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PREFACE
The Seventh Copper Mountain Conference on Multigrid Methods was held on April

2-7, 1995, at Copper Mountain, Colorado, and was sponsored by NASA and the
Department of Energy. The University of Colorado, Front Range Scientific Computations,
Inc., and the Society for Industrial and Applied Mathematics provided organizational
support for the conference.

This document is a collection of many of the papers that were presented at the con-
ference and thus represents the conference proceedings. NASA Langley has graciously
provided printing of this book so that all of the papers could be presented in a single
forum. Each paper was reviewed by a member of the conference organizing committee
under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from these
proceedings. The vibrancy and diversity in this field are amply expressed in these
important papers, and the collection clearly shows the continuing rapid growth of the
use of multigrid acceleration techniques.

N. Duane Melson
NASA Langley Research Center

Steve F. McCormick and
Tom A. Manteuffel
University of Colorado at Boulder

Craig Douglas
IBM Thomas J. Watson Research Center
Yale University

The use of trademarks or names of manufacturers in this publication does not
constitute endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.
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INAULTIGRID

(At the awards ceremony of the conference, Achi Brandt presented the following
history of multigrid. The reader should study the truths contained herein and revel in
the humor.)

The early history of multigrid has recently become a hot subject of research. An
ancient multigrid code was uncovered during extensive excavations last year in northern
Turkestan. Carbon tests indicate that this code has an efficiency of 5.1 on the Richter
scale. Some researchers believe that the V cycle was practiced by the Neanderthals.
The use of the Full Multigrid (FMG) algorithm was, however, unique to Homo sapiens and
is one of the major reasons for their ultimate survival. Prototypes of two-grid algorithms
predate the first hominids. Most historians agree that coarsening was, in fact, invented
by the dinosaurs; however, coarse-to-fine grid transfers were unknown to them, which
explains their extinction.

Earlier geological findings include rich multilevel deposits that have been unearthed
in several North American gold mines, and thick layers of old multigridders have been
discovered at Copper Mountain.

The artifacts at the northern Turkestan site indicate that an early form of residual
weighting was already in widespread use before the middle Full Approximation Storage
(FAS) period. When Copernicus first introduced line relaxation, it was banned by the
Catholic church. Pope Pointus the Square decreed that mere mortals should not practice
such nonlocal schemes. He feared this practice would lead humanity to incompleteness,
in particular to the incomplete LU decomposition of the Dutch church. The advent of
variational coarsening during the French Revolution marks the dawn of the modern era,
which is quite familiar to us all.
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A MULTIGRID ALGORITHM FOR IMMERSED INTERFACE PROBLEMS

Loyce Adams 1

Dept. of Applied Mathematics
University of Washington

SUMMARY

Many physical problems involve interior interfaces across which the coefficients in the problem,
the solution, its derivatives, the flux, or the source term may have jumps. These interior interfaces
may or may not align with a underlying Cartesian grid. Zhilin Li, in his dissertation, showed how
to discretize such elliptic problems using only a Cartesian grid and the known jump conditions to
second order accuracy. In this paper, we describe how to apply the full multigrid algorithm in this
context. In particular, the restriction, interpolation, and coarse grid problem will be described.
Numerical results for several model problems are given to demonstrate that good rates can be
obtained even when jumps in the coefficients are large and do not align with the grid.

1. INTRODUCTION

Many physical problems involve interior interfaces across which the coefficients in the problem,
the solution, its derivatives, the flux, or the source term may have jumps. These interior interfaces
may or may not align with a underlying Cartesian grid. As an example, single phase Darcy flow in
porous media is governed by the equation V • (oVp) = 0 for the pressure p where P = Kl y with x
the permeability and y the viscosity. If the medium has an interface across which the permeability
varies, we know that [p] = 0 and [Op,] = 0 at this interface. Another example is Stokes flow where
the interface is the boundary of a moving membrane or bubble, ([1], [2]). A more complicated
problem is to model the blood flow in the human heart. Here the interface is the boundary of
the heart. Peskin [3] solves for the velocity of the fluid in which the heart is immersed by solving
the Navier-Stokes equations on a Cartesian grid with a delta function forcing term determined by
the force the heart wall exerts on the fluid. It can be shown [3] that this singular source term in
the Navier-Stokes equations leads to jumps in pressure and the derivatives of velocity across the
interface, and is discretized by discrete delta functions and transfered to the nearby Cartesian grid
points. The velocity of the fluid is then used to move the boundary of the heart to the next time.
This procedure is called the immersed boundary method and seems to be only first order accurate
due to the way the force on the interface is spread to the Cartesian grid.

Zhilin Li has recently developed an approach for discretizing elliptic problems with interior
interfaces called the immersed interface method (IIM), ([4], [5]), which can handle both discontinuous
coefficients and singular sources. The idea is to compute on a Cartesian grid only, as in Peskin's

1 This work was supported in part by the Scientific Computing Division of the National Center for Atmospheric
Research, which is supported by NSF, and in part by Department of Energy grant DE-FG06-93ER25181 and NSF
grant DMS-9303404.
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immersed boundary method, but to find accurate discretization stencils by incorporating knowledge
of where the interface is located and the known jumps in the solution there, rather than by smearing
the force with a discrete delta function. Li showed that second-order accurate discretizations could
be found for a wide class of problems. Of course, there are problems of physical interest where the
jumps at the interface are not known a priori and must be solved for first before such an approach
can be taken. Such problems and solution techniques are discussed in [6], but will not be the focus
of this paper.

The purpose of this paper is to describe how the full multigrid method (FMG) can be applied
to the discrete equations that result from the IIM. Many authors have given efficient multigrid
schemes for both symmetric and nonsymmetric systems of equations that arise from elliptic problems
with discontinuous coefficients. A partial list includes [7], [8], [9], [10], [11], [12], [13], and [14].
For problems with discontinuous coefficients, care must be taken to devise a proper method of
interpolation for the multigrid process. Much of the work done in this direction has assumed
that any interfaces are aligned with the grid. However, Aaron Fogelson and James Keener have
used multigrid schemes to solve non-aligned immersed interface problems for two-dimensional heat
equations in regions with holes, and to solve for electrical potentials in cardiac tissues, [15].

One common approach is to use what is called operator-induced interpolation. That is, the
stencil for the partial differential equation incorporates information about the jumps in the coef-
ficients, and this stencil can be modified to produce a stencil for interpolation. Such an idea is
found in [8] and [9] and has the advantage that explicit information about the interface need not
be known directly. Black box multigrid can find out from the problem stencil how to interpolate.
This approach presumably can be used when the interface does not align with the grid, assuming
the problem was discretized accurately. In the future, we plan to try this approach in conjunction
with an IIM discretization.

Here, we present a different approach. Since our stencil for the problem comes from the IIM,
we have all the information about the interface and the jumps there. In this paper, we show how to
use this information to build an O(h2 ) accurate interpolation scheme. The results of this approach
seem promising since V-cycle rates of .06 to .13 have been achieved.

The paper is organized as follows. Section 2 gives an overview of the IIM. Section 3 describes our
multigrid scheme with a derivation of the modified bilinear interpolation. Section 4 gives numerical
results. Section 5 states the conclusions and avenues for further work.

2. IMMERSED INTERFACE METHOD OVERVIEW

In this section, we review the immersed interface method. Details can be found in [4] and
[5]. The IIM provides a discretization of elliptic PDEs that is 0(h2 ), where h is the uniform mesh
spacing in both the x and y directions. Consider the problem

( 1 )	 (PUX). + (Puy)y = f (x , y ) in fl

[u]r = w(s)



r

FIG. 1. 6-pt Stencil for Irregular Points

l#unlr = v(s)

where boundary conditions on Q are given and r is the interface, across which the jump in the
solution and flux are assumed known as functions of the arc length S. The stencil for a regular
point (all points of the standard 5-point stencil are on the same side of the interface) is the usual
0(h 2 ) approximation that uses the 5-point stencil for u values and its edge midpoints for a values.
To discretize (1) at an irregular point, Li uses a sixth point stencil as shown in Figure 1 where *
represents a point (x*, y*) on the immersed interface and looks for a formula at the center point of
the form

s

(2) (Nux)x + (#uy )y —	 -tiui — c + O(h)
1

where ui denotes the i-th point in the 6-point stencil, the ryi 's are the coefficients to be determined,
and c is a correction term that can be computed once the 7='s are known. Requiring the truncation
error in (2) to be O(h) at the irregular points and the truncation error to be 0(h2 ) at the regular
points is sufficient to guarantee that a global error of O(h2 ) is achieved everywhere.

Let ^ and q be the normal and tangential directions at the point (x*, y*) which are given by

(3) ^ = (x — x*) cos 8 + (y — y *) sin 8

71 = —(x — x * ) sin 9 + (y — y*) cos 9.

We then expand u i about the point (x*, y*) on the interface after changing to the (^, 77) variables.
That is,

1	 1
(4) ui = u* + ^iu*

	

t	 77 + rliu* + ^i'1=u.n + 1 ^ u*E	 1 2u,**	 ...

where * means to take the + or - limiting value on the outside or inside of the interface, respectively.
Then we have 12 unknown terms on the right hand side in (2) and 6 unknown -y i 's. But, since we
know the jumps from (1), the following jump conditions can be derived for the special case where
Q = Ri7,, inside the interface and 0 = 0owt outside.



1. u+=u-+w
2. un = u,- + w'
3. u+ = Pu- + vl Nout
4. u+= Pu n + (1 — P) T"un + W"Y' + v'lQout
5. U+ = U- + (1 — p) iy"uc + w" — T"v/,gout

6. u+ = p - + (P — 1 )
T"u- 

+ (P — 1 )u- + T"V /#"Ut — w" + [f]l flout

The variables w and v are functions of 17 only, p = ,6z,,/,gout, the interface is described parametrically
as ^ = 41 ( ,q), and all variables in the conditions above have been evaluated at (^, 77) = (0, 0) which
corresponds to the * point on the interface. Next, we substitute these six conditions into (4) and
then substitute (4) into (2) to get six equations in six unknowns for the y t 's. Once these are found, c
is determined from the yz's and the jump conditions. The end result gives an 0(h2 ) approximation
to the exact solution u that satisfies fi(u., + uyy ) = f.

To use the IMM to generate the problem, the user must specify w, v, and [ f ] at control points
(X, Y) along the interface. The program fits a cubic spline through X, Y, v, w, and [f] at these
control points to define X(s), Y(s), v(s), w(s), and [f](s) as functions of the arc length parameter
s. The quantitites in the jump relations are then derivable from these functions. As part of the
procedure, each grid point is typed as being inside, outside, or on the interface, as well as being
regular or irregular.

One advantage of this approach is that the same interface can be used on each grid of a multigrid
routine. That is, as we refine the grid, we need not refine a grid representing the interface. It is
sufficient to specify a relatively small number of control points, depending on the smoothness of
the interface, in order to describe the interface with a spline. Of course, this procedure can not
handle problems with interfaces that can not be well represented with a cubic spline. A future
improvement to the implementation of the IIM would be to describe the immersed interface with
a level set formulation. The coding involved would be reduced significantly and we plan to do this
before we tackle problems with multiple interfaces.

3. A FULL MULTIGRID SCHEME

The result of the IIM is a discrete system of equations, Ahuh = f h , on the finest grid with
uniform mesh spacing h in each coordinate direction. The goal is to develop a multigrid strategy
to solve this system quickly. Unlike the Black Box multigrid approach of [8] and [9] which uses
operator-induced interpolation, we base our strategy on knowledge-of where the interface is located
and the jumps there. We have not yet compared our approach to Dendy's but we can claim to get
fairly good multigrid rates with our approach for this class of problems.

The basic components of full multigrid are the smoother, the restriction operator, the interpo-
lation operator, and the coarse grid problem. We now describe what we choose for each. For all our
test cases, point-rowwise Gauss-Seidel worked fine as the smoother. More complicated problems
with larger jumps in the coefficients may require a more sophsicated smoother. The coarse grid
problem, A2h U2h = f2h was taken to be the output of the IIM method with mesh size 2h. This
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choice seems to limit the size of the coarsest grid to be 10 x 10 (h = .4) for problems with ratios
,6i,,/fl,ut = 2000. It is possible to define A2h to satisfy the Galerkin condition, AI  = Ih'`AhI h,
but this has not been implemented yet. With the exception of the limitation in grid size described
above, our definition of the coarse grid problem worked fine.

The interpolation operator we used is a modified bilinear interpolation in the ^, q coordinates
for grid cells that contain an interface. If the cell does not contain an interface, the interpolation
reduces to ordinary bilinear interpolation. To interpolate to the fine grid point at the center of a
coarse grid cell, we build a formula based on the corner values of this cell plus a correction term.
To interpolate to the midpoint of a vertical(horizontal) edge we choose either the cell to the east
or west (or north or south) and find a formula based on the corner values of this chosen cell plus
a correction term. The cell choice depends on the location of the interface relative to the fine
grid point for which we are seeking an interpolated value. For example, if one cell is regular (no
interfaces crossing its boundary) it is preferred over the irregular cell. If both cells are irregular, an
attempt is made to choose the one that will produce the most accurate value.

To describe the scheme mathematically, we consider the chosen coarse grid cell shown in Figure
2 where u i are the four coarse grid values, u is a fine grid point whose value we wish to find, and
is a point (x*, y*) on an interface cutting through the cell. During the continuation phase of FMG,
we look for a solution to u of the form

4
(5)	 u =	 yiui — ci

much in the same way as the 6-point stencil was found for the PDE in the IIM method. Again, let
i and qi be the transformed variables given in (3) of the previous section, and expand each u i and

u about (x*, y*) on the interface using (4). Using the jump conditions given for the IIM method,
we get the system A,,-y = b.y for the -yi's after equating the coefficients of u - , u£ , u,- , and u- . The
matrices A., and b.y are given below,
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1	 1	 1	 1

(6) Ay l Pi	 6P2	 6P3	 6P4
=

q1 + a16 771 71 172 + a262g2 772 773 + a363 7/3 7*3 774 + a4647747*4

61 711P1	 6772P2	 6773P3	 64774P3

1
^P

(7)
bry =
	 + a^T

^^I P

and the correction term c = cl — c where

4

(8) cl = E aiyi(w + ^iv/gout + 77iw' 
F' ^i ?7i(w Q" + v'/#out) )

1

C — alw + ^vlNnut + ^w, + S^(w,^n +' v'lNout))

In the above equations, if the cell is regular, ai = 0 and a = 0. If the cell is irregular, a i = 1 if the
point (xi , yi) is outside the interface and ai = 0 if it is inside or on the interface. Likewise, if the
cell is irregular, a = 1 if the point (x, y) is outside the interface and a = 0 if it is inside or on the
interface. If the point (x i , yi ) is outside the interface then pi = and pi = 1 if it is inside or
on the interface. Likewise, p = Nin/out if the point (x, y) is outside the interface and p = 1 if it is
inside or on the interface. Also Ti = (1 — pi )'P, and T = (1 — p) ".

Upon examination of these equations, it can be seen that for each irregular coarse grid cell,
we really are calculating two bilinear functions, each of the form u = a + b^ + crl + d^77. Each
function interpolates the coarse grid points on the respective side of the interface (4 conditions).
In addition, the functions are such that the jump conditions [u]r, [Ou&, [un]r, and [Qu^"]r are
satisfied at the interface point (x*, y*) (the remaining four conditions). Since the terms left off are
O(h2 ), the formula is O(h2 ) for u, relative to the true solution of the partial differential equation.
Hence, these formulas should give good results if the second derivatives are not too large relative
to the mesh spacing.

During the V-cycle, we need to interpolate the error e2h to the finer grid. The same approach
could be used if we knew [e 2h]r and [Qenh]r at the interface. These are not known, but if the
smoother is doing a good job, it makes sense to set these jumps to zero. Then the same -yi's that
were calculated during the continuation phase for interpolating u are the proper values to use for
interpolating the error as well. This approach works well in practice as seen in the results in the
next section.

We choose the restriction operator to be a multiple of the transpose of the interpolation operator
just described. In particular, Ihh = .25(I24h )T . In the case of regular cells, this reduces to full
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weighting. For irregular cells, the stencil has a width of two grid cells in each direction, excluding
other coarse grid points. The data structure used is a 5 x 5 stencil with other coarse and connections
set to zero.

4. NUMERICAL RESULTS

Several test problems were run using the full multigrid scheme described above. For each
test problem, we use the notation V (a,b) to denote that a pre- and b post- smooths were used in
each V- cycle. More cycles than necessary to reach truncation error were taken for the purpose of
studying the convergence to the solution of the discrete system. In all problems, about 3 V-cycles
were sufficient to reach truncation level. In each Table, derr denotes the difference between the
computed solution and the exact solution of the difference equations and res is the residual. The
grid size given for each Table is that of the finest grid. In the Figures, err is the difference between
the computed solution and the exact solution of the partial differential equation.

Problem 1

The domain Q is the (-2, 2) x (-2,2) square and the interface r is the unit circle. The problem
is

O(UXX + UYY) = f

Nin = .5, Oout = 1000., fin = 2.0, fout = 0

U in = x2 + y 2 , Uout = x
2 _ y2

/^	

[U]r =( -2y1
2

[N U n]r = 2Nout( x i - yl) - 20in

Table 1 shows rates of each V-cycle to be .13 for both the discrete error and the residual for a
2-level scheme on a 40 x 40 grid with 2-pre and 2-post smooths. Notice that the modified bilinear
interpolation used in continuation gave a starting guess on the finest grid of .02. This is good since
the mesh size on the finest grid is h = A.

Cycle I IderrI 1,,^ j jresj j ^ ratede^rr rate,.eS

Starting .20 x 10 -1 .50 x 104
1-V .23 x 10-2 .13 x 103 .12 .03
2-V .26 x 10-3 .57 x 10 1 .11 .05
3-V .34 x 10 -4 .76 x 100 .13 .13
4-V .44 x 10_5

.96 x 10-1 .13 .13
5-V .56 x 10 -6 .12 x 10 -1 .13 .13
6-V .73 x 10-7 .16 x 10-2 .13 .13
7-V .94 x 10-8 .21 x 10 -3 .13 .13

Table 1. Problem 1: V(2,2), 40x40, 2-levels

Table 2 gives 2-level V(4,4) results for Problem 1. Notice that the rates went down from .13 to .06.
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Cycle llderr ll. ll res ll. ratederr rate,.e3

Starting .20 x 10 -1 .50 x 104
1-V .37 x 10 -3 .91 x 10 1 .02 .002
2-V .25 x 10 -4 .34 x 100 .07 .037
3-V .14 x 10-5 .20 x 10 -1 .06 .06
4-V .93 x 10 -7 .13 x 10 -2 .07 .07
5-V .60 x 10'$ .83 x 10 -4 .06 .06
6-V .39 x 10 -9 .53 x 10 -5 .06 .06
7-V .25 x 10 -10 .34 x 10 -6 .06 .06

Table 2. Problem 1: V(4,4), MAO, 2-levels

Table 3 gives 3-level results for an 80 x 80 fine grid and V(4,4). Notice that we still get rates of .06
with 3-levels. Also note that even though the level 2 problem was solved with only 1 V-cycle, the
starting error for level 3 was .016.

Cycle ll derrll ^ l l res l l^ ratederr rateres

Starting .16 x 10-1 .15 x 105
1-V .96 x 10- 3 .28 x 103 .06 .02
2-V .15 x 10-4 .28 x 10 1 .02 .01
3-V .78 x 10 -6 .64 x 10 -1 .05 .02
4-V .51 x 10 -7 .38 x 10 -2 .06 .06
5-V .28 x 10-8 .14 x 10-3 .05 .04
6-V .19 x 10 -9 .90 x 10'5 .07 .06

Table 3. Problem 1: V(4,4), 80x80, 3-levels

Figure 3 shows the computed solution for this problem with V(4,4) for an 80 x 80 fine grid after 7
V-cycles. Notice the sharpness of the jump at the interface. Figure 4 shows the associated err. This
error, 0(10 -5 ), is concentrated along the interface as expected since the truncation error is largest
there. We note that the discrete error, derr, is 0(10 -11 ) and is much smoother at the interface due
to the multigrid smoothing.

