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Abstract

A mathematical model and a computer code have been developed to fully couple the

vibration of an aircraft fuselage panel to the surrounding flow field, turbulent boundary

layer and acoustic fluid. The turbulent boundary layer model is derived using a triple

decomposition of the flow variables and applying a conditional averaging to the resulting

equations. Linearized panel and acoustic equations are used. Results from this model are

in good agreement with existing experimental and numerical data. It is shown that in the

supersonic regime, full coupling of the flexible panel leads to lower response and radiation

from the panel. This is believed to be due to an increase in acoustic damping on the panel

in this regime. Increasing the Mach number increases the acoustic damping, which is in

agreement with earlier work.

1. Introduction

Future civilian aircraft, subsonic or supersonic, will have to be quieter, more fuel

efficient, less expensive and faster than today's aircraft. In light of these stringent require-

ments, a substantial amount of research and development work needs to be accomplished

in various engineering fields. With the renewed interest in the development of a High

Speed Civil Transport aircraft (HSCT), research interests have been increasing in the area

of interior noise and sonic fatigue.

The source of aircraft interior noise is generally the vibrations of the outer skin of the

fuselage. These vibrations are in turn caused by the pressure fluctuations in the mostly

turbulent boundary layer on the aircraft. Therefore, in order to reduce the interior noise

level, it is imperative that we understand the mechanisms by which noise is transmitted

from the turbulent boundary layer to the interior. This is a challenging problem as it

involves a fluid mechanics phenomenon, turbulence, that is the least understood in fluid

mechanics.

Early work on the effects of turbulent boundary layer pressure fluctuations on struc-

tural vibration and interior noise generation focussed mainly on the structure and used

either experimental data or empirical models to describe the pressure field in the turbulent

boundary layer. One of the widely used models in the literature is the Corcos model [1].



This model was derived based on experimental observations and gives the cross spec-

tral density of the pressure as;

w¢ W_)ezp(-i_) (1)r(¢,_,_) = ¢(_)ACNIB(N

where _(w) describes the frequency content (or auto-spectrum), A and B the spatial

distribution and the exponential term represents the convection of the pressure field. In

the above equation, ta is the frequency, ¢ and r/are the streamwise and spanwise separation

distances and Ue is the convection velocity. Based on the experiments of WiUmarth and

Wooldridge [2] the functions A and B were represented by decaying exponentials of the

form;

N) = (21

where the constants a and 13 are arbitrary and are chosen to fit a given set of experimental
data.

In recent years, many improvements of the original Corcos' model have been proposed

[3-10]. Graham [11] performed a comparative study of the various models and concluded

that for aircraft interior noise problems, Corcos' model is inadequate because of its inability

to account for the dependence of the correlation length on boundary layer thickness. He

recommended that the Eflmtsov's extension of the Corcos model be used for such problems.

The superior performance of the Efimtsov model was attributed to the fact that this

model was derived from aircraft data rather than laboratory experiments. In addition

to these models, several studies used the Monte Carlo method to solve this problem [12-

14]. This approach idealized the boundary layer pressure field to be a homogeneous,

multidimentional Gaussian random process with zero mean.

It is important to emphasize that all of the above models need experimental data to

determine the various constants and become useful. Since surface pressure data is difficult

to obtain experimentally, especially for compressible high speed flows, the use of these

models is further limited. In addition, once the constants are determined the pressure

field in the turbulent boundary layer is fixed and the structural-fluid interaction problem

is therefore decoupled. This approach can be useful in some engineering problems where

coupling is not important (low speeds), however, at supersonic speeds the coupling between

fluid and structure is very important. As was shown by Lyle and Dowell [15], acoustic

damping on the structure becomes dominant as the speed is increased from subsonic to

supersonic. This is further confirmed by the calculations of Wu and Macstrello [16] who

showed that in a supersonic regime, neglecting the coupling term leads to an over-estimate

of the structural response at higher modes.

In order to account for the various fluid-structure interaction effects, one needs to solve

the complete set of partial differential equations for the fluid and the structure with the

appropriate boundary conditions. The fluid motion is described by the nonlinear Navier-

Stokes equations, and the structural response is given by the nonlinear plate equations.

