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Abstract

The development of machine vision based pilot aids to help reduce night ap-

proach and landing accidents is explored in this report. The techniques developed

in this report are motivated by the desire to use the available information sources

for navigation such as the airport lighting layout, attitude sensors and Global Posi-

tioning System to derive more precise aircraft position and orientation information.

The fact that airport lighting geometry in known and that images of airport light-

ing can be acquired by the camera, has lead to the synthesis of machine vision

based algorithms for runway relative aircraft position and orientation estimation.

The main contribution of this research is the synthesis of seven navigation

algorithms based on two broad families of solutions. The first family of solution

methods consist of techniques that reconstruct the airport lighting layout from the

camera image and then estimate the aircraft position components by comparing

the reconstructed lighting layout geometry with the known model of the airport

lighting layout geometry. The second family of methods comprises of techniques

that synthesize the image of the airport lighting layout using a camera model

and estimate the aircraft position and orientation by comparing this image with

the actual image of the airport lighting acquired by the camera. Algorithms I

through IV belong to the first family of solutions while Algorithms V through

VII belong to the second family of solutions. Algorithms I and II are parameter

optimization methods, Algorithms III and IV are feature correspondence methods

and Algorithms V through VII are Kalman filter centered algorithms. In order to

take advantage of the aircraft dynamics and the multiple images available along

the glide path, the position estimates provided by Algorithms I through IV are



used for driving a six-state Kalman filter for providing improved estimates of the

aircraft position and inertial velocity components. Algorithms V through VII are

Kalman filter centered algorithms and are designed to implicitly utilize the aircraft

dynamics and the multiple images available along the glide path. Additionally,

Algorithm VI integrates the position information derived from a Global Positioning

System receiver.

Results of computer simulation are presented to demonstrate the performance

of all the seven algorithms developed in this report. It is shown that all the algo-

rithms meet some or all of the Federal Aviation Administration specified navigation

accuracy requirements for various landing categories. These results show that it

is feasible to design an accurate machine vision based night landing aid with the

currently available technology.
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Chapter 1

The Need for Pilot Aids

Landing is one of the most demanding flight regimes in fixed-wing aircraft

operations. This fact is borne out by the statistic that the landing phase of flight

alone accounts for 29% of all the aviation accidents. Approach and landing acci-

dents together account for 41% of all aircraft accidents [5]. Research shows that

night approach accident rates are about eight times that of the day rate [9]. This

is perhaps attributable to difficulties associated with reduced lighting during the

nighttime hours. Clearly, out-of-the-window references, navigation aids, and air

traffic awareness are significantly impacted during these low-light conditions. Fur-

thermore, the human body is primarily adapted for daytime activity. Night flying

places the pilot's eyes, which provide the primary sensory information needed for

flight, in an environment for which they are only partially suited. Limitations of

the human visual system along with aircraft motion are responsible for numer-

ous static and dynamic illusions which can have dangerous consequences on night

landing [40]. Thus, in addition to the usual landing hazards such as winds aloft,

and complex approach procedures employed at airports near population centers,

night landing can further add to the pilot work load.

Landing aids such as the Instrument Landing System (ILS) and the Microwave

Landing System (MLS) can be used to ameliorate the night landing difficulties.

Due to their high cost, these systems are likely to be available only at a few



major airports. Given the operational advantages of all weather landing at any

airport, large commercial carriers are likely to equip their airplanes with such

systems. Currently, ILS systems are routinely used by these air carriers to land

their airplanes. Emerging Global Positioning System (GPS) technologies hold the

promise for low-cost, high precision landing guidance. GPS-based landing systems

are likely to find widespread applications in the aeronautical operations.

Smaller air carriers and general aviation aircraft which are not equipped with

INS can only navigate along the Victor Airways or Jet Routes to the destina-

tion airport using very-high-frequency omnirange equipment (VOR) and distance

measuring equipment (DME) [49]. Once the destination airport is visible, runway

lighting is used for obtaining alignment guidance. Visual approach slope indicator

(VASI) or precision approach path indicator (PAPI) lights are used for obtaining

glide slope information. The objective of the research given in this report is to

explore the development of a pilot aid that can help reduce night approach and

landing accidents. The research focus is on developing an onboard instrument that

complements existing cockpit instrumentation.

The techniques developed during the course of this research are motivated by

the desire to use the emerging machine vision techniques along with the existing

infrastructure to derive more precise aircraft state information. Decreasing costs

of machine vision systems and components places this technology in an attractive

position. Even if a highly sophisticated landing system were to become available,

runway lighting will continue to be in use. Thus, the machine vision based system

will be the ultimate back-up landing system. As and when GPS becomes cheaper

and more accurate, the machine vision system can be used to further add value

to it. Finally, even though the focus of this report is general aviation application,

there is no reason why the algorithms and methods proposed here cannot be used

in commercial and military aircraft.

In order to further motivate the development of landing aids, factors that

make night landing hazardous are next examined.



1.1 Pilot's Health Condition

The pilot is required to be in good health in order to cope with all the situa-

tions encountered during night flying. The following factors are indicated in [40]

as symptoms of changing health. Sleeping problems, chronic fatigue, gastric dis-

turbances, shortness of breath, appetite changes, reduced eye-hand coordination

or muscle tremor, high blood pressure, and body weight change of more than ten

percent when not dieting. Of these, the important ones are sleep disorders and

fatigue.

Pilots, like other human beings, experience regular sleep and wakefidness cy-

cles in consonance with the day-night cycles. This is known as circadian rhythm.

This rhythm resets the biological activities once every cycle. Pilots are required

to stay awake during night flight which conflicts directly with their need to sleep

during the nighttime hours. Lack of sleep causes sleep disorders and fatigue. Sleep

disorders are also caused if one's sleep hours are shifted to a new time period dur-

ing the day. For example, transmeridian flights require synchronization of body

rhythms to new time zones. Usually, this adjustment is accompanied by loss of ap-

petite and tiredness. Other side effects of sleep deprivation are short-term memory

loss, reduced attention span, reduced judgement capability, increased irritability

and anxiety, and increased reaction timel

Fatigue can be defined as a general loss of well-being caused by physiological

and psychological factors such as inadequate rest or sleep, intense mental activity,

limited visibility, seat discomfort, airplane vibration and noise, and excessive radio

communications. Pilot response to fatigue is very similar to that caused by sleep

deprivation.

Sleep deprivation, fatigue and a number of other factors that impair pilot

performance and the physiological and psychological responses to these causal

factors are described at length in [40]. Steps needed for preventing and overcoming

night pilot health related dii:ficulties are also listed in Reference [40].



1.2 Flight Situational Awareness

In order to maintain flight safety, a correct assessment of aircraft attitude is

needed at all times. Although all aircraft include cockpit instrumentation needed

for safe flight operations, to a large extent pilots base their sense of orientation

on visual, vestibular and somatosensory systems. Often these reflexes give a false

sense of attitude. Therefore, a trained pilot consciously suppresses the unwanted

vestibular and somatosensory reflexes, and uses only the information that is visu-

ally derived [24]. However, a number of potentially dangerous situations may be

attributed to the information provided by vestibular and somatosensory systems.

The vestibular system consists of the semicircular canals and the otolith organs

of the middle ear. The semicircular canals and otolith organs provide information

about angular and linear accelerations, respectively. In addition, the otolith or-

gans also sense the direction of the gravity vector. The information provided by

the vestibular system is needed for stabilization of the eyes during head or body

motions, which would otherwise result in blurred vision. In the absence of vision,

accurate motion and orientation perception when on ground is also provided by

the vestibular system. Although, the vestibular system is ideally suited for the

ground environment, it is only partially suited for the flight environment. Under

certain flight conditions it can generate false perceptions.

The somatosensory system responds to pressure and stretch. It consists of

somatosensory sensors that are distributed in several body structures, including,

skin, joints and muscles. This system is responsible for the so-called "seat-of-the-

pants" sense referred to by pilots [24]. Like the vestibular system, the somatosen-

sory system can also generate false perceptions under certain conditions.

In addition to the vision, vestibular and somatosensory systems, pilots learn

to use the auditory system to get a sense of airspeed and attitude based on the

wind noise in the cockpit [24].

Compared to the vestibular and somatosensory systems, the visual system



provides more accurate orientation information. In situations such as nighttime

flight operations, the visual information is considerably degraded, forcing the pilots

to depend on less accurate vestibular and somatosensory systems. In the next

section, the impact of reduced lighting flight operations on the visual system is

examined.

1.3 Vision at Night

A pilot's vision provides the primary sensory information required for flight.

Hence, it is important to examine how the human visual system is impacted dur-

ing the twilight and nighttime hours. The visual information is combined with

other sensory information, memory and domain knowledge via complex mental

processes to result in visual perception or understanding of the scene. For cor-

rect interpretation of the flight situation, both static and dynamic visual cues are

needed.

The cockpit layout around the night aviator plays an important role in pro-

viding a frame of reference for the pilot. It is with this reference that the pilot

perceives himself or herself to be a fixed component of the aircraft. Static structure

of the cockpit aids the pilot in making appropriate control inputs by providing a

stable visual reference for judging changes relative to the external environment.

Static cockpit structure is so important that excessive head motions have been

known to result in a sense of uncertainty about the aircraft attitude.

Static structures external to the cockpit such as the aircraft nose restrict ex-

ternal visibility. To overcome this difficulty to some extent, a design eyepoint is

specified for the cockpit to permit optimal internal and external visibility. Pilots

are required to be positioned correctly with respect to the design eyepoint. How-

ever, over time pilots may have a tendency to slump down into the seat, thus

lowering the eye position by a couple of inches, thereby causing a significant devi-

ation from the design eyepoint. This is very significant during night landing since,



deviations from the designeyepoint can result in diminished visual range. This

could causethe runwaylights during the final approachto appearlater than they

would haveif the visual rangeweregreater.

Spatial referenceis also establishedby the ground plane which provides the

horizon. Objects of known sizeon the ground provide scaleand distance infor-

mation. The motion of the objects in the visual field providesinformation about

groundspeed.During nighttime the horizon and the objects are difficult to see. In

some situations this can lead to a complete loss of spatial orientation. Such disori-

entation causes symptoms of fright, airsickness and dizziness. The recommended

procedure in such situations is to switch the pilot's attention to the cockpit instru-

ments.

Due to the greatly reduced visual information during nighttime flight opera-

tions, pilots are unable to compensate for perceptual disturbances. A major cause

of perceptual disturbances is head motion. During and after rolling and pitching

head motions, pilots have reported a feeling that the flight situation may be less

safe and secure. This is probably due to conflicting information from vestibular

sense organ and the visual system. Due to this reason, the head should be kept as

motionless as possible. However, pilots do have to continually scan the external

environment and cockpit instruments. Since body motions are deliberately carried

out, any apparent motion of cockpit structures, such as window frames, relative

to the external environment are attributed to the body motions. All other mo-

tions are inferred to be due to aircraft motion. These two types of motion are not

easily distinguishable by the night pilot because the visual cues needed for correct

interpretation are either lacking or are considerably degraded during nighttime

hours.

The combination of reduced lighting, perceptual disturbances and the motion

of the outside scene perceived by the pilot give rise to a number of potentially

dangerous visual illusions. A few commonly encountered illusions are discussed

next. Reference [40] discusses these in further detail.



1.4 Visual Illusions

A visual illusion is a false perception of reality. Often, false perceptions are

a consequence of logical interpretation by the observer. Visual illusions can occur

when there is differential motion between the outside scene and the aircraft that

is perceived within the pilot's field-of-view. They also occur in situations when

the outside scene moves across the pilot's field-of-view during relatively stable

visual fixation. The commonly known visual illusions that a night pilot is faced

with during descent and final approach for landing are described in the following

sections. These descriptions are primarily based on [40].

1.4.1 Runway Length/Width Illusion

During the final approach to landing, pilots gauge the aircraft position with

respect to the runway and the glide slope by how long and wide the runway appears

from their viewing position. During the night, objects of known size and shape

on the runway surface are not clearly visible. Therefore, the length/width illusion

may arise because of what is observed differs from the pilot's expectation. If the

runway width appears to be larger, the pilot perceives the aircraft to be below

the normal glide path. A narrower runway on the other hand gives the illusion of

being high.The latter can cause the pilot to increase the rate of descent. Since the

aircraft is close to the ground, by the time the pilot realizes that the aircraft will

land short, there may not be enough lift margin to arrest the rate of descent [24I.

1.4.2 Foreshortening Illusion

Foreshortening illusion pertains to when the true shape of the objects such

as terrain features appear to be more elliptical or shortened when viewed from a

distance along the glide slope.



1.4.3 Sloped Runway Illusion

If the ground surface is not level, as in the case of sloped runways, the visual

cues effect pilot's judgement of the aircraft altitude and glide slope. Usually,

runways are at the same level as the surrounding terrain. Therefore, the visual

information from the terrain reinforces the runway perception. In situations where

the runway actually slopes with respect to the ground while pilots expect the

runway to be level with the ground, it has been observed that steeper approaches

are flown to upsloped runways and shallower approaches to downsloped runways.

The illusionary condition causes the pilot to land short of the touchdown point

on runways with upslope, and to overshoot the touchdown point on runways with

downslope.

1.4.4 False Horizon Illusion

False horizon illusion mainly relates to misinterpretation of the location of the

horizon within the field-of-view. One form of this illusion occurs when lights on

the ground appear to merge with stars. This results in pilots placing the aircraft in

unusual attitudes in an attempt to keep some ground lights above, having perceived

them as stars. Another form of this illusion occurs when several lights are seen

beyond the runway at a higher elevation. These lights give the impression of a

horizon, prompting the pilots to fly below the glide slope.

1.4.5 Vertical Position Illusion

Well lighted objects or terrain features that are farther away from the pilot

appear higher on the horizon. This may give the impression that the aircraft is

higher on the glide slope than it actually is. This can result in a descent rate in-

crease reaction. Vertical position illusion when combined with false horizon illusion

leads to other illusions. One of these occurs when the pilot observes a light located

on the ground a small distance ahead and to the side. The pilot may have to look
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at a downward angle to observe the light relative to the wings. This gives the

impression that the line-of-sight to the ground is more level which may cause the

pilot to assume a nose up attitude. At low altitudes, as the pilot looks downward

at the ground light when the horizon is invisible, a small bank angle may develop.

In this case, the pilot is unable to perceive the development of this dangerous bank

angle.

1.4.6 Illusions Caused by Fog and Rain

As pilots descend to the runway, presence of fog causes the runway lights to

appear less bright, causing a misperception of the actual distance from the runway.

Pilots are led to believe that the aircraft is farther away than it truly is. Refraction

caused by heavy rain on the windshield results in ground lights to appear from an

apparent location. This may give rise to errors in perceived altitude. Rain can also

cause the runway to appear larger in size when compared to clear air conditions and

can cause the horizon to appear closer. Heavy rain can often cause the complete

disappearance of the horizon. When an approach is made through fog or haze,

vertical visibility is better than forward visibility. This causes the ground lights

farther ahead to appear less bright leading to the illusion that the aircraft is pitched

up.

1.4.7 After-Image Illusion

A visual after-image remains when an observer views a bright light at night.

For example, a camera flash bulb leaves a visual after-image subsequent to going

off. This after-image results in the illusion that the environment is more static,

hence, attitude changes are not perceived during this period. This illusion is

encountered specially during approach to a runway, since, high intensity strobe

lights placed along the runway approach centerline are used for indicating approach

direction. Once a certain altitude is reached, pilots often request the control tower
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1.4.8 Ganzfeld Depth Loss Illusion

Ganzfeld is a German word for a featureless visual scene. This illusion results

in loss of depth perception when flying over snow fields, bodies of water or any other

featureless terrain. Some features are required on the terrain so that location of

one feature is judged to be different than the location of another feature. Without

this prerequisite, depth discrimination is impossible. At night, unilluminated areas

of the terrain with vastly different features appear continuous. For example, bodies

of water smoothly merge with land in the visual scene.

1.4.9 Foreground Occlusion Illusion

This illusion is most often experienced when the ground lights are cutoff by a

cloud. In a moonlit night, pilots can detect the cloud by its reflection. However,

in a dark night such discrimination is not easy. A more dangerous version occurs

during descent at night over mountainous terrain. During a portion of the descent,

the lights on the runway are visible to the pilot and the foreground occlusion such

as a hilltop lies invisible. At some point along the descent, the lights are cutoff

by the hilltop. When such a situation is detected, pilot should climb immediately

or else a collision with the terrain would occur. It is easy to see how this illusion

could cause confusion in judging whether a hilltop or a cloud is the cause for the

foreground occlusion. Detailed terrain knowledge is one of the useful sources of

information for correct interpretation.

1.4.10 Up-Sloped Lighted City Illusion

This illusion is experienced when terrain stays level for some distance and then

rises to give the impression of two intersecting planes in the pilot's field-of-view.

Often there are parallel roads with street lights in a city situated on the upward
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sloping terrain. Long rows of street lights appear to converge at a distance giving

the impression of a horizon. The runway lights, situated on the level terrain in the

foreground, may also appear to converge at a different vanishing point. The pilot

can be tricked into believing that the broad upward sloping terrain is level and

that the runway is sloped down. This may cause the pilot to increase the descent

rate.

1.4.11 Autokinetic Illusion

When an observer stares steadily at a single motionless source of light at

night, autokinetic illusion gives the appearance that the source of light is moving

around in random directions at varying speeds. Due to this illusion, an isolated

motionless ground light may appear to be moving on the ground. One possible

erroneous interpretation is that another aircraft is in the vicinity. Autokinetic

illusion can also cause a visible star to be misperceived as a moving vehicle on the

ground, giving the impression of low pitch attitude to the pilot.

1.4.12 Black Hole Approach Illusion

Black hole approach illusion arises during night approaches where no ground

details are visible short of the runway. Four different types of black hole approach

situations have been described in [40]. The main factor that causes this illusion is

that pilots derive vertical guidance information in the angle between the line-of-

sights to the farthest and the nearest light. If an aircraft is flown at a constant

altitude, the angle is expected to increase as the aircraft nears the runway. Simi-

larly, the angle should decrease as the aircraft descends. In cases where the pilot

is unable to perceive visual angle change, a more rapid descent is flown. Problem

occurs in situations where the aircraft descends into the terrain much before the

runway.

This concludes the discussion of visual illusions. A few vestibular and so-
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matosensory illusions are described next.

1.5 Vestibular and Somatosensory Illusions

Vestibular and somatosensory illusions are caused by the linear and angular

accelerations perceived by the pilot.

Somatogravic illusion is a sensation of change of attitude when the otolith

organs are subjected to linear acceleration. This illusion occurs in bevel flight

giving the pilot a false cue of being in a nose high attitude during acceleration.

The opposite illusion of nose down attitude occurs during deceleration on final

approach. A pilot may create a low altitude stall in the process of correcting for

this illusion [24]. A variant of this illusion is the inversion illusion in which the G

forces acting on the otolith organs give the sensation of being upside down, when

the pilot is being subject to negative G forces [24].

During a coordinated turn, the "seat-of-the-pants" sense is misleading be-

cause the resultant of the gravitational and centrifugal forces is directed towards

the floor of the aircraft, which the pilot falsely perceives as the direction of the

vertical [24].

Coriolis illusion occurs during prolonged turns in one plane. The sensation

of turn perceived by the semicircular canals in the inner ear at the beginning of

the turn subside during the prolonged turn. A sudden head movement causes

the canals to sense angular acceleration which gives the impression of rotation

in another plane. Attempts to correct for this illusion can place the aircraft in

dangerous attitudes [24]. The coriolis illusion is specially hazardous during curved

approach because of the aircraft's proximity to ground. Furthermore, it can cause

disorientation and can produce intense symptoms of nausea [40].

"Leans" is a common illusion caused by rapid roll maneuvers to correct for roll

angle developed by subtle bank. For example, if a subtle bank angle develops to

the left such that the vestibular system is unable to detect it, the pilot eventually
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detects the roll on the attitude indicator and corrects it by a rapid roll to the right.

The pilot gets the false sense of only having rolled to the right.

Giant hand illusion gives the impression that an external force is pushing on

the aircraft or holding it at a certain attitude. This is caused by vestibular and

somatosensory inputs that interfere with pilot's conscious control of the aircraft. If

the disorientation is about the pitch axis during aircraft acceleration, the aircraft

appears to resist pilot efforts to pull the nose up because the natural reflex is to

push the nose down [24]. This illusion also occurs when the disorientation is about

the roll axis as in the "Leans" illusion. In these cases, the aircraft seems to resist

roll efforts by the pilot.

In addition to the illusions described here, a number of vestibular and so-

matosensory illusions can occur in high performance aircraft during maneuvers

such as graveyard spin, graveyard spiral and rapid aileron rolls. These are de-

scribed in further detail in Reference [24].

With the background of sensory illusions that the night pilots often experience,

the potential use of machine vision systems in ameliorating the impact of these

illusions is examined next.

1.6 Machine Vision Systems As Pilot Aids

Based on the preceding discussion of the human perceptual system and how

prone it is to visual, vestibular and somatosensory illusions, this report attempts to

answer the question: Can a machine vision system augment the pilot's perception

sufficiently to avoid these illusions?

Before an attempt is made to answer this question, it is necessary to establish

the underlying causes for the various illusions described earlier. Closer analysis

reveals that they can be classified into three distinct groups based on the underly-

ing causal factors. Those that occur because of imprecise knowledge of geometry,

those due to conflicting information from the vestibular, somatosensory and vi-
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sual systems, and those arising from the limitations of the human eye. Runway

length/width illusion, foreshortening illusion, sloped runway illusion, false horizon

illusion, vertical position illusion, Ganzfeld depth loss illusion, foreground occlu-

sion illusion, up-sloped lighted city illusion, and black hole approach illusion, all

have their root in imprecise knowledge of the terrain, runway and lighting geom-

etry. Autokinetic illusion and the various vestibular and somatosensory illusions

have their roots in conflicting information received from the vestibular, somatosen-

sory and vision systems. The third group of illusions, which includes after-image

illusion and fog and rain caused illusions, has its basis in the physical limitations

of the human eye. After-image illusion is caused due to saturation of the visual

receptors in the eye. Fog and rain cause the runway lights to appear diffused. In

this situation, the eye has no mechanism for enhancing the appearance of these

lights.

In order to examine how a machine vision system could be functionally supe-

rior to its human counterpart, consider the analogy between the human perceptual

system and the machine vision system shown in Figures 1.1 and 1.2.

RUNWAY KNOWLEDGE ]
IN MEMORY

RUNWAY SCENE EYE T ,R...

VESTIBULAR ORGAN

ESTIMATION OF

POSITION AND

ATTITUDE

Figure 1.1: Human perceptual system.

The human perceptual system is mainly driven by three sources for the land-
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t
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ESTIMATION OF

POSITION AND
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Figure 1.2: Proposed machine vision system.

ing task: runway lighting as seen by the eye, motion sensed by the vestibular and

somatosensory systems, and runway knowledge learnt and stored in the memory.

An analogous machine vision system could also be driven by equivalent sources:

runway lighting seen by the camera, motion sensed by accelerometers and gyro-

scopes, and knowledge of runway geometry encoded in the computer memory. In

the human perception system the brain integrates the input information. In the

machine vision system this function can be accomplished by computer-resident

algorithms. Thus, according to this analogy, the camera can be considered equiva-

lent to the human eye, accelerometers and gyros equivalent to the vestibular organ,

and the geometry information available from digital memory can be considered to

be equivalent to the domain knowledge in the human brain.

The exact geometric information encoded in the digital memory of the com-

puter is precise when compared with the approximate runway geometry knowledge

stored in the human brain. For the machine vision system, this fact offers the im-

munity to visual illusions caused by imprecise knowledge of the runway geometry.

Accelerometers and gyros are precision instruments which far exceed the ca-

pabilities of the human vestibular and somatosensory systems. In addition, these

sensors provide true motion of the aircraft. In situations where the pilot moves

relative to the airplane, the vestibular and somatosensory systems sense a combi-
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nation of the aircraft motion and the pilot's motion. Thus, it is difficult for the

pilot to differentiate betweenself motion and aircraft motion.

Unlike the human eye, the camerasensorelementscan be designedto have

optimal sensitivity to runway lights. Additionally, optical filters can be usedfor

reducing or eliminating certain frequenciesfrom the visible spectrum. They can

also be designedto avoidsaturation of the photosensitiveelements. Thus, after-

imageillusion canbe effectivelyeliminated in a machinevision system.

So far, information sourceswhich have the potential of providing superior

quality information to the machinevision systemhavebeendiscussed.However,

the critical componentof a machinevision systemis the algorithm for estimating

runway relative position and attitude of the aircraft. The point of view adopted

in this researchis that two categoriesof algorithms basedon soundphysical and

mathematical principles are neededfor algorithm development. Firstly, methods

for conditioning the imageoutput from the cameraare required. Secondly,meth-

ods for integrating information from the image, motion sensors,and the stored

runway geometry, for runway relative position and attitude determination need

to be developed. Both categoriesare topics in the Computer Vision or Machine

Vision literature. Assumingthat suchalgorithms canbe designed,the next issue

relates to what is available in the literature and what has beenaccomplishedso

far. The following chapter providesa brief summaryof Computer Vision and the

literature relevant to the designof suchalgorithms.

The preliminary discussionin this section providesa glimpseat the possibil-

ities offered by a machinevision system. Although current generation imaging

sensortechnologyis adequatefor the designof a machinevision system, future

improvementswill only enhancethe capability of sucha system.
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1.7 Summary

The complexity of the landing task and the hazards of night operations were

discussed in this chapter. Pilot health issues, flight situational awareness, vision

at night, visual illusions, vestibular and somatosensory illusions were discussed at

length. A study of these issues indicated that a low cost, machine vision based

position and orientation instrument was required for general aviation. Since human

pilots are able to fly the aircraft along the descent path purely by visual reference,

it was argued by drawing an analogy between the human perceptual system and the

machine vision system that a machine vision system could be designed for deriving

runway relative position information during approach and landing without being

subject to optical illusions. Reasons were given for expecting higher reliability of

the machine vision system as opposed to the human perceptual system, specially

in cases where precise knowledge of runway geometry is required. It was pointed

out that the algorithms are the key component of the machine vision system.