PROBLEM 2

The problem domain Q is the (-2,2) x (-2,2) square and the interface r is the unit circle.
The problem is

N(uxs -I- UYY) - f

pin = 1, flout = 1000, fin = f out = 2000

u in = 1000x 2 , tr out = x2

[u]r = -999(x')
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FIG. 3. u for Problem 1.
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FIG. 4. err for Problem 1.

[13u']r = 0, [u^,]r = —999(2x1)

Note that this problem has a jump in the normal derivative at the interface even though the jump
in the flux is zero. Table 4 shows rates for a 2-level method with V(4,4) to be .03 for the discrete
error and .06 for the residual.

9



5
50

0 0

FIG. 5. Starting err for Problem 2.

Cycle 11 derrI 1. 11resil. ratederr rate,.eS
Starting .10 x 102 .20 x 105
1-V .19 x 100 .25 x 10 2 .02 .001
2-V .48 x 10 -2 .59 x 100 .03 .02
3-V .12 x 10' 3 .12 x 10 -2 .03 .02
4-V .36 x 10 -5 .74 x 10-3 .03 .06
5-V .11 x 10 -6 .49 x 10-4 .03 .06
6-V .30 x 10 -$ .31 x 10 -5 .03 .06
7-V .11 x 10 -9 .20 x 10 -6 .04 .06

Table 4. Problem 2: V(4,4), 40x40, 2-levels

Of special note in Table 4 is the starting error produced by the modified bilinear interpolation during
continuation. At first sight this error of 10 looks quite bad. But notice that u ".' = 2000 for points
inside the interface, and the term 2(x - x* ) 2 uxx that is not included in the bilinear interpolation is
exactly 10. In fact, Figure 5 shows the starting error to be very sharp at the interface, reflecting the
fact that the truncation error has a different constant for points inside and outside the interface.
This is the best we can hope to accomplish with bilinear interpolation for this problem. We do not
plot the solution and error for this problem since the graphs are quite similar to Problem 1 in that
the jumps are captured very sharply.
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Problem 3

As an application we consider single-phase saturated flow governed by Darcy's law,

(9) u = —#®p
®•u" = 0

where u" = (u, v) T is the velocity vector and Q = nl y with a discontinuous permeability at the
interface. Such problems arise in groundwater flow and contaminant transport. Combining the
equations above we get the elliptic equation

(10)

[P]r = 0
[Qpn]r = 0

for the pressure p. Equation (10) is then discretized with the IIM and solved using multigrid. The
velocities of the flow are then determined from (9).

A similar strategy that was used for modified bilinear interpolation can be used to devise an
0(h) formula for px and py in cells with interfaces. One could also get 0(h) formulas by using one-
sided differences on the correct side of the interface. If the pressures, p, are calculated by multigrid
on a grid of size h, modified bilinear interpolation can be used to give p at cell-centers and edges
on a grid of size h/2. Then the needed information is available to find derivatives to 0(h) at grid
points of the h/2 grid. A more exact, though more expensive method, is to calculate pressures on
a grid of size h/2 for use in the derivative calculation on a grid of size h. This was the approach
that was taken in the results that follow.

Once derivatives are found, we solve the equation

(11) qt+u-.Vq=0

for advection of a contaminant with concentration q. This is done with LeVeque's Clawpack
software on a uniform grid, ([16], [17]). For the test problem we take Q to be the (-2,2) x (-2,2)
square and r to be the interface shown in Figure 6. On the square, p = 1 at the left boundary,
p = 0 at the right boundary, and py = 0 at the top and bottom boundaries. The permeabilities are
/3 = 5 inside the interface and <3 = 1 outside the interface. Initially, q = 0 and at the left(inflow)
boundary q = 1, and an 80 x 80 computational grid is used.

Figure 6 shows the velocities that were determined by differencing the pressure that came
out of the multigrid routine. Since a is larger inside the interface, the velocity should move the
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FIG. 7. Contours of q for Problem 3.

contaminant quicker through this region than around it. This is what is observed at four times as
shown in Figure 7. Our approach did give sharp results for the moving front of the contaminant
even though the Clawpack routine used did not have knowledge of where the interface was located.

5. CONCLUSIONS

We have demonstrated that a full multigrid algorithm can be designed for interface problems
where the jumps in coefficients, solution, derivatives, flux, or source term are not aligned with the
underlying Cartesian grid. This algorithm correctly solves the fine grid problem generated by Li's
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IIM and hence gives a second-order accurate solution to the partial differential equation.

The multigrid solution for Problem 1 with jumps in the coefficients 0, the solution, the flux,
and the source term, was obtained at a rate of .13 using V(2,2) with 2 levels, .06 using V(4,4) with
2-levels, and .06 using V(4,4) with 3-levels. For Problem 2, with a large jump in [u,,,], but [ou,,] = 0,
we obtained rates of .03 for errors and .06 for residuals using V(4,4) and 2-levels.

In order to achieve such rates, a modified bilinear interpolation scheme that takes advantage
of known jumps in the problem at the interface as well as knowledge of where the interface is
located was developed. If the second derivatives in u (for continuation) or discrete error (for V-
cycle) are not too big, this interpolation can be expected to give good results to 0(h2 ). If a coarse
grid cell is regular, then the modified interpolation reduces to ordinary bilinear interpolation, and
restriction becomes full-weighting. For V-cycle interpolation, the assumption that [e]r = 0 and
[,Qe,,,]r = 0 seems to be a reasonable one since we achieved a factor of 7 to 10 improvement over the
pre-smoothed result after doing coarse grid correction.

This multigrid approach was used successfully to generate pressures from which velocities were
obtained for the groundwater flow application in Problem 3. The contaminant was advected in
this velocity field using a Clawpack routine that did not know about the location of the interface.
Results showed that the contaminant front was very sharp.

There are still many improvements that can be made or questions that should be answered.
First, the coarse grid problems come directly from an immersed interface formulation on the given
grid level, not from a Galerkin condition of the fine grid problem. It is possible that one could
use even coarser grids if a Galerkin approach is used. In addition, a Galerkin formulation may
be more amenable to different smoothing strategies than our approach and could be beneficial
when more complicated problems are tackled. Second, we plan to compare this approach to the
operator-induced interpolation approaches that others have taken. In particular, Deady's Black
Box solver for nonsymmetric problems, [9], could take the 6-point stencil generated by the IIM
and infer an interpolation strategy, as well as automatically determining the coarser grids without
explicit knowledge of the interface.
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Smoothers for Optimization Problems

Eyal Arian* and Shlomo Ta'asant

Abstract

We present a multigrid one-shot algorithm, and a smoothing analysis, for the numerical solu-
tion of optimal control problems which are governed by an elliptic PDE. The analysis provides a
simple tool to determine a smoothing minimization process which is essential for multigrid appli-
cation. Numerical results include optimal control of boundary data using different discretization
schemes and an optimal shape design problem in 2D with Dirichlet boundary conditions.

1 Introduction
In this work we use multigrid methods to accelerate the numerical solution of optimization problems
governed by an elliptic PDE. The necessary conditions for a minimum are given as a set of three
equations: state, costate and design. The state equation is a PDE which depends on the design
variables. The costate equation is a PDE for the Lagrange multipliers and is of the same type as
the state PDE. In an optimal shape design (OSD) problem the design variable is the position of the
boundary therefore the design equation is defined only on the boundary.

Based on the necessary conditions for the minimum, the gradient of the cost-function with respect
to the discrete design variables is given by the residuals of the design equation (assuming that the
residuals of the state and costate equations are zero). A gradient based algorithm can then be
constructed by an iterative method which solves sequentially the state and the costate equations and
then updates the design variables with the gradients.

Multigrid (MG) methods can accelerate this process in various ways. In [1] A. Jameson used a
MG cycle to solve the state and costate equations in an aerodynamic shape design problem. Later,
a "one-shot" method was proposed by S. Ta'asan, [2], and applied to aerodynamic shape design by
S..Ta'asan, G. Kuruvila and M. D. Salas [3, 41, which uses a few coarse grids for the optimization
process, where the design variables are restricted to a finite dimensional design space which correspond
to smooth solutions. In [5, 6, 7] the MG one-shot method was extended to the infinite design space
in which the design variables are updated on all levels as originally suggested by A. Brandt [8]. The
main difficulty there is to provide a minimization algorithm which smoothes the design variables.
We present a simple Fourier analysis which estimates the smoothing of the minimization process and
provides a tool to establish smoothers by preconditioning if needed.

Numerical examples include a linear optimal boundary control problem using different discretiza-
tion schemes and a non-linear optimal shape design problem using a body-fitted grid. Results are
given in two dimensions.

*ICASE, 'Flail Stop 132C, NASA Langley Research Center, Hampton, VA 23681
t Dept. of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213
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The Problem
We address two classes of optimization problems which are strongly related. One class is "optimal
shape design" (OSD) problems where the shape of the domain, in which a PDE is solved, is the
variable to be optimized with respect to the PDE solution. These are generally non-linear problems
which arise in many applications. A simpler class of optimization problems is optimal control of
boundary data in a fixed domain boundary value problem. These problems are related to OSD
problems using the small disturbance approximation. In the following, formal definitions of the above
are given.

2.1 Optimal Shape Design
Let 0 be a bounded set in Ed , and let Q be a close subdomain in 0. The problem is to find an
optimal domain Q* E 0 and a "state variable", 0 E LZ (fl*), subject to the " state equation", such
that a given cost function, F(Q, ¢(Q)), defined on 0 x L2 (0) will be minimized;

miF(fl, O(Sl))	 (2.1)
OEO

where 0 satisfies the following PDE

Lei = f on 11	 (2.2)
B0 = 0 on OQ

where L (x E 0) is an elliptic differential operator of order 2m defined on 0 and B a boundary
operator.

An extensive cover of OSD theory and references can be found also in [9, 10, 11].

2.2 The Small Disturbance Approximation
Consider a solution 00 of the state equation (2.2) in a domain Q 0 . Let r be part of the boundary,
(depending on the problem), r C Oft, and consider a perturbation of the boundary position F with
(see Fig. 1):

I'(x') F— r(x') + e&(x ,)n(x ).	 (2.3)

where n(x') is the normal to the boundary.
The perturbed boundary,r,& , defines a domain, Q,.& , with a solution 0E«. The solution is extended

analytically to a neighborhood containing fl U SZEa. The extension is denoted as the original function.
The following are relations between quantities on the perturbed domain, %.&, and those on the original
one:

L` .& & — 
LO 10

0 + eL.0(0)^I00 +0(62)	 (2.4)

BO.&I rte BOIro + eBm(0)^ Jro + eB.(0)&I ro + 0(e2)	 (2.5)

The second order terms in (2.4) and (2.5) can be neglected for sufficiently small e, depending on &.
For example assume & is composed of a Fourier frequency ^, & = et£x , then e should be smaller than
the wavelength 1, i.e. e < "
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Figure 1: Perturbation of the boundary by e& in the normal direction.

2.2.1 The Small Disturbance Minimization Problem

Relations (2.4) and (2.5) are used to reduce the OSD problem (2.1)-(2.2) to a minimization problem
on a fixed domain with some unknown boundary data. In this problem fl and 0 are fixed, while
u = & and W = are the design and the state variables, respectively. The optimization problem is
given by

	

min F(W , u)	 (2.6)

where W satisfies

L.k(o, u)V = 0	 on 11	 (2.7)
B.O (0) W = —B,,(¢)u on I'.

2.3 Optimal Control of Boundary Data
The following problem is a more general formulation of the minimization problem which arises when
performing the small disturbance approximation to optimal shape design problems.

Let fl be a bounded open set of Ed with smooth boundary r and let 0 be a real valued function on
fl. Let U and W be Hilbert spaces of real valued functions which are defined on r and fl, respectively.

The problem is to find the "design variable", u E U, and the `.`state variable", 0 E W, such that
a given cost function, flu, 0(u)), defined on U x W, will be minimized. Here 0 satisfies an elliptic
PDE which is defined on fl and will be referred to as the "analysis problem" or the "state equation":

minuEu F(u, 0(u))	 on r	 (2-8)
L(¢, u) = 0	 on 11

Derivation of the Necessary Conditions fora Minimum
We apply the adjoint method to the optimal boundary control problem (2.8). The variable space is
enlarged by adding Lagrange multiplier functions or costate variables denoted by A. A Lagrangian is
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defined to be the sum of the cost-function and a linear term in the costate variables which vanishes
as the constraint equation is satisfied;

E(O, A, u) = F(u, ¢) — (A, L(O, u)) . 	 (3.1)

A perturbation of the Lagrangian with respect to all the variables independently, i.e., state, costate
and design, results in a variation of the Lagrangian:

0 4-- 0+^fi
A <— A+^^
	

(3.2)

U F- u+eu

with ^, A E L2 (Q), fi E U and E is a small real parameter. The variation of the Lagrange function,
SE, in the first order approximation in e, is given in the following form:

SE _ —e ^^, L'(O, u)A + F,,) — e (a, L(O, u)) + E ( u, Lu(O, u)A + Fu )	 (3.3)

where L* and Lu are the adjoint operators of Lj and Lu , respectively. The requirement that the first
approximation terms vanish results in the necessary condition for a minimum which will be referred
to as the state, the costate, and the design equations:

State: L(O, u) = 0
Costate : L;(O, u)A + F.A(0, u) = 0	 (3.4)

Design : Lu(0, u)A + F,,(¢, u) = 0.

From here on we will use the notation ,A(u) for the design equation residual, i.e.,

,A(u) = —Lu(O(u), u)A(u) — Fu (O(u), u)	 (3.5)

where O(u) and A(u) in (3.5) are solutions of the state and costate equations.
The application of the adjoint method to optimal shape problems is performed in a similar manner

[5, 7] .

4 Discretiza.tion

When discretizing the problem it is possible either to derive the necessary conditions for a minimum
in the continuous formulation and then discretize or to discretize the cost-function together with
the state equation and then derive the discrete necessary conditions. In the latter case the discrete
minimization problem is given by:

minute Fh (uh , Oh )	 on rh
Lh(¢h , uh) = 0	 on nh.	 (4.1)

As the grid mesh size, h, goes to zero, solutions of both approaches should converge to the differential
solution. However, for a finite mesh size, discretization and necessary conditions do not necessarily
commute. The solutions of both should be within the discretization error of the differential solution.
In this paper we used both strategies. In the optimal boundary control problem, the derivation of
the necessary conditions for a minimum was done in the continuous space, and then these conditions
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were discretized, while in the optimal shape problem the necessary conditions for a minimum were
derived in the discrete space. The discrete state, costate and design equations are:

Lh (oh , uh) = 0	 on j1h

Lh*(^h , uh ) Ah + Fh (oh , uh ) = 0	 on fBh	(4.2)
Lt^`(^h, uh)Ah ^- F'u (oh' uh ) = O	 on r

We define Ah (uh) similarly to (3.5).

5 A Gradient Descent Algorithm
If the state and costate equations are satisfied then the gradient of the cost-function with respect to
the design variables is given by the residuals of the design equation (see [5, 6, 7)):

VuF = A(u).

The following is a gradient descent minimization algorithm which follows immediately from the above.

1. Start with an initial approximation for the design variables, uo.

2. Solve the state equation for oh.

3. Solve the costate equation for Ah .

4. Compute the amplitude of the perturbation, ,Q, with a line search,

and update the design variables: uh +— uh + 0 ,Ah(uh).
5. If the residuals of the state, the costate and the design

equations are greater than some preassigned value, in L 2 norm,

then go to 2; else stop.

Note that steps 2, 3 and 5 consist of a global computation over the whole domain.
The complexity of this algorithm is given by O(MPNI), where M is the number of design param-

eters, N is the number of grid points, and p and I are integers which depend on the problem and the
PDE solver which is used to solve the state and costate equations. For example, if a MG solver is
used to solve the PDE then I = 1.

6 Relaxation of the Design Variables in a Multigrid Cycle
The Full Approximation Scheme (FAS) is used to represent the state, the costate and the design
equations on coarser grids. On each level a relaxation is performed on the state, costate and design
variables. The state and costate equations, which are elliptic PDE, are relaxed by a Gauss-Seidel or
damped Jacobi relaxations. The design variables are relaxed by

U  +_ U  + ph .FhAh (uh ),.	 (6.1)

where ph and .Fh are chosen to guarantee good smoothing for the design variables and where Ah(uh)
are the residuals of the design equation. The choice of ,Fh is discussed in Sec.8. This step should be
followed by an update of the state and costate solutions. The construction of Ph and ,Fh is done so
that the boundary data is updated with a high frequency dominated quantity.
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6.1 Ellipticity and Computational Cost

In elliptic systems a perturbation of the boundary condition with a Fourier mode eiWX has an expo-
nentially decaying effect on the interior solution of the form e-' (')Y , where y is the distance from the
boundary and Q(w) is a positive monotonically increasing function of w for large JwJ, [12]. For the
Laplace equation the decaying rate is given by e-Ply . Therefore, in an MG scheme it is preferable to
perturb the boundary condition with only high frequency modes relative to the given level. In that
case only local relaxations will be needed in order to update the solutions after each optimization
step. Also in non-linear problems the line search procedure, which calculates the amplitude of the
minimization step (Q), requires a trial perturbation of the boundary. As a result of the local effect of
such a perturbation the computational cost of the minimization step is only O(ON-) operations (in
two dimensions).

On the coarsest grid the relaxation of the design variables is given in Egn.(6.1) with I thus
taking into account the lowest frequencies. In that case the state and costate PDE are solved over
the whole domain.

7 Smoothing Analysis
The Fourier analysis is based on calculating the symbol of the transformation between errors in
the design variables and residuals of the design equation. The analysis can be done either in the
continuous or discrete level. In the following we present the continuous analysis. The advantage of
performing the analysis at the continuous level is the elimination of the effect of specific discretization
on the above transformation. One objective of the analysis is to determine if the problem is well posed
in the sense that small changes in the residuals of the design equation correspond to small changes
in the design variables.

.1 Reduction to the Boundary

The analysis is done by considering the high frequency errors in the design variables in half space
(Fig.2). Then with a standard procedure the problem in half space is reduced to the boundary [13].

We assume that the state and costate equations are satisfied when the design variables are updated.
Another assumption is that in the vicinity of the boundary, the non-smooth errors can be analyzed
using a half space geometry. This approximation is valid since in elliptic problems non-smooth Fourier
modes decay exponentially into the interior. For simplicity the analysis is performed for a second
order elliptic equation in a two dimensional space.

Consider a two dimensional geometry where the x axis is parallel to the boundary and the y

axis is in the normal direction (see Fig.2). We want to study the mapping from errors in the design
variables to the residuals of the design equation. The errors of the state and costate variables satisfy
a homogeneous equation in the interior. The state, the costate, and the design errors are given by

0(x , y ) = f '. O(w)e4WXe-aMYdw

A (x , y ) = f . A(w)eiWXe-a(W)ydw
	

(7.1)

ii(x) = f . u(w)eiWxdw

where LeiWx e-'(')y = 0 and u(w) > 0 (for the Laplace operator u(w) _ JwJ). By substituting these
expressions into the boundary conditions of the state and costate error equations, we obtain relations

20



t

->
I Y

x

Figure 2:	 A vicinity of a point on the boundary is transformed into a half space
geometry.

between O(w), A(w) and u(w). LFrom the set of boundary conditions for the state and the costate
equations and from the design equation (which is defined on the boundary) we can deduce a relation
between the errors in the design variables and the residuals of the design equation;

.A(w) = T (w)u(w).	 (7.2)

T(w) is the symbol of the Hessian of the cost function, F, subject to the PDE constraint. In this
work we use this symbol to estimate the smoothing properties of the minimization procedure. If
the symbol of the transformation T(w) is a monotonically decreasing function in w then one expects
that the relaxation of the design variable will not be a good smoother. On the other hand if T(w) is
a monotonically increasing function in w, for large JwJ, then high frequency errors in the shape are
amplified in the residuals of the design equation and good smoothing of the minimization process is
anticipated. Note that this analysis deals only with the high-frequencies.

