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We apologize for the long delay of this final report. Our records were confused

and we mistakenly believed that a final report had been submitted previously.

The original grant proposal was for 2 to 3 years and covered pilot work and

several studies. The scale of this work was necessarily narrowed since the already tight

budget was cut in half. 1 However, we completed a good deal of pilot work and developed

the eye-movement software required to complete the research. In addition, we carried out

several studies that focused on expert-novice differences in the acquisition and

organization of skill, with a focus on how increasingly complex strategies utilize

incorporate visual look-ahead to calibrate action. The various completed components,

beyond the required pilot work, are described below:

. Software for collecting, calibrating, and scoring eye-movements was refined and

updated. We developed some new algorithms for analyzing corneal-reflection eye

movement data that detect the location of saccadic eye movements in space and time.

We also developed a new user interface for editing and correcting automatically-

scored data that provides the user with multiple views of the data. The interface was

successful in speeding the time needed to score data and in improving overall accuracy

of the final product. Our software is currently being used at several university

research sites. We have provided the software free of charge but have not provided

any user support.

. We carried out and analyzed two full-scale studies on how strategically organized

action differs in experts and novices. The work examined how experts use foveal and

peripheral vision to acquire information about upcoming environmental circumstances

in order to plan future action accordingly. We found that differences in the

correspondences between motor actions and eye movements reflected the difference

between how experts and novices take the future into account when organizing

strategic action. The main findings from these studies were published in a book I co-

edited (University of Chicago Press) that focused on future-oriented processes from

Ill addilion, the studies in air traffic control were not carried out since we were told that this area of

research was not being funded.
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behavioral and neuropsychological perspectives. The relevant references are listed

below (references marked with an * are included in this report):

*Roberts, R. J., Jr., & Ondrejko, M. (1994). Perception, action, and skill:

Looking ahead to meet the present. In M. M. Haith, J. B. Benson, R. J.

Roberts, Jr., & B. F. Pennington (Eds.). The development of future-

oriented processes. (pp. 87-117) Chicago: University of Chicago Press.

*Haith, M. H., Benson, J. B., Roberts, R. J., Jr. & Pennington, B. F. (1994).

Introduction. In M. M. Haith, J. B. Benson, R. J. Roberts, Jr., & B. F.

Pennington (Eds.). The development of future-oriented processes. (pp. 87-

117) Chicago: University of Chicago Press.

Haith, M. H., Benson, J. B., Roberts, R. J., Jr. & Pennington, B. F. (1994)..). The

development of future-oriented processes. Chicago: University of Chicago

Press.

. The software and that ideas that came out of the funded studies (described above) had

a direct impact on my later work into the competitive interactions between working

memory, inhibition, and attentional processes. Below was our first piece of work in

this area.

*Roberts, R. J., Jr., Hager, L., & Heron, C. (1994). Prefrontal cognitive processes:

Working memory and inhibition in the antisaccade task, Journal of

Experimental Psychology: General, 123,374-393.



Introduction

Marshall M. Haith, Janette B. Benson,

Ralph J. Roberts Jr., and Bruce F. Pennington

This book was conceived for a very specific purpose--to generate an

interest in how people, especially children, come to organize their behav-

ior around the future and how they develop an understanding of the
future. Our motivation was to launch systematic inquiry into this fascinat-

ing domain by raising sensitivity to the general issues, asking some im-

portant questions, and presenting the most relevant methodologies and

research programs available. At the same time, the papers in this book

can only' be considered an initial foray; emphasis on this topic is so new
that one could hardly expect more. That fact alone is curious.

Our society is obsessed _Sth the future. The United States govern-

ment, for example, is consumed with predicting the militarry actions of

other countries, population trends and economic activity in our own

country, the impact of changes in the interest rate, educational and

health programs, and so on. Corporations devote a great deal of energy."

to developing strategic plans, mission and goals statements, and imple-
mentation strategies for ensuring competitive positioning. All of these

institutional efforts reflect a strong orientation to the future. A consider-

ation of the psychological world of indixdduals reveals little difference.

We are constantly, thinking through such issues as what to wear today',

whom we should invite for hmeh, how best to organize a presentation,

and which investment strategy will _eld the best return for retirement.
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In a recent stud):, yonng women were asked how much time they spent
thinking about the past, the present, a_d the future; the), reported

spending must of their time thinking about the future and the least time

thinking about the past (Jason, Schade, Furo, tteiehler, & Briekman,

1989). More formal documentation comes fiom mothers' reports of what

they talk about to their off'spring, as described by Benson in this vohune.
But even for the individual, a preoccupation with the future extends

heyond the exclusively personal. Witness the popularit)., of science fiction
and such "fitture world" attractions as Epcot Center near Orlando, Flor-

ida. Of course there are many examples for which personal issues are

the driving force, as when some of us appeal to fortune-tellers, astrolo-

gists, and biorhythm charts for a hint about what awaits l_lS.

In the light of all of these indications of how much mental time and

eflbrt we devote to the future, it is surprising that no systematic concep-
tual framework exists for talking about psychological representations of

the future, nor is there a critical mass of literature for developing such

a conception. The situation is even worse when one attempts to approach

developmental questions about this domain. Why?

Historians _qll differ in the sto_' they tell. We have three hypotheses

to offer, and they are strongly influenced by the enormous amount of

attention that has been paid to memory--the processes and content that
deal with the past--in comparison _ith considerably less concern for

the proeesses and content that deal with the fi_ture. The field of memory

enjoys a sophisticated taxonomy, a treasure of methods, and no dearth

of theories and concepts. Not so for the fi_ture.

The first hypothesis concerns psyehology's favoritism for the concrete

and the speci6ab, le. This claim is not difficult to document through the

phases of operationalism and behaviorism in the field. Notwithstanding
the enlightenment of current researchers for whom mental constructs

are employed with ease, we are all products of our intellectual histoo,.

Memoo' fits these historical dispositions more easily than do future-

oriented processes. The past is certain, eonerete, and specifiable. It is

not difficult for us to think of changes in the brain, be they neural or
biochemical, by which experience can be represented. But the fiiture is

uncertain, ephemeral, and nonexistent. (It hasn't happened yet!) How

do we talk about a nonevent? How can we think about brain processes

that represent events that have not yet oceurred?

A second hypothesis concerns the discomfort of scientists, in general,

in dealing with reverse causality--the dreaded problem of teleology.

The fiiture seems to work backward in time, controlling what we do in

the present. How can something that will occur later affect what is
happening now? We have no good way of dealing with that problem

except to invoke explanations, based on nervous system organization,



Introduction / 3

that "make it appear" that the fnture is controlling current behavior

when ill fact it is not. Examples include "'purposeful" web spinning of
spiders to trap insects, the dance of the honey bee to connnunieate the
source of food to members of the hive, and tile Inuial of pifion nuts lly

the Sierra Nevada nuto'ackcr bird in late fall to stave off hunger in tile

forthcoming winter. We shrug off these examples in terms of "in tile

gene" controls or adaptive tropisms. Such explanations are less comfort-

able when we try' to accom,nodate the behavior of humans who do ve_

diverse and sometimes brand-new things that are oriented toward future

purpose. Here we tnrn to explanations that lean on mental representa-
tions of the future that control current behavior, but no one would claim

that we have anything close to a satisfactoL'y" scheme to account for any

kind of fnture-directed activi_, that is even mildly complex.

A third h)l_othesis is that psychologists have not seen future-oriented

processes as an integrated set in tile same way that past-oriented, or

memory, processes have been seen to be interrelated. By using the

term "future-oriented processes" we mean to embrace such concepts

as intentionally', goal setting, prediction, set, expectation, preparation,
anticipation, planning, and feedforward computation. In fact such topics

have been researched, even developmentally, but in isolation. For exam-

ple, Piaget devoted considerable discussion to the development of
means-ends relations in early childhood, which involves some notion of

a goal. Tile cognitive revolution opened the horizons of psychologists by'

demonstrating the value of mental constructs for conceptualizing human

thought; many of these constructs are relevant to our topic. And planning

in children has received some attention. These examples and the very'

fact that future orientation is so immanent in behavior and thought,
as we argued earlier, imply that psychologists have certainly studied

phenomena that involve future-oriented processes. However, no attempt

has been made to consider these processes as manageable under the

same umbrella, as has been the case for "past-oriented processes," gen-
erally treated under the rubric of memory. A good analogy, to tile current

state of affairs is the history of the relation hetween learning and mem-

ory. Memmy is clearly related to learning, but research on learning

continued apace for many years without deep consideration of memory.

The focus of investigators' attention on memol)' as an interesting process

per se had revolutionary effects on the study of human cognition. In the
same way that refocusing attention on past-or/ented processes (memory')

produced immense advances in our knowledge, it mav be that turning

the spotlight on future-oriented processes will also yield rich dividends.

At the invitation of Robert Erode in 1988, several of the chapter

authors organized as an interest area under the Nehvork on Early' Transi-

tions that he headed within the Heahh Science Program of the MacAr-
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tlmr Foundation. We called ourseh'es the Interest Area on tile Develop-

ment of Future-Oriented Processes and met approximately twice each

year to discuss various issues raised lw our mandate and to plan research.
A key task for us was to examine wheilwr the concepts we have deserilwd

above do indeed form a meaningful set. Would the beginnings of a

conceptual formulation emerge that eouhl satisfactorily integrate these

various concepts, and would research in the separate areas under consid-

eration be enriched by this broader perspective? Near the end of the five
years that we met, in'Alml 1992, we held a conference in Breekenridge,

Colorado, to gather together ourselves and relevant outside people to
focus on the topic of the development of future-oriented processes per

se. The enthusiasm and encouragement of this group reinforced our

sense that we were on a productive path. This book is a product of that

conference. The experiment has been too hrief to decide whether the

domain of "fldure-oriented processes" will survive as a viable and pro-

ductive eateg{>U for study, but the early indieations are that it is a worthy

endeavor to pursue.
An issue that monopolized much of our discussion was the role o["

memory in filture-odented processes. An extreme view was that future

orientation is just memory replayed. Does one's representation of the

thture siinply represent tile past pushed forward? In some cases, the

answer is probably yes, but in others it most assuredly is no. Some

conceptions of the thture can be seen as projections of a repeating past

or of past trends, but others seem to be explainable more in terms of

construction from analog)' and from knowledge.

The fimtre as projection of a repeating past. Examples that fit this

portrayal are easy to generate. \Ve hear a dripping faucet, and soon we
form an expectation that tile next drip will occur at a particular moment.

More complex examples among subhuman animals that might fit this

eategou, are nicely documented in Gallistel's recent book (1990). Ani-

mals come to anticipate feeding times that are tied to the 24-hour diurnal

cycle; one could aeconnt for this behavior by arguing that animals coiYle
to tbrecast that tile past will serve as a guide to the fiLture and form

expectations on this basis. This t)'pe of fl_tme orientation seems to be at

play in the chapters bv ftaith and Rezniek. Even though ttaith's chapter
explores infant expectations in the very earl), months based on var?'ing

roles and cues, basically the baby's expectations for what comes next

depend on a repeat ofwimt came t;etbre. Rezniek, stud._ing older int:ants,

shows that such expectations can become strong enough to result in

antieipato O, aetivit), that overcomes infants' very strong tendency, to re-
spond to the here and now. These may be the very earliest forms o(

future-oriented processes, tied to fairly concrete recent experience.
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One can think of far more sophisticated examples of related processes.

For example, predictions (often erroneons) of earthquakes, volcanic

eruptions, and solar flares often depend on a cvelicitv that has been
discovered from past records, l tere the bounda:_ of tl'fis category gets

a lilt tilzzv, because "memnrv" is often not personal but cultural. Even

so, this is hardh' the whole stoD,.

1J,: fimuv as im{jection of past trend.s. The fimnulations of the filture

by human adults most certainly go beyond simplt' replays of past experi-
ence. Consider the focus of several scientific disciplines that model a

future that is not a replay of the past. Rather, they use trends in the past
to project fi)rward. Examples include predictions _)t"futme populations in

various countries, the spread of AIDS, the effects of tropical deforesta-
tion and the decline in biodiversity, and what automobiles _411 look like

in the fllture. The events in question have never happened before; they

are an extrapolation of what is happening now and the trend line leading
to the current state of affairs. Predictions of whether the universe u611

expand {brever or collapse for another big bang might also fit this rubric.

The fimtre as constntctivn fi'om analogy. At some age children begin

to represent their own filture, but it seems highl,v unlikely that such a

representation is based on a trend line. And there can be no question
whether it is based on memory. Rather, a child may identi_' with the

same-sex parent or older ,v°mlgsters" and think abont the personal self
at a comparable later stage o[ life. Ironically, such analogizing may lead

some children to place little faith in any filtme at all--for example,

inner-city children who live in ghettos where violence and death are
routine ('Kotlomtz, 1991). Here the construction of a future depends on

an analog)" or a comparison with others. Another example is planning

for one's death. Most of us believe our personal death is not an event
that has oecm'red before, ttather, we plan for death based upon what

we know has happened to others and what we see around us.

The fimtre as construction from knowledge. One of the most sophisti-

cated organizations of the t\lture seems to involve events that are com-

pletely novel and do not depend in any direct way on historical trends.
Consider the state of aftairs in 1961 when John" Kennedy announced

that we would put humans on the moon by the end of the decade.

Scientists planned and worked toward this goal tbr years, employing

knowledge and experimentation to accomplish a task that had never

been attempted before and did not depend in any meaningfnl way on a

projection of historical trends. Other examples iilclude preparation for

the emergency t)rogram to repair the Hubble telescope, the attempts by

biochemists to achieve rational drag design, or |i_r many of us, the plan

to test new hypotheses in our laboratories. And we need not limit
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ourselves to science. Here we are talking about imagination, equally
the province of authors, painters, sculptors, and composers--even tile

sentence-generating child.

These categories prompt speculation both about phylogeny and about
development. Whereas the past is certain and concrete, the fltture is

abstract and uncertain--but in dcg,ees, as represented by these catego-

ries. It is easy for us to imagine that the lowest-level categoLy is applica-
ble to the cognition and actions of snl_hmnan animals and infants, but

few of us would make such a claim for the final eategoly. Perhaps here

we have the beginning of a sketch of the stages that children go through
in their development of filture-oriented processes. Separately, is it

uniquely human to imagine what has never happened before? The filturc

at this level is based on knowledge about what can happen--perhaps on
how knowledge can be created--not on memory.

At the same time that we can differentiate fiLture-oriented processes
(FOPs) from memory.,, we wonder if the conceptual and empirical ad-

vances in this field can provide a springboard for conceptualizing future-

oriented processes. For example, is it worthwhile to distinguish short-,

intermediate-, and long-term FOPs? Can we distinguish between im-
plicit and explicit FOPs or between central and incidental FOPs? Are

some FOPs semantic and others episodic? The answer to at least some

of these questions appears to be yes, which suggests that n_emorial dis-

tinctions reflect something meaningfld not only about memory but about
the general operation of the human mind. Thus the pursuit of these

ideas may enrich not only the domain of FOPs but also that of memory
and of cognition in general.

What we try to establish here is a foundation and provocation for the

study of filture-oriented processes. The reader x_511find amazing diver-

si_, tied together by' common problems and concepts. The chapters by

Hofsten and by' Roberts and Ondrejko illustrate how pervasive is the

need for prospective processes even in perceptually driven motor control
and how one must represent the future state of things for efficient,

dynamic skilled action. Rumbangh and his coauthors demonstrate that

these processes are not the exclusive privilege of the human species.

Bidell and Fischer, and also Klahr, car D" these ideas forward into

problem-solving contexts where children have time for thought rather
than having to respond to ever-changing events.

Working memory and the role that the prefrontal area of the brain

plays in executive processes are fields of strong interest to current re-

searchers. However, there has been little discussion of how these topics
relate to future-oriented processes. In fact the use of the term "memory"

in the phrase "working memory" seems to obscure just how filture ori-

ented executive processes are. Nevertheless, both Wcinbcrger and his
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colleagues and Pennington address the role of working memory and the

prefrontal area in filture-oriented activi_, ill both children and adults.

Tile remaining chapters consider the development of filture orienta-

tion in a social and linguistic context. While Bates and her coauthors

consider the role of language ill communicating and representing the
future relative to the present and the past, Trabasso and Stein illustrate
how inferences about the future orientation of others are crucial to a

child's understanding of their behavior.

Finally,, Bogoff and her colleagues, Benson, and Stein and Trabasso

move beyond the laboratory to discuss filture-oriented processes in the

eveo,day social world of children.

The book closes with all epilogue by' Robert Erode, who congratulates

us on opening the door while showing us how far there is to travel.
We close this section by' expressing our deep gratitude to the MaeAr-

thur Foundation for flmding our meetings and research, and also to

Robert Erode for taking a chance on something new and different. It

goes without saying that the trip we undertook could not have begun

without the exploratory spirit of both these sources of inspiration.

Finally,, we would like to acknowledge the Colorado Lottery for help-

ing us to decide on the order of the editors for this book (with the

exception of the first editor). Also, we appreciate several sources of
support that aided the preparation of this book: National Institute of
Mental Health Research Scientist Award MH00367 and National Insti-

tutes of Health research grant HD20026 to Haith, a MacArthur Founda-

tion grant to Benson, National Science Foundation grant BNS86108043

and National Aeronautics and Space Administration grant R91091 to

Boberts, and NIMH Research Scientist Development Award MH00419,

NIMH research grants MH38870 and MH45916, and National Institutes

of Child Health and Human Development center grant HD27802 to

Pennington.
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Chapter Four

Perception, Action, and
Looking Ahead to Meet the Future

Skill

Ralph J. Roberts Jr. and Michael Ondrejko

In this chapter we explore the perceptual and cognitive processes that

are involved in the performance of improvisational action skills. We first

discuss an important characteristic of many real-world skills--they are

adapted quickly and precisely to a varied and often changing environ-

ment. Flexibility and precision can be difficult to achieve jointly, espe-

cially under tight time constraints. We argue that future-oriented pro-

cesses are a key component of successful action. Yet skills that are

improvisational cannot be entirely scripted in advance but must be orga-

nized on line. We suggest that performers actively seek specific percep-

tual information to monitor ongoing action and to plan upcoming action.

To examine these ideas, we present research that utilizes video games

and eye-movement recordings to explore the real-time interactions be-

tween perceptual selection and upcoming task actions in performers

This research was supported by National Science Foundation grant BNS8618043 and

National Aeronautics and Space Administration grant NAG2-737 to Ralph J. Roberts Jr.
We would like to thank Scott Wiebke, Laura Valaer, and Brandon Matthias, who helped

in the collection and analysis of the data. Thanks are also due to Naomi Wentworth, Claes
von ltofsten, Bennett Bertenthal, and the volume editors for providing critical commentar-

ies on an earlier draft of the chapter.
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with van4ng amomlts of skill. The findings reveal the charactelistics

of well-integrated perception-action couplings and suggest important

changes in filturc-m-iented processing with the acquisition of exper-

tise.

FLEXIBLE PRECISION IN SKILL

Our ability to learn and perform complex action skills is tndv rcnaarkablc.