Chapter 2

The Machine Vision Technology

Machine or Computer Vision technology deals with algorithms and methods

for two dimensional digital signal processing, pattern classification, image segmen-

tation, geometric modeling, and relational structures. Text books in this area

[6, 27, 47, 53, 78] cover many of the topics of machine vision. Many of these text

books have an Artificial Intelligence flavor, focusing on heuristics of machine vi-

sion technology, Reference [6] being an example of this approach. A few examine

the issues from a signal processing point of view, while others are motivated by

statistical decision theory. Representative examples of these two approaches are

References [53] and [27]. These references cover most of the tools and techniques

used in machine vision system development and research.

The range of topics addressed in machine vision technology can be organized

as a sequence of representations from early or low-level vision to cognitive inter-

pretation [6]. Starting with an image generated by the camera, early or low-level

vision algorithms are used for image conditioning such as filtering, edge detection,

and optical flow computation. The output of this process is usually encoded into

an image format, often called intrinsic or generalized image [6]. Higher level al-

gorithms use these intrinsic images as inputs and gather regions within the image

that are likely to be associated with objects being viewed. For example, neigh-

boring pixels in the image which have the same color can be grouped together to

18
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representan object. Higher-level algorithms alsoassigngeometricpropertiessuch

as shape,area,eccentricity, compactness,and boundary length to regionswithin

the image. This representationis natural if a databasecontaining all the shapes

making up the sceneareavailable. Shapepropertiescanbe usedfor matching the

imagewith modelsin the database,permitting the derivation of the location and

orientation of the observer.Finally, higher levelalgorithms may userules of logic

to infer about what is seen.Clearly, this function is very much dependenton the

domain. With this brief introduction to machinevision, modern solid state imag-

ing systemsareexaminednext. Someof the low-level and high-level functions are

examined.

2.1 Modern Solid State Imaging Systems

Electronic imaging technology has changed considerably since the introduc-

tion of photoemissive storage tubes which use incident light to emmit electrons

in a pattern corresponding to the brightness of the scene. The Iconoscope was

the first practical device of this type. This was soon replaced by Image Orthicon.

The low signal-to-noise ratio of these devices led to the development of photo-

conductive devices. Photoconductive devices are based on principle of change in

electrical resistance of a photoconductor when exposed to light. Vidicon, Plumbi-

con and later Saticon are devices of this type. More recently, solid-state devices

called charge-coupled devices (CCDs) have found an increased use in the consumer

electronics. These devices provide good signal-to-noise ratio along with the ad-

vantages of small size, low power consumption and low cost. A modern solid state

CCD camera unit is shown in Figure 2.1.

Cameras convert electro-magnetic radiation received within a certain field-of-

view into electrical signals encoded to form a two dimensional array. This general

definition is applicable to visible-range and infra-red camera systems. Thus, one

way to classify an imaging system is by its operating range within the electro-



2O

Figure 2.1: A Modern Solid State Camera.

magnetic spectrum. This report will be mainly concerned with image sequences

generated by Television (TV) cameras, although some of the algorithms are appli-

cable to the infra-red systems as well.

Major components of a solid state TV camera such as the one shown in Figure

2.1 are the lens, iris, shutter, photosensitive sensor array and camera electronics.

In addition to these, color cameras employ beam splitters. A compound lens is

used for adjusting the focal length for projecting the image of the viewed scene on

to the photosensitive sensor array. Iris controls the amount of light that is allowed

to reach the photosensitive sensor array. Photosensitive sensor array is the sensing

element that converts images into electrical signals. Imaging systems are often clas-

sified by the type of photosensitive sensor used, charge coupled devices and charge

induced devices (CID) being two examples. The camera electronics provides timing

signals for shuttering and downloading the signal from the photosensitive sensor

array, noise removal, signal conditioning, pre-amplification, amplification, image

encoding and several other functions that are needed for generating acceptable

images.
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A CCD sensor array consists of rows and columns of photosensitive elements

arranged in a rectangular array on a silicon substrate. Pixel size is the term used for

describing the size of an individual photosensitive element. These elements collect

and store electrical charge in proportion to the intensity of the light incident on

their surface. The charges are electronically transferred to the device output to

form the output video signal.

The resolution of a CCD camera depends on the number of photosensitive

elements. The number of rows determine the vertical resolution and the number of

columns determine the horizontal resolution of the camera. Typically, a National

Television Systems Committee (NTSC) format CCD camera is designed with 492

rows and 510 columns [52].

Three commonly used architectures for CCD transfer and readout are: (1)

frame transfer, (2) interline transfer and (3) frame and interline transfer [52].

Frame transfer architecture uses a sensor array, a storage register array and a

horizontal output register. The sensor array is allowed to collect charge for a com-

plete frame. Commanded by a clock, the charges in each column are transferred

vertically from element to element to a corresponding column of the storage array.

This process empties the sensor array for the next frame. The charges from the

storage array are transferred one row at a time to the output register in synchro-

nism with clock commands. The output register generates the video signal.

The main disadvantage of this architecture is that the photodiodes saturate if

exposed to bright light for a long duration. To overcome this problem, a mechanical

shutter is employed to permit the CCD sensor array to be exposed to bright light for

a short duration. Clearly, this introduces a mechanical element into an otherwise

all electro--optic device. This is specially of concern if the camera is to be used in

a high vibration environment.

In the interline architecture, every photosensitive element in the sensor array

is connected to a neighboring storage element. The storage elements are arranged

in columns next to sensor element columns. Once charge is collected, commanded
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by a clock, charge is transferred horizontally from each sensor element to the

neighboring storage element which frees up the sensor element for the next frame.

Charge is then transferred vertically from storage element to storage element in

each storage column. Finally, under a clock command, the charges from the storage

array are shifted one row at a time into the horizontal output register, similar to

the frame transfer architecture discussed earlier. The video signal is then read out

from the output register.

This architecture has the advantage of being resistant to blooming and smear

because of the rapid transfer from the sensor array to the storage array. The main

disadvantage is that placement of storage elements next to sensor elements causes

the sensor to have lower pixel density.

Frame interline architecture employs a row of selection gates between the

sensor and storage elements so that excess charges are drained from the system

before being transferred to the storage columns. This architecture is similar to

the frame transfer architecture with the added advantage of being resistant to

blooming and smear.

Blooming occurs when a CCD sensor element saturates and spills charge to

the neighboring elements. This gives the appearance of a large bright spot in the

image. This effect may be seen in the image of the runway lighting, acquired by

a CCD camera, shown in Figure 2.2. In order to overcome this problem, more

expensive CCD sensor elements are designed with built in anti-blooming gates

which remove the excess charge.

Sensitivity is an important measure of camera performance. Camera sensitiv-

ity is defined as the amount of light that is needed to produce a video signal of

certain magnitude. For example, sensitivity can be characterized by the amount

of light in units of Candle Power required to produce a gray-level of 255 in an

8 bit system. A more sensitive camera requires less amount of light to produce

the same output as a less sensitive camera. Camera sensitivity can be adjusted

to a certain extent by increasing the video gain in the camera. The disadvantage
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Figure 2.2: A CCD cameraimageduring night landing illustrating the "blooming"

effect.
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in increasing sensitivity is that it decreases the signal-to-noise ratio. For CCD

cameras, signal-to-noise ratio is directly related to the camera sensitivity.

Dynamic range of a CCD camera is a measure of its range of useful operation.

It is defined as the ratio of the number of electrons required for maximum charge

to the number of electrons that accumulate at the charge site if no light is incident

on it. This ratio is often expressed in decibels (dB). As an example, if 80,000

electrons represent full charge and 20 electrons represent the dark current, the

dynamic range is 72 dB.

Integration time is defined as the duration in which charge is allowed to ac-

cumulate in the charge sites of the CCD array. The integration time is controlled

by electronic shuttering or by the selection of the readout pulse width.

Gamma is another term commonly associated with TV cameras. An image

gamma of unity means that the system correctly reproduces the gray-levels of the

scene [52]. If gamma is greater than unity, the image appears sharper but the scene

contrast range is reduced. Reduction of gamma makes the image appear washed

out [52]. Since the CCD is a nearly linear device, its output signal is directly

proportional to the scene illumination. However, the phosphors used in display

monitors behave nonlinearly. Typically, they have lower gain for dark signals and

higher gain for bright signals. To compensate for this, higher gain is used for dark

signals and lower gain for bright signals in the video output to produce a linear

response from the monitor. This intentional incorporation of nonlinear gain is

called gamma correction. The disadvantage of gamma correction for dark signals

is that the noise is also amplified. Gamma correction is seldom used for cameras

used in image processing applications.

2.2 Low-level Vision

The digital image generated by the camera can be considered to be a two

dimensional function f(x, y). In order to restrict the memory requirements, it is
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customary to represent images as an integer function of integer variables. Such

an image with function values between 0 and 255, known as gray-levels, is shown

in Figure 2.3. This figure is a daytime image of a runway taken by a camera

Figure 2.3: Vehicles parked on a runway.

mounted on the nose of a rotorcraft. Considering the image as a two-dimensional

signal permits the application of various signal processing techniques. Techniques

such as low-pass, band-pass and high-pass filtering, histogram equalization, and

interpolation can all be used. Mathematical tools of transform theory such as two-

dimensional Fourier transform, sine transform, cosine transform, singular value de-

composition, and Radon transform can all be applied to enhance the information

content in an image. Ideas from the theory of vector spaces can also be applied if an
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imageis conceptualizedasa matrix. Imagescanalso be processedusingstochas-

tic signal processingtools suchas covariancemodelsand autoregressivemodels.

Application of someof thesetechniquesarediscussedat length in Reference[53].

2.2.1 Filtering

As an example of low-level vision processing, a low-pass filtered version of

Figure 2.3 is shown in Figure 2.4. It is hard to tell the difference between this

Figure 2.4: Low-pass filtered image.

image and the original image given in Figure 2.3, except for a slight reduction in

the gray-level bandwidth. However, the difference is clear when examined in the
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histogram domain shown in Figure 2.5. The histogram summarizes the frequency

with which a certain gray-level appears in an image. Comparison of the two

histograms in Figure 2.5 reveals that the gray-levels in the image shown in Figure

2.4 vary much more smoothly.
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Figure 2.5: Histograms of original image and low-pass filtered image.

2.2.2 Edge Detection

An important early vision processing function is the edge detection. Edges

in an image occur at locations of large gray-level changes. These changes can be

characterized as step, ramp or a combination of step and ramp functions. Rather
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than attempting to locate the edges directly from the gray-level image, a gradi-

ent operation followed by the thresholding operation is usually employed for edge

detection. Edge operators lie in the following three classes: (1) operators that

approximate the mathematical gradient operation, (2) template matching meth-

ods that use many templates at different orientations, and (3) operators that use

parametric edge models for fitting local intensities [6]. Machine vision literature

abounds with edge operators [78]. An example of edge operation on the image in

Figure 2.3 is given in Figure 2.6. In this case a Sobel edge operator [6] was used.

Figure 2.6: Sobel edge magnitude for Figure 2.3.

The Sobel edge eperator is defined as:

A,, = 2(f(i+l,j)-f(i-l,j))+(f(i+l,j-1)-f(i-l,j-1))
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+ (f(i + 1,j + 1)- f(i- 1,j + 1)) (2.1)

= 2(f(i,j + 1) - f(i,j - 1)) + (f(i + 1,j + 1) - f(i + 1,j - 1))

+ (f(i- a,j + 1)- f(i- 1,j - 1)) (2.2)

with magnitude:

s(i,j)- (A_ + _2)½ (2.3)

and direction:
A_

x(i,j) = tan-_(_- 7) (2.4)

Here f(i,j) is the gray-level at a pixel location (i,j). The other indices refer to the

eight neighboring pixels surrounding this pixel. Figure 2.6 shows the thresholded

edge magnitude. The edge direction from Equation (2.4) is illustrated as an image

in Figure 2.7. This pseudo image is created by quantizing and scaling the edge

direction in the range of zero and 255. Black corresponds to the vertical direction

and white corresponds to the horizontal direction.

2.3 Higher-level Vision

Higher-level vision algorithms address the problems related to object repre-

sentations in a scene. They include boundary detection, segmentation, grouping,

geometric modeling, inference techniques and ranging.

2.3.1 Boundary Detection Methods

Boundary detection methods usually fall into one of the following categories:

searching near an approximate location, Hough transform, graph searching, dy-

namic programming and contour following [6]. There is an abundance of literature

describing these methods [2, 8, 36, 41, 62, 65, 72].

Searching near an approximate location involves the determination of a likely

location of a boundary, which is then used for guiding the refinement of the bound-

ary. One of the methods described in Reference [6] carries out local searches at
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Figure 2.7: Graphical representationof Sobel edge direction for Figure 2.3.
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regular intervalsalongdirectionsnormal to the initial boundary. In order to refine

the boundary, the edgeswith the highestmagnitudewhoseorientations arenearly

tangential to the initial boundary are approximated using a polynomial. Recur-

sive techniquesthat construct a boundary by first connecting two edgeswith a

straight line and then searchingalong the normal at the central point for an edge

that exceedssomepreselectedthreshold havealsobeen reported. This technique

is then applied to the two segmentsformed by three edgesand so on. Thus, a

curvedboundary is found.

Hough transform [6, 27] can be used if little information is availableabout

the location of the boundary but its shapecanbedescribedasa parametriccurve.

To illustrate the method, considera straight line in the parameterizedform: p =

x cos 0 + y sin 0 where, 0 is the angle of the normal and p is the distance from

the origin [27]. Given a set of points (x_,y,), Hough transform involves setting

up a two-dimensional accumulator array A(O, p) which is incremented each time

the particular (0, p) location is visited. 0 is quantized and varied between 0 and

2rr. Hence for each (Xi,Yi) , p's are computed using the parameterized form and

the accumulator array is incremented by one. If many points lie on a straight line

corresponding to a particular 0 and p, the accumulator value for this 0 and p is

high. Thus by using a threshold, meaningful lines in the image can be determined.

As discussed in [6] Hough transform method can also be tailored for other shapes.

Graph searching techniques involve searching through a set of nodes linked via

edges to determine minimum cost paths for boundary determination. Minimum

spanning tree algorithm described in [75] is one such graph searching algorithm.

A spanning tree is defined as a connected set with no loops that contain all the

points in the problem. The minimum spanning tree of a set is that whose cost

is a minimum. On a historical note, the graph search problem is closely related

to the travelling salesman problem in Combinatorics [59]. Several cost functions

that can be used for boundary search are described in [6]. Heuristic graph search

techniques and methods for managing the data structure are also described in [6].
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The dynamicprogrammingprocedurecanalsobeusedfor boundarydetection.

This procedurebuilds paths from multiple starting points in a discreteregionusing

a performanceindex that describesthe optimal boundary. A recent application

of the dynamicprogrammingprocedurefor boundary detection is describedin [2].

"Energy" is used as the performance index in that work. The energy consists

of imageintensity, edgemagnitude, curvature and smoothnessconstraint. In this

formulation, a penalty is imposedfor movingawayfrom the initial contourposition.

The central idea behind contour following is to start at an edgeand develop

a boundary by recursivelyadding neighboringedgeelementsbasedon their edge

magnitude and direction. Thesemethods makeuseof severalheuristics. Recent

methodsthat implement this ideaare describedin [8] and [62].

The boundary detection procedureproposedin [8] attempts to modify pa-

rametersof lower level processessuchas edgecontour tracking using higher level

processessuchascorner detection. The method encodeseachedgeelementby its

relationship to its neighborsusing a chain codescheme.A window is then used

to determine if the neighborsextend the edgein a straight line. If the neighbors

do not extend the edgein a straight line, left and right extensionsare examined.

This processis continuedtill either the contouris closedor all the pixelshavebeen

examined.

A threestepedgedetectionprocessis describedin [62]. The first step involves

computing the gradient magnitude and direction. The direction of the gradient

is discretized to one of the eight neighborssurrounding the pixel. A heuristic

conceptof Likelihood-of-Being-an-Edge (LBE) is introduced as the secondstep.

The third step is a contour following processwhich attempts to propagate the

edgein a direction normal to the gradient direction starting at pixels with the

maximum LBE value. The boundariesdetected by application of this algorithm

to the vehicleimageis shownin Figure 2.8.
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Figure 2.8: Edge boundariesfor Figure 2.3 using the three-step process[62].
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2.3.2 Gray-Level Segmentation

Segmentation methods serve to consolidate the information available in the

image. Segmentation methods either work directly with the gray-level image or

with texture properties. The central idea is to determine contiguous regions within

the image that satisfy some homogeneity property. Methods reported in the litera-

ture can be broadly classified into local techniques, global techniques and splitting

and merging techniques [6].

Local techniques attempt to place pixels in a region based on some homo-

geneity property of a pixel and its neighbors. An example of this technique is blob

coloring given in [6]. The technique involves scanning the image from left to right

and top to bottom with a special L-shaped template. The idea is to grow the

blob by adding a neighboring pixel if its gray-level is approximately equal to the

gray-level of the blob.

An example of a global segmentation technique is Thresholding. The idea here

is that if an image consists of a background and an object, or equivalently, if the

gray-level histogram of the image is bi-modal, a single threshold can be identified

for segmenting the image into background and object regions. A more recent

algorithm that extends this idea by using multiple-level thresholding is described

in [57]. The difficulty with this technique is that many regions are given the same

label because groups of pixels in different regions of the image lie within the same

portion of the gray-level histogram. This is to be expected because of the global

nature of the algorithm. Clearly, this algorithm is suitable if several objects with

similar gray-level properties are expected to be seen against a common background

in the image. This would be the case in nighttime images of the airport lighting.

Segmentation methods based on merging or bottom up, splitting or top down

and a split and merge scheme are discussed in [50]. Merging involves labeling

of adjacent regions into a larger region based on similar gray-levels while split-

ting involves re-labeling a larger region into several smaller regions based on the

dissimilarity of the gray-levels in the original larger region. A split and merge
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techniqueusesboth splitting and mergingoperations. Usually mergingoperations

are computationally efficient when compared with splitting operations. On the

other hand, it requires larger memory compared to the splitting scheme. The split

and merge scheme trades off computational speed for reduced memory requirement

when compared to a pure merging scheme. Usually the split and merge scheme

such as in Reference [50] is initiated at an intermediate level, close to the final

segmentation. In this algorithm, the image is examined at various resolutions.

Thus, four neighboring regions are merged if the difference between the maximum

and the minimum gray-levels is less than a preset threshold. Similarly, a region in

which the difference between the maximum and the minimum gray-levels is greater

than a preset threshold is split into four subregions. Since both split and merge

operations are done simultaneously, regions that are split are not merged with ad-

jacent regions. To overcome this difficulty, a grouping technique which abandons

the tree structure is used. Finally, the remaining small regions are merged with

the adjacent large regions. For the vehicle image shown in Figure 2.3, 214 regions

found by this algorithm are shown in Figure 2.9. The artifacts of the segmentation

boundaries can be seen in this segmented image. Clearly, the power of segmenta-

tion is also illustrated by the fact that 262144 pixel regions are compressed into

214 regions.

Although both boundary detection and segmentation are related, it may be

noted that the results generated by these methods are quite different as evidenced

by Figures 2.8 and 2.9. It is easily seen that not all boundaries are closed but all

segmented regions are contiguous.

The foregoing techniques are also applicable to the problem of texture segmen-

tation with the homogeneity criteria based on texture properties. Since texture

segmentation forms a large body of work in machine vision literature, it is treated

here separately from gray-level segmentation.
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Figure 2.9: Segmentedregions for Figure 2.3 using the split and mergescheme

[501.
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2.3.3 Texture Segmentation

Gray-level images are characterized by pixels of varying intensity. Hence, they

can also be described by the stochastic properties of the gray-levels distribution

across the image. The properties of this distribution are usually given in terms

of the first, second and higher order statistics. First order statistics describes the

pixel population in the image without regard to its spatial distribution. The second

order statistics take the spatial distribution into account. Two approaches are used

to characterize this spatial distribution: (1) a stochastic model-based approach and

(2) a data-driven approach. The model-based approach assumes that the image

can be modeled in terms of a two-dimensional random field. Several stochastic

models are discussed in References [43, 79].

The data-driven or non-parametric approach is based on characterizing the

two-dimensional intensity distribution by different types and features of second

order statistics. The conditional probability density function f(i, j ld, O) represents

the probability that two pixels separated by an inter-pixel distance d and orienta-

tion 0 have intensities i and j. An estimate of the conditional probability density

function c(i,j]d, O) is sometimes referred to as the gray-level co-occurrance matrix

(GLCM) or as the spatial gray-level dependence matrix (SGLDM). SGLDM has

been most widely used measure for classification of textures [1, 19, 39, 42, 101].

SGLDM can be obtained by computing the two-dimensional histogram of the

frequency of the joint occurrences of two pixels with a fixed displacement and

orientation with respect to each other having intensities i and j respectively. A

rotationally invariant SGLDM is computed by averaging the individual SGLDM

for each angular direction.

Either matrix features or scalar features can be used for texture classification.

Many different approaches are available for texture classification using matrix fea-

tures. Threshold selection based on the SGLDM is described in Reference [1]. In

Reference [19], the SGLDMs of four neighbors in the quad-tree are compared with

a threshold for merging or splitting operations. Results using this technique are



38

also presented in [103]. A technique for image segmentation by detecting clusters

in the SGLDM, which correspond to the regions and boundaries in the image,

is described in [39]. A maximum likelihood texture classifier using matrix and

scalar features is examined in [101]. In Reference [77] segmentation is carried out

by thresholding. The threshold levels are selected by projecting the off-diagonal

elements of the SGLDM onto the diagonal and treating the resulting vector as

a histogram. Although these methods are useful for segmentation, their storage

requirements are high due to the use of matrix features. For example, 256 × 256 lo-

cations are needed to store a matrix feature for an image containing 256 gray-levels.

These methods are also computationally intensive. The storage requirements and

computational speed are the motivating factor for considering scalar features for

image segmentation. However, it should be noted that many of the scalar fea-

tures derived from the matrix features may not contain all the important texture

information contained in the matrix features [21].

Several scalar features are derivable from the matrix features. For example,

14 scalar texture features based on the SGLDM are presented in [42]. For each

of the scalar features, their means and variance computed by using the SGLDMs

corresponding to the four directions, may be used for texture classification. Some

scalar features derived from SGLDM, Fourier power spectrum, Gray-level differ-

ence statistics and Gray-level run length statistics are described in [21,102]. Scalar

texture features derived from the SGLDM may also be computed from sum and

difference histograms [99]. Compared to computing the full SGLDM, sum and

difference histograms are computationally fast and require significantly reduced

storage. Except for the two scalar features energy and entropy, all the other scalar

features can be obtained by using the sum and difference histograms. Methods

such as [19] and [101] can be used for classification using scalar features. Addi-

tional methods such as piecewise linear discriminant function method, min-max

decision rule method [42] and Fisher linear discriminant technique [102] can also

be used for classification using scalar features.
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Someof the scalar features relate to specific characteristics in the image such

as homogeneity, contrast and organized structure. Other features characterize the

complexity. Even though each scalar feature contains textural information, it is

hard to identify which specific textural characteristic is represented by which fea-

ture. In Reference [93], the classification characteristics of scalar features derived

from SGLDM are examined. It is shown that scalar features used in combination

result in superior image segmentation when compared with a single scalar feature.

This completes the discussion of the various tools and techniques available for

image segmentation.

2.3.4 Clustering Methods

The need for clustering occurs naturally in many systems. For example, vision

based range computations [70, 94] often result in a sparse set. A vision based

ranging method described in Reference [94] is able to compute ranges at discrete

locations shown as white squares in Figure 2.10. Scene understanding, navigation

and display functions require these discrete set of ranges to be grouped into sets

which correspond to objects in the real world. Clustering techniques can be used

for grouping the discrete range points, varying from a few hundreds to several

thousands, into a small number of objects in the scene.

Clustering [4] has been used for a long time in disciplines such as biology, ge-

ology and psychiatry. In computer vision, clustering methods have been used for

classification of multispectral data and image segmentation using attributes like

gray-level, color, texture, gradient, and range. The main idea behind clustering or

grouping is similar to segmentation in the sense that both the techniques attempt

to partition a given set into subsets based on discriminants. In computer vision,

clustering has been associated with statistical pattern recognition using discrete

samples as in Reference [27] while segmentation has been associated with parti-

tioning the image into homogeneous regions as in Reference [6]. In this section,

clustering is described as a problem of partitioning discrete data with the range
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Figure 2.10: Range locations in the image from Reference [94].
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map given in Figure 2.10asan example.

Clusteringtechniquescanbe broadlyclassifiedinto supervised(model-based)

and unsupervised(data-driven) methods. Supervisedmethods require labeled

training samples.For example,if a mixture is known to be composedof samples

from two Gaussiandistributions and the problem is to separatethe two types,

known samplesfrom each Gaussiandistribution can be used for estimating the

mean and the varianceof the Gaussians. Thus, a threshold or decision bound-

ary can be found for classifyingan unknown sample into one of the two types.

Euclideandistance and Mahalanobisdistance [27] measurescan also be usedfor

classifyingthe unknownsampleto the type representedby the closestmean [27].

In the caseof unsupervisedclustering, the structure is directly obtained from the

data. Howeverin order to designa reasonableclassifier,assumptionsare invari-

ably needed.For example,one may assumethat the mixture is composedof two

Gaussianseventhough their meansand standard deviations areunknown. To es-

timate the meansand the standard deviations,additional assumptionswill have

to bemadebeforedata canbeutilized for obtaining the Gaussians.A "K-means"

algorithm describedin Reference[37] canbe usedfor this purpose.

Of the two broad categoriesof clustering methods, unsupervisedclustering

is more useful in practice. This is due to the following factors: (1) for certain

problems it is not easy to label the training samples due to their size, (2) the

clusters can undergo small changes, and (3) very little is often known about the

structure of the data. One of the ways of discovering structures in the data is

by constructing a weighted graph. Distance relationships in the graph can then

be used to partition the graph into sub-graphs to further improve the distance

relationships. The graph-theoretical method described in Reference [104] uses a

minimum spanning tree to partition the set of points into perceptually organized

clusters. The perceptual organization is defined by the principles of proximity,

similarity and continuity.

As an example of unsupervised clustering, Reference [95] describes a hierar-
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chicalclusteringmethod for groupingdiscreterangesfor the sceneshownin Figure

2.10. The techniquedescribedthere first representsthe rangehistogramas a sum

of Gaussian.Next, the featuresaregrouped basedon separationin the horizontal

plane. Finally, an algorithm basedon the minimum spanning tree (MST) [104]

is usedfor grouping the rangepoints basedon the separationin the image plane.