7.2 Analysis of Optimal Shape Design Problems
The optimal shape problem is reduced of an optimal control of boundary data problem by the small
disturbance approximation as explained in Sec. 2.2. However, in this case the resulting equations have
variable coefficients and a more delicate analysis is required. This is done by freezing the coefficients,
at a point xo, which is justified as long as the changes in the design variables are highly oscillatory
compared to changes in the coefficients appearing in the small disturbance problem. As a result
of such an analysis one obtains the transformation between errors in the shape variables and the
residuals of the design equation in the neighborhood of xo:

,A(w, ao) = T(w, ao)&(w).	 (7.3)

where ao stands for a quantity which is computed at xo.
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8 Construction of a Smoothing Minimization Process
We are interested in the amplification factor of the error in the design variables as a result of the
multigrid minimization process. The relations between the errors in the design variables before and
after the relaxation are followed from Egns.(6.1) and (7.2):

anew — Rhle)uold	 (8.1)

where the relaxation symbol Rh (8) is given by:

Rh (B) = 1 + #h'-,4'hTh(8).	 (8.2)

For multigrid purposes it is desirable that Rh (9) has small values in the high frequency range (2 <
1e1 < 7-). If this is the case, the relaxation will reduce effectively the high frequency errors of the
design variables prior to restricting their values to the coarse grid.

Choice of Preconditioner
In some cases the relaxation without the use of a preconditioner, ,F h , does not smooth the errors

effectively for any choice of ph . In these cases preconditioning of the design residuals is required. If
chosen properly the symbol ..'h(8)Th(B) is dominated by the high frequencies and a proper choice
of ph will result in good smoothing. The preconditioner is particularly effective for problems in
which the transformation Th (e) is a monotonically decreasing function which has small values in the
high frequencies. In these cases the minimization process does not smooth the errors effectively, and
therefore without the use of a proper preconditioner, high-frequency oscillatory errors in the design
variables are slow to converge, and in some cases might result in the divergence of the algorithm.
Computational experiments using preconditioning were reported in [5, 6].

Evaluation of the optimization step size ph

In a multigrid cycle the relaxation should be effective mainly in the high frequency range. The
relaxation parameter p h is chosen such that the maximum of IRh (9)1 in the high frequencies will be
minimal, that is,

min	
Ix 

11 + #h.^hT h (e) 1 •	 (8.3)
h 12 -B<7r

One can show that if the symbol Th (8) does not change sign ph is given by

ph =2
(^hth )min + (JhTh)max

where	 ..in and (j^h7'h),nax are the minimal and maximal values of j7h (e)Th (8) in the range
( 11 < 101 _< 7r). In most of the practical problems the symbol .^h Th(8) is monotonous, thus ^h is given
by

ph 	 2
.Fh (2)Th ( 2 ) + .^h(7r)Th( ^r )	

(8.5)

In this way the size of the minimization step amplitude, ph , is found by Fourier analysis instead of
using a line-search, thus reducing the computational cost of each optimization step. However, this
was demonstrated in practice only for linear problems (see Sec. 9.1.2).

(8.4)
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Numerical Examples
We give two numerical examples: an optimal control of Dirichlet data with a fixed geometry and
an optimal shape design problem where the position of the boundary is the design variable. The
purpose of the first example is to demonstrate the use of the smoothing analysis to choose the
best discretization for a given problem given a choice between a few possibilities. It is shown both
analytically and numerically that different discretizations result in different smoothing rates of the
minimization process. The purpose of the optimal shape design example is to demonstrate the
effectiveness of our method.

9.1 Dirichlet Boundary Control Problem
The minimization problem is defined by

	

m^j f
((
a^	 *	 a	 a

_1 \an — f (x)) dx + ^ f _ 1 u dx

where y is a fixed non-negative parameter, f*(x) is a given function and where 0 satisfies the state
equation. The state equation is given by

0o = f on Q
0=u(x) on y =1
	

(9.2)
0 = Oo on y =0

where Q = 10 < x < 1 ; 0 < y < 1} and periodicity is assumed in the x direction. The costate
equation is given by

	

f Aa=0	 on Q

A + 2 ( O- ° f*(x)) = 0 on y = 1	 (9.3)

A=0	 on y=0

The design equation is given by

,A 
an-

2770=0 on y=1.	 (9.4)

9.1.1 Discretization

The state, the costate, and the design equations are discretized in four different ways. In three
discretizations all the unknowns are defined on the vertices of the grid lines as shown in Fig.3A (will
be referred to as the "vertex grid"). The control variables are defined on the intersections of the
grid points with the boundary. The normal derivative in the cost function was approximated with
a first (VX1), a second (VX2) order approximation, and with the use of virtual points outside the
domain (VX3). The fourth discretization is cell-centered (CC), where the variables are defined on the
centers of the grid cells as shown in Fig.313. The grid is extended out of the domain and virtual cell
centered points are defined neighboring (exterior of) the domain. A Dirichlet boundary condition is
given for the average of the variables neighboring the boundary. The design variables are defined on
the centers of the segments connecting the intersection of the grid with the boundary. Note that in
the multigrid scheme, the vertices of the grids on different scales are nested while in the cell-center
case the cells are nested.

(9.1)
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Figure 3: Vertex (A) and cell centered (B) grids.

The different approximations for the normal derivative on the boundary are:
1) A first order approximation for the normal derivative

VA1:	 = 
Oi ,2

han:
2) A second order approximation for the normal derivative

VX2 : 
ao _ —3 0i,^ + 20i , 2 — 2 0=,3	

(9.6)
ant	 h

3) A use of a virtual point out of the domain (where its value is determined with the application
of the interior operator on the boundary)

VX3 : 
a0 _ Oij — O_,- i

	(9.7)
ant	 2h

4) A cell centered discretization

CC 	
ao _ Oi,2 — 

Oi' 2 .	 (9.8)
an y	 h

9.1.2 .Analysis: Reduction to the Boundary

In the following the design equation for the Dirichlet boundary control problem is analyzed in the
discrete space. The second order finite difference approximation of the Laplacian (which was used in
the numerical experiments) is given by

1
Qh = h2 1 —4 1

1

The term e° (8) , which is the discrete analog of a(w) in Egn.(7.1), satisfies the following second order
equation

+ (-4 + 2 cos 0) + CaM = 0.	 (9.10)

In order to calculate the Fourier symbol of the design equation (9.4), the symbol of the normal
derivatives (9.5)-(9.8) is given first.

The Fourier Symbol of the Normal Derivatives

(9.9)

ah	 e-°^B> — 1
VXl : n̂ (0) =	 h (9.11)

2



ah	 -- l e —2a(0) + 2e —a(0) — 3
VX2: an (6) = 2	

h	
2	 (9.12)

VX3 :	
ah(0)— e- 17 ( 0) — ea(e)

an 	 2h	
(9.13)

ah 8 2 17(0) —
 

e2	
(9.14)CC: an 

(9) =	 h	 (9.14)

The Fourier Symbol of the Design Equation
In terms of the normal derivatives, the transformation Th(8) (see Egn.(9.4)) is given by

h

—2 
o9n
	 (9.15)

As the parameter n increases the weight of the low frequencies is increased relative to the high
frequencies.

The amplitude of the minimization step, ,Q h, given in Egn.(8.5) is reduced to

h—	 1
,(i

	

	 (9.16)
(an(2)) 2 + (a^(^))2+2'7

In Fig.5 the relaxation symbol f? '(9) = 1 + #hTh p) is plotted for the above four discretizations. For
all four discretizations the relaxation reduces the high frequency errors by a factor smaller than 0.5.

Fig.6 depicts the maximal eigenvalue, JAI,,,,,,,, of the two level convergence matrix as a function of
the number of minimization steps, v, on a given level. The factor by which the error is reduced as a
result of a two level multigrid cycle is bounded by It is implied by Fig.6 that the cell-centered
(CC) and second order vertex (VX2) schemes are expected to have a better performance than the
other vertex schemes.

9.1.3 Convergence Performance

In the numerical tests the problems (9.1)-(9.2) were solved for the four discretizations (9.5)-(9.8). In
all of these problems there was no need to use a preconditioner, ,F, since the transformation Th(6) is
dominated by the high frequencies. The minimization step amplitude, 8 , given by Egn.(9.16) was
used in the computations. The multigrid one shot algorithm was tested using between two and seven
levels (Fig. 4). In all the tests the residuals of the state, the costate and the design equations were
computed in L 2 norm.

In the two levels test (table 1), the finest grid was composed of 2 7 x 27 grid points and the coarsest
grid was composed of 2 6 x 26 grid points. The parameter 77 in the cost function (9.1) was set to zero.
In table 1 the two level analysis and the actual convergence rates are compared for the four different
discretizations. The agreement between the predicted and actual convergence is well apparent.

In the multilevel test the fine grid was composed of 2' n x 2' points, with m = 5, 6, 7, and the
coarsest grid was composed of 2 x 2 grid points. The tests with different choices of m were done in
order to check if the algorithm is mesh-size dependent. All the results in Fig.4 were performed with
a cell-centered discretization. Since the case q = 0 in (9.1) corresponds to a trivial minimization
problem, the case q = 1 was tested, although in principle these cases are not different.

In all problems the error was reduced in each V-cycle by an order of magnitude, where each
V-cycle has a computation complexity of O(N) operations.
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9®2 An Optimal Shape Design Problem in 2D

Problem Definition
The minimization problem is defined by

mint 
Jr(-) 

(^y — f*(x)) 2 dx	 (9.17)

with f *(x) a given target function and where 0 satisfies the state equation. The state and costate
equations are given by

A0=f on 0<x<1; r(x)<y<1
O = g(x) on y=1 	 (9.18)
0=00  on y = r(x).

The coordinates of grid points on the boundary r = rh (x) define the design variables. The initial
approximation for the shape, on the coarsest grid, was a flat surface: r l (x) = 0.

The costate equation

AA=0	 on 0<x<1; r(x)<y<1
A=0	 on y=1	 (9.19)
A+ 2 cos t 8( a — f *) = 0 on y = r(x)

The design equation
The design equation is simplified by using the costate boundary condition yielding

A(O, A, 0) = 0 on y = r(x)	 (9.20)

where
2

A (O, A, B) _ — a0 0, (A tan 8) — cos B ay e + 8y an	 (9.21)

Smoothing Analysis
The smoothing analysis was done by first performing the small disturbance approximation result-

ing in a fixed domain minimization problem (see Sec. 2.2) and then reducing the problem to the
boundary as is explained in Sec. 7. The result is given by the following mapping:

T(w) = 2(^y(xo)) 2 cos Bo[i sin(20o)Lo 	 + cos(28o)Iw1 2J + O(w).

For large w there exists a positive constant C such that

I7'(w)l > Ow
l2
	

(9.22)

thus high frequency errors in the shape are amplified in the residuals of the design equation. It is
this type of problems which is difficult to solve numerically by a single grid algorithm and for which
multigrid is an ideal accelerator.

Convergence Performance
The numerical test was done with one application of an FMG algorithm with 2 preliminary cycles,

4 optimization cycles per level and 10 relaxations on the coarsest level (the cycle which was used is
W(2,1)). The line search uses 10 local relaxations which are performed on the four adjacent to the
boundary grid lines (on all levels). The depicted residuals are the final residuals.
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Tables 2 and 3 give the convergence rate of the OSD Dirichlet problem for different mesh-sizes and
different curvatures of the target geometry: table 2 corresponds to the case f *(x) = 0.05 sin(21rx) and
table 3 to the case f *(x) = 0.2e-30(x-0.5)2 In both tables rx , rp and r,, correspond to the residuals of
the state, the costate and the design equations, respectively, and u — uexact is the error in the design
variables. In both cases the initial geometry was a flat boundary (r(x) = 0). The results show a
mesh-size independent convergence rate for both cases.

Numerical experiments show that one application of a FMG scheme, with four cycles per level,
was enough to reach the discretization error on all levels.

A Note on the Cell Centered Finite Volume Discretization
In problem (9.17)-(9.18), using a cell centered discretization, the transformation T'(9) vanishes

for the highest frequency, 8 = ir, resulting in high frequency errors in the shape variables. Therefore
we argue that for this problem a vertex grid is a preferable discretization.

Consider. a flat boundary (x axis) and a boundary perturbation in the y direction of the form
ri ' = e(-1)` where the index i stands for the ith point on the- boundary, and e is some number
smaller than the mesh size. As a result of such a perturbation the cell center position will not change
since the cell center coordinate is the average of the vertices coordinates. Therefore the solutions
of the state, costate and design equations will not detect the perturbation. In order to avoid the
oscillatory errors from entering the boundary a penalty on the cost function, or a preconditioner on
the design equation residuals, should be applied.

A. Optimal Control Problem, n = 0 	 B. Optimal Control Problem, 77 = 1
0

-2

-4

Log(Res)
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-10

Level 7 0
Level  +
Level  q
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-4
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-6

-8

-10

Level 7 O
Level 6 +
Level 5 q

^ QQ
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0	 2	 4	 6	 8	 10
	

0	 2	 4	 6	 8	 10
Vcycle	 Vcycle

Figure 4: Convergence rates. A and B depict the Dirichlet boundary control problem

with 77 = 0 and n = 1 respectively. The depicted residuals in A and B are the
average of the computed state, costate, and design equations residuals.
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1
v I TLA NUM I TLA NUM I TLA NUM I TLA NUM
1 0.327 0.320 0.166 0.166 0.454 0.439 0.333 0.276
2 0.264 0.255 0.153 0.152 0.283 0.278 0.111 0.105
3 0.218 0.188 0.120 0.100 0.236 0.229 0.078 0.067
4 0.189 0.181 0.101 0.080 0.206 0.202 0.061 0.035

Table 1: Two Level Analysis (TLA) versus tested (NUM) convergence rates for the
optimal control of Dirichlet data problem, for various number of optimization
steps, v, on the fine level.

level 11 rx11 2 llrp112 llruli2 111  - uexactll2

2 0.103e-15 0.872e-16 0.676e-07 0.142e-00
3 0.135e-03 0.713e-03 0.504e-03 0.674e-01
4 0.431e-04 0.283e-03 0.249e-03 0.326e-01
5 0.128e-04 0.429e-04 0.855e-04 0.157e-01
6 0.258e-05 0.967e-05 0.322e-04 0.744e-02
7	 1 0.445e-06 0.217e-05 0.123e-04 0.374e-02

Table 2: Convergence rates for the optimal shape design problem with a target
distribution given by f*(x) = 0.05sin(27rx)

level 1	 1 1 rx I l 2 1	 l l 
rp 

l l 2 I I ru l l 2 I I 
u- uexact I 1 2

2 0.349e-15 0.757e-16 0.218e-07 0.318e-01
3 0.673e-03 0.90le-03 0.713e-03 0.505e-01
4 0.281e-03 0.112e-02 0.334e-02 0.371e-01
5 0.337e-04 0.286e-03 0.100e-02 0.216e-01
6 0.156e-04 0.156e-03 0.757e-03 0.655e-02
7	 1 0.165e-05 0.335e-04 0.485e-03 0.38le-02

Table 3: Convergence rates for the optimal shape design problem with a target
distribution given by f*(x) = 0.2e-30(x-0.5)2
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SUMMARY

Solving boundary value problems with optimal efficiency requires adaptivity and multilevel tech-
niques. In [6] an implementation of the AFACx algorithm (cf. [8]) is presented that is based on
rectangular Cartesian grids. This implementation does not allow for the overlap of grids that lie
on the same level of refinement. We investigate the case in which these grids overlap. A standard
technique for overlapping grids is the Schwarz algorithm (cf. [12] and [13]). Some ways of using
the Schwarz algorithm in a standard multigrid scheme are presented. Also, a problem that arises
in some situations with non-aligned, overlapping grids is described. This situation comes up in
a natural way when the Schwarz algorithm is used as a relaxation scheme within a multilevel
algorithm. We identify the reason for the bad convergence and show that by more sophisticated
interpolation the difficulties can be overcome. Then we present a multiplicative Schwarz algo-
rithm for a large number of grids that has a high potential for parallelization. Finally we give
some numerical results for the FACx algorithm with overlapping grids on each refinement level.
The implementation of the described codes uses C++ and the array class libraries A++ and P++
(cf. [4], [5], and [11]). Using the A++/P-I + programming environment, it was possible to move
from a serial code to a parallel code within a few days.
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INTRODUCTION

The Schwarz algorithm is a. useful tool when it comes to adaptive refinement. The imple-
mentation of these complex algorithms can be kept simple by using regular grid structures for
the discretiza.t.ion. I-Iowever, any sophisticated refinement strategy will yield highly irregular re-
finement regions. In [5] and [10] an implementation of the AFACx algorithm is presented. This
implementation is based on block structured refinement grids that consist of non-overlapping reg-
ular Cartesian grids. There are situations where overlapping grids have advantages, since simpler
grids or substantially fewer blocks can be used. One example is the use of boundary aligned grids
along t,lic boundary wid a. Ca.rt.esian grid in the interior of a, domain as it has been used by Lin-
deu ( [i]) and Chessliire and Hensha.w ([3]). Complicated grids have to be constructed without
overlap. Another example is the refinement along a. shock with d cells orthogonal to the shock. If
rotated Ca,rtesia.n overlapping grids are used, a small number of blocks (depending on the curva-
ture) is sufficient. Lfsing non-overlapping Cartesian grids, the number of blocks is proportional to

wliich also introduces much overhead. Therefore we investigate the use of overlapping grids and
appropriate solution methods.

THE SCHWARZ ALGORITHM ON TWO RECTANGULAR GRIDS

The Classical Schwarz Algorithm

Given a, discrete problem as it arises from an elliptic partial differential equation, on two
recta.ngula.r overlapping grids Q' and Qb we have the following

Lhuh = fh In Q, n Qb

2th = gh on a(Q a nQh).

kVc define the well-known Schwarz algorithm ([12]) as follows:

multiplicative (algorithm 1-m)
1. initialize2th and u 
2. ith F- MG(Lh, u h , fh ) in 9a

3. zt h <- Iauh on ari a n Q1

4. 7th t— ^1 IG(Lh, uh, f)h' In S2h

5. 21111 E- IG uh on dSZ b n S2h

6. go to step 2

additive (algorithm 1-a)
1. initialize ith and uh

2.2th <- MG(Lh, 2th, fh) in 9h
3. uh . F- MG(L' u

n
h, fh)

n
in S2h

^l. uh F- Iauh on ^J Ga n , Lh

5. uh F- I6 uh on aQ1 n S2h

6. go to step 2

where ]LIG(, , ) is an a.pproximative solver on a rectangular grid (we use a multilevel V(2,1) cycle).
Numerical examples show that the convergence rates of both algorithms relate to each other as

paaa 
ti
_ pmuu
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Thus according to the convergence behavior algorithm 1-m is two times faster than algorithm 1-a.
On the other hand, in a parallel environment algorithm 1-a might turn out to be the more efficient
one due to its inherent parallel potential; that is, the solution step (step 2 and 3) can be performed
simultaneously. For algorithm 1-m, only parallelism in the MG solver (grid partitioning) can be
exploited.