The computational requirements for solving such a problem will be dictated by the fluid

equations. With the recent advancements in computers, the full Navier-Stokes equations
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have been integrated for a restricted number of flows and geometries. Such a method

is referred to in the literature as Direct Numerical Simulation (DNS). This approach is

severely limited by the range of Reynolds numbers that can be resolved and by the size of

the computational domain. Therefore, its use in practical engineering problems is impos-

sible at this point. The uses of this method have been restricted to generating data bases

for some simple flows in order to validate various turbulence models being developed.

Since DNS is decades away from being a useful engineering tool, researchers in fluid

dynamics have spent a great deal of time developing simplified forms of the Navier-Stokes

equations. This effort has led to the development of a new approach known as the Large

Eddy Simulation, LES. The difference between LES and DNS is in the number of resolved

scales. In DNS, the grids used should be small enough to resolve all the scales down to

the Kolmogorov scale; however, in LES the grids are coarser and the resolved scales are

limited to those larger than the grid size. The contribution of the unresolved small scales (or

subgrid scales) is modeled. One of the first LES models was introduced by Smagorinsky [17]

in the early 1960s. This model performs reasonably well in free shear layers but does a poor

job in wall bounded flows, i.e. boundary layers. Recently new models have been developed

using the Smagorinsky idea but with more physical insight [18,20]. Though these models

are more sophisticated, problems such as the kind of averaging one performs and how to

treat the near-wall region, remain unresolved. In addition, these models need extensive

testing before they can be applied to various engineering problems. From a computational

view point, an LES calculation is one order of magnitude less expensive than an equivalent

DNS calculation and the Reynolds number restriction is not as severe as it is for DNS.

However, all these improvements over DNS do not make LES a preferred engineering tool

for solving a large variety of problems. The weaknesses of LES are numerous; it is still too

expensive computationally, it has yet to be used in complex geometries, spatial models are

still in their infancy, etc.

Over a century ago, O. Reynolds [21] proposed a decomposition of the turbulent flow

quantities into a time averaged mean, denoted by an overbar, and a fluctuation;

1=i+1'. (a)

Using this decomposition, he derived a new set of equations for the mean quantities where

the contribution from the turbulent fluctuations had to be modeled. These new equations

became known as the Reynolds Averaged Navier-Stokes (RANS) equations and have been

used to solve a wide variety of engineering problems. Since these equations are derived

only for the mean quantities, they cannot provide any information on the dynamics of the

flow. In order to overcome this deficiency, W.C. Reynolds and Hussain [22-24] used a triple

decomposition of the form

.f = f+.f+f" (4)

to study small amplitude wave disturbances in turbulent shear flows. In equation (4), f

represents the wave motion and jr" is the turbulent fluctuation. A combination of time and

conditional averaging were used to arrive at a set of dynamic equations describing the wave

motion. Liu [25] used a similar approach to study the near-field jet noise due to the large-

scale wavelike eddies. Merkine and Liu [26] studied the development of noise-producing
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large-scale wavelike eddies in a plane turbulent jet. Liu and Merkine [27], Alper and Liu

[28] and Gatski and Liu [29] studied the interactions between large-scale structures and

fine-grained turbulence in a free shear flow. Gatski [30] calculated the sound production

due to large-scale coherent structures in a free turbulent shear layer. More recently, Bastin

et al. [31] used a semi-deterministic modeling approach coupled with Lighthil]'s acoustic

analogy to calculate the jet mixing noise from unsteady coherent structures.

In the last few years, numerous advanced turbulence models have been developed

which led to the solution of a wide variety of engineering problems. The extension of the

RANS method to unsteady problems has been made less difficult with the new models

because they contain more physics. The unsteady RANS method has been identified by

many researchers as being equivalent to a Very Large Eddy Simulation or VLES [32]. The

advantages of using VLES are: it is computationally less costly than either LES or DNS,

the models have been tested extensively and the method can be used for any geometry,
etc.

The remainder of this paper is organized as follows; in section (2) the mathematical

model is described, section (3) describes the method of solution used to solve the model,

the results and discussions are given in section (4) and a summary of the results and some

concluding remarks are given in section (5).

2. Mathematical Model

2.1 The Turbulent Boundary Layer Equations

Using the triple decomposition proposed by W.C. Reynolds [24], the flow quantities

are decomposed as follows;

g= .0+ .0+ g" (4)

where g represents a flow quantity and (_) its Favre averaged mean defined by

- (pg)p (5)

When decomposing the density, the turbulent fluctuations, p", are neglected by virtue

of Morkovin's hypothesis [33] which has been recently verified by Sommer et al. [34],
therefore;

(6)

In equations (4) and (6), (_, p) is the low frequency variation part of the mean and (g")
is the turbulent fluctuation.