The results from unsupervisedclustering for a samplesceneis shown in Figure

2.11. It can be observedfrom the figure that the method generatedsix clusters.

Figure 2.11: Groups in the imageusingunsupervisedclustering.

Another way of addressing the clustering problem is to cast it as a discrete

optimization problem which minimizes a certain distance function. Distance func-

tions such as within-cluster and between-cluster distance measures based on the
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scatter matricesare discussedin [27]. Sincethe set of featuresor points is finite,

there can only be a finite number of partitions. Thus, in theory, the clustering

problem canalwaysbe solvedby exhaustivesearch.However,in practice, suchan

approachis not feasiblebecausethereareapproximatelycn/c! waysof partitioning

a set of n elements into c groups. Due to this reason, the approach most frequently

used is that of iterative optimization.

In Reference [14] application of the Monte-carlo methods for clustering range

points into objects is described. It should be noted that these methods guaran-

tee local but not global optimization [27]. Despite these limitations, the fact that

computational requirements are reasonable make these approaches desirable. A

technique based on Simulated Annealing for refining the initial grouping is de-

scribed in [51]. The initial grouping in this case is obtained by assigning the range

points to image regions obtained by labeling a segmented image.

2.3.5 Geometric Modeling

The clustering of discrete range points enables one to assume the range to

be continuous within a group. It is possible to subsequently create a dense range

map via interpolation within the groups. Modeling of dense range images has been

studied by several authors [10, 58, 61]. The dense range images can be modeled

into objects by fitting surfaces using polynomials, splines [74], Delaunay triangles

[23] and other mathematical surfaces.

Several different approaches for representing surfaces defined by a set of ran-

domly located points using triangular grids are described in [23]. These representa-

tions approximate the surface as a network of connected triangles with vertices at

the data points. Many of the surface fitting algorithms use the properties of Delau-

nay triangles to discretize the domain with triangular elements. These algorithms

may be broadly classified as incremental algorithms and divide-and-conquer al-

gorithms. Incremental algorithms start from a boundary or interior point and

create triangles by adding the remaining points. Divide-and-conquer algorithms
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recursivelysplit the set of data points into equal subsetsuntil elementarysetsare

obtained, and then mergethem pairwise. For example,application of the incre-

Figure 2.12: Surfacerepresentationof the groups in Figure 2.11 by triangular

elements.

mental algorithm in Reference[64]to the clusters in Figure 2.11yields a surface

representationshownin Figure 2.12.

Onceobject modeling is accomplishedby surface representation,additional

geometricdetails can be extracted using surface interpolation. Severaldifferent

elementshapesand shapefunctions are discussedin the Finite Element Method

literature [80, 105]. Someof these can be used for efficient interpolation. For the

example shown in Figure 2.12, the interpolated range data is encoded as gray-
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levels and presented in Figure 2.13. The figure also shows the modeled ground

Figure 2.13: Finite element object models for surfaces in Figure 2.12.

plane.

For ground plane modeling, a Least Squares method can be used with the

points from every group that are below a certain altitude. An assumption implicit

in such modeling is that all the objects observed in the scene lie on a ground plane.

A perspective projection of a rectangular grid on the ground plane can then be

created to aid visualization. This process requires knowledge of camera altitude,

and pitch and roll angles with respect to a local horizontM. Using the relative

geometry of the camera with respect to the ground, the locations of horizon and

the vanishing point can be obtained. The relationships needed for obtaining the
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ground plane representation are described in [27] and [44]. The representation of

ground plane using a grid projection is shown in Figure 2.14. The locations of the

horizon and the vanishing point are also shown in the figure. The grid size of 12.5

Figure 2.14: Ground plane representation.

feet by 20 feet was used in this case.

For the example presented above, inference is direct once the scene is assumed

to be a model of a plane with objects lying on it. Geometric modeling directly

yields the orientation of the plane with respect to the local horizontal, and the size,

distance and shape of the objects with respect to the camera. Note that general

scene understanding is much more complex and requires sophisticated inference

techniques.
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2.3.6 Inference Techniques

In a vision system, once the primitives or features are derived and classified,

rules of inference can be used for object recognition. Many vision systems implicitly

assume object models in order to aid the object recognition process and to develop

an understanding of the scene. Comparative studies of several model-based object

recognition algorithms are discussed in References [12] and [201.

Current model-based object recognition systems have several limitations. One

of them is the difficulty in representing and describing objects. Only simple objects

can be recognized by matching two-dimensional features with two-dimensional

object models. The non-availability of higher dimensional features restrict the

recognition capabilities to few object classes viewed in a particular way. A more

general system will require the ability to extract three-dimensional features that

are view point independent and match them with three-dimensional object models.

Another difficulty is the non-availability of descriptors of surface properties of

objects. Three issues that a model-based object recognition system has to deal

with are: (1) design of features that describe physical properties and their spatial

relationships, (2) a meaningful representation of the feature vector for an object

class and (3) matching between the feature vector and object models for object

recognition in a general scene [20].

The discussion of model-based object recognition with the background of

algorithms and processes discussed in the previous sections indicates that it is

difficult to design a general purpose vision-based object recognition system, and

that a sequence of several low-level and high-level vision techniques are needed.

Finally, without a model, the task of object recognition is virtually hopeless. In

view of these observations, model-based techniques appear to offer the most direct

scene interpretation without using elaborate inference techniques.
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2.3.7 Ranging

Recovery of three-dimensional geometry from two-dimensional images is based

on the fact that the differences between the locations of objects in two or more

images obtained from different vantage points is a measure of their range. The pro-

cess of finding the same object in multiple images is known as the correspondence

problem in the machine vision literature. Since real images have limited field-of-

view and resolution, the concept of correspondence is effectively a correspondence

hypothesis. The relative object displacement obtained by satisfying this hypoth-

esis in the image plane is called disparity. Due to perspective projection from

the three-dimensional scene to the two-dimensional image, the farther the object

is from the imaging device, the less disparity it exhibits. Closer objects exhibit

larger disparity. Many vision-based methods discussed in the literature compute

the disparity, thus recover the range to objects in the scene [7, 11, 46, 66, 81, 90].

In the simplest case of stereo vision where a pair of images are acquired by

two cameras separated by a baseline, range can be computed by triangulation.

For example, consider the geometry in Figure 2.15. In this figure, a point object

appears along the line connecting the camera centers at ul in one image and at

u2 in the other image. Let the distance between the camera centers be b and the

camera focal length be f. The Azimuth angles with respect to the optic axes of

the two cameras then are _,_ = tan-l(u_/f) and _b2 = tan-l(u2/f). Since the two

angles and the base of the triangle are known, the lengths of the range with respect

to the cameras can be computed. An equivalent calculation can be done using a

single moving camera. In this case, motion establishes the baseline required for

triangulation. This is also known as Cyclopean vision, inspired by the mythical

single eyed monster in Homer's Odyssey.

Driven by the needs of helicopter nap-of-the-earth guidance problem, ma-

chine vision techniques for ranging has recently attracted significant research at-

tention. There are two distinct classes of algorithms that determine range by

satisfying the correspondence hypothesis. They are known as field-based and
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feature-basedmethods. Field-based methods, such as [7, 46, 66, 81], assumea

continuousvariation of image intensity as a function of position or position and

time. Feature-basedmethods,suchas [18,60, 76,90], identify featuresin images,

such as points, lines and contours in order to establish correspondence.Both,

field-based and feature-basedmethodscan only compute range to few locations

in the image. Although field-basedschemeshavethe potential of providing denser

rangemaps, experiencehas shown [67, 68] that range can be reliably computed

only at about 10% of the points in the image. This is due to the fact that compu-

tations break down in regions of near uniform brightness. Feature-based methods

by their very nature can only compute range at discrete locations. An example of

the range computations using a feature-based method is given in Figure 2.10.

Reference [66] describes a field-based ranging procedure using motion se-

quences generated by a single camera fixed to a moving vehicle. The method

is based on the Optical Flow Constraint Equation of Reference [46] that relates

the temporal partial derivatives with the spatial derivatives of the image function.

Due to the use of partial derivatives, a smoothness constraint has to be enforced for

the computation of range [46]. As discussed in Reference [66], incremental perspec-

tive projection equations can be directly combined with Optical Flow Constraint

to yield a single navigation equation. This equation can then be used for obtaining

the range. A crucial part of this method is evaluation of partial derivatives of the

image function. In [66], the partial derivatives are estimated using a method based

on the Calculus of Variations.

In Reference [67], a ranging scheme using image pairs is described. A multi-

dimensional Taylor Series approximation of the correspondence hypothesis is used.

The advantage of this method is that it does not require temporal partial deriva-

tive of the image function. Hence, this formulation does not require the concept

of optical flow. In this method also, the incremental perspective projection equa-

tions are used with the Taylor series approximations to formulate a navigation

equation. Since the navigation equation depends on the spatial partial derivatives,
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the derivatives are computed using a finite differencescheme. Cameratransla-

tion distancebetweenthe imagepairs is usedto perform rangecomputations. No

rotational motion is assumed.

To overcomethe difficulties associatedwith derivative computation of noisy

image functions using finite differenceschemes,causalestimators that attenuate

the noise in the processof derivative estimation are proposedin Reference[68].

This method offers the possibility of derivative computation during the image

data collection process. Multi-dimensional Taylor seriesapproximation of the

correspondencehypothesisis usedin this study also. Eliminating the disparities

in favour of camera motion parametersand scenedepth using the perspective

projection equations,an Optical RangingPolynomial is obtained. This polynomial

is then solvedto obtain the range. The algorithm hasbeen demonstratedon a

stereoimagepair of a laboratory scene.

An extensionof the previousalgorithm that includes both translational and

rotational displacementsis describedin Reference[70]. The central theme, in-

eluding the techniquefor estimation of the partial derivatives, is the sameas the

previousalgorithm. The algorithm hasbeendemonstratedon an outdoor image

sequenceacquired by a cameramounted on the noseof a helicopter. The im-

agesare temporally separatedand wereacquiredasthe helicopter underwentboth

translational and rotational motion.

To overcomethe difficulties of noiseamplifying derivativeestimation process,

a derivative free ranging method is proposedin Reference[71]. In this algorithm,

the correspondencehypothesis is approximated using Pade' approximation and

usedasa differential constraint in an optimization problem with a quadratic cost.

The state variableis the sumof imagefunctions of the two stereoimagesand the

control variable is the rangeto objects seenin the images.The resulting necessary

conditions for optimality are linear permitting the solution using the backward

sweepmethod [la]. The method was demonstrated on a pair of stereo images of a

laboratory scene.
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Feature-basedranging methods are considerednext. Given corresponding

featuresin twoimages,the study in [90]describeshowthe estimatedobject location

is influencedby the estimation algorithm and the relative geometry betweenthe

cameraand the object. Three different Kalman Filter formulations areproposed

for ranging in Reference[90]. Theseare: (1) inertial coordinate formulation (2)

sensorcoordinate formulation and (3) polynomial model for imagepoint motion.

The polynomial filter wasfound to be unsuitablefor generalcameramotion. The

methodsdescribedin Reference[90] assumethat the motion parameterssuchas

cameraposition, attitude, and translational and rotational velocity are available

from an onboard Inertial Navigation System.

Researchreported in Reference[86]developsa normalizedcorrelation function

basedfeature correspondenceprocedure. This technique forms the first step in

the Kalman filtering algorithm. Featuredetection is accomplishedby using an

edgeoperation and correspondence is achieved by using the gray-levels of the

detected features. In addition, a recursive algorithm for range estimation based

on translational motion is also described. Since translational motion is assumed,

the search for correspondence is restricted to envelopes along radial lines eminating

from the focus-of-expansion in the images. Results for a laboratory image sequence

are obtained by using the recursive algorithm.

Details of the correspondence procedure when images are acquired from a

camera undergoing general motion are described in Reference [88]. Thus, this work

extends the procedure given in Reference [86] for more general motion involving

translation and rotation. An elliptical search window based on the propagated

range estimate is used to minimize the search effort. Results for a laboratory

image sequence are described.

Results for an outdoor image sequence obtained with the Kalman Filter for-

mulated in the sensor frame in Reference [90] are reported in Reference [89]. It is

shown that good range accuracy is obtained for the objects in the field-of-view of

the camera. This result is significant because it is much more difficult to establish
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correspondencein the imagestakenfrom a rotating and translating platform, such

asa helicopter in flight. Details of the imageacquisition procedurearedescribed

in Reference[82]. The resultsof application of the motion algorithms on the lab-

oratory and flight imagesequencesaredescribedin [91]. That report summarizes

the procedureand the resultsof References[88]and [89].

Since the objects in the field-of-view are at various ranges, It may be ad-

vantageous to use a different measurement rate in different portions of the image.

This idea is explored in Reference [92]. The technique for range estimation in-

volves accepting the measurement for the Kalman Filter only when the tracked

feature moves more than a set threshold in the next image. Numerical results

presented for the outdoor image sequence show that the multirate filter provides

the same estimation accuracy as the standard Kalman Filter, with a significantly

lower computational effort. Since different features are updated at different times,

the book-keeping task is more involved when compared to the single rate filter

implementation.

When range information is obtained using a single camera, it is sensitive to

the direction of motion. Hence, the estimates are poor close to the focus-of-

expansion. An analysis of motion and stereo methods is provided in Reference [87]

to demonstrate that motion methods provide more accurate range information

away from the focus-of-expansion and stereo methods provide superior accuracy

close to the focus-of-expansion. In order to overcome the limitations of the stereo

method, a recursive stereo method is described in Reference [87]. This method

is then contrasted with standard stereo method and the earlier recursive motion

algorithm [86]. It is suggested that an integrated stereo and motion method based

on the recursive motion method and the recursive stereo method has the potential

for providing more accurate range estimates when compared to either of the two

methods.

A hybrid motion/stereo algorithm is described in Reference [83]. This algo-

rithm is an extension of the recursive motion algorithm given in Reference [90].
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The rangepredictionsgeneratedby the Kalman filter areusedfor constrainingthe

searchspacefor feature correspondencein the stereoand motion pairs. One of

the advantagesof the method is that the Kalman Filter canbe initialized with the

rangeestimatesobtained by processingthe stereopair. Resultsof application to

an outdoor imagesequenceshowsthat the hybrid estimatesare an improvement

over the monocular estimates. Both methodsgenerateestimateswhich appear to

convergeto the true rangeover time.

Thesealgorithmshavebeenappliedto numerousimagesof outdoor scenesob-

tained from helicopter-bornecameras.The resultsobtainedusingthesealgorithms

have beenverified against rangedata obtained by a laser rangefinder. Theseal-

gorithms can be consideredto representa mature classof vision basedranging

algorithms.

The following conclusionscanbe drawnbasedon the reviewof the field-based

and feature-basedmethods: (1) correspondenceof regionsin one imageto regions

in another image is the most significant problem, (2) even in an unstructured

scene,ranging algorithms canbe madeto work reasonablyif the cameraposition

and angular displacementsareavailablefrom an independentsourcelike an Inertial

Navigation System,(3) inclusion of systemdynamics in the designof a recursive

state estimator leads to higher estimation accuracy,and (4) a hybrid motion-

stereomethod provideshigheraccuracywhencomparedto pure motion and stereo

methods.

Egomotion or self motion problem is the dual of the ranging problem. In

this case,the camerapositionand orientation are the unknownsto bedetermined.

In order to solve the problem, it is often assumedthat the objects in the field-

of-view are stationary. Along with this assumption, if correspondencecan be

establishedbetweenfeatures in successiveimages,the changein cameraposition

and orientation can be computed. To determine the absolute camera position and

orientation, the location of objects in the field-of-view have to be known with

respect to an inertial coordinate system. Thus, the solution of egomotion problem
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requires an underlying scenemodel via the definition of an inertial coordinate

system together with the locationsof the objects with respectto this coordinate

system. This suggeststwo possibleapproaches:(1) useof the vision basedranging

algorithms to recoverthe absolutecameraposition andorientation, or alternatively

(2) useof a model-basedapproach to directly recoverthe camera position and

orientation.

Cameracalibration problem[6,27] is aspecialmodel-basedapproachin which

the correspondencebetweenthe objectsin the sceneand the imageareknown. The

objective of cameracalibration is the determination of cameraoptical character-

istics and the cameraposition and orientation. Intrinsic cameraparametersare:

focal length, lens distortion, scalefactor, and centerof the image plane. In order

to calibrate the camera,a planar grid target is placedat a certain orientation and

distanceawayfrom the camera, and an image of the grid is obtained. The position

of every grid point on the plane is known with reference to an inertial frame. In

addition, the correspondence between every grid point on the plane and in the

image are known. Since every grid location of the plane is related to its image via

the intrinsic and extrinsic parameters, these parameters can be computed using

an iterative algorithm. The traditional approach is to use a nonlinear parameter

optimization technique. An alternative two-stage technique for camera calibra-

tion is described in Reference [98]. This technique solves the problem by using the

least-squares method. Only few parameters are computed using nonlinear search.

Efficiency of the process can be greatly enhanced by generating the initial guess

using the least-squares method.

If correspondence is unknown, the calibration technique is not applicable even

with known intrinsic parameters. Model-based methods are useful in this case. A

model-based method that uses local feature correspondence and a Kalman Filter

is described in References [25] and [26]. In References [25] and [26], the initial

camera position and orientation estimates are used together with the perspective

projection equations for projecting known model features such as corners and curve
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segmentsinto the imageplane. This results in the creation of the model image.

Thesefeaturesare then identified in the actual imageacquiredby the camera. The

position difference of the features in the actual image and the model image are used

to drive the Kalman Filter to improve the camera position and orientation estimate.

Locating model features in the actual image is the main limitation of the algorithm.

The difficulty is caused by the fact that in general, the features in the actual image

are significantly different than the features in the model image. Therefore, the

search involves matching a considerably simplified model template with regions in

the image. In contrast, the ranging methods reviewed earlier use a templete based

on a previous real image. In order to work satisfactorily, model based matching

requires the features to be invarient to scale and rotation. It is difficult to find such

features in real scenes. If the scene is such that one feature cannot be distinguished

from another, matching the features may be difficult because a model feature could

potentially match with many image features.

2.3.7.1 Uniqueness of Solutions

Before embarking on the development of pilot aids based on machine vision

techniques examined in this chapter, it is essential to address the question of

uniqueness of the solutions. Machine vision literature [48, 73] poses the uniqueness

problem as follows: given displacements and velocities of image points, under what

conditions is it possible to recover the shape of the scene and the relative motion

between the camera and the objects in the scene?

For differential motion, the research given in Reference [48] shows that ambi-

guities arise only in the case of certain hyperboloids of one sheet and their degen-

eracies, such as circular cylinders, elliptic cones, hyperbolic paraboloids, and two

intersecting planes that are viewed from a point on their surface. The governing

equation of hyperboloids of one sheet is [85]:

x 2 y 2 z 2
a--7 + b2 c_ - 1 (2.5)
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where(z, y, z) is the coordinate of a point on the surface of the hyperboloid, and a,

b and c are constants. For large motion, it is shown in Reference [28] that if only five

points are available in the image, then up to ten solutions are possible. Research

in Reference [97] shows that the solution is usually unique if the displacements of

seven points in two successive images are known. The solution is non-unique only

if these points lie on a cone passing through the origin or on two planes, with one

plane passing through the origin.

More recently, it has been shown in [73] that only certain hyperboloids of one

sheet and their degeneracies when viewed from a point on their surface can give

rise to ambiguity. Moreover, Reference [73] shows that in the case of hyperboloids

of one sheet and hyperbolic paraboloids, there can be at most three solutions.

That work also demonstrates that in the case of intersecting planes and circular

cylinders, there can exist at most two solutions. It is also pointed out that cones

cannot give rise to ambiguity unless the motion is differential.

The next chapter will apply the machine vision techniques described in this

chapter to develop pilot aids for night landing. Machine vision algorithms for air-

craft position, velocity and attitudes with respect to the runway will be derived

and evaluated in simulations. Data sources for these algorithms will also be iden-

tified. Past research examined in this chapter indicates that it may be possible

to synthesize machine vision systems that produce unique solutions for pilot aid-

ing during night landing. This conclusion is a consequence of the two facts: (1)

the airport lighting layout is viewed from above and (2) the underlying lighting

geometry is planar.

2.4 Summary

Since the algorithms for machine vision are subject areas of Computer Vision,

a review of the literature relevant for the design for such algorithms was discussed

in this chapter. Two broad classes of algorithms, low-level and higher-level vision
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algorithms were examined. Several algorithms for low-level vision process of im-

age conditioning and edge detection were outlined. Higher-level vision algorithms

for boundary detection, gray-level segmentation, texture segmentation, clustering,

geometric modeling, inference and ranging were also discussed. Results of applying

several of the low-level and high-level algorithms to an actual image of a runway

scene were presented. These results illustrate the types of information that can

be derived using image processing algorithms. Since position determination is the

central topic of this research, field-based and feature-based algorithms reported in

the literature that are closely related to this work were described. Many of these

methods required the position and orientation of the camera to be known. As a

result, they are not directly useful for the runway relative aircraft position and

orientation determination problem. The literature for camera calibration problem

was also found to be inadequate because those techniques assume correspondence

between the grid points on the calibration plane and the image plane. Since corre-

spondence between the model of the runway scene and the image acquired by the

camera is unknown a priori, template-based local feature correspondence methods

were also found to be unsuitable. Finally, the question of uniqueness of solutions

was addressed. Based on the available literature, it was established that a unique

solution of the runway relative position and orientation could be found for the

viewing geometry used in this research.



Chapter 3

Machine Vision Based Landing

Aids

This chapter develops the basic building blocks for constructing the machine

vision algorithms for aircraft runway relative position and orientation estimation.

With this goal, the nature of the landing task and the accuracy requirements are ex-

amined first. Clearly, the specification of a runway fixed inertial coordinate system,

body coordinate system and camera coordinate system are essential components

of methods for aircraft position and orientation estimation. Aircraft equations of

motion which relate the aerodynamic and propulsive forces and moments to the

translational and rotational motion of the aircraft are then developed with respect

to the body and inertial coordinate systems. An onboard pinhole camera model

that relates the inertial location of an airport light to its location in the image

plane is described subsequently. Finally, landing and image simulation procedures

are described to tie these building blocks together.

3.1 Aircraft Landing Operation

Aircraft arrival flight to the destination airport can be broken up into two

broad segments: en-route descent and final approach to touchdown. A host of

59
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procedureshave to be followed by the pilot during both these phases. During

descentfrom cruise, the rate of descentand airspeed have to be controlled to

complywith the restrictionsimposedby the air traffic control system.The airspeed

hasto be reducedto 250Knots Indicated-Airspeedor less,whenbelow10,000feet

MSL (Mean SeaLevel)[24].

A published arrival procedurecalled Standard Terminal Arrival (STAR) is

used to transition from the en-route structure to an outer fix or an instrument

approachfix or anarrival waypoint in the terminal area. The aircraft is then flown

to the final approachfix to intercept the glide slope. The optimum length of the

final approachis five miles;the maximum length is ten miles[24]. Onceon the glide

slope,aircraft speed,rate of descentand certain altitude distancerelationshipsare

maintained until the aircraft is beyondthe runway thresholdand at a prescribed

altitude. At this stage,the aircraft executesthe flare maneuverto achievea gentle

touchdown.

During landing, the pilot controls the aircraft lateral displacementfrom the

runway centerline, distancefrom the touchdown point, altitude, yaw-pitch-roll

orientations, rate of descentand rate of closurewith the touchdownpoint on the

runway surface. The desiredglide path which describesthe altitude, time and

distancerelationshipsduring a typical landing areshownin Figure 3.1. Figure 3.1

showsa commonlyemployedthree degreeglide slopeapproach.Glide slope,u, is

defined as:

u = tan-l(h/xgo) (3.1)

where h is the altitude and xgo is the distance-to-go to the touchdown point.

For precision approach, the glide slope is between 2.5 and three degrees at most

airports [24]. The glide slope in conjunction with the location of the touchdown

point specifies the desired aircraft position with respect to the runway threshold

as a function of altitude. Optimal threshold crossing height is 50 feet but it may

be as high as 60 feet or as low as 32 feet [24]. The touchdown point is specified in

terms of the distance from the runway threshold. From Figure 3.1, it may be seen
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Threshold

Touch Down Point

100 ft.

1000 ft. 908 ft. (4 s)

2816

200 ft.

ft. (13 s)

4O0 ft.

6633 ft. (30 s)

Figure 3.1: Glide slope, altitude, time and distance relationships.

that three degree glide slope requires the aircraft to be at distances of 6633 feet,

2816 feet, and 908 feet corresponding to altitudes of 400 feet, 200 feet and 100 feet

respectively. These distances translate to 30 seconds, 13 seconds and four seconds

to the runway threshold. Time-to-go calculations are based on a typical approach

speed of 220 feet/second (130 knots).

The discussion of landing procedures is incomplete without mention of the

abort procedures. Once the aircraft has passed the final approach fix, it is flown

to the minimum descent altitude with enough time and distance remaining to

identify the runway environment before continuing on the visual approach to the

touchdown point. Descent below the minimum descent altitude is not authorized

until visual reference with the runway environment is established and the aircraft

is in a position to execute safe landing [24]. If it is unable to execute a safe

landing, the aircraft is flown at or above the minimum descent altitude to the

missed approach point. Subsequently, the aircraft is routed back to the outer fix

for another landing attempt. Depending on the ground and airborne equipment,

the decision to land can be delayed as the aircraft is flown along the glide slope.

There are prescribed landing categories with associated decision heights up to

which aircraft can be flown with instruments. Beyond the decision height for
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the category of landing, it should be possible to fly the aircraft with just the

visual reference. Like the final approach fix data, missed approach points are also

published in navigation charts.

3.1.1 Landing Accuracy Requirements

One of the terms used for landing conditions is runway visual range (RVR).

RVR is the distance from which the pilot can see the high-intensity runway edge

lights. It is determined by transmissometer measurements near the threshold [49].

The transmissometer consists of a light source with a narrow beam projector and a

receiver with a narrow beam acceptance angle. In order to make the measurements,

these two components are raised to 15 feet above ground and separated by 500

feet. The amount of light received is a measure of atmospheric transmissivity. The

measurements are compensated for the intensity setting of the edge lights and the

time of day or night. For category II and III operations, two measurements are

made. One near the threshold and the other near the midpoint of the runway.