From crawling and catching balls to d,iving and improvising jazz, we

acquire a wide valietv of skills whose extraordinaL'y complexit?' is often

obscured by the seeming effortlessness of performance. Yet successful

action nmst fit many simnltaneons constraints defined by the parameters

of the world we act in, the physical construction of our bodies, the

processing characteristics of our nervous systems, and the goals that

mol)ilize our actions (Bernstein, 1967/1984; Kugler, Kelso, & Turvey,

1980). Skilled action can be x-iewed as a solution or set of solutions to

the problems of meeting these many simultaneous constraints. Although

the difficult), of finding such solutions is mostly transparent once we

develop expertise, it is far more apparent to the novice. As an example,

consider a common predicament the novice snow skier faces when recog-

nizing that the only available path to the bottom of the mountain is an

expert-level run:

You're still waiting for those butterflies in your stomach to stop tint-

tering .... You've been standing here at the'lip of this incredible mogul

field (2- to 4-foot bumps) . . . for five minutes and a]ready it seems like

an eternity.'. The bumps below you are big. big and mean, choppy and

steep.., not at all inviting. But they' nmst he so to all those other skiers,

creatures from another planet maybe, who smoothly slip by' you over the

lip and disappear do_l the fall line, snaking through those bumps . . .

legs oscillating like robber pistons, (tapper) bodies motionless, poles deftly

picking out a line where all you can see is the possibility., of linked disas-

ters .... You don't belong up here and you know it. (Tejada-Flores, 1986,

p. 125)

Skiing down such a steep, bumpy slope without injuring oneself is

unquestionably a complex skill. What makes this sort of skill so remark-

able is that performers maintain a high degree of precision in the timing

and sequencing of action while continually adapting to a varied and often

changing environment. In skiing such a slope, an expert makes hvo to

three turns a second, and each tuna is composed of several component

actions, including knee flexing, lower body turning, weight shifting, arm

reaching, and pole positioning. Successfid action requires great precision
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in the timing of these actions as well as tile specific way tile actions are

executed. Small errors can result in quick disaster. But precision is not

enough: action must also be continually adapted to environmental partic-
ulars. To carve a path do_a the slope, the skier must adapt to the
position and size of tire ,noguls, the varied surface conditions on each

mogul, and obstacles such as bare spots and other skiers. Flexibility is a
necessity since no two ski rims are identical; each offers a somewhat

different set of challenges.

Thus skiing, like many complex action skills, requires that action occur

trader tight time pressure and be both precise in its execution and

adapted to varied environmental particulars. This is an extrao,'dinary

accomplishlnent. In any behaving system, flexibility and precision can

easily be at odds with one another and difficult to achieve jointly. Efforts

at optimizing one often degrade the other. For example, it is relatively
easy nowadays to design robots that carry out actions with single millisec-

ond accuracy when those actions are scripted and not based on varied

environmental ciremnstances. In such cases, action can be programmed

in advance and is relatively inflexible. But if the robot needs to adapt its

behavior to changing and somewhat unpredictable circumstances, then

it is very difficult to achieve quickly organized and precisely timed behav-

ior (cf. Anderson, 1988). It is much easier to be flexible if the system

can evaluate the present context and construe a response without regard
to timing.

A central q_,estion for understanding skilled action, then, concerns

how flexibility and precision are achieved jointlv in the multitude of
action skills learned in a lifetime. One part of the answer relates to the

degrees of freedom problem (Bernstein, 1967/1984). Actors can adapt
more quickly and effectively if the many degrees of freedom in action

are "compressed" so that the controlled parameters are few. Action theo-

fists have discussed how reductions in the degrees of fieedom may result
from a variety of sources, including fimctional muscle s_qlergies, proper-

ties of neural computations, and the dynamics inherent in the physical
construction of our bodies (for recent reviews see Rosenbamn, 1991;

Turvey, 1990). In this chapter we focus on the prospective character of

skilled action as a means for understanding flexible precision. In particu-
lar we are interested in how perception provides information to allow

an actor to prepare for a specific future. We suggest that actors must

obtain relevant infbrmation at particular moments ira action and must

also know how to use the information to organize upcoming action.

Performers' actions, then, need not follow predefined scripts or react to
immediate contexts: they can be based on assessments of future condi-

tions construed from an ongoing interaction with the environment.
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PROSPECTIVE CONTROL AND THE PERCEPTION-ACTION

CYCLE

The insight that some form of prospective control is involved in produc-

ing skilled action has been recognized at least since Bryan and Harter
(1899), who studied telegraph operators. These researchers concluded

that as operators become more skilled, the units of action become in-

creasingly larger hierarchically organized sequences--fi'om letters to
words to common phrases. Predictable sequential interdependencies are

profitably used so that the future becomes buih in, so to speak, in the

organization of the units. A half century later, several researchels argued

more directly" for the importance of prospective control. Lashley (1951)
reasoned that skilled behaviors such as speech, piano playing, and _ping

occur too quickly for one action to serve as a stimulus for the next;

sequences of action must be planned in advance. Miller, Galanter, and
Pribram (1960) went further to describe a theoretical framework for

specif?ing how plans and goals organize even'day beha_dor. Even lower-
level motor control, Bernstein (1967/1984) argued, involves anticipation,

particularly when "during the course of any given segment of a move-

ment, retrospective control becomes practically impossible" (p. 368).
These and other researchers (e.g., Piaget & Inhelder, 1969) pointed the

way toward several decades of subsequent research and theory aimed at

understanding the cognitive constructs that underlie prospective control,

such as schemas, plans, scripts, and motor programs, and the associated

feed-forward control processes. This work has shown how advance speci-

fication of future action makes precision and speed possible, since action
need not be reactive to either prior action or environmental events (also
see Haith, this volume; Hofsten, this volume).

Despite this progress, it is still somewhat of a myster?' how skilled

actors can quickly adapt to constantly changing and often somewhat

unexpected environmental circumstances. Paralleling the engineer's ef-

forts at programming skilled action in the robot, the work on the pro-

spective control of action focuses on sequential behavior that tends to

be scripted in advance (or relatively simple), but not continuously

adapted to a varied or changing environment. As described earlier, pre-

specification of the sequencing and timing of action is possible when
environmental circumstances are irrelevant or perfectly predictable. Yet

this is rarely tn_e--most action skills are more improvisational. Simply

put, cognitive theorists have tended to neglect the environment, except

as it provides stimuli for a response or after-the-fact feedback. In particu-
lar, there has been comparatively little work on the perceptual processes
that enable the skilled actor to use environmental information to control

action. The notable exception to this trend is the work of James Gibson
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(1966, 1979) and those influenced by his views (e.g., Hofsten, 1985; Lee,
1980; Reed, 1982; Turvey & Kugler, 1984; Warren, 1984).

Gibson (1966, 1979) and others (e.g., Turvey & Kugler, 1984) have

argued that prospective control is accomplished by the pickup or detec-

tion of i_formation that is available in the present optical structure, and

that this information unambignously specifies future states. The best

worked out example is the optical flow that accompanies self-motion or
the motion of an object as it approaches an observer. Ix-e (1980) has

shown that the inverse of the rate of dilation of an optic image specifies
time-to-contact, and can be used in a variety of skilled actions, from

slowing a car to stop at an intersection to timing the closing of one's
hand to catch a ball. Optical structure is not a stimulus for a response,

it is a continuous source of information for guiding ongoing activity.
This analysis not only places perception at the center of action, but

also highlights the idea that perception is action based. In addition,

it dramatically shifts how we think about the environment, from the

long-standing perspective that tile environment provides "'stimuli" to a

realization that there is a wealth of perceptual information available to

an observer interacting with the en_'ironment. In the context of skilled

action, it is our view that the actor must also know how to use perceptual

information to organize activity and must be selective in obtaining the
relevant information at the appropriate times.

The ability to utilize available perceptual information to organize up-
coming action often depends on an actor's knowledge. For example, the

state of a traffic light and its relevance for my actions as a driver ap-

proaching an intersection is directly related to my knowledge of traffic

lights and their role in controlling traffic. Similarly, my expectation that

the police will soon be monitoring my speed might be based on seeing

an oncoming motorist flash his or her headlights. I make an inference

about the meaning of the flashing lights based on my knowledge of how

motorists sometimes communicate with each other. Thus, perceptual
information for guiding future action can involve knowledge as well as
inference for its effective use.

The optic array typically offers a great deal of information, much

more than is relevant for a specific action or action sequence. Thus,

perceptual selection may be necessar3, ." to obtain appropriate information

at the appropriate times. As action unfolds, an actor's goals and subgoals

change, as does the information that is most relevant for accomplishing
those goals. The most important information may come from.different

places at different times. As an example, reconsider the expert skier

maneuvering down the mogul run. The closest mogul pro_ides informa-

tion about a turn in progress, adjacent moguls provide information about
possible upcoming turns, and skiers, trees, and rocks scattered farther
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down the mountain provide information about possible filture paths.

I)cpending on tile skier's cm'rent and upcoming goals (e.g., initiating a
turn, figuring out which path leads to a particular chairlift, finding a

companion in a crowd of skiers), different kinds of information are more
or less relevant. We expect that selection is active and knowledge based.

Thus we take the view that contexts of action provide a rich source of

perceptual information for determining and calibrating upcomiug action.
Some information directly specifies upcoming en_Sronmental events,
other information is usefid because a skilled actor can infer the relevance

of the information for future action. Pereeption is also selective in terms

of what is most important at any given moment, and what is most impor-

tant is partially determined by ihe changing goals and subgoals the actor
constructs as action unfolds.

This perspective on the interaction between action, cognition, and

perception is similar to the views espoused t7.,,,Ad)ib (1980, 1989) and
Neisser (1976) when describing the perceptual cycle. In the context of

skilled action, the actor's goals for upcoming action direct perceptual

selection. Information gathered, in turn, helps organize action planning

and modifies the unfolding goals and subgoals for action, which further

direct perceptual selection, and so on. Perceptual information is used

prospectively; as Arbib (1989, p. 26) notes: "Perception is oriented to-
ward tile fllture as much as the present--not only to interacting with
the environment in some instrumental way, but also to updating an

internal model of the world to be used to guide filture action."

Alt'hough this approach to the close interconnections between percep-
tion and action seems sensible, there are few well-developed method-

ological approaches readily available for studying such relations. The

perception-action cycle is more of a general h)1}othesis than an empiri-
cally established fact. Historically, perception and action have most often

t)e_Jn studied separately, and the two have evolved into somewhat differ-

ent disciplines. In addition, there are practical problems tbr stud?Sng the

kind of perception-action cycle described above. In an effort to maintain

experimental control, we normally develop tasks that are far less complex
than the real-world contexts they are designed to inform us about. Al-

though we eschew stimulus-response theories of learning and perfor-
mance, most of our experimental paradigms employ a stimulus-response

methodolog,'v: subjects perform individual trials where a response is
made to some stimulus. The interdependent cycling of perception and

action may not be evident or even neeessaG in such simplified settings.

Another problem concerns how to measure both perception and action

continuously in more realistic, complex settings.

These are problems we have been grappling with in our own research,
and in the rest of the chapter we describe an approach we have devel-
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oped for examining tile perception-action cycle. The approach uses spe-

cially designed video games as tile context of action and the spatiotempo-
ral patterning of eve movements as an indicator of perceptual selection.

CORRESPONDENCES BETWEEN EYE MOVEMENTS
AND SKILLED ACTION

Skilled behavior occurs ill environments that are often cluttered and

dynamic, and the sources of information about various aspects of the

environment also vat).' across place and time. Since we are able to extract

detailed visual information only fl'om the fovea, which occupies a rela-

tively small part of the visual field, we move our eyes to reposition the

fovea to those areas of the scene that are presumably most informative.

Thus in many situations eve movements can be a relatively straightfor-
ward indicator of perceptual selection (el. Loftus, 1983; Stark & Ellis,

1981). In such cases one would expect that the pattern of fixation loca-

tions and the timing of saccadic movements should correspond in some

regular t:ashion with the flow of action, and that the form of this corm-

spondence should reveal the ways skilled performers gather visual infor-

mation to anticipate future states and plan action accordingly.

There is ve D, little research that examines eye movements in the

context of ongoing action (although see Bahill & LaB.itz, 1984; Shapiro
& Raymond, 1989). A notable exception to this trend is the work on

reaching and pointing, whe,'e researchers have examined correspon-

dences between hand, head, and eye movements (e.g., Biguer,
Jeannerod, & Prablanc, 1982; Carnahan & Marteniuk, 1991; Gielen, Van

den Heuvel, & Van Gisbergen, 1984). This work indicates that in point-

ing and reaching tasks, movements of the eye and hand are tightly cou-

pled in time, with the eve beginning slightly before (60-100 ms) or close

to the same time as the hand and arriving at the target consistently
about "200 ms before the hand arrives (Angel, Alston, & Garland, 1970;

Camahan & Marteniuk, 1991). Early arrival of the eye is viewed as

anticipatory.', since it allows for late corrective feedback for the hand

moveinent. Several models have been constructed to explain this tight

coupling between eye movements and arm movements, yet it is entirely

unclear whether the correspondences found in these relatively simple
and discrete pointing tasks are representative of what occurs in more

complex contexts, where perception and action are continuous and envi-

ronments are cluttered and nonstatic. A goal for our work was to examine

such correspondences in a more complex, less constrained setting as a

starting point for exploring the real-time characteristics of the hypotheti-
cal perception-action cycle.
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SUMMARY AND OVERVIEW OF THE VIDEO GAME STUDY

The perspective o13 perception and action just reviewed can be summa-

rized as follows, and it acts as a set of guiding assmnptions for our

work: Skilled action is both flexible and precise in how it is organized in

accordance vdth a varied and changing environment. Action sequences

cannot be primarily' reactive to environmental particulars because re-

spouses would often be too late--some form of prospective control is

necessary. Yet action sequences cannot be planned too far in advance,

since not all relevant contextual information for planning action can be

known in advance. The optic array provides a wealth of information

about current and upcoming conditions, and this information can be

used for adapting action to an upcoming environment. To use perceptual

information effectively, the skilled performer mnst know what informa-

tion is relevant at what points in time during the flow of action. Just as

action must often be anticipatou', so mnst perceptual information gather-

ing that subserves that action. Thus action and perception interact in a

continual cycle, with the goals of action influencing perceptual selection

and the information gained influencing subsequent action planning.

The primary purpose of our research was to examine the perception-

action cycle in a reasonably complex task in which behavior was continu-

ous and relatively unconstrained. We examined the spatiotemporal char-

acteristics of eye movements as an index of perceptual selection and the

sequence of task actions as an index of the actor's unfolding action goals.

Since there is little pre_5ous work that examines eye movements in the

context of ongoing skilled action, our initial work was necessarily explor-

atory and descriptive. The research focused on the following questions:

• ttow is perceptual selection, as evidenced by' eye movements, related to

ongoing action? In particular, to what degree do the locations of foveal

regard and the timing of changes in looking location correspond to what

the actor is trying to accomplish?

• If regular correspondences occur, what do they reveal about how visual

information is utilized? To what degree does perceptual selection antici-

pate action? Is there evidence that performers actively look ahead to

gather perceptual information to select and calibrate fi_ture action?

• Are there differences in perception-action correspondences as a function

of expertise? And if so, what do such differences suggest about what is

acquired with the acquisition of skill? For example, do novices show a less
consistent relation between perception and action? Are they less able

than more experienced players to use visual infonnation to plan action

appropriately?

To examine these questions, we used a specially designed video game

in conjunction with an infrared eye-movement recording system (Rob-

erts, Brown, Wiebke, & Haith, 1991). We used the _4deo game because,
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althongh it is a somewhat constrained perception-action context, it .khares

a nunaber of important similarities with other complex pe,ception-action
skills: expertise cannot be acquired quickly and requires both precision

in the timing and sequencing of actions and flexibili_, in the face of a
continually changing context.

METHOD

Experimental Setup

The task was presented to subjects in an arcade style video game cabinet
(see Figure 4.1). Subjects sat on a stool in front of the cabinet and rested

their heads on a chin-forehead support. Subjects' hands rested on a
panel that contained three buttons, two for the left hand (middle and

index fin,;ers_ , and one for the right hand (index finger). Subjects viewed
a half-silvered mirror tilted 60 ° from horizontal. The task monitor was a

19-in. (48.3 era) x-y vector monito," with a 1,024 × 768 resolution that

was positioned under the mi,'ror and angled 20 ° from the horizontal.

With this arrangement, the monitor appeared to be directly in front of

the subject's face at a distance of 66 cm; 1 cm on the game monitor
equaled 0.87 ° of visual angle. An infrared light and an infrared-sensitive

video camera were positioned behind the mirror and aimed at the sub-
ject's left eye.

The video output fi'om the camera was fed to an atttomatic eye tracker
that processed the _qdeo signal to find the locations of the center of the

pupil and the center of the corneal reflection of the infrared light. The

difference between these values relates monotonically to looking location
(with an accuracy of approximately l/_,oof visual angle). These data ,,','ere

output to a computer that sampled the data at 60 Hz. The computer

also received input from the video game's processor and collected, s,,aa-
chronouslv with the eye-movement data, a complete digital record of

the video game's display and the button presses. (For a more complete
description of the hardware and software, see Roberts et al., 1991.)

Video Game Task

The task was based on a commercially available game called Asteroids

(see Figure 4.2). The subject controiled the actions of the "ship," a

triangle displayed at the screen center (0.7 cm at the base, 1.2 cm high).

The two left-hand buttons controlled the ship's orientation by rotating

it counterclockx_4se or clockwise. As long as a turn button was pressed,

the ship rotated around its center axis at a rate of 250°/s. The ship always
remained at the center of the screen. A "shot" could be released from

the nose of the ship when the fire button was pressed. A shot moved
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Figure 4.1 A schematic diagram of the data collection system (adapted from
B,oberts, Brox_ll, Wiebke, & Haith, 1991). The cutaway of the video game

booth shows a subject viewing a reflection of the task monitor on a half-
silvered screen. Behind the one-way mirror an infrared-sensitive video camera
focuses on the subject's left eye, wiueh is illuminated t)v a near-infrared light.

The video signal from the camera is t_"d to an automatic eve tracker that out-
puts x-y locations of the centers of the pupil and corneal reflection of the infra-
red light to an 80386 personal computer. The 80:386 PC also collects synchro-
nous perfonnance data from the video game central processing unit.

across the screen in a straight line at 17.7 em/s and disappeared when

it intercepted a target or traversed the length of the screen. Potential

targets were moving "asteroids" (jagged circles with a 0.5 cm radius),
that also moved in a straight line across the screen at constant velocities.

When an asteroid moved off the edge of the screen, it "wrapped around"

to immediately reenter on the opposite edge. Each asteroid's velocity

and trajecto D' angle were determined randomly within a range of values.

Thousands of combinations were possible.

The subject's task was to avoid letting an asteroid intercept the ship
and to sttcccssfidly shoot as many asteroids as possible. To discourage

rapid "blind" shooting, we programmed the task so that only one shot
could be displayed on the screen at a time--pushing the fire button
had no effect until the previous shot either intercepted an asteroid or

disappeared from the screen. When a shot intercepted an asteroid, an

explosion sequence was displayed and the asteroid disappeared. A re-

placement asteroid was immediately generated on the edge of the
screen, with a new velocity and trajeeto_'. This arrangement ensured

that the subject received feedback on the success of each shot and that
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Figure 4.9 A representation of the video game task. The circles represent
the asteroids, and the triangle represents the ship. The lines are not displayed
on the screen but are sho_al here to represent tile motions of tile objects. The
circles at the bottom of the figure show the positions of the buttons that con-
trol the ship.

the number of potential targets remained constant, regardless of the

subject's level of expertise. When an asteroid intercepted the ship, the
ship exploded and a new ship was displayed.

We felt that the task, designed with these features, required the key,
characteristics of perception-action skills that were of interest. First,

successful performance (many hits, few asteroid-ship interceptions) re-

quired integrating several perception and action components, such as

selecting targets, determining intercept times and positions, reorienting

the ship for aiming, and timing the release of the shots. Flexibility was

required, since the context was continually changing and it was vely

unlikely that two games would ever be identical. Precision in the timing

of action was also required; for example, many targets moved quickly
across the screen and had brief intercept windows (30-500 ms) for a
given orientation of the ship.