The Schwarz Algorithm as a Smoother

Similarly to algorithms 1-m and 1-a we can define a Schwarz-like relaxation scheme in the
following way:

multiplicative (algorithm 2-m)
1. gb h 	 I^k (La , uh, fh) in Qh
2. uh <— Iauh on asza n Qh
3. uh <-- R^(Lh, I'll 

fh) in Sth

4. uh +— INuh on apb n Qa
5. go to step 1

additive (algorithm 2-a)
1. uh <— R^(Lh, uh, fh) In SZh

2. uh	 R^(L' uh, fh) in S2h
3. uh	 Iauh on aSZa fl S2h

4. uh <— Ib uh on as^b n Qa
5. go to step 1

where R(,,) is a given relaxation scheme on the rectangular grids (e.g., Gauss Seidel).

Table 1 shows numerical results for the following test problem: Laplace's equation on a rect-
angular domain that consists of two overlapping grids of 65 x 65 points each. Here we use the
standard 5 point stencil discretization, fh = 0 and gh = 0. For the algorithms 1-m and 1-a we use
a. V(2,1) multigrid cycle as an approximative solver. For the algorithms 2-m and 2-a we use k = 1
and a V(2,1) multigrid cycle on the whole domain. This means that we do standard coarsening
ou each of the grids and treat the two overlapping grids on each coarsening level as one level in
the multigrid sense.

Table 1: Convergence Rates and Overlap Geometry

ovl 1-m I	 1-a 2-m 1	 2-a

2h 0.807 0.899 0.606 0.788
4h 0.655 0.816 0.348 0.615

8h 0.432 0.667 0.154 0.384
16h 0.199 0.451 0.092 0.169

32h 0.057 0.211 0.049 0.051
Qa ^b

h	 h

For small overlap areas we observe that algorithm 2-m has the best convergence rate. Algorithm
2-a is comparable to algorithm 1-m, but due to the additivity it has a higher parallel potential.
Similar results hold for other overlap geometries ([1]).

A major disadvantage of the Schwarz-like relaxation scheme is the fact that on coarser levels
a. ])ad situation of overlap occurs in a natural way. Given two fine-level overlapping grids of the
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e— grid a
-s— grid b

same mesh size that are aligned, the situation illustrated in figure 1 is very likely to occur. At
the re-entrant corner in both the x- and the y-direction, the distance of the boundary of the grid
to the closest parallel interior grid line of the other grid which goes through the interior is small
compared with the mesh size. We observe a strong coupling between those two grid points that lie
on an interior boundary closest to the physical boundary of the domain and, thus, a convergence
rate close to 1.

Figure 1: Bad Overlap Geometry

An Example for the Case of a Bad Overlap Geometry

The following example illustrates the situation described above. We consider the simple case of
two overlapping grids of size 3 x 3 grid points. We discretize Poisson's equation on the union of the
two grids by using the standard 5 point stencil on each of the grids. We apply the multiplicative
Schwarz algorithm with an exact solver (steps 2 and 4 in algorithm 1-m). The transfer of boundary
values (steps 3 and 5 of algorithm 1-m) is done by bilinear interpolation.

The spectral radius of the multiplicative Schwarz algorithm ml^hwarz depends on the mesh size
h and the smallest distance d between the lines of the two grids:

XMIchwarz) _ (h h 4d)4

For d \, 0, clearly p ( MSchwarz) / 1, so this example suggests that the multiplicative Schwarz
algorithm is ill conditioned in the case of such overlap geometry. If we use quadratic interpolation
in the x- and y-directions Ave observe the same behavior. Numerical experiments with various grid
sizes lead to the same result.

An Approach to Improve the Convergence in the Case of a Bad Overlap Geometry

If ive modify the interpolation used to transfer the interior boundaries near the physical bound-
ary of the domain, ive can overcome the bad convergence behavior that arises from a bad overlap
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geometry. The bad convergence rate is due to the strong coupling between the two points that
are closest to the re-entrant corner. As illustrated in figure 2 for the case of linear interpolation,
we use p2 and p3 to interpolate the value on pl. Here the value on p2 is obtained by linear
interpolation from the values on p4 and p5. The value on p3, in contrast to the interpolation used
in the interior of the domain, is an exact boundary value, or it can be obtained by using the value
on the closest grid-point on the physical boundary.

Figure 2: Interpolation of Boundary Values near a Corner

This strategy can. be extended to higher order interpolation. In that case, the value on p3 has
to be obtained by extrapolation from values on the physical boundary of the domain or must be
given as a boundary value in the corner. Numerical examples show that, for instance in the case
of linear interpolation in both the x- and y-directions, the use of the described modification of the
interpolation yields a convergence rate that is smaller by a factor of 0.5 than the convergence
rate with the usual interpolation.

MULTIPLICATIVE SCHWARZ ALGORITHM ON MORE THAN TWO
RECTANGULAR GRIDS

In general, a refinement algorithm that produces overlapping rectangular grids will produce
more than two overlapping grids. Here we show one way to get the benefits of the multiplicative
Schwarz algorithm in a parallel environment. The idea is an extension of the coloring idea in
relaxation schemes. In order to define a 4-step multiplicative Schwarz algorithm we have to define
an overlap coloring on a family of overlapping rectangular domains jQ%= 1 ... k•

Definition 1 (overlap coloring). We call : IQ'} --+ N an n-overlap coloring if for two domains
52 2 and 52j , with 10 j and Q2 n Qj 54 0,

and
05{52' }Z_1 ... k) _ { l ... n}

hold.

The following theorem is an application of the well-known four-color theorem.
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Theorem. 1 Let U i-1 ... k St e be a connected set. If

1. vi, je {1 ... k},i 7^ j: f2' — Q3 is a connected set

2. Vi, je {1 ... k} with Q i n Sty 0 0, we have Q i n S21 	 Uhfi ... k}-{i,,j} f2l

then there exists a 4-overlap coloring for JQ%= 1 ... k-

Proof. First we construct a family of mutually disjoint open sets {fV}i=1 ... k with

k	 k

U	 UPi.
i_1	 i= 1

This is done by defining the S2 i recursively as

i-1

St l =52 1 ,	 SZi = St i — U Qi.
j=1

Now we show that f2 i is connected for all ie{1 ... k}. For ie f 1, 2} this is trivial, for i > 3 we show
this by contradiction. Suppose there is an ie{3 ... k} such that fV is not connected, then since
bj, ke{1 ... k}, j 54 k, pi q nk and since all Q' are rectangular we can conclude that there is a pair
of indices j, k 54 1 such that Q j n pk C D', which is a contradiction to the second hypothesis in
the theorem. Since the f2 i are not empty we can apply the four-color theorem to obtain a coloring
of the constructed domains with four colors. Now we can use this coloring for f Q i J i-1 ... k and by
construction of the S' this is a 4 coloring of the f2'. 0

This result also holds if we replace the domains by rectangular grids. So that we can obtain
a 4-coloring of a family of overlapping rectangular grids and since now grids of the same color do
not overlap we can solve on those nonoverlapping grids simultaneously and process the groups of
equally colored grids in a multiplicative manner. Given a family of overlapping grids f Qh}i =1...k

and a 4-coloring for them we can define the 4-step multiplicative Schwarz algorithm in the following
way:

1. Initialize u', i. = 1 ... k.

2. For c=1 ... 4

(a) uh <- - A4G(L' , u'h , fh) for all Z* such that SZhE^-1(c).

(b) Update the boundary points of all grids that intersect with the grids of color c.

In the context of adaptive grid refinement this algorithm yields a higher parallel potential than
multiplicative processing of the grids. We have not investigated the numerical properties of such
an algorithm, but the numerical results with two overlapping grids suggest that a multiplicative
processing of the refinement grids has better smoothing and convergence properties than an ad-
ditive algorithm. Theorem 1 provides only the existence of a 4-overlap coloring under fairly weak
conditions in two dimensions. In three dimensions such a general result does not hold.
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THE SCH AR.Z ALGORITHM AS A SMOOTHER IN FACx

Isere we want to investigate the Schwarz algorithm as a smoother in the FAC algorithm. A
good reference to FAC and AFAC is [8] where a detailed description of the two algorithms is
given. In [6] an implementation of the AFAC algorithm is described that is based on regular
block-structured grids. We extend this idea in such a way that our implementation allows for
overlap among the grids that represent one level of refinement. As a relaxation scheme we use
algorithms 2-m or 2-a. In table 2 we give some numerical results for the FAC algorithm on a grid
as in figure 2.

1 V

Figure 3: Grid Geometry and Exact Solution for Test Problem

Table 2: Convergence Rates for Test Problem

additive multiplicative
levels (2,1) (4,1) (2,1) (4,1)

2 0.131 0.121 0.125 0.119
3 0.131 0.116 0.117 0.116
4 0.118 0.119 0.104 0.119

We solve Laplace's equation (standard 5 point discretization) on the unit square with FAC using
algorithm 2-m or 2-a as a relaxation scheme on the refinement levels. Within the relaxation
scheme we use Gauss-Seidel relaxation. The left picture in figure 3 shows the structure of the
refinement levels, and the right picture shows a function plot of the right hand side that we used
in this example. The shape of the function plot makes the region of refinement that we chose seem
reasonable. In table 2 we give the average convergence rate after 10 iterations of a FACx coarse-
to-fine cycle using different numbers of relaxations. We observe that there is hardly a difference
between the additive and the multiplicative Schwarz relaxation. This result was already observed
in the comparison of algorithm 2-m and 2-a used in a multilevel scheme. We also observe that a
small number of relaxations on each refinement level is sufficient to obtain a convergence rate that
is comparable to the theoretical convergence rate of FAC ([9]).
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OBJECT ORIENTED IMPLEMENTATION

In our implementation we use C++ and the M++, or A++/P++ array classes (cf. [4], [10],
and [11]). M-} + is a commercial serial array class that provides functionality similar to Fortran 90.
A++ is an array class developed by Daniel J. Quinlan at the Los Alamos National Laboratories.
The user interface is compatible with M++, but in contrast to M++ the implementation focuses
on the speed of the code. The first version of P++, a parallel array class that uses the SPMD
programming model, was developed by Max Lemke and Daniel J. Quinlan and was based on the
M++ class library. A new implementation of P++ based on A++ is currently being developed
by Daniel J. Quinlan.

Due to the object oriented features of C++ and the possibility of using A++ array statements,
the implementation was simplified significantly. We employed these features by dividing the FACx
code into the following parts:

s A class that provides simple multilevel functionality.

e A class that provides the functionality for the Schwarz algorithm (e.g. overlap information
and transfer of internal boundaries of grids).

• A class that provides the functionality needed for the FACx algorithm (e.g. transfer operators
between the refinement levels).

This division made it very simple to change the code from FACx to MLAT [2] since only changes
in the FACx class had to be done. This illustrates the advantages of an object oriented implemen-
tation. The code development and maintenance becomes significantly simplified.

To test the serial version of the code we used AT&T C++ and GNU C++ on a Sun SPARC-
sta,tion 10. Because of the compatibility of A++ and P++ we were able to produce a parallel
version of our code for the iPSC/860 within a few days. This accomplishment shows impressively
the advantages of the use of an array class like A+ +/P++. Due to the preliminary status of the
development of A++ and P++ at the time of the implementation, we were not able to obtain
any interesting performance results in a parallel environment. Nevertheless, we conclude that the
approach of using object oriented programming and the use of parallel array classes can be of
significant use and can speed up the code development process.

CONCLUSIONS

We showed that the Schwarz algorithm can be used as a relaxation scheme in a very efficient
way. It has some advantages over the approach with block structured refinement grids that consist
of nonoverlapping rectangular grids. In general, one needs a smaller number of rectangular grids
to cover a given domain if overlap of the grids is allowed. The fact that a larger number of
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points is needed to cover a domain if overlap is allowed may be less of a disadvantage in a parallel
environment. The 4-step multiplicative Schwarz algorithm further increases the existing parallel
potential of the additive Schwarz algorithm if it is used on a large number of grids. The problem
of bad overlap geometry does not occur when FACx or AFACx is used with regular grids and
aligned refinement grids. Bad overlap geometry can be overcome by a slight modification of the
interpolation that is used for the transfer of the interior. boundary values in the Schwarz scheme.
Finally, we can report very positive experiences with an object oriented implementation of a
complex code.
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SUMMARY

This paper develops a least-squares approach to the solution of the incompressible
Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equa-
tions, we recast the Navier-Stokes equations as a first-order system by introducing a velocity
flux variable and associated curl and trace equations. We show that the resulting system is
well-posed, and that an associated least-squares principle yields optimal discretization error
estimates in the Hl norm in each variable (including the velocity flux) and optimal multigrid
convergence estimates for the resulting algebraic system.

INTRODUCTION

In [3], Cai, Manteuffel, and McCormick developed least-squares functionals for first-order
system formulation of the Stokes equations (generalized by a pressure-perturbed form of the
continuity equation to allow for linear elasticity). Full ellipticity was established of the L 2 -
based least-squares formulation in n dimensions by showing that the homogeneous form of

'This work was sponsored by the Air Force Office of Scientific Research under grant number AFOSR-
91-0156, the National Science Foundation under grant number DMS-8704169, and the Department of Energy
under grant number DE-FG03-93ER25165.
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the functional is equivalent to the (HI ) n2 +n+ 1 norm applied to the first-order system vari-
ables (the new n 2-component velocity flux variable, the n-component . velocity variable, and
the scalar pressure variable). This immediately yields optimal discretization error estimates
for standard finite elements in this Hi product norm, as well as optimal convergence esti-
mates for multigrid methods applied to the resulting discrete systems.

The aim of this paper is to extend this methodology to the primitive variable form of
the incompressible Navier-Stokes equations in two and three dimensions. We do this in the
same way that the Stokes equations were reformulated based on the velocity flux variable,
but now we include the nonlinear convection term in the first-order system. We recast the
Euler-Lagrange equations for the least-squares principle in the canonical form F(A,U) _
U+T T . G(A, U) = 0, where T is the least-squares solution operator for the Stokes equations.
This allows us to apply conventional abstract theory and our Stokes results to obtain optimal
discretization and multigrid solution estimates for each variable (including velocity flux) in
the Hl norm.

These are the first Hl product ellipticity results for the Navier-Stokes equations that ad-
mit the practical velocity boundary conditions. Earlier work on the Stokes equations by
Chang [5] used an acceleration variable analogous to our velocity flux; however, veloc-
ity was eliminated from the first-order system, which seems to prevent its extension to the
Navier-Stokes equations, and, in any case, the formulation is limited to two dimensions. In
[2], Bochev and Gunzburger developed a least-squares approach for the velocity-vorticity-
pressure form of the Stokes equations, but showed that it does not allow H l product ellip-
ticity in the velocity boundary condition case (a mesh weighting was introduced in the func-
tional to obtain optimal estimates). Finally, Bochev [1] extended this methodology to the
Navier-Stokes equations, but established H l product ellipticity only for nonstandard bound-
ary conditions.

This paper is organized as follows: in the next section, we introduce the Navier-Stokes
equations and their first-order form; in Section 3, we develop the associated least-squares
principle; in Section 4, we recast this principle in canonical form and apply a corresponding
abstract theory to derive error estimates; in Section 5, we establish well-posedness of the
least-squares canonical form based on regularity assumptions for the original Navier-Stokes
equations; and, in the final section, we develop a simple but optimal multigrid solver for
the resulting discrete system. Throughout the paper we use bold face to denote vectors and
underlined bold face style to denote matrices.

VELOCITY-PRESSURE-VELOCITY-FLUX NAVIER-STOKES EQUATIONS

The dimensionless equations governing the steady incompressible flow of a viscous fluid
in bounded domain Q C Rn , n = 2, 3, may be written in the form

	

—vZ^u -I- (Vut ) tu +Vp = f in Q	 (1)

	

Vu = 0 in Q,	 (2)

where u, p, and f denote velocity, pressure, and given body force, respectively, and v is the
inverse of the Reynolds number, A. The velocity variable u is a column vector with scalar
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components u i , so that Vu' is a matrix with columns Vui. Together with equations (1)-(2),
we consider the velocity boundary condition

u=0 onl', (3)

where r is the boundary of Q. For uniqueness, we also impose the baseline pressure condi-
tion

J pdQ = 0.	 (4)
n

To formulate the least-squares method, equations (1)-(2) will be transformed into an equiv-
alent first-order system. The first step in this process is to introduce the velocity flux variable

U = Vut ,	 (5)

which is a matrix with entries Ui; = au;/axi, 1 < i, j < n. Then

(OtU) t = Du

and it is easy to see that the new variable satisfies the identities

trU=O, OxU=O inQ

and
n x U= 0 on F,	 (6)

where trU = E l Uii and n is the outward unit normal on l'. Furthermore, the nonlinear
term in (1) takes the particularly simple form

(Dut ) tu = Ut U.

As a result, (1)-(2) can be replaced by the first-order system

—v(VtU) t + Utu + Op = f in Q (7)
Vu = 0 in Q (8)

U — Vu' = 0 in Q (9)
V(trU) = 0 in Q (10)
0 x U = 0 in Q (11)

along with conditions (3), (4), and (6).

The second step in the formulation of a suitable first-order system is to scale the mo-
mentum equation by the Reynolds number and replace the data f by functions with known
boundary values. The resulting form of the equations will provide insight into the overall
approach and facilitate error analysis of the corresponding least-squares method. For this
purpose, we assume that f E L 2 (Q)n and consider the unique solution (uo, po) of the scaled
Stokes problem

—Au + pp = if	 in Q
Vtu = 0	 in Q

u = (12)0	 onr
fu pdQ = 0.
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Equation (7) is then replaced by

— (vtU) t + 1 ( IJ + U ) t (u + uo) + Vp = 0 in f2,	 (13)
v

which determines the perturbation (U, u, vp) from the Stokes solution (®uo, uo, vpo). To
summarize, our reformulation yields the system

—
(VtU)t + 1(U + Uo)t(u + uo) + ®p = 0 in 0 (14)V

vtu = 0 in Q (15)
U — vut = 0 in 0 (16)
v(trU) = 0 in fl (17)
® x U = 0 in Q. (18)

LEAST-SQUARES METHOD

The least-squares functional for first-order system (14)-(18), (3), (4), and (6) is defined
as follows:

J(U, u, p) = II — ( otU) t + v (^? + U ) t ( u + uo ) + Opllo

+ II ®tu llo + 11E out llo + Il o ( trU )11 2 + Il o x Ullo .	 (19)

Note that our scaling of (7) by the Reynolds number is equivalent to the use of an L 2 norm
weighted by A for the residual of this equation; see also [3].

To define the least-squares method, we need a suitable minimization problem. Let

X = {(U, u,p) E H l (
p

) n2 x H1 (Q)' x H'(o)nLo(fZ) 
I 
u = 0, n x U = 0 on r} , (20)

where L2 (f2) = {p E L2 (Q )I fn pdQ = 01. Then the least-squares principle for functional
(19)is

Find (U, u, p) E X such that

J(U, u, p) < J(V, v, q) for all (V, v, q) E X.	 (21)

It is easy to see that the Euler-Lagrange equation for this minimization problem is given
by the variational problem

Find (U, u, p) E X such that
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((U, u , A (V, V , p)) _
(—(Vtu)t + 1(U + u ) t (u + uo) + Vp,

V

l— (VtV) t -+ U ((U+ U ) tv -+ V t (u + uo)) + ®q) o +

(®tu ' ®'V)0 + (0(trU), V(trV))o +

W — Vu t , V — ®Vt) o + (V x U, V x V)o = 0	 (22)

for all (V, v, q) E X.

