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It is thought that planets form from solid particles in a flattened, rotating, 99% gaseous nebula.

These grains gradually coagulate into millimeter-to-meter sized aggregates which settle toward the

midplane of the nebula. It is widely believed that the resulting dense layer eventually becomes

gravitationally unstable and collapses into "planetesimals." A new numerical model is presented to
simulate the predominant processes (gravitation, vertical convection, and shear-driven turbulence)

during the stage while the particulate material is still dispersed about the midplane of the nebula. In

our previous work, particles were assumed to be spheres of a single radius; in the present work,

particles are spheres of different radii. Results indicate that neither a broad nor a narrow distribution

of particle sizes is likely to become gravitationally unstable. © 1995 American Institute of Physics.

I. INTRODUCTION

Dense regions of interstellar clouds collapse under their

own gravity into young stars, surrounded by flattened disks
of dusty gas. 1 Our own Solar system presumably originated

from such a protoplanetary nebula. Subsequent collisions of
asteroid-like "planetesimais" (followed by hydrodynamic

capture of gas in the outer Solar nebula) led to their accretion

into planets.

The solid component of the nebula initially consisted of

microscopic grains well-mixed with the gas. These grains

would gradually coagulate into millimeter-to-meter-sized ag-

gregates, which then settle into a thin layer at the central

plane of the disk due to the vertical component of the Sun's
gravity. 2'3 It is widely believed 4'5 that as its density increases,

this layer eventually grows gravitationally unstable and col-
lapses directly into planetesimals. The criterion for gravita-

tional instability may be written as

pp> M /( TrR3), (1)

where pp is the bulk density of solid particles, M is the mass
of the Sun, and R is the distance from the Sun. 6

In recent years, however, it has become clear that plan-
etesimals must form by other means, because settling of

solid particles is a self-limiting process. 2'3'7'8A radial pres-

sure gradient causes the gaseous disk to rotate at slightly less

than the Kepler orbital velocity. In contrast, the particle-rich

layer is not supported by pressure, and so trends toward

Keplerian motion. The resulting shear between the particle

layer and the surrounding gas generates turbulence that stirs

particles back into the nebula and reduces their bulk density
below the stability limit.

In order to simulate this situation, we have developed a
computational fluid dynamics (CFD) model for multiphase

flow in which the protoplanetary nebula is treated as a mix-

ture of gas molecules and solid particles. The temporal and

spatial evolution of the mixture is described by the

Reynolds-averaged Navier-Stokes equations for each phase.

The gas eddy viscosity is obtained from a Prandtl turbulence

model adapted to the nebula flows of interest. The particle

diffusivity is modeled by means of a Schmidt number ex-

pressed as a function of particle size and density.
Our initial results, presented in Cuzzi et al., 8 confirm

that particles of a given mass and radius settle into a stable

distribution about the midplane. In general, the lighter the

particles, the thicker the layer. An interesting loophole re-

mains, though. If particles of different sizes coexist, it is

possible that the lighter particles may spread into such a

thick layer that shear is reduced and turbulence is sup-

pressed. Then the heavier particles could settle into a dense

sublayer, which might become gravitationally unstable after
all.

The goal of the present work is to examine this possibil-

ity by including particles of different sizes and compositions
simultaneously. Our mathematical model is described in Sec.

II, divided into six subsections detailing our assumptions, the

model nebula, the governing equations, the perturbation

technique, the Reynolds averaging method, and the turbu-
lence model used to close the system. Section III describes

the numerical technique, while Sec. IV presents the results.

II. MATHEMATICAL MODEL

A, Assumptions

The assumptions used in modeling the protoplanetary
nebula are outlined below. The gas phase is assumed to be a

perfect gas, known to be predominantly hydrogen. The solid

phases are each assumed to consist of spherical particles of a

fixed mass and radius. Each phase is treated as a continuum.