Subjects and Procedure

We tested 13 college-age subjects who were divided into two groups
based on their previous experience with video games and their perfor-

mance on a pretest. The novice group (three males and four females)

reported that they had played video games only on a few occasions,

whereas the experienced group (five males and one female) said they

were avid video game players. Subjects were tested on a pretest that

was similar to the experimental task. The pretest consisted of thirty 15-s
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trials. Subjects in tile experienced group obtained an average of 6.6 hits

per trial (the range of subject averages was 6.2-7.6), and those in the

novice group averaged 2.7 hits (range = 2.0-3.7), t(ll) = 11.2, p <
.001. Although the subject pa,'titioning clearly distinguished players of
different levels of skill and experience, it is important to note that the

experienced players were not true experts on our task, since they had

never played our constrained version of tile Asteroids game before com-

ing to the lab. Additionally, our novices were not complete beginners,
since they had already practiced 30 trials of the game before testing

began. With these caveats in mind, we will refer to the groups as experts
and novices.

Subjects performed 20 test trials, divided into fou," blocks. Each block
contained randomly ordered trials with 1, 4, 7, 10, and 13 asteroids per
trial. These different "clutter" conditions allowed us to sample perfor-

mance across a range of contexts and to assess how such changes influ-

enced performance. Trials lasted 20 s, which excluded the time the ship
was not displayed on the screen after an asteroid-ship interception. At

the end of each trial, performance feedback was provided on the screen
that showed the number of hits and ship "deaths.'"

Coding and Dependent Measures

During performance, two 60 Hz streams of data were collected: one

contained performance and task-en_Sronment information, and the other
contained eye-movement information. These data were further pro-
cessed to obtain the relevant performance variables. Global variables

that described summary aspects of task actions for a single trial were

straightforward to extract from the performance data. Such variables
included the frequency and duration of button presses, the number of

hits, the number of shots, the number of asteroid-ship interceptions,

and the distances between objects at various points in time (e.g., ship-

asteroid distance of hit targets).

Obtaining variables that reflected the relations between eye move-
ments and task actions was more involved. First, the eve-movement data

were linearized and transformed into the task-monitor coordinate space

(Roberts et al., 1991; Sheena & Borah, 1981). These data consisted of

looking locations specified in x-y coordinates of the task monitor for
each V60s. These data did not specify what object a subject was looking

at, since the objects on the screen, except for the ship, were always

moving. In addition, the data did not directly specie" the eye's state
(fixation, saccade, or smooth pursuit), the timing of the transitions be-

tween states, or the relations betnveen eye movements and task actions.

The next step in data reduction provided these missing pieces.
The performance data contained the x-y locations of each object and
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the status of the three buttons (pressed/not pressed) for each 1/6os. These

data allowed us to create a complete replay on a computer screen of a

performance trial, in real time, slow motion, or stopped frame. Since

the transformed eye-movement data were in the same coordinate space,

we developed a program that superimposed a crosshair on the game
screen to show the looking location for each frame. Thus we could view

a replay of a trial with a moving crosshair sho_4ng the player's changing

visual regard. The replay program simultaneously displayed, on a sepa-

rate monitor, a plot of the coordinates of the direction of gaze, high-

lighting the current frame of data displayed on the task monitor. This

replay program provided the core for a computer-assisted coding system
(fo," more detail, see Roberts et al., 1991).

Coders examined replws and the corresponding x4sual-regard plots

of every, trial and made judgments about the beginning of saccades (rapid
shifts in point of regard), fixations (relatively stationary point of regard),

and smooth pursuit or tracking (relatively continuous movement of gaze
direction). Coders also indicated, with a cursor on the task screen, the

object of visual regard (an asteroid, the ship, the shot, or empty areas)

in conjunction with the fixation and tracking codes. Also coded were

blinks and other types of noise in the data. All codes were stored with

information on the objects of regard (e.g., asteroid distances from ship)
and synchronous task performance data (e.g., onset and offset of the

button presses). Interrater reliability on the codes was very high: two
scorers coded the same 20% of the data set, distributed across all sub-

jects. Coder agreement on the choice of code and the fi'ame to mark

the code (+/- 1 frame) was always above 95%. Agreement on the

object of regard was always above 90%.

RESULTS

We first describe general characteristics of task performance and then

describe activit3/" from a more sequential, time-based perspective. For

this latter analysis, we present a framework for segmenting the behav-

ioral stream and a detailed example of typical expert performance. We

then present group data for experts and novices that describe the corre-
spondences be_veen eye movements and task actions during each of the

behavioral segments.

Performance Overview

The results reported in this section describe global characteristics of task

behaviors and eye movements _vithout reference to their moment-to-

moment sequencing or interactions. For task behaxqors, snccess at play-

ing the game was expected to reflect ex2aertise. Global measures of eye-
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movement behavior, such as the percentage of time spent looking at

various locations, provided an index for determining how players gener-

ally distributed their visual attention. We expected fewer differences in

these global indexes of eye movements than in measures that reflected
the spatiotemporal interactions between eve movements and task ac-
tions. These latter measures, reported in later sections, were expected
to better reflect characteristics of the perception-action cycle.

Each subject performed 20 trials, four at each of the five levels of
clutter (1, 4, 7, 10, and 13 asteroids). Performance variables were ob-

tained for each trial and then averaged within level of clutter so that

there was a single score for each clutter level. We examined performance

_4th mixed analyses of variance x_4th expertise as a between-subjects
factor and amount of clutter as a within-subject factor. Since the effects

due to clutter were few and not the primaL_' focus of the study, we

report these effects only in a few cases.

Task Performance

As would he expected, the experts perfonned better than the novices.

Experts successfully shot more asteroids (M = 5.9, SD = 0.6) than
novices (M = 2.6, SD = 0.8), F(1,11) = 61.5, p < .001, although both

grot_ps obtained more hits as the amount of clutter increased, F(4,8) =
56.7, p < .001. A significant interaction between expertise and clutter,
F(4,8) = 8.5, p < .01, indicated that experts were better able than
novices to obtain more hits with increasing clutter. Part of the reason

experts got more hits was that they fired more shots, F(1,11) = 26.1,

p < .001. On average, experts fired 11.3 shots per 20-s trial while novices
fired 7.6. Experts were also more accurate in their shooting: the percent-

age of shots that successfully intercepted a target was higher for experts
(M = 51, SD = 5) than novices (M = 33, SD = 8), F(1,11) = 26.6,

p < .001. As would be expected from their snperior shooting, ex-

perts also had fewer ship-asteroid interceptions per trial (M = 0.10,
SD = 0.05) than did novices (M = 0.41 SD = 0.26), F(1,11) = 7.2,

p < .05.
The tuna buttons allowed subjects to reocient their ship before shoot-

ing, and experts tended to use the buttons more frequently than novices
(Ms = 17.2 and 14.4; SDs = 1.8 and 2.9, respectively), F(1,11) = 4.0,

p = .07, but they pressed the buttons for somewhat shorter durations (in
milliseconds: Ms = 180 versus 235; SDs = 27.1 and 28.0, respectively),

F(1,11) = 11.6, p < .01. Experts and novices did not differ, however,

in the average number of turns per shot (overall M = 1.8, SD = 0.6).

Thus, experts turned more frequently because thev fired more shots,

but both experts and novices made the same number of ship orientation

adjustments per shot.
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To snmmarize, experts performed more quickly and more accurately
than the novices, although tile nmdees were reasonably successful at

obtaining hits and avoiding ship deaths.

Eye Movements

In contrast to task perforlnanee, there were very few global differ-

ences between experts and novices in where they looked or in how long
they looked at various locations. To examine how performers distributed

their looking across various possible locations, we collapsed the coded

eye movements into the following six categories:

*Fixate on ship: fixation with 2° of visual angle of ship.
.Track target: smooth pursuit of upcoming target.
*Track nontarget: smooth pursuit of nontarget moving asteroid(s).
*Fixate between ship and target: fixate on a blank area of the screen that
is near haltq,vav between the ship and the target.

"Fixate between ship and nontarget: fixate on a blank area of the screen
between ship and asteroid(s).

*Fixate other: fixate on areas of the screen not covered in the other catego-
ries, such as watching the moving shot or the brief animated explosion
sequence when an asteroid is hit.

For each trial, we summed the frequencies and durations of fixations

and tracking for each category. We present the findings averaged across
clutter condition, since there were only a few minor differences related
to clutter.

Overall, subjects spent the most time (duration) tracking targets

(41%) and fixating on the ship (33%). Interestingly,, subjects sometimes

looked at a location between the ship and target (9%), perhaps to mini-
mize both objects' distance from central vision. Nontarget asteroids were

not looked at as long as the targets (track nontarget = 8%, fixate between
nontarget and ship = 3%). The duration of looks at other locations

summed to 5%. As shown in Table 4.1, the frequency and average dura-

tion of looks at the various locations were ahnost identical in experts and
novices.

The preceding analyses show that experts were indeed better players,

in terms of accuracy of shooting, number of shots fi,'ed, and avoiding
asteroid-ship interceptions. Players were not so different, however, in

the general characteristics of their eye movements. Both groups tended

to look most often at the ship or the mo_ing target. This global analysis

of performance does not inform us, however, about the correspondence
between eye movements and task actions.

Segmenting the Flow of Perception and Action

Subjects' actions were not constrained during each trial and consisted

of a continuous stream of eye movements and task actions. To examine
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TABLE 4. I Averages for Looking Measures for Experts and Novices

[X)OKING LOCATIONS

Fixations

Visual tracking
Between Between

ship and ship and Non-

Ship target nontargct Other Target target

M SD M SD M SD M SlY M SD M SD

Frequent T

Expert 10.6 2.3 4.8 1.7 1.3 0.6 5.8 _ 0.7 12.7 _ 2.4 3.1 0.5

Notice 10.2 1.5 3.4 0.9 2.1 0.9 3.3 0.8 9.2 1.3 4.6 1.7

Duration (ms)

Expert 645 91 442 b 65 3('x5 117 256 46 731 77 377 46

Novice 555 142 343 50 302 54 210 39 671 78 388 62

Note Numbers represent a;rerages across 21) trials.

'Expert/novice difference, p < .01.

bExpert/novice difference, p < .05

naturally occurring correspondences between eye movements and task

actions, we developed a means for segmenting the stream of behavior

so that co,ninon points of action could be compared within and be_'een

subjects. A simple task analysis of the video game suggested three basic

components or subgoals of performance. The first component was select-

ing a target. In the multiple-asteroid trials there were 4 to 13 potential

targets on the screen. Before releasing a shot, the players needed to

determine which asteroid would be the next target. As described below,

players routinely made an eye movement to the target before acting on

it, in terms of turning the ship toward the target or shooting at it. The

next component was reorienting and aiming. Before shooting, players

typically reoriented the ship, presumably' to position the angle of the

upcoming shot's trajectory' to intercept the selected target. The final

component was timing the interception. After reorienting the ship, there

was typically some time lag before the shot was released. The timing

had to be precise, often within tens of milliseconds, to obtain a hit. At

some point after the shot was released (or perhaps before), the player

would cycle back to the first component--selecting a target.

As described previously, our computer setup allows us to replay" per-

formance in slow motion with a crosshair indicating the position of the

player's changing visual regard. When viex_fng such a replay', the ob-

server immediately gets a sense of these sequenced actioo components,

as well as how the shifting of visual regard corresponds to the player's

unfolding action goals. We briefly describe an example of such a replay

to convey a sense of the flow of action.

Figure 4.3 presents a sequence of still-frame samples of a 1,900 ms
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Figure 4.3 A sequence of still-frame samples of a 1,900 ms excerpt of an ex-

pert performance. Each panel represents a snapshot in time when some as-

pect of performance changed: the person either used one of the buttons or

made an eye movement to a new object of regard. Shown are the positions of

the asteroids (dots) and the shot (small dot), the orientation of the ship (trian-

gle), and the position of foveal regard (box). The lines and arrows on each of

the objects indicate the position of the object in the next panel. Panel number

and elapsed time (beginning from the first panel) are shown in the upper left

and lower right corners, respectively. See the text for a description of the se-

quenee of events,

excerpt of expert performance. The excerpt represents nothing remark-

able or unusual; it is typical of good performance. Each panel represents

a snapshot in time when some aspect of performance changed; the per-

son either used one of the buttons or made an eye movement to a new

object of regard. Shown are the positions of the asteroids (dots) and the

shot (small dot), the orientation of the ship (triangle), and the position

of foveal regard (dotted box). The lines and arrows on each of the objects

indicate the position of the object in the next panel. Panel number and

time elapsed (beginning from the first panel) are shox_ in the upper

left and bottom right comers, respectively.

The panels show the player shooting twiee. In panel 1, the player had

already reoriented the ship and was fixating on the blank area between

the ship and the target. In panel 2, 183 ms later, the player made an
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eye nlovement to the target and tracked its movenlent. Shortly thereafter

(17 ms, panel 3), the player fired the shot (as indicated by tile dot above

the ship). Notice that the shot was fired/)@m' the target reached its
intercept point, although the shot was still too late for an interception.
Less than half a second later (417 ms, panel 4) the player made an eve
n_oveinent to another asteroid (in the other side of the screen, which

t)ecaine the next target. Two points arc worth noting. First> the player

did not foveallv examine several asteroids before selecting the next tar-

get. The selection must have been made peripherally, since the player
had not viewed the new target foveallv. Second, the selection occurred

quickly--the eye movement to the new target began after tile shot

passed the intercept line of the old target but before the shot traversed
tile rest of the screen. Given that it takes some time to program an eye

inoven_ent, tile selection had to occur even earlier. In this case it most

likely occurred before the shot reached the intercept line. Shortly after
the eye inovement to the new target (16 ms, panel 5t, the player pressed
the left turn button, which started the ship's rotation toward the new

target. Notice that during the initiation of the turn, the subject was

foveating on the target, not the ship. But 250 ms later (panel 6), the

player made a saeeade to the ship while the turn was in progress. The
turn continued for another 500 ins (panel 7), and 300 ms after the turn

was completed, the player made a saeeade back to the moving target

(panel 8). As decribed below, this pattern was vei.y common--players
determined turning direction without the benefit of reveal examination

of the ship, but they almost always shifted to examining the ship during
the turn and for several hundred milliseconds after the turn was com-

pleted before saecading back to the target. The pattern suggests that

looking at the ship is not neeessar),' for deciding which direction to turn

it lint is important for determining when to stop the turn and for encod-

ing the ship's new orientation. B.eturning to the example, the player
released the shot 217 ms after returning to tracking the target (panel 9).

This example scenario exemplifies the kind of correspondence we

found between eye movements and task actions. Perforlners moved their

eves to gather visual information that was important for organizing up-

coming action. The following analyses cover the entire data set and were
aimed at examining the generality of the patterns just described and

exploring the similarities and differences be_veen the two expertise

groups. For these later analyses, we were interested in comparing the
patterns of correspondences as well as the relative consi.steney in the

couplings between eye movements and task actions.

In the following analyses the shot was the unit of analysis. Each shot
defined an episode that covered the period extending from the firing of

the previous shot to the firing of the current shot. In several of these
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analyses we excluded tile one-asteroid tlials. Medians were calculated
for all time and distance variables _qthin each trial and were then aver-

aged |br each clutter condition. Times are reported in milliseconds. In

instances where we were interested in the degree of variabili_' in the
timing betavccn eye-movement onsets and task events, we calculated

standard deviations for each trial and then averaged the deviations within
each clutter condition. Most of the analvses consist of mixed ANOVAs,

with expertise group as a between-subjects factor and degree of clutter

as a _ithin-subject factor, although we report clutter effects in only a

few cases. The findings are presented in order of the three subgoals of

action: selecting a target, reorienting the ship, and timing the inter-

ception.

Target Selection

The coding system differentiated between looking at targets and look-

ing at nontargets. This was a relatively simple, highly reliable judgment

because subjects tended to foveallv examine only one or _,o potential

targets in an episode. All subjects tended to visually track at least one

asteroid in over 90% of the episodes (exy_erts: M = 96%, SD = 4;

novices: M = 93%, SD = 2, n.s.). In these episodes, where the target
was identified, we calculated the number of asteroids that were consid-

ered foveally (tracking an asteroid) or close to the fovea (fixating between

an asteroid and the ship). Both groups of subjects rarely looked at more

than two potential targets, although experts looked at significantly fewer
(M = 1.2, SD = 0.06) than no_4ces (M = 1.6, SD = 0.34), F(1,11) =

5.1, p < .05. Remarkably, the number of potential targets looked at did

not increase with increasing clutter (4 to 13 asteroids), p > .3. One

could argue that perfortners looked at so few asteroids because they,

were pursuing the same target across several episodes. In fact, however,

both groups chose the last episode's missed target on only 15% of the

episodes. When these episodes were removed from the analyses, the

pattern of results did not change.

The preceding analyses suggest that players limited their foveal exami-
TJation to only a few asteroids before deciding which one would be the

actual target. It appeared that deciding which asteroid to choose was
based on visual information obtained outside the fovea. We examined

the first eye movement to the target in eases where the target was not

the same as in the previous episode. The average visual angle between

the point of regard immediately before the eye movement and thetarget

was 7.6 ° (SD = 0.9°), well outside the foveal region. This distance did
not differ as a function of expertise.

The first saccade to the new target also occurred relatively quickly

after the pre_-ious shot was fired, and experts were faster than no,Sees
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(experts: M = 714, SD = 148; novices: M = 1247, SD = 397), F(1,11)

= 9.5, p < .05). The time t)etwecn the previous shot and the first look
to the target was also more variable in novices than in experts (mean
trial standard deviations, novices: M = 1445, SD = 445, experts: M =

683, SD = 94, F(1,11) = 16.5, p < .005.

It did not appeal" that the choice of target was random or haphazard

for either g,oup of subjects, and our impressions fl'om observing many

replays was that the choices were in fact good ones--players see,ned to

choose targets that were most likely to intercept or come close to the

ship. Such targets not only were more dangerous but were often easiest
to hit. A comparative analysis of all the asteroids on the screen immedi-

ately before the first look to the target showed that players looked at the
asteroid closest to the ship in 50% of the episodes (SD = 8%). Players
also seemed to take direction of movement into account: when the aster-

oid closest to the ship was moving toward the ship, it was chosen 64%
of the time (SD = 8%), but when it was mo_Sng away it was chosen

only 17% of the time (SD = 9%). These selection percentages did not
differ between the two groups.

To summarize, players did not foveally examine several possible tar-

gets anaong the many, mo_4ng asteroids. Instead, they visually identified

one or two possibilities soon after shooting at the previous target. The

target selection was most often made from information gained in the

periphery, and seemed to reflect good choices. Compared with the nov-
ices, the experts foveally considered fewer alternatives, shifted visual

regard to the target more quickly, and we,'e less variable in the timing
between the previous shot press and initial saccade to the new target.

Reorienting and Aiming

The first look to the new target occurred before shooting at the target

and was the first straightforxvard behavioral indication that the player

had started preparing for the next hoped-for interception. The time
between the first look and the eventual shot was often used for reposi-

tioning the ship and presumably for obtaining _4sual information about

the target's trajectory,, velocit)', and position for timing the release of the
shot (see below). The median time lag between the first look to the

target and the shot was shorter for experts (M = 989 ms, SD = 178)
than for novices (M = 1560 ms, SD = 579), F(1,11) = 5.3, p < .05,

and it decreased with increasing amounts of clutter, F(3,9) = 4.3, p <

.05. Experts were also less variable in the time lag between the first look

and the shot; the averaged within-trial standard deviations of this lag
were 539 ms (SD = 28) and 821 ms (SD = 62) for experts and novices,

respectively, F(1,11) = 59.4, t9 < .001.
As would be expected, experts were more effective at turning the
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ship to increase the likelihood of an interception. A straightforward mea-

sure of tunling effectiveness is whether a possible intercept existed be-

fore the first turn and after the last. Intercepts did not exist for a given
orientation when tile target would not cross the intercept line, such as

when the asteroid had already passed the ship. The percentage of such

"iinpossihle" targets betbre the first turn was high and did not differ

between the groups (experts: M = 54, SD = 6; novices: M = 56, SD

= 8), p > .5. After the last turn, the percentage of impossible targets

was low, and experts had a significantly lower percentage (M = 3, SD

= 2) than novices (M = 10, SD = 3), F(I,11) = 13.7, p < .005.