Let Xh denote a finite-dimensional subspace of X. Then the least-squares discretiza-
tion method for the Navier-Stokes equations is defined by the following discrete variational
problem:

Find (Uh , uh , ph ) E Xh such that

'6 ((V, uh , ph ), (Vh , Vh , ph )) = 0 for all (Vh , Vh , q h ) E Xh .	 (23)

It is easy to see that the discrete variational problem (23) corresponds to the necessary con-
dition for the following discrete least-squares principle for (19):

Find (Uh , uh , ph ) E Xh such that

J(Uh , uh ,ph ) G J(Vh , Vh , qh) for all (Vh , Vh , qh ) E Xh.	 (24)

For the space Xh , we assume the following approximation property: there exists an integer
d > 0 such that, for all U E Hd+1 (Q) n2 , u E Hd+1 (Q)n , and p E Hd+1 (Q), one can find
(Uh, uh , ph) E Xh with

IIU — Uh llr + Ilu — uh lir + II p — ph ll r C Chd+1_r (IJUJId+1 + Il u lid+1 + Ilplld+l), (25)

r=0, 1.

DISCRETIZATION ERROR ESTIMATES

The main goal of this section is to derive error estimates for least-squares method (23).
For this purpose, we show how to cast nonlinear problems (22) and (23) in the respective
canonical forms

F(A, U) = U + T • G(A, U) = 0	 (26)

and

Fh(a,Uh) = Uh +Th G(^,Uh ) = 0.	 (27)
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This will allow us to apply the abstract approximation theory of [6]. The following function
spaces will be needed in the sequel (with some nonnegative integer m):

Xm = [Hm+l (Q)n2 x Hm+1( Q)n x Hm+1(Q)] nX,	 (28)

Y = X* ) 	(29)
Z = L3/2(p ) n2 x L3/2(Q)n x L3/2(n) 	 (30)

where X* denotes the dual of X with respect to the L 2 inner product. The approximation
in (27) is introduced by way of the operator Th. Therefore, the error estimates will depend
largely on the nature of the operator T and its approximation Th . The basic idea is to define T
to be the least-squares Stokes solution operator and Th to be its finite element approximation.
The approximation properties of these choices have been studied in [3]. Now, once T is
known, the operator G is then defined by the remaining terms in (22). The key is that the
corresponding nonlinear part for Th is also G, as we assert in our first lemma.

With this in mind, we make the identifications U = (U, u, p), uh = (Uh , uh , ph ), V =
(V, v, q), Vh = (Vh, Vh' qh ), and A = 11v, and we assume that A E A, where A is a
compact subset of R+ . We then introduce the following:

T: Y H X defined by U= T g for g E Y if and only if

BS(u, V ) = (— (vtU) t + vp, — (vtv)t + vq)o
+ (vtu, vtv)o + (v(trU), v(trV))o

+ (U — vu t , V — vvt)o + (v x U, v x V)o

= (gl, V) + (92, v ) + (93, q )	 (31)

for all (Y, v, q) E X;

Th : Y H Xh defined by uh = T g for g E Y if and only if

'US(uh, Vh) = ( gl, Vh ) + (92, Vh) + (93, qh) for all (Vh , vh, q h ) E Xh i	 (32)

and

G : A x X —> Y with g = G(A, U) for U E X if and only if

(91, V) + (92, v) + (93, q)

(—(vlu)l + vp, v ((U+ U )tv +Vt (u + uo))) o +

( v (U + Uo)t(u + u°)
—(v tV)t + vq + v ((U + U ) tv + Vt (u + uo )))

o	
(33)
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for all (V, v, q) E X.

We then have the following equivalence.

Lemma 1. Assume that T, Th, and G are defined by (31), (32), and (33), respectively.
Then nonlinear problem (22) is equivalent to (26) and discrete nonlinear problem (23) is
equivalent to (27).

Proof. Assume that U = (U, u, p) solves problem (26) with T and G given by (31) and
(33), respectively. Then U = —Tg if and only if

8s (U, V) = (g, V) for all V E X,

and g = G(A, U) if and only if (33) holds. It follows that U also solves variational problem
(22). Conversely, if U solves (22), let g be defined by (33). Then Bs(U, V) = (g, V) for
all V E X, i.e., U = —Tg. Thus, (22) and (26) are equivalent. Proof of the equivalence of
(23) and (27) is identical. q

The error estimates for the least-squares method (23) can now be derived from the ab-
stract approximation theory of [6]. Below we state the main result of this theory in terms
of general T and Th but specialized to our needs. Here we let DuG(A, U) and DuF(A, U)
denote the Fr6chet derivative of G and F with respect to U.

Theorem 1. Assume that I(A,U(A)) I A E A} is a branch of regular solutions of (26),
i.e., that A H U(A) is a continuous map A H X and that DuF(A,U) is an isomorphism
of X, where F(A, U) = 0 is abstract form (26). Furthermore, assume that T E L(Y, X)
and that G is a C 2 map A x X H Y, such that all second derivatives of G are bounded on
bounded subsets of A x X. Finally, assume that there exists a space Z C Y, with continuous
imbedding, such that DuG(A, U) E L(X, Z) for all A E A and U E X. If approximate
problem (27) is such that

	

lim II(T
 — Th) g llx = 0	 (34)

for all g E Y and

	

li .m 
IIT — ThlI L(Z,X) = 0 ,	 (35)

then:

1. there exists a neighborhood 0 of the origin in X and, for h sufficiently small, a unique
CZ function A H Uh (A) E Xh such that {(A, uh (A)) I A E A} is a branch of regular
solutions of the discrete problem (27) and U(A) — U h (A) E O for all A E A;

2. there exists a positive constant C, independent of h and A, such that

Iuh (A) - u ( A )Iix < C II (T - Th ) G ( A , u ( A ))Il x	 (36)

uniformly in A;
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3. if the regular branch is such that U(A) E X- for some integer m > 1 and d
min{d, m}, where d is the integer from (25), then

IIU( A ) — Uh ( A )II1 + 11u(A) — uh ( A)II, + 11p(A) — ph(A)II,

< Chd (lll ( A )Ild+l + Il u ( A )Ila+l + Il p( A )Ild+l) .	 (37)

In the next few lemmas, we verify the hypotheses of Theorem 1 for our least-squares
formulation. We begin by establishing essential properties of the operators T and T h , which
we henceforth assume are defined by (31) and (32), respectively.

Lemma 2. T E L(Y, X) and Th E L(Y, Xh).

Proof, The form Bs( . , -) is continuous and coercive on X x X (see [31) and, by virtue
of the inclusion Xh C X, it is also continuous and coercive on X h x Xh . Furthermore,
(g, V) defines a continuous functional on X E) V f-+ Rfor each g E Y. Thus, the Lax-
Milgram Theorem implies that, for all g E Y, variational problems (31) and (32) have
unique respective solutions U E X and Uh E Xh , i.e., T : Y " X and Th : Y H Xh are
well defined linear operators. From

C IIU I1 2<-
13

s(u , u) = (g,u) —< llgllYllullx,

it follows that
IlTgllx = Ilu llx < CllgllY,

i.e., T is in L(Y, X). The proof that Th E L(Y, Xh ) is similar. o

Before continuing with the approximation properties of Th , consider the choice of Y and
Z in (29) and (30). When Z C Y with compact imbedding, the proof of (35) can be sim-
plified. First, note that Y is not identical to a product of H -1 (Q) spaces. For instance, with
U; denoting the ith column of U, then U t E Ht (Q) = {v E H 1 (Q)" In x v = 0 -on I'} ,
whose dual is not H- 1 (S2) n . As a result, Z will be compactly imbedded in Y if L3I2(11)
is compactly imbedded in the duals of Ho (Q), Ht (Q), and H 1 (Q). The first imbedding
follows from Sobolev's Imbedding Theorem; see, e.g., [6]. Compactness of the other two
imbeddings can be shown along the following lines. Since components of H t (Q) and the
space HI (Q) are compactly imbedded in L 3(Q) and the adjoint of a compact operator is
compact, it follows that L3/2(n)n and L3/2 (9) are imbedded compactly in the dual spaces
of Ht (0) and H1(Q).

Lemma 3. Convergence properties (34) and (35) hold. If, in addition, g E Y is such
that Tg E X' for some m > 1 and d = min(d, m), where d is the integer from (25), then

11 (T — Th)g llx <— Chd IlTgllxa+1. 	 (38)

Proof. First note that (35) follows from (34) when the imbedding Z C Y is compact.
It thus suffices to establish (34); that is,

I(T—Th) g llx= IIU — Uhlll +llu — 
uh lll+IlP — Ph ill --+0
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when h —+ 0. Recall that T : Y H X. Therefore, from g E Y it follows that U E X; that
is, U E Hl (n)n% u E Hl (0)1 , and p E Hl (Q). Then the above limit follows from C;ea's
Lemma and the standard approximation result for v E H l (Q):

lim inf IIv — vh II1 
= 0.

h-+0 vh

(See [4] for an analogous result for scalar elliptic equations.)

To prove the second part of the lemma, suppose U = Tg E XI . Then an immediate
consequence of the continuity and coercivity of Bs( . , •) is the Stokes error estimate

II(T—Th)g llx = IIU—Uh lll+II U — uh lll+llp—ph lll < Chd (IIUIl +I + II u IIa+l + IIPIId+1)

0

The only hypotheses of Theorem 1 that remain to be verified are the assumptions con-
cerning the nonlinear operator G. For this purpose, we need the weak and strong forms of
the first Fr6chet derivative DuG(A, U) and the weak form of the second Fr6chet derivative
Du2 G(A,if). To determine the weak form of DuG(A,U), let 1. E X, substitute U + 0 into
(33), and expand about U. This yields the following weak representation of DuG(A, U):

DuG(A,U) : A x X --; Y defined by g = DuG(A,U)lf for if E X if and
only if

(91, V) + (92, v) + (93, q ) =

(— (Vtu)t + VPI 1
(Utv + V

tu)) +
V	 0

Ov
tmt + VA 1 0 + U )ry + r(u + uo))) +

(v (U + Uo) r (u + uo) ' v1  (Utv + 
Vtu)) o +

(
1 ((U + u )tf, + MU + uo))V

—(vtv)t + vq + v 0 + U ) tv + Vt(u + uo)))o
	

(39)

for all (V, v, q) E X.

The strong form of DuG(A, U)O can be found from (39) using standard integration by
parts:

t
91 = vu (—(Vtu)l + vp + v 

(U + U0)t(u + uo))

ll
+ v (u + u°) 

Oviot + 
vp + v ((U + Uo)tfi + t t (U + u0) t) I

+ 1v ((U + Uo)tu u+	 + uo)) t ,	 (40)V
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92 = v U (— (VIU )t + VP + v ( 1 + U)t(u + uo))

+ v (U + U) (— (V t-M t + ®p + v ((U + U ) tu + U t (u + uo)
	

(41)

	

93 = — 1Vt (al + EO N + Mu+u0))	 (42)
V

for all (V, v, q) E X.

Finally, the weak form of the second Fr6chet derivative is

DUG(A, U) : A x [X x X] --+ Y defined by g = DuG(a, UXU, U] for U E X
if and only if

(91, U) + (92, v) + (93, q ) =
t

(-(°tu)t +®p+ v

 

Oh (u + u° ) + (U + 
U )tu)

v 
(VV + Vtu))o +

V (—(Vticj)t+vp+V(U+uo)+(!!+--U-O)tf" — (utv +vt^.U)0)  +

(1

(ktu
+ 

^t
U )uV

—(vtv)t + vq + v 
((U + U 

)tu 
+ Vt(u + 

uo)) I o	
(43)

for all (V, v, q) E X.

The next lemma summarizes the technical results that we use in the sequel.

Lemma 4. Let D= denote the derivative with respect to the i th coordinate variable in Il~`,
1 < i < n, and assume that u, v, w, and z are in H' (fl). Then

fst 
Di u v w dO1 < C^luII l 11 v IIl IIWIII ,	 (44)

—

1<i<n,and

	

jo u v w z dQI < C II U IIl 11 V II1 lI w lll II Z IIl •	 (45)

The mapping (u, v) ►—r uv is a continuous bilinear mapping from L2 (9) x H'(Sl) into
L3/2 (Sl) and the mapping (u, v, w) ^-4 uvw is a continuous trilinearmapping from H1 (fl) x
H'(Q) x Hl (f2) into L3/2(Sl). That is,

IIuvIIo,3/2 < CIIUIIo,211vll1,2 forall u E L2 (Q) and v E HI (Q),	 (46)
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11uvwllo,3 /2 <_ C II u I11,21I v I11,211 w II1,2 for all u, v, w E HI (Q) .	 (47)

Proof. The first part of the lemma follows easily from the imbedding H1 (Q) C L4(Q)
in two and three dimensions and the Holder inequality. The second part follows directly
from a result in [6]. q

For a more general version of (46) and (47), see [7].

In the next lemma, we establish properties of G that are required for the validity of the
approximation result in Theorem 1.

Lemma 5. Assume that the mapping G is defined by (33). For X, Y, and Z given by
(20), (29), and (30), respectively, the following are true:

1. For all U E X, DuG(A, U) E L(X, Z).

2. The second Fr9chet derivative Du2G(A, U) is bounded on bounded subsets of A x X.

Proof. To prove 1, consider strong form (40)-(42) of DuG(A, U). By assumption, U E
X; that is, U E HI (fl)n2 , u E H1 (SZ) n , and p E H' (Q). Now each of the equations (40),
(41), and (42) consists of terms of the form D=u v and uvw, where u, v, and w belong to
HI (fl), so the second part of Lemma 4 implies that (9 1 , 92, 93) E Z. Using (46) and (47),
it also follows that

11DuG(A,U)ullz <_ Cllullx,

i.e., that DuG(A,U) E L(X, Z).

To prove 2, consider weak form (43) of the second Fr6chet derivative. Assume that

(A, U) belongs to a bounded subset of A x X and let LI E X, and U E X be arbitrary.
Then it is not difficult to see that weak form (43) involves only terms of the form D;uvw
and uvwz, where u, v, w, and z belong to H1 (Q). Thus, each term can be estimated using
(44) or (45):

I(gl, v)1 <_ Cl(U , uo, A)(Ilu llx + Ilu llx)llvlll ;

1(92, u)1 <_ C2(U,Uo,A)(I10llx +IIUIIX)Ilu111;

1(93, q)I <_ C3(U , Uo, A )(liu llx + IlullX)11g111,

where C; is polynomial function of Ilu llx, lluollx, and the parameter A. It then follows that
DUG(A, U) is bounded in the norm of L(X, L(X, Y)) on all bounded subsets of A x X. q

This completes verification of all assumptions of Theorem 1. As a result, we can con-
clude that error estimates (36) and (37) hold for the least-squares finite element approxima-
tion as long as problem (22) has a regular branch of solutions with sufficient regularity.
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WELL-POSEDNESS OF THE LEAST-SQUARES FORM

In this section, we address the question of the well-posedness of least-squares formula-
tion (22). More precisely, our aim is to show that if {(a, (u(A), p(A))) I A E A) is a branch
of regular solutions of original velocity-pressure Navier-Stokes problem (1)-(4), then

I(A, (U(A), u(A),p(A))) I A E AI

is a regular branch for variational problem (22). This is an important question not only be-
cause application of Theorem 1 requires a regular branch, but also because it would assert
that the least-squares formulation does not introduce bifurcation phenomena that are not al-
ready present in the original equations. The question is also nontrivial since the equivalent
strong form of (22) now involves derivatives of nonlinear equations (1)-(2).

Assume that (u(A),p(A)) E Ho(Q) n x QQ) yields a regular branch of solutions of
(1)-(4), i.e., for every A E A the pair (u(A), p(A)) is a nonsingular (weak) solution of the
Navier-Stokes equations. We recall the result of [6] that (u, p) is a nonsingular solution if
and only if the linearized problem

—vA6 + (7u t ) t u + (Vut ) t u + Op	 f* in Q

V'6 = 0 in Q

u = 0 on I'

pdS2 = 0
n

has a unique (weak) solution (u, g)) E Ho (Q) n x QQ) for each f* E H -1 (Q) n . Specialized
to our needs, the nonsingularity assumption asserts that the problem

	

—vAu + (ou t ) t (u + uo) + (V(uc + uo)) tu + VP = f* in 9	 (48)

	

Vt u = 0 in fl	 (49)

	

u = 0 on F	 (50)

	

f
pdQ = 0	 (51)

n

has a unique (weak) solution (u, p) E Ho(Q)n x Lo(Q) for each f* E H-1 (D)n , where
(uo, PO) solves Stokes problem (12) with the original data f.

Under this assumption, well-posedness of (22) will follow if we can establish that U(A)
(U(A), u(A), p(A)) with U(A) _ Vu(A) t is a nonsingular solution of (22) for all A E A. In
terms of canonical representation (26), this amounts to showing that the linearized mapping
DuF(A, U) is an isomorphism of X; that is, the linearized equation

DuF(A,U)1f = (I +T • DuG(A,U))Il = V	 (52)

has a unique solution 1f E X for all V E X.

Compactness of T : Z H X follows from (35), which asserts that it is a uniform limit
of compact operators Th. Now, from Lemma 5, we have DuG(A,U) E L(X, Z), so the
operator T • DuG(A,U) : X +-+ X is compact. Thus, the Fredholm alternative can be
applied to (52), and we can assert that DuF(A,U) is indeed an isomorphism of X if and
only if the homogeneous equation
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DuF(A,U)If = (I + T • DuG(A,U))I{ = 0 	 (53)

has only the trivial solution 1I = 0 in X. This fact is established in the next lemma using
our nonsingularity assumption on (u(A), p(A)).

Lemma 6. Assume that (u, p) is such that linearized equations (48)-(51) have a unique
solution for each f* E II- 1 (Q) n . Then homogeneous problem (53) has only the trivial so-
lution.

Proof. Using definitions (31) and (33), one can easily verify that (53) is equivalent to
the variational problem

Find (U, fi, p) E X such that

B((U, fi, p),(v,v,p))

—(o tu) t + 1 ((u + U )tfi + fit ( + uo» + op,
v	

(	 l
—(VtV)t + v 

((U + U )tv + Vt(u + uo)) + Vq/o +

\Vtu' Vtv)o+ (V(trU ),V(trV))o

(U — Vfi t , V — Vv t) o + (V x U, V x V) o = 0	 (54)

for all (V, v, q) E X.

Variational problem (54) is evidently the Euler-Lagrange equation for the minimization
problem

Find (IJ, fi, p) E X such that

J, (U, fi, j)) < J1 (Y, v, q) for all (V, v, q) E X,	 (55)

where

JIM, a , p) = it — (otU) t + L ((U + 10) t fi + U t (u + uo)) + ^pllo

+ Ilotfi ll0 + II U — Vfitllo

+ II V ( tru )Ilo+ JI V x Q1 2 	(56)

Thus, nonsingularity of (U, u, p) would follow if we could show that (55) has no nontrivial
minimizers. Assume the contrary. Then the nontrivial minimizer (U, u, p) satisfies

	

—(V tU) t + 1 ((u + u ) t fi + U t (u + uo)) + VP = 0	 (57)
V

	U - Vfi t = 0	 (58)

	

Vtfi = 0.	 (59)

Then from equations (57) and (58) and identities U = Vu' and U = Vuo, we conclude
that the pair (fi, p) satisfies
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—v 'Lu + ( ® ( u' + uo)) tu + (Dut ) t (u + uo) + VP = 0.

Now the premise that & u, P) is nontrivial, together with (58), implies that (u, P) is non-
trivial. Since (59) is also satisfied, then (u, P) is also a nontrivial solution of (48)-(51), which
is a contradiction. q

MULTIGRID SOLVER FOR THE DISCRETE SYSTEM

Here we consider a simple iterative method applied to (27) and show that it converges
linearly with bound uniform in h and A. Our approach rests on using a multigrid precondi-
tioner for Th and observing that the operator in (27) is well-conditioned uniformly in h and
A. The development is greatly simplified by basing the analysis on the inner product Bs( . , -)
defined in (31) and by choosing elements of the multigrid-based algorithm that are very easy
to analyze. (Most assumptions are made only for convenience; more general conditions can
be handled with more cumbersome but straightforward arguments. However, allowing for
the more effective direct treatment of the nonlinearity within the multigrid process would
require much more sophisticated analysis tools than we use here.)

