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The purpose of this thesis is to develop analysis and synthesis tools to improve the

dynamic performance of reconfigurable systems. For simplicity, without losing

generality and physical insight, this dissertation is focused on planar motion. Various

control law strategies are considered and evaluated for the non-minimum phase, non

strictly positive real, time variant system. The strategies include indirect and direct

model reference adaptive controllers; and fixed, robust, and optimal controllers.

Particular emphasis is on enabling real time implementation and reducing the requisite

number of experiments to identify the time varying system. System identification is

accomplished for the kinematic nonlinear system via the observer Markov parameters

using data gathering experiments of a minimum of arm orientations. In addition, the

observer Markov parameters can be utilized to reduce the data and improve system

identification results. The identified time varying model is augmented with a band pass

filter for frequency weighting and is shown to reduce the controller size. A novel

Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear

system. An example problem is discussed, all controller coefficients in the SVO

controller are very closely approximated by a third order polynomial in the elbow pitch

angle, theta. There are several advantages to using the SVO controller, in which the

spline function approximates the system model, observer, and controller gain. They

are: the spline function approximation is simply connected, thus the SVO controller is

more continuous than traditional gain scheduled controllers when implemented on a
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time varying plant; it is easier for real time implementations in storage and

computational effort; where system identification is required, the spline function

requires fewer experiments, namely four experiments; and initial startup estimator

transients are eliminated. The SVO compensator was evaluated on a high fidelity

simulation of the Shuttle Remote Manipulator System. The SVO controller

demonstrated significant improvement over the present arm performance: (1) Damping

level was improved by a factor of 3; (2) Peak joint torque was reduced by a factor of 2

following Shuttle thruster Firings.
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CHAPTER 1

INTRODUCTION

One of the fundamental problems in the operations of flexible manipulators in space is

the duration and rate of decay of their oscillatory motions. Robotic manipulator arms

have traditionally been modeled as composed of rigid links, with collocated actuators

and sensors, to ensure stable and reliable control. In order for the arms to remain rigid

while carrying a payload, they must typically be made with heavy elements, requiring

in turn larger and heavier actuators. These facts have motivated the recent interest in

using lightweight, higher performance robots for both commercial and space-based

applications. The advantages of such lightweight manipulators are many, including

faster system response, lower energy consumption, smaller actuators and trimmer

mechanical design. Obvious tradeoffs, however, complicate the problem of flexible

manipulator control, which focuses primarily on the controller design to compensate for

flexible effects.

Traditionally, ground based manipulators designed to handle payloads in the presence

of gravity weigh 100-200 times the weight of the assigned payload. However, space-

based robots such as the Shuttle Remote Manipulator System (RMS), are designed to

maneuver payloads in the absence of gravity. Due to mass and volume constraints

these manipulators have relatively thin (low stiffness) booms, yet they maneuver

payloads weighing 30-40,000 lb. The corresponding manipulator to payload weight

ratio is 0.005:1. In addition, space-based robots tend to be much longer than their

terrestrial counterparts. The fundamental bending frequency of these structural systems



is proportionalto the squareroot of the stiffnessto payloadmass,thus the robotic

systemsexhibit long periods of oscillatory motion following routine operational

maneuvers. As a result, the Shuttle RMS safety operational constraints require

astronauts to wait extended periods of time before they are allowed to command the

next maneuver.

1.1 Background and Previous Research

There are two distinct approaches to reduce residual motions of robotic manipulators

following commanded motions. One approach is to reduce the residual oscillations by

using input command shaping techniques (Seering and Singer, 1990 ). An adaptive

precompensator can be implemented by combining a frequency domain identification

scheme which is used to estimate on-line the modal frequencies and subsequently

update the band stop interval or the spacing between the impulses (Tzes, 1989). The

advantages of the input shaping approach are that accurate identification of plant

parameters, such as frequency and damping, is not critical, and there is no knowledge

requirement for the controller influence coefficients. One disadvantage is a significant

phase lag between the desired input and corresponding motion of the manipulator. This

move time penalty is on the order of one period of the first mode of vibration. The

operator commands the arm to stop, but the end point will continue to move for a few

seconds. As a result, the manipulator does not have the same "feel" as the current

manipulator when used by a trained operator, which could be detrimental when precise

positioning is required. Another disadvantage of command shaping is that it cannot

reject unknown disturbances. For example, oscillations of the Shuttle RMS that result

from the Shuttle thruster fuings cannot be damped by an input shaping method applied

solely to the Shuttle RMS.



The secondapproachof employingoutput feedbackto reducevibration has been

selectedfor this thesis. In this approach,outputfeedbackof measurementsof the

systemresponseis usedin a compensatorto derivejoint commandsdesignedto damp

theresidualmotions. An exampleof this secondapproachis the work by Prakash,

AdamsandAppleby(1989),whousedadetailedanalyticalmodelof themanipulatorto

designmodelbasedcompensators.Other methodsfor robust controller designof

flexible link armsandnonlinearcontrol methodswere suggestedby Korolov, Chen

(1989)andKreutzandJamieson,respectively.In Juang(1993)andFeddema(1990)a

model-independentcontrollerfor largeanglepositioncontrolof atwo andsix-degreeof

freedomrobot was developed. However, in thesemethodsthe passivecontroller

requirescollocationof sensorandactuator.KanohandLee(1985)studieda singlelink

flexible armwith aconcentratedmassat thetip; similarlya 12.5 foot steelbeamwas

constructedat theJetPropulsionLaboratory(Schaechter,1982). Both of thesestudies

usedcollocatedsensorsandactuatorsin theirexperiments.

Shoenwald(1991)andEisler (1990)analyzedtheexperimentalresultsof a minimum

time trajectorycontrolschemefor atwo link flexiblerobot. An off line optimization

routinedeterminedaminimumtime,straightlinetip trajectory,which stayedwithin the

torqueconstraintsof themotor. Thecontrolstrategyusedalinearquadraticregulatorto

determinethe feedbackgainsbasedon a finite elementmodel linearizedabout the

straight line tip trajectory. At somepoints along the trajectory the gains varied

considerably.When thesetof gainswasusedto controlthesystem,theresultswere

lessthansatisfactory. Although the ann did reachthe desiredend point, therewas

considerableerror in the tip position along the way. In an attemptto reducethe

sensitivityof thefeedbackgainsto modelingerrors,asinglegainmatrix, optimizedfor

the averageof theworkspace,wasused. Theauthor(Eisler, 1990) felt that a better



solutionwouldbe to useasetof threeto four gainsthatwouldbescheduledto become

activewhenmajorchangesin thestatesoccurred.

Optimalcontrolhasbeenappliedto the nonlinearmultilink problemusing end point

measurement(non-collocation)with limitedsuccess.Oakley(1989, 1990b)exploresa

modelingandmode-selectiontechniqueto improvethe predictionof the manipulator

end-pointposition. The nonlinearend-pointcontrollerbasedon end-pointsensing

incorporatesalinearquadraticregulatoranda nonlinearestimator. Experimentsshow

thatthistechniquesignificantlyimprovesmanipulatorpositiontrackingovercommonly

used collocatedcontrol techniques. End point sensingis achievedusing a CCD

televisioncamerato track specialreflectivitytargetslocatedat the manipulatorend-

point. The nonlinearrigid-flex equationsof motion were linearizedabout an elbow

angleof 75*in theconstantregulatorandestimatorgainmatrices,thusconstrainingthe

usableworkspaceto smallperturbationsaroundthelinearizedplant. In Oakley(1990a)

a278 statecontrollerwasableto operateovera largeworkspacewhile sacrificingon

performance. The authorsindicatedthat if the controllerwere gain scheduled,the

performancewould bemuchimprovedfor operatingpointsfar from the linearization

point. In Seraji(1986)andHasting(1985), multivariablecontrol is appliedto a two-

link robot. Thecontroldesignis basedon alinearizedmodelof the robot dynamics,

andit wasnotedthatperturbationsof variablesfrom their nominalvaluesmustbe kept

small. Whenlargeexcursionsof variablesareexpected,thecontrollermustbeupdated

at suitableintermediatepositionsin order to improvethe performanceof the control

system.

In Matsuno(1990)a controllaw is developedfor a 6 degreeof freedomrobot using

accelerationfeedback. Matsunoshowedthat the end effector tip trajectorieswere

superiorin terms of residualmotion over the open loop trajectories,althoughthe
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available workspace was constrained within small perturbations around the linemz_d

plant. In Yurkovich (1990), identified models of a two link manipulator were used in

static and dynamic fixed controller design, where end point accelerations were used.

The controller performance was found to be unsatisfactory for large system parameter

variations, especially the elbow joint angle.

It has been know for some time (Gevarter, 1970) that if a flexible structure is controlled

by locating every sensor exactly at the actuator it will control, then stable operation is

easy to achieve. Nearly all commercial robots and most flexible spacecraft are

controlled in this way for this reason. Conversely, when one attempts to control a

flexible structure by applying control torques at one end that are based on a sensor at

the other end, the problem of achieving stability is severe. Solving it is an essential

step for better control in space; the space-shuttle ann is a cogent example. The next

generation of industrial robots will also need such control capability, since they will

need to be much lighter in weight (to achieve quick response with less power), and they

will need to achieve greater precision by employing end-point sensing (Cannon, 1984).

A direct-drive, laser cutting robot, for example, tracks a curved trajectory, while the

tracking error at the arm tip is required to be less than + 0.2 mm (Asada, 1987).

Extremely heavy arm inertia resulted when one tries to make the arm construction

sufficiently stiff so that the elastic deformation is less than + 0.2 mm at the arm tip

(Asada, 1990).

It has been shown (Hillsley, 1991; Yurkovich, 1990; Oaldey, 1988; Kotnik, 1988) that

rigid dynamics control alone cannot achieve accurate and steady link endpoint position.

Kotnik (1988) and Wells present single link laboratory results for a flexible manipulator

in which four separate control strategies are compared and contrasted. Namely, the

control schemes compared are: compensation using classical root locus techniques with



endpoint position feedback, a full state feedback, observer-based design, and

compensation using endpoint acceleration feedback. The results indicated that

acceleration feedback has great potential in flexible manipulator control. The study

pointed out that the use of acceleration feedback for flexible robot arm control has

intuitive appeal from an engineering design viewpoint. Primary advantages include the

fact that sensing acceleration for control implementation is accomplished with structure

mounted devices so that camera position or field of view are not issues, and that from a

practical viewpoint implementation is easy and inexpensive.

A similar study was performed in Scott (1993), where arm tip acceleration feedback

was used in a model-based compensator for the six degree of freedom Shuttle RMS,

augmented with a mounted 3000 pound payload. However, in this study the

workspace was constrained to small perturbations about a linearized plant. In another

study by Demeo (1992) the workspace of the RMS was extended by developing a

single controller optimized over a range of workspaces using a Quasi-Newton

numerical optimization routine. The control design presented here was relatively simple

in nature, with a motor shaft position feedback loop for rigid body motion control and

the endpoint acceleration feedback loop for flexible motion control. System

identification studies were employed in lieu of analytical modeling exercises because

system identification would become increasingly necessary as the level of complexity

for such systems increases. In this study the sensor dynamics and actuator dynamics

were lumped into a single aggregate system. The use of digital faltering techniques

enhanced the quality of the signals used in the control design, and was equivalent to an

a-priori frequency weighted design.

Other feedback methods to reduce vibration include adaptive control algorithms which

is an attractive feedback approach since the plant is changing in time (Lucibello, 1990,
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Balestrino, 1983, and Nicosia, 1984, Harashimaand Ueshiba, 1986). Adaptive

controlcanbedividedintotwo subcategories;indirectanddirect. Indirect (or explicit)

identifiesexplicit parametersof the plant. Direct (or implicit) has no parameter

identification. The indirectModel ReferenceAdaptiveController (MR.AC)doesnot

solvethe non-collocatedactuatorsand sensorproblemwell for non-minimumphase

plants (Liang, 1990). The 'one step aheadcontrol law' inverts the plant transfer

function,thusnon-minimumphaseplantsarenotstablefor thiscontrollaw. Evenone-

link flexible arms, where linear dynamicmodelsareappropriate(Cannon, 1984),

standardinversiontechniquesaimedat outputtrajectoryreproductionfail, due to the

non-minimumphasenatureof thetransferfunctionfromjoint torqueto tip position. A

similardifficulty is presentwhenworkingwith thefull nonlineardynamicsof a two or

multilink arm,dueto thepresenceof anunstablezerodynamics(DeLuca, 1989). The

DirectMRAC requirestheplantto beStrictlyPositiveReal(SPR)whentheplantmodel

statesarenotavailablefor feedback. A new versionof the DirectMRAC hasbeen

developed(Galvez,1991)whichdoesnotrequiretheSPRpropertyof theplant. With

this techniquea DynamicProjectionModel (DPM) is adaptivelydesignedso that it

sharesa commonpoint on the Nyquist plot at zero frequencywith the plant. The

definitionof positivedefinitesystemsis summarizedin AppendixA.

Dissipativecompensatorsoffer an attractivealternativebecausethey circumventthe

sensitivity problemsassociatedwith model-basedcompensators. However, the

practicalusefulnessof thesecontrollersis limited becausestability dependson the

systemparametersto be"passive." In thecontextof networktheory,a passivesystem

representsthedrivingpoint impedanceof a dissipativenetwork. A network is called

dissipativeif it consistsonly of resistors,lossy inductors,andlossycapacitors,which

dissipateenergy. Dissipativecompensatorsusecollocatedcompatibleactuatorsand

sensors(Joshi, 1991).
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Table 1.1 summarizesseveralcontrol design techniques. Each control technique is

evaluated in terms of constraints, assumptions, and performance models required. For

a reconfigurable system, this thesis proposes the Spline Varying Optimal (SVO)

Compensator, which is outlined in Chapter 5.

On the left hand side of Table 1.1, the constraints and fundamental assumptions include

non-minimum phase and Strictly Positive Real (SPR) requirements on the plant and/or

the controller (Liang, 1990). The reference or performance model refers to the

requirement of a dynamic model which the controller is required to track. Adaptive

plant realization refers to the requirement of real time plant realizations. To be fair to

the non proposed controllers depicted in Table 1.1, some of the constraints are

theoretical in nature, as opposed to practical. For example, although sufficient stability

theory is not yet available, these controllers have performed well for certain systems

that violate the plant and or controller constraints. Thus the conditions are sufficient,

but not necessary as outlined (Liang, 1990). In addition, there are operational

conditions of the SVO controller which are required. These conditions are outlined in

section 4.1.

As shown in Table 1.1, both the direct and indirect MRAC require a reference or

performance model. How one derives such a model for a time varying system is not

clear. In addition, requiring a plant to follow such a reference model may result in

moving plant poles unnecessarily large distances in the root locus plane to achieve

model following properties. Both the indirect and direct adaptive control

methodologies require extensive use of on-board computer hardware.
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Table1.1

Summaryof Controller Design Techniques

Type of
Controller

Plant
Constraints

Fundamental

Assumption

Reference or
Performance

Model Required

Adaptive Plant
realization

Required

IMRAC

Model

Following Feed
forward

Non-minimum

phase

Yes

Yes

CGT-DRMAC

Model

Following Feed
forward

SPR

Ac=A+BG(t)C
remains SPR
for all time

Yes

None

DPM DRMAC

Model

Following
Feedback

None

None

Yes

Yes

Proposed in
this thesis

Spline
Varying
Optimal
(svo)
None

None

None

None

1.2 Thesis Objectives and Overview

The primary objective of this thesis is to develop analysis and synthesis tools which do

not demand the plant constraints, and adaptive realizations as outlined in Table 1.1.

The focus is to improve the dynamic performance of a nonlinear flexible reconfigurable

structure, while minimizing hardware and software modifications to the overall system.

Minimal hardware in this sense implies using few and lightweight sensors and

actuators, for example, taking advantage of the actuators that are already on a

reconfigurable structure to improve dynamic performance, and using inexpensive flight

qualified sensors such as accelerometers. Minimal software implies using adroit

techniques to minimize the computational burden of the dynamic controller (i.e., small

order controller). In addition, a major emphasis is to reduce the requisite number of

system identification experiments to characterize the system for control law
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development.Particularattentionis focusedon the typeof manipulatorusedon the

ShuttleRemoteManipulatorSystem.

Theapproachtakenfor controllaw design relies on identifying mathematical models

from data. Identified models eliminate the need to develop accurate models of

operational safety functions, sensor, and actuator transfer functions of the system under

control. Experience with complex hardware in the NASA Langley lab has shown that

as system complexity increases, analytical model based controllers require a large order

compensator, and may not be as accurate for control law development as identified

reduced order mathematical models (Belvin, 1991).

In this thesis the dynamic behavior of a space robot maneuvering a heavy payload is

exploited to design several very small order compensators that improve robot dynamic

performance over a large workspace. There are two main categories of nonlinearities

associated with a multidegree of freedom manipulator; kinetic and kinematic. The

kinetic nonlinearities are associated with nonlinear energy dissipation in the joints, for

example gearbox stiction, friction and backlash. The kinematic nonlinearities include

the nonlinear behavior induced by large angle motion of the manipulator joints,

resulting in configuration changes, which alter the open loop dynamics of the system.

Addressing the kinematic nonlinearities is the main focus of this thesis; although the

nonlinear controllers will be evaluated on a high fidelity simulator which includes the

aforementioned kinetic nonlinearities. A two link planar model will be used to address

the kinematic nonlinear problem. The high fidelity simulator is utilized to investigate

various collocated and non-collocated control strategies, and to evaluate the low order

controller on a highly nonlinear system. Another objective of this thesis is to identify

sensor locations on the structure that enable a time varying non-collocated controller to

operate over a wide variety of arm orientations.
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It is shownthatthewait timepenaltyincurredby operatorsis largelydominatedby the

modaldampingof the lowest fundamentalmodeof the manipulatordynamics. The

dampingof this fundamentalmodeis increasedby minimizingacostperformanceindex

evaluatedover the workspaceof the manipulator. A non-dimensionalparameter

dependentmathematicalmodelof a two link manipulatoris analyzedto investigate

variouscontrollaw designs. Threedifferentcompensatorsthat utilize non-collocated

measurementof thetimevaryingsystemareinvestigated. The compensatorsinclude

fixed, robust,andsplinevaryingoptimal(SVO)compensators.This thesisdevelopsa

method to implementeach of the compensatorsin a mannerwhich reducesthe

computationalburdenof realtimeimplementations.

Theobjectivesof thecompensatordesignareasfollows:

• To determinethe performanceand limitations of collocatedcontrol

versusnon-collocatedcontrol.

• To determinehow a traditional fixed gain dynamic compensator

performsfor aplantthatischangingin time.

• To determinethe performanceof a fixed compensator,and if the

resultantstabilitymarginsaresufficientto workovera largeworkspace.

• To determinetheperformanceof traditionalrobustcompensatordesigns

overa largeworkspace.

• To determinewhat theoptimalstatedependentcompensatoris for the

timevaryingplant. What is its performancein relationto the fixed and

robustcompensator.

• To determinewhat type and numberof experimentsare requiredto

designa SVOcompensator.To determinehow many different arm
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orientationsare necessaryto characterizethe dynamics over the

workspace.

To aid this investigation,the time varyingoptimalcompensatoris implementedon a

Drapersimulationof theShuttleRemoteManipulatorSystem(Gray,1985). Theluted

gaincompensatordevelopedby theauthorwasevaluatedby astronautsat theJohnson

SpaceCenter. The astronaut/operator'sassessmentof the fixed gain compensator

notedthattherewasa"significantincreasein damping"(Lepanto,1992). It wasnoted

that "Our (NASA/Draper)philosophyhasbeento designa single compensatorthat

improvestheperformanceof theRMSfor awiderangeof configurations,andit isclear

thattheincreasein dampingatanyoneconfigurationwill be lesswith this 'one sizefits

all' compensatorthanwith acompensatortunedto thatspecificconfiguration." Loads

reductionfor theRMSwith thefixed gaincompensatorwas alsocitedasan important

factorseveraltimesduring thesessions. Thetimevaryingcompensatordemonstrated

significantimprovementoverthepresentarmperformance(Scott,1993): (1) Damping

levelwasimprovedby afactorof 3 and(2) Peakjoint torquewas reducedby a factor

of 2 following Shuttlethrusterfirings. It is expectedthat with anoptimaltimevarying

compensatorthedampingandtheloadswill beimprovedfor a largerworkspaceof the

manipulator.