Turning the ship appropriately for an interception required taking
into account charaetel-isties of the target, such as its trajectory, veloei_',

and distance fi'om the ship; thus, x%uallv tracking the target provided

important information for detennining an appropriate ship orientation.

Foveating on the ship, however, was also important for preparing for an

eventual interception, since looking at the ship provided intbrmation on

the direction it was pointing, which was especially important when turn-

ing. The timing of when to stop turning needed to be precise, since
pressing the turn button for even a short duration had a large effect: a

200 ms press changed the ship's orientation by 50 °. Thus both ship and

target provided important information for calibrating action, and these

locations eould often not be examined foveally at the same time. Players

shifted their gaze, on average, 1.7 times during an episode (SD = 0.87).

Shifting of visual regard between ship and target would presumably
increase when both locations could not be placed at or near the foveal

region, that is, when the distance between the objects increased. To

examine whether this was indeed the case, we divided episodes into two

groups using a median split of target-asteroid distances early in the epi-

sode (the median distance was 7.3 ° of visual angle, which did not differ
between groups, p > .3). Those episodes x_-ith targets farther from the

ship averaged 2.0 shifts (SD = 0.9), while those with closer targets
averaged 1.0 shifts (SD = 0.7), F(1,11) = 87.6, l) < .001. This effect

did not interact with expertise.

When subjects did turn the ship before shooting, they tended to make

an eye movement to the ship sometime during the turn, although this

tendency varied somewhat depending on the context, such as the degree
of chttter, the distance from the target, and the extent of the turn.

Subjects looked at the ship on 76% of the turns (SD = 9). This percent-
age did not differ as a function of expertise, p > .2, but it did decrease

linearly with increasing clutter, from 89% of the turns (SD = 9) _dth 1
asteroid, to 68% of the turns (SD = 14) _vith 13 asteroids, F(1,11) =

"23.3, p < .005. Shifting of visual regard between ship and target would

presumab b, increase when both locations could not be placed at or near
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tile foveal region, that is, when tile distance between tile objects in-

creased. A comparison of tile tunis at which subjects did and did not

look at the ship showed that turns inchtding an eye movement to the

ship involved targets that were signifieantly farther from tile ship (Ms

= 8.2 ° versus 6.1 ° , SDs = 0.5 and 0.7), F(1,11) = 160.4, p < .001.

Turns that incorporated an eye movement to the ship were also signifi-
cantly larger (Ms = 74° versus 57 °, SDs = 13 and 14), F(1,11) = 33.3,

p < .001. Thus, subjects most often looked at the ship sometime during
a tuna, and looking was more likely with fewer asteroids on the screen,

when the ship and the target were farther apart, and when the player
was making larger tunas.

When subjects did look at the ship dm-ing a turn, tile saccade to the
ship occurred close to the start of the tuna, while the eve movement

away from the ship usually occurred well after the tunl was completed.

On average, saceades started 92 ms (SD = 87) before the turn began;
in 44% of these cases the ftxation began after the tuna had started. This

timing suggests that st, bjects usually decided which direction to turn the

ship when not foveally examining the ship's orientation. There were no

differences in this timing across groups. Eye movements away from
the ship began after the completion of the tuna in 92% (SD = 3) of the

cases. The lag between the end of the turn and the look away from the

ship was remarkably long in both groups, although the lag was shorter
for experts than for novices (Ms = 422 versus 565 ms, SDs = 128 and

99), F(1,11) = 5.1, p < .05. The long lag suggests that subjects almost

always watched the end of the tuna and continued to foveate on the ship
to encode the new orientation before shifting visual regard back to the

target.

Experts were less variable in the timings between looking and turning.

The average trial standard deviation for the timing between the saccade
to the ship and the start of the tuna was greater in novices (M = 528

ms, SD = 110) than in experts (31 = 395 ms, SD = 71), F(1,11) = p

< .05. Similarly, the average tl-ial standard de_Sation for the timing be-

tween the end of the tuna and the look away fiom tile ship was greater
in novices (M = 535 ms, SD = 96) than in experts (M = 397 ms, SD
= 100), F(1,11) = 6.2, p < .05.

To summarize, between the first look to the target and the eventual

shot, players most often reoriented the ship. Both the ship and the target
provided important information for determining the final orientation,

and players shifted visual regard between the two locations. Changes in
looking location seemed to occur when updated information was needed

most: shifts from target to ship were most likely when the target and

ship were far apa,'t and farther out of aligmneni. Saccades to the ship
occurred near the beginning of tile turn, but saceades away occurred
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well after tile completion of the turn, suggesting that foveal information

was not needed for initiating the turn but was used for monitoring

changes in orientation and updating information on the postrotated posi-

tion. Overall, experts we,e faster and less variable in the timings between
shifting vislml regard and task actio,ls.

Timing the Interception

After the last tunl players needed to determine the best time to

release the shot. As in the example scenario described earlier, shots

usually needed to be fired before the target reached the intercept line,

since it took time for the shot to reach the intercept (the shot traveled

at 1.4 ° of visual angle per 100 ms). In many cases firing when the target

was at the intercept would be too late, since the target would have
passed the intercept point by the time the shot arrived. The best time

to release the shot varied as a fimction of the target's veloci_, and trajec-

tory (which determined the time for the target to reach the intercept)

and the distance between the intercept and the ship (which determined

the time for the shot to reach the intercept).

The time lag between the last turn and the fire button press varied
fi'om 0 to 4702 ms. Experts generally pressed the fire button earlier (_M

= 551, SD = 122) than did novices (M = 827, SD = 158), F(1,11)

= 12, p < .005, and were also significantly less variable in this timing
(M = 363, SD = 51) than were novices (M = 512, SD = 115), F(1,11)

= 7.8, I; < .05. Determining the right moment to release the shot

required precise trajectol 3, and veloci_, infor,nation about the target,

and performers' visual regard immediately before shooting suggests that

the moving target provided the most relevant immediate data for timing
the interception. Both groups of players tended to _'isuallv track the

target immediately before pressing the fire button, although experts did

so significantly more often than novices (Ms = 86% versus 71%, SDs

= 5 and 6), F(1,11) = 14.2, p < .005. There was also evidence for a

functional relation between looking at the target before shooting and

the likelihood of a successfid hit. When tracking the target before shoot-

ing, pla.vers we,'e ahnost twice as likely to hit the target (M = 0.40, SD

= 0.14) as when looking elsewhere on the screen before shooting (M
= 0.29, SD = 0.11), F(1,11) = 50.6, p < .001, and this relation did
not differ between groups.

We also examined the timing characteristics of missed shots. For each

target, we calculated the best time to release the shot given the ship's

orientation before shooting. Misses by experts were closer to a hit (M
= 531 ms off, SD = 90) than were the misses of novices (M = 760 ms

ofl_ SD = 153), F(1,11) = 10.6, p < .05. Missed shots by novices
tended to be late rather than early. The average percentage of late misses
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was 68% (SD = 7) for novices, but 47% (SD = 9) for experts, F(I,ll)

= 19.3, p < .005. Experts were also Jess variable in tile timing of their
misses (mean of trial standard deviations = 594 ms, SD = 110) than

nm,ices (M = 767 ms, SD = 84), F(1,11) = 9.2, p < .05.

To summalizc, determining tile hest time to fire the shot required

information about the target's trajceto D' and velocity, and subjects

tended to track targets visually belbre shooting. Tracking the target was

related to increased probabilit?' of a hit, and experts tracked the target
more often than novices. Novices also tended to fire too late, so that

when the shot reached the intercept, the target had already passed.

Experts' misses were ahnost equally dMdcd be_veen being late and

early. As in other aspects of pertbr,nanee, experts were less vaciable in

the timings betsveen actions.

DISCUSSION

The findings suggest that the patterning of eve movements during per-
formanee was well integrated with ongoing action. The timing of shifts

in visual regard in relation to the subjects" actions and events on the

game screen was well coordinated, even in the less skilled players. The

probabilities of shifting visual regard at particular points in the sequence

of action and the relatively low variahility in the timings between looking

and acting reflected relatively stable looking-acting correspondences.
These coordinations were not, however, as tightly sv]lchronized as is

typically found in reaching and pointing studies (e.g., Biguer et al., 1982;
Carnahan & Marteniuk, 1991). In less constrained settings, such as the

one examined here, eye movement and other action systems may be

more flexibly coordinated by adapting to variations in context and tile

goals of action.

Obtaining visual information via eye movements also seemed remark-

ably' efficient. For example, players did not foveate on more than one

or two potential targets, even when there were many possibilities. Players

used peripheral information to make the selection and usually made a
saccade to the new target less than a second after the previous target

was shot. In manv such cases, the peripheral selection must have oc-

curred before the previous shot reached its target.
Another example of the efficiency of visual selection was shifting be-

tween looking at tile target and looking at the ship when setting up for

the next shot. There was an implicit competition between looking at the

two locations. The target provided critical time-varying information for

organizing action to obtain an intercept, but the ship usually needed to
be turned, and the player needed to precisely gauge the ship's new

orientation to accurately time the release of the shot. Most of the time
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players tracked the target, but when a turn began they usually shifted
to iooking at tile ship, especially in cases where foveal information was

particularly needed (when tile ship was farther from target and when
the new orientation was significantly different from the old one). Decid-

ing which direction to turn the ship did not require detailed foveal
information on the ship's orientation, so players usually shifted visual

regard to tile ship about the beginning of tile tuna; they did not waste
time looking at the ship hefore tile tunl. Alternatively, players needed
to determine the ship's new orientation accurately to obtain a hit; a

miscalculation of just a few degrees could misplace the intended inter-

cept point by seve,'al centimeters. Yet if players returned to tracking the

target before releasing tile shot (which they usually did), they could
detcrmine the ship's orientation only from peripheral vision or from

memory. Our guess is that memory was important, since peripheral xS-

sion o_:ten would not provide detailed enough spatial intbrnlation to
determine the orientation x_4thin several degrees. These ideas are consis-

tent with player performance: players almost always continued to foveate
on the ship for several hundred milliseconds after tlle turn was com-

pleted before making a saccade back to the target. In tlle context of the

game, several hundred milliseconds was a long time to stare at the only
stationary' object on the screen, but that amount of time would be re-

quired if one wanted to encode the ship's neve orientation into memou'.
These examples illustrate the fact that perceptual selection was effi-

cient and well organized for regulating action. Knoxving something about

what tile subject was doing was ve D' instrnctive in determining where

the subject would be looking and when shifts in foveal regard were likely

to take place. In tile context of ttle perception-action cycle discussed in
the chapter opening, the findings suggest that visual information gather-

ing was used to regulate ongoing action and, most significantly for the

present puq_oses, to preparefi_r upcoming action. Ahnost every, shift in

looking location can be viewed as future oriented: one selects a new

target to determine a new ship orientation, one looks at the start of the
turn to determine when to stop the turn, one looks at the ship after the

tuna to acquire information that will be used later to time the shot

release, one tracks the target to determine when to release the shot, and
one continues to track the target after the shot is released to see if it

will hit the target.
Perceptual information was used in preparing for future action, but

action was also based on anticipated future states, determined from cur-
rent visual information and from task knowledge. For example,tlae ideal

time to release the shot most often was before the target reached the

intercept point. In such cases tlle shot would be released based on some
estimate of when the target would reach the intercept, which would be
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the same time it shoukl take tile shot to reach tile intercept. The time

for tile target to reach the intercept involved examining tile veloei0,,

trajectory, and current position of the asteroid, l)etermining tile time it
would take to take tile shot to reach the intercept entailed combining

the perceived distance between the ship and the intercept with one's

knowledge of the shot speed. Antieipating future states was also involved
in determining the new orientation of the ship when setting up for a

new target. There was usually a time lag of several hundred milliseeonds
between the end of tim last turn and the firing of the shot. Players

positioned the ship in an orientation that provided enough time to ell-

code tile ship's final orientation, saecade back to the target, and track

the target. Thus players needed to determine how far ahead to tnrn the

ship based on the target's veloeity, trajectoo', and current position as
well as some determination of the amount of lead time required for

"setting up" for the interception.
The ability to use visual information to anticipate hi)coming events

and plan action accordingly was undoubtedly important ill allowing ac-

tion to be both flexible and precise. Players adapted to the particulars

of each episode by quiekly and effieientiy repositioning their foveae to

obtain the relevant information for organizing aetion. Precision was pos-

sible when players organized their actions appropriately to an aeeurate

appraisal of the near future. Yet players did not always perform effec-

tively, and the noviees were elea,'ly less effective than the experts. Our

findings suggest several h_1)otheses about what is acquired with increas-

ing levels of expertise.
Ex])erts and novices did not differ in many of the general characteris-

tics of eye movements; they were also quite similar in how task actions

corresponded to eye movements. (Although as described in the methods

section, these groups were not as disparate in skill level as would be

expected with genuine experts and novices.) For example, despite some

group differences, novices were surprisingly good at using peripheral
vision to select the next best target and at efficiently, moving _isual regard

to and from the ship during turning. Given that our task was fairly" novel

for those who were not video game players, these findings suggest that

the novices employed well-developed perceptual skills that could quickly

be adapted to the particulars of the game.
Although general perceptual processes did not appear to differ across

the groups, there were aspects of performance that were eonsistentlv

different. Experts were faster than novices in almost every respect: they'

took less time to find a new target, to orient the ship, to move visually

bet_veen ship and target, and to time the interception. Ext)e,'ts" actions
were also better tuned to the task environment: their shots were more

accurately timed, and their turning was more effective in setting t,p for
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the next target. Novices' actions were often too late. In shooting, novices

tended to release tile shot when the target ]lad ah'eadv moved too close

to the intercept. We also noticed that subjects often pushed the turn

button too long and consequently turned tile ship too far. This would

occur if players did not take into account their o_ reaction time in

deterndning when to stop pressing the lmtton. Perhaps the most salient
expert/novice difference was the within-subject variabilib: in tile timing

between eye movements and task actions. Ahnost every measure of the

variabilib,, in the time lag between an action and th(_• initiation of an

associated eye movement was significantly higher in novices.

Taken as a whole, the pattern of expert/novice differences in behavior

suggests several important difterences in cognitive and perceptual pro-

cessing. First, novices have greater difficulb: using current perceptual

information to determine future states, such as where a particular target

x_ill be at some future time. This difficult), often results in action that is
based relatively more in the present time frame--that is more reactive
to current conditions. In such cases action will be late. Second, novices

are also less knowledgeable about the properties of their "'tools" for

action, such as the rotation rate of the turn button and the veloci_ of

the shot. Increased uncertainb,' about how to use current information

for planning upcoming action and about the properties of one's tools for

action would contribute to increased variability in performance. Such

variabili ,ty inay be an essential part of eventually determining appropriate
mappings between action, perception, and context (Freedland & Berten-

thal, 1994; Siegle,', 1989). With practice, however, uncertainty and vari-

abilit), are reduced and perception-action components become increas-

ingly "antomatic." Automatized components should reduce the degrees
of freedom that require explicit control and increase overall speed.

Our findings, when examined along with related research, suggest a

more speculative set of hypotheses about future-oriented processing and

tile acquisition of complex perception-action skills. Novices are not as

adept as experts at using current contextual information to determine

filture states and organize upcoming action appropriately, and conse-

quently they appear less future oriented. Yet less experienced performers

might actually commit more cognitive resources to filture-oriented pro-
cesses, such as in planning action or determining what will happen next.

As one develops expertise, the fnture gets built in to increasingly auto-

mated perception-action modules (of. BGan & Harter, 1899). During

skill acquisition, the performer learns the implications of specific percep-

tual information for upcoming action and develops perception-action

modules that embody those regularities. As the modules become well

developed, performers can quickly adapt to new situations, since the)'
have a repertoire of well worked out components that can be rapidly
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chosen and implemented. Thus experts do not need to plan far into tile

future (el. Simon, 1981) and may spend fewer resources on "scenario

spinning" (Calvin, 19901 than novices. Returning to the example dis-
cussed at the outset, when novices learn to ski moguls, instrnetors often

teach them to plan four or five turns ahead. Yet the goal of the training

is to ski like experts, who can adapt very." quickly to tile particulars of

the slope and rarely look more than two turns ahead (Tejada-Flores,
1986). Thus we are suggesting that expert action is better adapted to the

future, but that experts may allocate fewer resources to future-oriented

processes than novices do. Novices are not as successful at taking the

future into account and, at least at particular points in learning, will

devote a great deal of effort to tr)'ing to predict fnture states and plan

accordingly.
Two other studies of video game performance (using different tasks)

support this view. In one study, Logic, Baddeley, Mane, and Donchin
(1.989) examined the role of working memory in the pe,4"ormances of

more or less skilled players. Work-ing memo U is seen as a limited re-

source for holding transient information on line and performing simple

computations, and it is viewed as essential for future-oriented behav-

ior in general and short-term planning in particular (Baddeley, 1986;
Goldman-Rakie, 1987; Pennington, this volume; Roberts, Hager, &

Heron, in press). Logie et al. (1989) found that tile performance of less

skilled players was disrupted mo,'e by secondary working-memory tasks
than the performance of more skilled players. It is worth noting that not

all interference tasks showed this pattern; for example, a motor-timing

task was more interfering for more experienced players than for less

experienced ones. The findings suggest that working memory,, which

may be essential for future-oriented processes, is more heavily utilized
at lower levels of skill. In another study, Haicr et al. (199, 9) found that

more skilled players showed less overall cerebral activity (measured by

PET) while playing a video game than did novices. Taken together, these

studies give some support for the somewhat paradoxical idea that as

they acquire skill performers commit fewer resources to future-oriented

processing hut are nevertheless better able to adapt to the future.
From a neuropsychological perspective, the prefrontal cortex, whieh

is viewed as essential for working memoo, and fllture-oriented processes

(Goldman-lRakie, 1987; Weinberger, Berman, Gold, & Goldberg, this

volume), may initially be more involved during learning than at higher

skill levels. Aequiring a new skill, such as playing a video game, is a

problem-solving exercise that requires learning new relations and inte-

grating perceptual, motor, and strategic components. This sort of delib-

erate problem solving in novel contexts has traditionally been associated
with frontal functions (for reviews, see Fuster, 1989; Shallice, 1988).
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With increasing automatization, however, other motor areas, such as the

basal ganglia or the cerebellum, may assume increasing control over

larger units of automated behavior. Further research will be ,'equired to

elaborate the changes in processing that occur dtuing tile learning of

complex perception-action skills.

CONCLUSION

The relatively unconstrained flow of skilled acti_4tv in the work reported

here reveals a remarkably intricate interweaving between the past, the

present, and the future. Performers are continually gathering visual in-

formation for deternfining the outcomes of past acts, for monitoring the

progress of ongoing acts, for determining what will happen next, and for

planning and calibrating upcoming action. At the same time, the per-

former is producing a stream of activity that is based on the continual

flow of perceptual information. All of this occurs quickly and, at least in

the expert, relatively effortlessly. This chapter provides a descriptive

window into how perceptual selection, via eye movements, is used to

adapt flexibly and precisely to a changing and indeterminate context.
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Prefrontal Cognitive Processes: Working Memory and Inhibition
in the Antisaccade Task

Ralph J. Roberts, Jr., Lisa D. Hager, and Christine Heron

Recent research suggests 2 principal processes are assessed in many neuropsychotogical tests of
prefrontal functioning: the ability to keep transient information on-line (working memory) and the
ability to inhibit prepotent, but incorrect, responses. The current studies examined the hypothesis
that taxing working memory beyond some threshold can result in decreased inhibition, resembling
the errors committed by patients with prefrontal dysfunctions. Across 3 studies, 70 nonpatient
subjects were tested on the antisaccade (AS) task (D. Guitton, H. A. Buchtel, & R. M. Douglas,
1985)---a task sensitive to inhibitory deficits. Subjects were required to look in the opposite
direction of a flashed cue, inhibiting the reflexive tendency to saccade to the cue. Subjects
performed concurrent tasks that varied working-memory load. The results indicated that conditions
with the highest working-memory load produced inhibitory errors comparable to patients with
prefrontal dysfunctions. The findings are discussed in terms of the interaction between working
memory and the inhibition of prepotent responses.

