraction of the total inorganic
content of the biomass that volatilization of this

element dominates the total inorganic mass trend.

Careful control of the incineration process is re-

quired to attain efficient recovery of potassium. If
incineration temperature was inadvertently al-

lowed to rise above 1000°C, potassium retention
could be decreased to less than 50%. The chal-

lenge for design of an effective incinerator for in-

organic recovery, and possibly the "acid test" for

such a design, will be the degree of potassium re-
tention.

Biomass Particle Size and Elemental Retention

During Incineration

Particle size of the biomass being incinerated

had a large influence on the amount of inorganic
retained in the ash. Elemental retention following
1- and 4-h incineration was recorded for wheat

stem samples ground to pass through a 40 mesh

screen compared with that following incineration

of stem pieces cut to 2-cm lengths. The retention

of all elements was significantly greater with

smaller particle size, but only potassium is dis-

cussed here as an example of trends. Potassium

retention was 90% with 1-h incineration of ground

samples and only 30% with the larger stem pieces.
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Figure 2. Influence of incineration period on elemental retention.

When ground samples were incinerated for 4 h,

retention decreased to approximately 75°7o; how-
ever, in the case of the stem pieces, potassium

retention increased slightly with incineration time,

but only reached 3507o.

Water Solubility of Incinerated Biomass Ash and

Elemental Recovery

Water extraction appears to be an effective

method of recovery for some inorganic elements

from incinerated biomass (Table 4). Approxi-
mately 72% of the inorganic mass in the ash was

water soluble. The resulting overall recovery effi-

ciency of inorganics from biomass was 65070. That

is, 65070 of the inorganic mass originally measured
in the inedible biomass was recovered in the water-

soluble fraction of incinerated ash. Potassium in

the ash appears to be present in predominately

water-soluble forms because 86% of the potas-

Table 4. Solubility of Inorganic Elements Retained in

Incinerated Biomass Ash Using Water as the Solvent

and the Resulting Recovery Efficiency for These
Elements From Inedible Biomass

Element

Water-Soluble Recovery Efficiency

Fraction of Ash From Inedible Biomass*

(%) (% of Biomass Content

K 86.0 77.4

Ca 0.2 0.2

P 36.0 35.6

Mg 0.6 0.6
Na 93.0 2. I

Fe 0.4 0.1

Mn 1.0 1.0
Zn 21.0 2.1

Cu 4.0 2.2

Si 0 0

Inorganic recovery 72.4 65.2

*Recovery efficiency is defined as the percentage of inorgamc

elements present in biomass that are finally partitioned into the
water-soluble fraction of incinerated ash. This efficiency is calcu-

lated for each element and for the total inorganic component of the
biomass.
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sium in the ash was soluble, leading to a 77°70

recovery of potassium from the original biomass.

Sodium was the only other element clearly present

in water-soluble forms in the ash (93% solubility).
This high solubility and effectively total retention

during incineration led to high total recovery for
sodium. Although calcium and magnesium reten-

tion was high during incineration, they are present
in the ash in non-water-soluble forms. Less than

1070of these elements could be dissolved in water

following incineration. Phosphorus and zinc ex-

hibited moderate to low solubility of 36% and

21%, respectively.

As a result of differences in retention during

incineration and solubility in water, the relative

proportions of inorganics in the biomass is not
reflected in the recovered elements. Because of the

recalcitrant forms of most elements in the ash,

potassium was the predominant element recovered
in the water-soluble fraction of ash. Potassium

made up 87% of the water-soluble fraction

whereas it represented 80°7o of the biomass inor-
ganic content.

The compounds formed during incineration of
the biomass and present in the ash have not been

identified at the time of writing this article. We

can postulate, however, based on the solubility
exhibited for these elements, that silicates and ox-
ides are formed. There is further evidence that

phosphates and sulfates are also formed, and an-

other likely companion would be sulfides.

Water Solubility of Inedible Biomass and

Elemental Recovery

An alternative approach to inorganic recovery
is extraction from biomass prior to oxidation

(Upadhye et al., 1993; Garland and Mackowiak,

1990). Previously, Garland and Mackowiak (1990)

reported approximately 60% inorganic recovery
by soaking dried wheat straw in 23°C water for

4 days and collecting the water-soluble fraction.