1.3 Thesis Organization

Chapter 2 introduces a mathematical model of a manipulator that can be used to

investigate various control law strategies. Lagrangian dynamics are applied to

determine the kinetic and potential energies for the two link system. The resultant

dynamic equations are then organized into a state space model suitable for use in linear
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controlsystemdesign. First a two link manipulatoris discussed. The equationsof

motion arenon-dimensionalizedto providea greaterunderstandingof how physical

parametersaffecttheopenloopdynamics.A sixdegreeof freedommanipulatoris used

to indicate,and discussthe relativesensitivity of the various input-outputtransfer

functionsto thejoint degreesof freedom,andindicatewhy thetwo degreeof freedom

model approximatesthe larger degreeof freedom system. Some fundamental

mathematicalpropertiesof manipulatorssuchasthefrequencyseparationandthe modal

contributionto theopen loop infinity norm are discussed.

In Chapter 3 the nonlinear system is identified using the observer Markov Parameters.

Data is gathered from four experiments as the elbow joint angle is moved from 0

degrees to 90 degrees. System identification is then applied to the data to identify the

observer Markov parameters. The observer Markov Parameters are then used to obtain

the system state space matrices as a function of theta.

In Chapter 4 the compensator design is discussed and the control strategy is introduced.

Three compensators are investigated: a fixed gain compensator, a robust dynamic

compensator, and the Spline Varying Optimal (SVO) compensator. An example

problem is included to discuss the performance and stability comparisons of the various

controller strategies.

In Chapter 5 various control strategies are applied to a high fidelity simulation of the

shuttle manipulator system. The approach to the RMS active damping feasibility study

is developed as follows. First, a set of payloads and arm configuration combinations

consistent with the types of payloads expected during Space Station assembly were

defined. Second, RMS dynamics and operational characteristics were examined using

the nonlinear Draper RMS Simulator (DRS) code (Gray, 1985). The determination of
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activedampingaugmentationfeasibilityinvolvedthedesignandsimulationof candidate

dampingaugmentationcontrol laws. For thispurpose,systemidentificationmethods

wereemployedon outputdatafrom the DRS to identify time varyingmodelswhich

closelymatchtheDRSresponse.With thenonlinearcontrol designmodels, various

activecontrol law designconceptswere evaluated,as were the requirementsfor

feedbacksensorsto measurearmmotions. The final stepwas the simulationof the

activedampingcontrollawsin amodifiedversionof the DRS, to determinetheeffects

of systemnonlinearitiesandcomputertimedelays.Chapter6 includesConclusionand

Recommendations.
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CHAPTER 2

OPEN LOOP MANIPULATOR MODELING

The problem of modeling articulated flexible mechanical systems has been studied

extensively. Cannon and Schmitz (1984) published the pioneer work in the area of

control and modeling of flexible robot arms. In that work, the mathematical modeling

and the initial experiments have been carried out to address the control of a one link

flexible robot arm where the position of the end effector (tip) is controlled by measuring

that position and using the measurement as a basis for applying control torque to the

other end of the arm (joint). Book, Maizza-Neto and Whitney (1975) directly

approximate a two link flexible robot with a linear model derived from a nonlinear

distributed parameter model. In the papers of Balas (1978) and Karkkainen and Halme

(1985) a modal approach to the problem of approximating a general flexible mechanical

system is used. Book (1979) uses a special technique called lumping approximation to

analyze flexible mechanical systems, assuming that the links bend in a first mode of

vibration. Judd and Falkenburg (1985) apply this method to non rigid articulated

robots; the same technique is adopted by Sunada and Dubowsky (1983) and modified

in such a way that more vibration modes are allowed. Chassiakos and Bekey (1985)

approximate the distributed parameter system response. Tmckenbrodt (1982) analyzes

the deformation of a chain of elastic links using the Ritz-Kantorovitch method and

studies the dynamic behavior linearizing the related differential equations.



No attemptis madein this thesisto improve the modelingtechniquesfor flexible

manipulators. Includinghigh ordereffectssuchas foreshorteningof the beamonly

obfuscatetheissuesdiscussedin thecontrollaw design.

This chapterdiscussesthe open loop manipulatormodeling. First a two link

manipulatoris discussed.Theequationsof motionarenon-dimensionalizedto provide

a greaterunderstandingof how physicalparametersaffect the open loop dynamics

(Smart,1993). A six degreeof freedommanipulatormodel is presentedto discussthe

relativesensitivityof the variousinput-outputtransferfunctionsto thejoint degreesof

freedom,and to indicatewhy the two degreesof freedom model approximatesthe

largerdegreeof freedomsystem. The frequencydependenceon the payloadmassis

then introduced. It is notedthat for heavierpayloadsthere is a larger separation

betweenthefirst andhigherorderor residualmodes. If a payload100timesthe mass

of thearmis considered,the2ndmodalfrequencyis 98 timesthefrequencyof the 1st

mode. In Section 2.4 the open loop infinity norm is utilized to indicate the

predominanceof the fundamentalmodeto the overall performanceof the open loop

manipulator.

2.1 Two Degree of Freedom Manipulator

The material in this section describes a time varying linear model of a flexible two link

manipulator (Figure 2.1). The mathematical model forms the basis for investigating

various control strategies covered in later sections.

The mechanical joint corresponding to 01 angle is referred to as the shoulder joint, and

the joint corresponding to the 02 angle is referred to as the elbow joint. In Figure 2.1,

m 1 and m 2 refer to point masses at the first and second links respectively. The method
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employedto generatethemodelutilizesa separableformulationof assumedmodesto

representthetransversedisplacementdueto bending.Lagrangiandynamicsareapplied

to determinethekineticandpotentialenergiesfor thetwo link system(Smart, 1993).

Theresultantdynamicequationsarethenorganizedintoastatespacemodelsuitablefor

usein linearcontrolsystemdesign.

Jl

J

J3

J2

rn I

i3

Figure 2.1 Flexible Manipulator

The slendemess ratio of each link is such that rotary inertia and shear deformation

effects may be neglected (i.e. assuming Euler-Bemoulli beam theory). In the following

analysis it is assumed that the squared flexible deflections are negligible compared to

the axial dimension squared (Hasting, 1986). The definition of the variables used in

the model generation are shown in Table 2.1.

The coordinate systems are defined as follows.

{ 11} r c°s(°l) sin(0,)l '= L-sin(0,)cos(0,)JtJJ
(2.1.1)
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j (2.1.2)

{/3}__cos/o /-sin(O=)cos(O=).]Li=J
(2.1.3)

Table 2.1

Def'mition of Variables used in Model Generation

pi Volumetric density of link i

E i Modulus of elasticity of link i

Aai Cross sectional area of link i (constant)

I i Area moment of inertia of link i

Li Length of link i

wi (x i, t) Transverse deflection of link i

W'l,L_ First spatial derivative of link 1 evaluated at

w_ r. First time derivative of link 2 evaluated at L.2

x i Spatial variable for link i

t Time

In Equation (2.1.2) it is implicitly assumed that the geometric angle at the tip of link 1

created by the elastic deformation of the link is approximately (oawl / t_Xl )x, =_ In

addition, note that the rigid body rotation of the second member is relative to the slope

at the end of the first link. The coordinate axis in (2.1.1-3) are depicted in Figure 2.1.

L and J represent the local vertical and horizontal axis respectively. The coordinates i1,

and Jl represent the rigid body motion of link 1 with respect to the local vertical axis I,

and J. The coordinates /_, and J2 represent the rigid body rotation of link 2 with

respect to iI , and Jl"
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Usingthecoordinatetransformationsof equations(2.1.2)and(2.1.3), thepositionfor

anelementalmasson link 2 at x2 takes the form

r2, x = LI_ + Wl,L_)l + x2i"3 + w2) 3 (2.1.4)

The corresponding velocity for an elemental mass on link 2 at x2

r2,x = (Zl O1 + Wl,tl )Jl - Wl,tl 0lil dr. (X20) o I_ #2 )J3 - w2 (-0i'3

is

(2.1.5)

where

09 = 01 + 02 + #_,z_

the dot product of the element velocity is given by

- - • •2 x20j2 + 2x2a 2 + #2r2, x "r2, x =/__O? + 2LIOI#1& + W1,LI +

+2L101 X2('OCOS(O2) + 2_/91 #2 cos(02)

+2 #l,C x2gO cos (02 )+ 2#1, _ WEcos(02 )

(2.1.6)

(2.1.7)

In accordance with the small angle approximation made in (2.1.2), it is assumed that

WI,LI' is small such that cos(w{, I-1)= 1, sin (w{, 1-1)= w l',&. Thus

cos(f'2 + w_,/., ) -- cos(t)- w;,h sin(t)

sin(fl + w;,& ) - sin(t) + w_,h cos(t) (2.1.8)

where f2 is some linear combination of the rigid body rotations. Furthermore, it is

assumed that terms involving the deflection functions and their derivatives with powers

greater than two are negligible, and the kinetic and potential energies may be reduced to

a quadratic form. The above assumptions were made in Smart (1992) where

experimental results were used to confirm the assumption.

In determining the kinetic energy of the two link system, only the transverse elastic

deformation of each link, wi (xi, t) , i= 1,2, relative to a known rigid body rotation, Oi,
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i=1,2, is considered.UsingEquation(2.1.8) with f2 = 02 , the quadratic form of the

kinetic energy for the first and second link, T, is

T= TL, + TL2

= 1_ (PA)l(_l,x " _l,x )dXl+ lml(_l,x "rl,x )Ix, =_ (2.1.9)

In Equation (2.1.9) the tip masses are modeled as lumped masses without rotary

inertia. The potential energy is derived assuming: isotropic beams are in a state of pure

bending, plane sections remain plane after bending, Hooke's Law is applicable and

only small displacements are considered. In addition, the assumptions of Equation

(2.1.8) are used whereby f2 = 01 + 02

The equations of motion are developed using the assumed modes method in

conjunction with Lagrange's equation. In doing so, the transverse deflection functions

of each beam are written as a linear combination of admissible functions of the spatial

coordinate multiplied by time-dependent generalized coordinates (Meirovitch, 1967).

That is,

W 1(x,t) = _ Oi(Xl )ai(t) = _)Ta = aT_

i=0

w2(x,t ) = _ Iff j(x2)cj(t) = IffTc = cTIff

j=0

(2.1.10)

The quadratic form of the kinetic energy for the first link, TL_, is

1 j(1)/_2 1 -T,Ar(1);, tTfil;'T/14'(I)
TL_ -_ 1 Vl "l'--U2 ma "+ (2.1.11)
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where

j_l): _L1 (pA)lx2dXl . mix21 xl=_ (2.1.12)

Ma(1) = f0Ll(pA) 1_q_Tdx 1 + ml _)_TxI=L 1
(2.1.13)

M(1) _L1 (/gA)IX1 _dx1 +mlx, rPlx,=Lla ---- (2.1.14)

where j_l) is the inertia term for the first link, M_a1)r is the feedforward term from the

_(1) is thejoint angle 0 to the generalized coordinate or tip displacement term q .... la

feedback term from the generalized tip displacement to the joint angle 0, and u is the

generalized input.

The quadratic form of the kinetic energy for the second link, TG, is

1 .(2)02 + 1 j(2)0_ + 01 .:,TjIA(2 )
Tt a =301 1 +J120102 2 2 u ,._tla

1 tiTM(Z)f + 02(TM2c
+ 02ctTM2a + "_ a O1crMlc +

+l  rMc : + rMc a
2

(2.1.15)

where

j_2)= _0G (PA)2( _ + x_ + 2LIx2 cos(02))dx2

+m2(L_ + x 2 + 2LlX2Cos(O2))x2=la

(2.1.16)
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(2.1.17)

Lz 2 cos(02))dx 2 m2(x 2 + LlX2Cos(O2))x2=L 2J,_=Jo(pa)_(x2+_x_ + (2.1.18)

_,_:'=jo_(,,:,A)2(q_',,,+x_,_.,+qx:¢_cos(o:)+x:o,_costo:/)_x:ia

+ m2(LICL, + x_CP'L,+ LlX2dP_ cos(02) + X2_L1 COS(02))Ix2=L z

(2.1.19)

M2a = joL2 (PA)2(x2O£ , --i.-X2_Ll cos(02))dx 2

+m_(x_¢&+x_¢,cos(O_))x,=_
(2.1.20)

M_:,=]o_IpAI_(_L,o_+x_,__,_+_L,<_,cos/02)),_2

_, , ,_cos(o_))lx_=,_+m2(C'q¢z_+x2O,1_'L,+ 2,t'qOL,
(2.1.21)

Mlc = ,[0L2 (PA)2 (X21 _ + L 11prCOS(02))dx 2 -I- m2(x2 I_-I- L 11_COS(02)) x2 =L2
(2.1.22)

M2c = [_ (PA)2x2_dx2 + m2X2_x2=ta (2.1.23)

T

m c = j'0/'2 (/9A)2 I_l/./Tdx2 + m 2 Iffl// x,::,=/..2
(2.1.24)
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X ,T
(2.1.25)

The quadratic form of the potential energy U is

,,: So', +
However

Ka:_oLI((E')I+'X_J"T_x1

K<:fo_(/_,/_,,,,,,,,,,'>

(2.1.26)

(2.1.27)

Substituting the relations of (2.1.10) into the kinetic and potential energies, the

Lagrangian L, is

L=T-U

1 j(l)fi2 + 1 aTM(1) d ._ -T,.(1)
=7 1 Vl 7 a + U la lVlia

• 1 t(2)A2 ;,T _1,¢(2)
+ 1 j(2)/_2 02 + +/_li "l + .sl:>O1 _-'2 '-'2 " ""l<,

+ 1 dTM(2) d Old TMic + 02kTM2c (2.1.28)
+02 arM2a "_ a +

+16TMc6 + kTMcad-l d T<a-l e TKcc
2 2 2

1 aT.Kaa _lcrKo c2

The equations of motion are detem_ined according to Lagrange's equation, which for

conservative systems states

<_r°_l O__o (2.1.29)
_La_/l- aq--7
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where

q=[01 02 a T cT] T (2.1.30)

Assuming the squared flexible deflections

dimension squared, and the square of the

(Hasting, 1986), the Lagrangian reduces to

Mi:j + Kq = O

are negligible compared to the axial

rigid body angular velocity are small

(2.1.31)

m m

where M and K are given by

m

M=

- r(1) _t_r(2)
a 1 7- a 1 "]12

J12 J2

_,¢(I) + M(2) M2 a*'*la la

Ml c M2c

hA(l) + 11(2)_ T T
'"la ""la ) gic

ML ML
l(Ma(2) M(2)) r Mcra+7 +

&a Mc

(2.1.32)

0 0 0 0 1

_=0 o 0 0
OOKa 0
O00K c

(2.1.33)

The following variables are used to non-dimensionalize the equations of motion.

m 1 m2 (pAL) 2 _
1"11- (pAL)l /]2 - (pAL) 2 T/L = (pAL)I r/e = 771+ It/L(1 + 772), rL -- L2

]2i = i' Mi =(pAL)i' - -'_ I[[ L2 ,

Xl _ X2

_I = _-, and _2 -

Where rh and r/2 are non-dimensional parameters which relate the mass at the end of the

link to the mass of the link. r/L represents the mass ratio between the first and second
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link and r/e is a non-dimensional parameter which simplifies the equations, rL is the

non-dimensional parameter which relates the length ratio between the two links. Pi are

the non-dimensional stiffness properties of the respective links. M i are the mass of the

respective links. #* ands* are the normalized admissible functions of the spatial

coordinates ¢ and _ . 41 and _2 are the normalized displacement along the axis of the

link.

Accordingly, the matrices defined in (2.1.32) and (2.1.33) become

J_= ½+rl_+m.r,_ 5+ri2 +{rlLr,.(l+Zrl2)}cos(02)

" * (0)= Jl,i + Jl,ii cos 2

(2.1.34)

+ 172 + -'1'-/72 COS 02

= J2 + Jl2,ii c°s(02)

(2.1.35)

J2 = 1 +/72
(2.1.36)

" {s: .}{ ,(1 1"}Mla =" _l(_*d_l + T/e(_l + rlLrL _+ 02 ¢1

= Mla,i + Mla,i i + Mla.iii COS(e2)

(2.1.37)
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LrL \2 772

=_a,i +_a,iicos(02)
(2.1.38)

+0eti01_l j_+ OLrL 7+._j_, O?l

+{OLrL(1 + 2 02)+;li0_'*T}oos(02)

/ll/_t_ / * *= +Mai i, + Ma,ii i cos( 02 )

(2.1.39)

• Is;• .){'is; /)Mlc = _21/t d_2 ,-I- 021P r -i- "_L IPr*d_2 + 021_1 c°s(02)

=Me,,+M,'<..cos(O_,)
(2.1.40)

* _ * •M2c = 2 IIt d_2 + 02 gtl (2.1.41)

mca=lrLm2c_l _+ I/t*d_2 -t- 02_1 41 COS(02)

" Mca,iiCOS(02 )= Mca,i -k-

(2.1.42)

M c = M 2 I]1"*_t*Td_2 + 02 _l _Vl J
(2.1.43)

,<::(7),Is:,,""°,,.T<,,1} (2.1.44)

• E/ 1
(2.1.45)
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Where 0'* denotes the derivatives with respect to the non-dimensional spatial variable

41, and 01 denotes the evaluation of 0* at _1 = 1. _'* denotes the derivatives with

respect to the non-dimensional spatial variable 42, and _1 denotes the evaluation of

at 42 = 1.

The non-dimensional matrices def'med in 2.1.37 - 2.1.45 are used to create the non-

dimensional system matrices.

* 2 * ( * * )T -- 2.-*TJl,i IlLrLJ2 Mla,i + Mla,ii T1LrLiV12c

2 * 2 * -- 2•,,*T _- 2..*T
IlLrLJ2 IlLrLJ2 TILrLlV12a,i IILrLM2c

* * 2 * * * _- 2 ,.*T
Mla,i + Mla,i i TILrLM2a,i Ma,i + Ma,ii IlLrLMca,i

2 * 2 * 2 * 2 *
IlLrLM2c IlLrLM2c IlLrLMca,i IlLrLMc

(2.1.46)

Msys,ii =

* 2 * *T -- 2 •.*T
Jl,ii IlL r LJ12,ii Mla,iii llL r #v_ lc,ii

2 * _- 2 •.*T
IlL r L J12,ii 0 TlL r L W12a,i i 0

* 2* 1( • *T) __ 2..*T
Mla,iii IlLrLMza,ii 2 Ma,iii + Ma,ii i llLrLlVlca,ii

2 * 2 *
IlLrLMlc,ii 0 IlLrLMca,ii 0

(2.1.47)

Ms*y s : M;ys, i + M;s,iiCOS(02)
(2.1.48)

i 0 0 0

, 0 0 0 0

K. s= o U?KI o
2 2 *

0 0 IlLr'iJ12Kc

(2.1.49)

which results in the second order form

[M;s,i + M;s,iiCOS(02)](O)-I - Msys(q)= fu (2.1.50)
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where

q=[01 02 a T cT] T (2.1.51)

The second order system matrices can be put in f'Lrst order state-space form

Jc= Ax + Bu (2.1.52)

where

X=[01 02 a T C T 01 02 {l T _T] T (2.1.53)

The first order state space form of (2.1.50) is given by (2.1.54)

- o

01

02

eL

_L
.o

01
•°

02
..

eL

. V/L.