For at least 20 years the prefrontal cortex has been
thought to be important for a variety of cognitive functions,
including planning, impulse control, and attention. The pre-
frontal cortex also is thought to provide integrative func-
tions for higher cognition, integrations that occur across
space and time as well as across component cognitive and
perceptual processes (for reviews see Fuster, 1989; Levin,
Eisenberg, & Benton, 1991). Recent research with human
and infra-human subjects has suggested two principal pre-
frontal functions: a) the preservation of transient informa-
tion across short time intervals for organizing upcoming
ac_on, often referred to as working memory, and b) the

inhibition of prepotent but inappropriate responses. Al-
though there is increasing consensus on the centrality of
these processes, little is known about whether and how such
processes interact in the generation of behavior.

The present work is motivated by recent theories and
computational models that attempt to provide unified
accounts of prefrontal functioning (Cohen & Servan-
Schreiber, 1992; Dehaene & Changeux, 1991; Diamond,
1990; Fuster, 1989; Goldman-Rakic, 1987; Kimberg &
Farah, 1993; Levine & Prueitt, 1989; Norman & Shallice,
1986). Such models suggest two important ideas that are
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explored here. First, working memory and the ability to
inhibit prepotent responses are intimately related, and a
deficient working memory system can increase the diffi-
culty of resisting prepotent actions. Second, there is more of
a continuum between normal and abnormal functioning than
is often portrayed in the literature, so that many everyday
action errors result from a similar process that produces the
behavioral "breakdowns" seen in patients with known fron-
tal dysfunctions. To explore these ideas empirically, we
examined nonpatient subjects on a task that is sensitive to
prefrontal dysfunction--the antisaccade task--in conditions
that made varying demands on working memory. The stud-
ies allowed us to examine how working memory relates to
successful inhibition and whether normal subjects resemble
frontally impaired patients under specific high-load condi-
tions. Before describing these studies, we first provide more
detail on the framework for characterizing prefrontal cog-
nitive processes from which we are working.

Commonalties Across Tasks that Assess

Prefrontal Functioning

The most common analytic technique to assess prefrontal
functioning has been to study prefrontal dysfunctioning--

breakdowns that occur when some part of the prefrontal
cortex is disabled, such as by lesion, disease, or accident.
The functions of the prefrontal cortex are inferred from the
processes that seem to be changed or missing in the dys-
functioning group as compared with some control. Al-
though there are some difficulties with this analytic strat-
egy (Farah, 1994; Shallice, 1988), it has proved highly
successful in documenting a range of behavioral changes
associated with frontal insults (for reviews, see Fuster,
1989; Shallice, 1988). In addition, the conclusions about
structure-function relations have generally been corrobo-

rated and extended by approaches that assess on-line neu-
ral processing, such as single-cell recording, evoked po-
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tentials, and positron-emissiontomography(PET)
scanning(forareview,seeFuster,1989).

Bothkindsof studiesuseavarietyof tasksthatappear
sensitivetoprefrontalfunctioning,includingtheWisconsin
CardSortTask(Milner,1963),the antisaccadetask
(Guitton,Buchtel,& Douglas,1985),theTowerof Hanoi
Task(Shallice,1982),thecontinuousperformancetask
(Cohen& Servan-Schreiber,1992),the StroopTask
(Perret,1974),andprospective-memorytasks(Shimamura,
Janowsky,& Squire,1991).Studieswithnonhumanpri-
mateshaveuseddelayed-responsetasks,theA-Not-Btask,
andvisual-searchtasks(Diamond& Goldman-Rakic,1989;
Funahashi,Bruce,& Goldman-Rakic,1990;Fuster,1991).
Theseandotherprefrontallysensitivetasksvaryinmanyof
theirsurface-levelcharacteristicsandtherelevantbehav-
ioralindicatorsofperformance.Suchdifferenceshavecon-
tributedtothewiderangeof hypothesizedprefrontalfunc-
tions,whichareoftengroupedtogetherinto theglobal
categoryof "executivefunctions."

Despitethedifferencesacrossprefrontallysensitivetasks,
aremarkablevarietyofthemfit acommonstructure:They
placeasubjectinacontextinwhichaprepotentresponse
tendencyisdirectlyopposedtotheactivityoractivitiesthat
leadtocorrectresponding.Theprepotenttendencyiseither
built-inor is acquiredduringanexperimentalsession.To
performcorrectly,asubjectmustmaintainsomeinforma-
tionoverashorttimeinterval,refrainfromperformingthe
habitualorprepotentaction,andcarryoutanalternative
action."Prefrontal"subjectsreadilyfall victimto thepre-
potenttendency.

Thus,asshownin Table1,a consistentfeatureof the
prefrontaltaskis thatit putsaprepotenttendencyin com-
petitionwithanalternativeresponse.Forexample,in the
WisconsinCardSortTask,subjectssortcardscontaining
figuresthatvaryinform,color,andnumber.Thesubjectis
reinforcedconsecutivelyforsortingbyonecategoryandis
thengivenfeedbackindicatingthatthecategoryisnolonger
correct.Theprepotenttendencyistocontinuesortingbythe
previouslycorrectcategory;thealternativeresponsere-
quiresusingthefeedbacktodetermineanewsortingcate-
gory.Intheantisaccadetask,thesubjectisaskedtolookin

-theoppositedirectionofaperi_phera-liyflashedcue.Thereis
astrongreflexive-likepulltolookatperipherallyflashed

stimuli,yetcorrectrespondingrequireslookingin theop-
positedirection.IntheStroopTask,thesubjectmustname
theinkcolorofcolorwords.Thewordsarecolornamesthat
aredifferentfromtheinkcolors(e.g.,thewordred is

printed in green). The prepotent tendency is to read the
word--a highly automatic skill for readers, yet the correct
response is to ignore the written word and identify the color
of the ink. In the A-Not-B task, a monkey or human infant
searches for food (or a to)') in one of two covered wells.

After the subject repeatedly finds the food in one location,
it is visibly hidden in a new location. The prepotent ten-
dency is to search where the food was found previously, the
alternate response is to look in the new location. The de-
layed alternation task also involves searching for food in
one of two covered wells, but in this case the food is always
located in the well opposite of where the subject searched
on the last trial. The prepotent response is to look where the
food was searched for previously; the alternative response is
to look in the other well.

Working Memory and Response Inhibition

This prepotent-alternative response analysis may help
identify common processing dynamics across a wide range
of prefrontal neuropsychological tests. It suggests two min-
imum requirements for successful responding. First, the
subject must keep in mind information that is required to
make a correct response and must use that information to
guide action appropriately. In many cases, the information
changes from trial to trial and must be maintained across a
temporal gap (e.g., A-Not-B, Delayed Alternation). In other
cases, the subject must maintain a rule or self-instruction
that specifies how to act and then must apply the rule to the
current circumstances on a particular trial (e.g., Stroop,
antisaccade, Wisconsin Card Sort). Keeping transient infor-
mation in mind and performing explicit computations to
guide upcoming action is seen in the cognitive psycholog-
ical literature as involving working memory (Baddeley,
1986; Carpenter & Just, 1989).

Working memory is assumed to involve both the tempo-
rary storage of task-relevant information and a "scratch
pad" for on-line computations and their results (Baddeley,
1986; Case, Kurland, & Goldberg, 1982; Daneman &

Table 1

Prepotent Responses, Alternative Responses, and Working Memory Demands for Several Prefrontal Tasks

Task Prepotent response Alternative response Working-memory demand

Wisconsin Card Sort Sort by previously
successful category

Antisaccade Saccade to flashed cue

Stroop Read the word

A-Not-B Search where previously
found

Delayed alternation Search where previously
searched

Sort by new category

Saccade in opposite direction
of cue

Say the ink color

Search where hidden

Search in location opposite to
where previously searched

Use feedback to determine possible
correct category

Keep task instruction active, apply to
current context

Keep task instruction active, apply to
current context

Keep last seen location in mind over
a delay

Keep last location reached in mind,
apply "opposite" rule
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Carpenter,1980; Pennington, in press). It is assumed to
have a limited capacity that is constrained by both the
amount of information that can be held simultaneously and
the length of time that information can be kept on-line.
Unlike longer-term semantic, episodic, and procedural
memory, working memory is both transient and of limited
capacity, thus resembling the concept of short-term mem-
ory. However, the computational and prospective aspects of
working memory distinguish it from traditional conceptual-
izations of short-term memory. Most significantly, working
memory is used not only for holding information on line but
also for using that information along with contextual spe-
cifics to generate upcoming action.

The other requirement of many prefrontal tasks is to avoid
or inhibit carrying out a prepotent response. In some cases,
the prepotency is high, such as in the Stroop or antisaccade
tasks, and even control subjects have difficulty completely
inhibiting the prepotency. In other tasks, such as the De-
layed alternation or Wisconsin Card Sort, the prepotency is
not as strong.

Although there is a growing consensus that prefrontal
tasks assess some form of working memory and response
inhibition, the relevant underlying processes still are not
well understood. One important question concerns the rela-
tion between working memory and inhibition (cf. Diamond,
1990; Harnishfeger & Bjorklund, 1993; Hasher & Zacks,
1988). Each might involve separate processes that do not
strongly interact. Prefrontal tasks may require that both
processes operate effectively for success, although some
tasks may pull more for one or the other process. Another
possibility is that the ability to inhibit a prepotent response
is dependent on, or at least intimately related to, working-
memory processes. When working-memory processes are
appropriately activated and maintained, then inhibition of
other possible actions occurs by default. Stronger incorrect
prepotencies require greater working-memory activations to
avoid falling prey to the prepotency.

This latter hypothesis is consistent with several current
models of performance on prefrontally sensitive tasks. For
example, Cohen and Servan-Schreiber (1992) developed
connectionist models of schizophrenic and normal perform-
ance on the Stroop and the continuous performance tasks. In
these models, increasing the activation of units that repre-
sented information required for correct responding (work-
ing memory) inhibited units that represented prepotent
stimulus-response associations, which decreased the prob-
ability of incorrect responding. Other connectionist models,
by Dehaene and Changeux (1991) and Levine and Prueitt
(1989) of the Wisconsin Card Sort task, although different
in many respects, simulate an interaction between prepo-
tency strength and the ability to use feedback to determine

new sorting categories. Similarly, production-system mod-
els developed by Kimberg and Farah (1993) of several
prefrontal tasks contain a response-competition dynamic,
such that weakening of working-memory associations leads
to increased prepotent responding.

From this perspective, task performance and the ability to
successfully inhibit are a function of the strength of the
prepotency, the current fimctioning of working-memory

processes, and the working-memory demand of the task.
Task difficulty can be increased either by increasing prepo-
tency or by increasing working-memory demand (Cohen &
Servan-Schreiber, 1992). For example, the antisaccade task
involves a highly prepotent action (reflexive-like glance to
a peripheral flash) and a relatively low working-memory
demand (remember to look to the opposite side of the flash).
Because of the strong prepotency, even a slight deficiency
in working memory can result in reflexive responding. In
contrast, the Wisconsin Card Sort involves a relatively low
response prepotency (sort on the previously correct cate-
gory) but a relatively high working-memory demand (use
the feedback to infer which categories might be correct).
Difficulties in determining the new category increase the

likelihood of a default response, the previously correct
category.

The hypothesis that increasing working-memory demand
for the alternative response will decrease inhibition is im-
plied in the models of prefrontal functioning but has rarely
been examined empirically. 1 Most of the studies that have

used prefrontal neuropsychological tasks have examined
differences across populations of subjects but have not
varied the processing demands of the tasks. One purpose
of the present studies was to test the hypothesis that as
working-memory load increases, the ability to inhibit
prepotent responses decreases.

Computational models suggest various ways that working
memory may become chronically dysfunctional in popula-
tions with known or suspected prefrontal abnormalities. For
example, Cohen and Servan-Schreiber (1992) simulated
reduced dopaminergic tone in the prefrontal cortex--a sus-

pected dysfunction in schizophrenia--by lowering a gain
parameter of the activation function of working memory
units. Kimberg and Farah (1993) weakened the associations
among items in working memory. Dehaene and Changeux
(1991) and Levine and Prueitt (1989) modified parameters
that decreased the system's ability to use feedback to de-
termine alternative responses. All such models have been
designed to simulate some type of abnormal prefrontal
processing. But less severe and more transient dysfunction-
ing may also occur, not because of cortical insult or neuro-
chemical abnormality, but because working-memory re-
sources are temporarily overloaded or engaged in other
tasks. Such cases of everyday dysfunctioning may share
important similarities with more severe forms of frontal
dysfunctioning.

Everyday Action Errors

At least since the era of James (1890) and Freud (1901/
1966), theorists have viewed the errors we commit in the

_Some important exceptions are studies that have varied the
length of time information must be maintained in working mem-
ory. In studies that have used search tasks with monkeys
(Funahashi, Bruce, & Goldman-Rakic, 1993; Fuster, 1973;
Goldman-Rakic, 1987) and human infants (Diamond, 1991;
Diamond & Goldman-Rakic, 1989), longer delays typically in-
crease the probability of making the prepotent responses.
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courseofeverydayactionasprovidinginsightaboutgeneral
cognitiveprocesses.Errorsthatoccurinparticularcontexts,
suchaswhenasystemisoverloaded,canrevealprocesses
thatareinvisibleundernormalcircumstances.Recently,
someneuropsychologistshavecommentedonthesimilarity
betweencertaintypesof everydayactionerrorsandthe
kindsof difficultiesexperiencedbyfrontalpatients(e.g.,
Luria,1966;Shallice,1988).The most relevant kinds of
errors are referred to as capture errors (Norman, 1981) or
strong habit intrusions (Reason, 1979). James (1909/1962)
described an often-cited example:

"Persons in going to their bedroom to dress for dinner have
been known to take off one garment after another and finally to
get into bed, merely because that was the habitual issue of the
first few movements when performed at a later hour." (p. 155)

Additional examples include following an incorrect but
habitual route in one's automobile when the intended route
deviates from the more traveled one, continuing to dial an

old telephone number long after the number has changed,
and looking for cookies in the place they were always kept
after they have been moved to a new storage location. Such
errors are most likely to occur when one is otherwise

occupied, such as when listening to the radio or thinking
about some other topic.

The working-memory hypothesis suggests that avoiding
such errors requires maintaining one's goals and plans on-
line, especially when a strong prepotent or habitual ten-
dency is present. The stronger the prepotency and the more
working-memory is otherwise engaged, the greater the
probability of error. This view is similar to that of Norman
and Shallice (1986), who hypothesized a supervisory atten-
tional system that modulates actions of a lower-level con-
tention scheduling system consisting of automatic-like,
condition-action productions. This conception of everyday
action errors is also consistent with computational models

of prefrontal functioning described earlier and suggests a
continuum between more severe forms of working-memory

dysfunction in patient populations and the moment-to-
moment variations seen in everyday functioning.

We examined this hypothesis in the present study by
- testing nonpatient subjects oh the-antisaccade task, a task

that has been shown to be sensitive to prefrontal dysfunc-

tioning and that is viewed as requiring a strong inhibitory
component. We expected that as the working-memory load
of the task increased, the proportion of strong habit or

capture errors would also increase, perhaps to the point at
which the performance of normal subjects would begin to
resemble that of frontal patient populations. Such a finding
would support the idea that temporarily overloading work-

ing memory can result in functionally similar outcomes as
more permanent prefrontal dysfunctions due to lesion or
neurochemical abnormalities.

The Antisaccade Task and Overview of the

Preseni Study

The antisaccade task was originally developed by Hallett

(1978; Hallett & Adams, 1980) to examine the mechanisms

responsible for generating automatic and goal-directed sac-
cades. The task was later adapted by Guitton, Buchtel, and

Douglas (1982, 1985) to study deficits in inhibitory control
in patients with prefrontal lesions and subsequently has
been used by others to examine deficits of other populations
with suspected prefrontal dysfunctions (e.g., Aman,
Roberts, & Pennington, 1994; Fletcher & Sharpe, 1986;
Fukushima et al., 1988; Merrill, Paige, Abrams, Jacoby, &

Clifford, 1991; Pierrot-Deseilligny, Rivaud, Gaymard, &
Agid, 1991; Rothlind, Posner, & Schaughency, 1991). The
antisaccade task has a number of desirable characteristics

for studying prefrontal cognitive functions. First, it captures
a key characteristic of frontal deficits, as summarized by
Fuster (1989): "The patient with even minor prefrontal
damage tends to show a paucity of deliberate actions
... The frontal patient, like the frontal animal, tends to

perseverate--to repeat old patterns of behavior even in
circumstances that demand change" (p. 131). The antisac-

cade task presents discrete and repeatable instances in
which a built-in prepotent tendency must not be acted on in
order to produce an appropriate response. In many other
tasks the prepotency must be established during testing
(e.g., in the Wisconsin Card Sort Task) and therefore may
vary in strength and not be as reliably present as often as in
the antisaccade task. Another benefit of the task is its

relative simplicity and its ability to be used with a wide
variety of subjects, including children (Aman et al., 1994).
Despite the simplicity in the basic instructions for the task,
it is still difficult to perform correctly in a consistent man-
ner, as even control adult subjects do not perform at ceiling.

Guitton et al. (1985) tested patients with discrete unilat-
eral excisions of frontal lobe tissue (for relieving intractable

epilepsy) as well as patients with temporal lobe removals
and nonpatient controls on the antisaccade and prosaccade
tasks. In the antisaccade task a fixation point was displayed
for a brief indeterminate time period and was subsequently

extinguished when a cue was displayed 12 ° to its left or its
right. Subjects were to look an equal distance to the opposite
side of the cue where a target would appear 300-600 ms
after the cue's onset. The target, an open square that was
missing one of its sides, was displayed for 150 ms before it
was masked. Subjects indicated which side of the square
was missing by pointing their thumbs in different directions.
This procedure was also followed for the prosaccade task,
except that the subjects were instructed to make a saccade to
the cue, where the target was subsequently displayed. Per-
formance on the prosaccade task did not differ across the

groups, suggesting that frontal lesions did not affect the
ability to program or execute visually guided saccades. In
contrast, there were striking differences in the antisaccade
task between the frontal group and the temporal and non-

patient controls (who did not differ from each other). First,
the frontal patients made more than twice as many incorrect
saccades to the cue (referred to as reflexive saccades) than
did the other groups (56% vs. 20%). Second, the frontal
group's initial antisaccades and corrected antisaccades
(after reflexive ones) more often appeared to be reactive to
the target onset than in the control groups. The controls
were better able to make an anticipatory saccade to the
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target location before its onset; the frontal group had diffi-
culty initiating a saccade to an empty location. Difficulty in
the antisaccade task has been demonstrated in other frontal-

lesioned groups (Pierrot-Deseilligny et al., 1991) and in
other syndromes with known or suspected prefrontal dys-
functioning, such as schizophrenia (Fukushima et al., 1988;
Fukushima, Fukushima, Morita, & Yamashita, 1990),

Alzheimer's disease (Fletcher & Sharpe, 1986), and atten-
tion deficit hyperactivity disorder (Aman et al., 1994).

The purpose of the present research was to examine the
relation between working-memory load and the ability to

inhibit prepotent saccades in the antisaccade task. In partic-
ular, we tested the hypothesis that as working-memory
resources are increasingly taxed, reflexive responding will
increase, so that the patterns of errors in nonpatient subjects
will begin to resemble the performance of frontal patients.
This expectation was based on the interactive framework,
presented earlier, that posits the probability of performing
various actions is a function of the strength of the prepo-
tency, the available working-memory resources for deter-
mining and generating the alternative response, and the
working-memory demands of the task. In the presence of a

high prepotency, such as in the antisaccade task, a tempo-
rary increase in working-memory demand may have a func-
tionally similar effect as a more permanent dysfunction in
working-memory processing--a difficulty generating the
alternative response, which will result in being "captured"
by the default prepotency.