Let Mh be defined so that Uh = Mhg represents one or more cycles of (additive or
multiplicative) multigrid applied to problem (32), starting from the initial guess U h = 0.
For simplicity, assume that Mh is symmetric in the 13s(•, •) inner product (e.g., Mh may
consist of one relaxation of point Gauss-Seidel with a given ordering before coarsening and
one relaxation with the reverse ordering afterwards). Again for simplicity, assume that Mh
is so effective that

613s(ThVh' Vh) .5 	
Vh) 

:5 	 Vh )	 (60)

for all Vh E Xh and for some positive constant b independent of h and A. The upper bound
can be assured simply by dividing the usual multigrid cycle by 2, and the lower bound fol-
lows from the product H l equivalence of Bs( . , -) established in [3]. Assume that

f ( A , U( A )) I A E Al

is a branch of regular solutions of (26), and let Fh (A,Uh ) = 0 denote canonical form (27).
Then it is easy to see that there exists a neighborhood 0 of the origin in X and positive
constants y and p, independent of h and A, such that

-y13S ( V h , V h ) < 13s(DuFh (A,U) V h , Vh ) < p13S( Vh , Vh )	 (61)

for all Vh E Xh , where (A, U) is any element of A x X h for which U(A) — U E 0. The
lower bound follows from our regular branch assumption, and the upper bound follows from
Lemma 2 and property 1 of Lemma 5.

The iterative method that we consider for solving (27) is given by the expression

Uh F- Uh — sMh Vj(Uh ),	 (62)

where J(Uh ) is the functional in (19) and s = P. Suppose for the moment that Mh = Th.
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Then the proof of local linear convergence of (62) in the Bs( . , -) norm with linear factor

bounded by V, — n would follow from: linearizing V J(Uh) about the solution of (27); the
relation Th®J(U h ) = Fh (A,llh ); and the symmetry of DuFh (A,U) in the 8s(•, -) inner
product. For (62) with general Mh , we can then use (60) to prove local linear convergence
in the Bs( . , •) norm with factor bounded by 1 — n .

This establishes optimality of our simple iterative method based on a multigrid Stokes
preconditioner. It is straightforward to extend this result to a full-multigrid-like scheme,
where an approximation to the solution of the Navier-Stokes equations is achieved with ac-
curacy up to discretization error at the cost of a few fine grid operator evaluations.
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SUMMARY

MGLab is a set of Matlab functions that defines an interactive environment for
experimenting with multigrid algorithms. The package solves two-dimensional ellip-
tic partial differential equations discretized using either finite differences or finite vol-
umes, depending on the problem. Built-in problems include the Poisson equation, the
Helmholtz equation, a convection-diffusion problem, and a discontinuous coefficient
problem. A number of parameters controlling the multigrid V-cycle can be set us-
ing a point-and-click mechanism. The menu-based user interface also allows a choice
of several Krylov subspace methods, including CG, GMRES(k), and Bi-CGSTAB,
which can be used either as stand-alone solvers or as multigrid acceleration schemes.
The package exploits Matlab's visualization and sparse matrix features and has been
structured to be easily extensible.

WHAT IS MGLab?

MGLab is an interactive environment based on Matlab Version 4.0 for solving
elliptic partial differential equations using multigrid algorithms. A graphical user
interface (GUI) enables the user to select a problem, set parameters for the multigrid
V-cycle, optionally choose a Krylov subspace accelerator, and visualize the results.
MGLab is written in Matlab [1], which has greatly simplified the programming but
has led to some loss of efficiency in a few respects.

A number of very good introductions to multigrid methods are available that can
be used in conjunction with MGLab, including refs. [2]-[4]. The numerical treat-
ment of elliptic partial differential equations is discussed in ref. [5], and the finite
volume method for discretizing elliptic problems is described in ref. [6]. Some of
the experiments described in ref. [7] have been included in MGLab as demos. Some
software that addresses similar issues is described in refs. [8]-[14]. The basic linear
algebra concepts needed for a number of the components of MGLab, including the
iterative solvers, are discussed in refs. [15]-[23]. Other references that may be useful
background reading for MGLab users include [24]-[34].
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THE GRAPHICAL USER INTERFACE

The interface between MGLab and the user is a menu structure; the menu items
can be selected using a point-and-click mechanism. Menu items are grouped according
to their function, depending on whether they relate to the partial differential equation,
the solver, multigrid parameters, visualization of results, or built-in demos. Top level
menu choices and their submenus are outlined below.

^^uu	 The submenus in the MGLab top-level menu item control the
Show Params basic behavior of the package, including solving the currently
Version Info	 selected problem, displaying the currently selected parameters,
Reset	 and restarting MGLab with the default parameters.Restart

Problem	
The submenus in the Problem top-level menu itemPoisson	 select which partial differential equation to solve;Helmholtz	 b further submenus are available for setting problem-

Convection-Diffusion b dependent parameters. The problem size can also be
Cut-Square	 b set here.
Problem Size	 b

6oiver
V-Cycle
CG	 The submenus in the Solver top-level menu item are
Bi-CGSTAB	 used to select the solver, choose a preconditioner if de-
CGS	 sired, and set the stopping criteria. The GMRES menu
GMRES(k)	 b item has a submenu for choosing the GMRES restart
SOR	 b parameter, and the SOR menu item has a submenu for
Full-Multigrid	 choosing the SOR relaxation parameter.
Preconditioner	 D
StODDinE Criteria b
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MG-Parameters	 The submenus in the MG-Parameters top-level
Number of Levels	 D menu item are used to set various multigrid pa-
Smoother	 b rameters, including the number of grid levels, the
Restriction	 b smoother, the restriction and prolongation opera-
Prolongation	 b tors, the solver for the coarse grid problem, the
Coarse-grid Solver	 b method for generating the operators on the coarser
Coarse-grid Operator b grids, and the type of multigrid cycle, such as the
MG Cycle	 b V-cycle or the W-cycle.

Visualize	 The submenus in the Visualize top-level menu

Convergence History	
item are used to view the results after solving a

Computed Solution (surf)	 Problem. The convergence history can be plot-

Computed Solution (pcolor) ted, the scaling along the x and y axes for the
convergence history plot can be chosen, and the

X-Axis	 b numerical solution can be displayed either as a
Y-Axis	 b surface plot or a contour plot.

The submenus in the Demos top-level menu item select and

Demos	
run demonstrations that illustrate specific properties of multi-

Smoothers	
grid methods, such as the behavior of different smoothers,

Fourier analysis	
how the errors after the coarse grid correction and after the

Truncation error
post-smoothings in the V-cycle behave in physical and Fourier
space, and how the truncation error compares with the dis-
crete residual.

ELLIPTIC PROBLEMS

The built-in test problems in the current version of MGLab are restricted to two-
dimensional elliptic partial differential equations on rectangular domains.

0•(aVu)+b•Du+cu= f in Q,	 (1)
u = g on aQ.

The domain Q is the unit square {(x, y) : 0 < x, y < 1}, and the elliptic problem
is discretized using the standard 5-point stencil on a uniform mesh. Currently the
test problems all have zero Dirichlet boundary conditions. The matrices are stored
using Matlab's sparse storage format, which ensures that matrix-vector products are
efficient. Furthermore, the coarse grid problem can be solved using Matlab's built-in
sparse direct solver [35], which uses graph-theoretic techniques to reorder the rows
and columns of the matrix to reduce fill-in during the elimination process.
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Even within the discretization and boundary condition restrictions, a number of
different types of elliptic problems are possible. MGLab's test suite includes the
Poisson equation, the Helmholtz equation, a convection-diffusion equation, and a
discontinuous coefficient problem ("cut-square").

Poisson Equation. The Poisson equation, —V 2u = f, is the easiest problem in
MGLab to solve; the coefficient matrix of the discretized equation is both symmetric
and positive definite.

Helmholtz Equation. The Helmholtz equation, —V 2u+ ku = f , is the same as the
Poisson equation, except for the ku term. Depending on k, this term can make the
problem indefinite or complex. The parameter k can be selected by the user, where
k E {-10,-5,-1,0,1,5,10,10+0.

Convection-Diffusion Equation. The convection-diffusion equation, —V 2u +
Au., -I- au = f, adds the convection term Au ld to the Helmholtz equation. This added
term can make the coefficient matrix of the discretized problem nonsymmetric. The
parameters A and a can be selected by the user, where A E {0,10,100,1000} and
a E 1-100 7 —50 7 0, 5 7 10)
20, 50,100}.

Cut-Square Equation. The cut-square equation is —V • (aDu) = f , where a is
a discontinuous function of x and y. Specifically, a(x, y) = a for 0.4 < x, y < 0.67
and a(x, y) = 1 elsewhere in Q. The parameter a can be selected by the user, where
a E 10.001, 0.01, 0.1,1,10,100,1000 1.

MULTIGRID PARAMETERS

MGLab is designed to solve elliptic partial differential equations using multigrid
methods, with the option to embed the multigrid solver as a preconditioner in a
Krylov subspace method. A number of parameters that determine the V-cycle can
be set through the graphical user interface. These include the number of levels,
the smoother, the number of pre- and post-smoothing sweeps, the restriction and
prolongation operators, the coarse grid solver, and the type of multigrid cycle.

Number of Levels. The number of grid levels can be chosen to be between 1 and 5.
Note that levels = 1 corresponds to a sparse direct solver. If the chosen number of
levels is too large for the current problem size, it is set to the largest number possible.

Smoothers. The available smoothers are weighted Jacobi, Gauss-Seidel, and Red/Black
Gauss-Seidel. For the Jacobi smoother, the user can pick the weighting factor.
The number of pre- and post-smoothing sweeps (vl , v2) can also be set through the
Smoother submenu.

Restriction Operators. The restriction operators available in MGLab are injec-
tion, half-weighting, and full-weighting. These are implemented with fairly compact
code that uses Matlab's colon notation for accessing arrays.
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Prolongation Operators. MGLab offers bilinear and cubic interpolation as the
choices for prolongation. These are currently implemented by calls to Matlab's
interp2 function.

Coarse Grid Solver. The default coarse grid solver is Matlab's built-in sparse
direct solver [35]. As an alternative, the user can choose to use the smoother as the
coarse grid solver. This is less costly but also less accurate.

Multigrid Cycle. Although the V-cycle is the default multigrid cycle, the user can
also select the W-cycle. Other cycles, such as the half V-cycle or weighted V-cycle,
could be added easily. Full multigrid can be selected in the Solver menu.

KRYLOV SUBSPACE ACCELERATORS

The V-cycle defined through the multigrid parameters discussed previously can
be used as an iterative solver on its own or as a preconditioner for Krylov subspace
methods, such as CG, GMRES(k), and Bi-CGSTAB. For solving the linear system of
equations Ax = b, these methods work with a sequence of Krylov subspaces defined
by

K, (ro, A) = span{ro, Aro, ... , A'—lro}	 (2)

The j-th iterate xj is picked from

xj E xo + Kj(ro, A),

where ro is the initial residual b — Axo.
Below we list some of the important properties of the methods; details of the

algorithms can be found in the references given with each method. See also refs. [19]
and [22] .

CG. The Conjugate Gradient method is a Krylov subspace accelerator for symmetric
positive definite (SPD) systems; this method minimizes the A-norm of the error
at each iteration. The preconditioned version (PCG) requires a symmetric positive
definite preconditioner. The CG method was developed by Hestenes and Stiefel [16]
and is discussed in ref. [15].

GMRES(k). The Generalized Minimum Residual method of Saad and Schultz
[18] is a direct generalization of the CG method to matrices that are not SPD. The
CG method takes advantage of a three-term recurrence relation that is not available
in GMRES, so both the number of vectors that must be stored and the number of
floating point operations performed increase with each iteration. For this reason,
GMRES is typically restarted every k iterations.

CGS. Conjugate Gradient Squared is a variant of the Bi-Conjugate Gradient (Bi-
CG) method that, unlike Bi-CG, avoids multiplication by the transpose of the matrix
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A. The CGS method was proposed by Sonneveld [21]. Unlike GMRES, this method
is not guaranteed to minimize the 2-norm of the residual, but the number of vectors
required does not increase with each iteration so CGS does not need to be restarted.
The convergence behavior of CGS can be very erratic.

Bi-CGSTAB. This method was introduced by Van der Vorst [20] and is transpose-
free like CGS, but with a more regular convergence behavior.

SOR. The Successive Over-Relaxation method [17] is a stationary iterative method
with a relaxation parameter w. If w = 1, then SOR reduces to the Gauss-Seidel
method.

PRECONDITIONERS

The performance of iterative methods can often be enhanced with preconditioning
by premultiplying the linear system Ax = b by an approximate inverse M` of A:

M-' Ax = M-1 b.	 (3)

The multigrid V-cycle can be used as a preconditioner. In addition, even though
our emphasis is on multigrid methods, MGLab allows the V-cycle preconditioner to
be replaced by something else. The current preconditioners available in MGLab for
the Krylov subspace methods are the V-cycle, point Jacobi, and point Gauss-Seidel
methods. Other preconditioners, such as the block Jacobi, red-black Gauss-Seidel,
ILU, and SSOR methods, could be added relatively easily.

A standardized interface to the preconditioner is available that is independent of
the iterative solver. The operation z F- M-'r is performed by the following call:

z = precondition(A, r).

The function precondition accesses the parameters needed to apply the precondi-
tioner M-1 , which is implicitly defined in terms of A. This enhances the extensibility
of MGLab in the sense that adding Matlab implementations of other iterative meth-
ods would be straightforward.

VISUALIZATION OPTIONS

MGLab exploits Matlab's powerful graphics capabilities to plot the convergence
history of the solution process and to visualize the computed solution. Currently
we make use of the plot, surf, pcolor, and contour commands in Matlab. The
visualization options are available through the graphical user interface.
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function u_out = vCycle(level, b, u_in)

Use the zero vector for u_in as the default

if nargin == 2,
u_in = zeros(size(b));

end

if level == coarsest(level)

u_out = coarse-grid-solve (level, b);
else

u	 = smooth(level, b, u_in, 'pre');
r	 = residual(level, b, u);
b_c	 = restrict(level, r);
u_c	 = vcycle(level+l, b_c);
correct = interpolate (level, u_c);
u	 = u + correct;
u_out	 = smooth(level, b, u, 'post');

end

Figure 1: V-cycle Function

SOME COMMENTS ON THE INTERNAL STRUCTURE OF MGLab

MGLab is written entirely in Matlab. One group of functions is devoted to the
user interface; these make use of Matlab's uimenu function. Other groups of functions
implement the problem generation, algorithms, and visualization in MGLab.

MGLab makes use of Matlab's global mechanism. This approach leads to a
considerable simplification of the programming in many situations but carries the
software engineering risk of non-transparent code and the danger of subtle bugs. We
have attempted to write the higher level functions such as sp -laplace, Vcycle, pcg,
and precondition in a way that does not require them to see the global variables.
This results in very compact and readable code and reduces the chance that global
variables will be accidentally damaged. The code for Vcycle is shown in Figure 1 to
illustrate this approach.

The "middle level" functions, such as smooth and restrict, access the global
workspace in a disciplined manner. Some low level functions were created expressly
for the purpose of accessing the globals and returning a single value so that the globals
could be hidden from the higher level functions.
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BUILT-IN DEMOS IN MGLab

MGLab has a working and extensible framework for adding numerical experi-
ments. Currently, the numerical experiments supplied with MGLab are the following:

• A numerical study of the smoothing properties of the weighted Jacobi, Gauss-
Seidel, and Red/Black Gauss-Seidel approaches, in physical and Fourier space
[7]. The Fourier transforms are constructed out of Matlab's fast Fourier trans-
form (fft).

• A numerical Fourier analysis of the complementary roles of the coarse grid
correction and the smoother for a model problem.

• A comparison of the truncation error (pde error) and the discrete residual [7].
This demo highlights the ability of multigrid methods to achieve truncation
error accuracy very rapidly.

Figures 2 through 5 show the output of Demo 2. The intention of this demo
is to give a visual sense for the different roles of the coarse grid correction and the
(post-)smoothing. In this demo, we solve the Poisson problem on a 49 x 49 mesh by
multigrid. The V-cycle parameters are as follows:

• Two levels

• Gauss-Seidel smoothing

• (vl , v2) _ (0, 4), i.e., no pre-smoothing and 4 post-smoothing sweeps

• Half-weighting restriction

• Cubic interpolation

s The coarse grid solver is Matlab's built-in sparse Gaussian elimination

The initial guess was chosen so that the initial error had a mix of low and high
frequencies:

4

el°l (x, y) _ E sin(10j'rx) sin(10j7y).
.7=1

Figure 2 shows the initial error on the left and the absolute values of the (scaled')
Fourier coefficients of the error on the right. Figure 3 shows the error in the first V-
cycle, after the coarse grid correction (top) and after the post-smoothing (bottom).
In each case, the error is shown in "physical" space (left) and in Fourier space (right).

'The 2D sine transform was applied to the error on the mesh.
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Figures 4 and 5 are the same as Figures 3 except that in Figures 4 and 5 the errors
are shown in the second and third iterations, respectively.

These figures show how the coarse grid correction and the smoother complement
each other by reducing the low frequency and high frequency error components, re-
spectively.

OBTAINING AND INSTALLING MGLab

MGLab V1.0 is currently available via anonymous ftp to casper.cs.yale.edu  in
the directory /mgnet/Codes/mglab. After the tar file is uncompressed, it should be
untarred in a subdirectory such as - mynamehatlab /MGLab. To run MGLab, simply
change to your MGLab directory, start up Matlab and type MGLab.

Comments and suggestions for improvements to the code are welcome; we plan to
release future versions of MGLab that incorporate enhancements and bug fixes.
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Figure 2: Output from Demo 2. Initial error for Poisson's equation on a 49 x 49 grid.
The two-grid algorithm was used, with Gauss-Seidel smoothing with (vi , v2) _ (0, 4),
half-weighting, and cubic interpolation. The error is shown on the left, and the 2D
sine transform of the error on the right.
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Figure 3: Output from Demo 2. Error in the first V-cycle, after the coarse grid
correction (top) and after the post-smoothing (bottom). As in Figure 2, the error in
physical space is shown on the left, and the error in Fourier space is shown on the
right.
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Figure 4: Output from Demo 2 (same as Figure 3, for the second V-cycle).
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Figure 5: Output from Demo 2 (same as Figure 3, for the third V-cycle).
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A FULL MULTI-GRID METHOD FOR THE SOLUTION OF THE
CELL VERTEX FINITE VOLUME CAUCHY-RIEMANN EQUATIONS*

A. Borzi, K.W. Morton, E. Sfili, and M. Vanmaele
Oxford University Computing Laboratory

Numerical Analysis Group
Wolfson Building, Parks Road

Oxford, England OXI 3QD

SUMMARY

The system of inhomogeneous Cauchy-Riemann equations defined on a square domain and
subject to Dirichlet boundary conditions is considered. This problem is discretised by using the
cell vertex finite volume method on quadrilateral meshes. The resulting algebraic problem is
overdetermined and the solution is defined in a least squares sense. By this approach a consistent
algebraic problem is obtained which differs from the original one by 0(h 2) perturbations of the
right-hand side.

A suitable cell-based convergent smoothing iteration is presented which is naturally linked to
the least squares formulation. Hence, a standard multi-grid algorithm is reported which combines
the given smoother and cell-based transfer operators. Some remarkable reduction properties of
these operators are shown.

A full multi-grid method is discussed which solves the discrete problem to the level of
truncation error by employing one multi-grid cycle at each current level of discretisation.

Experiments and applications of the full multi-grid scheme are presented.

INTRODUCTION

We discuss a full multi-grid algorithm for the numerical solution of the system of
inhomogeneous Cauchy-Riemann equations. This algorithm has been formulated in [1].. The
Cauchy-Riemann equations are discretised by using a cell vertex finite volume method. We
consider the continuous problem defined on a square subject to Dirichlet boundary conditions.
Square cells are used for the discretisation.