While useful, these measurements do not accurately predict the visibility along

the approach path, since the measurements are made close to the ground.

Visibility on the runway is classified into I, II and III categories. Category |II

is further subdivided into a, b, c. The three categories are defined in terms of the

RVR and decision height. Decision height (DH) is defined as the minimum height

above the runway where a decision must be made by the pilot to continue descent

to landing or to abort. The decision is based on the pilot being able to obtain

visual guidance cues provided by airport lighting without depending on cockpit

instruments.

The various categories and the associated RVR and decision heights are listed

in Table 3.1 [31, 32]. Capability for automatic landing all the way to touchdown

is required for all category III landings. For category IHa, the rollout after land-

ing and taxiing is manual. For category IIIb, an automatic rollout capability is

additionally required. For category IIIc, an automatic taxiing capability is also
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Table 3.1: Visibility Categories

Category Decision Height (ft) Visibility (ft)

CAT I 200 1800

CAT II 100 1200

CAT IIIa 50 700

CAT IIIb 0 <_ DH < 50 150

CAT IIIc 0 0

required, in addition to the landing and rollout capabilities.

Although Table 3.1 lists the RVR and decision heights for the various cat-

egories, it does not list the navigation accuracy requirements. The performance

specifications for Federal Aviation Administration (FAA) defined precision ap-

proach and landing categories are given in Table 3.2 [100]. These accuracy re-

Table 3.2: Aviation Navigation Accuracy Requirements

Category Lateral (ft) Vertical (ft)

CAT I -I-56.1 +13.45

CAT II +17.06 +5.58

CAT III +13.45 +1.97

quirements will be used to evaluate the performance of the machine vision based

algorithms developed in this report.

3.2 Coordinate Systems

Various coordinate systems used in this report are illustrated in Figure 3.2.

In this figure, i is the origin of the inertial frame attached to the runway threshold.

Since the location of all lights are given with respect to the threshold bar, it

is a natural choice for the location of the origin of the inertial coordinate system.

Furthermore, since the centerline lights form a principal axis of symmetry, following

the flight dynamics convention, the x-axis of the inertial frame is aligned with the
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Figure 3.2: Coordinate frames.

runway centerline in the approach direction and the z-axis points down. The y-

axis completes the right-handed triad. The origin of the aircraft body axes is

located at the point b. Its position with respect to the inertial frame is given

by the vector Xib with components xb, Yb and zb. The camera frame is located

at c. The camera position with respect to the body frame is given by the vector

X b with components l,, ly and l_. Since the camera is rigidly attached to the

aircraft structure, the vector Xeb is assumed to be constant in the present research.

Let p be a light on the runway and let its position with respect to the inertial

frame be given by the vector Xlp with components xp, Yv and zp. Also, let the

position of point p with respect to the camera frame be given by the vector X_

with components Xcp, ycp and zcp.

The position of the point p with respect to the aircraft in the inertial frame

is given by the vector

i
Xp- X_ = [(xp- xb),(yp- yb), (zp- zb)] r (3.2)

The transformation matrix from the inertial frame to the body frame Tb/i can be
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obtained in terms of the yaw attitude ¢, pitch attitude O, and roll attitude ¢ as

[96]:

cos ¢ cos 0

- sin _bcos ¢ + cos _bsin 0 sin ¢

sin _/,sin ¢ + cos _bsin 0 cos ¢

sin _hcos 0

cos ¢ cos ¢ + sin _bsin 0 sin ¢

- cos _bsin ¢ + sin ¢ sin 0 cos ¢

Tb/i =

-- sin 0

cos 0 sin ¢

cos 0 cos

(3.3)

The position of point p with respect to the body frame can be obtained as:

b= iXp Tb/i(Xp - X_)) (3.4)

Similarly, the position of point p with respect to the camera frame is given by:

X_) = Tc/b(Xbp- X b) (3.5)

Here, Tc/b is the constant transformation matrix from the body frame to the

camera frame. Combining Equations (3.4) and (3.5):

Xp = Tc/bTb/i(Xp- X_))- Te/b Xb (3.6)

Since the camera is assumed to be fixed with respect to the body, the product:

-Tc/b Xb is a known constant vector k with components kx, ky and k_. Further-

more, if rl through r9 are defined as the elements of the transformation matrix

from the inertial frame to the camera frame, Tc/i = Tc/bTb/i, the components of

the position vector X_) can be obtained as:

Xcp _-- rl(Xp-- Xb)'_ r2(Yp-- Yb)'_ F3(Zp- Zb)"_]_x (3.7)

y_ = r_(_ - x_) + ,'_(_ - _) + ,-_(z_- z_)+ G (3.s)

z_ = ,-_(x_- _) + ,'_(y_- y_)+ ,-_(z_- z_)+ k_ (3.9)

Equations (3.7) through (3.9) show the relationships between the location of

the airport lights in the camera frame and the aircraft position and orientation.

The aircraft position and orientation evolve due the to forces and moments acting

on it.
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3.3 Aircraft Dynamic Model

Aircraft is subjected to aerodynamic, gravitational and propulsive forces and

moments. These forces and moments result in translational and rotational motion

of the aircraft. Equations of motion relate the airplane motion to the forces and

moments. Three coordinate systems are used to express the forces and moments

in a convenient way. These are described first. Subsequently, equations of motion

are presented with forces and moments expressed in these coordinate systems.

3.3.1 Coordinate Systems

Aerodynamic forces and moments on the aircraft depend on the orientation

of the airframe with respect to the airflow. Since rotation around the free-stream

velocity vector in a uniform airflow does not cause changes in the aerodynamic

forces and moments, they depend only on two orientation angles with respect to

the relative wind. These are the angle of attack, a and the angle of sideslip, /_

illustrated in Figure 3.3.

Figure 3.3 shows the body axes system with the x-axis aligned with the fuse-

lage reference line, the z-axis in the aircraft plane of symmetry and orthogonal to

the x-axis, and the y-axis normal to the plane of symmetry. The angle of attack

and sideslip are defined by performing plane rotation about the body y-axis by

a, followed by another plane rotation about the new z-axis by /3 such that the

x-axis is aligned with the relative wind. The variables a and /3 are the angle of

attack and angle of side slip respectively. The axis system resulting from the first

rotation about the y-axis is often called the stability axis system.

With the angles of attack and sideslip defined by the axes systems, the trans-

formation from the body to stability axes Ts/b is given by:

cosa 0 sina
Ts/b -- 0 1 0

-sina 0 cosc_

(3.10)
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Figure 3.3: Aircraft axes and angles.

The transformation from the stability to the wind axes Tw/s is given by:

cos/3 sin/3 0

Tw/s= -sin/_ cos/3 0 (3.11)

0 0 1

Concatenating the two transformations, the transformation from the body axes to

the wind axes Tw/b can be obtained as:

COS t_ COS/_

Tw/b = Tw/sTs/b = - cos c_sin )3

- sin

sin/3 sin a cos/3

cos/3 - sin a sin/3

0 COS Ol

(3.12)

Forces and moments can be expressed in body or wind axis systems by using

these transformation matrices.

3.3.2 Forces and Moments

The forces and moments on the aircraft arise due to aerodynamics, gravita-

tional acceleration and engine. The aerodynamic forces are specified in the wind



68

axes.The componentsalong the negativex-axis, positive y-axis and the negative

z-axis are calleddrag, D, sideforce, Y and lift, L. In order to avoid dealing with

state dependent moments of inertia, the aerodynamic moments are defined in the

body axes. These are: the rolling moment Lr about the x-axes, the pitching mo-

ment M about the y-axis, and the yawing moment N about the z-axis. The forces

and moments are specified in terms of dimensionless coefficients as follows.

D = glSCD (3.13)

L = glSCL (3.14)

Y = (:ISCy (3.15)

L_ = glSbsCLr (3.16)

M = glSbcCM (3.17)

N = gtSbsCN (3.18)

where, (/is the free-stream dynamic pressure, S is the wing reference area, b_ is

the wing span, bc is the wing mean aerodynamic chord, CD is the drag coefficient,

CL is the lift coefficient, Cy is the sideforce coefficient, CLr is the rolling moment

coefficient, CM is the pitching moment coefficient, and CN is the yawing moment

coefficient. The aerodynamic coefficients primarily depend on the aerodynamic

angles, a and /3, the Mach number and control surface deflections. They also

depend upon the body rates. A detailed discussion of these coefficients is available

in Reference [96]. The forces and moments due to the engine arise from the thrust,

its location with respect to the aircraft center of gravity and misalignment angles.

Thrust-related forces and moments are denoted by subscript T in the following.

Forces and moments due to aerodynamics and engine thrust in the body axes

are:

IFs = F_ = Tw_b Y + Fy r

F: L Fzr

(3.19)
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and
7

Lb I L_ L_ r

TB = Mb I "= M + MT (3.20)Nb N NT

Here, FB is the force vector in the body axes, Fxr, FYr and FZT are the components

of the engine thrust vector in the body axes. Tw/b is the transformation matrix

from the body to the wind axes, described earlier in Equation (3.12), and TB is the

moment vector in the body axes. The variables L_T, MT and NT are the rolling

moment, pitching moment and yawing moment due to the engine thrust.

3.3.3 Equations of Motion

Six-degree-of-freedom aircraft model is given by twelve first-order nonlinear

differential equations involving the position and attitude dynamics. The twelve

state variables consist of: (1) the inertial position of the aircraft represented by its

topocentric coordinates x, y, z; (2) aircraft velocity components measured in the

body axes U, V, W; (3) the body Euler angles denoted by ¢, 0, _ in roll, pitch and

yaw, respectively; and (4) the angular rate of the body p, q, r in body axes. The

aircraft equations of motion are given in the following.

The force equations are [96]:

(] = rV_qW_gsinO+ Fx (3.21)
77/

9 = -rU +pW +gsin¢cosO + Fy (3.22)
rr/

= qu- pv + gcos¢cosO + Fz (3.23)
77/

Here, g is acceleration due to gravity and m is the mass of the aircraft.

The rotational kinematic equations are [69]:

t/' = qsinCsec0+rcosCsec0 (3.24)

= q cos ¢ - r sin ¢ (3.25)

¢_ = p+qsinCtan0+rcos¢tan0 (3.26)
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The angular acceleration equations are [69]:

[) = [llLb + hMb + hNb - p2(I=I_ - Ixfl3)

+ pq(I=h - Iy_I2 - I9/a) - pr(Ixfll + I812 - Iu_h)

+ q2(IuzI1 - Ixyh) - qr(IvI1 - l_uI2 + I_zIa)

-- r2(IyzI1- I=I2)]/det(I)

il = [12Lb + I4Mb + IsNb - p_(I_zI4 - I_uI5 )

+ pq(I_I2 - Iu_I4 - I9Is) - pr(I_uI_ + Is14 -- Iuzls)

+ q_(Iu_I2 - I_uI5 ) - qr(lrI2 - IxuI4 + I_zls)

- r_(I_zI2-- I=I4)]/det(I)

÷ = [I3Lb + IsMb + I6Nb -- p2(I_fls --/_,I6)

+ pq(I_zI3 -- I_zls -- 1916) -- pr(I,:_I3 + Isis - IyzI6)

+ q2(IuzI3 -/¢ui6) - qr(IrI3 - I_yI5 + I_zI6)

- r2(Iu_h- I=Is)]/det(I)

where the determinant of the inertia matrix is given by:

det(I) = I_IyIz - 2IxuI_zIyz - L:Iu.. 2 - IuI.z 2 - IzI.u 2,

and

11 = Iflz - Iy_ 2

12 = IxyI_ + Iy_Ixz

Ia = Ixfl_z + I_I_

I4 = Iflz-- lzz 2

16 = 13,- I_ 2

Ir = Iz - I v

h=I_-Iz

19 = /y-L,

(3.27)

(3.2s)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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In theseequations,Ix, I v and I_ are the moments of inertia about the body x-axis,

y-axis and z-axis, respectively. Since the inertia matrix, I is symmetric, only three

cross moments of inertia, I,:_, I_z and Iuz are required in addition to Ix, Iu and

Iz for the complete specification of the inertia matrix. However if the aircraft is

symmetric about the x-z plane as is mostly the case, two components of the cross

moments of inertia Ixy and Iy_ can be assumed to be zero. This assumption will

result in considerable simplification of the moment equations.

Finally, the navigation equations are:

Yb = Tb_ i V (3.40)

ib W

The transformation matrix from the inertial to the body frame Tb/i is given by

Equation (3.3).

The six-degree-of-freedom model driven by the forces and moments is sum-

marized in the block diagram given in Figure 3.4. It may be observed that the

model requires twelve initial conditions. The only external inputs are the surface

deflections and the throttle commands.

The location of any light on the runway in the camera coordinates can be

determined if the position and orientation of the aircraft and the coordinates of

the runway lights with respect to the inertial frame are known. A mathematical

model of the camera is needed to establish the relationship between the position

of the runway lights in the camera frame, and their position in the image plane.

Such a model will be described in the following section.

3.4 Camera Model

In order to avoid the complexities of having to deal with optical aberrations

caused by lenses, it is customary [27] to represent the camera model by a pinhole

lens together with an image plane located at the focus. The distance between the
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Figure 3.4: Aircraft equations of motion.
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lens and the focus is the focal length, f. The image of a point p in the scene

is determined by a ray projected from the point through the lens center. The

location where this ray intersects the image plane is where the image of the point

is registered. Such a model is shown in Figure 3.5. The model in the figure results

Image Plane

Projecting Ray

Focal Length

Pinhole Lens Optic Axis

Image of p

Figure 3.5: Pinhole camera model.

in images that are inverted left to right and top to bottom. This is in contradiction

with how the human observer views the scene and how a television camera outputs

the image. To avoid the inversion, a mathematically equivalent projection called

the central projection [27] can be used.

Central projection involves projecting a ray from a point to a frontal image

plane such that the ray passes through the lens center. The geometry is shown in

Figure 3.6. The camera axis system has its origin at e as previously shown in Figure

3.2. The x-axis of the camera coordinate system is aligned with the optic axis. The

z-axis points down and the y-axis completes the right-handed coordinate system.

It can be observed that the central projection is a many-to-one mapping since

all the object points along a projection ray are mapped to a single location in the
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Figure 3.6: Pinhole camera with frontal image plane.

image plane. Thus if the location of an object point is known in the image plane, all

that can be said about its three dimensional location is that it is located somewhere

along the line passing through the image point and the lens center. On the other

hand, if the location of the object point is known in the camera frame, its location

in the image plane can be determined uniquely. This process is termed as direct

perspective projection. These facts imply that there isn't enough information in

one image to recover three dimensional geometry. Two or more images obtained

from different vantage points may be required to reconstruct the three dimensional

scene. The process of recovering the three dimensional coordinates from one or

more images is called inverse perspective projection.

Real cameras capture the scene at discrete pixel locations indexed by rows

and columns. Thus, every pixel is referenced by two coordinates: u and v with

respect to a coordinate frame called the image frame with its origin, o, located at

the top left hand corner of the image plane as shown in Figure 3.6. The u-axis

is directed from left to right and the v-axis is directed from top to bottom of the

image plane. Let, u_ and vc be the coordinates of the camera center with respect

to the image frame origin o. The image coordinates up and vp for an object p

can be obtained by constructing two sets of similar triangles from the geometric
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relationshipsshownin Figure 3.6. Thus,

u v - u_ Y¢v (3.41)
f Xc p

vp- vc _ zcv (3.42)
f Xc p

These two equations describe the direct perspective projection process. The posi-

tion components used here are defined in Equations (3.7) through (3.9). Note that.

the parameter, f is the focal length of the camera.

Direct perspective projection equations for a pinhole camera model that take

radial lens distortion, uncertainty scale factors and sampling into account are avail-

able in the literature [98]. Such models are too complex for the purposes of this

report. However, they may be useful for error analysis of cameras.

3.5 Data Sources

Pilots use airport lighting for obtaining alignment guidance and glide slope

information during night approach and landing. The geometric information and

color coding in the airport lighting layout is utilized by the human perceptual sys-

tem for estimating position and orientation with respect to the runway. Since the

human visual system sees a perspective image of the airport lighting, position and

orientation estimation requires the pilot to correlate the scene with the aircraft.

position. In practice, this is accomplished by repeated landings at particular run-

ways. Based on the parallels drawn between the human perceptual system and a

conceptual machine vision system described in Section 1.6, it should be possible

to derive the runway relative position and orientation information by comparing

the airport images with the geometric model of the airport lighting layout.

Before venturing into developing a system capable of generating the kind of

information the pilot requires, an understanding of the standard airport lighting

geometry is required.
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3.5.1 Airport Lighting

The purpose of airport lighting is to provide information about airport/runway

identification, approach direction, alignment and attitude information for safe

night landing. Standard airport lighting is composed of the approach and run-

way lights [49]. The approach lights consist of centerline bars, sequenced flashers,

threshold lights, cross bar lights, wing bar lights and the terminating bar lights.

The runway lights include edge lights, centerline lights and touchdown zone lights.

The approach as well as the runway lights are color coded and are located at fixed

distances with respect to the runway threshold.

In airports with several runways, the type of lighting used on the runways

assists the pilot in determining if the aircraft is headed towards the desired airport

and the correct runway. Sequenced flashers and color coding of the threshold bar

indicate the approach direction to the pilot. Similarly the centerline and edge lights

provide lateral and vertical alignment guidance. Additional information available

in the airport lighting structure useful for a machine vision system is described in

the following.

3.5.1.1 Standard Approach Lighting System

Common configurations for approach lighting are the Calvert system and the

standard configuration-A system [49]. The Calvert system is widely used in Europe

and elsewhere around the world. The standard configuration-A approach lighting

system is the national standard for civil and military use in the United States.

Both systems are 3000 feet long. Figure 3.7 illustrates the standard configuration-

A approach lighting system.

In the standard configuration-A approach lighting system, the centerline bars

are composed of five white lights separated by 40.5 inches. There is a sequenced

flasher in front of each centerline bar. The distance between the centerline bars

is 100 feet. The cross bar, located 1000 feet from the runway threshold, consists

of eight white lights on each side of the centerline bar. These lights are separated
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from each other by five feet. The threshold bar is located ten feet from the runway

threshold and consists of green lights arranged five feet apart. The threshold

bar runs along the entire width of the runway and extends 45 feet beyond the

runway on each side. The wing bar is located at a distance of 100 feet from the

threshold bar. The wing bar consists of five red lights placed symmetrically about

the centerline. The inter-light separation is 40.5 inches. The terminating bar is

located at a distance of 200 feet from the threshold bar, and consists of five red

lights, 40.5 inches apart at the centerline and two sets of three red lights, five feet

apart, placed symmetrically about the centerline.

Approach lights are usually placed on pedestals of different heights. The

specifications for mounting approach lights in the United States are available in

Reference [29].

For operations in reduced visibility such as Category II or lower, the Interna-

tional Civil Aviation Organization (ICAO) specifications are used for the lighting

within 1000 feet of the runway threshold. The remaining 2000 feet of the lighting

system is left as is. For the standard configuration-A system, this means that nine

rows consisting of three red lights each are placed on either side of the centerline

between the threshold bar and the the cross bar. Additionally, two rows with

four white lights each are placed at 500 feet from the threshold, symmetrically

about the centerline. Detailed layout of the Category II approach lighting system

is described in Reference [49].

A medium approach lighting system (MALS) is often used at smaller airports

for non-precision approaches. This system is 1400 feet long as opposed to 3000

feet long standard configuration-A approach lighting system. Also, the threshold

bar is not continuous. Only four lights are placed on each side of the threshold

to indicate the indicate the approach direction. A MALS layout is also given in

Reference [49].
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3.5.1.2 The Runway Lighting System

The runway lighting system consists of edge lights, centerline lights and touch-

down zone lights. A typical runway lighting layout is shown in Figure 3.8. Standards
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Figure 3.8: Runway lighting system.

for design and installation of runway lighting systems are given in [33, 34].

The runway edge lights are high intensity white lights, except for the last

2000 feet. The edge lights in the last 2000 feet are colored yellow to indicate a

caution zone. The edge lights are located ten feet away from the pavement and

the distance between the lights along-track is 200 feet.

The centerline lights are 50 feet apart and run all the way to the end of the
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runway. The first centerline light is 75 feet from the runway threshold. These

lights are white, except for the last 3000 feet in the approach direction where they

are color coded. The lights for the first 2000 feet are alternate red and white, while

the last 1000 feet are all red.

The touchdown zone lights start at 100 feet from the runway threshold and

extend to 3000 feet in the direction of approach. The zone lights consist of three

white lights, which are five feet apart and located at a distance of 30 feet about

the centerline. The rows of zone lights are 100 feet apart from each other.

3.5.1.3 Model of Airport Lighting

In the two previous subsections, the layout geometry of the approach and

runway lighting was described with respect to the threshold bar. Thus, by placing

the origin of an inertial coordinate frame on the threshold bar with one axis aligned

along the threshold bar and the other axis aligned with the runway centerline, the

location of every light can be specified relative to the inertial coordinate system.

These position coordinates form the airport lighting model.

In order to construct the geometric model of the runway lighting, information

available from a standard airport design text [49] was discussed in this chapter.

The deviations from the standard layout for any airport in the United States are

documented in Jeppesen Charts [54] and Instrument Flight Rules (IFR) Supple-

ment [22]. Detailed models of most airports can also be built using the information

and survey maps available from city and county airport commissions.

The airport lighting model provides one source of information for the machine

vision systems. The images from an onboard camera forms the other source of

information.
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3.6 Landing Flight Trajectory and Image Se-

quence Simulation

The equations described in the earlier sections can be used for simulating

the landing flight trajectories and the associated camera images of the airport

lights. The purpose of such a simulation is to serve as a test bed for position and

orientation determination algorithms developed in later chapters.

The aircraft landing operation was described earlier in Section 3.1. A portion

of this discussion was devoted to the desired glide path. The altitude, time and

distance relationships for a approach speed of 220 feet/second along a three degree

glide path were illustrated in Figure 3.1.

These relationships can be used to obtain the conditions for simulation. These

are: ( 1) the aircraft is initially at 400 feet altitude and 6633 feet downrange from the

threshold, (2) the touchdown point is 1000 feet from the threshold, (3) the aircraft

approach speed is 220 feet/second, (4) the aircraft sink rate is 11.5 feet/second and

(5) the aircraft is perfectly aligned with the runway centerline. Thus, the descent

path is given:

Xbc = --6633 + 220t (3.43)

Ybc = 0 (3.44)

zbc = -400 + 11.5t (3.45)

where, t is the time from the initial position; xbc, Ybc and zb¢ are the desired or

commanded aircraft position components along the inertial x-axis, y-axis and the

Z--aXiS.

Aircraft flight along the prescribed path can be simulated by using the air-

craft aero-propulsive models along with the equations of motion discussed in a

previous section. However, this requires aircraft specific aero-propulsive models

and a suitable flight control system. These difficulties can be avoided by assuming

that a suitable control system can be designed to closely track the trajectory. In
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this case,the aircraft trajectory canbe approximatelysimulatedby using just the

kinematic equations. Sincethe aircraft actual trajectory is expectedto be close

to the desiredtrajectory with minor deviations,the actual trajectory can be sim-

ulated by driving the linear and angular accelerationcomponentsby white noise.

Thus, the kinematic equationsrequired for simulation are:

_?b= vbx (3.46)

Yb = vby (3.47)

Zb = Vbz (3.48)

dbx = rl_b (3.49)

t;by = r//_b (3.50)

t;bz = r/sb (3.51)

_, = qsin¢secO + rcos¢secO (3.52)

= qcos¢-- rsin¢ (3.53)

= p+qsinCtanO+rcosCtanO (3.54)

÷ = (3.55)

0 = rio (3.56)

ib = r/_ (3.57)

(3.58)

Here, Vbx, vby and vbz are the components of the inertial velocity, V{_; r/_b, r//_band

r/sb are the white noise components driving the linear acceleration components;

and r/÷, r/0 and r/_ are the white noise components driving the angular acceleration

components. The nomenclature for other terms remain unchanged.

The landing trajectory simulation is accomplished by integrating the system

of Equations (3.46) through (3.58) with the initial conditions: xb = -6633 feet,

Yb = 0 feet, zb = --400 feet, vb,_ = 220 feet/second, vby = 0 feet/second, vb_ = 11.5

feet/second, _¢,= 0 degrees, 0 = -3 degrees, ¢ = 0 degrees, p = 0 degrees/second,

q = 0 degrees/second, and r = 0 degrees/second.
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The imagegenerationprocesscorrespondingto the landing trajectory simu-

lation is summarizedin the block diagram in Figure 3.9. The cameraposition and

AIRPORT
LIGHTING
MODEL

WHITE NOISE

EQUATIONS

OF MOTION

1
CAMERA
MODEL

IMAGE

Figure 3.9: Image generation process.

orientation specified by the aircraft equations of motion, the camera model and a

model of the airport lighting are used to generate an image of the airport lighting

layout.

Nighttime images of the airport are simulated using the lighting layout illus-

trated in Figures 3.7 and 3.8. For image synthesis, the camera is assumed to be

fixed to the aircraft, looking down along the glide slope. Since the camera axis is

assumed to be colocated with the body axis, the look down angle is same as the

pitch angle 0. The image is assumed to be digitized on a 512 x 512 pixel array,

with the camera focal length being 600 pixels. This translates into a field-of-view

of about 46 degrees. Image synthesis is achieved in two steps. First, the airport

lights within the camera field-of-view are determined by using the known camera

position, orientation and the field-of-view. Second, the lights within the field-

of-view are projected onto the image plane by using the perspective projection

equations described earlier. A simulated image constructed using this process is

shown in Figure 3.10. This image corresponds to the camera located at an altitude

of 95 feet and 812 feet downrange from runway threshold.

The steps in the image generation process are summarized in Table 3.3.
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Figure 3.10: Simulated airport image.
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Table 3.3: Summaryof the ImageGenerationProcess

1. Initialize the imagematrix f(i,j) = 0; i = 1,2,...,512; j = 1,2,...,512.

2. Use yaw, pitch and roll attitudes _b, 0 and ¢ to compute the elements of the

transformation matrix rl through r9 using Equation (3.3).

3. Compute the position of the airport lights xcp, ycp and z_p using Equations

(3.7), (3.8) and (3.9) with the actual aircraft position components, xb, Yb

and zb, such that p = 1,2,...,M where, M is the number of lights within

the field-of-view of the camera.