Momentum is exchanged between the gas and particle

phases by means of the drag force. Each particle phase is

independent of the other particle phases; they interact only

through the intermediary of the gas phase. The settling of
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particles is modeled by taking into account turbulence gen-
erated in the gas by the presence of the particles. Collisions

among particles are not taken into account, so the model is

valid only for dilute suspensions; however, it contains no
limitation on the mass loading ratio. The mean flow is as-

sumed axisymmetric (3/00=0) and isothermal. Brownian ef-
fects on the particle phase are neglected, as well as electro-

magnetic forces. The self-gravity of the nebula is also
neglected. Cuzzi et al. 8 demonstrate that this assumption is

valid as long as condition (1 is not close to being satisfied.

B. Nebula model

The physical characteristms of the protoplanetary nebula
are now introduced. A standard "minimum mass" circums-

teilar nebula is assumed with total mass 0.0425 M o. The

surface mass density a(r) of the disk is of the form

or(r)= cr0(r/AU) 1.s, (2)

where AU represents 1 astronomical unit (1.49x 1013 cm).

This leads to a surface mass density _ro_--1700 g cm 2 at r = 1

AU.

The disk is also assumed vertically isothermal at tem-

perature

T(r) = To(r/AU)-°5, (3)

where T0_280 K. Because this is too warm for water ice to
precipitate, the condensible mass fraction of 5.3x 10 -3 gives

the solid particles a surface mass density of about 9 g cm -2
at ! AU.

Equations (2) and (3) above imply a gas density

pg(r,z) = pref(r/AU)- I I/4 exp[ - (Z/ZG)2], (4)

where ZG is called the scale height. Note ZG is always much

greater than the depth of the particle layer, so the variation of

gas density with height can be neglected. For example,

ZG_8X 10 6 km at r= 1 AU in the baseline model. The gas
density Pref at 1 AU is 1.4x 10 -9 g cm 3. The corresponding

molecular mean free path is about 1 cm, so most of the

particles are in the Stokes drag regime.

C. Governing equations

The equations describing the Solar nebula are expressed

in a cylindrical coordinate system (r,0,z) as

Gas phase:

a 1 3 3

at pg+ -r --_r (rpgu_)+ _ (pgwg)=O, (5)

a a 3 1 aP

a--tUg + Ug _r Ug + Wg _ Ug+ --pg--Or

0 2 GM "

r _2- r-- E appp(ug-Up)
p=l

1 a r0e+ 1 8_'.r+ -- -- (rr.)- _ (6)
pgr Or pgr pg Oz '

3 8 3

a-tvu+ u_ -firvg+ wg 7z v_

-- UgUg

n

E Appp(Ug-Vp)

p=l

+ m _
1 3 T_O 1 3Zzo

p_r-_r (rT_°)+-+--'pgr Pg Oz
(7)

3 8 3 1 3P

KSw_+ u_ a-; wg+ wg 7z w_+ --pg--az

el
GM

R3 Z- _ Appp(Wg-Wp)
p=l

1 a 1 37zz
+ -- _ (r_._)+ ----

pgr " pg 3z

Particle phase:

(8)

a 1 3 a

KS pp + r -_r ( rppup} + _Z (ppWp)=O'
(9)

2

a a 3 Vp
O_ up+Up Or Up + Wp _Z Up-- r

GM

Ra- r-Appg(Up- U_),

(io)

8 a a UpVp
05 Up+Up 3"-F Up+Wp -_Z Up-- r

Appg(Up-Vg),

(11)

a I a o

a-_ (ppWp)+ r Or (rppUpWp)+ _Z (ppW;)

GM

= --pp _ Z-Appgpp(Wp-Wg), (12)

where t is time, /9 is density, and P is pressure. Here u, v,

and w are respectively the components of velocity in the r

(radial), 0 (circumferential), and z (vertical) directions. The

subscripts g and p refer to the gas phase and particle phases,

respectively. Here n is the number of distinct particle sizes; n

is limited only by available computer resources; G is the
gravitational constant, equal to 6.7X 10-8 cm 3 g-1 s-2. Thus

the vertical and radial components of the Sun's gravitational
attraction become GMz/R 3 and GMrlR 3, respectively. Fi-

nally T/j is the molecular stress tensor expressed in cylindri-
cal coordinates, equal to 7-q= _.£(Ui,j+Uj,i) where #=0.001
g/cm/s is the gas molecular viscosity. Equation (12) is pre-

sented in conservative form for reasons given in Sec. III.