By defining the total mean to be

equation (4) becomes

G =0+0, (7)

g=G+g". (8)
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Equation (8) has a similar form to equation (3); the only difference is that in (3), f is a

time independent mean while in (8), G is time dependent.

In the derivation of the dynamic equations used by W.C. Reynolds, a conditional

averaging was introduced. Some properties of this averaging are;

<g" >=0 <_f>----_<f>

< if >= _ < f > < g_> = _ =< _ > (9)

_f,, = < _f,, > = o.

Using the decomposition given by equation (8) in the continuity, momentum, energy

and state equations along with the conditional averaging and Einstein summation conven-

tion one arrives at the following mass, momentum, energy and state equations;

--_ + (pU_) = 0, i= 1,2,3

0 U cO [pU_Ui_< >+P< ,, ,,>]+cOP_(p ,) + _ _,j _,_ _ = 0,

(10)

i,j=1,2,3 (11)

OE CO ">] =0 (12)

P-(y-1)[E-p(U_-I-U_-t-U_+<(ui')_ >-t-<(u_')n>-t-<(u_)2>)/2]. (13)

In equations (10)-(13), (p, Ud, E, P) represent the total means of the variables (p, ud, e, p),

while (u_', u], eu, p") axe the turbulent fluctuations. The variable (e) is the total energy

defined as e - P/(7 - 1) + p(u_ + u_ + u_)/2. In equations ill) and (12), < 7-dj > is the

conditionally averaged stress tensor,

(14)
Moo [ _ COU_ COUj '_ 20Uk _f, ]< r,j >=--_ _,kco.j+-Sg.,,/ --_,-G;_ q,

where Moo, ReL and # axe the freestream Mach number, Reynolds number and molecular

viscosity, respectively. The term < - "- "_i_j > of equation (11) is similar to the Reynolds

stress tensor and is modeled in the same way. In equation (12), < :-uuj'" >, < P-"'uy" > and
.. H

< _-Ouj > have to be modeled.
Invoking the Boussinesq approximation that the Reynolds stress tensor is proportional

to the mean strain-rate tensor, leads to

(15)
2 1

where k =< u_-"-u_" > /2 is the turbulent kinetic energy,/zt is the turbulent eddy viscosity

and S O is the mean strain-rate tensor given by,

(16)

5



The turbulent eddy viscosity is obtained from the relation

_,= c;-_ (17)

where C_ is a constant, w the specific dissipation rate (elk) with e being the dissipation.

The conservation equations for k and w are;

a(pk) + _= (pujk) au, a (_,, a_) (18)

a (_.aw) (19)

In equations (18) and (19), pa = C_npCk/_a) and C,., 1 = C,,,- tc2/CCC_t)°'%%), with

C_, t = 0.09 (same as C_, in the log layer), crk = c% = 2, C_ 2 = 0.83 and _ = 0.41. The

model described above was derived by Wilcox [35] and is known as the (k-w) turbulence
model.

2.2 The Plate Equation

The out-of-plane plate displacement, w, is given by the biharmonic equation,

_w Ow

DA2w + p_,h--_- i- + F_ = 5p (20)

where D is the plate stiffness obtained from D = EphS/12(1 - v_), with Ep being the

Young Modulus, h the plate thickness and vp the Poisson ratio. In equation (20), pp is the

plate material density and 1" is the structural damping. The biharmonic term is defined as

A= c_ 04 c_
= _-_+ 2o--;/-_, +_ (21)

The right hand side, 6p, of equation (20) represents the pressure loading due to the adjacent
fluids and can be written as

6p = f - pb_ (22)

with (p=) being the radiated acoustic pressure and (pbZ) the turbulent boundary layer

pressure calculated from the model in section (2.1).

2.3 The Acoustic Radiation Equation

In order to calculate the pressure pa of equation (22), Kirchhoff's formula is used to

arrive at (see [36] for details)

Pa(z'Y'z't) = P°° / /D [WU(TR"z')] dz'dz'27r (23)



°_ In equation (23), thewhere the integration domain, D, is the whole plate and wit = "_-r.

square brackets, [.], are used to denote a retarded time, i.e.

=', z')] = wil(t - Rtcoo, ',z') (24)

where R = [(z - z') 1 -t- yi "I- (z - z')l] ill is the distance from an observer point (x,y,z)

to a point on the plate (z', 0, z'). In equation (24), coo is the speed of sound. Equation

(23) is used to calculate the pressure both on the surface of the plate and in the far-field.