4. Compute the location of each light in the image plane up and vp using the

perspective projection Equations (3.41) and (3.42).

5. Quantize every up and vp using [up + 1/2J and [vp + 1/2J where, [ J is

the floor function. Following the definition of the floor function in Reference

[38], [up + 1/2J is the greatest integer smaller than or equal to up + 1/2.

6. Set the image matrix f([up + 1/2J, Iv, + 1/2]) = 256.
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It shouldbe noted that when the aircraft is at 400 feet altitude along three

degreeglide slope, both the approach lights and the runway lights are within

the field-of-view. As the aircraft proceedsalong the descentpath, the approach

lights beginmovingout of field-of-view below230feet altitude. Any position and

orientation determination algorithm must be able to adapt to this fact.

3.7 Algorithm Development Considerations

Algorithm development is dependent on the available data sources and math-

ematical models. Two data sources were identified in previous sections. These are:

(1) image of the airport lighting acquired by the camera and (2) the known airport

lighting geometry. Earlier in this chapter, the airport light locations in the model

were mathematically related to their respective locations in the image plane using

a pinhole camera model and camera motion parameters. The image formation pro-

cess using the mathematical relations was further discussed in Section 3.6. Earlier

in Section 2.3.7, the difficulties of correlating the image features with the model

features were examined. Clearly, these difficulties can be eliminated if the image

features and model features are transferred into a common framework. There are

two natural choices for performing such comparisons. The comparisons can be

carried out in the inertial plane or in the image plane. Each of these choices result

in different families of algorithms.

Figure 3.11 illustrates the inertial frame-based family of methods for runway

relative position and orientation. The image of the runway lighting acquired by

the camera is transformed to the inertial plane using inverse perspective projec-

tion. This requires an initial estimate of aircraft position and attitude. Equations

(3.41) and (3.42) are used with Equations (3.7) through (3.9) to recover the inertial

locations of the lights xp and yp by assuming a camera position, orientation and

that all the airport lights are located on the z_ = 0 plane. The difference between

the features extracted from this layout and the features extracted from the known
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lighting layout form the inputs to the position and orientation algorithm. The

algorithm iteratively improvesthe position and orientation estimates in order to

achievea better matching. The improvedestimatesare then usedfor inverseper-

spectiveprojection. This procedurerecoversthe cameraposition and orientation

by driving the feature errors to zero.

The proceduregiven in Figure 3.12 describesthe secondfamily of methods

for runway relative position and orientation estimation by carrying out feature

matching computations in the image plane. In this case, the camera model is
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Figure 3.12: Solution family II.

used together with the airport lighting model to predict the image of the lighting

arrangement. This prediction is based on an assumed camera position and orienta-
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tion. Next, the differencebetweenthe featuresextracted from the predicted image

and thoseextracted from the actual imageof the airport lighting as seenby the

cameraare fed into a position and orientation algorithm to refinethe position and

orientation estimates. Theseestimatesare then used for updating the predicted

image. Thus asin the first family of methods,the position and orientation states

are recoveredby driving the featureerrors to zero.

The two family of solution methodshavetheir advantagesand disadvantages.

Sinceinverseperspectiveprojection is usedin the first family of methods, the as-

sumption that all airport lights lie on the zp = 0 plane is necessary. Moreover, due

to perspective projection, lights farther down the runway" are bunched together in

the image plane. Location of these lights with respect to the inertial frame cannot

be accurately recovered using the inverse perspective projection. Additionally, this

family of methods require active model adaptation to remove the lights outside the

field-of-view of the model as the aircraft moves because portions of the airport

along the descent path. The main advantage is that since the structure of the

predicted and model lighting is well defined in the inertial frame, the comparisons

are straight forward.

The second family of methods use direct perspective projection to synthesize

the predicted image. As a result, the assumption that all airport lights lie on

the ground plane z v = 0 plane is not needed. The model adaptation process is

automatic because only the lights that are within the field-of-view of the pinhole

camera model are used for synthesis of the predicted image. The main disadvantage

of this family of methods is that the structure of lighting in the predicted and the

camera images is difficult to identify due to perspective distortion.

Note that in both the procedures outlined in the foregoing, a single image of

the airport lighting is used as a part of an iterative scheme to recover the camera

position and orientation coordinates. Algorithms based on each of these families

of solution methods will be discussed in the ensuing chapters.
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3.8 Summary

The foundations for the development of vision-based algorithms for position

and orientation determination were laid in this chapter. First, the kinematics

of flight along the glide slope were described. Federal Aviation Administration

defined landing categories together with the associated decision heights, and the

performance specification for precision approach and landing for these categories

were then discussed. Since the glide slope is defined with respect to the runway

centerline and the touchdown point on the runway, and the airport lighting ge-

ometry was also defined with respect to the runway threshold. The origin of the

inertial coordinate frame was assumed to be located at the threshold with the x-

axis pointing along the centerline in the approach direction, the y-axis along the

threshold and the z-axis pointing down. With this choice of the inertial coordinate

system, and definitions of the body and camera coordinate systems, the locations

of lights in the lighting model were related to their location with respect to the

camera coordinate system. This relation was established in terms of the aircraft

location and orientation with respect to the inertial coordinate system, and the

camera location with respect to the aircraft fixed body coordinate system. Since,

both the aircraft position and the orientation are a consequence of the transla-

tional and rotational motion of the aircraft subjected to propulsive, gravitational

and aerodynamic forces, the equations of motion describing the dynamics and the

kinematics of the aircraft were discussed. A pinhole camera model was then de-

scribed for relating the camera relative coordinates of the model lights to their

image coordinates. Using the models and equations, procedures for simulating the

landing flight and images along the landing path were described. Finally, the fact

that direct and inverse transformations between the location of the lights in the

inertial frame and the image plane can be computed using the equations described

in the chapter resulted in two possible solution approaches for determination of

runway relative aircraft position and orientation.



Chapter 4

Parameter Optimization Based

Position Determination Methods

The runway position determination techniques discussed in this chapter are

based on the first solution family illustrated in Figure 3.11. The runway relative

orientations, _, 0 and ¢, are assumed to be known in all the algorithms presented

in this chapter.

Let the image coordinates of a light p in the image be given by up and vp. The

relation between these coordinates and the camera relative position components is

given by the direct perspective projection equations, described earlier in Equations

(3.41) and (3.42). For notational simplification let,

Up - up- uc (4.1)
f

Vp - vp- vc (4.2)
f

where, u_ and v_ are the coordinates of the image center with respect to the image

frame and f is the focal length of the camera. Substituting for up and t¥ in terms

of light and aircraft position vector components results in the following relations:

c5 = r,(zp - xb)+ rs(yp- Yb)+r6(z_- zb)+ k_ (4.3)
r,(x, - xb)+ _(_ - yb)+ _(z_- z_) + k_

Vp = rl(Xp - Xb) -4- r2(yp -- Yb) -t- r3(Zp- Zb) -_- kx (4.4)

91
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Since the cameralocation with respect to aircraft center of gravity k_, ky and

kz are known quantities, they can be set to zero without loss of generality. This

simplification implies that the camera frame is colocated with the body frame. The

inverse perspective projection equations can be obtained from Equations (4.3) and

(4.4) as:

xp = xb+   ps6p- s3p   (z_ zb) (4.5)
SlpS5p -- £2pS4p

yp = Yb + slps6p- s3ps4p(zp- Zb) (4.6)
82pS4p -- SlpS5p

The quantities sip through s6p depend on the image coordinates Up and I_;, and

the known elements of the transformation matrix ra through rg. They are defined

by the equations:

sly = Uvrl - r4 (4.7)

s2v = Uvr2 - rs (4.8)

s3v = Uvr3 - r6 (4.9)

"$4p : Vprl - rT (4.10)

ssp = Vvr_ - rs (4.11)

s6p = Vpr3 - r9 (4.12)

Examination of the inverse perspective projection equations given by Equa-

tions (4.5) and (4.6), reveals that the xp and Yp position components of all airport

lights are shifted by the aircraft position components xb and Yb, and scaled by

the aircraft altitude, --Zb. Given the aircraft position components and the verti-

cal coordinate zp of each light, Equations (4.5) and (4.6) uniquely determine the

individual light horizontal position components xp and yp. In order to make the

problem solvable, zp can be set to zero or a constant for all airport lights. This

assumption is reasonable specially when the aircraft is at higher altitudes. Since

the position of the aircraft relative to the plane containing the airport lights is of

interest, define the aircraft altitude above the plane of the runway by h. Thus,
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with zp = 0 assumption:

xp = xb + s_ps6v- szpssvh (4.13)
Slp$5p -- S2pS4p

Yp = Yb + sips%- szvS4vh (4.14)
S2pS4p -- SlpSSp

These two equations show that the projected positions of the lights on the plane

of the runway are dependent on three parameters, xb, yb and h.

Since the position of each airport light is known from the airport lighting

layout, the position components xb, Yb and h that results in a match between the

known position and the projected position of each light is the desired solution.

This problem can be conveniently posed as parameter optimization problem for

determining aircraft position components that minimize the matching error. Early

versions of two algorithms based on this idea are described in Reference [15]. Re-

vised version of these algorithms are described in the following sections. The first

algorithm assumes that the aircraft altitude is available from an onboard altimeter.

The second algorithm does not make this assumption.

4.1 Algorithm I

This algorithm assumes that in addition to the aircraft attitudes, _b, 0 and

¢, the aircraft altitude is available from an onboard altimeter. Thus, for every

light, detected in the image sip through s6v can be computed using Equations

(4.7) through (4.12). These can then be used in Equations (4.13) and (4.14) for

computing the relative position components of each light, detected in the image,

as follows:

x v -- Xb = S2vS6v -- S3pssPh (4.15)
s,pssv - s2vs4p

Yp -- Yb "= SlpS6v -- s3vs4vh (4.16)
S2pS4p -- Slp,S5p

In the ideal case, the projected airport lighting layout would be bounded by a

rectangle of the same dimensions as the rectangle bounding the model lighting
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layout as shown in Figure 4.1.
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Figure 4.1: Envelope matching in the inertial frame.

Using Equations (4.15) and (4.16), the minimum and the maximum relative

coordinates of the projected lighting can be found to be Xpmin, Xpm_, YPmin and

Ypm_=" The maxima and minima define the rectangle on the horizontal plane that

encloses the projected lighting layout as shown in Figure 4.1. Since the coordinates

of every airport light are known with respect to the inertial coordinate system, via

the airport lighting model, the minimum and maximum coordinates of the lighting

model can be found to be Ximin , Ximax, Yimin and Yirac,c. These coordinates define

the rectangle that encloses the model lighting shown in Figure 4.1.

Consider the coordinates of the upper left corners, A' and A of the enclosing

rectangles in Figure 4.1. These are, (xp,_x, Ypm+,_) with respect to the aircraft and

(xi,_,:_,Yi,_in) with respect to the inertial coordinate system. Using the relative

geometry shown in Figure 4.1, it may be observed that:

xb = Xi.+O+.L+- xp,_ (4.17)
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Yb = Yi,_n - YPmin (4.18)

Similarly, using the coordinates of the lower right corners, B' and B,

Xb = Ximin -- Xp,_i_ (4.19)

Yb = Yi,_ -- Yvm_ (4.20)

The average of these two calculations can be taken as the aircraft position estimate.

Combining Equations (4.17) with (4.19) and (4.18) with (4.20) yields:

(X,m,n -- Xpmin) + (X,m_ -- Xpm_x) (4.21)
Xb = 2

(Yimin -- YPmin) + (Yim_,: -- YPm_x) (4.22)
Yb = 2

So far only the ideal case has been examined. In the real situation, perspective

projection causes the lights at the far end of the runway to be bunched together

in the image plane making it difficult to determine their position. Since the lights

closer to the camera are well separated in the image plane, it is more reasonable

to use a weighted average of the xb position estimates. Thus an improved position

estimate for Xb is:

Wl(Xirni n -- ZPmin ) "JC W2(Xirnax -- Xprna x) (4.23)
xb = (wl + w2)

wl and w2 are the weighting factors. No such rationale can be applied along the

y-axis. Hence, Equation (4.22) can be used directly.

The position estimation algorithm is summarized in Table 4.1.

The attractive features of this algorithm are: (1) envelope matching does not

require any explicit identification of individual lights, (2) no iterative computations

are required, and (3) only a single image is required. However, the two significant

difficulties with this algorithm are that accurate knowledge of altitude is required

and the elevation of the airport lights, -zp, is not included in the computations.

Algorithm I does not take advantage of the fact that numerous images are

available along the descent path. Since these images are related to each other by
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Table 4.1: Summary of Algorithm I

1. For every light in the scene compute Uv and Vp using Equations (4.1) and

(4.2) with p = 1,2,..., M where, M is the number of lights detected in the

image.

2. Use _/,, 0 and ¢ to compute rl through r9 using Equation (3.3).

3. Compute sip through s% using Equations (4.7) through (4.12).

4. Compute xp- xb and Yv- yb, p = 1,2,...,M, using Equations (4.15) and

(4.16) along with the known altitude.

5. Compute max{xp}, min{xp}, max{yp} and min{yp}.

6. Compute rnax{xi}, min{xi}, max{yi} and rnin{yi}, i = 1,2,...,N, using

the coordinates of N airport lights within the model.

7. Compute the inertial position components, xb and Yb using Equations (4.23)

and (4.22).
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aircraft motion, equations of motion can be used with this algorithm for obtaining

improved aircraft position estimates. Kalman filter [3] is a natural choice for gener-

ating improved position estimates by weighting the position propagated using the

equations of motion and the position estimates provided by the algorithm in Table

4.1 in a statistically optimal manner. For this purpose, a six-state Kalman filter

with three position components and three velocity components is used together

with Algorithm I for obtaining aircraft position and velocity estimates along the

descent path. The details of this Kalman filter are described in Appendix A. The

matrices required for implementing the Kalman filter are described in Appendix B.

The two position components generated by Algorithm I are used as measurements

for the Kalman filter. The known altitude is used as the third measurement. With

these measurements, the Kalman filter provides the improved position and velocity

estimates.

Most general aviation aircraft use barometric altimeter which has a limited ac-

curacy because the measurement depends on ambient temperature. Although the

measurement accuracy is sufficient for maintaining the required vertical separation

for Air Traffic Control, it is inadequate for operations close to the ground. If alti-

tude could be computed reliably, it could be used for augmenting the barometric

altimeter reading.

An algorithm that does not require altitude measurements is described in Sec-

tion 4.2. However, the lack of altitude information results in an iterative algorithm

because three position components are estimated from two inverse perspective pro-

jection equations.

4.1.1 Results Using Algorithm I

Results of two cases obtained using Algorithm I are described in this section.

The first case is obtained using wl = 1 and w2 = 0. The second case is obtained

using the weighting factors wl = 1 and w2 = 1 in Equation (4.23). In both cases,

the landing scenario discussed in Section 3.6 is used. Aircraft landing flight trajec-
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tory and the imagesalong the glide slopeare alsosimulatedusing the procedures

describedin Section3.6. For initializing the Kalman filter, errors of 1000feet in

the along track position xb and 100 feet in the cross-track position Yb are assumed.

The inertial velocity components were all initialized to zero.

4.1.1.1 Algorithm I with wl = 1 and w2 = 0

The error residuals of the runway relative position and velocity components

are described in this section. The error residual is defined as the difference between

the value estimated by the Kalman filter and the true value.

The along-track position error residual is shown in Figure 4.2. It may be seen
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Figure 4.2: Along-track position error using Algorithm I with wl = 1 and w2 = 0.
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from the figure that the along-track position estimate converges to within -t-100

feet in less than one second.

The cross-track position error residual presented in Figure 4.3 shows that the
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Figure 4.3: Cross-track position error using Algorithm I with ?2) 1 : 1 and w2 = 0.

cross-track position estimate converges to within -t-5 feet in less than one second.

Figures 4.4 and 4.5 show the along-track velocity (Vb_) and cross-track velocity

(vby) error residuals. It may be observed from the figures that the along-track

velocity estimate settles to within 4-10 feet/second in five seconds and the cross-

track velocity settles to within 4-5 feet/second in less than one second.

The position error residuals for a range of altitudes corresponding to the FAA

landing categories are summarized in Table 4.2. The cross-track position (Yb)



100

o
_o

_,_ _

_._

o

_

i

G)
;_ -

0

I

-
O_ -

o

I I r I I I I I I I I T I I I I I 1 I I I I I I I I I I I I I I I I I I

10 20 30 40

Time (s)

Figure 4.4: Along-track velocity error using Algorithm I with w] = 1 and w2 = 0.



101

I

Oo

U
o

......... I .................................................................................

i

l

J

IIlllllllltlllllll

lo

Time

I I I I I I I I I I I I I 1 I I I I

20 30 40

Figure 4.5: Cross-track velocity error using Algorithm I with w] = 1 and w2 = 0.



102

error residual is in feet. By comparingTable 4.2to Table 3.2,it may be seenthat

Table 4.2: Algorithm I with wl = 1 and w2 = 0 Results

Category Yb

CAT I +0.54

CAT II +0.22

CAT IIIa +1.49

CAT IIIb & c +0.85

Algorithm I along with the Kalman filter generates position estimates which meet

the navigation accuracy requirements for all the three categories.

4.1.1.2 Algorithm I with wl = 1 and w2 = 1

In order to assess the benefit of matching both the near and the far ends of the

envelopes shown in Figure 4.1, the error residuals of the runway relative position

and velocity components obtained using Algorithm I with Wl = 1 and w2 = 1 are

examined in this section.

Figure 4.6 shows the along-track position error residual. It may be seen from

the figure that the along-track position estimation error continues to grow as a

function of time. This is due to the inability of correctly recovering the position

components of distant lights using the inverse perspective projection equations.

The dimension of the predicted envelope along the viewing direction is therefore

shorter than the model envelope. In an attempt to match the shorter envelope

to the longer model envelope, the aircraft position estimate is erroneously esti-

mated. These erroneous position estimates when provided as measurements to

the Kalman filter results in incorrect position estimates. From Figure 3.11 it may

be seen that since the position estimates are used for inverse perspective projec-

tion, grossly incorrect estimates of the aircraft position components would lead to

a gross mismatch between the predicted lighting and model layouts to an extent

that subsequent correct recovery of the aircraft position components may not be
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possible.

The along-track position result describedin Figure 4.6 under-predicts the

true position which could causethe pilot to overshootthe touchdownpoint. A far

more dangeroussituation would ariseif the along-track position estimatesover-

predicted the along-track position becausethat could causethe pilot to land short

of the runway.

The cross-track position error residual is shown in Figure 4.7. This figure

showsthat the cross-track position estimate convergesto within -t-5 feet in less

than one second.
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Figure 4.7: Cross-track position error using Algorithm I with wl = 1 and w2 = 1.

The along-track velocity and cross-track velocity error residuals are illustrated



105

in Figures 4.8 and 4.9. Figure 4.8 showsthat the along-track velocity estimation

error never settles down. The cross-track velocity estimateson the other hand

settle to within +5 feet/secondin lessthan one second.
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Figure 4.8: Along-track velocity error using Algorithm I with wl = 1 and w2 = 1.

The cross-track position error residuals for FAA landing categories are summa-

rized in Table 4.3. It can be observed that the navigation accuracy requirements

for all the three categories are met. Note navigation accuracies for the landing

categories are not specified for the along-track position.

Comparing the results of Subsections 4.1.1.1 and 4.1.1.2 suggests the weights

wl = 1 and w2 = 0 yields better position estimates.
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Figure 4.9: Cross-track velocity error using Algorithm I with wl = 1 and w2 = 1.

Table 4.3: Algorithm I with wl = 1 and w2 = 1 Results

Category

CAT I

CAT II

Lateral (yb)

4-0.97

4-0.53

CAT IIIa 4-3.73

CAT IIIb & c 4-0.44



107

4.2 Algorithm II

The main difference between this algorithm and the previous one is that the

present algorithm estimates all the three position components of the aircraft.

As in the previous algorithm, the minimum and maximum values Xirnin, Xirnax,

Yimin and Yim_x can be determined using the known xi and yi coordinates of the

lights in the model. However, the lack of knowledge about the aircraft altitude

makes the process of projecting the lights detected in the image onto the horizontal

plane somewhat more complicated. The projection requires the assumed values of

aircraft position components, xb, Yb and h. The quantities sap through s6p in these

equations can be evaluated in exactly the same manner as in Algorithm I. The

position coordinates xp and yp of every light can be found using the guessed initial

position. These coordinates can then be used to find the values Xpmin, Xpm_x, YPmin

and yp,,,:. Since the rectangle formed by the maximum and minimum values

are required to enclose the projected and model lighting layouts, the position

determination problem can be viewed as a parameter optimization problem for

matching the projected rectangle with the rectangle enclosing the airport light

database.

A quadratic cost function for measuring the matching error can be constructed

in terms of the coordinates of the upper left and lower right corners of the enclos-

ing rectangles, (xpm_x, Ypmi,_), (zim,,, Yimin), (Xp_in,YPm_) and (Ximin,Yimax), as

follows:

J

- x )2+ w2(ximo - z )2Wl ( Xirnin Prnin Prnax

y 2
+ (Yi_,,_ - Ypmin) 2 + (Yim_,- p_:) (4.24)

As in Algorithm I, the weights 0 < wa < 1 and 0 < w2 _< 1 can be used to

establish the error contribution of lights near the camera and those that are far

away. The objective of the optimization algorithm is to determine aircraft position

components xb, yb and h that minimize the performance index J. Any one of the
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several unconstrained optimization methods can be used for this purpose. The

Newton-Raphson method is chosen for the present research.

The Newton-Raphson method [74] is an iterative method for finding the zeros

of a function. In one dimension, the Newton-Raphson technique extrapolates the

derivative at the current location in order to find an improved estimate of the

zero. The method has its basis in the Taylor Series expansion of a function in the

neighborhood of a point. It is known to converge quadratically when the function

is smooth and convex. The Newton-Raphson technique can be readily extended to

multiple dimensions. The technique is suitable for solution of nonlinear systems of

equations. The technique can be adapted for finding the extremum of a function

by driving the gradient vector of the function to zero. The difference between

searching for a zero of a function and the zero of a derivative is that, in the first

case the Jacobian matrix is used while in the second case the Hessian matrix is

used.

Thus, the Newton-Raphson formula for position determination is:

Xb xb 1

Yb = Yb

h h
n+l n

where, the Hessian matrix H is given by:

02J

H = °_a
Or.bOyb

02J

OxbOh

OJ

_ H-1 oa

oa

b-g

02 J cq2 J

OybOX b OhOxb

02 J cq2 J

OhOyb

O_J O2J

OybOh Oh 2

(4.25)

(4.26)

The subscript n + 1 denotes the improved estimate of the aircraft inertial position.

Starting from an initial guess, the position vector can be iteratively computed

using Equation (4.25) until the change in the cost function is smaller than a preset

tolerance.

Equation (4.25) requires the computation of the first and second partial deriva-

tives of the cost function. Since the cost function depends on (xpm_, YPmin) and
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(xpmi,_,Ypm_) coordinates, their partial derivatives are required for computing the

partial derivatives of the cost function with respect to aircraft position coordinates.

These can be derived from Equations (4.13) and (4.14) as follows:

OxPm_" - 1 (4.27)
OXb

Oxpm_": - 0 (4.28)
Oyb

Oxpm_x _ s2ps6p- s3vssv (4.29)
Oh slvssp - s2vs4v

Oxv_i'_ - 1 (4.30)
Oxb

Oxpmi'_ - 0 (4.31)
Oyb

Oxvmi, _ _ s2vs6p - s3vssp (4.32)
Oh 81pS5p - 82p84p

c3Y'm_x - 0 (4.33)
OXb

Oyp,_ _ 1 (4.34)
Oyb

Oyv,_ _ slvs6v -- s3ps4v (4.35)
Oh s_ps4v - slpssv

OYvmi'_ - 0 (4.36)
Oxb

OYPmin -- 1 (4.37)
Oyb

OYPmi'_ - "_lpN6p - s3vs4v (4.38)
Oh 82p,-q4p -- 81p85p

Note that these partial derivatives are evaluated at the instantaneous values of

xp,_,, Xpmin, yp,_, and Ypmi," Partial derivatives of the cost function with re-

spect to aircraft position vector components can be computed analytically by using

Equation (4.24) and Equations (4.27) through (4.38) as:

oJ _ _ 2 {wl(X,r.,°- x,.,,.) + w2(x,.,o.- X,_o_)} (4.39)
oxb _/(w_+ w_)

OJ _ -V_ { (yi_i,_ - Yv_,,_) + (Yi_x - Ypm,_)} (4.40)
Oyb
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OJ [ Wl ( X,_ _n _" _ o_,____ + w 2(x , ,_ __: _ _a.___

- 2 1 -- -- _Prnax] Oh

_Pmin] Oh

oh J(w_+ wi)

+ v_ J
The elements of the Hessian matrix are given by:

(4.41)

O2j _ 2(wa + w2) (4.42)

02J
- 0 (4.43)

OybOxb

O_J _ 2 _wl Oxpmi'_ + w2 O_ i (4.44)

02J O_J (4.45)
OxbOyb OybOxb

a:J - 2v'_ (4.46)
oy_

02J - v_ 0 ,_ + O------£--
OhOyb

02J O:J (4.48)
OxbOh OhOxb

02 J 02 J
_ (4.49)

OybOh OhOyb

02 J [ Wl ( Oxp_ _ 2 2

2

}+

Since the gradient vector and Hessian computations are analytic, the Newton-

Raphson iterations can be carried out at a high computational rate. The essential

steps involved in Algorithm II are summarized in Table 4.4.

The three aircraft position components estimated using Algorithm II are used

as the measurements of the six-state position/velocity Kalman filter. As in Algo-

rithm I, the Kalman filter integrates the information derived from multiple images
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Table 4.4: Summary of Algorithm II

1. Compute max{xi}, min{x,}, max{y,} and rain{y,} using the coordinates

of N airport lights within the model. Here, 1 < i < N.

2. Compute Up and Vv V p, such that 1 _< p _< M where, M is the number of

lights detected in the image, using Equations (4.1) and (4.2).