Experiment 1

A well-developed technique for examining the working-
memory demand of a task is to add a secondary task whose
demand on working memory has already been established.

When processes across the tasks share working-memory
resources, the decrement in performance in the primary
task, secondary task, or both, should be greater than when
the tasks share fewer common resources. This strategy has

proven effective in a variety of task domains (e.g., Hitch &
Baddeley, 1976; Logic, Baddeley, Mane, Donchin, &
Sheptak, 1989; Wickens, Kramer, Vanasse, & Donchin,
1983). We adopted this basic methodology here as a means
of increasing the overall working-memory demand of the
saccade tasks. Put differently, we expected that introducing
a secondary working-memory task would decrease the
working-memory resources available for the primary
saccade tasks.

In the first study, we tested college students on the
antisaccade and prosaccade tasks. Each task was performed
under two conditions, without a concurrent task and with a
concurrent task that involved simple addition problems. The

addition problems required a memory component (keeping
a changing sum in mind) and a computational component

(adding the current sum to a new number). Although we did
not expect the concurrent math task to affect performance
on the prosaccade task, we did expect it to have a deleteri-
ous effect on performance in the antisaccade task. We also
tested subjects on an individual-difference measure of

working-memory capacity, the sentence span task (Dane-
man and Carpenter, 1980) to assess whether differences in
this task correlated with individual differences in the anti-

saccade task.

Method

Subjects

Subjects were 21 college students at the University of Denver (8
men, 13 women) who were given course credit for their partici-
pation. The subjects ranged in age from 19 years to 28 years (M =
22.1 years; SD = 2.3 years). All subjects participating in the study
had normal or corrected-to-normal vision and spoke English as
their primary language. Because of problems with the eye move-
ment data collection system, the data from 14 additional subjects
could not be used. The data from a subject who misunderstood the
instructions also were not used.

Tasks and Apparatus

The subjects were given two eye movement tasks--the prosac-
cade and antisaccade tasks--in each of two conditions, without a
concurrent task and with a mental arithmetic task. The mental
arithmetic task was also administered alone. Subjects were also
tested on an individual-difference measure of working memory,
the sentence span task (Daneman & Carpenter, 1980).

Eye movement tasks. For the prosaccade and antisaccade tasks,
stimuli were displayed on a 14-in. (36-cm) VGA color monitor
controlled by an IBM compatible 80386 PC. The tasks were
programmed using the Micro Experimental Laboratory software
package (Schneider, 1988). The program controlled the stimulus
presentation and recorded keypress timing and accuracy for target
identification. Eye movement data were collected using a corneal
reflection eye tracking system. An infrared-sensitive video camera
was mounted under the task monitor and focused on the subject's
left eye. The eye was illuminated by a near infrared light. The
video signal from the camera was fed into an Isean RK-426 eye
tracker that output the x-y positions of the pupil and corneal
reflection of the infrared light to a separate 80286 PC at 60 Hz.
This computer also collected synchronous data from the task-
presenting PC that specified what stimuli were displayed on the
task monitor at each 1/60 of a second. For more information on the
eye movement hardware and software, see Roberts, Brown,
Wiebke, and Haith (1991) and Roberts and Wiebke (1994).

Each trial of the prosaccade (PS) task began with a fixation point
at the center of the screen (see Figure 1). At intervals that varied
randomly between 1,500 and 3,500 ms the fixation point was
extinguished, and a cue consisting of a white square was presented
11.5° to the left or right of the fixation point. Cues of three
different sizes were used: small (0.4 ° square), medium (2.0 °
square), and large (3.4 ° square). The different-sized cues allowed
us to examine whether cue size affected saccadic direction or
response time. The cue was extinguished 400 ms after its onset,
and a target was displayed at the cue's location. The target was a
2.0 ° box containing an arrow pointing left, right, or up. The arrow
was displayed for 150 ms before a pattern masked it. The mask
was displayed for 1,500 ms or until the subject responded with a
keypress. Cue side, cue size, and arrow direction were counterbal-
anced across 90 experimental trials that were presented in individ-
ually determined random orders. There were 12 practice trials.

Subjects were instructed to look at the fixation point until the
cue was presented, at which point they were to make an eye
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Prosaccade Antisaccade

Fixalion
1500-3500
msec

Cue

400 msec

Target

150 msec
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÷

Figure 1. Sequence of events for the prosaccade and antisaccade
tasks. Each frame represents what was displayed on the computer

monitor for the period of time shown on the left of the figure.

movement to the cue to determine the direction of the target arrow.

They indicated their response by pushing one of the corresponding

arrow keys (left, up, right) on a computer keyboard.
The occurrence, timing, direction, and amplitude of saccades

were scored by an automatic scoring system developed by Roberts

and Wiebke (1994; Roberts et al., 1991). The system uses a

hierarchical set of algorithms to disambiguate saccadic movements

from background noise. Briefly, when the difference between two

successive moving averages crosses a threshold, the program as-
sumes a saccade has occurred within a specific time window. Each

pair of successive looking locations is then compared within the
window to make a best guess about the exact moment the saccade

was initiated. The program's performance is highly reliable with

skilled human scorers (Roberts & Wiebke, 1994). In addition, a
- skilled observer reviewed all of-the -program's judgments and

corrected the few that seemed inaccurate.

The dependent measures of interest were the direction of the eye
movement, the latency of the initiation of the saccade to the cue,

and the correctness of target identification.

The antisaccade (AS) task was identical to the PS task, except

the target was always presented on the side opposite the cue (see

Figure 1). Subjects were instructed to look in the direction opposite

the cue to see the target. It was stressed that an eye movement to
the cue was considered incorrect and would diminish the speed and

accuracy of target identification. Eye movements were scored in
the same fashion as described for the PS task. The dependent

measures were the proportion of incorrect initial saccades to the

cue (called reflexive), the latency of the first eye movement (re-
flexive or antisaccade), the timing of corrective saccades after

reflexive ones, and the correctness of target identification.

The AS and PS tasks were each performed under two conditions,

with and without a concurrent task. In the no-load condition, the

tasks were administered as just described. In the arithmetic con-

dition, the experimenter orally presented random sequences of

numbers ranging from 1 to 9 as the subjects performed the eye

movement tasks. Subjects were required to add the first two
numbers in the sequence and verbalize the answer. The third

number was immediately presented, and the subject was instructed

to add the previous sum to the ncw number and verbalize the

answer. This continued through the fifth number in the sequence,

after which a new sequence was started. The experimenter said

"new" to inform the subject when a new sequence began. Before

subjects performed the PS or AS task in the arithmetic condition,
they performed 10 sets of the arithmetic problems alone as a

baseline (after 2 practice sets). In all conditions, subjects were

instructed to answer problems as quickly as they could with a high

degree of accuracy. The experimenter presented a new problem

immediately after an answer was given. When performing the eye
movement tasks, subjects were also instructed to try to do as well

as they could on both tasks. The goal of this procedure was to have

subjects maintain high accuracy on arithmetic problems at a rela-

tively constant pace. The procedure appeared to be effective: The

proportion of correct answers was high in both the baseline (M =
0.95, SD = 0.05) and eye movement (M = 0.94, SD = 0.05) tasks,
and there were no differences between performances in the AS or

PS tasks, t(20) < 1, p > .3. The average time per problem was

slightly shorter in the baseline tasks (M = 2.4 s, SD = 0.6 s) than

in the eye movement tasks (M = 2.9 s, SD = 0.8 s), t(20) = 6.9,

p < .01, and there were no differences in time per problem across

the two eye movement tasks, t(20) = 1.0, p > .2.
Sentence span task. A version of the sentence span task devel-

oped by Daneman and Carpenter (1980) was used as a separate
individual-difference measure of working-memory capacity. Subjects

read single sentences aloud at their own pace and were instructed to
remember the last word of each sentence. After a set of sentences had

been read, each subject was asked to recall all of the last words for all
sentences in the set. Sentences were selected from a total of 65

unrelated sentences, each of which was displayed individually on an

8-in. × 5-in. (20-cm x 13-cm) card. Sentences were 13-16 words

long, and each ended with a noun. The sentences were presented one
at a time, in set sizes ranging from 2 to 6 sentences. Subjects

performed three sets at each set size in increasing order, starting at a
set size of 2, until they failed to accurately recall all the words in all

three sets of a particular set size. There were two practice trials (with

a set size of 2) before testing. The dependent measure of interest was

the largest set size for which the subject correctly remembered two out
of the three sets.

Procedure

Subjects were tested individually on 2 separate days with a
mean delay of 6.8 days (SD = 6) between testing sessions. Sub-

jects were assigned randomly to one of two task orders with the
constraint that there were equal numbers in each order. Because

some subjects' data could not be analyzed because of equipment

problems, there were unequal numbers in the two orders. Twelve
subjects received the PS tasks in the first session and the AS

tasks in the second, and 9 subjects received the tasks in the re-

verse order. In each session, subjects first performed the eye
movement task without the concurrent arithmetic problems, then

the baseline arithmetic problems, and finally the eye movement
task with the arithmetic problems. Pilot work indicated that this

ordering maximized subjects' ability to perform well on the
concurrent-load version of the eye movement task. At the end of

the second session, all subjects were tested on the sentence span

task.

The eye movement tasks were administered in a dark room

relatively free of distractions. Subjects' hcads were steadied with
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a forehead rest and were positioned 42 cm from the computer

monitor. Before the eye movement tasks, calibration data were

collected as the subject looked at particular locations on the screen.

We used the calibration data to linearize the eye movement data
and to map looking locations onto the coordinate space of the task

monitor (for details, see Roberts et al., 1991; Roberts & Wiebke,

1994).

Results

Eye Movements

Saccade direction. The dependent variable of primary
interest was saccade direction. A reflexive saccade to the

cue was the correct response on the PS tasks but was the

incorrect response on the AS tasks. As shown in Figure 2(a),

subjects made reflexive saccades close to 100% of the time

in the PS tasks; we therefore did not analyze these accuracy

data further.

We hypothesized that reflexive responding in the AS task

would increase when subjects performed the concurrent

addition problems. To examine this hypothesis as well as

other potential influences on performance, we analyzed the

proportion of reflexive saccades in the AS tasks in a mixed

analysis of variance (ANOVA) with order (AS or PS tasks

performed first) as a between-subjects variable and concur-

rent load (arithmetic or none), cue size (large, medium, or

small), and cue side (left or right) as within-subject vari-

ables. As expected, subjects made more reflexive saccades

when solving the simple addition problems (M = 51%,

SD = 22%) than when not performing a concurrent task

(M = 31%, SD = 22%), F(1, 19) = 26.5, p < .001, also

see Figure 2(a).
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Figure 2. Panel (a): Proportion of reflexive saccades in the prosaccade (Pro) and antisaccade

(Anti) tasks as a function of concurrent-load condition in Experiment 1. Panel Co): Saccade response

times (RT; in msec) for reflexive saccades in the prosaccade task and reflexive and anti-saccades in

the antisaccade task as a function of concurrent load in Experiment 1.
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We also found main effects for cue size and task order:

Performance improved slightly (fewer reflexive saccades)
as cue size increased, (proportion reflexive for small, me-

dium, and large cues: Ms = 44%, 41%, 37%; SDs = 19%,
22%, 33%; respectively), F(2, 38) = 10.0, p < .001. The
improvement fit a linear trend, F(1, 19) = 17.1, p < .005.
Thus, increasing the cue size moderately increased the sub-
jects' ability to make an antisaccade away from the cue. The

proportion of reflexive saccades in the AS tasks also was
lower when the AS tasks were performed before the PS
tasks (M = 31%, SD = 14%) than when they were per-
formed after the PS tasks (M = 48%, SD = 22%), F(1,

19) = 4.2, p = .05. Presumably, the prior experience of
making 180 reflexive saccades in the PS tasks further
strengthened the prepotent tendency to make a saccade to a
peripherally flashed cue in the AS tasks. Interestingly, this
carryover effect spanned the several days between the two
testing sessions. The only other significant effect was an
interaction between the side of the cue and the presence or

absence of the concurrent load, F(1, 19) = 6.0, p < .05.
Post hoc contrasts indicated that the proportions of reflexive
saccades did not differ between left and right cues when
there was no concurrent load (left: M = 30%, SD = 24%;

right: M = 32%, SD = 22%), F(1, 20) = 0.3, ns, but did
differ in the arithmetic concurrent-load condition, with

more reflexive responding when the cue was on the left side
(left: M = 55%, SD = 22%; right: M = 46%, SD = 26%),
F(1, 20) = 3.07, p < .07.

Saccade response time. Saccades toward a peripherally
flashed cue are presumably generated by a relatively auto-
matic process (cf. Funahashi, Bruce, & Goldman-Rakic,
1993; Guitton et al., 1985; Pierrot-Deseilligny et al., 1991);
thus, we expected the latencies for reflexive saccades to be

fast and to not be significantly affected by task or concur-
rent load. In contrast, antisaccades should result from a
more deliberate and effortful process involving working

memory and should therefore be relatively slow overall and
further slowed by the presence of the concurrent working-
memory load. To examine these expectations, we calculated
saccadic reaction time (RT) from the onset of the cue to the
initiation of the eye movemenLMedian RTs were computed

separately for reflexive saccades (on the PS tasks and AS
tasks) and antisaccades (AS tasks only).

We first analyzed the reflexive RTs in a mixed ANOVA

with task order (PS task or AS task first) as a between-
subjects variable and task (PS task or AS task) and concur-
rent load (arithmetic or none) as within-subject variables. 2

As shown in Figure 2(b), RTs for reflexive saccades re-
mained at about 200 ms regardless of task or concurrent

load (overall M = 198 ms, SD = 30 ms), all ps > .18. The
only significant effect was an interaction between task and
order, F(1, 19) = 5.8, p < .05. Although no post hoc
contrasts were individually significant, the interaction re-
flected relatively faster RTs in the PS task when it came

before the AS task (M = 193 ms, SD = 20 ms) than when
it came after the AS task (M = 209 ms, SD = 29 ms) in

comparison to the RTs in the AS task, where there were
smaller differences across the two orders (PS task first: M =

197 ms, SD = 26 ms; AS task first: M = 193 ms; SD =

27 ms).
We separately examined all RTs on the AS tasks as a

function of type of response (reflexive or antisaccade),

concurrent load (no-load or arithmetic), and task order. As
shown in Figure 2(b), there was a large main effect for type
of response, F(1, 19) = 340.1, p < .001, with much slower
RTs for antisaccades (M = 333 ms, SD = 28 ms) than for
incorrect reflexive saccades (M = 196 ms, SD = 41 ms).
There was also a main effect for concurrent load, F(I, 19) =

14.5, p < .005, with slower responding with the arithmetic
concurrent load than without the load. A significant inter-
action between response type and concurrent load, F(1,

19) = 15.1, p < .005, indicated that the additional re-
quirement of performing the arithmetic problems slowed
antisaccades (arithmetic: M = 425 ms, SD = 100 ms; no-
load: M = 333 ms, SD = 41 ms), F(2, 19) = 8.1, p <
.005, but did not have a significant impact on reflexive
saccades (arithmetic: M = 197 ms, SD = 34 ms; no-load:
M = 194 ms, SD = 29 ms), F(2, 19) < 1, ns (see Figure

2). Thus, performing the addition problems slowed
antisaccades but did not affect the timing of reflexive
saccades.

Guitton et al. (1985) found that the antisaccades of frontal

patients, as compared with those of controls, had longer
latencies and that many more antisaccades occurred only
after the onset of the target (referred to as visually triggered
saccades). In contrast, Guitton's control subjects more often
began the saccade toward the target before it came on the
screen (there were 400 ms between the cue and target
onsets). A conservative estimate of saccadic RT is 200 ms,
so saccades occurring 200 ms after the onset of the target
could be considered visually triggered. Guitton et al. (1985),
however, found visually triggered antisaccades occurring at
100 ms after target onset and argued that the faster-than-
usual RTs resulted from an already programmed saccadic
movement that lacked an internal trigger (also see Fischer &

Weber, 1993). This proposition was supported by the find-
ing that the profile of antisaccade RTs was similar at various
cue-target stimulus onset asynchronies (SOAs). In the
present case, subjects in the arithmetic condition made more
visually triggered antisaccades than they did in the no-load
condition. With the 200-ms criterion, subjects made visually

triggered saccades 11% (SD = 8%) of the time in the
arithmetic condition and 2% (SD = 3%) of the time in
the no-load condition, F(1, 19) = 18.0, p < .001. With
the 100-ms criterion, subjects made 40% (SD = 21%) vi-

sually triggered saccades in the arithmetic condition and
13% (SD = 8%) in the no-load condition, F(1, 19) =
29.4, p < .001.

After subjects made an incorrect reflexive saccade in the
AS tasks, they typically made a corrective antisaccade.

z Because there were varying proportions of reflexive and anti-
saccades on the AS tasks, we did nol analyze for all possible
within-subject effects, because the cell sizes for RTs were too
small (less than 5 subjects) in the full design. Thus, we focused our
analyses on the primary variables of interest (task and concurrent
load), which maintained cell sizes > 10.
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Frontalpatients'correctivesaccadesaretypicallyslower
andmoreoftenvisuallytriggeredbythetargetthanarethe
correctivesaccadesofcontrols(Guittonetal.,1982,1985).
Inthepresentcase,subjectswereslightlysloweratmaking
correctivesaccades(asmeasuredfromthecueonset)inthe
arithmeticcondition(M = 475ms,SD = 50 ms) than in the

no-load condition (M = 450 ms, SD = 46 ms), F(1, 19) =
6.9, p < .05. The percentage of visually triggered corrective
saccades did not differ between the conditions using the
200-ms criterion (M = 10%, SD = 10%; M = 6%, SD =

10%; for arithmetic and no-load, respectively), F(1, 19) =
2.7, p = .11. Using the 100-ms criterion, corrective sac-

cades in the arithmetic condition were more often visually
triggered (M = 48%, SD = 20%) than in the no-load
condition (M = 33%, SD = 19%), F(1, 19) = 14.6,
p < .005.

To summarize the eye movement findings, the extra de-
mand of performing simple addition problems increased the
likelihood of making reflexive saccades and increased the
latencies of antisaecades in the AS task. In contrast, the

additional demand did not affect the timing of reflexive
saccades in either the AS or PS tasks.

Target Identification

The target consisted of an arrow facing in one of three
directions, and subjects pressed one of three buttons to
indicate which target was displayed before the mask. Ac-
curacy of target identification generally mirrored the eye
movement findings, which is to be expected given that the
direction and timing of eye movements often determined the

length of time a subject had to view the target. Proportions
of correct keypresses were analyzed in a mixed ANOVA
with task order as a between-subjects variable and task (PS
and AS), concurrent load, cue size, and cue side as within-

subject variables. As shown in Table 2, subjects correctly
identified more targets in the PS task (93%) than in the AS
task (68.7%), F(I, 19) = 116.6, p < .001, and performed
better without the arithmetic concurrent load (87.7%) than
with the additional load (73.9%), F(1, 19) = 54.2, p < .001.
A significant interaction between task and load condition,
F(1, 19) = 25.8, p < .001, indicated a larger decrement in
performance due to the arithmetic load in the AS task

(20.4%) than in the PS task (7.2%), although both decre-

Table 2

Target Identification as a Function of Task and
Concurrent-Load Condition in Experiment 1

Task

Prosaccade Antisaccade

Concurrent load No-load Arithmetic No-load Arithmetic

Percent correct"
M 96.6 89.4 78.9 58.5
SD 4.2 7.7 11.8 17.3

Significant effects for task, concurrent load, and Task × Con-
current Load, p < .001.

ments were statistically reliable, ps < .01. As found with
eye movements, performance was slightly better with the
larger-sized cues (large: M = 83.3, SD = 10.2; medium:

M = 81.8, SD = 9.8; small: M = 77.4, SD = 9.8), F(2,
38) = 20.2, p < .001. Post hoc contrasts revealed a sig-
nificant difference between the small and medium sizes

(p < .05), but not between medium and large sizes (ns).
Size also interacted with task, F(2, 38) = 8.6, p < .005,
reflecting greater differences due to size in the AS versus

the PS task. There were no other significant effects.
To summarize, difficulty in correctly identifying targets

generally paralleled the eye movement findings: Accuracy
worsened with the additional load of the math problems, and
the decrement was more severe in the AS task than in the PS
task.