0

-inv(M_s)Ksys

-oi
I 02

¢L

• +
01

02

0 eLI..llJL

0

u (2.1.54)

mv( Mj.ys )f

2.2 Six Degree of Freedom Manipulator

The dynamics of a six degree of freedom manipulator are substantially more

complicated than those for the two degree of freedom manipulator shown in the above

section. However, it is worth noting that much of the nonlinear kinematics of the

manipulator are dependent on the elbow pitch joint (2.1.48)•
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Accelerometer Location

Shoulder-pitch

joint

Elbow-pitch _

joint X ""

Z

Shoulder-yaw joint

Figure 2.2.1 Six Degree of Freedom Manipulator

For example, in Figure 2.2.1 the transfer function which relates the shoulder-pitch joint

to an accelerometer located inboard of the x', y', z' reference frame, is not sensitive to

the shoulder yaw or shoulder-pitch joint angle. This thesis will thus focus on the

controller sensitivities of the elbow-pitch angle. In Figure 2.2.1 a schematic of the

RMS system with the placement of the accelerometers located at the end of the second

boom is illustrated. This sensor location is used in the SRMS example of Chapter five.

2.3 Non-minimum Phase Zeroes and Boundary Conditions

This analysis shows the effect of the base boundary conditions on the poles and zeroes

of the transfer function of the two link model. The base constraint (or boundary

condition at the shoulder joint) experienced on the SRMS is essentially a f'Lxed
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constraintdueto thegearboxratioof 1842:1.To modelthephysicsof the SRMSwith

thehigh gearboxratio, the feedbackdynamicsof the two link arm flexibility were

preventedmathematicallyfrom driving the shoulderjoint, while the elbow joint

remainedfixed. This canbe accomplishedby eliminatingthosedynamicfeedback

termsfromtheflexiblemodeswhichdrivetheshoulderjoint. Thusthemassmatrix of

the two link model is modifiedas shown below (Juang, 1986). Note that this

representationresultsin anon-symmetricmassmatrix,andis anaccuraterepresentation

for veryhighgearboxratios.

M sys. i =-

Jl*,i 0 0 0 I

2 * 2 * __ 2:.*T __ 2.1*T IrlLrLJ2 rILrLJ2 llLrLM2a,i llLrLlV12c
• * 2 * * * 2 *T

Mla,i + Mla,i i rlLrLM2a,i Ma,i + Ma,ii rlLrLMca,i

2 * 2 * 2 * 2 * JrlLrLM2c rlLrLM2c T1LrLMca,i _LrLMC

(2.3.1)

and

M sys,ii =

Jl,ii 0 0 0

2 * __ 2 •.*T
7_L r L J12,i i 0 llL r L M 2a,i i 0

• 2 * 1(x * *T) -- 2:-*T
Mla,iii rlLrLM2a,ii _ Ma,iii + Ma,iii rlLrLMca,ii

2 * 2 *
OLrLMlc,ii 0 TILrLMca,i i 0

(2.3.2)

The total system mass matrix is given by

M sy s = M sys, i + M sys,ii cos(0 2 ) (2.3.3)

Notice these mass matrices (2.3.1) and (2.3.2) are similar to those shown in Equations

(2.1.46) and (2.1.47). However, now all feedback terms to 0_ in the top row of the

mass matrix Msy s and to the right of the inertia terms JLi and Jl,ii have been set to zero

to prevent the arm from back driving the joint at 01 . Thus, as shown in first order
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form, theforwarddynamicsareretainedwhile preventingbackwardeffects. The state

spacemodelis shownin (2.3.4)with M*sys replaced by Msy s .

i02
eL

VL

01

02

eL

_VL

0 I

-inv(M*sys)Ksys -inv( M*sys)13

O1

02

eL

01

02

eL

V/L

+

0

inv( M*sys )f

u (2.3.4)

Rate Command

To mathematically model velocity (or rate) command of the two link model, a servo

loop is inserted into the open loop model as was done on the SRMS (Ravindran,

1982).

Rate
Command

Torque Tip

Command] i Displacement_ Open Loop _ O]

I ic,

Figure 2.3• 1 Control Block Diagram with Rate Command

The servo loop provides the ability to command angular rates as opposed to

commanding torques. It is not advisable to command torque's in space based or

terrestrial manipulators due to high angular rates they may induce• Thus a servo loop is

added to the mathematical model as shown in Figure 2.3.1. A proportional gain k t is
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introducedwhich feedsbackto providesufficient torqueto maintainthe commanded

velocity asshownin Figure2.3.2.

Figure 2.3.2

T

Two Link Model with Rate Command

To examine the effect of the rate command on the open loop poles and zeroes, several

example dynamic responses are shown. In the following plots, the two link model is

used with 02 locked at 0 °. The following non-dimensional parameters are used in a

Matlab (Matlab, 1992) simulation of the system modeled in Section 2.2. These non-

dimensional parameters represent an example problem where both links have the same

mass and stiffness properties. A very heavy mass at the end of the second link is used

for example purposes only (Table 2.3.1). The structural damping used is _" = 0.02.

Three sets of analysis are shown in the following section. The fast analysis is for the

above model with no base constraint. The second includes the mathematical model of

the gearbox, in which feedback dynamics are prevented from driving the joint

corresponding to 01 . The third analysis includes the rate command servo in addition to
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Table 2.3.1

Non-Dimensional Parameters used in Experiment

M2 _ 1
fiL-

M1

rL =L2 =I

Mass ratio of link 1; end mass to link 1 mass

Mass ratio of link 2; tip mass to link 2 mass

Link mass ratio: mass of link 2 relative to link 1

Link length ratio: length of link 2 to link 1

Non-dimensional stiffness properties of link i

the gearbox model. All the transfer functions indicated show the response from the

input command to the shoulder joint and a sensor located at the arm tip. In this manner

the non-collocation, non-minimum phase system can be explored. All poles and zeroes

shown in the following tables correspond to the transfer function pole zero form shown

here.

H(s) = C(sl - A) -I B + D = k (s - zl )(s - z2 )...(s - Zn) (2.3.5)
(s - pl)(S - p2)...(s - Pn)

To simplify discussion only four system modes are shown. The four non-zero pole

locations are the lowest frequency modes. Table 2.3.2 shows the poles and zeroes

with no base constraint. These poles and zeroes are shown in Figure 2.3.3 in the root

locus with no base constraint. Notice in this example there are two open loop zeroes.
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Table 2.3.2

Poles and Zeroes with No Base Constraint

Zi Pi

-4.3125e+02

4.2503e+02

-7.8737e-01 +3.4913e+02i

-7.8737e-01-3.4913e+02i

-6.8055e+01

6.9064e+01

0

0

0

0

-3.2062e+01 +9.5380e+02i

-3.2062e+01-9.5380e+02i

-6.7239e+00+4.9055e+02i

-6.7239e+00-4.9055e+02i

- 1.8390e+00+ 1.7813e+02i

- 1.8390e+00-1.7813e+02i

- 1.5754e-01 +4.7325e+0 li

-1.5754e-01-4.7325e+01i

1000
×

em

500 ×

0

X

............ o .......................... o.- _ .... o........................... o ...........0

-500

-1000
-600

×

z
O

x

×
i i , l i

400 -200 0 200 400

Real Axis

600

Figure 2.3.3 Root Locus of Poles and Zeroes - No Base Constraint

When the gearbox model is inserted, Table 2.3.3 indicates that the poles have

significantly changed, while leaving the zeroes unchanged. The poles have a

considerably higher frequency compared to Table 2.3.2. Figure 2.3.4 is a diagram of
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the poles and zeroesin the root locus domain. Notice that the zeroesare left

unchanged.In Figure2.3.5thepulseresponsefrom aninputcommandto the shoulder

joint andasensorlocatedatthearmtip is shown.

Table 2.3.3

Poles and Zeroes with Gearbox Model Inserted

zi Pi

-4.3125e+02

4.2503e+02

-7.8737e-01+3.4913e+02i

-7.8737e-01-3.4913e+02i

0

-4.7843e+00+5.6088e+02i

-4.7843e+00-5.6088e+02i

-7.1962e-01+2.2726e+02i

-6.8055e+01

6.9064e+01

0

0

-7.1962e-01-2.2726e+02i

-3.8345e-01+7.2709e+01i

-3.8345e-01-7.2709e+01i

-5.6805e-05+7.9551e-01i

-5.6805e-05-7.9551e-01i

600

400

200

_o 0

-200

-400

x

........... O ........................... O " " °

X

O

I I I I

-60--600 -400 -200 0 200 400

Figure 2.3.4

Real Axis

Root Locus of Poles and Zeroes with Gearbox Model

600
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In Figure2.3.5, theresponseis shownfor a unit pulse input at the base. The high

frequencydynamicshavebeenreplacedwith lower frequencydynamics,corresponding

to the insertionof the gearboxmodel. In this casethe constraintat the base is

constraineddo to thegearboxmodelversusthe pinnedconditionearlier. Therestill

existsarigid bodymodecorrespondingto thepolesat zero.

Whentherateservois inserted,Table2.3.4 indicatesthatthepoleshavesignificantly

changed,while leavingthezeroesunchanged.Oneof therigid body polesis removed

whencomparedwith thepolesandzeroeswith thegearboxmodelinserted.

x10-3
2

0

t_ -2

-4

t:::-
t:3 -6

-8

-I0
0 5 10 15 20 25

Seconds

Figure 2.3.5 Pulse Time History with Gearbox Model

These poles and zeroes with the gearbox mode and rate command inserted are shown in

Figure 2.3.6 in the root locus plane. Notice the zeroes remain unchanged yet again.
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Table 2.3.4

Poles and Zeroes with Gearbox Model

and Rate Command Inserted

Zi Pi

-4.3125e+02

4.2503e+02

-7.8737e-01+3.4913e+02i

-7.8737e-01-3.4913e+02i

-6.8055e+01

6.9064e+01

0

0

0

-4.7843e+00+5.6088e+02i

-4.7843e+00-5.6088e+02i

-7.1962e-01 +2.2726e+02i

-7.1962e-01-2.2726e+02i

-7.1338e-01+7.1338e+0 li

-7.1338e-01-7.1338e+01i

-7.8896e-03+7.8896e-01i

-7.8896e-03-7.8896e-01i

-1.2458e+01

600

400

200

0

-200

-400

X

X

X
i I I I

-6 -_00 -400 -200 0 200 400

Figure 2.3.6

Real Axis

Root Locus of Poles and Zeroes with Gearbox Model and Rate
Command

60O
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In Figure2.3.7thehighfrequencydynamicshavebeenreplacedwith lower frequency

dynamics,correspondingto the insertionof thegearboxmodel. The displacementin

thenegativedirectionisaresultof anegativeunit pulsevelocitycommand.

As shownin theabovethreeexamples,thezeroesareleft unchangedby theboundary

conditions, while the poles shift. In the time domain the effects of thesebase

constraintsareshownto lower thefrequencyof the fundamentalmode,andto alterthe

steadystatebehaviorof thesystem. Thetimeresponseof Figure 2.3.7 highlightsthe

typical behavior of non-minimumphasesystems. Notice the responseis initially

upwardeventhoughthequasisteadystatevalue is negative. This is not the typical

behavior of minimum phasesystems. These results are shown to gain more

understandingof the mathematicalmodelusedto designthe control system,and to

demonstratethe insensitivityof thezeroesof theopenloopmodelto thebaseboundary

conditions.

0.05

0

-0.05
t_

._ _ -0.1
_E
m _ -0.15

._ -0.2

-0.25

-0.3

-0.35

..................../........'I................i/........................J.........

.......i............/ ............!!'............./! .........1'i............./...........

........,...........J...............:............:................._......,..............

.........:i.......i................iI.......:......:............_.......i..............

...........V .................:>\_/.......'.............>'_(_ij..............
0 5 10 15 20 25

Seconds

Figure 2.3.7 Pulse Time History with Gearbox Model and Rate Command
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2.4 Frequency Dependence on Payload Mass

In developing the two link model, Euler-Bemoulli beam theory was used for which the

following assumptions are implicit (Graf, 1975). Rotary motion, longitudinal motion,

and shear strain of the beam fibers are negligible; beam material properties and cross

section are symmetric with respect to the neutral bending axis; and structural damping is

small. A further assumption is that the material properties and cross section do not

depend on x. The system is described by the Equation (2.4.1):

yiV(x,t) +-_11Y(x,t) = 0 (2.4.1)

with boundary conditions:

y(O,t) = 0

y (O,t) = 0

y"(L,t)= 0

Ely'" (L,t) = mpy( L,t)

(2.4.2)

where p - mass density, A = cross-sectional area, E -= Young's Modulus, 1 --- area

moment of inertia.

The solution to the boundary value problem (2.4.1) and (2.4.2) is expressed as an

infinite product which is then truncated to provide a finite order approximation of the

plant with exact transfer function poles and zeroes (Wie, 1981; Spector, 1988, 1989;

and Goodson, 1970) By applying separation of variables and by taking the Laplace

transform with respect to time, the solution to Equation (2.4.1) has the form:

y(x,t) = q(t)_p(x) (2.4.3)

inserting this into (2.4.1) yields

(D(iV}(x)q(t) + PA (l(t)_)(x ) = 0 (2.4.4)
E1
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solving yields:

(_( x) = C; sin(fix) + C2 cos(fix) + C3 sinh(ilx) + C4 cosh(ilx)

where

S 2 = +LP_ 2
- elil

where S is the transformed variable and i =-_--1.

conditions to the/3 domain results in:

c2+c4=0

c1+c3=0

and

C I[sin(ilL) + sinh(flL)] + C2[cos(fiL) + cosh(fiL)] = 0

Elil3[C, (-cos(ilL) - cosh(ilL)) + C2(sin(ilL) - sinhilL)] =

w2mp [C l(sin(ilL) - sinh(ilL)) + C2(cos(ilL) - cosh(ilL))

Solving the boundary value problem of the Wronskian yields the following matrix.

sin(B) + sinh(fl)
flM[sinh(B) - sin(fl)] + cos(fl) + cosh(B)

where

/_= m-.--e-Pand_=fl__.
pAL, L

(2.4.5)

(2.4.6)

Transforming the boundary

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)

flM[cosh(B)- cos(B)] + sin(B)

(2.4.11)

Solving for the determinant of Equation (2.4.11) and simplifying yields the following

characteristic equation:

fl_r sin(fl)cosh(fl)- 1- tiM sinh(fl)cos(fl)- cos(fl) cosh(fl) = 0 (2.4.12)

As the payload mass ratio M _ oo, the characteristic equation (2.4.12) reduces to that

of the hinged problem as shown in Figure 2.4.1 and is given by (2.4.13).

sin (fl) cosh (fl) - sinh (fl) cos(fl) = 0 (2.4.13 )
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m, El=Const

,...._I

, "-I

Figure 2.4.1 Cantilever Hinged Problem

Frequency separation between sequential modes

A characteristic of this structure is that the frequency separation between the first and

second modal frequency for the manipulator model increases as the payload mass is

increased. Figure 2.4.2 shows the modal frequencies with no payload tip mass

(Meirovitch, 1975). The frequency separation is larger as the payload mass is

increased. Table 2.4.1 shows the frequency separation for various payload to arm

mass ratios, M.

m, El=Const

,
I-" • "-I

r

Figure

M_IL _ 0")1=1" 8752 m_L/4

.,,,,,,,_Mode I _-- (_o2= 4.6942
L i mE

L.._.__ de3 ,,_ -_ o93=7.8552 m_ 4
L "-

2.4.2 Theoretical Frequency Separation for Cantilever Free Boundary
Condition
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Table 2.4.1

Frequency Versus Non-Dimensional

Payload Mass Ratio

0.1

0.316

1

3.16

10

31.6

100

Non-Dimensional Frequency

mode 1

fl

18.82

14.76

9.89

5.97

3.44

1.95

1.10

mode 2

f2

124.6

112.4

104.2

100.6

99.3

98.9

98.7

mode 3

f3

350.3

331.7

321.7

317.9

316.5

316.1

315.9

Figure 2.4.3 shows the frequency ratio versus payload mass ratios for various modes.

Each frequency depicted in the graph is divided by the first modal frequency for the

given payload mass ratio --MP, where Mp is the payload mass and M is the total arm
M

weight. For the non-dimensional manipulator as shown in Figure 2.3.2, with no

payload, and 02--0, the 2nd modal frequency is 6 times the frequency of the 1st mode.

In addition, the 3rd modal frequency is 18 times the frequency of the 1st mode, etc. If

a payload 100 times the mass of the arm is considered, the 2nd modal frequency is 98

times the frequency of the 1st mode. The 3rd modal frequency is 316 times the

frequency of the 1st mode, etc. It is worth noting that for the SRMS, a payload to arm

mass ratio of 100 is considered a small to medium class in terms of payload size.
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Frequency Ratio Versus Payload Mass Ratios for Various Modes

2.5 Root Locus of Open Loop System as Theta Varies

The root loci of the characteristic equation for the first two modes are shown below

(Table 2.5.1) for theta varying between zero and 90 degrees. Figure 2.5.1 and 2.5.2

display the roots of the characteristic equation as a function of the elbow joint angle 02

in the root locus domains for the first and second mode respectively. In Figure 2.5.1

the first mode poles shift upward and to the left in the root locus domain as theta is

increased, corresponding to the frequency increasing as theta increases.
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Table 2.5.1

Root location for 1st and 2nd Modes as Theta Varies

Root Location

Them

(Degrees) Mode 1 Mode 2

0

10

20

30

40

50

60

70

80

90

-7.8896e-03_.+7.8896e-0 li

-7.9160e-03 +7.9160e-0 li

-7.9957e-03 + 7.9957e-01 i

-8.1310e-03+8.1310e-0 li

-8.3259e-03+8.3259e-01i

-8.5858e-03+8.5858e-01i

-8.9183e-03+8.9183e-01i

-9.3330e-03+9.3330e-0 li

-9.8410e-03+9.8410e-0 li

- 1.0455e-02 + 1.0455e+00i

-7.1338e-01 +7.1338e+01i

-2.6507e-01+2.6507e+01i

- 1.4049e-01 + 1.4049e+01 i

-9.5490e-02+9.5490e+00i

-7.2809e-02+7.2809e+00i

-5.9347e-02+ 5.9347e+00i

-5.0585e-02+5.0585e+00i

-4.4573e-02+4.4573e+00i

-4.0349e -02 +4.0349e+00i

-3.741 le-02+3.741 le+00i

15 t x Mode 11 .................. x ......................... : ..............................................
X

°1-._
X

<
exO

0.5

0

-0.5

-1

-1.5

X X X X X)IK

.... _ ...... !............... i Increasing Theta ...... !..............

l.Th',,.-.,o.....................................t.........................
j .

- 10.5 - 10 -9.5 -9 -8.5 -8

Real Axis

First Mode Poles as a Function of ThetaFigure 2.5.1
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In Figure2.5.2thesecondmodepolesshift downwardandto theright in theroot locus

domainas theta is increased,correspondingto the frequencydecreasingas them

increases. This is in contrastto the f'n'stmode in which the frequencyincreased.

However, over the entirerangeof thetathere is considerablefrequencyseparation

betweenthefirst andsuccessivemodes.

80 : : : :

60

40

._ 20
X i

< ol

" -20

-40

-60

-80

x. Mode 2

_. Increasing Theta ...............
.................................................................. •_ .........

........... I .......... ............ . ............ . ................ i.......................

X

×

• Thetai = 0 x xx_

iiiiifilliii! , iiiii!.......... i .......... i : : i x ! !

x_

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Real Axis

Second Mode poles as Function of ThetaFigure 2.5.2

2.6 Modal Open Loop Infinity Norm

The cost associated with the first mode versus the residual modes is shown in Figure

2.6.1 as a function of the elbow joint angle 02 . Each point on this surface plot is the

inf'mity norm of the Bode plot for the individual modes as 02 is varied. Where

Infinity Norm - sup H(J° )II
0<o_<*_ u(jeo) II

(2.6.1)
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Theinput/outputpair is thetorqueactuatoratthehub andthetip displacementsensor

respectively.Thissurfaceplot reflectsthefact thatthetip motionis largelydominated

by thefirst mode. The absolutevalueon the plot is not as importantas the relative

dominanceof thefirst versustherespectivemodes.Theparametersusedfor this heavy

payloadsimulationareshownin Table2.4.1.

tnfinity

, "73 90
Mode Number 8 910 0 10 20 30 4OTher a

Figure 2.6.1 Infinity Norm of Bode Response as a Function of Mode Number and
Theta - Heavy Payload

The exact amplitude ratio of the first mode versus second mode is shown in Figure

2.6.2. The log plot indicates that for heavy payloads the response is largely dominated

by the first mode. For example, the infinity norm ratio of the 1st versus the 2nd mode

is 40:1 and the infinity norm ratio of the 1st versus the 3rd mode is 600:1.
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Forhigherordermodestheinfinity normratio is still larger. Figure2.6.3 indicatesthe

infinity normratioof 3rdversus1stmodeasa functionof theta.