When using equation (23) to calculate the surface pressure, a Taylor series expansion of

the integrand is used to avoid the singularity at R : 0 (when the observer point coincides

with the source).

3. Method of Solution

The turbulent boundary layer equations are solved using the three-dimensional thin-

layer Navier-Stokes code known as CFL3D [37]. The numerical method uses a second

order accurate finite volume scheme. The convective terms are dJscretized with an upwind

scheme that is based on Roe's flux difference splitting method, while all the viscous terms

are centrally differenced. The equations are integrated in time with an implicit, spatially

split approximate-factorization scheme. The thin-layer approximation retains only those

viscous terms with derivatives normal to the body surface. This is generally considered

to be a good approximation for high-Reynolds-number aerodynamic flows with minimal

separation. Two calculations are made for each case; first the steady state mean velocity

profiles are obtained using a large domain that includes the leading edge of the plate, then

using a smaller domain downstrean of the leading edge an unsteady calculation is carried

out by perturbing the mean velocity profile at the inflow boundary as follows

= + eR,,(y, z, t). (25)

In equation (25), tLa(y,z,t) is a random number generated using an IMSL routine called

RNNOF [38] and e is a small amplitude chosen to be between 0.05 and 0.25. In the steady

state calculation, the flow in the region upstream of the plate's leading edge is specified as

laminar, while that downstream of the leading edge is turbulent. The plate equation (20) is

integrated using an implicit finite difference method for structural dynamics developed by

ttoff and Pahl [39]. The radiated acoustic pressure, pe, is obtained through a combination

of Simpson's integration rule in space and a trapezoidal rule in time.

Coupling between the plate and the acoustic and boundary layer pressure fields is ob-

tained as follows. Using the previous time step plate velocity and acceleration as boundary

conditions, the turbulent boundary layer equations (10)-(13), (18), (19) and the acoustic

equation (23) are integrated to obtain the new surface pressure fields, these are then used

to update the plate equation. This procedure is repeated at every time step. Figure 1

shows a two dimensional computational domain with the different mathematical models.

The top domain shows the presence of a leading edge shock, because all the cases studied

are supersonic. In the following results, the flexible plate is clamped between two rigid

ones except in one case where the plate is simply supported.



4. Results and Discussions

This section is divided into several subsections. In the subsection (4.1) results from

a typical fully coupled run are presented. Comparisons to existing experimental data are

given in subsection (4.2). In subsection (4.3), the effects of coupling on the plate response

and radiation axe discussed. In subsection (4.4), results from two runs at two different Much

numbers are given and finally in subsection (4.5) the effects of plate boundary conditions

on the response and acoustic radiation are analyzed.

4.1 Results From a Typical Fully Coupled Case

The flow and structural properties used in this case are taken from MaestreUo [40].

The mean flow parameters are; Moo = 1.98 (free-stream Much number), Tt = 563 R

(Total temperature), T,, = 550 R (Wall temperature) and Re/ft = 3.73xi06 (Reynolds

number per foot). A titanium plate is used in this study with the following parameters;

length, a -- 12 inches, width b = 6 inches, thickness h = 0.062 inches, density per unit

area pph - 2.315x10 -s Ibf-scc2/in3, stiffnessD - 345. Ibf-inand damping r - 7.4x10 -4

lbf.sec/in s. The parameter e of equation (25) is set to 0.25. The plate is oriented such

that the length, a, is along the streamwise direction.

The computational domain used is 2 x 1 x 2 ft in the streamwise, spanwise and

vertical directions, respectively, the number of points used in the respective directions are

83 x 53 x 83. Equally spaced points are used in the streamwise and spanwise directions

while grid stretching is used in the vertical direction. The leading edge of the plate is 0.5

ft upstream of the inflow boundary. For each case studied, the second grid point in the

vertical direction is located at a y+ <= 1, where y+ is a nondimensional coordinate given

by, y+ = yu,./u with u_ = (T,,,/p) °s being the friction velocity, v the kinematic viscosity

and p the density. In the u, expression, r,, is the wall shear stress.