Individual Differences and Working Memory

The Daneman and Carpenter (1983) working-memory
sentence task provided an independent measure of working-
memory capacity. We correlated performance on this task
with the proportion of reflexive responses, the median la-
tency for antisaccades, and the number of correct target
identifications on the AS task with and without the concur-

rent arithmetic load, as well as with the degree of individual
decrement on these measures in the arithmetic version as

compared with the no-load version. None of the correlations
was statistically reliable, ps > .5. The lack of reliable

relations cannot be attributed to a restricted range in any of
the variables. For example, percentage reflexive responding
on the AS task without the arithmetic concurrent load

ranged from 9% to 92% (SD = 22%), and working-memory
scores on the sentences task ranged from 5 to 12 (SD = 2.1).
Another potential assessment of individual differences in

working memory was the rate of performance on the base-
line arithmetic problems before the concurrent arithmetic
conditions of the PS and AS tasks. We averaged the time
taken to answer the arithmetic problems correctly on both

assessments. This measure also did not correlate with any
measures from the AS task.

Discussion

Taken as a whole, the findings support the hypothesis that
increasing the working-memory demand of the AS task

increases the difficulty of inhibiting the prepotent tendency
to glance at a peripherally flashed cue when attempting to
generate a saccade to the opposite direction. In several
respects, the pattern of performance decrements associated
with adding the concurrent task resembles the deficits
shown by frontal patients and other patient populations with
suspected prefrontal dysfunctioning. "Frontal" subjects do
not differ from controls in the timing or accuracy of pro-
saccades, but they make many more incorrect reflexive
saccades in the AS task. In addition, frontal subjects con-
sistently take longer to initiate antisaccades and corrective

saccades, with higher proportions of these eye movements
appearing to be visually triggered by the onset of the target
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(e.g.,Guittonetal.,1985;Pierrot-Deseillignyetal.,1991).
Thispatternof differenceswasthesamepatternfound
betweentheno-loadandarithmetic-loadconcurrentcondi-
tionsin thepresentstudy.

Thefindingssupporttheideathatreflexivesaccadesare
generatedbyarelativelyautomaticprocess.Reflexivesac-
cades,whetherascorrectresponsesinthePStaskor incor-
rectresponsesintheAStask,occurredabout190msafter
theonsetof thecue.Addingtheconcurrentloadineither
taskdidnotalterthistiming.Incontrast,antisaccadestook
about150mslongertoinitiateandwerefurtherslowedby
thearithmeticconcurrentload.Thesefindingssupportthe
ideathatthegenerationoftheantisaccadeinvolvesworking
memoryandthatincreasingtheloadonworkingmemory
decreasestheresourcesavailableto generatetheantisac-
cade,allowingthereflexivesaccadetomoreoften"win"the
competition.

Thesizeandthesideof thecuealsoaffectedperform-
ance.Weexpectedthatlarger-sizedcuesmightincreasethe
prepotencyoflookingatthecue.Instead,larger-sizedcues
wereslightlyeasierto lookawayfromin theAStasks,
whichpresumablyresultedin somewhatimprovedtarget
identifications.A possibleexplanationforthisresultisthat
largercuesarenoticedmoreeasilyandquickly,allowing
deliberateprocessesof workingmemorymoreopportunity
to programanantisaccade.Cueson theleftsidecaused
slightlymorereflexivesaccadesthandidcuesontheright,
althoughthisdifferenceoccurredonlyin thearithmetic
concurrent-loadversionoftheAStask.Thiseffectmaybe
duetotheconcurrentarithmetictaskrecruitingdispropor-
tionateprocessingintheleftandrightcerebralhemispheres.
Thesubtleextentoftheeffect,however,requiresreplication
beforefurtherhypothesizingiswarranted.

Individualdifferenceson theDanemanandCarpenter
(1980)sentencespantaskdidnotcorrelatewithperform-
anceontheAStasks.Thereareseveralpossiblereasonsfor
thelackof arelation.First,variabilitybetweenindividuals
inanormalpopulationontheantisaccadetaskmaynotbe
dueprimarilyto differencesinworking-memorycapacity
(astheymightin a frontallyimpairedgroup).Another

_possibilityisthatthetwotaskstapdifferenttypesorchar-
acteristicsofworkingmemory.](s-till seems to be the case,

however, that externally increasing the working-memory
load has an overall detrimental effect on AS performance

(arithmetic condition). In the next two experiments we
further explored these hypotheses by varying the hypothe-
sized working-memory load of concurrent tasks and by
examining another individual difference measure of work-

ing memory.

Experiment 2

Our explanation for why the arithmetic concurrent load
had a large adverse effect on performance in the AS task is
that performing addition problems taxed limited working-
memory resources that are required for inhibiting the re-
flexive response and generating an antisaccade. It is possi-
ble, however, that many concurrent tasks would have a

detrimental impact on performance regardless of their de-
mand on working-memory resources. Performing any other

task may divert attention or share other limited resources
that affect the difficulty of generating antisaccades. In the
present case, listening to the experimenter present numbers,
vocalizing a response, or both, may have worsened perform-
ance--not the hypothesized working-memory component of

adding numbers and keeping in mind the current sum. To
examine this hypothesis we tested subjects in another con-
current-load condition, the shadowing condition. In the

shadowing condition, the subjects listened to numbers pre-
sented at approximately the same rate as in the arithmetic
condition and were required to vocalize the number they
had just heard. The input and output requirements of the
task were identical to those of the arithmetic condition, but

the shadowing task lacks the additional requirement to add
the number and keep in mind the previous sum while a new
number is presented. Thus, the shadowing condition al-
lowed us to examine whether it was the working memory
demand associated with the arithmetic task, and not the

requirement to perform two tasks simultaneously, that in-
terfered with performance on the AS task in Experiment 1.
We expected that the ability to inhibit reflexive saccades
and initiate antisaccades would be significantly better in the

shadowing condition than they had been in the arithmetic
condition. To examine this hypothesis, we tested subjects on
the AS task without a concurrent load, with the arithmetic

load, and with a shadowing load. In addition, we added
another individual difference measure of working memory,

the counting span task, to examine whether performance on
this task related to performance on the AS tasks.

Method

Subjects

Subjects were 23 college students (6 men, 17 women) who were
given course credit for their participation. The subjects ranged in
age from 19 years to 27 years (M = 20.6 years; SD = 10 months).
All subjects participating in the study had normal or corrected-to-
normal vision and spoke English as their primary language. Four
additional subjects were tested but were not included in the data
analyses: 1 subject's eye movement data contained too much noise
to be reliably scored, 1 subject failed to complete a second testing
session, and 2 subjects performed several tasks incorrectly.

Tasks

Subjects performed the AS task in three concurrent-load condi-
tions: no-load, arithmetic, and shadowing. The hardware and soft-
ware used to present the tasks and to collect, calibrate, and score
eye movements were the same as those used in Experiment 1.
Subjects performed two individual difference tests of working
memory: Daneman and Carpenter's (1980) sentcnce span task,
which was used in Experiment 1, and a counting span task (Case
et al., 1982).

Eye movement tasks. The AS task was the same as that de-
scribed in Experiment 1, except that each condition contained 60
experimental trials rather than 90 and used only medium-sized
cues. Procedures for the arithmetic condition and the no-load
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condition were the same as those described in Experiment 1. As in

the first experiment, subjects performed well on the addition

problems when they were administered alone (M = 95% correct,

SD = 5%) and during the AS task (M = 94% correct, SD = 4%),

t(22) = 0.6, ns. The average time per problem was slightly slower

when performed during the AS task (M = 2.8 s, SD = 0.4 s) than

when performed alone (M = 2.4 s, SD = 0.5 s), t(22) - 4.9,

p < .01.
In the shadowing concurrent-load condition, randomly chosen

digits (1-9) were presented on an audiotape at the rate of 1 every

2 s, which was faster than the average time taken per digit in the

arithmetic problems in Experiment 1 (1 per 2.9 s). Subjects were

instructed to repeat each digit out loud during the brief interval.

Subjects practiced repeating the digits for 1 rain before the exper-

imental trials began.

Sentence span task. This task was the same as described in

Experiment 1.

Counting span task. This task was based on the task used by
Case et al. (1982). Subjects were instructed to count yellow dots

shown on 8-1/2-in. x ll-in. (22-cm × 28-cm) white cards on which

both blue and yellow dots appeared. The clots were arranged in

scrambled irregular patterns. Subjects were instructed to count the

yellow dots, ignore the blue dots, and remember the number of

yellow dots on each card. When subjects were shown a blank card,

they were instructed to recall the number of yellow dots on the

previous cards. Cards came in set sizes from two to six cards, and
there were three different sets for each size. There were two

practice sets, each containing two cards. Subjects performed the
sets in increasing order, from a set size of two to six. When a

subject failed all three sets at a particular level, the testing was

discontinued. The dependent measure was the largest set size in

which the subject correctly remembered at least two of the three
sets.

Procedure

Subjects were tested individually on 2 separate days with a
mean delay of 6.9 days between testing sessions (SD = 3.7 days).

All subjects performed the no-load AS task on the first day of

testing, followed by either the arithmetic or shadowing concurrent-

load versions. (Pilot work indicated that giving the no-load con-

dition first aided performance on the concurrent-load versions of

the task.) Half of the subjects received the arithmetic condition on
the first day and the shadowing condition on the second day, and
half received the tasks in the reverse order. Because of the 4

subjects whose data were not analyzed, the number of subjects in
each order was not equal: 10 subjects received the arithmetic

version first, and 13 subjects received the shadowing version first.

Subjects performed one of the working-memory individual differ-

ence tasks at the end of each testing session.

The testing conditions and general procedures were the same as

in the first experiment.

Results and Discussion

Eye Movements

Saccade direction. We expected that repeating single

digits (shadowing condition) would put less demand on

working memory than would adding digits to a running total

(arithmetic condition). Consequently, subjects were ex-

pected to make fewer reflexive saccades to the cue in the

shadowing version of the AS task than in the arithmetic

version of the task. To examine this hypothesis, we submit-

ted the proportion of reflexive saccades to a mixed ANOVA

with task order (arithmetic or shadowing version first) as a

betwecn-subjects variable and concurrent load (no-load,

shadowing, arithmetic) and cue side (left, right) as within-

subject variables. As seen in Figure 3(a), there was a sig-

nificant main effect for concurrent load, F(2, 42) = 17.9,

p < .001. Post hoc contrasts indicated that there was sig-

nificantly more reflexive responding in the arithmetic

condition (M = 52%, SD = 20%) than there was in the

shadowing condition (M = 37%, SD = 24%) and that

there was more reflexive responding in the shadowing

condition than in the no-load condition (M = 25%, SD =

14%), all ps < .005. The only other significant effect was

a Cue Side × Concurrent Load interaction, F(2, 42) =

7.7, p < .005. Post hoc contrasts indicated no differences

between left and right cues in the no-load or shadowing

conditions, ps > .3, but indicated a marginally significant

decrement in performance for left-side cues (M = 59%,

SD = 23%) relative to right-side cues (M = 46%, SD =

24%), p < .06 in the arithmetic condition.

Saccade response time. Although we did not expect the

timing of reflexive saccades to be sensitive to the concur-

rent-load manipulation, we did expect antisaccades to show

longer latencies as the working-memory load of the concur-

rent task increased. To examine this expectation we submit-

ted median saccade response times (from the cue onset) to

a mixed ANOVA with task order as a between-subjects

variable and response type (anti- or reflexive saccade) and

concurrent load as within-subject variables. As shown in

Figure 3(b), the pattern of saccade latencies supported our

expectations. A large main effect for response type, F(1,

21) = 279.7, p < .001, was due to the considerably shorter

latencies for reflexive saccades (M = 180 ms, SD = 19 ms)

than for antisaccades (M = 352 ms, SD = 60.4 ms). There

was also a main effect for concurrent load, F(2, 42) = 21.4,

p < .001, which resulted from differences in the antisaccade

RTs across load type. Antisaccade latencies in the arith-

metic condition (M = 430 ms, SD = 90 ms) were signifi-

cantly longer than in the shadowing condition (M = 318,

SD = 65), F(2, 21) = 18.3, p < .001. RTs in the shad-

owing condition did not differ from those in the no-load

condition, F(2, 21) < 2.0, p > .18. There were no differ-
ences in the latencies of reflexive saccades across the

three load conditions, ps :> .3.

The antisaccade could be initiated before or after the

target was presented. The proportion of antisaccades that

could be considered visually triggered from the target onset

reflected the same pattern of findings just described, with

the arithmetic load causing more visually triggered antisac-
cadcs than the other two conditions. With the criterion of

200 ms or more after target onset, 13% (SD = 14%) of the

antisaccades in the arithmetic condition were visually trig-

gered, whereas 1% (SD = 3%) and 2% (SD = 3%) were

visually triggered in the no-load and shadowing conditions,

respectively, F(2, 42) = 11.0, p < .005. With the 100-ms

criterion, 36% (SD = 19%) of the antisaccades in the

arithmetic condition were visually triggered, as compared

with 8% (SD = 10%) for the no-load condition and 10%
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(SD = 13%) for the shadowing condition, F(2, 42) = 39.9,

p < .001.

The latency to make a corrective saccade to the target

(after a reflexive one) also differed as a function of concur-

rent-load condition, F(2, 44) = 8.6, p < .005. Post hoc

contrasts indicated that the arithmetic condition produced

longer latencies (M = 432 ms, SD = 58 ms) than either the

shadowing condition (M = 389 ms, SD = 63 ms) or the

no-load condition (M = 395 ms, SD = 57 ms), p < .005.

The latter two conditions were not significantly different

from each other. The proportion of visually triggered cor-

rective saccades did not differ across load condition with the

200-ms criterion (overall M = 4%, SD = 3%), F(2, 42) =

0.5, p > .6. With the 100-ms criterion, subjects made more

visually triggered corrective saccades in the arithmetic con-

dition (M = 30%, SD = 20%) than in the no-load (M =

18%, SD = 18%) or shadowing (M = 19%, SD = 20)

conditions, F(2, 42) = 3.5, p < .05.

Target Identification

Consistent with the eye movement findings, correct target

identification was most difficult in the arithmetic condition

(see Table 3). The proportion of correct judgments was

analyzed in a mixed ANOVA with task order as a between-

subjects variable and concurrent load and cue side as with-

in-subject variables. A significant concurrent-load effect,

F(2, 42) = 31.6, p < .001, was due to less accurate
identification in the arithmetic condition (M = 68%) than in

the shadowing condition (M = 87%) or no-load (M = 88%)

condition, p < .001, which were not significantly different
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Table 3

Target Identification as a Function of Concurrent-Load
Condition in Experiments 2 and 3

Concurrent load
Percentage

correct No-load Repeat Shadow Arithmetic

Experiment 2"
M 87.8 --
SD 12.8 --

Experiment 3b
M 81.9 82.5
SD 15.4 11.7

86.6 68.0
13.1 17.7

85.8
13.9 m

Note. Dashes indicate no data.
'_The arithmetic condition significantly differs from the other two
conditions, p < .001. t,There is no significant difference be-
tween the conditions.

from each other, p > .4. There were no other main effects
or interactions.

compared with the no-load version but was significantly
lcss than in the arithmetic version. Shadowing and no-load
conditions did not differ in antisaccade latencies or in target
identification.

In both the arithmetic and shadowing versions, the sub-

jects listened to the presentation of single digits and verbal-
ized a number after each presentation. The primary differ-
ence between the conditions was that the arithmetic version

had the additional requirements of mental addition and
keeping in mind the current sum as each new number was

presented. This additional load appeared to interfere with
the processes involved in inhibiting reflexive saccades and
initiating antisaccades.

We conducted a third experiment to assess the degree of
interference on the AS task of another concurrent load

condition, one hypothesized to have even less of a working-
memory demand than the shadowing task. Another purpose
of the third study was to further examine the possible
relation between counting span and measures from the AS
tasks.

Individual Differences and Working Memory

The two independent measures of working-memory ca-
pacity (sentence span and counting span tasks) and the time
taken to answer the baseline arithmetic problems were cor-
related with the response measures on each of the three
versions of the AS task. These measures were the proportion

of reflexive saccades, the median response latencies for
antisaccades, the number of correct target identifications,

and the degree of decrement in these measures in the arith-
metic version as compared with the no-load version. The
vast majority of correlations were not statistically reliable at
the .05 level. The only significant correlations were between

the counting span task and the antisaccade latencies on two
versions of the AS task, (no-load version: r = -.44, p <
.05; arithmetic version: r = -.42, p < .05). There were also
marginally significant relations between correctness of tar-
get identification and performance on the counting span task
for the three conditions, rs from .36-.41, ps -< .08. Al-

though these correlations were in the correct direction,
suggesting that higher scores on the counting span working-
memory measure related to better performance on the AS
tasks, the low significance levels given the large number of
correlations prompts caution in interpretation.

Sltmmary

To summarize, the pattern of performance on the no-load
and arithmetic conditions of the AS tasks replicated the

findings of Experiment 1: Adding the arithmetic load to the
AS task doubled the incidence of reflexive saccades, slowed
the latencies of antisaccades by an average of 120 ms, and
decreased the accuracy of target identification by more than

20%. A/so replicated was a laterality effect for reflexive
saccades in the arithmetic condition, with more reflexive
saccades when the cue was on the left versus the right side.

The shadowing load had less of a negative impact on
performance: Percentage of reflexive saccades increased as

Experiment 3

In this last study we further examined how variability in
the presumed working-memory load of a concurrent task
affects performance on the AS task. Most concurrent tasks
probably put some demand on working memory, although
the extent of that demand must vary widely. Although we

expect that the shadowing task involves less demand on
working memory than the arithmetic task does, it still re-
quires attending to and encoding each new digit and holding
the current number in mind before vocalization. In this third

study we examined the impact of another concurrent task,
one that involves listening to a tone and vocalizing a single

nonchanging digit. As in the shadowing task, the subjects
were required to listen to a stimulus and respond vocally.
However, the working-memory load was reduced because
the subjects did not need to attend to the content of the
stimulus (tone), store the identity of the stimulus, or respond
according to the content of the stimulus. The tone acted only
as a timing cue for when the subject was to verbalize the
same, nonchanging digit. We,compared this "repeat" con-
dition with the no-load and shadowing conditions. We also

tested subjects on the sentence span and counting span tasks
to reexamine the marginal correlations found with AS task

performance in Experiment 2.

Method

Subjects

Subjects were 26 college students (4 men, 22 women) who were
given class credit for their participation; the data from 1 additional
subject could not be scored. Subjects ranged in age from 18 to 27
years (M = 21.4 years; SD = 2.4 years). All subjects had normal
or corrected-to-normal vision, and all spoke English as their pri-
mary language.



PREFRONTALCOGNITIVEPROCESSES 387

Tasks

Subjects performed the AS task in three concurrent-load condi-
tions: no-load, repeat, and shadowing. The hardware and software
used to present the tasks and to collect, calibrate, and score eye
movement data were the same as those used in Experiments 1 and
2. Subjects performed two individual difference tests of working
memory: the sentence span task (Daneman & Carpenter, 1980) and
the counting span task (Case et al., 1982).