103

102

Figure 2.6.3

................... _ ..................... ; .......... ; .........................................

................... ; ..................... : .....................................................

'
......... ........... .', .......... ,.......... : ................................................

0 10 20 30 40 50 60 70 80

Degrees

Infinity Norm Ratio of 3rd Versus 1st Mode as a Function of Theta

90

For comparison to a zero payload case, Figure 2.6.4 shows the maximum value of the

Bode plot for various values of theta, and mode number for the non-dimensional

parameters shown in Table 2.6.1

Table 2.6.1

Non-Dimensional Parameters used in Zero Payload Experiment

rL=L2 =1

Mass ratio of link 1; end mass to link 1 mass

Mass ratio of link 2; tip mass to link 2 mass

Link mass ratio: mass of link 2 relative to link 1

Link length ratio: length of link 2 to link 1

Non-dimensional stiffness properties of link i

When comparing Figure 2.6.4 with 2.6.1, notice that the heavier the payload, the larger

the infinity norm amplitude ratio between the fundamental and the higher modes. These

figures represent the relative dominance of the successive modes as predicted by the
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infinity normof theBoderesponse.Thustheplotsareassociatedwith inputs thathave

broad spectralenergy. In actual systemswhere safety monitoring functions are

included,suchasslewratelimitations,the inputhasahigherspectralenergyat the low

endof thefrequencyspectrum.Thustheopenloopresponsewill befurther dominated

by the lower frequency modes than those depicted in Figure 2.6.4. In chapter five the

slew rate limits mandated by the Shuttle Remote Manipulator safety monitoring system

will be discussed in greater detail.

11

2_90

o 7 8 . .,, 30 40 50 "-'

Mode Number _ 10 0 10 '_' Theta

Figure 2.6.4 Infinity Norm of Bode Response as a Function of Mode Number and
Theta - Zero Tip Mass

2.7 Summary

This chapter has laid the groundwork for the mathematical modeling of the

reconfigurable system. The non-dimensionalized second order dynamics have been

decomposed into parameter independent and parameter dependent block matrices. The

equivalent first order state-space form is introduced. The overall transfer function

sensitivity to the variations in the shoulder yaw, elbow pitch, and wrist roll, yaw and

pitch arm orientations are discussed. A method is introduced which models the reverse
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dynamicsof thegearbox.The non-minimumphasezeroesareexploredin fight of the

base boundary conditions. It is shown that the zeroes do not change when base

boundary conditions are changed, although the poles move considerably. Light and

heavy payloads have been explored and their effect on the modal frequencies are

analyzed. For heavier payloads it is shown that the frequency separation between

successive modal frequencies increases. As the payload approaches infinity it is shown

that the cantilever free problem approaches the cantilever fixed problem. The frequency

separation as a function of theta is examined. It is shown that the fundamental mode

poles shift upward in the root locus domain as theta is increased, corresponding to the

frequency increasing as theta increases. This is in contrast to the second mode in which

the frequency decreases. However, over the entire range of theta, there is considerable

frequency separation between the first and successive modes. The open loop infinity

norm of the Bode response is examined in modal form as a function of mode, arm

orientation, and payload mass, to understand the relative dominance in the time and

frequency domain of the successive modes. It is shown that the response is largely

dominated by the first or fundamental mode.

These observations will be used to aid in the development of the system identification

and controller design methodologies discussed in the following chapters.
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CHAPTER 3

SYSTEM IDENTIFICATION

In the past decade many system identification techniques have been developed to

identify state-space models of electro/mechanical space structures for modal analysis or

controller design. Identifying a mathematical model from data eliminates the need to

develop accurate models of operational safety functions, sensor, and actuator transfer

functions of the system under control. As the system complexity increases, accurate

analytical models increase the time to develop a controller. Large analytical model

based controllers require a large order compensator and may not be as accurate as

identified reduced order mathematical models. Before 1970 a great majority of modal

tests were performed by tuned-dwell techniques (Stroud, 1987). In modal analysis the

parameters include frequencies, damping and mode shapes. For control system design,

accurate actuator influence coefficients are required as well. System identification in

most techniques is accomplished using MIMO time histories to create sampled pulse

response histories. The usual practice uses the Fast Fourier Transforms (FFT)s of the

input and output histories to compute the Frequency Response Functions (FRF)s, and

then use the Inverse Discrete Fourier Transform (IDFF) to compute the sampled pulse

response histories. Another approach is to solve for the Markov parameters directly in

the time domain. This approach obviates the need to compute and store FFTs, FRFs,

and IDFTs, although it is necessary to invert an input matrix which becomes large for

lightly damped systems. An approach by Juang (1993), uses an asymptotically stable

observer to form a stable discrete state-space model, rather than identifying the system



Markovparameters,which mayexhibitvery slow decay. Thepurposeof introducing

an observer is to compress the data and improve system identif'_cation results.

Figure 3.1

In this chapter the Markov parameters are introduced and their relationship to the state

space model is discussed. In practice, if the system is lightly damped, a large number

of system Markov parameters is needed. The observer is introduced in the state space

model and it is shown to decrease the number of estimated parameters to a unique set of

observer Markov parameters. The relationship of the observer state space models on

linear and recurrent networks is shown. The identification of time varying systems is

presented as the observer Markov parameters are identified for various "set points" of

the time varying plant shown in Figure 3.1. Finally a simply connected observer is

constructed using the observer Markov parameters in an example problem. Various

size observers were identified from the time varying plant and results are discussed.

The observer Markov parameters are then used to construct time varying observer

canonical state space models. In the following theoretical and numerical experimental

results, to simplify the mathematics, the angle 0 (without the subscript) will refer to the

elbow joint angle 0 2.

ol

1

Two Link Model used for System Identification
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3.1 Markov Parameters and the State Space Model

This section describes the relationship between the feed forward linear network and the

state space model, which is a common form of representing linear systems (Phan,

1993). The discrete time state space model of an N-th order, m-input, q-output system

is a set of N simultaneous first order difference equations of the form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (3.1.1)

where the dimensions of A, B, C, and D are nxn, nxm,

respectively. Solving for the output y(k) in terms of the previous inputs yields

y(k) = _._ hiu(k- i)
i=O

where the parameters

qxn, and qxm,

(3.1.2)

ho=D, hk=CAk-lB, k=1,2,3 .... (3.1.3)

are the Markovparameters (Phan, 1992) of the system described by Equation (3.1.1),

which are also the system pulse response samples. The Markov parameters aJ_e

expressed in terms of the system discrete state space matrices A, B, C, and D.

For an asymptotically stable system, the pulse response can be neglected after a finite

number of time steps, say p,. The input-output description in Equation (3.1.2) can be

approximated by a finite number of Markov parameters

y(k) = hou(k) + h_u(k - 1) + h2u(k - 2)+...+hpu(k - p,) (3.1.4)

where p, is sufficiently large so that CAkB = O, k > p,. Note that the elements of the

Markov parameters are simply the weights of a single-layer linear network, where.
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inputsto the networkinclude both current and past values of the input signal and z -1

denotes the time delay operator (see Figure 3.1.1).

Figure 3.1.1

h0

u(k) E _ y(k)

E!7/
u(k-1)

u(k-2)

u(k-p)
/

Markov Parameters as Weights in a Linear Network

In practice, if the system is lightly damped, a large number of system Markov

parameters is needed to maintain (3.1.4) as a valid approximation. The fact that a large

number of system Markov parameters is required to represent a lightly damped system

of the form in Equation (3.1.4) is a major weakness of the representation.

3.2 Observer Markov Parameters

To reduce the number of Markov parameters needed to adequately model the system, an

observer model is introduced. Adding and subtracting the term Ky(k) to the right hand

side of the state equation in Equation (3.1.1) yields

x(k + 1) = Ax(k) + Bu(k) + Ky(k) - Ky(k)

= (A + KC)x(k) + (B + KD)u(k) - Ky(k) (3.2.1)

If K is a matrix so that A + KC is deadbeat of order p, i.e.,
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(A + KC) k =-O, k > p (3.2.2)

then for k > p the output y(k) can be expressed as a finite difference equation

y(k) = aly(k - 1)+...+apy(k - p) + flou(k ) + fllU(k - 1)+...+flpu(k - p) (3.2.3)

where

a k = -C(A + KC) k-1K
(3.2.4)

flk = C(A + KC)k-I(B+ KD), flo = ho = D

The matrix K in the above development can be interpreted as an observer gain. The

system considered in Equation (3.1.4) has an observer of the form (Phan, 1992)

J(k + 1) = A3:(k) + Bu(k) - K[y(k) - _(k)] (3.2.5)
_(k) = CYc(k) + Du(k)

Defining the state estimation error e(k) = x(k) - _(k), the equation that governs e(k) is

e(k + 1) = (A + KC)e(k) (3.2.6)

For an observable system, the matrix K exists such that the eigenvalues of A + KC

may be placed in any desired symmetric configuration. If the matrix K is such that

A + KC is asymptotically stable, then the estimated state ._(k) tends to the true state

x(k) as k tends to infinity for any initial difference between the assumed observer state

and the actual system state. The matrix K can therefore be interpreted as an observer

gain. The parameters defined as

Y(k) = C(A + KC)k-I[B + KD, -K]

=[ilk, OCk] (3.2.7)

are the Markov parameters of an observer system, hence they are referred to as

observer Markov parameters (Juang, 1991).

54



Notice that in Equation(3.2.3), the output y(k) is the open loop response of the

system, yet the coefficients ak, flk are related to an observer gain. Consider the

special case where K is a deadbeat observer gain such that all eigenvalues of A + KC

are zero, the observer Markov parameters will become identically zero after a finite

number of terms. For lightly damped structures this means that the system can be

described by a reduced number of observer Markov parameters Y(k), instead of an

otherwise large number of the usual system Markov parameters hk . For this reason,

the observer Markov parameters are important in linear system identification.

Equation (3.2.3) can be represented by a single layer of a recurrent network (Phan,

1993) in Figure 3.2.1.

u(k) flo .--_ y(k)

OC I

u(k-1) y(k-1)

u(k-2) y(k-2)

Figure 3.2.1

u(k-p)

A Single Layer of a Recurrent Network

y(k-ps)

The system Markov parameters or the feed forward network weights are related to the

recurrent network weights by

k

hk = flk + _ aihk-i (3.2.8)
i=1
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Where ak= 0, flk ---0 for k > p. To describe a system of order N, the number of

observer Markov parameters p must be such that qp > N, where q is the number of

outputs. The implication of this result to the network configuration is that a recurrent

network requires fewer number of parameters or weights than are required by an

equivalent feed forward network. Furthermore, it is not possible to represent a

marginally stable or unstable system by a feed forward network. However, it is

possible to represent such a system by a recurrent network.

3.3 Identification of Linear Systems

The problem of linear system identification using linear networks is reduced to finding

these network weights from input-output data. The computation may be done off-line

or on-line. In off-line computation the input-output data is already available and a

network representing the system is to be determined. On-line computation refers to the

case where the network weights are continually updated as data is made available.

The weights of the network represented by Equation (3.2.3) can be computed using a

feed forward model (Phan, 1993). For linear systems it is sufficient to use a one layer

network having as many nodes as the number of outputs. This is a simple linear

parameter estimation problem. The off-line computation is shown f'n'st, followed by an

equivalent on-line computation. Equation (3.2.3) can be written as

y(k)=____[_i, o_iJLy(k +_ou(k) (3.3.1)
i=1

where network weight parameters ctk, flk are defined by Equation (3.2.4). Writing

Equation (3.3.1) in matrix form for a set of input-output data N+I samples long yields:
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y = YV (3.3.2)

where

y=[y(O) y(1)--- y(p) y(p+l)---y(N)] (3.3.3)

and

(3.3.4)

and

W

"u(0) u(1) ..- u(p) u(p + 1)

[u_0>1 Fu(e-l_Fu_,_l1
y(O)J "'" [y(p-1)J LY(P)J

[u_o_l [u_Dl
y(O)J Ly(1)J

• .. u(N)

u(N - 1)
"'" Ly(N I)]

-u( N - p )-
o..

y(N - p)

(3.3.5)

The network weight matrices are estimated using the equation

= yV + (3.3.6)

or

Y = yV (3.3.7)

where (.)+ denotes the pseudo-inverse of the quantity in the parentheses. And

_:[_0,_,, _,, _, _ .... _, _] (3.3.8)

Note that the least squares solution Y is the same as the true Markov parameters Y in

(3.3.4) only when there is no noise present and (3.3.5) is of sufficient rank. The least

squares solution of Equation (3.3.7) can be obtained by an on-line parameter estimation

scheme (Phan, 1993)• First write each column in V as

V=[F(0), F(1), F(2), ..-] (3.3.9)
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sothat ateachtimestepk, Equation(3.3.2)canbewrittenas

y(k) = YF(k)

The recursive least ,squares equation for the network weights is simply,

_(k)= _(k-a)+[y(k)-Y(k-1)F(k)]I F(k--_)TTR(k---1)
J[ 1 + r(k) R(k - 1)F(k)

(3.3.10)

(3.3.11)

where

R(k) = R(k - 1) -
R(k - 1)r(k)r(k)r R(k- 1)

1 + r(k)rR(k - 1)r(k)
(3.3.12)

^
D

with an arbitrary initial guess Y(0), and R(0) is any arbitrary positive definite matrix.

Other recursive parameter estimation algorithms may be used to replace the standard

least squares at this step, e.g., the projection or instrumental variable methods

(Goodwin, 1984) and (Ljung, 1983).

3.4 Identification of Time Varying Systems

The observer Markov parameters are identified using (3.3.7) which accurately model

the mathematics at each "set poinf' of the system. In this way, linear identification

techniques can be used to develop the time varying model. Thus the observer Markov

parameters will depend on the kinematic elbow pitch angle. The time varying system

can be modeled at each set point using the single layer time varying recurrent network

shown in Figure 3.4.1.

The objective, then is to use data from several arm orientations to derive estimates of

the observer Markov parameters as a function of the elbow joint angle.
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_(e)=[jo(e), j,(e), a,(e), j_(e), a_(e).... L,(e), a,,(e)] (3.4.1)

using the batch method

^ [ ]V(o)= y(O)v(o) r v(o)v(o) r -1
(3.4.2)

where

y(0)=[y(0) y(1)-.-y(p) y(p+l)-.-y(N)] (3.4.3)

and

v(o)=

u(O) u(1)

[u_ol
y(O)J

• .. u(p) u(p+l) -.- u(N)

... [u(p-1)] [u(p)] ... [u(N-1)]LY(P - 1) LY(P)J Ly(N - 1)J
• •

u,o,1r.,x,1ru, ;,]
y(0)] Ly(1)] Ly(N

(3.4.4)

The vector y(O) and matrix V(0) consist of data gathered from system identification

experiments as outlined in the following section.

u(k)

E
u(k-1)

E
u(k-2)

E

u(k-p)

flo(_ _,._),,. _- y(k)

_ _(0) y(k-1)

y(k-2)

E3
o_(O) y(k-p)

Figure 3.4.1 A Single Layer Time Varying Recurrent Network
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3.5 Numerical Experimental Results

In this section the batch method (3.4.2) is used to identify the observer Markov

parameters of the system shown in Table 3.5.1 for ten different arm orientations. Ten

arm orientations were chosen here to show that the third order polynomial, or spline

function approximates the observer Markov parameters. The observer Markov

parameters will be put into the observer canonical form for control system

development. Data gathering numerical experiments for the ten ann orientations were

used to derive input and output data for use in the batch method. A broad input

spectrum consisting of a random dither was applied. For the following numerical

results, these non-dimensional parameters were used (Table 3.5.1).

Table 3.5.1

Non-Dimensional Parameters used in Numerical Experiment

rh = ml = 0 Mass ratio of link 1; end mass to link 1 mass
gl

m--L2= 200 Mass ratio of link 2; tip mass to link 2 mass
/72 -- M2

m2_ 1r/L--
ml

rL=L2 =1

Eili

_i = _ MiI_ )
=18

Link mass ratio: mass of link 2 relative to link 1

Link length ratio: length of link 2 to link 1

Non-dimensional stiffness properties of link i

The first results in Table 3.5.2 show the identified time varying system for p = 2

corresponding to a system of order 2. As was shown in Chapter 2, the response is

largely dominated by the first system mode (see Figure 2.6.1).
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Using thebatchmethodtheobserverMarkovparameterswere

showstheidentifiedobserverfor p = 2.

 1(o) a,(o)

identified. Table 3.5.2

(3.5.1)

Table 3.5.2

Identified Observer Markov Parameters - p = 2

Theta ^ ¢_1 (0) _2(0)( grees)

0

10

20

30

40

5O

60

70

8O

90

-3.7379e-16

-1.9967e-16

3.4113e-16

1.1819e-16

-1.0406e-17

9.7203e-17

2.2409e-16

-2.2244e-16

-9.6469e-17

-4.4990e-16

2.7522e-04

2.7676e-04

2.8147e-04

2.8961e-04

3.0163e-04

3.1826e-04

3.4051e-04

3.6978e-04

4.0792e-04

4.5712e-04

1.7132

1.7116

1.7069

1.6987

1.6866

1.6700

1.6480

1.6191

1.5816

1.5329

1.2007e-04

1.2158e-04

1.2620e-04

1.3422e-04

1.4620e-04

1.6297e-04

1.8579e-04

2.1651e-04

2.5772e-04

3.1299e-04

-0.9521

-0.9522

-0.9524

-0.9528

-0.9533

-0.9540

-0.9551

-0.9564

-0.9582

-0.9607

In Figure 3.5.1 - 3.5.4 the observer elements shown in Table 3.5.2 are plotted and a

spline function approximation is fit to the data as 02 is varied from 0 degrees to 90

degrees. Note the fLrst column is the D matrix which should be zero, since there is no

feed through term in the system. In all cases, except for the fl0(0) term, which is

zero, a third order polynomial fit the data exactly. The third order approximation,

requires four constants for each polynomial. Thus, these four constants can be

identified using four system identification experiments.
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100

The observer Markov parameters reduced the complex mathematical model to a simply

connected spline function. This has not been previously reported in the literature. This

observation will be used later to design controllers for this system. The observer

Markov parameters are the key to reducing the highly heterogeneous parameters in
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observer based models to one simply connected observer. Understanding how the

essential kernel of the mathematical problem is changing with a measurable state, such

as the elbow joint angle, is fundamental to designing low order high performance time

varying controllers.

In Table 3.5.3 the results of the identified Markov parameters is shown for p = 4

corresponding to a system of order 4. The purpose of this experiment is to identify an

appropriate curve fit for the higher order system. Using the batch method, the observer

Markov parameters were identified.