The drag coefficient can be expressed as Ap=(pgtp) -1

(Ref.8), where tp is the particle response time and depends
on the ratio of the particle radius rp to the mean free path hg

of a gas molecule. For rp_ 9hg (Epstein flow regime),

Ps rp

tp-- (13)
pg c

Here p_ is the density of an individual solid particle, and c is
9

the speed of sound in the gas. For rp>ihg (Stokes flow
regime),
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8 Ps rp

tp-- 3 pg CDlV p- Vg[' (14)

where C D is the drag coefficient:

CD =24 Repl for Rep< 1,

CD=24 Rep 06 for l<Rep<800, (15)

CD=0.44 for R%>800.

Here Rep is the Reynolds number

2pgrp

Rep- #lvp_ vsi, (16)

where Ivp-Vg] is the magnitude of the relative velocity be-
tween the particle phase and the gas.

D. Perturbation technique

Because we are interested in relatively small variations

of physical quantities over large distance ranges, it is appro-

priate to solve the preceding set of equations in a perturbed

form. The equations are expanded about a reference state as

shown below. We seek a solution such that: Ug=U M,

ve=vo+vl, Wg=W I, p_=p0+pl, P=Po+P1, T=To,

Up:Upl, Vp:VpO"}-Upl, Wp:Wpl, Pp:Ppl"

Substitution of this expansion in the exact equations

leads to the following equations at zero order:

Opt
-0, (17)

0t

OP o po o2 poGMr

Or r R-y-- (local centrifugal balance),

(18)

OPt poGMz
Oz - RT--- (hydrostatic approximation), (19)

to o
-- =0, (20)
Ot

2

Vpo _ GMr
r RT-- (Keplerian motion). (21)

We choose

P0 = poRgTo/m, Vpo = vr, VK = r_r,

_2=GM/R3, Vo=Vx[l -27/] L/2,

r 1 OP o
-- -- _ 1. (22)

r/= - 2V---_Kp0 Or

Here Rg is the gas constant (8.3143X 107 erg/K/mole) and m
is the mean molecular weight of the gas (2.34 ainu). The

quantity v r is the Keplerian orbital speed, and r/is the frac-

tional deviation of the gas from Keplerian rotation (propor-

tional to the radial pressure gradient). To first order, the per-

turbed state will satisfy the following equations in their exact
form:

0 1 3 3

ot P,+r-ff-r[r(po+p,)u,]+-O--z [(po+pl)]wl=O, (23)

0 0 0

-_ul+ul _rUl+Wl _ul

OPt 2VlVo+V_
+

+

1 OP l Pl
4

(po+Pl) Or po(Po+pl) Or

l 0 7"0o

(po+pl)r Or (r%r) (po+pl)r

n
1 0

(p0WPl) 0Z rzr-- _ ApPpl(Ul-Upl)'
p=l

0 0 0

vl+ul 7r vl+wl _ vl
OZ

0 a u(vo+vl)

= -g;rto-W, to r

1 0 TrO

+ (po+p|)r Or (rT"r°)+ (po+Pl)r

.q- m

1 0 n

(po-l-pl) OZ 7"zO--_ mpPpl(Vl-Vpl),
p=l

0 0 0

otwl+ul _Wl+Wl 7zWl

1 OP 1 Pl OPo
+

(po+pl) Oz po(Po+pl) Jz

1 0 1 0

+ (po+Pl)r Or (rT"zr)+ (po+pl-""'-_OZ 7"zz

n

-- Z ApPpl(Wl-Wpl),
p=l

0 1 0 0

-_ ppl +-r -'_r (rpPlUpl)+ _z (PplWpl)=O'

0 0 0

Ot Upl + U,l -gTrupl + w,l 7Z up1

2

_ Upl -I- 2VpOVpl

Ap(PO + Pl)(Upl -Ul),

0 0 0

Ot Vpl+Upl 7r Vpl+Wpj _z vpl

: -- UpI(VpO"I-UpÁ) OVpO OVpO

r Up I O-'-'r--- Wp I OZ

-Ap(PO + Pl ) (Opt+ Vpl -- Vo -- V I),

0 1 0 0

-_ (ppWpl) + r _ (rpPluplwpl)+ -_Z (Pplw_I)

GM

=-Ppl _ z-Ap(PO+ Pl)Ppl(Wpl-Wl).