The motivation for the study of the Cauchy-Riemann system is that it provides a suitable
model problem to develop a general multi-grid method for the solution of elliptic flow equations
when they are discretised by using a cell vertex finite volume scheme. In this respect, the
Cauchy-Riemann equations are the first model in the hierarchy of these fluid flow problems. In
particular, it has been clearly shown that the elliptic part of the inviscid incompressible Euler
problem is given by the set of Cauchy-Riemann equations [2]. Thus, for example, the present
algorithm combined with an appropriate hyperbolic solver would provide an efficient solution
method for that inviscid flow.

* This work was financed in part by HCM contract CHRX-CT93-0042 and in part by SERC.
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In fact, this idea, has been pursued since the work of Brandt and Dinar [3] (see, for example,
[4, 5, 2, 6]), where the Cauchy-Riema.nn equations are taken as a. first example of an elliptic
system. In [3], for this model problem, a. full multi-grid method is developed. Then, the
techniques developed for this case axe extended to the steady-state Stokes equations and the
incompressible Navier-Stokes equations.

However, such methods are constructed to approximate elliptic equations discretised on
staggered grids. On the other hand, we want efficient algorithms which solve fluid flow problems
discretised by using cell vertex finite volume schemes. Hence the need to re-develop the multi-grid
method for problems resulting from the cell vertex disc.retisation. This is not a mere adaptation of
the known techniques, since the peculiarity of the cell vertex scheme renders the previous methods
unsuitable for the present task.

In fact, when a, cell vertex finite volume disc.retisation is used, there is generally the problem of
how to define a suitable iterative scheme. In a cell vertex approach the resulting equations are
cell-based, while the unknowns are node-based. Therefore there is not a one-to-one
correspondence between unknowns and equations which can be inverted to provide a node-based
iterative scheme. To circumvent this problem the so-called Iiac; mart iterative scheme was
proposed [7, 3], which was applied in [9], but it proved inefficient as a. solver. The use of the
Kaczmarz relaxation is natural in the context of cell vertex discretisation. In fact, this type of
approximation, when applied to a first order elliptic system, usually results in an overdetermined
system for which a least squares approach is necessary. The Kaczmarz iteration is then equivalent
to the Gauss-Seidel method applied to the normal equations. A- %e know, in addition, that this
relaxation method can be used as a smoother in a multi-grid algorithm (see, for example, [10, 11]).

It is also interesting to compare the Kaczmarz relaxation with another, widely used, method to
iteratively solve a cell vertex system of equations, that is, the generalised Lax-Wendroff scheme.
See, e.g., [12]. This technique is based on time-stepping the (a.rtificial) unsteady problem, derived
from the original one by adding a partial derivative in time of the unknown variables. Then, on
each node, a new value for the solution vector is obtained from the previous one by Taylor series
expansion in time, up to second order terms. We claim that the second order term in this Taylor
expansion is equivalent to the Kaczmarz relaxation.

For these reasons we shall employ a Kaczmarz relaxation as a smoother and combine it with a
cell-based transfer operator of the residuals and a node-based prolongation operator of the
unknown variables to obtain a fast multi-grid solver.

In the next section we define the differential problem to be solved, that is, the inhomogeneous
Cauchy-Riemann equations on a square, subject to Dirichlet boundary conditions. We discretise
this problem by using the cell vertex finite volume method on a. square mesh. The resulting linear
system is handled through a. least squares approach. This method is then used in the third section
in order to develop an iterative scheme which is known as the Kaczmarz relaxation. In the fourth
section, this iterative method is used in combination with a cell-based residual transfer operator,
in a multi-grid (MG) cycle. As shown in the section of numerical experiments, the corresponding
full multi-grid method solves the discrete problem to the level of the truncation error in just a few
work units. Then by using a suitable modification of the Kaczmarz relaxation we shall give an
application of the FMG method on non-uniform grids.
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THE CAUCHY-RIEMANN EQUATIONS AND THEIR CELL VERTEX DISCRETISATION

We consider the system of Cauchy-Riemann equations

a-u + ay = f(1)(x,y)
au	 av = f(2)(x, Y)8y — 8x 

in a square domain Q, where u(x, y) and v(x, y) are the unknown functions, and f(l) E L2 (52) and
f(2) E L2 (52) represent the source terms. The following Dirichlet boundary conditions are
prescribed on the boundary 852:

	

(u(P), v(P))n = G(P) , P = (x, y) E 852 ,	 (2)

where (u, v),,, denotes the component of the vector (u, v) normal to the boundary in the outward
direction. The equations (1) with (2) represent a regular elliptic system [13]. The well-posedness
of the problem follows from the compatibility condition

fu f(1) dxdy = 1 0 
Gds .	 (3)

If (3) holds then the equations (1), with the boundary conditions (2), have a unique solution.
In order to discretise the problem (1), (2), we assume that the domain Q is partitioned by a

uniform mesh of quadrilateral cells, whose mesh size is h. Each vertex of this grid will be labelled
by i,j , i, j = 1, ... , N. We denote u(x i , yj) = ui,j and v(xi , yj ) = vi,j , where xi = (i - 1) * h and
yj = (j - 1) * h. The cell vertex discretisation of the system (1) on these grids follows by
integrating the Cauchy-Riemann equations over each cell 52 h = [i, i + 1] x [j, j + 1] and by using
Gauss' theorem to convert the integrals into line integrals along the cell edges, which are then
discretised using the trapezoidal rule. In this way, the following cell vertex Cauchy-Riemann
equations are obtained:

1ih (— ui ,j — ui,j+l + ui+l,j + ui+l,j+1) + 4
2h ( — vz ,9 + v%,3+1 — vi+ l,? + vi+l ,j+ 1 ) = fi(j)

2h ( —Ui ,? + ui,1+1 — ui+l,? + ui+l,j+l) +
_	 _	 2	 5
2h ( v4 ,9 + v4,?+ 1 — vi

	

— vy +1,?+1) —	 f ( j)

where i, j = 1, ... , N - 1 and f (') - h2 f, f (a) dxdy, l = 1, 2.

The boundary conditions are

u1 ,j = Gl,j , ulv,j = GN,j I	 j = 1, ... , N ,	 (6)

vi,l = Gi,l , vi ,N = Gi ,N ,	 Z'=  1 1 ... , N .	 (7)

For the above cell vertex discretisation we have 2 x (N x N) unknowns, 2 x ((N - 1) x (N - 1))
cell equations, 4 x N given boundary values. Therefore we have 2 more equations than unknowns.

By using the compatibility condition it is possible to reduce the number of equations by one.
But we still have an overdetermined system.

(1)
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In the following we will discuss the least squares a.pproac.h which allows us to define a. Unique
solution to the system of the cell vertex Cauchy-Riemann equations. For this purpose it, is
convenient to introduce a compact notation. I3y A we denote the (2N 2 — 4N -I- 2) x (2N 2 — 4N)

Matrix of coefficiernt.s, which is derived from (4) and (5). In fast, the first (N — 1) 2 rows relate to
the discrete divergence equation, and the remaining (N — 1)2 relate to the curl equation. The
boundary values are incorporated in the right-hand side of the system. Thus any element: of the
right-hand side is of the form .ft,^t = f ',^) -i- boundary values. The right-hand side itself will be

denoted by f = (f (i) f(2) )T ; f is the column vector whose first: (N — 1) 2 elements are the values
of ft0 ordered lexicographically, and the last (N — 1) 2 elements are the values of f( 2) ordered in
the same way. With this notation the compatibility condition (3) becomes

N-1
	( 1 ) _	 (g)

i,j=1

which shows that the Burn of the first (N — 1) 2 rows is zero. A similar property is observed for the
second se.t of rows: their chegrlerboard combination is equal to zero. 'Phis condition requires

N-1

t ,9 =1

Finally we denote the solution vector by w = (u v)T . This is a colurrin vector of length
2N 2 — 4N whose first N2 -- 2N components represent the va.ine of the solution u on the vertices of
the mesh, and the remaining components represent the solution v, both ordered lexicographically.
hence, the problem (4), (ri), (6) and (7) can be restated as

	

Aw = f .	 (10)

Since this algebraic problem is ove..rdetermined a solution can only he defined in a. least, squares
sense, that is, by solving the normal equations

ATAw=ATf .	 (11)

For the uniqueness of the solution the columns of the matrix A have to be linearly independent.
As an example, let us take N = 3, which is the coarsest grid to be used in a MG cycle

(described later). Equa.tums (4) and (5), together with the boundary conditions (6) and (7),
provide 8 equations for 6 rlrlknowns. In addition we have the compatibility conditions (8) and (9).

B y solving the resulting system one obtains the solution vabies tc and v, such that the residuals
of all original equa-tions are zero. however if the condition (9) is not, satisfied, the least sgna.res
formulation still provides a. rinique solution to the problem

	

Aw= PA f	 ,	 (12)

where
PA = A(ATA)-1 A T	 (13)

is the projection matrix onto the colllrnn space of A.
it: is worth not ing the relationship between the two cases when t he conditions (8) Mid (9) are

satisfied. in this case the least, squares formulation is eguiva.lent to the combina.t.ion of the discrete
divergence ec111a.t ions (defined on the same rna.cro-cell, which is a. s(Illa.re cell containing four cells)
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by using the following pattern (where + or — means that the equation enters in the combination
with a +1 or —1 multiplicative factor):

The discrete curl equations are combined as

	

+	 (14)

	

+ +	
(15)

The system of equations thus constructed coincides with ATAw = AT f. Notice that the idea of
reducing the test space (of piecewise constant functions), described, for example in [14, 13],
defines the same patterns depicted in (14) and (15).

In the remainder of this section we study PA in detail. We find that, as we refine the mesh size
h, PA tends to the identity operator, as expected. This analysis is necessary to define the
truncation error of the least squares equation (12). In fact the truncation error due to the cell
vertex discretisation of the differential operators in (1) originates from the use of the trapezoidal
rule

f

b

	

2 (x )dx = 2 (f (a ) + f (b))(b — a) — 2 (b — a) s f"(x) ,	 (16)

where x E (a, b). Thus in a cell of size h this summation introduces an error of order O(h3 ) on
each side of the cell, and the global truncation will be a combination of all these contributions. In
order to represent this error on each cell as a constant multiplied by some power of h, we derive
each contribution by a Taylor expansion with respect to the center of the cell. This gives for the
cell vertex Cauchy—Riemann equations a truncation error of order O(h2).

The analysis of PA is necessary to define the approximation of the right-hand side of the
discrete problem that we actually solve, with respect to that of the original problem (4) and (5).
Fortunately it is possible to give PA explicitly, in a compact way. It has the block structure

_ PA	 0	
(17)

PO(1)
PA — [ 0	 P (2) ] ' A

where each P (AR) is idempotent and symmetric. Let us first consider PA(1) . For simplicity of notation
denote by q = (N 1 1)2 . Thus, by using (8), we have

N-1
(PAl)f(1) )k — (f(1) )k — q	 fz^j) _ (f(1) )k ; k = 1, ... , (N — 1) 2 ;	 (18)

a,j=1

hence, because of the compatibility condition, P (1) acts on f(l ) as an identity map.
It should be clear what to expect from PA(2) : when 1(2) satisfies (9), PA(2) acts as an identity

operator on f(2).  We have

N-1

	

(P(A2)f(2))k — (.f(2) )k — 
q(-1)(kF1—(N-1)2) C` (-1)ztj 

fQ(,j)	 (19)

k = (N — 1) 2 + 	 2(N — 1)2.
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Bec.a.nse, in principle, f(2) is not required to satisfy (9) we mist: evaluate the perturbation

(1'(2) 
f(2) — f(2)). For this ptlrpoSe, let us introduce the two-ditnenSiana.l chequerboa.rd function on

Q h . Denoting the characteristic function on S2h by X+,i, the chegnerboa.rd function is

N-t

Xh( X , y ) _ E (- 1 )t+' Xt; •	 (20)
t,;=t

One can prove that Xh weakly converges to zero (as h — ► 0) in L 2 (Q) (See [131).
TO simplify the discussion which follows, without affecting the general validity of the result, we

take Q = (0, 1) 2 Mid a.SSUtue homogeneous boundary conditions. i,et. rls denote by (,) the
Isttchdean inner product; then we cart rewrite (19) as follows:

\[,AZ).f(z))k = ( P 2) )k — It2 (.Yh, f(2) )(Xh)k , k = (N — 1) 2 	t,..., 2(N — 1) 2 	(21)

t'N'e have the following theorem (for the proof see [1, 13]).

Theorem 1 Stcppose that .ate E L 2 M, and let N = 2e + 1, with 1 as some positive integer. Then

I(lh, f (2) )I < 1 II a2f2 IIL2(rt) •	 (22)
3 array

Thus the perturbation q EN-1(- 1)`+.i fT due to the least Squa.reS approach is of order O(h2).
Hy this approach we obtain a. consistent algebraic problem which differs from the original one by
FIJI O(h 2 ) perturbation of the right-hand side.

The stability and convergence analysis of the cell vertex approximation of the Cauchy-R.iemann
equations is presented in [13]. There we show that the cell vertex approximation is stable and
second-order convergent in an appropriate H t -norm. In particular the model problem which we
a.1SO consider here is studied there as well. This gives an overdetermined system, for which the
idea of reducing the test space is adopted, and stability and convergence properties follow. Similar
convergence results are presented in [15] by using a least squares approach.

AN ITERATIVE SCHEME

From the discrete Cauchy Iliemann equations it is clear that there is not a one-to-one
correspondence between nodal values and equations. This means t hal a possible pointwise
it:.era.tion must be constructed based on the cells, and thus it inVO]VVS more than One cell. ThiS is
the case, for example, with the i,ax-Wendroff iteration. here we present a. pointwise iteration
procedure.

As in the previous section we Sta.rt by analysing the simplest, case (N = 3). This case actually
appears in our computations, since it represents the coarsest. problem in a multi-grid c "ycle. in the
standard MG' approach to solve simple model problems using, for example, a finite difference
discretisa.tion, the algebraic. equations on the coarsest grid are solved exactly, and the `solver'
there coirtcideS with one step of the iteration procedure (e.g., the pointwise Causs-Seidel scheme).
We now try to reproduce these aspects of an iteration for the cell vertex finite volume
( ".aatchy R.ierrtanrl equations.
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The variables which must be computed on the coarsest grid are represented as they appear on
the grid:

U2,3
V1,2 u2,2, v2,2	 V3,2	 (23)

U2,1

The iteration on the grid N = 3 must be capable of solving for all these variables in one step.
Therefore the iteration is explicitly given by solving (11). The solution is given by

212 , 1 = (u1 ,2 + u3 ,2 + vl,l - v3,1)/2
(24)

+(f1)i - fa )i - fi i) - fa 1)h/2
U2,2 =

/
(ul,1 + u1,3 + u3,1 + u3,3)/4

+(f ( t1)
1 

+ f 2 - f2, 1
1 - 

f2,2	 (25)
2 1	 2^	 2	 2

+fl,1 - f1,2 + f2,1 - f2,2 )h/4
212 ,3 = (u1 , 2 + 213 ,2 - V1 ,3 + V3,3)/2

26
+(fl 2 - f2 2 + fl 2) + f2 2 )h/2

V1,2 = (u1,1 - u1,3 + v2,1 + v2,3)/2
271	 1	 2	 2+(fi, 1 - f1 ,2 + fI'j+ 	 f1,2 ) h/2	 )

V2,2 = (vl,l + v1,3 + v3,1 + v3,3)/4

+(fl 1 - fi 2 + f2'1 - fa 2^	 (28)

_f11 - fl ,2 + fz 1^ + f2 ,2 ) h /4

V3,2 = ( -u3,1 + u3,3 + v2,1 + v2,3)/2

+(A) - fa 2 - f2(2) - f222 )h/2	
(29)

Hence by substituting the values of the variables as given above, the coarsest problem is solved
(in the least squares sense). Now we suppose that the mesh is refined by halving h. First, we
notice that (24), (26), (27) and (29) provide the relaxation scheme for the boundary values, in the
a ppropriate part of the domain's contour. The remaining two, (25) and (28), are suitable to relax
the variables u and v in the interior of the domain. Note that they coincide with the pointwise
Gat=ss-Seidel step for the Laplacian discretised with the usual skewed five point finite difference
stencil. Actually, they reflect the fact that it is possible to combine the cell vertex
Cauchy-Riemann equations (4) and (5) to obtain such a stencil.

So we obtain the Gauss-Seidel (GS) iteration for ATAw = AT f, also called Kaczmarz
relaxation (see, e.g., [10]). Since A T A is a positive definite, symmetric matrix, the GS iteration
converges to the solution, in the least squares sense, of the discrete Cauchy-Riemann equations.
The analysis of the smoothing property of this iteration is carried out in [10, 11]..

Remark 1 After any iteration sweep the algebraic sum of the residuals for the divergence
equations (4) is zero. Hence the compatibility condition for the corresponding residual equation for
the solution error is satisfied. In fact, because of the (Diri.chlet) boundary conditions, this error is
zero on the boundary. This is an important property in order to solve the cell vertex
Cauchy-Riemann equations by a multi-grid scheme.
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A FULL MULTI-GRID METHOD

Since we have the iterative scheme at hand we now need to define the restriction and
prolongation operators to construct a multi-grid algorithm. The features of such operators are
dictated, in part, by the problem we wish to solve and by the choice of the relaxation procedure.
Even though our approach is based on least squares, we want a multi-grid code which in principle
can be defined by using the properties of the discrete Cauchy-Riemann equations without
involving the computation of the normal equations. A pure least squares approach would mean
the development of an algebraic multi-grid method which applies to AT Aw = AT f . We instead
want an algorithm which works directly on Aw = J. The reason is that the resulting scheme can
be easily adapted to more general problems. The first step was done in the previous section where
we have defined a smoothing iteration. It has been obtained by solving the coarsest (least squares)
problem.

On finer grids the solution of the normal equations is considered only locally. Clearly we had
implicitly assumed to follow a standard MG approach. The approximation of the differential
operator on any level is obtained by discretising it on that level. Let us consider, for the moment,
the existence of two grids only, the coarse grid approximation of the differential operator is given
by (4) and (5), but h is replaced by H = 2h. To distinguish the two problems defined on different
grids we denote by Ah and A  the cell vertex difference operators on Q h and QH , respectively. In
the same way, the vector functions w and f on a given grid Q h will be denoted by wh and f h.

The definition of the transfer operator for the residuals is based on the way the finite volume
method approximates the source terms. In the weak formulation provided by the cell vertex
scheme, the source terms are discretised by integrating them on the given volume. Therefore the
sum of the right hand sides of four discrete Cauchy-Riemann equations (of `div' or `curl' type)
based on neighbouring cells Sth with a common vertex provides the right hand side of a discrete
Cauchy-Riemann equation based on the coarse cell Q", which contains the fine cells. For this
reason the transfer operator of the residuals from fine cells to a coarser one, is defined by the
algebraic sum of the fine grid residuals contained in the coarse cell. That is, we have

( Ih rh )IJ = ( r2; + r4+lj + rq,+l + ri+ij+l)/4 ,	 (30)

where i j and (I, J) refer to the same space point, and rzj is the residual of the cell vertex
Cauchy-Riemann equations (4) or (5) on the cell Q' .