3. Use ¢, 0 and ¢ to compute rl through r9 using Equation (3.3).

4. Compute sip through asp using Equations (4.7) through (4.12).

5. Assume xb, Yb and h.

6. Using Equations (4.13) and (4.14), compute xp and Yv V p, such that 1 _<

p<_M.

7. Compute max{z,}, min{xv}, max{yp} and min{yv}.

8. Compute cost J2 using Equation (4.24).

9. If this is the first time, skip to step 11; else, continue.

10. Is I J2 - J1 I_< _ ? If yes, stop; else, continue. The parameter _ is the

stopping tolerance.

11. Set at1 = J2.

12. Compute the partial derivatives using Equations (4.39) through (4.50).

13. Using the Newton-Raphson formula, Equation (4.25), compute the inertial

position components, xb and yb and h.

14. Return to step 6.
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processed using Algorithm II. The six-state Kalman filter used here is described

in Appendix A. The matrices required for this Kalman filter are available in Ap-

pendix B.

4.2.1 Results Using Algorithm II

Results of the two cases obtained using Algorithm II are described in this

section. The first case is obtained using Wl = 1 and w2 = 0 while the second case

is obtained using wl = 1 and w: = 1 in Equation (4.24). As in Algorithm I, the

landing scenario discussed in Section 3.6 is used for both the cases. Errors of 1000

feet in the along-track position xb, 100 feet in the cross-track position yb and 100

feet in the altitude h are assumed for initializing the Kalman filter. The inertial

velocity components are all initialized to zero.

4.2.1.1 Algorithm II with Wl = 1 and w2 = 0

The along-track position error residual is shown in Figure 4.10. It may be

seen from the figure that the along-track position estimate converges to within

-t-100 feet in less than one second.

The cross-track position error residual presented in Figure 4.11 shows that

the cross-track position estimates converge to within +5 feet in less than three

seconds.

The altitude error residual is shown in Figure 4.12. It may be observed from

the figure that the altitude error converges to -t-5 feet within two seconds and

stays within these bounds up to 30 seconds. Beyond that point the altitude error

increases. The error increase can be attributed to the reduction in the number of

lights within the field-of-view. The altitude of the aircraft at 30 seconds is 55 feet.

Figures 4.13, 4.14 and 4.15 show the along-track velocity (vb_:), the cross-track

velocity (vb_) and the sink rate (-vbz) error residuals. It may be observed from

the figures that the along-track velocity estimate settles to within +10 feet/second

in less than five seconds, the cross-track velocity settles to within +5 feet/second



113

o

I

0

I
I I I I I I I 1 I I I I I I I I I I I I 1 I t I I I I

0 10 20 30

Time ( s )

IIIIIIII

40

Figure 4.10: Along-track position error using Algorithm II with W 1 = 1 and w2 = 0.



114

V

0

o
i

oo

0

_t
0

I

0
_O

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 10 20 30 40

Time (s)

Figure 4.11: Cross-track position error using Algorithm II with Wl = 1 and w_ = 0.



115

= i
_ i

i

W

Oo

v. ° _
.4 I

i

'""'"'i'"'"'" ,','"'"i'"'"'"
10 20 30 40

Time (s)

Figure 4.12: Altitude error using Algorithm II with wl = 1 and w_ -- O.



116

o
_o

i

o

0

D

P_

_J
°

0

W

l

0 10 20 30 40

Time ( s )

Figure 4.13: Along-track velocity error using Algorithm II with W 1 = 1 and w2 = 0.



117

0

_=_

f

Oo

_7
0

i

, i

i

I I I I I } ] I i I t I I I I I I I i I I I I I I I I I I I I I i t I I

lO 20 30 40

Time (s)

Figure 4.14: Cross-track velocity error using Algorithm II with wl = 1 and w2 = 0.



118

o

Q0

D

r.t'J

O0 m

,aT-

,,,,f

c_

I

o

lllllllllllllllllllllltlllltl

lO 20

Time (s)

IIIIIIIII

30 40

Figure 4.15: Sink rate error using Algorithm II with wl = 1 and w2 = 0.



119

in less than one second and the sink rate settles to within ±5 feet/second in less

than two seconds. These results are comparable to those obtained using Algorithm

I for the same set of weights.

Table 4.5 lists the position error residuals. In Table 4.5, the position com-

ponents are in feet. Comparing Table 4.5 with Table 3.2, it may be seen that

Table 4.5: Algorithm II with wl = 1 and w2 = 0 Results

Category Lateral (yb) Vertical (h)

CAT I +0.70 +1.21

CAT II +0.22 +0.40

CAT IIIa +2.30 4-5.82

CAT IIIb & c -t-0.55 +10.11

Algorithm II along with the Kalman filter generates position estimates which meet

the navigation accuracy requirements for Categories I and II.

4.2.1.2 Algorithm II with wl = 1 and w2 = 1

The error residuals of the runway relative position and velocity components

obtained using Algorithm II with wa = 1 and w2 = 1 are described in this section.

Figure 4.16 shows that the along-track position estimates converge to within

+100 feet in about six seconds.

The cross-track position error residual shown in Figure 4.17 shows that the

cross-track position estimates converge to within -t-5 feet in less than one second.

The altitude error residual given in Figure 4.18 shows that the altitude esti-

mates converge to within 4-20 feet in less than six seconds.

By comparing Figure 4.16 with Figure 4.6 it may be noted that the along-

track position is significantly improved by Algorithm II at the cost of increased

altitude estimation error shown in Figure 4.18.

The along-track velocity, cross-track velocity and sink rate error residuals are

illustrated in Figures 4.19, 4.20 and 4.21. Figure 4.19 shows that the along-
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track velocity settles down to within +10 feet/second in less than five seconds.

The cross-track velocity estimates settle to within 4-5 feet/second in less than one

second. The sink rate estimates settle to within 4-5 feet/second in less than five

seconds.

The position error residuals for ranges of _ltitudes are summarized in Table

4.6. The nomenclature for this table is same as that used in Table 4.5. Table 4.6

Table 4.6: Algorithm II with Wl = 1 and w2 = 1 Results

Category Lateral (yb) Vertical (h)

CAT I 4-1.21 4-16.11

CAT II +0.19 4-15.50

CAT IIIa -t-3.52 4-10.72

CAT IIIb & c +0.62 4-9.01

shows that in this case, the navigation accuracy requirements listed in Table 3.2

are not met for any of the categories because of the reduced altitude estimation

accuracy.

As in Algorithm I, the results of these two cases indicate that Algorithm II

should be used with Wl = 1 and w2 = 0 weight combination.

4.3 Summary

Two methods for aircraft position estimation were described in this chapter.

Both are based on envelope matching in the inertial frame. The first method re-

quired the altitude in addition to the yaw, pitch and roll orientation angles. The

second method did not require knowledge of aircraft altitude. Both the algorithms

were based on the inverse perspective projection equations which relate the image

coordinates of the airport lights to their inertial coordinates via the aircraft iner-

tial position components. The problem of position determination was posed as a

problem of parameter optimization with the aircraft inertial position components
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as the parameters.In Algorithm I, the two position componentswere determined

by matching the envelopeof the predicted lighting geometrywith the envelopeof

the stored lighting geometry model. In Algorithm II, a quadratic cost function

wasused for minimizing the envelopematching error using a Newton-Raphson

method. The position componentscomputed by these algorithms were used as

measurements for a six-state Kalman filter for estimating the position and veloc-

ity components along the glide slope. Results obtained for the four cases were

discussed. It was shown that both Algorithm I and Algorithm II generate more

accurate estimates with wl = 1 and w2 = 0 weight combination. This implies that

these image based algorithms should place a higher weight on nearer lights, than

on lights farther away along-track.



Chapter 5

Feature Correspondence Based

Aircraft Position Estimation

Methods

Two position determination methods were presented in the previous chapter.

The central idea there was to match the observed lighting layout to the model of

the airport lighting layout. One of the difficulties with the algorithms described in

Chapter 4 is that the cost function is based only on the coordinates of two corners

of the envelope of the airport lights. Thus, they do not exploit all the information

available in the image. The objective of the methods presented in this chapter is

to formulate methods that use most of the information available in the image.

Reason for using information from many lights as opposed to a few is obvious.

An algorithm using information from multiple lights can be expected to be less

sensitive to camera induced errors. Additionally, the estimation accuracy will

remain unaffected even if some of the lights have failed. Algorithms presented in

this chapter do not require any iterative computations. Significant benefits of such

direct schemes are that they are computationally efficient and robust.

The main idea in this chapter is to synthesize measures that capture the

structure of the airport lighting layout in terms of scalar functions. Such measures

128
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can be used as features for establishing the correspondence between the observed

lighting layout and the model lighting layout. The important structures in the

standard airport lighting layout were presented in Figures 3.7 and 3.8. Of these,

the prominent ones are centerline, left and right edge lights and the threshold bar.

It is possible to model these structures as straight lines using the Hough transform

method discussed in Subsection 2.3.1. However, the Hough transform requires

careful threshold selection to prevent phantom lines from being detected. Another

approach for discovering the structure is to simply arrange the coordinates of the

airport lights in a non-decreasing order. This arrangement causes the lights to be

re-indexed so that their inertial coordinates are in a non-decreasing order. Any

efficient method can be used for arranging. The Quicksort method [56] has been

used in this research. For example, Figure 5.1 shows the y-coordinates of the

airport lights arranged in a non-decreasing order.

The basis for arranging the y-coordinates in a non-decreasing order lies in the

fact that the left edge lights have a y-coordinate value of -100 feet, the centerline

lights have a y-coordinate of zero feet and the right edge lights have a y-coordinate

of 100 feet as may be seen in Figures 3.7 and 3.8. The graph shown in Figure 5.1

is obtained by plotting the inertial y-coordinates of the re-arranged lights against

their scaled indices. The scaled index for a light is obtained by normalizing its

re-ordered index by the total number of lights in the model and multiplying the

result by 100. Note that the scaled index is no longer an integer, but a rational

number. The multiplication factor of 100 is chosen for convenience. This choice

of multiplication factor results in the left edge lights having scaled indices with

values less than 15 as may be seen in Figure 5.1. The range of scaled indices for

the centerline lights and the right edges lights are also marked in Figure 5.1. The

benefit of scaling is that the observed lighting layout is made comparable to the

model lighting layout. Note that usually fewer lights are observed in the image

compared to those available in the airport lighting model.

The inertiM along-track x-coordinates of the model lights arranged in a non-
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decreasingorder areshownin Figure 5.2. From the standardapproachand runway
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Figure 5.2: Along-track x-coordinates of the airport lights in a non-decreasing

order.

lighting layouts shown in Figures 3.7 and 3.8, it may be observed that the x-

coordinates of the threshold bar lights have a common value of zero. Figure 5.2

shows that threshold lights have scaled indices between 20 and 30. Other structures

are difficult to identify in this graph because the x-coordinates of structures like

centerline lights and edge lights axe mixed together along the length of the runway.

These structures appear prominently when their y-coordinates are arranged as

shown in Figure 5.1.

Since the observed and model lighting have the same range of scaled indices,
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the corresponding structures are related by the range of indices. For example, the

left edge lights in both the observed and model lighting layouts are expected to

have scaled indices with values between 0 and 15. Thus, this range of scaled indices

can be used for establishing the correspondence between features based on the left

edge lights identified in both the layouts.

Two position determination methods that exploit the ability to identify struc-

tures in the graphs such as those in Figures 5.1 and 5.2 are described in this

chapter. Both the algorithms belong to the first family of solution methods de-

scribed in Figure 3.11. The first algorithm assumes that the altitude is known

while the second algorithm does not make this assumption. Both algorithms as-

sume that the aircraft attitudes, _, 0 and ¢, are known. Starting points for both

the algorithms are the relationship between the aircraft position coordinates and

the position of the lights given by the Equations (4.13) and (4.14). Thus, like the

earlier algorithms, they are not designed to account for the varying elevation of the

airport lights. The details of these algorithms are given in the following sections.

5.1 Algorithm III

Algorithm III assumes that in addition to the aircraft attitudes, _, 0 and

¢, the aircraft altitude is available from an onboard altimeter. This assumption

results in decoupling of Equations (4.13) and (4.14). Two such equations can be

written for each light observed in the image. Adding the resulting expressions:

_., xp = Mxb+h __, (s2vs6p-SapSsp)
l<p<M l<p<_M (SlpS5p -- S4p'S2P )

E Yp = Myb+hlEM (slps6--'--'2-v-s3"s4p----_)<,<
1<_p<_M __ (s_ps4p slpssp)

(5.1)

(5.2)

Here M is the number of lights. In the ideal case, the location of the lights in the

airport lighting model xi and yi should be same as that observed. That is:

xi = x. (5.3)
l<i<_M l<_p<_M
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Thus,

E yi --
I<i<M

(5.4)

E Xi

I<i<M

I<i<M

= Mxb+h

= Myb+h

(s ps6p- zps p)
l_<p_<M (81pN5p -- S4pS2p )

E (SlpS6p- S3pS4p)

l<_p<_M (82pS4p S1pS5p )

(5.5)

(5.6)

In this form, the inertial aircraft position components Xb and Yb can be computed

simply by subtracting the image based arithmetic means from the model based

arithmetic means.

Results obtained using Algorithm I and II in Chapter 4 suggested that only the

nearer lights should be used for obtaining the along-track position of the aircraft.

Therefore, only Na nearer model lights and M1 nearer image lights should be used

in Equation (5.7). Note that N1 < N and M1 < M. Using the nearer lights with

scaled indices between zero and 40, Equation (5.7) can be re-written as:

1 h (s2vs6v - s3pssp) (5.9)

l<i<Na l <_p<_M1

h y. (s2;s p-s3ps ;) (5.7)
2 E x, = xb+ 
N l<i<g 1_ _M )

1 h (81pN6p-N3pN4p) (5.8)
-_l<_i<NYi "_ Yb "3t" _ 1 <p_< M SlpS5p )_'_ _ _ (82pN4p --

lights observed in the image. Thus,

In reality, the left hand sides are known exactly from the airport lighting

model, while the right hand sides are not known exactly due to observation errors

in the image. For example, perspective projection causes distant edge lights and

centerline lights merge together to form lines in the image in Figure 2.2. Due to

this and other effects, the exact location of lights in the image plane cannot be

accurately ascertained. In order to make the left and right sides comparable, the

left hand side is normalized with the number of N lights in the airport lighting

model, while the right hand sides are normalized using the number of M distinct
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It may be observedfrom Figure 5.2 that the approach lights and the threshold

bar lights in the model havescaledindicesbetweenzeroand 40. The cross-track

componentof the aircraft position can be obtained by using all the model and

imagelights in Equation (5.8).

An additional fact that deservesconsiderationis that only a portion of the

airport lighting is visible within the camerafield-of-view as the aircraft follows

its descenttrajectory. Thus, the comparisonbetweenmodel lighting and actual

lighting observedin the imagemay yield incorrect position estimates. In order to

partially offset the errorscausedby this, the positionestimation algorithm employs

the previously estimatedaircraft position to determinethe model lights within the

field-of-view. This information is then usedin the calculations using Equations

(5.8) and (5.9).

This doesnot causeany problemsfor initialization becausethe completeair-

port lighting is visible to the cameraat the beginning of the descentpath even

with substantial differencesbetweenthe actual and assumedaircraft positions.

The modified airport lighting model x and y coordinatesarranged in a non-

decreasingorder areshownin Figures 5.3 and 5.4. Thesefigures were generated

usingan assumedalong-track position which was in error by 1000feet compared

to the true aircraft position. No errorswere assumedin the cross-track position

and altitude. It may be observedfrom the figures that the threshold bar lights,

edgelights and the centerlinelights are correctly representedin the model layout.

graphs. The figuresalsoshowthe observedlighting x andy coordinatesarrangedin

a non-decreasingorder. Sincethe observedlighting is with respectto the aircraft,

the true along-track and cross-track positionsof the aircraft can be obtained by

shifting the observedlayout graphsto the model layout graphs. Figures 5.3 and

5.4show that the true along-track and cross-trackpositions are -6633feet and 0

feet with respectto the inertial coordinatesystem.

Algorithm III is summarizedin Table 5.1.

Someof the salient featuresof Algorithm III are as follows. Firstly, since
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Table 5.1: Summary of Algorithm III

1. Arrange xi coordinates of all the N lights from the airport lighting geometry

model in non-decreasing order.

2. Compute the scaled indices ki = lOOi/N; 1 < i < N.

3. Select the ordered xi V i such that 0 _< ki <_ 40. Compute the mean of the

N1 selected xi in Equation (5.9).

4. Compute the mean using all y,, 1 < i < N, in Equation (5.8).

5. For every light in the scene compute Up and Vp using Equations (4.1) and

(4.2) with p = 1,2,...,M where, M is the number of lights detected in the

image.

6. Use _, 0 and ¢ to compute rl through r9 using Equation (3.3).

7. Compute sly through s6p using Equations (4.7) through (4.12).

8. Compute _v = (s2vs6v - SavSsv)/(slvssv - 84pS2p)

and _)p = (s,vs6p - SapS4v)/(s2vs4p - s_,ssp) Vp; 1 _< p _< M.

9. Arrange _v coordinates of M image lights in non-decreasing order.

10. Compute the scaled indices kp = lOOp�M; 1 <_ p <_ M.

11. Select the ordered _p V p such that 0 _< kp _< 40. Compute the mean of the

M1 selected :?p in Equation (5.9).

12. Compute the mean using all _)p, 1 _< p _< M, in Equation (5.8).

13. Use the known altitude h in Equations (5.9) and (5.8) and subtract the

image-based means from the model-based means in these equations to com-

pute the aircraft position components xb and yb.
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the method uses information from multiple airport lights, it is more robust when

compared with the envelope matching methods discussed in the last chapter. Air-

craft position is determined without resorting to the traditional correspondence

methods such as the local correlation methods.

Major limitations of the algorithm are that it is unable to account for the

runway elevation and that knowledge of aircraft altitude is required. Due to the

importance of accurate altitude information during landing, it is desirable to mod-

ify this algorithm to provide the altitude information in addition to the lateral and

longitudinal positions. This is the motivation for the next algorithm for aircraft

position determination described in Section 5.2.

As in the case of Algorithms I and II, the position measurements from individ-

ual frames can be made consistent with the aircraft kinematics using a six-state

Kalman filter described in Appendix A.

5.1.1 Results Using Algorithm III

The position and velocity estimates generated using the six-state Kalman

filter driven by the measurements from Algorithm III are described in this section.

These estimates were obtained using the aircraft landing flight trajectory and the

images along the glide slope simulated using the procedures described in Section

3.6. Errors of 1000 feet in the along-track position and 100 feet in the cross-

track position are assumed for initializing the Kalman filter. The inertial velocity

components are all initialized to zero.

The along-track position error residual is shown in Figure 5.5. It may be seen

from the figure that the along-track position estimate converges to within =t=100

feet in less than one second.

The cross-track position error residual presented in Figure 5.6 shows that the

cross-track position estimate converges to within +5 feet in less than one second.

The along-track velocity error residual is shown in Figure 5.7 and the cross-

track velocity error residual is shown in Figure 5.8. It may be observed from the
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Figure 5.5: Along-track position error using Algorithm III.
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Figure 5.7: Along-track velocity error using Algorithm III.
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figures that the along-track velocity estimate settles to within 4-10 feet/second in

less than six seconds and the cross-track velocity settles to within 4-5 feet/second

in less than one second.

The position and velocity error residuals are summarized in Table 5.2. In

this table the lateral component is in the units of feet. Comparing Table 5.2

Table 5.2: Algorithm III Results

Category Lateral (yb)

CAT I 4-0.61

CAT II +0.45

CAT Ilia 4-0.51

CAT IIIb & c 4-0.35

to Table 3.2, it may be seen that Algorithm III along with the Kalman filter

generates position estimates which meet the navigation accuracy requirements for

all Categories. It may be seen by comparing Tables 4.2, 4.3 and 5.2 that Algorithm

III results are of comparable accuracy as Algorithm I with wl = 1 and w2 = 0.

The results are better for Category III.

5.2 Algorithm IV

This algorithm is motivated by the desire to estimate the three position com-

ponents of the aircraft relative to the inertial coordinate system located on the

runway. In Chapter 4 the three position components were estimated using Al-

gorithm II which was based on an iterative scheme. The attempt here is to use

the structure discovered in Algorithm III to compute all three components of the

aircraft position without the use of an iterative scheme.

As .discussed earlier, if any one of the aircraft inertial position components is

known, the remaining position components can be recovered using Equations (5.8)

and (5.9). However, in order to solve for three position components, at least one
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additional equation relating the imagequantities to the model quantities in terms

of the aircraft position componentsis required.

Severalsuchequationscan be formedby using the two basicEquations (5.7)

and (5.8) on groupsof lights that representwell definedstructures in the ordered

graphs. For example,an additional equation can be constructed from Equation

(5.8) asfollows. Scaledindicesbetweenzeroand 15 of the orderedy-coordinates

of the model lights and the observedlights canbeusedin Equation (5.8) to yield:

1 V" h (SlpS6p -- ,._3pS4p )= + -- (5.1o)
_22 1 <_N2 11//2 I_<p<M2• (s p 4p-

Here, N2 and M2 are the number of lights that represent the left edge lights in the

model lighting layout and in the observed lighting layout.

A similar equation can also be written for the right edge lights by using the

sealed indices between 85 and 100 of the ordered sets as:

1 h (81pS6p -- S3p,S4p )

(N- N3 + 1) _ yi=yb+ __, (5.11)
N3<i<N M -- M3 + 1 (s:vs4 v slvssv)M3 <_p<_M

where, N3 and M3 are the number of scaled indices between zero and 85 of the

ordered sets.

Re-writing Equations (5.9), (5.8), (5.10) and (5.11) as:

xb + alh = bl (5.12)

Yb + a2h = b2 (5.13)

yb + a3h = b3 (5.14)

yb + a4h = b4 (5.15)

it may be seen that Equation (5.12) and any one of the remaining three equations

form a linearly independent set of two equations. Note, al to a4 are the image based

averages and bl to b4 are the model based averages. Equations (5.14) and (5.15) are

linearly dependent if a3 = a4. This can only happen if all the lights being consid-

ered lie along a single projection ray from the lens center. Such a situation cannot

arise when the camera is above the plane of the runway as discussed in Section
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2.3.7.1. Therefore, Equations (5.14) and (5.15) are always linearly independent

for the viewing geometryconsideredhere. Equation (5.13) can be obtained by a

linear combination of Equations (5.14) and (5.15) with a perfect camera. This is

because the left and right edge lights are symmetrically located about the cen-

terline lights. Errors in the imaging process can cause Equation (5.13) also to be

linearly independent.

Since Equations (5.14) and (5.15) are linearly independent, the aircraft alti-

tude can be estimated by subtracting Equation (5.11) from Equation (5.10). Thus,

1
1 _"_l<i<N2 Yi (N-N3+I) _'_N3<i<N Yi
g_ .... (5.16)

h : 1 EI<p<M2 (SlpS_p-S3pS4p) 1 (SlpS6p-SapS4p)
M"-'_ ($2p,s4p-$1pS5p) M-M3+I EM3<p<M (._2p84p--.Slp._5p)

With the altitude so determined, Algorithm III can be used for determining the

Xb and Yb components of the aircraft inertial position.

Alternatively, Equations (5.9), (5.8), (5.10) and (5.11) can be used for obtain-

ing a least squares solution for the aircraft inertial position components. Following

the notation of Equations (5.12) through (5.15), the resulting Least Squares solu-

tion [55] is given by:

where,

[xb, Yb, hi T = (AT A )-I AT[bl, b2, b3, b4]r (5.17)

A

1 0 al

0 1 a:

0 1 aa

0 1 a4

(5.18)

It is important to point out that the proposed method estimates all the three

position components without resorting to any iterative calculations. Thus, this

approach can be expected to be faster and more robust than the Algorithm II

described in Chapter 4. It may be noted that as in Algorithm III, the six-state

Kalman filter driven by the outputs generated by Algorithm IV can be used for

estimating the aircraft position and velocity components.

Algorithm IV is summarized in Table 5.3.
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Table 5.3: Summaryof Algorithm IV

1. Arrange zi and yi coordinates of all the N lights from the airport lighting

geometry model in non-decreasing order.

2. Compute the scaled indices ki = lOOi/N; 1 < i < N.

3. Select the ordered xi g i such that 0 _< ki <_ 40. Compute the mean bl for

Equation (5.12) using the N1 selected xi in Equation (5.9).

4. Compute b2 for Equation (5.13) using all yi, 1 < i < N, in Equation (5.8).

Compute ba and b4 for Equations (5.14) and (5.15) by selecting the ordered

Yi such that 0 _< ]¢i __ 15 and 85 _< ki _ 100 respectively and using them in

Equations (5.10)and (5.11).

5. Compute sip through s6p using steps 5, 6 and 7 of Algorithm III in Table

5.1.

6. Compute &p = (s2ps6p - s3pssp)/(slpssp - s4,s2,)

and 9p = (s_pssp- S3p,.S4p)/(32pS4p - 81pS5p) Vp; 1 < p _< M.

7. Arrange &p and _)p coordinates of M image lights in non-decreasing order.

8. Compute the scaled indices kp = lOOp�M; 1 <_ p <_ M.

9. Select the ordered :_p V p such that 0 _< kp _< 40. Compute the mean al for

Equation (5.12) using the M1 selected _, in Equation (5.9).

10. Compute a2 for Equation (5.13) using all _p, 1 < i < M, in Equation (5.8).

Compute a3 and a4 for Equations (5.14) and (5.15) by selecting the ordered

Op such that 0 _< kp _< 15 and 85 _< kp _< 100 respectively and using them in

Equations (5.10) and (5.11).

11. Use Equation (5.17) to compute the aircraft position components xb, yb and

h.
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5.2.1 Results Using Algorithm IV

The position and velocity estimates generated by the six-state Kalman filter

driven by outputs of Algorithm IV are described in this section. The simulation

scenario and the initial conditions were same as in Algorithm II in Chapter 4.

The along-track position error residual is shown in Figure 5.9. It may be seen
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Figure 5.9: Along-track position error using Algorithm IV.

from the figure that the along-track position estimate converges to within +100

feet in less than two seconds.

The cross-track position error residual given in Figure 5.10 shows that the

cross-track position estimate converges to within +5 feet in less than one second.