Y(O)=[,/_O(O) ,_I(0)_1(O) j_2(O) 1_2(0),/_3(0) _3(0) ,1_4(0) _4(0)]

(3.5.2)

Notice that after about 30 degrees (for p=4) there is not much change in the observer

Markov parameters. The first Markov parameter is essentially zero, and no attempt is

made to fit the data to the exponential function. However, the rest of the Markov

parameters are approximated by the exponential function and are shown in Figures

3.5.5-12. In each graph the identified Markov parameters are shown by a "+" and the

exponential function is represented by an "x". Each exponential function curve fit is of

the form:

0

f( O) = C1 + C2e C3 (3.5.3)

The curve fit for p = 4 is not as accurate as for p = 2. Since the canonical forms are

numerically sensitive to the Markov parameters, the exponential curve fit is notas

accurate as the identified Markov parameters. The eigenvalues and eigenvectors

associated with the observer Markov parameters are found to be very sensitive to the

exponential function. When controlling the higher order dynamics, it was found that a

higher order curve fit is required to more accurately fit the data. However, if an

accurate curve fit function is not available one can simply use the identified parameters
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Table 3.5.3

Identified Observer Markov Parameters - p = 4

a_eta ^ ^ &_(o) ^ &2(o)
(Degrees) fl°(O) ill(O) f12(O)

0

10

20

30

40

50

60

70

80

90

2.0861e-15

-1.4219e-13

-3.8531e-13

8.8561e-13

2.8695e-12

-1.2457e-12

-3.0983e-12

1.9590e-13

4.6381e-12

-2.3083e-ll

7.1658e-05

1.1920e-03

1.3309e-03

1.3609e-03

1.3719e-03

1.3771e-03

1.3800e-03

1.3818e-03

1.3830e-03

1.3838e-03

1.1835

3.5036

3.8531

3.9297

3.9577

3.9710

3.9782

3.9825

3.9852

3.9869

-3.0718e-03

-4.0705e-03

-4.1363e-03

-4.1504e-03

-4.1560e-03

-4.1589e-03

-4.1605e-03

-4.1615e-03

-4.1621e-03

-4.1625e-03

-.32979

-4.9931

-5.6984

-5.8539

-5.9112

-5.9384

-5.9533

-5.9622

-5.9678

-5.9713

Table 3.5.3 Continued

Identified Observer Markov Parameters - p = 4

Theta

(Degrees)

0

10

20

30

40

5O

6O

70

8O

9O

3.0900e-03

4.0734e-03

4.1388e-03

4.1530e-03

4.1587e-03

4.1615e-03

4.1631e-03

4.1640e-03

4.1644e-03

4.1645e-03

a3(o)

1.1055

3.4747

3.8374

3.9187

3.9491

3.9638

3.9719

3.9768

3.9799

3.9818

^

f14(0)

-8.7649e-05

-1.1944e-03

-1.3333e-03

-1.3634e-03

-1.3745e-03

-1.3798e-03

-1.3826e-03

-1.3843e-03

-1.3853e-03

-1.3859e-03

_4(0)

-9.6040e-01

-9.8547e-01

-9.9211e-01

-9.9450e-01

-9.9569e-01

-9.9640e-01

-9.9685e-01

-9.9715e-01

-9.9735e-01

-9.9748e-01
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in againscheduledcontroller. Perhapsif moredatawereusedandahigherorder curve

fit yielded more accurate results, a function could be used to represent this nonlinear

system.
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Figure 3.5.5
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3.6 Observer Canonical State Space Model

In this section the observer Markov parameters are used to derive a discrete observer

canonical state space model. There is a direct way of determining the system matrices

A(O), B(O), C, and D(O) without first computing the system Markov parameters.

In tiffs similarity transformation the time varying state space model is derived quickly

for control system design. Note that there is no need for induction (3.2.8), which

unnecessarily increases control design development time. Using the state space model,

the optimal regulator is then designed in the following chapter.

The finite difference equation for y(k) is

y(k) = al( O)y(k - 1) + ot2( O)y(k - 2)+..-

• ..+Otp (O)y(k - p) + to (O)u(k) + fll (O)u(k - 1)+... +tip (O)u(k - p) (3.6.1)

Choose the state variables as

xp(k) = y(k) - flo(O)u(k)

Xp_l(k) = y(k + 1) - flo(O)u(k + 1)

-or I (O)y(k) - fl1(O)u(k)

Xp_2(k) = y(k + 2) - flo(O)u(k + 2)

-oq(O)y(k + 1) -fll(O)u(k + 1)

-a2(O)y(k + 1) - t2 (O)u(k)

xl(k) = y(k + p - 1) -flo(O)u(k + p - 1)

-al(O)y(k + p - 2) - fll(O)u(k + p - 2)

-a2( O)y(k + p - 3) - fl2( O)u(k + p - 3)

-Otp_ 1 ( O)y( k ) - fl p_l ( O)u( k )

This set of equations yields

(3.6.2)
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y(k) = xp(k) + flo( O)u(k)

Xp_ 1(k) = x(k + 1)- a I (O)y(k)- fll (O)u(k)

Xp_ 2 (k ) "- Xp_ ! (k -t- 1) - o_ 2 ( O)y(k) - fie (O)u(k)
.

x 1(k) = XE(k + 1) - Orp_ l (O)y(k) - flp-I (O)u(k)

Xl(k + 1) = ap( O)y(k) + flp_l( O)u(k)

Equation (3.6.3) can be arranged in matrix form as

x(k + 1) = A( O)x(k)+ B(O)u(k)

y(k) = Cx(k) + D(O)u(k)

where

x(k)=

1

A(0)= 0

0

Xl(k)

x2(k)

x3(k)

.xp(k).

-0 0

0

1

0 0 ap(O)

0 0 ap_l(O)

0 0 ap_2(O)

0 1 al(O)

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)

B(0)=

ft,(O)- a,(O)flo(O)

/3,_,(O)- ap_,(0)/3o(0)

/3,._2(0)- a__2(0)/3o(0)

/3,(0)- a, (0)/30(0)

(3.6.7)

c=[o o o ... 11

D(O)=flo(O)

(3.6.8)

(3.6.9)
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When using a deadbeat observer it is interesting to see the relationship between the

observer gain and the Markov parameters. For example, consider the observer form

above for a 2nd order system. The eigenvalues of the estimator dynamics are zero for a

deadbeat observer, thus,

I-,7t./+[a(0)+ K(O)C] 2 = A2 =0

or

o o a2(o) + rl(O)

Solving for the determinant gives

1121 =0

al(O)+K2(O) -A,+az(O)+K2(O)+aZ(o)+zal(O)Kz(O)+K2(O)

= Z 2 - 2Aa2 (0) - 2A,K1 (0) - _,a?(0)- 2&al(0)K2 (0)- _,K2(0)

+ a2(O) - 2az(O)Kl(O)+ K_(0) = 0

Factoring the expression (3.6.12) gives

_2 + (-2a2(0)- 2al(O)K2(O)- K_(O)- 2KI(O)-aZ(o))A,

+ (o_2(0) + 2Otz(O)K,(O)+ K2 (0)) = 0

Setting Equation (3.6.13) to zero yields the two following equations:

-2a2 ( 0 ) - 2al ( O)X2( O) - 1(22(0)- 2Kl ( O) - a_ ( O) = 0

and

a_(o)+2a2(O)X,(O)+K?(0)= 0

Solving (3.6.15) for K I (0) yields

Kl(O)=-a2(O )

Inserting (3.6.16) into (3.6.14) and solving yields

K2(o)=-a_(o)

(3.6.10)

(3.6.11)

(3.6.12)

(3.6.13)

(3.6.14)

(3.6.15)

(3.6.16)

(3.6.17)
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The significanceof (3.6.16) and (3.6.17) is that the estimatorgains are identified

directlyfrom thedata.This factwill be usedlaterduring thecontrol systemdesignin

Chapter4.

3.7 Summary

This chapter presents the basic concepts of the time varying network as related to the

problem of modeling a time varying system. Two basic forms of the network, the feed

forward and the recurrent network, are discussed. Emphasis is placed on the

interpretation of the time varying networks in terms of time varying state space

systems. The relationship between the feed forward time varying network and the time

varying observer model is explained.

The main contribution of this chapter is the fact that the performance or fundamental

mode observer Markov parameters, which are unique, satisfy a third order

approximation, or spline function as a function of the elbow joint angle ( 02) when

p = 2. This has not been previously reported in the literature. The third order

approximation, or spline function, requires four constants for each polynomial. These

four constants can be identified using four system identification experiments. Thus, if

an accurate physical model is not available, identification can be accomplished for the

optimal controller via the observer Markov parameters, using data gathering

experiments of four arm orientations. This observation will be used later to design

controllers for this system.
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In addition, it was observedthat when the sizeof the observerwas increased,the

Markovparameterfit anexponentialfunctionof theelbowjoint angle( 02). However,

the eigenvalues and eigenvectors associated with the observer Markov parameters were

found to be very sensitive to the exponential function. There may be other more

accurate high order functions which would yield more accurate eigenvalues and

eigenvectors. In conclusion, when controlling the fundamental mode, the spline

function approximation is an exact approximation of the fundamental dynamics. The

higher modes can still be controlled, although a higher order curve fit is required. If an

accurate curve fit is not attainable a standard look up table in a gain scheduled controller

could be assembled using the identified Markov parameters.

There is a direct way of determining the system matrices A(0), B(0), C, and D(O)

without fast computing the system Markov parameters by using the observer canonical

state space model form. In this similarity transformation, the time varying state space

model is derived quickly for control system design. Note that there is no need for

induction which unnecessarily increases control design development time.
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CHAPTER 4

COMPENSATOR DESIGN

The identification results of Chapter 3 will be used in this chapter to design the

compensator. This chapter is organized as follows. First, two characteristics of

reconfigurable structures are used to develop the controller implementation strategy.

The two characteristics shown in Chapter 2 are: There is an attenuation of the infinity

norm of the amplitude of the higher frequency modes in the response; and there is a

considerable frequency separation between consecutive modes for the cantilevered two

link manipulator which represents the fundamental dynamics of the system. The

overall controller implementation strategy is introduced. The overall strategy is to

design the compensator for performance and then adjust for stability. The compensator

design section describes four different types of compensator designs. The f'n'st section

derives a fixed gain dynamic compensator. This section provides insight of the stability

of the compensator when large variations of the plant exist. The second section derives

the equations necessary for a robust fixed compensator to a time varying plant. The

third section derives the equations necessary to obtain an optimal gain scheduled

compensator where the dynamics matrix remains fixed and the output gain matrix is

allowed to vary. Also in this section an adaptive frequency domain compensator is

described which requires no a-priori knowledge of the changing plant dynamics. The

fourth section develops a Spline Varying Optimal (SVO) Controller in which a time

varying observer/controller is derived. The SVO controller developed in this chapter is

the first simply connected time varying compensator shown in the literature. The SVO

controller includes elements whose parameters change in time. The elements of the



dynamicmatriceschangeaccordingto a polynomialwhich fits the linear quadratic

regulatoroptimal gain designedat eacharmconfiguration. In this way minimal on

board computing is required. Following the theoreticaldevelopment,an example

problemis introducedand the performanceof eachcontroller is compared. Each

controller design is evaluatedusing a consistentcost function. With the SVO

controllerthereis an improvementof 20:1 over the openloop manipulatordynamics

alongtherangeof motion. Finally, thestabilityof theSVOcompensatoris examined

by evaluatingthe minimum singularvalue of the return differencematrix. In the

developmentthatfollows,theangle 0 refers to the elbow pitch joint angle.

4.1 Controller Implementation Strategy

One feature of the implementation of the compensator is important to discuss prior to

investigating the stability of the closed loop system. The fundamental assumption is the

system dynamics do not change while the compensator is operational. This is an

important assumption since there presently are no theorems to address the stability

issues associated with allowing the implementation of the SVO during an arm

maneuver. The SVO controller will reduce the tip vibratory response after the operator

has maneuvered the arm. Since the joints on the reconfigurable structure have gearbox

elements, the flexible energy of the structure does not back drive the joints, as

described in section 2.3. In the proposed controller the shoulder joint of the

manipulator is the most effective actuator to improve the damping level of the first

mode. Thus the elbow joint will remain fixed and the shoulder actuator will remain

active after the operator finishes the maneuver
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4.2 Fixed Optimal Compensator

One approach to improving the performance of the manipulator is to design a

compensator for a linearized state space model about a nominal arm orientation, and

then see how well the compensator performs while the kinematics are allowed to vary.

Although this is not a recommended approach, it does provide some useful insights and

answers some basic questions, such as "Are the dynamics changing significantly

enough to warrant a more sophisticated time varying or robust controller?" The

approach taken in this section is to design one fixed controller which is "optimized"

about a nominal arm orientation. A heuristic method is applied to "identify" this

nominal model. The nominal model is identified by the following procedure:

(1) Design an optimal controller for a "set point" or arm orientation

(2) Evaluate the performance of this controller as the open loop system

dynamics are varied by using an additive cost function (described later).

(3) Design an optimal controller for successive arm orientations and repeat step

two until all "set point" controllers have been evaluated.

In this manner the controller that has the lowest additive cost function, and hence the

nominal arm orientation is "identified." The optimal fLxed compensator designed about

the nominal arm orientation will use standard observer based state feedback, where

assumptions are made concerning the process and measurement noise covariance's.

Since the controller is operating over a dynamically changing system, these

assumptions are at best dubious. However, as stated earlier, this is an exercise to

examine how well one controller could perform, and whether more sophisticated

controllers are warranted. In Section 4.3, a more rigorous approach is applied to

ensure stability for the closed loop time varying system. In either case, since the
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observeris meaninglessfor thetimevaryingsystem,thecontrollerstateis labeledz, as

opposed to the state estimate J, and the controller will be referred to as a dynamic

compensator, as opposed to the traditional state feedback controller.

The time varying plant model as outlined in Chapter 2 is given by,

J¢= A( Oi )x + n( Oi )u + Gw

y=C(Oi)x+D(Oi)u+v

with process noise and measurement noise covariance's:

E{w}=E{v}=O, E{ww'}=Q w, E{vv'}=R v, E{wv'}=0

(4.2.1)

Where x is the state, A(Oi) the dynamic matrix at Oi, n(oi) the control influence

matrix, C(O i ) is the system output matrix, D(O i) the direct transmission matrix, and y

is the plant output. Using a fixed dynamic compensator of the form:

_. = Aiz + Biu + Ki[Y - _]

= Ciz+ Diu (4.2.2)

where z is the controller state, and K i is the steady state Kalman filter gain solved for a

nominal arm configuration described below. Substituting yields:

z. = (Ai - KiCi )z + (Bi - KiDi )u + KiY (4.2.3)

Using a state feedback gain Cc, the control input is given by:

U=fcZ

To minimize the Linear Quadratic Regulator (LQR) cost function:

J = i[yTQy + uTRu]dt

0

The control gain matrix Cc is given by

Cc =-R-1BiTP

(4.2.4)

(4.2.5)

(4.2.6)
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The matrix P = pr> 0 is computed from the

Riccati equation:

AirP + PAi- PBiR-1BiTP +Q=O

Inserting (4.2.4) into (4.2.2) yields:

= (A i - KiC i + BiC c - KiDiCc)z + Kiy

Substituting

A c = a i - KiC i + BiC c - KiDiC c

Bc=K i

into (4.2.8) yields thef'txed compensator equations:

= Acz +BcY

u = CcZ

solution of the following algebraic

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

Thus, the fixed dynamic compensator is given by the following transfer function:

Gc(s) = Cc(sl- Ac )-l Bc + O c (4.2.11)

A control block diagram of the fixed optimal compensator is shown in Figure 4.2.1.

_ Jc =A(O) x + B(O)u

"( Iy= + )u_|

u2 _ _= Acz+ Bc Y

Figure 4.2.1 Fixed Dynamic Compensator

The plant dynamic equations for the time varying system is u, = 0, and u = u I = uz:

Jc= A(Oi)x + B(Oi)u

Y = C(Oi)x + D(Oi)u (4.2.12)
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Thestateequationsfor zeroexogenousinputsare:

Jc = A(Oi)x + B(Oi)Ccz

= (AcC(Oi) + ncD(Oi)fc)Z ÷ ncC(Oi)x

y=C(Oi)x + O(Oi)u

= C(Oi)X ÷ O(Oi)CcZ

These equations (4.2.13) written in block matrix form are:

I_]=Ia(Oi) B(Oi)Cc ]I x]LBcC(Oi) A ÷ BcD(Oi)Cc]Lz]

[:]=-C(Oi) O(Oi)CcqFx qo cc JLzJ

The Linear Quadratic Regulator (LQR) cost function is given by

J( Oi ) = S[yTOy + uT Ru]dt

o

inserting

U T = zTc T

yT = xrc(oi)r + zTcTD(oi)T

into (4.2.15) yields

** {xTC(Oi) T + zTcTD(oi)T}Q{C(Oi)X + D(Oi)Ccz }

rewriting (4.2.16)

**[xTC(oi)TQc(Oi)x+xTC(oi)TQD(Oi)CcZ ]
J(o,)=fl+zT D(Oi:OC(Oi)x+:C D(Oi:OD(OaC:at

OL+:c: c:

which can be written in matrix block form

(4.2.13)

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.16)

(4.2.17)
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TIt C(oi)TQc(Oi )

Z J[cTD(oi)T QC(Oi)

C(oi)T QD(Oi)Cc 7Fx7
T dtCZ(D(O,)aD(Oi)+R)ccJLzJ

(4.2.18)

let Z be an augmented vector of the plant state and compensator state

(4.2.19)

Then the cost can be rewritten as

J(Oi): f xTa(oi)xdt

0

(4.2.20)

where

-- [ C(oi)T Qc(Oi )

Q( Oi ) = LcT D( Oi)T QC( Oi)

C(oi)TQD(Oi)Cc 7

cT(o(oi) T QO(Oi)+ R)Cc]
(4.2.21)

and the augmented state vector satisfies the equation

x = A(0i)_ (4.2.22)

where

rA(Oi) B(Oi)Cc ]%(0i) = LB¢C(Oi) A¢ + BcD(Oi)C c
(4.2.23)

If A(0 i) is stable, there exists a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

"A( oi)T-P( Oi) + -fi( Oi)'A( Oi)+ O( Oi) = 0 (4.2.24)

the cost can be rewritten as

oo

j( Oi ) = _f ._T ('_( Oi )T p( Oi ) + p( Oi )_( Oi))_dt

0

(4.2.25)
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but

d [._T_( 0i)._.] = xT-fi( Oi )_+ _T_( Oi)x (4.2.26)

using

X = A'(0i)._ (4.2.27)

yields

d [2rP( Oi)Y,] = _r (A( Oi)rP( Oi)+ P( Oi)A(O_))_ (4.2.28)

The cost is rewritten using (4.2.28) and (4.2.25)

J(Oi)=-sd[2Tp(oi)2]dt
0 dtt

= oi) . - oi) o)

If A(Oi) stable then 2.. = 0, and the cost is:

J( Oi ) = 2ff P( Oi )_ o

Thus, the infinite time total cost of the control effort for the fixed

(4.2.29)

(4.2.30)

compensator

Gc(s)=Cc(sI-Ac)-lBc+Dc over the workspace is the sum of each cost at the

respective values of theta. The total cost varies for the nominal compensator G c which

is optimal only for a fixed arm orientation 0 i

n

(4.2.31)Tj(Gc)=ZJ(Oi )

i=o

where the fixed compensator state matrices are given by:

Ac = Ai - KiCi + 8iCe- riOiCc

_c=Ki
(4.2.32)
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Thusby findingtheminimumvalueof

Tj(G¢) (4.2.33)

for variousnominalcompensators,the 'optimal' nominalfixed gain compensatoris

found. An exampleis shownin Section4.6.

4.3 Fixed Robust Dynamic Compensator

The main focus of the discussion in this section is the stability of feedback control

systems. There is a difference between nominal stability and stability-robustness.

Nominal stability relates to the stability of the feedback loop that employs the

mathematical model of the nominal plant. Stability-robustness refers to the stability of

the feedback loop that contains the actua/plant. The fact that model errors cannot be

precisely defined presents a significant challenge in ensuring closed-loop stability.

Indeed, model errors may not correspond to a finite-dimensional dynamic system (a

very small but unknown time-delay is a good example), so that a state-space

representation for modeling errors is inappropriate. Thus, checking the eigenvalues of

a particular matrix is not sufficient for stability-robustness, unlike the eigenvalue based

tests which are available for deducing nominal stability using state-space models. This

state of affairs forces the examination of stability-robustness using frequency domain

ideas and tests.