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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E. Reynolds averaging

The perturbation quantities themselves are further ex-

panded into means and variations, in the usual notation:

jOl=p-l-p' , /II=/_-_-U' VI=Uq-U ', wl=_'+w'. By defini-

tion, variation quantities vanish on the average: p'

= 0, u' = 0, v' = 0, w' = 0, etc. This form is substi-

tuted into the perturbation equations (23)-(30), which are

then time averaged (Reynolds averaged) over an interval

short compared to the evolution of the nebula but long com-

pared to the time scales of the turbulence.

Originally, we solved the vertical gas momentum equa-

tion (8) for _, the mean value of the gas vertical velocity

perturbation. However, the Courant-Friedrichs-Lewy (CFL)

condition required a very small time step for Eq. (8) to be

numerically stable. We soon found that neglecting _ elimi-

nated the need for this CFL condition, and the time step

could be increased an order of magnitude. Since _ was al-

ways small, setting _=0 made no noticeable difference in

the results.

Since the gas density pg is nearly constant, its fluctuation
t

will be very small, and any correlation involving Ps is ne-

glected. In the simulations presented in this paper, radial gra-

dients (O/Or) of perturbation quantities are also neglected by

scaling. The resulting set of equations is shown below in the

form in which they are solved. The overbar sign on all mean

variables has been eliminated for clarity;

8 0

at p+ _zz [(P°+P)w]=0' (31)

Ou Ou p OPt) 2VVo + V2 7roo
--+w --= +
Ot Oz po(Po+p) Or r (po+p)r

+

i1

1 c) r p_ Appp(U-Up),(po+p) c)z r:r- l

(32)

0u

Ot

Ov C)Vo OVo u(vo+v)

--+w _=-. 77-w oz. r

T
%0 1 O

+ 1

+ (po+p)r (po+p) Oz T:°

n

-- E apPp(Oo+O-Opo-Up),

p=l

(33)

Pr' 0Z

+ p)(v.o+ vp- Vo- v), (37)

0 0

o5 (°"w_') + _ (opw;,)

• t O

G M OrPz------Z-2 (=-P; "+ 7z o;w;w )

-- Ap( Po _- P)Pt,( wp- w)

i i _[_ _l ! t ! ix
--.;lp_, p 0 pl[ppWp--ppWg).

(38)

In the viscous stresses, the superscript t stands for tur-

bulent, while T stands for the total of the molecular and

l _ t t Tturbulent stresses: rij -pgU iuj, 7" = rij + _j. The

gas stresses are expressed as

2 Vo+U
7" T __

r,r-- 3- k, r'°-- --(_ + _') r

Ou 2 u

r_=(/_+/x,)--, rroo =-gk+z(u+/*,)-,• c)z r

9 2 Ow

' 3

(39)

O
T_

r:°-(/x+ #') 7z (Vo+V),

where k is the kinetic energy of the gas turbulence. The

particle stresses are

_l, rr = O, TtprO -

[tt VpO+Vp

S c r

tzt OUp

' %-s7 oz"

z -2 #' Up _,"-4 #t Owv (40)
rpoe- S,---7- "" 3 S,, Oz '

t tzt O

TPZO S,m 02, (°P°+oP)"

w=0,

0 ,9

at P_+ _ (o_,w,,+ o;.',;) = o,

Oup OUp 2vt, Vpo+V 2 rt,,oo+ 1 0 _,zr
- + OZOt +wp OZ r ppr Op

o;w;o.,,
-- -pp OZ Ap(O°+p)(up-u)'

(34)

(35)

(36)

F. Turbulence modeling

To close the system of equations, we adopted the formu-

lation of Cuzzi et al.,8 summarized as follows. Applying the

Prandtl mixing length model to nebula flows, we express the

turbulent eddy viscosity #t as the square of a mixing length

times the local gas density and vorticity:

/'/'t=(('v_)"P'e _'_ OE] + 02] " (41)

Here we take the mixing length equal to a constant c_=0.045

times the boundary layer thickness 6_-0.02r/VK/IIK.
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FIG. 1. Geometry of nebula flow simulations.