Given the similarity to the recovery efficiency de-

scribed above for incineration followed by water
extraction, we decided to determine the water sol-

ubility of inorganics from the same biomass that
was used in the incineration trials. The same water

extraction process used for incinerated ash was

employed and 50 ml of boiling water was added to

a centrifuge tube containing 100 mg of ground
sample. The tube was shaken for 30 min and then

centrifuged to separate the liquid from the solid

residue. All elements, except sodium, were more
water soluble from the dried biomass than from

the incinerated ash (Table 5). The overall inor-
ganic recovery from this method was 93%. This

recovery was significantly greater than the 60%
reported by Garland and Mackowiak (1990). Al-

though the elemental composition of the wheat

used in this study was very similar to that used by

Garland and Mackowiak, we decided to use the

individual element recovery efficiencies reported

by them to calculate what the recovery would be
from our sample because there were some differ-
ences in tissue contents for the lower mass ele-

ments (Table 5). These differences in composition

led to an estimation of 73°70 recovery from our

sample rather than the 60°70 previously reported;

Table 5. Elemental Recovery Using Water Extraction
of Biomass

Element

Short -Term Long-Term
Extraction Extraction

Hot Water/ Warm Water/

Ground Tissue Intact Straw

(o70 of (% of

Biomass Content) Biomass Content)

K 100 78.3

Ca 66.7 50.6

P 81.3 58.0

Mg 100 70.3
Na 31.9 -

Fe 36.2 54.3

Mn 100 34.0

Zn 100 61.5

Cu 41.9 27.3

Dry biomass fraction 7.0 5.5*

Total inorganic

recovery 93.2 73.4*

Short-term, hot-water extraction of ground tissue is compared

with calculated extraction using long-term soaking of intact wheat

straw in warm water. Calculations are based on recovery reported

for individual elements by Garland and Mackowiak (1990) and

applied to the inorganic content of the biomass under study in this
article.

*Dry biomass fraction and total recovery efficiency assume

100% of the sodium in the biomass was soluble in the long-term
extraction; no recovery efficiency could be calculated for sodium.
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however, this estimate was still lower than the re-

covery we observed from water extraction of our

samples. The difference in recovery probably re-
suits from greater surface area exposure in the

ground tissue, or it could simply be due to the
difficulty associated with removing the water from

the large straw sample used by Garland and Mack-
owiak.

In the process of conducting a water extraction
of biomass, a large organic fraction is also dis-

solved along with the inorganics. Garland and

Mackowiak approximated this organic fraction to

be 40°70 of the carbon present in the original bio-

mass (Garland and Mackowiak, 1990; Garland,
1992). Thus, approximately 1707o of the original

biomass was water-soluble carbon, because car-

bon makes up approximately 4307o of biomass.
Our results indicated 8°7o of total biomass was sol-

uble organic, approximately 5007o less.

Some treatment of the organic fraction result-

ing from water extraction of biomass is required

prior to delivery to the plants because of potential
toxicity and to facilitate full recovery of the car-

bon. Upadhye et al. (1993) did not recognize the

toxic potential but did suggest that a separate oxi-

dizer would be required to recover the carbon
from this solution. They also included an incinera-
tor for oxidation of the non-water-soluble residue

from the straw. The consequence of incorporating

two oxidizers, for liquid and solid waste streams,

into a resource recovery system for CELSS will be

weighed against the difference in recovery effi-

ciency.

Comparison of Incineration and Water

Extraction of Nonoxid&ed Biomass

for Resource Recovery

Inorganic recovery was greater using water ex-
traction of biomass than with incineration. Only

707o of the inorganics are lost when using water

extraction compared with 35070 for incineration

followed by water solubilization (Table 6). Our

results indicate that 8o70 of the inorganics origi-

nally found in biomass was lost during the process

of incineration and the remaining 27°70 was pres-
ent in the ash in water-insoluble forms. Although

water extraction seems desirable, when viewing el-

emental recovery none of the water or carbon re-
sources are recovered. Even if the biomass is not

dried prior to extraction, water from some source

must be provided. In water extraction of biomass,

the inorganic and organic components are not sep-
arated but rather each remain present in both the

partitioned solid and liquid streams. During incin-
eration, the desirable resources are segregated and

separated by phase, which can greatly facilitate

recovery. Carbon can be directly recovered as gas-

eous CO2 and utilized by plants, water is concomi-

tantly produced as a gas and should require only a

phase change condensation step for recovery, and
the inorganics are primarily contained in the solid

ash. The largest inorganic component of biomass,

potassium, is present in the ash in water-soluble
forms. When water solubilization of ash is uti-

lized, the insoluble elements must be supplied to

the growing plants from some stored source. For-
tunately, the water-insoluble elements retained in
the ash are the micronutrients and macronutrients

required in relatively small amounts with the

largest fractions recovered. Acid solubilization

of the ash remaining following incineration offers

an apparently effective method for recovery of
macro- and micronutrients, with the only real loss

occurring as a result of volatilization during incin-

eration. In any case where incineration is utilized,

the nitrogen contained in biomass will be parti-

tioned to the gaseous exhaust stream. Selection of

the proper resource recovery technology and the
approach and integration of technologies must be
considered with a sense of the overall mission to

be served.