Eye movement tasks. The AS task was the same as the one in
Experiment 2, except that each condition contained 36 trials.
(Analyses from the previous two experiments indicated that 36
trials were sufficient to obtain stable accuracy and RT data.)
Procedures for the shadowing and no-load conditions were the
same as those followed in the previous experiments. In the repeat
condition, subjects repeated a number once every 2 s. Subjects
repeated the same number throughout the condition. A number
between 1 and 49 was chosen at random for each subject. Subjects
paced themselves by repeating the number after hearing a beep
from an electronic metronome. A 1-min practice session was given
before the dual task during which the subjects repeated the same
number after hearing a beep.

Sentence span task. This task was the same as the one de-
scribed in Experiment 1.

Counting span task. This task was the same as the one de-
scribed in Experiment 2, with the exception that the highest set size
was changed from 6 to 9.

Procedure

Subjects completed all tasks in one session. For the three AS
tasks, all subjects received the no-load version first followed by
either the shadowing version (14 subjects) or the repeat version (12
subjects). The order of the sentence and counting span tasks was
counterbalanced, with one given before, and the other after, the AS
tasks. The testing conditions and general procedures were the same
as in the prior two experiments.

Task x Order interaction, F(2, 48) < 1, ns, however, in-
dicated that task order did not differentially affect the two
load conditions.

Saccade response times. The latencies of the initial eye
movement were analyzed in a mixed ANOVA with task
order as a between-subjects variable and response type
(anti- and reflexive saccades) and concurrent-load condition
as within-subject variables. As seen in Figure 4(b), antisac-
cades were considerably slower (M = 320 ms, SD = 47 ms)
than reflexive saccades (M = 182 ms, SD = 29 ms), F(1,

23) = 244, p < .001, although there were no differences in
latencies due to concurrent-load condition, ps > .4. Anti-

saccades were further analyzed to examine possible differ-
ences across load condition in the proportion of saccades
that were visually triggered in response to target onset.
Overall, the proportion of visually triggered antisaccades
was low, and there were no differences due to concurrent
load with either the 200-ms criterion (M = 2%, SD = 2%)
or the 100-ms criterion (M = 9%, SD = 10 ms), Fs(2,

48) < 1, ps > .5.
Similarly, the latencies of corrective saccades to the target

side after reflexive saccades did not differ as a function of

concurrent load (overall M = 392 ms, SD = 51 ms), F(2,

48) < 1, p > .5, nor did the proportions of visually triggered
corrective saccades differ (200-ms criterion: M = 2%,
SD = 2%; 100-ms criterion: M = 14%, SD = 16%), F(2,

48) < 1, ps > .5.

Target Identification

Table 3 presents the percentages of correct target identi-
fications as a function of concurrent load. The percentage of

correct keypresses (overall M = 83%, SD = 12%) did not
differ as a function of task order, cue side, or concurrent-

task load, ps > .1.

Results and Discussion

Eye Movements

.... The findings clearly indicated:that the repeat and shad-
owing concurrent tasks did not have a large impact on the
ability to inhibit reflexive saccades or initiate antisaccades.

Saccade direction. We analyzed the proportion of sac-
cades that were reflexive in a mixed ANOVA with order as

a between-subjects variable and concurrent-load condition
(no-load, repeat, shadowing) and cue side as within-subject
variables. As shown in Figure 4(a), the degree of reflexive
responding was similar across the three concurrent-load
conditions. A marginally significant trend for load condi-
tion, F(2, 48) = 2.7, p < .08, reflected the somewhat lower
proportion of reflexive responding in the no-load condition
(M = 30%, SD = 24%) than in the repeat condition (M =
37%, SD = 22%) and shadowing condition (M = 38%,
SD = 24%). The only other effect was for task order,
F(1, 24) = 5.4, p < .05, whi_:h reflected overall less suc-
cessful performance when the shadowing condition came
first (M = 43%, SD = 20) than when the repeat condi-
tion was first (M = 26%, SD = 20%). The absence of a

Individual Differences and Working Memoo'

We examined the relations between performances on the
span and the AS tasks (proportion of reflexive saccades, the
median latency to make antisaccades, and the proportion of
correct target identifications). Trials were combined across
the three versions of the task. None of the correlations was

significant, ps > .1.
Because of the low power inherent in each of the indi-

vidual studies, we combined performance data across the
experiments for the no-load version of the AS task to
examine its correlation with the sentence span task (Exper-
iments 1-3, 70 subjects total) and the counting span task

(Experiments 2-3, 49 subjects total). The correlations were
all statistically nonsignificant, as shown in Table 4.

Summary

Unlike the arithmetic load examined in Experiments 1

and 2, the repeat and shadowing loads had only a minor
effect on the ability to inhibit reflexive saccades and had no
measurable effects on the timing of anti- or corrective
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saccades. There were no differences between the shadowing

and repeat tasks, suggesting that the additional requirement

of encoding and verbalizing a changing stimulus over re-

peating a constant stimulus did not add enough demand to

working-memory processes to make a difference in the AS

task. The findings also suggest that individual differences in

the working-memory span tasks are not associated with

individual differences in the AS task, although further re-

search with larger sample sizes will be required to confirm

these findings.

General Discussion

Overview

The findings across the three studies indicate that the

concurrent requirement of the arithmetic task disrupted per-

formance on the AS task, whereas the shadowing and repeat

concurrent tasks had minor or no effects on performance.

All three tasks contained auditory and verbal components,

and, according to Baddeley's (1986, 1992) theory of work-

ing memory, required a component of working memory

referred to as the phonological loop, which is involved in

the articulatory control and storage of speech. The arith-

metic task, however, supposedly made greater demands on

another working-memory component, the "central execu-

tive," which is viewed as having a coordinative and delib-
erate attentional function. Previous studies have shown that

the arithmetic task disrupts primary tasks that are consid-

ered more demanding of this central-executive component

of working memory (Logie et al., 1989; Logie, Zucco, &

Baddeley, 1990). Whether one does or does not adopt

Baddeley's theoretical partitioning of working-memory pro-

cesses, it appears that the additional computational and
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Table 4
Correlations Between the Antisaccade Task

(No-Load Condition) and the Working-Memory

Span Tasks Combined Across Experiments

Antisaccade measures

Span tasks % reflexive Antisaccade RT Target ID

Sentence span" 0.12 0.03 -0.10
Counting span h 0.07 0.03 0

Note. All correlations are statistically nonsignificant, ps > .3.
RT = reaction time; ID = identification.
'_N= 70. bN= 49.

storage demands of the Arithmetic task over the other
concurrent tasks induced normal subjects to respond in a
manner similar to frontal patient populations: Proportions of
reflexive saccades doubled, antisaccades were slowed, and

target identification dropped. In contrast, the timing of pro-
and reflexive saccades was unaffected by concurrent load,
which also holds true for frontal patients. Of course, these

findings only suggest a behavioral similarity between fron-
tal patients and normal subjects when under a high working-
memory load. Further work is needed to determine more
precisely which aspect(s) of the secondary task prove dis-
ruptive and whether it is specifically a working-memory
deficit in frontal patients that accounts for difficulties in the
AS task. Despite these caveats, the results provide tentative
support for the hypothesis that a high working-memory load
can produce behavior that is functionally similar to more
permanent forms of frontal dysfunctioning and that this kind
of error is similar to "action-slip" errors made in everyday

activity.

Laterality Effects in the AS Task

The arithmetic concurrent load produced a slight laterality
effect for reflexive responding, with left-sided cues produc-

ing more reflexive saccades than right-sided cues, although
there were no such effects in any of the other load condi-

tions of the AS tasks. A variety 0f hypotheses might explain
athis finding, but determinati6ri0f the most likely candidate

is complicated by the lack of data and the equivocal findings
on laterality in general. If the arithmetic load produced a
disproportionate amount of processing in one hemisphere
(e.g., Aram & Ekelman, 1988; Ashcrafl, Yamashita, &
Aram, 1992; Earle, 1988; Jackson & Warrington, 1986;
Osaka, 1984; Osborne & Gale, 1976), then the additional

load might have interfered with processes in that hemi-
sphere involved in detecting the cue, inhibiting the reflexive
response, or generating the antisaccade. For example, pari-
etal and frontal lesions can quicken attentional movements
or the salience of objects in the ipsilesional direction of
current attention (Kinsbourne, 1977; Ladavas, Petronio, &
Umilta, 1990; Posner, Walker, Friedrich, & Rafal, 1987;
Rizzolatti, Gentilucci, & Matelli, 1985). In the present case,
the prepotency of the cue on the left side might have been
heightened by increased processing in the left hemisphere
during the arithmetic task. Another possibility is a lateral-

ized disruption in the generation of the antisaccade. If
right-going saccades are programmed in the left hemi-
sphere, then an increased load in the left hemisphere caused
by the arithmetic load could have disrupted antisaccade
generation to the right and resulted in a higher proportion of
reflexive saccades to the left. A third possibility comes from
the analysis of left-right differences in the response times of

prosaccades (Experiment 1), which indicated that saccades
to left-sided cues were slightly faster (M = 193 ms, SD =
22 ms) than those to right-sided cues (M = 215 ms, SD =
42 ms), F(1, 20) = 5.1, p < .05; this effect did not differ as
a function of concurrent processing load. 3 Thus, left-sided
cues may be inherently more "attention grabbing" than
right-sided cues, perhaps because of lateral asymmetries in
the control of attention, eye movements, or both (e.g.,
Posner & Petersen, 1990; Sava, Liotti, & Rizzolatti, 1988).
If the ability to successfully generate an antisaccade de-

pends on a competitive interaction between working-
memory processes and the strength of the prepotency, then
the arithmetic concurrent load may have tilted the compet-
itive balance far enough so that the slight a priori increase in
the prepotency of left-sided cues disproportionately in-
creased the probability of making a reflexive saccade to that
side. Determining which of these or other explanations
underlies the laterality effect will require further research.

Interaction Between Inhibition and Working Memory

Despite the slight iaterality effect, it is important to note
that the decrement in performance due to the arithmetic
concurrent load was bilateral, supporting the hypothesis that
the ability to inhibit a prepotent action interacts with the
operations of working memory. It is conceivable that the
requirement of solving simple addition problems would not
have affected tile incidence of reflexive responding in the
AS task but would have introduced a global slowing or

delaying of antisaccades because of the time required to
juggle the extra demands. Although slowing occurred, the
classic frontal difficulty in inhibiting the prepotent response
was dramatic.

The interactive or competition framework presented in

the introduction suggests that working-memory demand,
working-memory resources, and the degree of prepotency
jointly contribute to the probability of inhibiting the prepo-
tent response. The present study focused on the working-
memory side of the competition, but one result indirectly
addresses how variation in prepotency affects performance.
In the first study, the prosaccade task required subjects to
look at the cue as quickly as possible. Although the latencies
of these eye movements were not affected by load condition
and showed little overall variability, individual diffcrences
in the latencies to make reflexive saccades were negatively

correlated with the proportion of reflexive responses in the

3We did not report in the Results section left-right response
time differences for antisaccades, because the number of trials for
each side for each subject was highly variable and very low in
some cases. However, when these data were analyzed, we found
no side or Side × Load effects, ps > .2.
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AStaskalone,r = -.46, p < .05, and in the AS task with
the arithmetic load, r = -.57, p < .01. Thus, faster re-

sponding in the prosaccade task correlated with worse per-
formance on the antisaccade tasks. Faster reflexive re-

sponding may reflect between-subject differences in the
prepotency of the cue in the AS task and may suggest
individual differences in the timing thresholds required for

inhibiting a reflexive saccade (see below).
The interactive model also suggests that successful inhi-

bition may often be an associated by-product of increased
working-memory activation that underlies the production of
the alternative response (cf. Goldman-Rakic, 1987). As long
as working-memory resources are actively involved in pre-
paring for the upcoming response, then likely alternative
responses, which could be specific or nonspecific in nature,
are inhibited. In the present case, the superior colliculus
(SC) has been implicated in the production of reflexive
saccades (e.g., Schiller & Sandell, 1983) and receives pro-
jections directly and indirectly from dorsolateral prefrontal
cortex (Fuster, 1989; Goldman-Rakic, 1988). Working-
memory processes in the prefrontal cortex that are involved
in producing intentional goal-directed saccades, especially
in anticipation of a currently unseen target (as in the AS
task), may send inhibitory signals to the SC to prevent other
unwanted, potentially conflicting saccades. If working-
memory resources are not engaged in preparing for the
upcoming action at some threshold level, then the degree of
inhibition drops correspondingly, and the reflexive saccade
becomes more probable. Another related hypothesis, sug-
gested by Hallet and Adams (1980) and Guitton et al.
(1985), is that a cancellation signal must be sent to the SC
within a specific time frame after the onset of the cue. If the
signal is later than some critical value, then the reflexive
saccade will occur. Guitton et al. (1985) also suggested that

the timing of the cancellation signal is proportional to
"quantity of information processed" and the "rate at which
this information can be processed by the nervous system."

Although this explanation separates the inhibition and
antisaccade-generation components, it still highlights the
interactive nature between working-memory processes and
inhibition.

This interactive framework also has implications for sev-
eral measures of prefrontal functioning, as presented in
Table 1. One implication concerns the striking and often-
reported phenomena of frontal subjects behaving in such a
way as to simultaneously give evidence of the correct and
incorrect response. Examples include sorting persevera-
tively on color in the Wisconsin Card Sort Task while
verbally indicating that color is not the correct category, and
searching for the hidden object in the A-Not-B task in the
incorrect location while looking at the new location. The
interactive framework suggests this kind of equivocation
would occur only when the competition between working

memory and the strength of the prepotency is in very close
balance, which would not be expected to occur often. This
seems to be the case, because these equivocal responses are

usually reported only anecdotally and, when examined spe-
cifically in one study that used the A-Not-B task, occurred
only about 1% of the time (Janowsky, 1993).

Further Elaborating the Working-Memory Construct

A weakness of the interactive framework, and a difficult

problem for the field in general, is how to best conceptualize
and eventually differentiate working-memory processes.
The construct, as applied to understanding the cognitive

processes associated with prefrontal cortex, has the poten-
tial problem of becoming a catch-all concept that offers
little explanatory power beyond what is already offered by
other global descriptors, such as "executive functions." For-
tunately, recent progress in cognitive psychology, primate
neuroanatomical studies, and computational modeling of
prefrontal functioning provides direction for better defining
and differentiating the working-memory construct. One
question concerns the degree to which there are separate
working memories that are specialized for processing dif-
ferent types of information and the degree to which there are
more global resources or bottlenecks that apply across do-
mains (cf. Baddeley, 1992; Goldman-Rakic & Friedman,
1991; Wickens et al., 1983). There is evidence for domain-

specific as well as domain-independent working memories.
For example, Funahashi et al. (1993) convincingly demon-
strated in rhesus monkeys that neurons in the prefrontal
cortex (in and around the principal sulcus) maintain infor-
mation about specific spatial locations that are relevant for
generating upcoming actions. In humans, Logic et al. (1990)
demonstrated a behavioral dissociation between a working

memory related to a "visuospatial sketch pad" and a
language-based "phonological loop." Much less is known
about more centralized working-memory processes, al-
though the primary characteristic associated with a central
working memory, the coordination or integration across
component processes, appears to be separable from the
component working-memory processes themselves (Logic
et al., 1990). In the present study, the bulk of the interfer-
ence was assumed to derive from a more global working-

memory bottleneck, although further studies with alterna-
tive secondary tasks will be required to examine the degree
and type of interference associated with various types of
concurrent task demands.

Another question concerns what characteristics of work-
ing memory describe different aspects of its functioning. In
cognitive psychology, many researchers have focused on
concurrent storage and processing and on measurements of
capacity (e.g., Carpenter & Just, 1989; Case et al., 1982).
The span tasks in the present studies are examples of ca-
pacity measures. Some researchers have attempted to fur-
ther differentiate the storage component from the compu-

tational requirements involved in processing. Another
characteristic of working memory, which has been exam-

ined most frequently in the primate and human infant liter-
ature, is the maintenance of information over time (Dia-
mond & Goldman-Rakic, 1989; Funahashi et al., 1993;

Fuster, 1991). The infant or monkey must remember some-
thing (e.g., a location) that is useful for generating an
upcoming response (e.g., an eye movement) over various
time intervals. The significant variable of interest is time,
not capacity, and performance typically worsens as time
increases. Another characteristic, one that has not been as
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widelydiscussed but seems particularly relevant to the AS
task, is vigilance, or level of activation at a particular
moment in time. For example, the AS task does not appear
to tax concurrent storage and computation (capacity) or
maintenance over a delay. Instead, it seems to require a high
degree of vigilance or activation at the somewhat indeter-
minate moment the cue flashes in the periphery. Within a
relatively short time interval, the subject will be vulnerable
to making the reflexive saccade. Generally, both frontal
patients and controls evenly distribute reflexive and anti-
saccades across experimental trials, suggesting that the dif-
ficulty is not in forgetting the relevant information across
the duration of the task; instead, successful performance
seems dependent on maintaining a high enough level of
activation of the relevant self-instructions to make an eye
movement to the opposite side at the moment the cue is
presented.

These characteristics of working memory--capacity (or
storage and processing), maintenance over time, and level
of moment-to-moment activation--as well as other possible
characteristics, may interact, but they may also be separable
defining features that are differentially assessed in various
tasks. A suggestion that they interact comes from the current
studies, where strongly taxing capacity (arithmetic concur-
rent load) presumably affected moment-to-moment activa-
tion levels of self instructions to prepare for an antisaccade.
The degree of separability of various working-memory
characteristics is an empirical question, but it appears that
some working-memory and frontal neuropsychological
tasks pull more strongly for one or another characteristic.
Span tasks pull for capacity, problem-solving tasks (e.g.,
Tower of Hanoi, Wisconsin Card Sort) tax for on-line
inferencing and computation, delayed-search tasks call for
maintenance of information over delays, and tasks such as
the antisaccade and Get-No-Go tasks require high levels of
activation during the interval when a response is likely.

These and other attributes of working memory may par-
tially explain why such tasks do not always show consistent
intercorrelations. In the present studies, the lack of a relation
between the antisaccade task and the span tasks may be due

_to the possibility that the two tasks_, measure different as-
pects of working memory: capacity and short-term vigi-
lance. Although individual differences in these attributes
may not correlate in a normal adult sample, extreme dys-
functioning related to one characteristic would presumably
affect the other (such as in our arithmetic load condition and
presumably in subjects with frontal lesions).

Various characteristics of working memory may also map

onto different aspects of neural functioning, as reflected in
some current connectionist models of frontal functioning
and working memory. For example, recurrent models con-
tain "hidden" processing modules that form internal repre-
sentations. These modules send recurrent signals back to
themselves to keep current representations active across
time (e.g., Cohen & Servan-Schreiber, 1992; Elman, 1990).
Different architectural features and operational parameters
of these networks would conceivably relatc to different
functional working-memory characteristics, including the
size of these modules (in terms of the number of individual

processing units); the interconnections between units; the
clarity, or directness, of the recurrence; the equations gov-
erning the activation of the units; and the nature of the
connections (e.g., inhibitory ones) between these units and
other areas of the brain. Similarly, different forms of tran-
sient and relatively stable dysfunctioning may be caused by
breakdowns in one or more of these parameters, and such

patterns may help explain similarities and differences in the
manifestations of frontal dysfunctioning. The modeling
work of Cohcn and Servan-Schreiber (1992), Kimberg and
Farah (1993), and Levine and Prueitt (1989) offer important
starts in this direction. Clearly, further behavioral, neural
anatomical, imaging, and modeling studies will contribute
to a more elaborate and differentiated understanding of

working memory.

Conclusion

The present studies demonstrate that increasing concur-
rent working-memory load increases reflexive responding
and slows antisaccades in thc AS task. The findings are
consistent with the framework presented in the introduction,
which describes a common interactive dynamic across
many assessments of prefrontal functioning. The framework
suggests that behavior results from an interaction between

competing tendencies and the associated processes that un-
derlie action alternatives. Many everyday action errors and
the mistakes made by subjects with frontal lesions occur for
different reasons but may reflect a common processing
dynamic.
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