To derive these frequency domain stability-robustness tests for SISO feedback loops,

one can use the familiar Nyquist stability criterion. However, to develop stability-

robustness tests for multivariable feedback systems, it is necessary to develop a MIMO
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Nyquist stability criterion. MIMO Nyquist tests using the singular value concept can

also be used to arrive at stability for MIMO systems.

Nominal Stability and Stability-Robustness

The nominal compensator Gc(s ) developed for the plant Gi(s ) that was discussed in

the preceding section will be used in this section as the initial compensator. The

nominal compensator Gc(s) is modified by changing the output gain C¢ such that the

nominal feedback loop shown in Figure 4.3.1 is robust.

loop addresses the nominal stability issue.

Gn(s)

Figure 4.3.1

Thus the nominal feedback

Go(s)

_[Cc(sl-Ac)-lBc_ s)

Fixed Robust Compensator - Nominal Stability

Alternatively the nominal or average model could have been computed in the state space

domain by the following procedure (Anderson, 1989).

Step 1: Compute the Average Model

G(Oi,s)= C(Oi)(sl- A(Oi)) -1B(Oi)+ D(O i) (Plant Models) (4.3.1)

Aav e = diag[ A( O1),

B(01)]

A(02), ... A(Op)], Bave =/B<02)/: (4.3.2)

LB¢; )J
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p

Pi=l

Gave(S ) = Cave(Si_ Aave )-1 Bave + Dave (Average Model)

(4.3.3)

(4.3.4)

The order of Gave(S) is 'np', where 'n' is the number of states in each model. Since

the average system order can be quite large, the chosen nominal model will be Gi(s )

developed in the preceding section.

To address the stability robustness issue, the nominal compensator will be used with

the actual feedback loop, where the elbow joint angle 0 is changing with time as

shown in Figure 4.3.2.

G( O,s) Gc(S)

-l _q ] y(s)

Figure 4.3.2 Fixed Robust Compensator with Large Plant Variations

Structured and Unstructured Uncertainty

Since the late seventies, the words structured uncertainty and unstructured uncertainty

have been used to distinguish between two types of plant uncertainty and model errors.

A brief overview of these two types of uncertainties is given below.

Plant structured uncertainty refers to model errors caused by the assumption that the

actual plant is linear, time-invariant and with the same order as the nominal plant

model, except that the numerical values of the matrices that define the state space

representation are different. Additional information may be available with respect to the
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rangeof thenumericalvalues. Suchstructureduncertaintygivesrise to model errors

thatleavethenumberof polesandzeroesinvariant,but they influencethe locationof

theactualpolesandzeroes(andtheirdirections)ascomparedto thenominalvalues.

Unstructured uncertainty is quite different. Assume that the actual plant is still linear

and time-variant. However, plead total ignorance regarding the order of the plant and

its phase characteristics. In particular, the key assumption of unstructured uncertainty

is that model errors are characterized by +180 ° phase uncertainty. Such complete

phase uncertainty due to modeling errors, can "flip" the sign of the nominal feedback

loop(s) and perhaps lead to instability.

Modeling errors due to unstructured uncertainty cannot be captured by a t-mite

dimensional state space model. Thus one can adopt an input-output model and use

frequency domain methods to "bound" the size of the model error.

The design philosophy for meeting the stability-robustness specification hinges on the

assumption that the maximum bound for all elbow joint angles, or plant perturbation, is

known. The maximum bound satisfies the following equation:

Ea(jO))= max (G(Oi,jw)-G.(jco)) VOw[O°,90 °]

i=l._p

(4.3.5)

Using the phase information from the additive uncertainty vector Ea(jO_ ) enables the

use of structured uncertainty stability robustness properties, which are less conservative

than unstructured uncertainty. In unstructured uncertainty the phase would have been

completely arbitrary.
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With thedefinitionabove,Ea(jCo) reflects the largest variation between any of the 'p'

plant models and the design model Gn (jco).

The control block diagram representing the additive model error is shown below.

ICn(sI- An ;-lBn

Gc(S)

Cc (sl- Ac)-lBc

y(s)

Figure 4.3.3 Additive Model Errors

Return Difference Transfer Function Matrix

Since frequency-domain representation are used, and the concern is about stability, one

must be sure that the transfer functions do not hide any fight-half plane pole-zero

cancellations, thus the standing assumption is made that Gc(s)Gn(s) does not have any

right half plane pole-zero cancellations. Define the loop transfer function matrix T,, (s)

by Tn(s)= Gc(s)[Gn(s)+ Ea(s)]. The following relationship holds for the system of

Figure 4.3.3.

y(s) = C(s)u(s) (4.3.6)

where C(s) is the closed-loop transfer matrix given by

C(s)= Tn(s)(l + Tn(s)) -1 =(I + Tn(s))-lTn(s) (4.3.7)

and I + T(s) is the return difference transfer function matrix. The magnitude of the

return difference matrix 1I + T.(jc0)[ represents the distance of the nominal Nyquist
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locus, Tn(j(.O ), to the "critical point", -1. The basic idea of the stability-robustness

tests relies on the following interpretation: If at each frequency, the "size" of the

modeling error Ea(jCo ) is less than II + Tn(jco)l, then the number of encirclements

cannot change and closed-loop stability is retained. More specifically, if

e(L -1 - I) < _r[I+ Gc(jCO)Gn(jO)) + Gc(jOJ)Ea(jO))], VCO_ [0,oo] (4.3.8)

where

L = Diag[kne J¢" ] (4.3.9)

then the actual feedback loop is closed-loop stable. Thus the stability-robustness test is

a sufficient condition for the stability of the feedback system in the presence of the

structured modeling errors.

1.5

Maximum

Singular 1
Value

"if( E 1- i)

0.5

0

Figure 4.3.4

\

\

_(L -1 -/)= 4(1-1/kn) 2 +2(1- cosOn)/k n

Phase Margin, + ¢. ,dog

-

-5 0 5 10 15

Gain Margin k,,, dB

Universal Diagram for Gain-Phase Margin Evaluation

Equation 4.3.8 can be visualized by examining the diagram for gain-phase margin

evaluation. Figure 4.3.4 can be used to determine the gain margins for a particular
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phasemarginfor simultaneouschangesof both gain and phasein all input channels

(Mukhopadhyay,1982).

4.4 Gain Scheduled Compensator

The nominal ann configuration is now perturbed about the nominal "set poinf'. By

allowing the controller gain vector Cc to be a flee parameter, the quadratic performance

cost function is evaluated over the surface of the gain space. The minimum of this

surface is found. This process is continued for various arm configurations. Once the

'optimal' gains and the respective surfaces are known, questions such as, "are the

'optimal' gains simply connected?" can be explored. If such gains are simply

connected, an "optimal' polynomial expression of the gain versus the robot joint angle

could be derived using optimization approaches. If the gains are not simply connected,

a look-up table will be used to adjust the output gain vector.

By adjusting the elbow joint angle, the system matrices are a function of 0. The new

state estimator is now a dynamic compensator which will remain fixed. The

compensator state gain Cc will vary with the parameter 0 to minimize some

performance function. The gain scheduled compensator is shown in Figure 4.4.1

Figure 4.4.1

Jc=A(O)x +B(O)u

l y=....£c<o)x+..._.._.o(o)_...2u
U 2

i= Acz + BcY

" update

Gain Scheduled Compensator

Y
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Theplantdynamicequationsfor thetimevaryingsystemis u, = O, and u = ua = u 2:

.ic= A( O)x + B( O)u

y = C(O)x + D(O)u (4.4.1)

The state compensator feedback gain will be allowed to change with O.

z'= Acz + Bcy (4.4.2)
u=Cc(O)z

The state equations for zero exogenous inputs are:

k = A(O)x + B(O)Cc(O)z

_.= (AcC(O) + BcD(O)Cc(O))z + BcC(O)x

y = C(O)x + D(O)u

= C(O)x + D(O)Cc(O)z

(4.4.3)

Written in block matrix form:

LBcC(O) A_ + BcD(O)C_(O)JI_zj
(4.4.4)

The Linear Quadratic Regulator (LQR) cost function is given by

j = _[yTQy + uTRu]dt

0

inserting

ur = zrC_(O) r

yr = xrC(O)r + zrC_(O)r D(O)r

into (4.4.5), yields:

i[{xTC(o)T+ZTCc(O) T D(o)TIQ{c(O)x + D(O)Cc(O)Z})d tJ = o[+zrCc(O)rRCc(O)z

(4.4.5)

(4.4.6)

(4.4.7)
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rewriting,

_[xrC(Olr QC(Olx + xrC(O)r QD(O)Cc(Olz ]
j= Sl+zrCcWO<O,r aC<O>x + zrC_<O)r D(O) T QD(O)Cc(O)z dt

oL+z rcc (o)7-RCc(O)z

(4.4.8)

Which can be written in matrix block form

oo

-- z

Let 2 be an augmented vector of the plant state and compensator state

(4.4.9)

(4.4.10)

Then the cost can be rewritten as

J = S2rQ(O)2dt (4.4.11)

where

-- [ C(O)rQC(O)

Q( O) = LCc(O)rD(O)rQC(O)

C( o)T QD( O)Cc( O) 1
Cc(O_(_(o___D(o_+R)c_(o_]

and the augmented state vector satisfies the equation

x = _(o)_

where

[ A(O)
_-(0) =/8_c(0)

B(O)Cc(O) ]
A_+ 8_Z)(O)CAO)J

(4.4.12)

(4.4.13)

(4.4.14)
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If A(O) is stable, there exist a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

X( o)r P( o) + -P(o)X( o) + _( o) = o

The cost can be rewritten as

J = --S_T(-A(o)TP(o) + P(O)-A(O))_dt

0

but

_rP(o)_] = *rP(o)_ + _rP(O)x

(4.4.15)

(4.4.16)

(4.4.17)

using

x = A(0)2

yields

The cost is rewritten using (4.4.19) and (4.4.16)

= -

If A(O) is stable then 2._ = 0, and the cost is

(4.4.21)

The objective of the gain schedule control law is to f'md J, such that

J, = minJ

cc(o)

(4.4.18)

(4.4.19)

(4.4.20)

(4.4.22)
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This minimum cost can be easily determined for each value of 0. By plotting J as a

function of Ccl (0) and Cc2(O) and minimizing the variance of the error between J

and a polynomial function ofO, a polynomial for the optimum gain scheduled control

law can be found. In terms of real time control this analysis could be performed off

line to reduce real time computational burden of the onboard computers. This gain

scheduled compensator or the following adaptive frequency domain compensator were

not further developed in this thesis due to the computational burden of the method.

However an interesting adaptive control scheme will result if sufficient onboard

computation is available.

Adaptive Frequency Domain Compensator

A new adaptive control design method which does not require:

The plant Strictly Positive Real (SPR) property;

An adaptive realization of the plant;

The design of a performance (or reference) model;

is described in this section. This MIMO design method updates the compensator gains

directly based on new information gained from a measurement of Frequency Response

Function (FRF) from available sensor data. Using gradient based optimization

techniques, this method updates the compensator gains based on performance and

stability objectives when the plant is slowly time varying or if the plant has pole, zero,

or influence coefficient uncertainties or perturbations which are represented in the error

bars of a multiple FRF measurement. The performance objective is based on a linear

combination of a frequency weighted Linear Quadratic Regulator (LQR), combined
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with a stability criterion derived from the minimum singular value of the return

differencematrix.

TheFrequencydomainPerformance/Stabilityoptimizationfor adaptivecontrolmethod

is similar to a digital RobustControlLaw Synthesisusing constrainedoptimization

(Mukhopadhyay,1989). With Mukhopadhyay'smethod,a linearquadraticGaussian

costfunction is minimizedby updatingthe free parametersof the control law, while

satisfyinga setof constraintson the designloads, responses,and stability margins.

Analyticalexpressionsfor gradientsof the cost function and the constraints,with

respectto the digital control law designvariables,are used to facilitatenumerical

convergence.Onedifficulty with this techniqueis that the steady-statemeansquare

responsesarecomputedby solvingthesteady-stateconditionof thediscreteLyapunov

function. Thusthis Lyapunovfunctioncannotbesolvedif theclosedloop systemis

unstable. Thealgorithmin its presentform would fail to attenuateappropriateloop

gainswhen a new plantrealizationrendersanunstableclosedloop system. Thusthe

controllermay not adaptto a time varying linearplant. This methodalso requires

knowledgeof theexpectedvalueof theplant andoutputdiscretecovariancematrices.

Measurementnoisecovariance'sareeasilyderivedfrom experimentaldata,while the

plantnoisecovariancedeterminationis considerablyless tractable. The methodalso

requiresarealizationof theplantsystemmatrices.

Thefrequencydomainperformance/stabilityoptimizationmethodproposedhereindoes

notrequirethesolutionof thesteady-stateconditionof the discreteLyapunovfunction.

Hencetheoptimizationspacemayresolveunstableclosedloop systemsby attenuation

of therespectiveloopswhile minimizingthe performanceindices. The M]MO FRF

plotsarealsoamoreaccurateindicatorof theplant responsethanarerealizationsfrom

theFRF. A distinctivepropertyof this methodis thatno plantrealizationis required
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for the update of control parameters. The method is applicable to non-minimum phase

systems as well as when plant dimension is of larger order than the controller.

A nominal compensator is first designed as discussed in Section 4.2. While the system

is under control, a closed loop Frequency Response Function (FRF) Gd(jr.o) can be

determined. It can also be derived from open loop data with knowledge of the nominal

compensator K(jco) by using (4.4.23).

Gc*l(O, jo9 ) = (1 + Gop( O, jco)K( O, jco))-l Gop( O, jog) (4.4.23)

where

K( O, jco) = Cc( O, jog)(jogI - Ac )-I Bc (4.4.24)

Notice the compensator A c and B c matrices are constant. The FRF of the control

input ud(jto)is also available. However, it is important to note that since these

equations are in the frequency domain, the input used during the data gathering

experiment is periodic. In addition, one has to assume that aliasing is appropriately

handled. The two FRF's can be used to determine the cost of the closed loop system

with a known nominal compensator K(O, jto). This closed loop cost is thus

determined using open or closed loop data.

o0 *Z • * " T (O,jo))RUcl(O, jco)_o) (4.4.25)J(0)= _tr[Gcl (O,jco)aGcl(O, JO2)+Ucl
--oo

Since an observer is not utilized in the controller, the compensator represents a

generalized dynamic feedback controller. By allowing only the gain matrix Cc(O, jco)

to change, the cost is minimized using open or closed loop data. If this were an

observer/controller system there would be one global minimizing controller which

would simultaneously guarantee the well known LQR robustness properties.
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However, minimizing the above integral does not guarantee robust closed loop system

behavior. Thus while minimizing the above integral, an additional cost or constraint,

which reflects the stability of the return difference matrix is added.

oo

J(0)= tr l (O, jco l(O,jfo)+Ucl(O, jo))RUcl(O, joJ co

-** (4.4.26)

+ +

where ks - gain of stability cost and

f(.)_ (0 - cr[l + K( O'Jr'°)G°P(OO,jco)] when _(.) _< _) (4.4.27)
when _(.) >

and cr is the minimum experimental singular value. Assuming the closed-loop system

is stable, the robustness of the nominal system at the plant input can be examined by

computing c_l + K(O, joJ)Gop (O,jco)] as a function of frequency ( s = joJ ) and using

the guaranteed stability criterion

_(L -1 - I) < __[I + K(O,jto)Gop(O, jto) ] (4.4.28)

at all frequencies. The matrix L is a diagonal gain and phase change matrix at the input

of the plant as shown in Figure 4.4.2, and _ is the maximum singular value.

L= Diag[kn eJ¢" ] (4.4.29)

Gop( O,s) K(O,s)

H tC(O)(sI- A ) B Cc(O)(sl- Ac) -1 Bc

Figure 4.4.2 Diagonal Gain and Phase Change Matrix at Plant Input
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The valueof 7/ is chosenbasedon desiredgainand phaseperturbationrobustness

properties. Thematrix L is the identity matrix for the nominal system and it can be

shown that

_(L -1-1)=5](1-1/k n)z+ 2(1-coson) / k n

Equation (4.4.30) is plotted in Figure 4.3.4 (Newsom, 1983).

(4.4.30)

By examining the

universal diagram for gain-phase margin, the designer chooses the desired stability

properties and the corresponding value of 77. This figure can be used to determine the

gain margins for a particular phase margin for simultaneous changes of both gain and

phase in all input channels (Mukhopadhyay, 1982). For example, if a simultaneous

gain and phase perturbation robustness of (-3,6) dB and +_20° phase margin were

desired, then a value of r/= 0.4 would be utilized. Since the minimum singular value

is determined directly from test data as opposed to realizations of the data, it is a very

accurate indicator of the actual gain and phase margins which exist in the loop.

4.5 Spline Varying Optimal (SVO) Compensator

The plant dynamic equations for the time varying system is

.2 = A( O)x + B( O)u

y = C(O)x + D(O)u

The equivalent plant dynamics can be described by an N-th order transfer function

G(s) = fll (O) sn-1 + f12 (O) Sn-2 +"" +fin (O)
Sn + cq(O)sn-l+...+a,,(O)

by using the change of state matrix

(4.5.1)

(4.5.2)
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CA
Tob = . (4.5.3)

-1

where the new state variable and state matrices are given by SCob=T_o_X,

"4oh = To1 aTob, hob = To_ B, Cob = CTob

The time varying observer can be described in an observable canonical state-space

equation by:

Xob = ._ob(O)fCob + Bob(O)u 4" gy(y - y)

_= _obSCob + _)ob(O)u (4.5.4)

where the observer state matrix, influence matrix and output matrices are given by

Ao_(O)=

0 1 0 ... 0

0 0 1 ... 0

0 0 0 ... "

.... ". 1

-a.( o) -an__(O) -_.-2( 0) " -as(O)

(4.5.5)

/_(0)

_2(o)-a_(o)#_(o)
_o_(0)= #3(o)-al(o)_l(o)-_2(o)&(o)+a?(o)_l(o)

l

_o_=[1 o ... o]

(4.5.6)

The optimal control can be implemented by full-state feedback and is given by

u = Cc(O)Sc(t)

The control gain matrix Cc(O ) is given by

Cc(O ) = -R-I[Yob(O)T p(o)

(4.5.7)

(4.5.8)
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Thematrix P(O) = P(0) r > 0 is computed from the solution of the following algebraic

Riccati equation:

Aob(O)r p(o) + p(O)Aob(O ) - P(O)Bob(O)R-1Bob(O)T p(o) + Q = 0 (4.5.9)

The SVO compensator block diagram is shown in Figure 4.5.1. An example problem

will be shown in Section 4.6 which will demonstrate that the dependence on 0 is

captured by the cubic spline function.

/

y

Figure 4.5.1 SVO Compensator Block Diagram
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4.6 Performance Comparison

This section evaluates the various control law strategies based on a consistent cost

function. The compensators are applied to the two link model and the open and closed

loop performance for a wide variety of arm orientations are compared. Table 2.3.1

shows the non dimensional parameters used for the two link model. Ten modes were

included in the truth model. Table 2.5.1 indicates the open loop eigenvalues as a

function of theta. The infinity norm of the Bode response as a function of mode

number and theta is shown in Figure 2.6.1.

Fixed Dynamic Compensator Results

The fixed dynamic compensator design results show that the 'optimal' nominal ann

orientation for the fixed compensator was at 0 i = 50 ° . Below is the cost as computed

in Section 4.2 as a function of theta, where

J(op=

where

C(oi)T QC(Oi)

CrcD(Oi)r QC(Oi)

(4.6.1)

C(Oi) T QD(Oi)C c ]

cT(D(oi)TQD(Oi)+R)CcJ
(4.6.2)

and the augmented state vector satisfies the equation

x = A(Oi) 

where

_ =[ A(o,)  (o, Cc ]
a(oi) LBcC(Oi) Ac + BcD(Oi)CcJ

(4.6.3)

(4.6.4)
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andthesymmetricpositivedefinitematrixP satisfiestheLyapunovequation:

"A(oi)T p(oi) + e(oi)'A(Oi)+ -a(oi) = 0 (4.6.5)

Each initial state in 20 was set equal to one for all performance comparisons. The

Output weighting gain was Q = 0.1, the input weight was R = 0.001. The process

noise and measurement noise covariance's were Qw = O. 1 and R v = O. 1 respectively for

all performance comparisons. The f'Lxed compensator performed well for most arm

orientations (Figure 4.6.1).