SUMMARY AND CONCLUSIONS

Our results indicate that incineration is an ef-
fective method for oxidation of inedible biomass

and segregation of the inorganic resources to a

small mass, easy-to-handle ash. Sixty-five percent

of the inorganic mass was recovered in the water-
soluble fraction of the ash. Losses were attributed

to volatilization (8°70) and non-water-soluble ash

(27o70). If dilute acid was used to solubilize the

ash, then the only mass lost was that due to vola-

tilization during incineration.



138 BUBENHEIMANDWIGNARAJAH

Table 6. Comparison of Recovery Efficiencies From Incineration Followed by

Water Extraction of Ash With Water Extraction of Dry Biomass

Incineration Incineration

Water-Soluble Acid-Soluble Water Extraction

Ash Ash of Biomass

Inorganic recovery efficiency
from biomass 65 070 92°70 93 070

Inorganic lost 35070 8070 707o

Incinerator loss 807o 807o -

Water insoluble 27070 -- 7%

Estimated carbon recovery 100070 100% 0%

Estimated water recovery 100% 100070 0070

Proper preparation of waste streams prior to
processing in a resource recovery system will be
critical. It is clear from both elemental retention

during incineration and elemental recovery in the

water-soluble fraction of dry biomass that smaller

particle sizes will result in increased recovery effi-
ciencies.

Water extraction of ground biomass provided
greater inorganic recovery than incineration fol-

lowed by water solubilization of the ash. How-

ever, the water-soluble fraction from biomass con-

tains a considerable amount of organic as well as

inorganic compounds. This organic component
represents a potential plant toxin in nutrient solu-

tion. Some of the organic carbon substances ex-

tracted from plant tissues or extruded by plant

tissues can be toxic to growth and germination of

other plant species (Rice, 1984; Yu and Matsin,

1994). This soluble organic component is also a

secondary raw material, carbon, in a nonaccessi-

ble form. Oxidation of this fraction is required to
get CO2 from this liquid stream. A second oxida-

tion processor would be required to recover car-
bon from the solid straw residue. Acid solubiliza-

tion of incinerated ash provided a degree of

inorganic mass recovery approximately equal to
that with water extraction of nonoxidized bio-

mass. However, the inorganic, organic, and water

components remain segregated because of the in-
cineration step. The availability of acid in mission

scenarios employing a CELSS is not well defined.

Acids may be required to perform a range of func-

tions and may be readily available. The presence

of water is clearly a given.

Elements such as potassium and phosphorus

are obviously being lost during incineration. These

elements are likely being volatilized during the

process. If nutrient recovery is of primary con-
cern, then shorter incineration times would be de-

sirable. However, because the inorganics represent

such a small portion of the total waste stream
from which resources must be recovered in a

CELSS, the selection of operating condition might

be based on recovery of water and carbon. The

potential for toxic products such as dioxins, which

are reported to result from incineration tempera-
tures lower than 750°C, will add another factor
into the calculation.

Elemental recovery following pyrolysis was not

investigated in these current studies to the same

depth as was incineration. However, it is clear

from thermal gravimetric studies that higher pro-

cessing temperatures are required with pyrolysis
to get an equal mass reduction as observed with

incineration. Because the temperatures are higher,

the potential for volatilization of inorganics is

probably greater as well. Further, because the pro-

cessing occurs in the absence of air (oxygen), an

added oxidation step would be required to pro-

duce CO2.

Resource recovery is a critical element in a
CELSS. Inorganic plant nutrients in inedible bio-

mass represent a small fraction of the total secon-

dary raw resource pool. However, recycle of these

materials is key to accomplishing self-sufficiency.

Incineration is an effective processor with poten-

tial application in the resource recovery system of
a CELSS. All the raw resources resident in bio-
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mass are separated and a significant amount

of inorganics can be recovered from the water-

soluble ash.
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