148

i

0

0

I J

(o i

o IO

IIIIIIIII

30 402O

Time (s)

Figure 5.10: Cross-track position error using Algorithm IV.
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Figure 5.11 illustrates the altitude error residual. It may be seenthat it con-

vergesto within -t-5 feet in less than six seconds.
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Figure 5.11: Altitude error using Algorithm IV.

The along-track and cross-track velocity error residuals are shown in Figures

5.12 and 5.13. These figures show that the along-track velocity estimate settles

to within +10 feet/second in less than three seconds and the cross-track velocity

settles to within 4-5 feet/second in less than a second.

The sink rate error residual is shown in Figure 5.14. It may be observed that

the sink rate error is reduced to within -t-5 feet/second in less than three seconds.

The position error residuals are summarized in Table 5.4. The notation and
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Figure 5.12: Along-track velocity error using Algorithm IV.
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Figure 5.14: Sink rate error using Algorithm IV.
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units aresameasthosein Table 5.2. ComparingTable 5.4to Table3.2, it may be

Table 5.4: Algorithm IV Results

Category Lateral (yb) Vertical (h)

CAT I -t-1.32 +5.77

CAT II +0.69 +2.82

CAT Ilia :t=0.99 +1.74

CAT IIIb & c +0.34 +0.77

noted that Algorithm IV along with the Kalman filter generates position estimates

which meet the navigation accuracy requirements for all Categories. Moreover,

Algorithm IV results are better than Algorithm II results with wa = 1 and w2 = 0

at lower altitudes and they are far superior to the results obtained using Algorithm

I with Wl = 1 and w2 = 1 at all altitudes.

5.3 Summary

The main theme of this chapter was to exploit the structures in the model

and in the observed lighting layouts to enable direct estimation of the position

components. The structures formed by the threshold bar lights, left and right

edge lights and the centerline lights were discovered by arranging the lights in a

non-decreasing order. Two methods which utilize the correspondence between the

structures in the model and in the observed lighting layouts were described. The

first method required an onboard altimeter and the yaw, pitch and roll angles.

The second method only required knowledge of the aircraft attitude angles. It

was shown that the second algorithm is able to estimate all three position com-

ponents without any iterative computations. A six-state Kalman filter was used

for integrating the information derived from these methods to improve the aircraft

position estimates and to estimate velocity components along the descent path.



Chapter 6

Kalman Filter Integrated

Methods

The algorithms described in this chapter are based on the second solution

family described in Chapter 3. Note that the position determination algorithms in

the two previous chapters were based on the first solution family. The reason for

using the second solution family is that they are suitable for use as the basis for

developing predictor/corrector methods. The techniques are based on matching

the features between camera image and model based image. Since the model based

image is synthesized by using the model of the airport lighting, camera model and

the estimated aircraft position and orientation, the difference between the model

image based and camera image based measurements can be used in a feedback

scheme for driving the differences to zero, thereby recovering the position and

orientation of the aircraft. This concept, coupled with the fact that the aircraft

equations of motion temporally relate the aircraft states, allows the state estima-

tion problem to be cast as a Kalman filtering problem. A summary of the Kalman

filtering algorithm is given in Appendix A of this report.

In the previous two chapters, a six-state Kalman filter was used for integrating

the aircraft motion with the position estimates generated by the algorithms. The

position estimates were used as inputs to the Kalman filter. In this sense, the

154
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integration of the aircraft dynamicswith the position determinationalgorithmswas

external. The Kalman filters usedin this chapter attempt a muchdeeperlevel of

integration betweenthe vehicledynamicsandthe observedimagesequence.Unlike

the algorithms in the previouschapters,correspondencebetweenairport lighting

layout model and the observedimagesis achievedby minimizing the difference

betweenthe cameraimageand the model imageusing the Kalman filter.

The Kalman filters employedin the presentwork havetheir basis in the re-

searchreported in Reference[90]. In that work, threedifferent Kalman filters were

computed for the position determination problem. Kalman filters in the sensor

coordinatesystemand in the inertial coordinatesystemweresetup and compared

for an image based ranging problem. It was shown that the Kalman filters in the

sensor coordinate system and in the inertial coordinate system had comparable

accuracies. However, the formulation in the inertial coordinate system was much

easier to implement. An additional advantage is that since the translational states

are linear in the inertial frame, the process update part of the Kalman filter is

linear when formulated in this coordinate system.

The ensuing sections describe three Kalman filtering algorithms. The first

and second algorithms described in this chapter, Algorithm V and Algorithm VI,

assume that the orientation angles ¢, 0 and ¢ are known. These algorithms are

designed to estimate the three runway relative position components. Algorithm V

uses information from the camera image and the airport lighting model for position

determination.

Algorithm VI fuses the image and airport lighting model information with

aircraft position estimates obtained from the Global Positioning System (GPS).

GPS is an emerging technology for navigation. It is a satellite based navigation

system that determines aircraft position. There is a strong movement within the

aeronautical community to incorporate GPS receivers in every aircraft. GPS based

position estimates can be integrated with the image based position determination

algorithms to improve the accuracy and robustness of position estimates. Such
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an integration canalso help developa navigation instrument that synergistically

exploits all the information sourcesin an airport environment. This forms the

motivation for the developmentof Algorithm VI. Algorithm VII is designedto

provide both runway relative position and orientation. Unlike Algorithms V and

VI, this algorithmsonly assumesthe availability of the roll orientation angle. Ear-

lier versionsof algorithmsVI and VII havebeenreported in [16]and [17].

Sinceseveralmeasurementequations and computations are common to all

the algorithms, they arediscussedfirst in this chapter. The raw data derived from

the image consistsof the image coordinatesof every light visible in the image.

Thus, the coordinatesof a light p, [tip, 5p]T, are available in the raw data. The raw

measurements have a position uncertainty due to the errors introduced during the

imaging process. These errors can be modeled as:

tip = up + r/u (6.1)

_3p = vp + fly (6.2)

where, r/u and r/v represent pixel position uncertainty. For modeling purposes, 71_

and r/, can be assumed to be independent scalar white noise processes.

Clearly, the coordinates of individual lights contain little or no information

regarding the shape or size of lighting layout. In order to incorporate this infor-

mation, secondary measurements obtained by combining the coordinates of some

or all the lights are needed. One of the ways of generating information regarding

the shape and size is to assume that the image coordinates are random variables

and construct aggregation formulae that characterize the shape and size. With

this notion, size and shape can be related to the distribution of the two random

variables. In that case, the characteristics of the distribution such as mean, vari-

ance and higher-order and moments can be used to establish the size and shape

of the object in the image. Additional measures such as the correlation coefficient

and the eigen values of the covariance matrix or matrix singular values can also be

used.



157

Extensive numerical experiments revealed that, the following six image-based

measurements are found to be useful for characterizing the shape and size of the

airport lighting layout:

Zl---- Z fip/M (6.3)

l<p<_M

z2 = __, _plM (6.4)
l(_p__M

za = E (V/_p + 9_)/M (6.5)
l__p__M

: ,I E
V I_<p<_M

Z5 -- II<__p<_M(fiP-- Zl + gP-- Z2)2/(2M)

Z6 ----- i <__p<_lM (_P- zl)2/M

(6.6)

(6.7)

(6.8)

In these equations, M is the number of lights detected in the image; t_v and vv are

the measured coordinates of the individual light sources. The last three measure-

ments, Equations (6.6) through (6.8) may be compactly written as:

Zj=,/ Z [(Up--Zl)sinr+(Vp--Z2)C°Sr]2/M (6.9)

Vl_<p_<M

where, j = 4,...,6 correspond to r = 0, r = 45 and r = 90 degrees. The

secondary measurements in Equations (6.3) through (6.8) aggregate the size and

shape information about the airport lighting layout.

Physically, the first and second measurements are the arithmetic means of

positions of the observed airport lights in the image plane. They can also be

thought of as the coordinates of the centroid of the observed light distribution in the

image plane. The third measurement gives the the mean distance of the observed

lights from the origin of the image coordinate system. The fourth measurement

is the moment about an axis parallel to the u image axis and passing through

the centroid defined by the mean. Similarly, the fifth measurement is the moment

about an axis passing through the cluster centroid and is inclined at 45 degrees

to both the u and v image axes. Finally, the sixth measurement is the moment
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about an axis which passesthrough the meanand is parallel to the v image axis.

The fourth, fifth and sixth measurements are the square roots of the elements of

the covariance matrix. Specifically, the fourth and sixth measurements are the

standard deviations of the vv and up coordinates. The fifth measurement is the

square root of the weighted sum of the variances of up and % and their covariance.

It may be noted that the six measurements Zl through z6 in Equations (6.3)

through (6.8) can only assume positive values. The first two measurements are

always positive due to the choice of the origin of the image plane defined in Figure

3.6. The other four measurements are always positive due to the use of sums of

squares. Note that the squaring operation tends to decrease the effects of small

numbers, while amplifying the influence of large numbers. Use of square root oper-

ation in the secondary measurements z3 through z6 prevent the position estimation

algorithms from being biased towards large errors.

As described in Appendix A, in order to utilize these secondary measurements

using a Kalman filter, the measurements have to be related to the aircraft states

as follows:

Z = h + _z (6.10)

where, Z is the 6 × 1 vector of secondary measurements Zl through z6, h is the

6 × 1 state dependent measurement model vector and ¢'z is the measurement noise

vector. The components of the h vector, hi through h6, are:

E u,/Nh 1

h2 =

h3 =

h4 =

hs =

h6 =

l<p<N

F_, v /N
l<p<N

E + v;)/N

<_p<_N

¢l<_p<N(%- h' + vp- h2)2/e2N)

<_v<_N

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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where N is the number of model lights within the synthesized image and up and

vp are the image coordinates of the lights.

For computation of the Kalman gain and propagation of the state error covari-

ante matrix, a linearized measurement matrix H(k), is required. The elements of

the H(k) matrix can be obtained by evaluating the partial derivatives of the mea-

surement model vector with respect to the estimated states. The partial derivatives

used in the computation of the measurement matrix H(k) can be obtained using

the perspective projection Equations (3.41) and (3.42) as:

:o___ (0___
Oup _ fXcp\ O_b] --ycp\ Oxb] (6.17)
Oxb x_

Oup _ fXcp k Oyb] -- ycp k O_b ] (6.18)
Oyb z_

Oup _ fX_p _, Ozb ] -- y_p _, O_b: (6.19)
Ozb xc_

Ou, _ f (6.20)

0_ _ :x_,(_o)- _, (_0) (6_1/
00 _o_

_ (0_Xc,(_) _, , o_,
0% _ f (6.22)
o¢ xc_

0% _ fx_p _, oxb / - z_p _, o,b / (6.23)
Ozb _o_

Ov.___2 = f _, o_b / - zcp ,, oy_ j (6.24)
Oyb x_

0% _ f k ozb : - z_p k o_b / (6.25)
Ozb _o_

Ovp _ fx., (_) -z., (-_) (6.26)
o¢ xJ

o__,= :_,(_o) -z_,(_) (6._)
O0 x_
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(6.28)
0¢ - " xJ

where the six position and orientation states are Xb, Yb, zb, _, 0 and ¢. f is the

focal length of the camera. The partial derivatives of xcv, Ycp and z_v with respect

to the position states are obtained from Equations (3.7) through (3.9) as:

OXcp
- rl (6.29)

OXb

OXcp

Oyb - r2 (6.30)

OXcp
- r3 (6.31)

Ozb

Oy_p __

Oxb r4 (6.32)

Oy_p
- r5 (6.33)

Oyb

Oycp _

OZb r6 (6.34)

OZcp _

Oxb -r_ (6.35)

OZcp
- -rs (6.36)

Oyb

OZcp
- -r9 (6.37)

Ozb

Similarly, the partial derivatives with respect to the orientation states are also

obtained from Equations (3.7) through (3.9) as:

Ox_p _ (xp - xb)Orl . Or2 ,Or3
Ot_ _ + (y" - Yb)--_ + (zp - zb)-_ (6.38)

Ox_, Or1 , Or2 ]0r3 (6.39)
oo - (_' - xb)-N + (_'_- Yb_-N-+ (z,, - zb, 00

Oxcp _ (zp - xb)Orl . Or2 , Ora
0¢ -_- + (yp - Yb)_- + (zp - zb)_-_ (6.40)

Oycp Or4 , Or5 , Or6

O¢ - (xp - xb)-_ + (yp - Yb)-_ + (z. -- zb)-_ (6.41)

Oycp Or4 , Or5 ) Or6 (6.42)
0o - (:%- xb)-N- + (u,, - ubJN + (z,, - zb, 00

OYcp __ (Xp-- Xb) Or4 ,Or5 ,Or6
0¢ _ + (y" - Yb)-_ + (z, - zb)--_ (6.43)
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Ozc, , Or7 , Ors Or9
0¢ - (xp - xb)-_-_ + (yp - Yb)-_ + (z, - Zb)--_ (6.44)

Ozc, _ (xp Or7 ,Ors Or9
O0 - Xb)-_ + (yp -- Yb)-_ -t- (Zp -- Zb) -_ (6.45)

Oz_v , Or7 Ors Or9
0¢ -- (Xp - Xb)-_ + (yp -- Yb)-_'_ + (Zp -- Zb)-_ (6.46)

Here, ra through r9 are the components of the transformation matrix from inertial

frame to camera frame given by Equation (3.3). It may be noted that the partial

derivatives in Equations (6.29) through (6.46) can be computed for each light p in

the image, synthesized from the model of the airport lighting using the estimated

position and orientation states.

The partial derivatives of hi, h2

Equations (6.17)through (6.28) and

and ha measurements can be computed using

Equations (6.11) through (6.13) as follows:

Ohl _ 1 <_p< Ou v (6.47)
OXb N 1_ _N OXb

Ohl 1 Our (6.48)
Oyb N l<p_<N Oyb

Oh1 1 Ouv

OZ b -- N l<_p<N _ (6.49)

Ohl 1 Oup (6.50)
O_ - N I<_N O---¢

Oh1 1 Oup (6.51)
O0 -U E O-O-

l_<p_<N

Ohl 1 Oup (6.52)
0¢ -N E 0-_

l<p<_N

Ohz _ 1 <_p< Ov v (6.53)Oxb N 1 g Oxb

Oh2 1 Ovp

Oyb - N ,<_p<u _ (6.54)

Ohz 1 Ovp

Ozb -- N ,<_p<g _zb (6.55)

Oh2 1 Ovp (6.56)
O¢ - N E 0----_

l<_p<_N

Oh200 - N1 y_ OVPo____O (6.57)
l<_p<N
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Oh2 1 Ovp (6.58)
0¢ - N _-" 0¢

l<p<N

Oh3 1 o__ + o__

Oxb - N _-" uP °_b vP °':b (6.59)
a<_p<_N _ + v_

Oh3 _ 1 y_ upoyb Vpoyb (6.60)
2

Oyb N l<_p<N _pp -t- Up

Oh3 1 _ + o__

OZ b N I<_p<_NE UP°Zb_p +vP°Zbvp2 (6.61)

o____+ o__

Oh30¢ - N y_Il<p<_U Up_o¢ +VPvp20e (6.62)

Oh3 _ 1 E up2-_-° + v'2-_-° (6.63)

NO0 N l<p<_N + Vp

Oh3 _ 1 y_ up'_¢ + vp o'_ (6.64)

0¢ S l<p<_U _p "_ ?32

where, N is the number of lights. Similarly, the partial derivatives of h4, hs and

h6 can be evaluated as:

_ (o._ 0_zh) cos rj ]Ohj _a<p<_N[(UP ha)sinrj + (vp--h2)cosrj][(OO'OO_b_b -- Oh-M)sinrj + 'Oxb -- O_:bO_b

OXb

Oh.i

_/N El<p<N[(Up -- ha)sin rj + (vp - h2) cos rj] 2

(6.65)

r(°-_ - -_'ub) sin T./+, oubEa<_p_<u[(Up- ha)sin + (vp-
Oyb

Oh_

_/N Ea<p<N[(Up - ha)sin Tj + (vp - h2) cos Tj]2

(6.66)

f(0__ _ 0_b_zh) sin Vj + _ 0_b -- 0z_ J COSTj]El<p<_N[(?.tp -- hi) sin "rj + (v, - h2)cosvJlt, o_b o_b

OZb

Ohj

_/N Ea<_,<g[(Up- ha)sin rj + (vp- h:)cos vii 2

(6.67)

to__ ohm)[(o__- _h_)sinrj + ,o¢ - o¢ COSTj]_a<p<g[(Up -- h_) sin rj + (v_, - h_)cos rj]t, o¢

0¢

Ohj

O0

\/N Zl<p<N[(Up- ha) sin rj + (v_,- h2)cosrj] 2

(6.68)

_a<p<N[(Up -- ha)sin rj + (v_, - h_) cos rj][(_0 - _0 )sin Tj + (_o -- _0) c°s rj]

_/g _a<_,<N[(Up -- ha)sin rj + (v, - h_) cos rj]:

(6.69)
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,r,o._ -_-_-_)sin + (°-y-a- -_Z_)cosrj]- h_) cos rjltt 0¢ - 7j o¢

0¢ _/N_-_l<_p<_N[(Up- h,) sin rj + (v,- hz) cos rj] 2

with "rj = 0, 45 and 90 degrees for j = 4, 5 and 6 respectively.

The complete observation matrix H(k) can now be written in terms of the

partial derivatives of hi through h6. The details of the H(k) matrix for each of

the three algorithms will be described in the ensuing sections.

In addition to the measurement model, a linearized discrete time dynamic

model is required for implementing the Kalman filter described in Appendix A.

All the three algorithms described in this chapter use a discrete time dynamic

equation of the form:

X(k + 1) = _(k)X(k) (6.71)

X(k) is the current state vector and X(k + 1) is the state vector at the next

sample instant. @(k) is the state transition matrix. Since different state vectors

are employed in each of the three algorithms, the state transition matrices are

given separately in the following sections.

(6.70)

6.1 Algorithm V

This algorithm assumes that the aircraft yaw, pitch and roll orientations _,, 0

and ¢ are known. This algorithm estimates the three aircraft position components

xb, Yb, zb, and the three aircraft velocity components vbx, vby and vbz. The 6 x 6

state transition matrix is obtained by assuming that the aircraft velocity vector

components remain constant, and that the velocity to position integration can be

adequately approximated by the Euler integration [35] method. Thus, the state
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transition matrix is of the form:

1 0

0 1

0 0
• (k) =

0 0

0 0

0 0

At is the update time step.

The observation matrix is:

ah_
Oxb

OXb

H(k)= 0,b

OXb

Oxb

Oh6
Oxb

In addition to the state transition

0 At 0 0

0 0 At 0

1 0 0 At

0 1 0 0

0 0 1 0

0 0 0 1

"9(6.,-)

ohl ahl 0 0 o
Oyb OZb

Oh___OM_O0 o
Oyb Ozb

Oyb OZb

oh__ o___ 0 0 o
Oyb Ozb

oh___ oh__ 0 0 o
Oyb Ozb

o__h o__h 0 0 o
Oyb Ozb

matrix and the observation matrix,

(6.73)

several

other matrices are required for implementing the Kalman filter as described in

Appendix A. These are defined below.

The control input vector is a 6 × 1 null vector. For convenience, the input

distribution matrix F(k) and the disturbance distribution matrix Fd(k) are chosen

to be 6 x 6 identity matrices. The process noise covariance matrix Q(k) is a 6 x 6

null matrix. The dimension of the measurement noise covariance matrix R is

6 x 6. In the current implementation, the diagonal elements are set to the variance

of .25/At corresponding to the standard deviation of pixel position uncertainty of

0.5 pixels. At is the measurement update time step. Note that the variance of

pixel position uncertainty has been divided by At to convert to the discrete time

case.

In order to begin state estimation, the 6 × 1 state vector :_(k) and its error
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covariancematrix P(k), of size6 x 6, haveto be initialized. The Kalman filtering

algorithm describedin Appendix A is then usedfor recursivestate estimation.

6.1.1 Results Using Algorithm V

The position and velocity estimates generated by Algorithm V are described

in this section. As before, the simulation scenario and the initial conditions were

taken to be same as those used for the previous algorithms described in Chapters

4 and 5.

The along-track position error residual is shown in Figure 6.1. This figure

o
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<7 I I I I I I I I I I I I I I I I I I I I I I I | I I I I | I I I I I I I
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Time (s)

Figure 6.1: Along-track position error using Algorithm V.
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shows that the along-track position estimates converge to within 4-100 feet in less

than two seconds.

The cross-track position error residual portrayed in Figure 6.2 shows that the

cross-track position estimate converges to within -t-5 feet in less than one second.
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Figure 6.2: Cross-track position error using Algorithm V.

Figure 6.3 illustrates that the altitude estimates converge to within +5 feet

in less than two seconds.

The along-track velocity error residual is shown in Figure 6.4. It may be seen

that the along-track velocity estimates settle to within +10 feet/second in less

than six seconds.

The cross-track velocity error residual in Figure 6.5 shows that the cross-track
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Figure 6.3: Altitude error using Algorithm V.
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Figure 6.4: Along-track velocity error using Algorithm V.
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velocity settlesto within +5 feet/second in less than a second.
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Figure 6.5: Cross-track velocity error using Algorithm V.

The sink rate error residual in Figure 6.6 shows that the sink rate error also

is reduced to within +5 feet/second in less than a second.

The position error residuals are summarized in Table 6.1. The notation and

units are same as those in the previous tables. Comparing Table 6.1 to Table 3.2,

it may be seen that the position estimates resulting from Algorithm V meet the

navigation accuracy requirements for all Categories. Table 6.1 shows that amongst

the five algorithms discussed so far in this report, Algorithm V provides the most

accurate aircraft position estimates.
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Figure 6.6: Sink rate error using Algorithm V.

Table 6.1: Algorithm V Results

Category Lateral (yb) Vertical (h)
CAT I 4-0.02 -1-0.76

CAT II 4-0.004 4-0.04

CAT IIIa 4-0.003 =l:0.01

CAT IIIb & c 4-0.0 +0.003
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6.2 Algorithm VI

Like the previous algorithm, this algorithm also assumes that the aircraft

orientation angles are known. In addition to the six measurements described in

Equations (6.3) through (6.8), this algorithm assumes that three position compo-

nents are provided by an onboard Global Positioning System (GPS) receiver.

The reasons for integrating the GPS with the vision based position determi-

nation algorithm are as follows. The GPS provided position of the aircraft can

be used to initialize the Kalman filter. If during descent, airport lights are cut off

due to foreground occlusion, the integrated algorithm would continue to provide

estimates of the aircraft position using GPS measurements. If the GPS signals

are blocked due to terrain obstacles such as mountains or buildings, the integrated

system would continue to estimate aircraft position using the vision based system.

Since commercial GPS systems with standard position service have an accuracy

of 325 feet horizontally 95 percent of the time [30] and 560 feet vertically, the

bias and the noise in the GPS position can be reduced by the integrated system.

Thus, integration of the vision system with the GPS is motivated by robustness.

Moreover, the integrated navigation system synergistically exploits the available

data sources for position estimation.

Since the location of the airport is known, the GPS-based aircraft position

can be used for estimating the runway relative aircraft position components xb, yb

and zb. These can be modeled as:

&b = xb + b_ +77, (6.74)

yb = yb + by + r/y (6.75)

_b = zb + b_ + 7?, (6.76)

The GPS measurement model includes the bias terms b,, b_ and bz, and white

noise terms, r],, r]_ and r/z. The GPS-based position components are directly used
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as three additional measurements zT, Zs and z9 in the present formulation. Thus,

z7 = &b (6.77)

Zs = _)b (6.78)

z9 = z-b (6.79)

Based on Equations (6.74) through (6.76), the components of the measurement

model vector hT, hs and h9 are:

h7 = xb + bx (6.80)

hs = yb + by (6.81)

h9 = zb+ bz (6.82)

Assuming the bias terms to be constant during approach and landing, the

following state equations can be used to model the bias terms:

bx(k + 1)= b_:(k) (6.83)

by(k + 1)= by(k) (6.84)

bz(k + 1) = b_(k) (6.85)

The state vector for the algorithm consists of aircraft position and velocity

components, together with the bias vector in the GPS. Thus,

X = [Xlb, V_, B] T (6.86)

X[, is the aircraft position vector, V_ is the aircraft inertial velocity vector and B

is the GPS bias vector. Assuming constant inertial velocity and Euler integration
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for state vector propagation results in the following 9 x 9 state transition matrix:

v(k) =

At is the update time step.

lOOAtO 0000

010 0 At 0 000

0010 0 AtO00

0001 0 0000

0000 1 0000

0000 0 1000

0000 0 0100

0000 0 0010

0000 0 0001

(6.87)

With 9 elements of the measurement model vector, six image-based mea-

surements defined in Equations (6.11) through (6.16) and three GPS positions in

Equations (6.80) through (6.82), the complete observation matrix is:

H(k) =

a__.)..ho_._..ho_._h 0 0 0 0 0 0
O:Cb Oyb Ozb

a_._h a_._.h a___h0 0 0 0 0 0
OXb Oyb OZb

o__a a__a a_b_ o o 0 o o o
Oxt, Oyb Ozb

o_._h o_.._ha_._h 0 0 0 0 0 0
Oxb Oyb Ozb

o_bah o__a a__a 0 0 0 0 0 0
Oxb Oyb Ozb

o__a o__a o__a o o o o o o
Oxb Oyb Ozb

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1

(6.88)

The partial derivatives of hi through h6 with respect to position components were

discussed earlier in Equations (6.47) through (6.70).

The implementation of this Kalman filter differs significantly from Algorithm

V because the image-based and GPS-based measurements are available at two

different rates. The image-based measurements are typically available at the rate
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of ten times a second,while the GPS measurementsare availableonce a second.

Hence,during one second,six image-basedmeasurementszl through z6 are avail-

able ten times, and the three GPS-based measurements z_ through z9 are available

once. A multi-rate formulation of the Kalman filter [63] is required to deal with

the changing dimension of the measurement vector.

The multi-rate formulation requires the observation matrix H(k) and the

measurement noise covariance matrix R(k) to change with the number of mea-

surements available at any one measurement epoch. For instance, the last three

rows of the H(k) matrix in Equation (6.88) are eliminated when GPS measure-

ments are unavailable. The noise covariance matrix R(k) is a 9 x 9 diagonal matrix

when both GPS-based and image-based measurements are available. The first six

diagonal elements contain the pixel noise variances, while the remaining three diag-

onal elements contain GPS measurement noise variances. The standard deviation

of the pixel noise is assumed to be 0.5 pixels and the GPS measurement noise is

three meters. It may be noted that the pixel variance is scaled by 0.1 second while

the GPS measurement variance is scaled by 1 second. When only the image-based

measurements are available, the last three rows and columns of the R(k) are elim-

inated in order to reduce its dimension to 6. The remaining matrices required for

implementing the Kalman filter are defined below.