1.2

0.8

_" 0.6

O

0.4

0.2

0
0

Figure 4.6.1

__ Fixed Compensator

i i i i i I i

I0 20 30 40 50 60 70 80 90

Theta

Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Compensator

Although there were no instabilities induced by the fixed dynamic controller, the gain

and phase margins were small. The minimum singular value of the return difference

matrix evaluated over the workspace for the fixed controller reached

cr[l+Gc(jOg)G(Oi,jco)]=O.16, Vcoe[0,oo], V0_[0°,90 °]

indicating that there was only a 10 ° phase margin (See Figure 4.3.4).

margin occurred for the 0 = 90 ° arm orientation.

(4.6.6)

This low phase

The presence of no instabilities
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reflectsthefactthatthereis significantmodalfrequencyseparationbetweensuccessive

modes,andsignificantattenuationof the infinity normof theresidualmodes.

Thetotal cost is found by calculatingthe areaunder the abovecurves for the fixed

dynamiccompensator.

I0

Tj(G c = Fixed Compensator)= _ J(Oi)= 1.268 (4.6.7)
i=O

The 10 values in the summation correspond to values of theta in increments of 10 °

from [0°,90°]. For comparison, the open loop total cost is evaluated by setting the

fixed compensator to zero. Thus

10

T j(G c =0)= _ J(0i)=9.477 (4.6.8)
i=0

Fixed Robust Dynamic Compensator results

The fixed robust compensator results show an improved performance over all arm

orientations. The mandated stability constraint was a 40 ° phase margin, or

_(L -l - I) = 0.75. Shown in Figure 4.6.2 is the Bode response of the nominal plant

model Gn(s) at 50 °.

The maximum bound on the additive model error over the entire workspace was

calculated from

E_(jco)= max (G(Oi,jog)-Gn(jco)) V0_[0°,90 °] (4.6.9)
i= 1..10

and is shown in the frequency domain in Figure 4.6.3.
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Figure 4.6.2 Bode Response of Nominal Plant Model Gn(s) at 50 °.
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Frequency (rad/sec)

Maximum Bound on the Additive Model Error E a (jo))

Using the optimization tools in Matlab a constraint of

_o-[I + Gc (jo))G n (jo)) + Gc (jo))E a (jco)] > 0.75 (4.6.10)
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was used to modify the return difference transfer function. The resultant fixed robust

controller performance is depicted in Figure 4.6.4.

1.2

0.8

0.6

0.4

0.2

______ Open Loop

__.___/ Fixed Robust Compensator

i I _ i i i i i

0 10 20 30 40 50 60 70 80 90

Theta

Figure 4.6.4 Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Robust Compensator

T j (G c = Robust

10

Compensator) = E J( Oi )= 3.022
i=0

(4.6.11)

Spline Varying Optimal Compensator Results

The observer Aob(O), Bob(O), Cob, and Cc(O) matrices were evaluated as a function

of theta. These parameters were used in the observer equations to derive the state space

matrices. Figures 4.6.5 and 4.6.6 show the non zero Aob(O) coefficients ctl(0 ) and

a 2 (0) in the observer dynamic equations.

S¢ob= Lb( O)fCob + Bob( O)u + Ky( O)(_- y)
(4.6.12)

 =Cob o +bo (O)u
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where

.4ob(O)=I 0 1 1 (4.6.13)--12(0 ) --a,(O)

Figures 4.6.7 and 4.6.8 show the Bob(0) coefficients ill(O) and fiE(0)., where

^ [ ill(O) ] (4.6.14)8oh(0)=

Since the observer is the observer canonical form, the non zero elements of the Cob

vector is simply one.

Cob = [1 O] (4.6.15)

Figure 4.6.9 and 4.6.10 show Ccl(O) and Cc2(0), which were found by solving the

algebraic Riccati equation for each value of them.

Cc(O ) = _R-l_ob(O)T p(o) (4.6.16)

The matrix P(O) = P(O) r > 0 is computed from the solution of the following algebraic

Riccati equation:

"Job (0) T P(O) + P(O),4ob (0) - P(O)Bob (O)R-1Bob (0) T P(0) + Q = 0 (4.6.17)

The observer gain gyl(O) and gy2(0 ) were found using the process noise and

measurement noise covariance's where Qw = 0.1 and R v = 0.1. Table 4.6.1 shows the

numerical Markov parameters and controller and observer gain for 10 successive values

of theta starting at 02=0.

For each graph 4.6.6 through 4.6.12, the observer and optimal gain were plotted as a

function of 02. Each of the curves were then fitted to a third order polynomial.
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Theta
(Degrees)

0

10

20

30

40

5O

60

70

8O

90

Table 4.6.1

SVO Compensator Parameters

al(0)
1.6356e-02

1.6412e-02

1.6583e-02

1.6874e-02

1.7294e-02

1.7857e-02

1.8582e-02

1.9495e-02

2.0627e-02

2.2020e-02

a2(o)
0.6688

0.6734

0.6875

0.7118

0.7477

0.7972

0.8633

0.9501

1.0637

1.2122
i

#1(0)
-8.3579e-06

-8.4277e-06

-8.6416e-06

-9.0135e-06

-9.5688e-06

-1.0347e-05

-1.1406e-05

-1.2829e-05

-1.4728e-05

-1.7240e-05

 2(o)
-2.0611e+01

-2.0787e+01

-2.1328e+01

-2.2273e+01

-2.3690e+01

-2.5694e+01

-2.8459e+01

-3.2253e+01

-3.7486e+01

-4.4799e+01

Table 4.6.1 Continued

SVO Compensator Parameters

Theta

(Degrees)

0

10

20

30

40

5O

60

70

8O

90

Ccl(O)

-3.0246e-01

-3.0251e-01

-3.0265e-01

-3.0290e-01

-3.0326e-01

-3.0375e-01

-3.0438e-01

-3.0517e-01

-3.0616e-01

-3.0737e-01

Cc2(0)

-1.7053e-01

-1.6982e-01

-1.6769e-01

-1.6417e-01

-1.5928e-01

-1.5307e-01

-1.4560e-01

-1.3696e-01

-1.2726e-01

-1.1665e-01

Ky1(O)

1.4220e+00

1.4206e+00

1.4161e+00

1.4085e+00

1.3978e+00

1.3835e+00

1.3657e+00

1.3440e+00

1.3185e+00

1.2892e+00

Ky2(O)

5.1111e-01

5.0900e-01

5.0267e-01

4.9200e-01

4.7686e-01

4.5709e-01

4.3256e-01

4.0321e-01

3.6920e-01

3.3102e-01

It should be noted that the third order polynomial is an approximation of the data. The

actual optimal gain function will be of a higher order, at least sixth order in them,

although a third order polynomial is a very good approximation. Thus SVO controller
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can be implemented easily on a computer in real time. The respective third order

polynomial coefficients are shown in each graph.

0.023

0.022

0.021

,-, 0.020

o.o19

0.018
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I I I I
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Figure 4.6.5 SVO Compensator Parameter al (0)
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Figure4.6.13 showstheopen and closed loop (SVO) cost versus them. There is an

improvement of 20:1 over the open loop manipulator along the range of motion.
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Figure 4.6.13 Open and Closed Loop Cost Comparison as a Function of Them - SVO
Compensator

A cost comparison of the controllers studied above is summarized in Table 4.6.2. All

of the compensators improved the open loop performance over the workspace. For

comparison purposes, the total cost of the open and closed loop systems is computed

by integrating the area under the curves above. These results for the open loop, fixed

robust compensator, fixed compensator SVO compensator are plotted in Figure

4.6.14. Figure 4.6.14 indicates the improvement of the SVO controller over the fixed

gain and fixed robust controller. It is important to note that the fixed gain controller

remains stable over a wide variety of elbow pitch arm angles, although its performance

is significantly worse than that of the SVO controller. The overall improvement in

performance is 7:1 for the fixed gain compensator, 3:1 for the fixed robust

compensator, and 20:1 for the SVO compensator. Although the stability margin for the

fixed gain controller was relatively low ( 10 ° phase margin), its performance was about
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Table 4.6.2

Cost Comparisons

Open Loop Closed Loop

Cost Cost Cost
Cost Fixed Gain Fixed Robust SVO

Theta

(Degrees)

0

10

20

30

40

50

60

70

80

90

Total Cost
10

EJ(Oi)
i=0

1.153

1.144

1.118

1.077

1.021

0.954

0.878

0.795

0.711

0.626

9.477

0.217

0.185

0.128

0.0792

0.0567

0.0471

0.0585

0.0852

0.146

0.265

1.268

0.420

0.401

0.346

0.253

0.198

0.182

0.194

0.235

0.326

0.467

3.022

0.0512

0.0510

0.0505

0.0497

0.0485

0.0471

0.0454
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two timesbetter than the fixed robust compensator(40° phasemargin). Thus, by

increasingtherobustnessof the closedloop system, the fixed robust compensator

sacrificedonperformance.

4.7 Summary

This chapter has developed and compared the theoretical and numerical results for

several control strategies of a time varying flexible manipulator. The consistent cost

functions for evaluation of the various controllers on the time varying system have been

derived. An example problem was used to evaluate the performance of the various

controllers for the time varying system. It was determined that a fixed robust controller

can remain stable over the workspace limits, although its performance is sacrificed at

the expense of stability margins. A novel SVO controller has been developed. There

are several advantages of the SVO controller over traditional gain scheduling

controllers. The four advantages of using the SVO controller where the spline function

approximates the system model, observer, and controller gain are:

(1) The spline function approximation is simply connected, thus the SVO

controller is more continuous than traditional gain scheduled controllers

when implemented on a time varying plant.

(2) The SVO controller is easier for real time implementations in storage and

computational effort, when compared to traditional gain scheduled

compensators.

(3) Where system identification is required, the spline function requires fewer

experiments. Namely four experiments are required to identify the four
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(4)

polynomialsin eachof the non zero elementsin the controller (See

Chapter3).

Startuptransientsarereduced.Whentheestimatoris determiningthestate

at all times during the maneuver,initial estimatortransientscan be

ehminated.

The SVO controller outperformedthe fixed gain and fixed robust controller as

determined by the consistent cost function. The SVO controller developed in this

section is the first simply connected time varying compensator shown in the literature.

As discussed in the previous chapter on system identification, the fundamental mode

Markov parameters which are unique, satisfy a third order approximation, or spline

function, as a function of the elbow joint angle ( 02). In this chapter it was shown that

in addition to the Markov parameters satisfying the spline function, both the observer

gain and the time varying regulator gains satisfy this spline function approximation.

The results of this observation allow the myriad of free parameters in a time varying

optimal controller to be reduced to a fundamental set of time varying optimal parameters

which are simply connected. With the SVO controller there is an improvement of 20:1

over the open loop manipulator dynamics along the range of motion.
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CHAPTER 5

ACTIVE VIBRATION DAMPING OF THE SPACE SHUTTLE REMOTE

MANIPULATOR SYSTEM

In this chapter the various control strategies described in Chapter 4 are applied to a high

fidelity simulation code of the Shuttle Remote Manipulator System (SRMS). The code,

which is used routinely for predicting arm dynamic motions for on-orbit RMS

operations, was obtained from Charles Stark Draper Laboratory (CSDL) for this

purpose. The simulation code includes models of the RMS structural dynamics, joint

servos, motors, gearboxes, and the software modules loaded in the Shuttle computers

for RMS control (Metzinger, 1988). To demonstrate that the Draper RMS simulation is

a valid representation of the flight article, 22 specific maneuvers were performed in

flight and reproduced via DRS simulation (Gray, 1985). The comparisons show

excellent agreement between DRS and flight data. Various sensor/actuator pairs are

evaluated including collocated control with the shoulder and elbow joints. For both

joints, feedback of the tachometer measurement initially results in a small increase in

RMS damping. However, feedback of the acceleration measurement to drive the

shoulder joint show a large increase in damping. Linear models are derived for four

ann orientations and are used to derive SVO controller.

The approach to the RMS active damping feasibility study is the following. First, a set

of payloads and arm configuration combinations consistent with the types of payloads

expected during Space Station Freedom assembly is defined. Second, RMS dynamics

and operational characteristics were examined using the nonlinear Draper RMS



Simulator(DRS) code. Thedeterminationof active damping augmentation feasibility

involved the design and simulation of candidate damping augmentation control laws.

For this purpose, system identification methods were employed on output data from the

DRS to identify time varying nonlinear models which closely match the DRS response.

With the nonlinear control design models, various active control law design concepts

described in Chapter 4 were evaluated, as were the requirements for feedback sensors

to measure arm motions. The final step was the simulation of the SVO control law in a

modified version of the DRS to determine the effects of system kinetic and kinematic

nonlinearities and computer time delays.

5.1 Shuttle Remote Manipulator System

Figure 5.1.1 illustrates the elements of the Space Shuttle RMS (JSC, 1988). The

system is a six-joint telerobotic arm controlled from a panel located on the aft flight

deck of the Space Shuttle. These six joints are directly analogous to the joints and

freedom of a human arm, defined as shoulder-yaw and pitch, elbow-pitch, and wrist-

pitch, yaw, and roll. An end effector for grappling payloads is mounted at the free end

of the arm. From the control panel and translational and rotational hand controllers,

commands to move the ann are processed by the Shuttle computers and an interface

unit to provide electrical signals to drive the joint servo motors. The actual joint servo

commands that are generated depend on the selected operational mode, which can be

either direct drive, single joint mode, one of four manual augmented modes, or an

automatic control mode. The manual augmented mode is normally used for payload

operations on-orbit, although the single joint mode is used for RMS stowing and to

avoid joint singularities. Joint angle position and motor shaft rate at each joint are

measured by an encoder and tachometer, respectively.
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Figure 5.1.1 Space Shuttle Remote Manipulator System (RMS)

Fixed slew rates mandated by safety operational procedures

In all reconfigurable structures there is an upper bound slew rate demanded by safety

operational procedures. This slew rate is best described as a fixed velocity and

acceleration rate of the servos driving the structural joints. The velocity constraint

manifests itself as a f'mite rate at which the arm or tip can be positioned. This constraint

ensures that the structure can stop within an operational envelope to prohibit a collision.

The fixed acceleration upper limit slew rate ensures that stress loads in the mechanical

links do not exceed mandated safety limits. It turns out that the acceleration slew rate,
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hereafterreferredto as the slew rate, affectsthe spectrumof the vibratory energy

impartedto theelectromechanicalstructure.

Without an upperboundslew rateconstraint, a step input impartsenergy into the

structurein abroadfrequencyband.With thefixedslewrateconstraint,theinput hasa

finite rateat which the servocanaccelerate.Table5.1 indicatesthe fixed slew rate

limits for the SRMS (Ravindran, 1982). These limits were mandated to provide the

ability to stop from maximum speed within 0.6 meters under all loading conditions.

The fixed slew rate serves to attenuate the high frequency response, especially for

heavier payloads.

Table 5.1.1

Slew Rate Limits of SRMS

Load Rate Limits

Loaded

(15,000 Kg.)

m/Sec Deg/Sec

Unloaded 0.6 4.76

0.06 0.476

0.03Loaded

(30,000 K_.)

0.238

Four RMS configurations were adopted for the system identification study. These

configurations are shown in Figure 5.1.2 5.1.5 with the Shuttle PAllet Satellite

(SPAS) free-flyer spacecraft as an attached payload. The SPAS payload was used for

the dynamic response studies. Depicted in the plots are the RMS configurations for

various values of the elbow joint angle, with the SPAS attached payload used on the

STS-07 Shuttle mission.
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Thetimeresponsedatashownin Figure5.1.6 aretypicalof thekind of RMS motions

encounteredduring normal arm maneuvers, as predicted by the DRS. The plots depict

free responses following a 10-second single joint rotation command to the shoulder-

yaw joint, with the other joint positions maintained by the RMS position-hold function.

Shown are the lateral displacements of the free end of the arm, the shoulder-yaw joint

angle encoder response, and the shoulder-yaw joint rate derived from the motor shaft

tachometer. After the command to the RMS is removed, the peak-to-peak free

oscillation at the tip of the arm is about 5 inches, while the actual measured joint angle

change during the same time is on the order of 0.1 degree. The discrete stepping of the

encoder response is due to word length limitations in the Shuttle computer, indicating

that the signal is at the limit of useful resolution. The yaw joint rate is on the order of

3.0 degrees/second, and again has discrete stepping characteristics which limit the

useful resolution of data. These types of responses are an indication that the existing

RMS sensors may not be adequate for active damping augmentation purposes.

Because of this, the addition of another sensor in the form of a tip mounted

accelerometer was considered. The DRS simulation was used to predict the response

of an accelerometer package mounted near the SPAS payload. This simulated tip

acceleration measurement was used in feedback studies to determine if additional sensor

hardware would be beneficial for active damping augmentation of the RMS.
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Figure 5.1.2 SRMS Configuration 0 = 0 ° Figure 5.1.3 SRMS Configuration _ = 30°

Figure 5.1.4 SRMS Configuration 0 = 60° Figure 5.1.5 SRMS Configuration 0 = 90°
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Figure 5.1.6 Typical RMS response and sensor outputs - 0 = 30 °.

Global Mode Shape Analysis

Knowledge of the global mode shapes of the RMS was important in assessing the

feasibility of active damping augmentation of the RMS. Since mode shapes change

with arm geometry, the four configurations were studied. Appraisal was made of mode

shape observability and controllability from the available sensor and actuator suites.

Mode shape information was obtained using an eigenanalysis version of the DRS

(Gilbert, 1992).

Figure 5.1.7 shows an exaggerated representation of the second mode of the RMS .

The predicted frequency of this mode is 0.259 Hertz. This mode shape includes a

significant amount of upper and lower boom bending. Other RMS modes include
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Figure 5.1.7

18
17
16

_- 15
Z

RMS Second Structural Mode Shape

12
i,i,I

O
F,,- 9
O
I,,i,i

Z
I,,I,I

I,i,,I

LOWER BOOM TORSION

UPPER BOOM TORSION

I GRAPPLE YAW FREEPLAY

I SWlNGOUT YAW FREEPLAY

GRAPPLE PITCH FREEPLAY

SWlNGOUT PITCH FREEPLAY

II GRAPPLE ROLL FREEPLAYWRIST ROLL

6_ WRISTYAWWRIST PITCH

4 _ ELBOWPITCH

3 ill= SHOULDERPITCH
2 _AW
1 _ SWINGOUT

0 10 20

RELATIVE CONTRIBUTION

Figure 5.1.8 RMS Structural Mode Contributions

30

122



considerable amounts of joint flexibility and/or orbiter sidewall flexibility, with little

boom bending contribution. In order to assess the relative contributions of each

generalized coordinate in the state equations, the magnitudes of the eigenvector

elements were plotted. Figure 5.1.8 is such a plot, showing the relative rotational

contribution of states 1 through 13, and the relative displacement of states 14 through

17.

5.2 Collocated Versus Non-Collocated Control

The existing tachometer sensors were used to feed back joint rate command signals to

reduce arm tip motion following a pilot maneuver. Linear single-input, single-output

(SISO), state space models were developed to investigate the damping improvement

using local tachometer feedback to the respective joints and tip accelerometer feasibility

studies. State-space models were developed to investigate state feedback controllers.

The methods and results for both cases are presented below.