Figures 2a-2c show the time histories of the turbulent boundary layer surface pressure

at the center of the flexible plate, the center plate displacement and the radiated pressure

one foot away from the plate center, respectivdy. The time history of the turbulent

boundary layer pressure, Fig. 2a, shows a random fluctuation around the mean pressure

l_,-,/. The displacement time history shows the presence of several frequencies but with

one dominant low frequency, Fig. 2b. The time history of the radiated pressure is also

random around the mean pressure, Fig. 2c. The corresponding power spectral densities

(PSD) are shown on Figs. 3a.3c. The PSD of the turbulent boundary layer pressure shows

the presence of a broad peak at around 5000 Hz, Fig. 3a. The level decreases slowly with

decreasing frequency from the peak, while above 5000 Hz the level decreases sharply with

increasing frequency. Grid refinement and time step refinement show little effect on the

location of the peak. The PSD of the displacement response at the center of the plate,

Fig. 3b, shows the presence of several peaks corresponding to the various response modes

of the plate. This response, as the figure shows, is dominated by the first mode which is

the (1,1) mode located near 430 Hz. Figure 3c shows the PSD of the radiated pressure

one foot away from the center of the plate. The frequency content of this radiated field

is dominated by two plate mode frequencies, one corresponding to the (1,1) mode and



the other to the (5,1) mode. Other intermediate frequencies are also present but at a

much lower level. This result is of great significance from a noise control point of view.

This means that controlling the vibration of the plate at a few natural frequencies, can

reduce the noise level significantly. The probability distributions of the input pressure,

Fig. 4a, the displacement response, Fig. 4b, and the radiated pressure, Fig. 4c, show a

Gaussian like behavior which is consistent with the time histories shown on Figs. 2a-2c.

The cross-correlation function of the surface pressure is defined as

(26)

where ¢ and _/are the steamwise and spanwise separation distances, and T the time sep-

aration. The streamwise two-point correlation is obtained from equation (26) by setting

(_l,r) to zero. Similarly, the spanwise two-point correlation and the auto-correlation are ob-

tained by setting (¢, r) and (¢, _/) to zero, respectively. Figures 5a-b show the streamwise

and spanwise two-point correlations. Both figures show that as the separation distance

increases, the correlation function decreases rapidly to nearly zero indicating the lack of

correlation between the pressures at various points. Figure 6 shows the auto-correlation

as a function of time. The auto-correlation decreases to zero very rapidly as time in-

creases. Both the two-point correlations and auto-correlation behave in a manner that is

characteristic of a turbulent boundary layer. Figure 7 shows a complicated instantaneous

displacement response of the plate.

4.2 Comparisons to Experiments

MaestreUo's data [40] is used for the various comparisons. The mean flow parameters

used are; Mach number Moo = 3.03, total temperature Tt = 567 R and a Reynolds

number per foot Re/ft = 4.265x106. The plate parameters are the same as those given in

subsection (4.1), and the parameter _ is set to 0.25. Figure 8 shows the mean velocity profile

(u + = u/u_ versus _/+ = _lu_/v). As shown on the figure, there is no experimental data

point for _/+ less than 60, this is due to the difficulty in making near wall measurements.

The agreement between MaestreUo's data and the numerical results in the logarithmic

layer region is good. In addition the profile shows a linear behavior in the sub-layer region

near the wall which is a characteristic of a turbulent boundary layer velocity profile. Figure

9 shows the PSD of the center plate displacement response obtained experimentally and

numerically. The experimental results show that the response is dominated by the (1,1)

and (3,1) modes. The numerical results also show the dominance of the same two modes.

The agreement between the numerical and experimental results is good at the lower modes;

however the numerical results overpredict the response at higher modes. This is due to the

numerical technique used to integrate the plate equation and the number of grid points

used on the plate. The higher modes are less resolved and therefore show a higher response.

Figure 10 shows the PSDs of the surface pressure measured at the center of the flexible

plate and that calculated numerically. The PSD of the pressure measured experimentally

shows and increase in level as the frequency increases until a broad peak is reached in the

vicinity of 5000 Hz. At high frequencies (> 10000 Hz) the level decreases slowly. The

numerical results show a similar behavior at low frequencies; however, at high frequencies



(> 6000 Hz) the level decreases rapidly. This rapid decrease in level is believed to be due

to both numerical resolution and turbulence model used. Higher grid resolution and an

advanced turbulence model would result in better agreement at high frequencies. Recent

experimental measurements on the Concorde [41] show similar behavior of the surface

pressure fluctuation to that of Maestrello [40]. The frequency of the peak level depended

on the measurement 's location on the fuselage. It is important to mention at this point

that based on the results presented in subsection 4.1, the frequencies that are critical for

the structure are in the range up to 2000 Hz. The numerical results of Fig. 9 show a good

agreement with experiments for this frequency range. The parameter e of equation (25)

can be adjusted to obtain better agreement with experimentally determined levels.