The control input vector is a 9 x 1 null vector. The input distribution matrix

r(k) is set to be a 9 x 9 identity matrix. The disturbance distribution matrix

rd(k) is a 9 x 9 identity matrix. The process noise covariance matrix Q(k) is a

9 x 9 diagonal matrix. The diagonal elements are chosen as "tuning parameters"

for the Kalman filter [35].

In order to begin the state estimation process, the 9 x 1 state vector X(k) and

its error covariance matrix P(k), of size 9 x 9, have to be initialized. Following

the standard procedure in Kalman filtering, the state error covariance matrix is

initialized by placing large variance values in the diagonal locations and setting

the off-diagonal terms to zero. The Kalman filtering algorithm in Appendix A is
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then used for recursive state estimation.

On a final note, it may be verified from Equation (A.5) in Appendix A that

the dimension of the Kalman gain matrix changes from 9 x 6 to 9 × 9 depending

on whether image-based measurements and/or GPS measurements are available.

Thus, the structure of the Kalman filter is changed to accommodate the change

in the number of measurements. This way, the Kalman filter is always updated at

the fastest measurement rate.

6.2.1 Results using Algorithm VI

The position, velocity and GPS bias estimates obtained by Algorithm VI are

described in this section. The estimates were obtained for the same simulation

scenario used in all the previous algorithms. The GPS position estimates were

used for initializing the Kalman filter. In order to simulate GPS measurements,

position bias with a uncertainty of ±100 meters and Gaussian white noise with

a standard deviation of three meters were added to the aircraft position vector.

The GPS position bias errors of 82 feet in the along-track position, 177 feet in the

cross-track position and 142 feet in the altitude were assumed for generating the

results given in this section.

The along-track position error residual is shown in Figure 6.7. This figure

shows that the along-track position estimates converge to within -4-100 feet in two

seconds.

The cross-track position error residual given in Figure 6.8 shows that the

cross-track position estimate converges to within ±5 feet in less than one second.

Figure 6.9 illustrates that the altitude estimates converge to within +5 feet

in less than two seconds.

The along-track velocity error residual is shown in Figure 6.10. It may be

seen that the along-track velocity estimates settle to within ±10 feet/second in

less than two seconds.

The cross-track velocity error residual in Figure 6.11 shows that the cross-
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Figure 6.7: Along-track position error using Algorithm VI.
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track velocity settles to within +5 feet/second in less than a second.
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Figure 6.11: Cross-track velocity error using Algorithm VI.

The sink rate error residual shown in Figure 6.12 reveals that the sink rate

error also is reduced to within +5 feet/second in less than two seconds.

The GPS bias error residuals in the along-track and cross-track positions and

in the altitude are shown in Figures (6.13), (6.14) and (6.15). The GPS bias

estimates in the along-track position settles to within +20 feet in less than six

seconds. The GPS bias estimates in the cross-track position and altitude converge

to within +10 feet in less than 17 seconds and three seconds respectively. The

altitude bias error increases beyond -t-10 feet when the aircraft is 36 feet above the

runway.
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Figure 6.12: Sink rate error using Algorithm VI.
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The position error residuals are summarized in Table 6.2. The notation and

units are same as those in the previous tables. The usefulness of the integrated

Table 6.2: Algorithm VI Results

Category Lateral (yb) Vertical (h)

CAT I +0.02 +0.24

CAT II +0.01 +0.33

CAT IIIa ±0.01 +0.34

CAT IIIb & c ±0.02 ±0.28

navigation system in aircraft operations can be assessed by comparing the achieved

accuracy with the desired accuracies listed in Table 3.2. It may be observed from

Table 6.2 that the present navigation scheme meets the objectives for all the Cat-

egories listed in Table 3.2. Table 6.2 shows that Algorithm VI is able to provides

accurate aircraft position estimates. Moreover, Algorithm VI improves the GPS

bias estimates considerably.

The results presented here show that the integrated GPS and image based

algorithm is as accurate as the pure image based algorithm. The accuracy of the

integrated algorithm can be further improved with a GPS receiver with a faster

update rate. The integrated algorithm is expected to be fault tolerant in the event

of imaging system failure.

6.3 Algorithm VII

In the two previous algorithms, the orientation angles were assumed to be

known. In this final algorithm of the present work, the orientation angles are

included as additional states to be estimated. The objective is to examine the

degree to which the image based position determination concept can be extended.

As discussed in Section 2.3.7.1, it is unlikely that all three attitudes can be reliably

estimated without explicit correspondence between several points in the camera-
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basedand model-basedimages. Hence,in the presentwork, the attempt will be

to estimate the aircraft pitch and yaw angles,with the assumption that the roll

angle is available from measurements. It needsto be mentioned here that the

attempts at including all the three attitudes did not yield useful results. With the

addition of orientation states,this algorithm can beconsideredto be an extension

of Algorithm V.

UsingEuler Equations (3.24) through (3.26)describingthe attitude kinemat-

ics, the discretetime state equation for attitudes canbe obtained as:

¢(k + 1)

O(k+ 1)

_(k + 1)

q(k + 1)

1

0

0

0

0 cos¢(k)sec0(k)At sin¢(k)sec0(k)At

1 - sin¢(k)At cos¢(k)At

0 1 0

0 0 1

¢(k) _

0(k)

q(k) j

(6.89)

where r and q are the yaw and pitch angular rates, and At is the time step. The yaw

and pitch angular rates are assumed to be constant during the landing phase. The

Euler equation shown in Equation (6.89) was discretized using forward differences

which resulted in an explicit scheme. Note that the Euler equation can also be

discretized using backward differences to yield an implicit scheme. The advantage

of an implicit scheme is that it is unconditionally stable with respect to step size

[45]. An explicit scheme becomes unstable for large step sizes. The disadvantage

of an implicit scheme is that it requires several computations at each time step.

Due to this reason, the explicit scheme has been used here.

Since the state vector is formed by combining the translational position and

velocity states xb, Yb, zb, vbx, vby and vbz with the rotational states: _b, O, r and q,
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the 10 x 10 state transition matrix is:

v(k) =

lOOAtO 000 0 0

OlOOAtO00 0 0

0010 O AtO0 0 0

0001 0 000 0 0

0000 1 000 0 0

0000 0 100 0 0

0 0 0 0 0 0 1 0 cos¢(k)secO(k)At sin¢(k)secO(k)At

000 0 0 0 01 -sin¢(k)At cos¢(k)At

0000 0 000 1 0

0000 0 000 0 1

(6.90

Since the quasi-steady state approximation in the orientation angles influence the

state transition matrix, a further approximation is introduced in the propagation

of the error covariance matrix during the time update step described in Equation

(A.8) in Appendix A.

Using the measurement Equations (6.11) through (6.16) and the ten states,

the 6 x 10 observation matrix can be constructed as:

H(k) =

O_b.a.hO_h.a O_h.h 000 O__a O___.aO__a 00
Oxb Oyb Ozb O0 O0 04)

oh_ Oh__.z0 0 00a__z Oh__ Oh_ 0 0
Oxb Oyb Ozb 0¢ O0 0¢

oh_ 0__h 0 0 0 0__h 0__h 0___h 0 0
Oxb Oyb Ozb 0¢ O0 0¢

o__ o__th o_kth 0 0 0 o__a oh, o_kth 0 0
Oxb Oyb Ozb 0¢ O0 0¢

O__ah O__h O_aa 0 0 00__a O__a O__h 0 0
OXb Oyb Ozb 0¢ O0 0¢

_ o___a 0 0 0 o_Nh o__h o__a 0 0
Oxb Oyb Ozb 0¢ O0 0¢

(6.91)

Other vectors and matrices needed for implementation of the Kalman filter

are as follows. The control input vector is a 10 x 1 null vector. The input dis-

tribution matrix r(k) is a 10 x 10 identity matrix. The disturbance distribution

matrix rd(k) is also a 10 x 10 identity matrix. The dimension of the process noise

covariance matrix Q(k) is 10 x 10.
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Just as in algorithm V, six measurements Z 1 through z6 defined in Equations

(6.3) through (6.8) are used. Thus, the 6 x 6 measurement noise covariance matrix

R(k) in Algorithm V is also employed here.

The 10x i state vector X(k) and its error covariance matrix P(k), of size 10x 10

are initialized using an approach identical to that in the six previous algorithms.

The Kalman filtering algorithm is then used for recursive state estimation.

6.3.1 Results using Algorithm VII

The estimates of position, velocity, yaw and pitch orientation angles, and yaw

and pitch body rates generated by Algorithm VII are described in this section. The

estimates are obtained for the same simulation scenario used in all the previous

algorithms except that the yaw orientation angle is set to -10 degrees. As before,

the pitch orientation angle is set to -3 degrees. Errors of 1000 feet in the along-

track position xb and 100 feet in the cross-track position yb and in the altitude

--zb are assumed for initializing the Kalman filter. Initial values of the velocity

components, the yaw and pitch orientation angles, and the yaw and pitch body

rates are set to zero.

The along-track position error residual is shown in Figure 6.16. It may be

observed that the along-track position estimates converge to within -t-100 feet in

five seconds.

The cross-track position error residual is shown in Figure 6.17 reveals that the

cross-track position estimate converges to within +5 feet in less than one second.

Figure 6.18 illustrates that the altitude estimates converge to within -t-12 feet

in about six seconds.

The along-track velocity error residual is shown in Figure 6.19. It may be

observed that the along-track velocity estimates settle to within +10 feet/second

in 11 seconds.

The cross-track velocity error residual in Figure 6.20 shows that the cross-
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Figure 6.19: Along-track velocity error using Algorithm VII.
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track velocity settlesto within ±5 feet/secondin about a second.

10 20 30 40

Time ( s )

Figure 6.20: Cross-track velocity error using Algorithm VII.

The sink rate error is reduced to within 4-5 feet/second in about five seconds

as can be observed in Figure 6.21.

The aircraft yaw and pitch attitude error residuals are presented in Figure

6.22 and 6.23 respectively. Both these errors settle to within -+-0.2 degree in less

than a second.

Figures 6.24 and 6.25 show that the yaw and pitch body rate error residuals

settle to within +0.1 degrees/second in under two seconds.

The position error residuals are summarized in Table 6.3. The notation and

units are same as those in the previous tables. By comparing Table 6.3 to Table
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Figure 6.21: Sink rate error using Algorithm VII.

Table 6.3: Algorithm VII Results

Category Lateral (yb) Vertical (h)

CAT I -t-0.60 +11.29

CAT II 4-0.25 4-10.10

CAT IIIa 4-0.85 4-2.54

CAT IIIb & c 4-1.36 4-0.86
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Figure 6.22: Yaw attitude estimates using Algorithm VII.
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Figure 6.23: Pitch attitude estimates using Algorithm VII.
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Figure 6.24: Yaw body rate using Algorithm VII.
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Figure 6.25: Pitch body rate using Algorithm VII.
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3.2, it may be seen that the results obtained using Algorithm VII only satisfy

Category I landing requirements. The results presented in this section show that

Algorithm VII provides very accurate estimates of the aircraft attitude angles.

6.4 Summary

Three Kalman filtering centered algorithms were presented in this chapter.

The first algorithm was designed to provide estimates of the aircraft position and

velocity components. The second algorithm was designed to provide estimates of

the aircraft position, velocity and GPS position bias components. Finally, the third

algorithm was designed to provide estimates of the aircraft position and velocity

components, yaw and pitch orientation angles, and yaw and pitch body rates.

All three algorithms used six shape features of the airport lighting layout

as image-based measurements for the Kalman filters. Additionally, Algorithm

VI used the three aircraft position components provided by the GPS receiver.

Except for Algorithm VII, the other two algorithms also needed yaw, pitch and

roll orientation angles. Algorithm VII only required the roll orientation angle.

Results were obtained to demonstrate the performance of the Kalman fil-

ters. It was shown that Algorithms V and VI are able to provide aircraft position

estimates which meet Category I, II, IIIa, IIIb and IIIc navigation accuracy re-

quirements. Aircraft position estimates generated using Algorithm VII were only

able to meet Category I navigation accuracy requirements. However, Algorithm

VII was able to provide highly accurate estimates of the yaw and pitch orientation

angles.



Chapter 7

Contributions of the Report and

Future Work

The contributions of this report and future research directions are discussed

in this chapter.

7.1 Contributions of This Report

This report has explored the development of machine vision based pilot aids

to help reduce night approach and landing accidents. The research focus was on

developing an onboard instrument that complements the existing cockpit instru-

mentation.

The techniques developed during the course of this research were motivated

by the desire to use the existing information sources to derive more precise aircraft

position and orientation information. During night landing, the information source

used by pilots for obtaining aircraft position and orientation information is the

airport lighting layout. The fact that airport lighting geometry is known and since

the images of the airport lighting can be acquired from an onboard camera, machine

vision technology can be used for synthesizing a landing aid. Use of a machine

vision system has several advantages. Firstly, such systems are not susceptible to

200



201

optical illusions. Moreover since the camera is a passive imaging device, it does not

cause interference with the ground based equipment or with equipment onboard

other aircraft. Finally, lowering costs of electro-optical cameras and real-time

computer systems have made this technology attractive. Even if Global Positioning

System (GPS) receivers become cheaper and more accurate, an integrated machine

vision and GPS system would be a much more robust landing aid. The machine

vision based system could also serve as a back-up landing system.

The main contribution of this research are the synthesis of seven navigation

algorithms based on two broad families of solutions. The first family of solution

methods comprise of techniques that reconstruct the airport lighting layout from

the camera image and then estimate the aircraft position components by compar-

ing the reconstructed lighting layout with the known model of the airport lighting

layout. The second family of methods consist of techniques that synthesize the

image of the airport lighting using a camera model and the known model of the

airport lighting layout and then estimate the aircraft position components by com-

paring this synthesized image with the actual image of the airport lighting acquired

by the onboard camera.

Algorithms I through IV belong to the first family of solutions while Algo-

rithms V through VII belong to the second family of solutions. These algorithms

can further be classified as parameter optimization methods, feature correspon-

dence methods and Kalman filter centered methods respectively. Algorithms I

and II are parameter optimization methods. Algorithms III and IV are feature

correspondence methods. Algorithms V, VI and VII are Kalman filter centered

methods. Figure 7.1 summarizes the algorithm classification.

Figure 7.1 shows the two classes of machine vision based landing aid developed

in this report. First class provide only position information and second category

provide both position and orientation information. Algorithms I. and III provide

the aircraft x and y inertial position components. They assume that the altitude

information is available from an onboard altimeter. Algorithms II, IV, V and VI
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Figure 7.1: Classification of the seven algorithms developed in this report.
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compute all three aircraft inertial position components. Additionally, Algorithms

V and VI provide estimates of the aircraft inertial velocity. Since Algorithm VI

integrates image-based measurements with the position measurements from a GPS

receiver, it also provides estimates of GPS position bias components. These can

be used to improve the accuracy of GPS measurements.

Algorithms I through VI all assume that the yaw, pitch and roll attitude angles

are available. Algorithm VII provides estimates of all three runway relative aircraft

position and velocity components, the yaw and pitch orientation angles, and the

yaw and pitch body rates. This algorithm only assumes that the roll attitude

angle is available. Table 7.1 summarizes the aircraft states estimated by the seven

algorithms developed in this report. The estimated quantities are marked with

bullet. Note that velocity estimates for Algorithms I, II, III and IV are obtained

by using a six-state Kalman filter driven by these algorithms. In Table 7.1 Xb,

Yb and zb are the inertial position components, vb_, Vby and vbz are the inertial

velocity components, bx, by and bz are the GPS position bias components, _p and 0

are the yaw and pitch orientation angles, and r and q are the yaw and pitch body

rates. Table 7.1 also indicates the nature of the computations required for each of

these algorithms. Algorithms I, III and IV are direct computational schemes that

do not require iterative computations. Algorithm II, V, VI and VII use iterative

computational schemes.

In order to take advantage of the aircraft dynamics and the multiple images

available along the glide path, the estimates provided by Algorithms I, II, III

and IV were used for driving a six-state Kalman filter for providing estimates of

the aircraft position and inertial velocity components. Algorithms V, VI and VII

are Kalman filter centered Mgorithms and were designed to implicitly utilize the

aircraft dynamics and multiple images available along the glide path.

Results were presented to demonstrate the performance of all the seven al-

gorithms developed in this report. It was shown that all the algorithms are able

to meet some or all of the Federal Aviation Administration specified navigation
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Table 7.1: StatesEstimated by the SevenAlgorithms

State Alg. I Alg. II Alg. III Alg. IV Alg. V Alg. VI Alg. VII

Xb • • • • • •

Yb • • • • • • •

Z b • • • • •

Vb x • • • • • • •

• • • • • • •

• • • • •

b= •

by •

bz •

•
6 •

F •

P •

Vby

Vb z

• • • •Iterative

accuracy requirements for various landing categories. Table 7.2 summarizes the

performance of the seven algorithms in meeting the navigation accuracy require-

ments for various FAA categories (CAT) of landing in Table 3.2.

Table 7.2: Performance Of The Seven Algorithms

CAT Alg. I Alg. II Alg. III Alg. IV Alg. V Alg. VI Alg. VII

I • • • • • • •

II • • • • • •

IIla • • • • •

IIIb, c • • • • •

7.2 Practical Considerations

The algorithms reported in this research have been validated using simulated

image sequences. By comparing an actual image in Figure 2.2 with the simulated

image in Figure 3.10 it may be observed that the only difference between the two
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images is that lights in the actual image occupy regions in the image while lights

in the simulated image appear as point sources. Thus, the actual image can be

processed through low-level algorithms to transform it to appear similar to the

simulated image. One may conclude that for Algorithms I, II, III and VI recon-

struction of the airport lighting layout based on an actual image would result in

lights occupying regions on the plane of the runway. To convert these regions to

points, the centroids of the regions have to be found. A circular template of the

physical dimensions of an airport light can be used to determine the centroids.

Once the centroids are found for an initial image, the position and velocity esti-

mates provided by the Kalman filters can be used to aid local template matching

in subsequent images. For Algorithms V, VI and VII, the image constructed from

the model of the airport lighting using propagated position estimates can be used

for aiding the search for centroids of the lights detected in the actual image. Tem-

plate matching schemes or local clustering schemes can be used for determining

the centroids of lights in the actual image.

The computational requirements for all the algorithms are modest. Of the

several Kalman filters developed in this report, the largest one is a ten-state filter

with six measurements used in Algorithm VII. Experience with ranging algorithms

which track three position components of several hundred objects in the image

using three-state Kalman filters for every object has shown that these algorithms

can be made to work in real-time using inexpensive hardware [84].

It may be noted that Algorithms II, V, VI and VII need initial values of the

aircraft position components. In the case of Algorithm VI, the initial estimates

are provided by an onboard GPS receiver. Algorithm I or III can be used with a

barometric altimeter for initializing Algorithm II and Algorithm IV can be used

for initializing Algorithms V through VII.
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7.3 Future Work

Since the seven algorithms developed in this report have been verified only in

simulation, the next logical step would be to verify the performance of these algo-

rithms using actual images of the airport lighting layout obtained by an onboard

camera.

This report has employed four lighting structures, the left and right runway

edge lights, centerline lights and the threshold bar lights, in Algorithm IV. Tech-

niques need to be developed for detecting other lighting structures in order to

extend Algorithm IV to estimate the yaw, pitch and roll orientation angles.

It may be possible to improve the estimation accuracy of Algorithms V, VI and

VII by extending them to iterated Kalman filtering algorithms. This should spe-

cially be investigated for Algorithm VII in order to improve its altitude estimation

accuracy.

The six features used in Algorithm VII were found to have very low sensitiv-

ity to the roll orientation angle. Other features based on higher order moments

should be investigated for possible estimation of the roll orientation angle. Shape

features such as perimeter, area, eccentricity and thinness [27, 53] should also be

investigated for improving the robustness of Algorithms V, VI and VII and for

possible roll orientation angle estimation using Algorithm VII.

The focus of this research was to develop a pilot aid for flight on or near the

glide slope. Hence, it was assumed the aircraft is headed in the approach direction

of the runway and that only the airport lights are visible in the image. This report

has not addressed the question of initial acquisition of the airport lighting layout

when the aircraft is not lined up in the approach direction of the runway. Since

the heading of the airport is known from published charts [54] and the heading of

the airplane is known from cockpit instruments such as a gyro compass, the pilots

may be able to identify the airport. Once they identify the airport and line up

the aircraft in the approach direction present algorithms can be initiated. It may
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be possible to develop a pilot aid for detecting the airport by using the heading

information and images of the ground lighting layout. Color images may also be

beneficial for airport detection because both approach and runway lights are color

coded.
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Appendix A

Kalman Filtering Algorithm

The Kalman Filter development is based on a linear discrete time dynamical

model of the form:

x(k + 1) = _(k)X(k) + r(k)U(k) + rd(k)Cx(k) (A.1)

X(k) is the state vector, U(k) is the control input vector, (x(k) is a vector of

discrete time white noise sequences with covariance Q(k) representing the process

noise, O(k) is the state transition matrix [35], r(k) is the input distribution ma-

trix and rd(k) is the process noise distribution matrix. The Measurement vector

equation is given by:

Z(k) = h(X(k)) + _z(k) (1.2)

Here, Z(k) is the measurement vector, h(X(k)) is the vector of nonlinear measure-

ment functions and _z(k) is measurement noise vector with covariance R(k). Note

that _z(k) is assumed to be a vector of white noise sequences.

The Kalman Filter [3] is a computational algorithm for computing optimal

state estimates )[(k) using the linear discrete time dynamical model and the mea-

surement equations. The Kalman filter is optimal in the sense of generating un-

biased minimum variance estimates. The filter continuously generates the state

estimate error covariance matrix P(k). The Kalman Filter consists of two steps:

measurement update, which improves the state estimate based on the new mea-
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surements,and processupdate, which propagatesthe state estimate accordingto

the dynamical equations. Beforeevery measurementupdate step, an estimateof

the state X(k), state error covariancematrix P(k), processnoisecovariancema-

trix Q(k) and measurementnoisecovariancematrix R(k) are known. The new

measurementsare usedfor improving the state estimateand its error covariance

a.s:

X(k) = X(k)+ K(k)[Z(k)- h(:K(k))] (A.3)

= [I- K(k)H(k)]P(k) (A.4)

where I is the identity matrix, K(k) is the Kalman gain matrix computed using

K(k) = P(k)HT(k)[H(k)P(k)HT(k) + R(k)]-' (A.5)

H(k) is the matrix of partial derivatives, representing the linear approximation to

the nonlinear measurement functions, computed as:

H(k) = Oh(X)/OXlx=X (A.6)

The process update part of the Kalman Filter accounts for system dynamics and

propagates the state and its error covariance until the next measurement is ob-

tained. The propagated values are:

:K(k + 1) = O(k):X(k) + r(k)U(k) (A.7)

P(k + 1) = O(k)P(k)@T(k) + rd(k)Q(k)rdT(k) (A.8)

The steps A.3 through A.8 form the core of the Kalman filter. This algorithm is

summarized in Table A.1.

The sequence of steps given in Table A.1 assume that the measurement and

process updates are carried out at the same rate. The extension to the case of

measurement update time step being an integer multiple of the process update

time step is straight forward [35]. The procedure is more complicated when the
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Table A.I" Summary of Kalman Filter Algorithm

1. Set k = 1.

2. Initialize 5:(k), P(k), q(k) and R(k).

3. Compute h(X(k)).

4. Compute H(k) using Equation (A.6).

5. Compute Kalman gain K(k) using Equation (A.5).

6. Compute X(k) using Equation (A.3).

7. Compute P(k) using Equation (A.4).

8. Compute X(k + 1) using Equation (A.7).

9. Compute P(k + 1) using Equation (A.8).

10. Increment k = k + 1.

11. Return to step 3.
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measurementupdate is doneasynchronously.In this casethe measurementarrives

within the processupdate time step. Oneof the waysof dealingwith this situation

is to split the processupdate into two steps:onefrom the previousprocessupdate

time to the measurementepochand the other from the measurementepochto the

next scheduledprocessupdate time. This ensuresthat the state estimateand its

error covarianceareavailablesynchronously.Further detailsof multi-rate Kalman

filter implementation canbe found in Reference[3].



Appendix B

Matrices Using Aircraft

Kinematic Models

The matrices required for estimating the position and velocity of the aircraft

using Algorithms I, II, III and IV along with the Kalman filter in Appendix A are

described in this Appendix. Algorithms I and II are described in Chapter 4 and

Algorithms III and IV are described in Chapter 5. The outputs generated by these

algorithms are used as measurements for the Kalman filter described in Appendix

A.

The position and velocity estimation problem can be stated as follows. Given

noisy measurements of the aircraft position, estimate its position components xb,

yb, and zb, and its inertial velocity components vbx, vb_, and vb_.

The discrete time state transition matrix with position and velocity compo-

nents as states can be found to be:

0
V(k) =

0

0

0

0 0 At 0 0

1 0 0 At 0

0 1 0 0 At

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

(B.1)
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This developmentassumesthat the velocity statesare integrated using the Euler

integration formula. Here, At is the update time step. The control input vector

is a 6 × 1 null vector. For convenience, the input distribution matrix F(k) can be

chosen to be a 6 × 6 identity matrix. The process noise distribution matrix Fd(k)

is a 6 × 6 identity matrix. The process noise covariance matrix Q(k) is a 6 × 6

diagonal matrix. The diagonal elements of Q(k) are chosen as "tuning parameters"

for the Kalman filter [35].

The 3 × 1 measurement vector Z(k) consists of the components of the aircraft

inertial position vector, xb, yb and zb, determined using Algorithms I, II, III and

IV. With these measurements, position and velocity components as states, the

measurement model matrix is:

H(k) =

100000

010000

001000

(B.2)

Since three measurements are used, the dimension of the measurement noise co-

variance matrix R(k) is 3 × 3.

The 6 × 1 state vector X(k) and its 6 × 6 error covariance matrix P(k) have

to be initialized to begin state estimation process. The Kalman filtering algorithm

described in Appendix A can then be used for recursive state estimation.