Correlations between particle density and particle veloc-

ity are specified according to the gradient diffusion hypoth-

esis. Since the particle density gradient is dominated by its

vertical component, this implies

p;u; = 0, p;U; = 0, p;W; = ScPgO_Zp p . (42)

Here Sc is the Schmidt number, given by

S,. = ( 1+ St) _/1 + 3w2ppg/2k, (43)

where St=_Kt p is called the particle Stokes number, and
tp==- (Appg) - 1 is the time constant of the drag. 8The turbulent

kinetic energy k is obtained from the eddy viscosity /xt

through the relation

CI/2 k
/.¢

#'- R0 f_K' (44)

where R 0 is the critical Rossby number (empirically set to

80) and C_ is a dimensionless coefficient (set to 0.09; Ref.
8).

Correlations between particle density and gas velocity

are taken approximately equal to the corresponding particle-

particle correlations. Consequently, the drag term involving

the difference (p'pW'p - p'pw'g) cancels out of Eq. (38) for
the vertical momentum of the particles.

III. NUMERICAL TECHNIQUE

A. Algorithm

The multiphase flow code is an extension of the two-
phase flow code, with all particle variables expressed as ar-

rays to take into account the different sizes of particles. The

code employs dimensional variables, expressed in CGS

units, but this can easily be changed. In this code, the time-

dependent Navier-Stokes equations (31)-(38) are solved us-

ing a time-marching approach. Time-dependent methods are

commonly used in Computational Fluid Dynamics applica-

tions to obtain a steady-state numerical solution of a fluid

flow. By their use, a boundary-value problem is transformed

-I=
E

8

20

15
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5

0

15

-12 -11 -10 -9 -8

Lo? tpojr_l_le _ l(_lj cm "=)
20.' ' ' ' I ' ' ' ' f _ ! _

: i

Up Vp

0 , I , , , I ,
-6000 -4000 -2000 0

Rn_tive velocity (¢m Nc-'l; vert,,tcol Xl0)

o
IIl]lll III III

-7

I

FIG. 2. Model results at 1 AU for particles 60 cm in radius after 13 years of

simulated time. The upper panel (labeled "G") displays the gas velocity

components u,o,w along with the particle density profile pp, while the

lower panel (labeled "P") shows the velocity components up ,op ,wp for the

particles. The diffusion velocity wai n and terminal velocity w F are defined in
the text.

into an initial-boundary value problem with unknown initial

data (see Yee, Ref. 9, p. 127), for which efficient algorithms
can be used.

Implicit algorithms to solve partial differential equations

with stiff source terms, like those in this paper, are still at the

development stage (see Yee, Ref. 9, p. 118). Because our
goal is to obtain a numerical solution to an as-yet unsolved

problem, we use a well-developed explicit algorithm. We
selected the 1969 MacCormack scheme, ]° because it has

widely been used in aerodynamical simulations, although it

has not been applied to astrophysical problems until this
work. 7'8 We refer the reader to the work of Mendez-Nunez

and Carroll, n'12 who recently evaluated the MacCormack al-

gorithm for atmospheric problems and demonstrated its ad-

vantages with respect to numerical stability, diffusion, and

dispersion.
The radial and azimuthal momentum equations (32),

(33), (36), and (37) are solved in nonconservative form. This

form is employed instead of the more common conservative

form in order to minimize roundoff errors in the particle

velocities. In the conservative form, such errors may arise

when the conservative variables ppUp,ppt)p,ppWp are di-

vided by the density pp to obtain the primitive variables

Up,Up,Wp. With the nonconservative form, this is avoided
since we solve directly for the primitive variables.