4.3 Effect of Coupling

The mean flow and plate properties used in this calculation are the same as those

given in subsection (4.1). In order to access the effects of full coupling on the response

of a flexible plate, two calculations are carried out. In one calculation, the turbulent

boundary layer, the radiated acoustic field and the flexible plate are fully coupled. The

plate communicates on both sides with the surrounding fluid. In the other calculation, the

turbulent boundary layer pressure fleld is directly transmitted to the plate at each time

step; however the plate response is not communicated back into the fluid flow. This latter

case is referred to as uncoupled. Figure 11 shows the PSD of the turbulent boundary layer

pressure fluctuations at the plate center for both the coupled and uncoupled cases. There

is little or no difference between the two PSDs. This is expected since the plate vibration

has little effect on the turbulent boundary layer. The PSD of the displacement response at

the center of the plate is shown on Fig. 12 for the two cases. It is important to notice that

the response of the uncoupled plate is higher through the whole frequency range. This is

an indication that coupling results in more damping on the structure and therefore less

response. Based on the results obtained by Frendi and MaestreUo [42], this difference would

be even greater at higher excitation levels where shifting in the peak responses occurs. As

expected the higher plate response in the uncoupled case results in higher noise levels, as

shown in Fig. 13. This result is important for interior noise considerations. In other words,

an uncoupled plate analysis significantly overpredicts interior noise levels, particularly at

the lower frequencies where noise control is typically both difficult and expensive in terms

of added weight. Therefore one needs to consider the response of a fully coupled plate

before deciding on noise reduction techniques to be used.

4.4 Effect of Mach Number

Two Mach number cases have been studied, 1.98 and 3.03, using the mean flow prop-

erties given in the above subsections. Figure 14 shows the PSD of the surface pressure at

the center of the plate for the two cases. The two PSDs are nearly identical. The PSDs

of the displacement response at the plate center show little or no difference between the

two cases at low frequencies. However at high frequencies, the response for Mao -- 1.98

is higher, Fig. 15. This is attributed to an increase in acoustic damping with increasing

Mach number. This result is consistent with the results of Frendi and Maestrello [42] and

Lyle and Dowell [43] who showed that increasing the Mach number increases the acoustic
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damping on the structure. Figure 16 shows the PSDs of the radiated pressure for the two

cases. Since there is little or no difference in the response at low frequencies, the radiated

pressure PSDs are nearly identical.

4.5 Effect of Plate Edge Conditions

In order to access the effect of edge conditions on plate vibration and acoustic radia-

tion, two calculations are made using the same mean flow properties as in subsection (4.1).

Figure 17 shows that the PSDs of the pressure at the center of the plate from the turbu-

lent boundary layer side are nearly identical. However, the PSD of the plate displacement

response shows a different frequency content as expected, Fig. 18. The simply supported

plate shows lower natural frequencies and a higher response at the lowest modal frequency.

The PSDs of the radiated pressure also show a shift in the frequency content to lower

frequencies for the simply supported case. A slightly lower level is also indicated and is

due mainly to lack of frequency resolution, Fig. 19. The objective of this calculation is

to show the direct effect of changing any plate parameter on the radiated pressure field.

Additional calculations involving changing other plate properties (such as mass, stiffness,

damping...etc) can be made using this approach in order to analyze their effect on the
radiation field.

5. Concluding Remarks

A model that couples a supersonic turbulent boundary layer with a flexible plate and

the radiated acoustic field has been developed. A three dimensional code has been written
to solve this model. The code is a modified version of CFL3D. Extensive two dimensional

and three dimensional test calculations have been carried out. Figure 20 summarizes

the capability of the code. The results given by this model show good agreement with

existing experimental results both for the structural response and pressure fluctuations in

the turbulent boundary layer. Additional results showed that;

• Full coupling of the plate is important for accurate response and acoustic radiation
calculations.

• As the Mach number increases the acoustic damping on the plate increases. The

acoustic damping lowers the response especially high modes.

• Changing the boundary conditions of the plate changes the response and the

radiated pressure frequency content. This shows that a computational tool can
be used to assess the best noise reduction mechanisms. Further test runs can be

made to support this idea.
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