Linear SISO state-space models of the RMS were derived from DRS response data

using system identification methods outlined in Chapter 3. The data have been obtained

for single joint mode cases with the SPAS payload using the 3-second shoulder-yaw

joint rate command pulse as the input, and either the joint tachometer or linear

acceleration measurement at the tip of the arm as the output . Assuming a nominal

model order of 8 states corresponding to 4 vibration modes, frequency, damping, and

influence coefficient parameters were selected to make the model best match the DRS

response data in a least-squares sense. The SISO system identification results for the y

axis of the simulated tip accelerometer and the shoulder-yaw tachometer are shown in

Figure 5.2.1 and 5.2.2 respectively. The solid line represents the nonlinear DRS

predicted response and the dotted line corresponds to the identified linear model
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response. The identified linear models were used to evaluate the effect of tachometer

and accelerometer feedback on system modes (i.e. damping) through simple gain loop-

closures.

Collocated and Non-Collocated Active Damping Results

Figures 5.2.3 and 5.2.4 show the RMS damping improvement as a function of a scaled

gain parameter for feeding back the shoulder-yaw and pitch tachometer measurements,

and tip acceleration measurement.

t--
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t:l

Figure 5.2.3
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The initial damping values for zero gain for the two joints are different because the

joints excite and are able to control different structural modes. For both joints,

feedback of the tachometer measurement initially results in a small increase in RMS

damping. Feedback of the acceleration measurement in both cases shows larger

increases in damping. Also shown in Figure 5.2.3 is the result of tachometer feedback

as predicted by the nonlinear DRS code, validating the linear model tachometer results.

5.3 Spline Varying System Identification

The SISO studies above investigated direct output feedback using tachometer and

accelerometer measurements. Spline varying optimal controllers were also

investigated. These SVO controllers were based on nonlinear models of the RMS
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dynamics. Thecontrollerlogic was implementedin theDRSnonlinearsimulationso

thatcandidatecontrollaws could be evaluatedincludingthe effectsof nonlineararm

dynamics, computertime delays, and existing RMS health and safety software

functions.Thecontrollersareof theform

xc(k + 1) = Ac(O)xc(k)+ Bc(O)y(k) (5.3.1)

u(k) = Ccxc(k ) + Dc( O)y(k)

where Ac(0) is the compensator dynamics matrix, Bc(O ) is the control distribution

matrix, Cc is the observation matrix, Dc(O) is the control feed-through matrix, x c is

the control state vector.

The spline varying observer models used for control law design were outlined in

Chapter 3. Four models were derived, corresponding to the four study positions of the

RMS in Figures 5.1.2 - 5.1.4. All four models had one input corresponding to the,

shoulder-pitch, and one output corresponding to the in axis acceleration at the tip of the

RMS. The shoulder joint was given a 3-second pulse rate command which was

intended to excite the low frequency modes. The response data was aggregated to

allow the algorithm to identify a single model representing the response of the RMS to

the input. The four models are second order, corresponding to fundamental structural

mode. Prior to the system identification, the DRS simulation acceleration data were

processed through a first-order low-pass filter with a break frequency of 0.2 Hz.

Using the batch method, the observer Markov parameters were identified.

A summary of the identified observer Markov parameters for the

configurations are given in Table 5.3.1.

(5.3.2)

four study
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Table 5.3.1

Identified Observer Markov Parameters

"rhet. a,(O) a2(e)
(Degrees)

0

30

6O

90

2.2172e-17

1.6627e-15

-4.5981e-16

1.5727e-15

-1.7278e-02

-1.7018e-02

-1.5960e-02

-1.3153e-02

1.9842

1.9839

1.9827

1.9810

1.7210e-02

1.6945e-02

1.5876e-02

1.3062e-02

-9.8794e-01

-9.8770e-01

-9.8701e-01

-9.8599e-01

Notice that the identified/_0(0) parameter is nearly zero as expected. Figures 5.3.1 -

5.3.4 show the identified observer Markov parameters plotted as a function of theta.

The spline function is used to interpolate between the identified models and is shown in

each figure.

Figure 5.3.1
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The time domain results of the system identification are shown in Figures 5.3.5 and

5.3.6 for a nominal arm orientation. Shown are comparisons of the nonlinear DRS

simulation response data with one of the identified models. Figure 5.3.5 shows the

arm tip position following the 3-second pulse shoulder-pitch rate command (from 0 to 3

seconds in the plot). In this figure both the DRS nonlinear simulator (solid line) and

the identified linear model (dashed line) match so closely that the curves overlap.

Figure 5.3.6 illustrates the tip acceleration for both the DRS nonlinear simulator (solid

line) and the identified linear model (dashed line) for the same 3-second pulse

command.
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5.4 Spline Varying Optimal Controller Design and Implementation in
RMS Software

The vibration suppression control law for each of the four configurations was

developed using the SVO control strategy of Section 4.5. Each set point design used

the frequency weighted Linear Quadratic Regulator (LQR) design method of Gupta

(1980). Prior to the frequency weighted LQR regulator design, a digital high-pass

prefilter was added in series to the identified model to reject steady-state bias as would

be encountered in feeding back accelerometer measurements in a real system. This

fdter had the digital form

N(z) - "qz+ _'2 (5.4.1)
2"3Z+ _'4

where the constants "r1 through z 4 have the values 0.9707, -0.9707, 1, and -0.9414

respectively. The values for this filter correspond to a first order high pass filter with a

break frequency of 0.12 Hz. The identified model and prefilter are described by the

state-space model

._(k + 1) = .4(O)J(k) + B(O)u(k)

y(k) = CSc(k) + D(O)u(k) (5.4.2)

where

_(k) = [ _l(k) ]

L E(k)J

where

A(0) = [_ a,(O)J Lfll(O)-al(O)flo(O).]

and

C=[0 1],and D( O) = flo( O)

(5.4.3)

(5.4.4)

(5.4.5)
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For controlpurposes,afixedgainregulatorof theform

u(k) = -Cc(O)_(k)

was used where u is the joint rate command signal.

obtained from an observer of the form

J(k + 1) = .4( O)J(k) + B(O)u(k) + K(y(k) - J(k))

where y is the tip accelerometer measurement.

were found using (3.6.16) and (3.6.17).

K1(o)=-42(o)

and

K2(o)=-al(O)

(5.4.6)

The state estimate _(k) was

(5.4.7)

The observer gains Kl ( O) and K2( O)

(5.4.8)

(5.4.9)

To obtain the optimal gain Cc(O ) , the model with the prefilter was used in a frequency

weighted LQR design with a weighted cost function of the form

J(0)= _y(k)ray(k)+ u(k) r Ru(k) (5.4.10)

k=0

where Q is the output weight matrix, and R is the control weighting matrix. The

numerical values of Q and R were determined using an iterative design procedure on the

linear model which avoided actuator saturation. The final values used in the design are

Q=diag {0.002 } and R=diag {0.02 }. Using

y(k) = d_c(k)+ D(O)u(k) (5.4.11)

(5.4.12)

the performance index Equation (5.4.10) was recast:

J(O)= _.Ycr (k )CT Q6"J(k ) + 2J(k )T Cr QD( O)u + ur (L)r ( O)QL)( O) + R)u

k=O
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Theoptimal feedback gain Q (0) which minimizes the performance index J(0) for the

four values of 0 in Equation (5.4.10) was found using Maflab software tools (Matlab,

1992).

An implementation of the SVO controller in the Shuttle software was identified. This

strategy, illustrated in Figure 5.4.1, allows use of all existing RMS health and safety

monitoring functions in an effort to simplify flight development work. The SVO

controller would be a software module which acts as a preprocessor to the existing
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Controller Flag

.-'-_ Current
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Figure 5.4.1 Proposed SVO Controller Implementation in Shuttle Software
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RMS CommandOutputProcessor(COP). It would be turned on and off using the

executive function of the existing software by a flag which would activate the controller

when RMS joint move commands are zeroed. Using motor rate and/or acceleration

feedback measurements, the controller would damp the free response of the arm to

some level at which time the normal position-hold function of the arm would be

activated. With this implementation, the active damping function of the controller could

be expanded to damp RMS motions following Shuttle thruster f'Lrings as well.

5.5 Active Damping Results

The SVO controller was evaluated on the DRS nonlinear simulation. The tip position

following a 3-second shoulder-yaw pulse rate command is shown in Figure 5.5.1. The

top figure represents standard RMS operation and the bottom line represents actively

damped performance. The time required to damp the tip oscillation to + 1 inch is

decreased by a factor of 3. The shoulder-pitch servo torque following the 3-second

shoulder-pitch pulse rate command is shown in Figure 5.5.2. In addition, after 90

seconds a Shuttle thruster roll doublet firing was simulated for 6 seconds. The upper

plot represents simulated standard RMS operation while the bottom plot represents

closed-loop performance with the SVO controller. In this time history the controller

has the effect of reducing the applied torque by a factor of 2. This provides the added

potential benefit of reducing the structural stress in the arm following routine

maneuvers involving either joint commands or Shuttle thruster firings.
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5.6 Summary

An analytical study to determine the feasibility of actively augmenting the damping of

the Shuttle remote manipulator system has been developed. System identification

studies were performed to evaluate collocated direct output feedback and non-collocated

dynamic spline varying controllers. The SVO controller and logic were evaluated in a

nonlinear simulation which included the effects of kinetic and kinematic nonlinear arm

dynamics, computer time delays, and existing Shuttle health and safety software

functions. The collocated results indicate that for both shoulder yaw and pitch joints,

the feedback of the tachometer measurement results in a small increase in RMS

damping, with very small increases in proportional gain producing instabilities.

Feedback of the acceleration measurement in both cases resulted in much larger

increases in damping. SVO controllers were designed to enable improved performance

over a large workspace. Based on the results, active damping of the remote

manipulator system appears feasible using the existing joint actuators and Shuttle

computers and software. However, some additional feedback sensors in the form of

accelerometers located at the tip of the arm are required.

The SVO controller developed for this system does not change or delay the trained

operator input command to move the arm, thus the "feel" of the arm has not been

altered. The SVO control system, when evaluated on the nonlinear simulation,

demonstrated significant improvement over the present arm performance: (1) Damping

level is improved by a factor of 3; (2) Peak joint torque is reduced by a factor of 2

following Shuttle thruster firings.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The planar nonlinear dynamics of a reconfigurable electromechanical structure and

controller have been studied in this thesis. Several unique and unusual nonlinear

compensators have been designed, compared, and contrasted. The three main

contributions of this thesis are the following:

(1) A highly complex mathematical nonlinear reconfigurable system can be

controlled with an extremely low order SVO controller. The SVO

controller can accommodate the non-collocated actuator problem when

kinematic nonlinearities are present.

(2) The Markov parameters are the key to reducing the highly heterogeneous

parameters in multiple fixed controllers to one simply connected SVO

controller. Understanding how the essential kernel of the mathematical

problem is changing with a measurable state (such as the elbow joint

angle) is fundamental to designing low order high performance SVO

controllers. For example, the Markov parameters were found to be

extremely useful in reducing the manifold of changing parameters in the

mathematical system.

(3) The derivation of the SVO controller can be developed using linear

identification techniques as opposed to high fidelity f'mite element



modeling. This is not to say thatthe high fidelity finite elementbased

simulationisnot to beusedor developed.If anaccuratephysicalmodelis

not availableor too cumbersome,identificationcanbe accomplishedfor

the optimal controller via a recurrentnetwork using data gathering

experimentsof a minimumof four arm orientations. In addition, the

observerMarkov parameterscan be utilized to reducethe identified

parametersto a minimalset of identifiednetwork weights. All of the

controller coefficientsin the nonlinearoptimal controller can be very

closelyapproximatedby athirdorderpolynomialin theelbowjoint angle

Thereis adirectway of determiningthe systemmatricesA(0), B(0), C, and D(0)

without first computing the system Markov parameters by using the observer Markov

parameters in the spline varying observer canonical state space model form. In this

similarity transformation, the time varying state space model is derived quickly for

control system design. There is no need for induction which unnecessarily increases

control design development time.

The four advantages in using the SVO controller where the spline

approximates the system model, observer, and controller gain are listed below:

function

(1) The spline function approximation is simply connected, thus the SVO

controller is more continuous than traditional gain scheduled controllers

when implemented on a time varying plant.

(2) The SVO controller is easier for real time implementations in storage and

computational effort when compared to traditional gain scheduled

compensators.
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(3) Wheresystemidentificationisrequired,thesplinefunctionrequiresfewer

experiments.Namely four experimentsarerequiredto identify the four

polynomialsin eachof thenonzeroelementsin thecontroller.

(4) Startuptransientsarereduced.Whentheestimatoris determiningthestate

at all times during the maneuver,initial estimatortransientscan be

eliminated.

In theprocessof developingtheSVOcontroller,anunderstandingof the physicsof a

two-link modelof aflexiblemanipulatorprovidedusefulinsightsto thetenuoustaskof

developinga high performancenonlinearcontroller. Whenusedalone, high fidelity

mathematicalmodelsobfuscatethecontrolsystemdesignerwhile tacklingtheproblem

of nonlinearkinematics. High fidelity modelscan however, accuratelypredict the

performanceof complexsystemssuchastheSRMS(Gray,C., et al., 1985). While a

highfidelity simulatoris usefulto testandfine tunea low ordercontrollerprior to real

time implementation,fundamentaldynamicsmust be identified and utilized for low

ordercontrolsystemdevelopment.Forexample,it is shownthat theuseof collocated

actuatorsensorpairs (on the high fidelity simulator)does not appreciablyaffect the

dampinglevelswhencomparedto anaccelerometersensor.

Thetwolink modelwasusefulin:

• Observingthebehaviorof thenon-minimumphasezeroeswhen disparate

baseboundaryconditionsareapplied.

• Identifying the predominanceof the fundamentalmodein the open loop

performanceof theslewingmanipulator.

• Determiningtheseparationin frequencybetweensuccessivemodes.

• Understandingtherelativemeritsof thevariouscompensatorsunderstudy.
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Theseconclusionsarehighlightedin thefollowingparagraphs.

Transformingtheopenloopdynamicsintomodalform highlightsthedominancein the

open loop responseof the fundamentalmode. For example, the inf'mity norm

amplituderatioof the1stversusthe2ndmodeis 40:1,andtheinfinity normratioof the

1st versusthe3rdmodeis 600:1for mediumpayloadweightclasses.For higherorder

modesthe infinity normratio is still larger. Theseinfinity norm ratiosareshown to

increasefurtherstill for heavierpayloadmasses.

In addition,thefrequencyseparationbetweenthefirst andsecondmodalfrequencyfor

themanipulatormodelincreasesasthe payloadmassis increased. If no payloadis

used, the2nd modal frequencyis 6 timesthe frequencyof the 1st mode. The 3rd

modalfrequencyis 18timesthefrequencyof the 1stmode,etc. If a payload100times

themassof the armis considered,the2nd modalfrequencyis 98 timesthe frequency

of the 1stmode.The3rdmodalfrequencyis 316timesthe frequencyof the 1stmode,

etc. It is worth noting that for the SRMSa payloadto arm massratio of 100 is

consideredasmallto mediumclassin termsof payloadmass.

A cost comparisonof the controllersunder study was summarized. All of the

compensatorsimprovedtheopenloop performanceover theworkspace. The overall

improvementin performanceis 7:1 for thefixed gaincompensator,3:1 for the fixed

robustcompensator,and20:1for theSVOcompensator.Although thestability margin

for the fixedgain controllerwas relativelylow (10° phasemargin), its performance

was abouttwo timesbetterthan the fixed robust compensator(40° phase margin).

Thus by increasing the robustness of the closed loop system, the fixed robust

compensator sacrificed on performance.
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As a future recommendation,it should be noted that if possible, one should use

collocated sensors and actuator pairs for controlling the flexible body modes. This

would facilitate the task of absorbing the flexible energy in the structure in a local

manner. For example, one can design the joints such that the gearbox in the joints of

the electromechanical structure allow the vibratory energy passing through the joint to

be observed. This is most readily accomplished by making the joint element more

compliant relative to the surrounding boom elements, or providing strain energy

sensors surrounding the joint in a collocated fashion. In the case of non-existent or

insufficient collocated sensor/actuator pairs, a dynamic model based controller is

required to improve dynamic performance. Present adaptive control techniques cannot

accommodate the non-collocated actuator problem when kinematic nonlinearities are

present.

Finally, the SVO controller was evaluated on the DRS nonlinear simulation. An

implementation of the SVO controller in the Shuttle software was identified. This

strategy allows use of all existing RMS health and safety monitoring functions. The

SVO controller developed for this system does not change or delay the trained operator

input command to move the arm, thus the "feel" of the arm has not been altered. The

SVO controller and logic were evaluated in a nonlinear simulation, which included the

effects of kinetic and kinematic nonlinear arm dynamics, computer time delays, and

existing Shuttle health and safety software functions. Based on the results, active

damping of the remote manipulator system can be accomplished using the existing joint

actuators and Shuttle computers and software. However, some additional feedback

sensors in the form of accelerometers located at the tip of the arm are required. The

accelerometer sensor location was identified which allowed the nonlinear compensator

to operate over large variations in the shoulder yaw, elbow pitch, and wrist roll, yaw

and pitch arm orientations. The astronaut/operators assessment of the compensator
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notedthattherewasa"significantincreasein damping." Loadsreductionfor the RMS

with thecompensatorwas also citedas an importantfactor severaltimes during the

sessions. The SVO controller demonstrated significant improvement over the present

arm performance: (1) Damping level was improved by a factor of 3; (2) Peak joint

torque was reduced by a factor of 2 following Shuttle thruster firings. The time

required to damp the tip oscillation to + 1 inch is decreased by a factor of 3. This

provides the added potential benefit of reducing the structural stress in the arm

following routine maneuvers involving either joint commands or Shuttle thruster

firings.
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Appendix A

Hyperstability and Positive Definite Systems - Definitions

Hyperstable

The system

Jc= Ax + Bu

y = Cx+ Du
(A.I)

is Hwerstable if for any u where

T

v <( O<t<T
_u (Or(Oat- _[llx(O)ll]supIlx(/)ll
0

(A.2)

the following inequality holds

IIx(t)ll- k(llx(0)ll+'_) (A.3)

where _ and k are positive constants.

Asymptotically Hyperstable

The system is Asymptotically Hyperstable

limx(t) = 0

if."

(A.4)

Also applies.

Positive Real (PR)

A rational transfer function matrix z(s) is Positive Real if:



1) z(s)has real elements

2) z(s) has no poles in Re[s] > 0, the poles on the jo9 axis are simple and the

associated residue matrix is non-negative definite Hermitian.

3) z(jco) + z'(jog) is non-negative definite Herrnitian.

where z ° implies complex conjugate of z

Also

If H(s) = M(s) / N(s) is a Positive Real (PR) Transfer function, then:

1) The order of M(s) equals the order of N(s) + 1.

2) 1 / H(s) is positive real.

3) M(s) and N(s) have real coefficients.

4) M(s) and N(s) satisfy the Hurwitz criterion.

5) M(s) and N(s) have zeroes with negative real parts.

Note: It can also be shown that PR matrices have no transmission zeros or

poles in the open right-half of the complex plane, and that the poles on the

imaginary axis are simple and have non-negative definite residues (Anderson,

1967).

Strictly Positive Real (SPR)

For a linear transfer function z(s):

1) If z(s) is Positive Real ¢:, it is hyperstable.

2) if z(s) is Strictly Positive Real. ¢:_ it is asymptotically hyperstable.
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Kalman-Yacubovich Lemma

The transfer function

H(s) = D + C(sI - A) -_ B (A.5)

is Strictly Positive Real if there exists a symmetric positive definite matrix P and a

matrix K and L such that for any positive definite Q,

Arp + PA = -Q (A.6)
Brp + KTL r = C

If D=0, then H(s) is Strictly Positive Real if

A r p + PA = -Q

Brp = C
(A.7)

Passive

If a system k = Ax has a negative definite dynamic matrix ( A- < 0 or equivalently

A + A r < 0) the system is passive. Where A = T-IAT.

Note: Geometrically, ._+_-T <0 means:/(x,Ax)_(90°,270°). Thus x(t)rx(t)

decreases as t --->oo since the component of ._ projected onto x is in a direction

opposite to x. See Figure A. 1.

Figure A. 1 Geometric Interpretation of 7, + _-r < 0
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