However, we encountered a problem with the particle
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vertical momentum equation. Because of the terms contain-

ing p'pW'p which originated from averaging advection terms,
the conservative form (38) is actually more stable. In the

one-dimensional case treated here, the particle continuity

equation (35) and vertical momentum equation (38) are

strongly coupled to each other, but coupled to the other two

particle momentum equations (36) and (37) only through the

value of the turbulent viscosity/zr. Because of this situation,

we have adopted a hybrid solution scheme. We solve (35)
and (38) simultaneously in conservative form using first-

order, upwind differencing for the advective terms (sacrific-

ing some accuracy for the sake of stability), and second-
order central differencing for the viscous terms. Then pp and

Wp are updated to the next time step, and the gas and particle
radial and azimuthal momentum equations are solved in non-

conservative form.

Although this approach was stable, the algorithm tended

to lose particle mass, due to excessive numerical diffusion

arising from the first-order spatial differencing. Sophisticated
numerical techniques that conserve particle (or species) mass

to machine accuracy have been designed for unsteady mul-

tidimensional aerosol problems, in particular by Toon et al. 13

However, because we are looking for the steady-state solu-

tion, a simpler approach was employed to conserve particle

mass.

We periodically applied an integrodifferential correction

to compensate for the loss of particle mass. In a steady state,

ape/at=O, so that the particle continuity equation (35) and
formula (42) give

txt aPt' (45)
ppWp+ppWp C=[)pl_p- ScPg o3Z ,

where C is a constant. Evaluating the left side of Eq. (45)

above at z =0 gives C=0, while integrating it leads to

#p(Z)=#p(O)exp(foSCP---_g@dz )._, (46)

In the numerical model, the value of tSp(0) is determined
from the total initial particle mass, and the profile of pp(Z) is

updated at each time step from Eq. (46) above. This tech-

nique was found to be quite successful.

B. Boundary conditions

Our code was designed to treat flow in both the vertical
and radial directions. Because so little is known about the

particle settling, though, we have thus far restricted ourselves
to one-dimensional calculations. Since the largest gradients

lie in the vertical direction, we have neglected the complica-

tion of radial flow for the time being. Accordingly, we define

the numerical grid with either 102 or 202 rows in the vertical

direction, but only three columns (IE= 3) in the radial direc-

tion. This geometry is depicted in Fig. 1. Zero-gradient con-

ditions are imposed at both radial boundaries l--l and/--3,

so that all dependent variables are the same in each vertical

column. Similar conditions are imposed on the horizontal
rows K = l and K = 3, corresponding to symmetry across the

midplane at K =2.
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FIG. 6. Similar to Fig. 4, but after 51 years of simulated time.

For the upper boundary conditions, we adapted the ap-

proximate analytic solution of Nakagawa et al. 14 They were

modeling a simple two-phase nebula, but we extended their

results to multiple particle sizes. The results imply that as the

particle density approaches zero far from the midplane, the

density and velocity variations of the gas also vanish. In

contrast, the particle velocity variations approach the limits

-- 2vKS_ - rlVK

up-I+stLF, Vp=l+---+-_t, wp=--ZlIKS,. (47)

We therefore imposed the above conditions on the density

and velocity variations of each phase at the upper boundary

K= KE.

C. Code verification

The nature of nebula flows does not permit direct com-

parisons of simulations with experiment. Instead, computa-

tions were verified by means of "internal" checks. First, a

trivial test was performed. The new multiphase code was

compared to our "old" two-phase flow code s for a mixture

of gas with particles of a single size. Results for the two

cases were identical. Next, these were compared to a multi-

phase computation with all particles again of the same size,

but now treated as two separate phases. The mass of each

particle phase was half the mass of particles in the two-phase

flow run. The results were still unchanged, as expected.

IV. RESULTS

Our first results are described below. The flow is a mix-

ture of solid particles of individual density ps = 1.0 g/cm 3

with nebular gas at r = 1 AU where the temperature is 280 K.

Initially, the mesh consisted of 102 points with a vertical

resolution of 600 km and a time step of 1/2 hour. After 11

years of evolution, the mesh was refined by linear interpola-

tion to 202 points with a vertical resolution of 300 km, and

restarted with a time step of 1/4 hour. This resolution is still

100 times larger than the smallest eddies, and the time step

is orders of 10 longer than their turnover time. In each case,

the multiphase flow runs extend over about 13 years of simu-

lated time, requiting about 2 hours of CPU time on a Cray

Y-MP. Over the duration of the runs, residuals dropped by

more than 4 orders of magnitude, indicating good conver-

gence toward a steady-state solution.

The results of these simulations are shown in Figs. 2-4.

Figure 2 represents a two-phase run in which all particles

were 60 cm in radius, while Fig. 3 displays a similar case

where all particles were 10 cm in radius. These cases were

selected because of the contrast in the thickness of the par-

ticle layers. For comparison, Figs. 4 and 5 present a multi-

phase flow containing equal masses of both species; Fig. 4

refers to the particles of radius 60 cm while Fig. 5 applies to

those of radius 10 cm. The total mass of all particles was the

same in every run.

The dot-dashed curves in each figure plot the bulk den-

sity pp of the particle cloud; the scale is shown at the bottom

of the upper panel. The solid and dashed curves in the lower
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FIG. 7. Similar to Fig. 5, but after 51 years of simulated time.

panel (labeled "P") respectively show the radial and azi-

muthal components up and up of the particle velocity, mea-
sured with respect to the Keplerian speed v K (bottom scale).

The corresponding gas velocities u and v are shown in the

upper panel (labeled "G"), relative to pressure-supported

circular motion v 0 (top scale).

The light dotted line in the lower panel represents the

particle vertical velocity wp. The heavy dashed curve is the
diffusion velocity

/z r 1 _--

wdiff--- P'pw'plpp- Scpg pe Oz pp' (48)

defined as the effective velocity of the mass flow driven by

the particle density gradient, s The good agreement between

wdiff and Wp in the dense particle layer indicates that the
particles are not settling appreciably.

The heavy dotted curve plots the terminal velocity we,

the speed of fall for which the particle's weight is balanced
by drag:

GM z
- lq2Ztp(Z). (49)

WF= -- _ Ap o

For the 60 cm particles of Figs. 2 and 4, w e differs from wp
because particles falling from higher levels retain some mo-

mentum. In contrast, w_ is indistinguishable from Wp for the
10 cm particles of Figs. 3 and 5, indicating that the falling

speed of the small particles continually adjusts to the local

terminal velocity.

Note that the particle density profile pp is much thicker
in the I0 cm case (Fig. 3) than in the 60 cm run (Fig. 2). This

is due to the greater diffusivity of the smaller particles. As a

result, the profiles of azimuthal velocity v and Vp are also
thicker in Fig. 3 than in Fig. 2. Overall, the results of the

multiphase calculations (Figs. 4 and 5) are fairly similar to

the results of the two-phase runs (Figs. 2 and 3). As ex-

pected, the velocity gradient in the multiphase case is inter-
mediate between that in the two unimodal cases. This actu-

ally causes the 10 cm particles in Fig. 5 to settle into a

thinner layer than in Fig. 3. However, the distribution of 60

cm particles in Fig. 4 is no denser than that in Fig. 2. This
indicates that more realistic models including a broad distri-

bution of particle sizes are not likely to be less stable in the
Goldreich-Ward sense. 5

In Fig. 4, we also observe numerical oscillations in the

radial velocity up of the 60 cm particles that were not present
in the two-phase flow computations. We verified that these

oscillations are reduced with a finer mesh, confirming that

they are of numerical origin, and caused by our unwilling-

ness to use an artificial viscosity.

Note in each figure that drag between the particle-rich
layer and the surrounding particle-poor nebula causes a ra-

dial outflow of the gas. This outflow u peaks at _5,000 km

above the midplane in Fig. 2, and at --30 000 km in Fig. 3,

just above the respective particle-rich layers. In the multi-
phase case, however, we observe two maxima in u corre-

sponding to both particle sublayers. This effect could have

significant implications for the radial transport of small par-
ticles in the protoplanetary nebula and the compositional in-

homogeneity of planetesimals.

Finally, we extended the multiphase run from 13 years to

51 years of simulated time. Lack of time and resources pre-

vented our optimizing the time step, so we simply increased
it by a factor of 10 and restarted the run. The results, dis-

played in Figs. 6 and 7, are practically indistinguishable from
those at 13 years plotted in Figs. 4 and 5. This demonstrates

that a steady state has indeed been reached.
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