Also the definition of the prolongation operator follows in a natural way from the properties of
the present discrete problem. Let us notice that, after a sufficient number of smoothing sweeps,
(le111 = (ATAe, e) —_ 0. Thus, from the algebraic multi-grid approach [11, 10], we can use the
equation AT Ae = 0 and invert it to construct the prolongation operator. Therefore, by
construction, the repeated application of the smoothing iteration produces an approximation
whose error tends to lie in the range of the interpolation. By using AT Ae = 0 we obtain the
interpolation formula for those fine points which are situated at the center of the coarse cell. The
interpolated value of a variable on this grid point will be the mean value of those at the
neighbouring vertices of the coarse cell containing the point. The remaining fine grid variables, on
the edges of the coarse cells, are obtained by linear interpolation between the nearest two coarse
variables. So we have IH, the nine-point prolongation [16], symbolised by the stencil
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It is interesting to notice the remarkable r
described. It can be shown that

AH

1/2 1/4
1	 1/2	 (31)

1/2 1/4

eduction properties of the transfer operators just

= Ih Ah IH ,	 (32)

which means that the coarse grid matrix problem that has been defined using the standard
approach is obtainable from the fine grid matrix of coefficients and the given transfer operators,
following a Galerkin approach. This property is very important. Since a sufficient number of
relaxation sweeps produces an approximate solution w  whose error eh lies in the range of the
prolongation operator, by using (32) the fine problem is reduced to a one of smaller size. The
(least squares) solution of the coarse grid equation

AHeH = Ih (fh — Ahwh)
	

(33)

provides a good approximation for the fine grid error and is used in the coarse level correction
W  := W  + IHeH.

A two level cycle is defined as the application of v l pre-smoothing sweeps on the fine level,
followed by the coarse level correction and v 2 post-smoothing sweeps. If one uses the same method
to determine eH in (33) and the process is repeated recursively until the coarsest level is reached,
then a multi-grid method is obtained.

At this stage there are some important points to be discussed. As one can notice, the least
squares formulation is mainly used locally to develop a suitable smoothing iteration. The resulting
relaxation scheme solves the normal equations. On the other hand, the remaining components of
the multi-grid algorithm defined here are based on the original overdetermined Cauchy-Riemann
equations. To make these points more clear we report in Figures 1 and 2 the values of the L2

norm of the residuals of equations (4) and (5), and (11) as a function of work units, (i.e., the
computation work invested to produce these residuals). In Figure 1 the simple relaxation is
applied to solve the discrete problem on a given grid (this example is stated in the section of
numerical experiments). The dotted line represents the residual norm of the cell vertex
Cauchy-Riemann equations. The continuous line represents the residual of the normal equations.
The same quantities are pictured in Figure 2 which reports the convergence history relative to the
cyclic application of the MG scheme. The multi-grid method accelerates greatly the convergence
of the Kaczmarz relaxation to the solution of the least squares problem. But the residual norm
relative to the original Cauchy-Riemann equations converges to a non-zero value, since a solution
for them does not exist. Because the relaxation and the coarse level correction are based on
different equations, they are to some extent conflicting schemes. This fact appears in Figure 2
where for sufficiently small residuals which turn out to be of the order of the truncation error on
the finest grid, the MG convergence slows down.

In order to define a full multi-grid scheme (see, e.g., [16]) we have to introduce another
interpolation operator. We use a standard cubic interpolation operator. It is used to interpolate
the solution to the problem on the level i, after n multi-grid cycles, to the level t + 1, and so on
recursively until the finest level M is reached and, finally, n multi-grid cycles are performed on
level M. The resulting algorithm will be denoted by n-FMG. We shall test the n-FMG code
described here in the section on numerical experiments. An equivalent scheme which solves the
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Figure 1: Convergence history for the L 2 residual norms relative to the cell vertex Cauchy—Riemann
equations (dotted line) and the normal equations (continuous line) when the Kaczmarz relaxation
is applied (for the u component).

cell vertex Cauchy—Riemann equations based on triangles has also been tested, giving similar
results [1].

NUMERICAL EXPERIMENTS

In this section we report the results of some numerical experiments. As we have previously
seen, the multi-grid iteration has a convergence rate which slows down after a large number of
iterations. However an optimal multi-grid method results when the MG cycle is used in
combination with a nested iteration technique, thus resulting in a full multi-grid scheme. In fact
we show that the full multi-grid scheme previously described is capable of solving the discrete
Cauchy—Riemann equations to the level of the truncation error 0(h 2 ) employing only one MG
cycle at each current level of discretisation. We consider the Cauchy—Riemann equations
discretised on the square (0, 2) x (0, 2). Some numerical parameters are fixed, namely, the coarsest
mesh size h l = 1; the number of intervals of the coarsest grid equals 2 in both directions. The
initial starting approximation is always the zero function (except on the boundary).

The first example has been previously considered to obtain Figures 1 and 2 (employing five
levels); the source terms are (integrated over [x, x + h] x [y, y + h]) given by

f (1) (x, y) _ — '((a — b)(cos(by) — cos(b(h + y))) sin(ax)/(ab)
+(a — b) (cos (by) — cos(b(h + y))) sin (a(h + x))/(ab)), 	

(34)

f(2) (X, y) _ --! ( (a + b) cos(ax)(sin(by) — sin(b(h + y)))/(ab)	 (35)
+(a + b) cos (a(h + x)) (sin (by) — sin(b(h + y)))/(ab)) .

The exact solution and the boundary values are given by

u(x, y) = sin(ax) sin(by) ,	 (36)

v(x, y) = cos(ax) cos (by) ,	 (37)
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Figure 2: Convergence history for the L 2 residual norms relative to the cell vertex Cauchy—Riemann
equations (dotted line) and the normal equations (continuous line) when the multi-grid scheme is
used (for the u component).

where a and b are given parameters. The behaviours reported in Figures 1 and 2 correspond to
the case in which a = 1 and b = 2. Now let us consider a = b = 1,.so that f (l) = 0.

We have seen that the multi-grid step has satisfactory convergence properties in the first few
iterations whenever the initial approximation produces residuals of the cell vertex
Cauchy—Riemann equations which are larger than those corresponding to the exact solution of the
least squares problem. Therefore it is convenient to use the MG code to work within this limit,
which suffices in order to obtain an efficient FMG algorithm.

Table 1: The Behaviour of the L 2 Norm of the Solution Error for Various n-FMG, for the u and v
Components.

Table clearly shows t that n-FMG with n = 1 is sufficient to solve the problem to the order of
the truncation error. The work invested in the FMG process is measured in work units (WU),

that is, the computational work of one relaxation sweep on the finest grid.

t ln this table the power 10 -k is represented by (—k). We refer to the usual discrete L 2 norm of the error between
the numerical and the analytical solution.

u v
M 1-FMG 2-FMG 1-FMG 2-FMG
2 0.19(-1) 0.17(-l) 0.12(-1) 0.77(-2)
3 0.36(-2) 0.32(-2) q.23(-2) 0.20(-2)
4 0.81(-3) 0.71(-3) 0.57(-3) 0.53(-3)
5 0.19(-3) 0.17(-3) 0.15(-3) 0.14(-3)
6 0.46(-4) 0.40(-4) 0.37(-4) 0:34(4)

W U 3.5 7.1 3.5 7.1
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The same experiment is then repeated with different values of a and b. We always observe the
behaviour described above and quadratic convergence of the numerical solution.

So far we have considered structured uniform grids. We now comment on how to generalise the
present algorithm to solve the Cauchy—Riemann equations on non-uniform quadrilateral grids. For
this purpose we consider the generalised Lax—Wendroff (LW) scheme (see [17, 12]). This technique
is based on time-stepping the (artificial) unsteady problem, derived from the original one by
adding a partial derivative in time of the unknown variables. Then, on each node, a new value for
the solution vector is obtained from the previous one by a Taylor series in time, up to second
order terms. The first and the second order term are then discretised by applying cell vertex finite
volume techniques based on the macro-cell [12].

Figure 3: Plots of contour lines of the functions v (top) and u (bottom).

Now we can prove that, for uniform quadrilateral grids, the cell vertex approximation of the
second order term in the Lax—Wendroff method is given (up to the multiplicative constant Ste ) by

— 
2 

AT (Aw — f) .	 (38)

Hence, the application of a LW iteration, which consists of only the second order term (take
bt = h), is equivalent to the Kaczmarz relaxation. On the other hand we notice that once the grid
is non-uniform the least squares approach is difficult to apply, while the corresponding
Lax—Wendroff iteration is of immediate application. Therefore, on non-uniform grids we extend
the full multi-grid algorithm presented above by using a second order LW iteration as a smoother.
As a simple example of application we use this algorithm to solve the homogeneous
Cauchy—Riemann equations on the geometry of the "bump" problem, subject to the condition
(u, v),1 = 0, except at the inflow and outflow boundaries where u = 1. In Figure 3 we plot the
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contour line of the function u computed by a 3-FMG method (M = 6).
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MULTILEVEL ALGORITHM FOR ATMOSPHERIC
DATA ASSIMILATION*t

Achi Brandt and Leonid Yu. Zaslaysky
Department of Applied Mathematics and Computer Science

The Weizmann Institute of Science
Rehovot, 76100, Israel

SUMMARY

A multiscale algorithm for the problem of optimal statistical interpolation of ob-
served data has been developed. This problem includes the calculation of the vector
of the "analyzed" (best estimated) atmosphere flow field W a by the formula

wa = wf + PH yl

where the quantity y is defined by the equation

(HP f HT + R)y = w° — Hw f , ,

using the given model forecast first guess wf and the vector of observations w°; H is
an interpolation operator from the regular grid to the observation network, Pf is the
forecast error covariance matrix, and R is the observation error covariance matrix.

At this initial stage the case of univariate analysis of single level radiosonde height
data is considered. The matrix R is assumed to be diagonal, and the matrix Pf is
assumed to be given by the formula PEA _ (72 µ2U3, where µij is a smooth, decreasing
function of the distance between the ith and the jth points.

Two different multiscale constructions can be used to efficiently solve the problem
of optimal statistical interpolation: a technique for fast evaluation of the discrete
integral transform Ei P'̂ vj , and a fast iterative process which effectively works with
a sequence of spatial scales. In this paper we describe a multiscale iterative pro-
cess based on a multiresolution, simultaneous displacement technique and a localized
variational calculation of iteration parameters.

*A preliminary version of the material presented here has been presented in [1].
t The second author has been supported by a Sir Charles Clore Post-Doctoral Fellowship.

E-mail addresses: mabrandt@weizmann.weizmann. ac. il  and zasl@wisdom.weizmann. ac. il
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INTRODUCTION

The problem of optimal statistical interpolation of the observed data includes the
calculation of the vector of the "analyzed" (best estimated) atmosphere flow field w6
by the formula.

w° = wf 1 Pf IIT y,

where the quantity ,y is determined from the equation

(HPf HT + R)y = w° — Hwf , ,	 (1)

using the given model forecast first guess wf and the vector of observations w° ([2]-
[4]). Typically, wf is defined on a regular spherical grid, while the set of observations
w° is defined on an irregular network of observation points; H is an interpolation
operator from the regular grid to the observation network, P f is the forecast error
cova.ria.rnce matrix, a.nd R is the observation error covariance matrix.

The observat.irni error cova.riaa-ice matrix R is assumed to be diagonal with

R22 _ ^i

The forecast error covariance function Pf (x l , x2) is defined for any pair of points xi
and x 2 on the sphere by the formula

Pf (x, z ) = 0-f (x )P(x , z ) O' f (z),

where the forecast error correlation function y(x, z) is described as a smooth, decreas-
ing function o[' the distance between the points x and z [4]. The matrices P f and y
are the restrictions of functions P f (x, z) and fc(x, z) on the regular latitude-longitude
grid.

The purpose of this paper is to conceptualize a fast multiscale iterative process for
solving y from equation 1 when the observation network is strongly inhomogeneous in
space. At this initial stage, we consider a univariate analysis of single level radiosonde
height data..

In this paper we consider only convergence properties of the iterative process.
Accordingly, in the computer experiments all summations have been performed in a
straight.forwa.rd manner. An effective procedure for the fast evaluation of the integral
transform on the sphere, based on the Brandt and Lubrecht approach [5], will be
presented separately.

Without loss of generality, equation (1) can be replaced by the system of equations

Pijyj ..F Riiyi = w° — ( Hwf )i,	 (2)
j

where

PzJ — 17 1 Yzjoj
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for the ith and jth observation points xi and xj,

Pig = µ(x i ' xj),

and
(Haf )i.

(While the matrix P is defined for the points of the regular grid and interpolated to
the observation network using the operator H, the matrix P is defined by the same
formula directly on the observation network.)

Indeed, the difference
HPHT y — PJ

may be treated as an additional source on the right hand side. This small term is
nonprincipal at all scales and can easily be taken into account in iterations.

Since we want to deal explicitly with the smoothness properties of the kernel 11ij,

we replace (2) by
0

f,z7 21 7 + ( f̂f )2u= = f (w° — ( Hwf )i),	 (3)
7 z

where ui = &f yi. The system of equations (3) can be written in matrix notation as

Au = f,	 (4)

where the matrix A is symmetric and presumably positive definite.

GENERAL STRATEGY

It is important to understand why many common iterative processes, such as
Jacobi, Gauss - Seidel, or conjugate gradient, converge slowly when applied to equation
(4). Let us consider, for example, the simplest iterative process

it (n+1) = 21(n) } w9 (n)
,

where the residual
9'(n) = f — A21tn^,

and parameter w —_ (p(A)) -1 , where p(A) is the spectral radius of the operator A.

The process (5) reduces effectively the error components that correspond to the
large eigenvalues ,\ 1 , such that

wAl

while the error components that correspond to the small eigenvalues A s , for which

wA, < 1,

are reduced slowly [6]. Since the summation F j flijuj in (3) is made with a smooth ker-
nel, eigenvectors of A that correspond to the large eigenvalues are (mostly) spatially

(5)
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smooth, and eigen\-ect,ors of A that correspond to small eigenva.lues are oscillatory
in space. Therefore, one cannot define one particular value of w that would give an
essential reduction of all spectral error components.

The effect described above is well-studied for the case when (4) is obtained as a
grid approximation of the continuous integral equation. A few multiscale techniques
based on multigrid ([5],[7]) and wavelet [S] approaches were developed in the 1990's.
Unfortunately, these techniques cannot be applied to the considered problem in a
straightforward manner because of the strong inhomogeneity of the observation

network.

The central idea. of the approach developed below is to filter sequentially spectral
components of r0l) and to choose for each a value of the iteration parameter that
gives an essential reduction of the corresponding error component.

The major pa.rticula.r difficulty which has been overcome successfully in this work
is how to define variable pass spatial filters Fh, depending on the scale parameter h,
for a, field defined on a, very inhomogeneous network. An appropriate filter will be
described in §3.

VNI llen some component /,r (n) of the residual r(n) has been filtered, one should
next calculate the correction vector. A simple way to do it is to use a scalar itera-
tion parameter co, (i.e., to calculate the correction as wh.Fhr (n) ). Then the modified
iterative process (5) can bebe written as

it 	 _ ? l (n) +W (n) ^h7W ,	 (6)

where the iteration parameter depends on the scale h in some way.

An intrinsic disadvantage of schemes like (6) is that one global iteration parameter

whn) is determined for the entire domain. The optimal correction at a spatial point
xi should, however, depend onl y on the residual values at points located at most a
few h from xi. Therefore, in §4, we construct a. procedure for calculating an iter-

	

ation p arameter w ( " ) for each point x i locally, 	 only the values of the residual1	 i,,i	 f	 y^	 g onJ
components in some area. around xi . This means that the iterative process which we
construct can be written as

where
Qh = diag(wh,i

\Ve discuss the structure of the multilevel iterative cycle in §5.

SPATIAL FILTER

We now define a filter applicable to functions defined on a, very irregular discrete
network. Obviously, we want our filter to work like a usual spectral high pass filter
in the data dense regions.
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What do we want to get in regions of sparse data? Suppose we have an observation
point s which is separated from other points by distance

ds = min dist(s, p).
p#s

We would like to take into account the residual component r s only on the scales h
that are large enough:

h c-- ds and h > ds;

we neglect rs on the small scales h:

h « ds.

We define the filter Fh which satisfies these requirements by the formula

_	 C 1 dist2 (i, j))
(^hr)Z — r' — 'Y= ^ r' 

exp	
2	 lag	 ($)

where h. is the current scale, and the parameter -yi is defined by the formula

-1
p (_.'  dist2(i,j)

 ex2	 h3

Note that the filter can be calculated efficiently using the fast summation proce-
dure.

CALCULATION OF Q,h

The scalar iteration parameter Wh' 1 in (6) can be determined from the variational
condition of minimizing the Euclidean norm of the scale h component of the new
residual rhn+i):

minll.Th(r(n) — Wh
n 

)A.F'hr('i))l 12,
h

where 11 • 11 is the Euclidean norm on the observation network

l u

11

2 = (u , u)

and
(2G, v) —	 uivi,i

where the summation is made over the observation points. This condition leads to
the formula.

	

W _ (p, q)	
l9)

W h	 (q, q)'
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where
p = Fhr(n),

q = 11h Ap.

As mentioned above, one disa,dva.nta,ge of this formula, is its globality. In order to
localize it, we use a family of weighted Euclidean norms. Let us introduce

1 dist2(i,A
(it,v)l,i = ^

ujvj
eXp (-2	 12

7

where the summation is made over the observation points and

I u ll! i = (26, U)[,i.

Now we can define the matrix Q h in (7). We choose Qh as follows:

S2 (
hn) = diag(w ( )),

where

(n) _ (p(n) I q (n))3h,i
Wh,i	

( q(n) , q(n))3h/

P _ F4r(n),

q(n) _ J5,Ap(n).

Note again that the fast summation procedure can be used to calculate wh t) effi-
ciently.

STRUCTURE OF THE MULTISCALE ITERATIVE CYCLE

In order to define the order of the multiresolution iterations, we have to prescribe
some spatial scale to each iteration. The current spatial scale is determined by the
formula.

h = H • 21-rezer(n)

where H is the largest scale and level(n) is the level prescribed for the nth iteration.
If level(n) = 0, the filter is not used. The multiscale iterative algorithm can be
written as follows:

DO n = 1, NITER
Residual calculation

r(n) _ ./ — '47/( n)

IF levcl(77.) > 0 THEN

Definition of the current scale

92



h = H-21 —level(n)

Filtering

P(-) _ .rh7'(n)

q(n) _ JrhAp(n)

Calculation of the iteration parameters
(n) — (p(n),9(n))3h i

Loki	 (4 n ,4 n )3h,i

SZhn) = diag(Wh  i
Calculation of the new approximation
to the solution

2,(n+1) = u(n) + Q(hn)p(n)

ELSE
Filtering is not used

P (n) 	 r(n)

q  = Ap(n)

Calculation of the iteration parameter
( n )	 p(n),9(n)

wh	 (9(n),9(n))

Calculation of the new approximation
to the solution

2/,(n+1) _ U(n) +W(n')p(n)

ENDIF

ENDDO

We have used for our initial tests the standard V(2,2) multilevel cycle with 3
iterations at the 0th level ([9], [10]). This means that the function level(n) is periodic:

level(LC + k) = level(k) for any k > 0,

and

NLT/L—k+l, if n=2•k—I+1; k=1,2,...,NLVL; 1=0,1
level(n) =	 0,	 if n = 2 • NLVL + l; l = 1, 2,3

k,	 if n = 2 • NLVL + 2 + 2k + l; k = 1, 2; ... , NLVL; 1=0,1

where NLVL is the finest level number and LC = 4 • NLVL + 3.
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NUMERICAL RESULTS

At this iilitia.l stage of the work we made all the numerical tests with radiosonde
height data onl y. The forecast correlation function is modeled by the formula.

(dist(x 1 , x2))2 —r.2Q8

where dist(x 1 , x 2 ) is the three-dimensional distance between points x 1 and x2 and L
is the correlation distance (L = 951 km).

The radiosonde station locations and values of o •°, a f , and iv° —Hzvf were obtained
from the Data Assimilation Office of NASA/Goddard Space Flight Center. The data
file contains model parameters and radiosonde height observations from 715 stations.
Observa.tioii error variances Q° were taken to be equal to 14.6 m for all radiosonde
stations. Forecast. error variances (T, vary from point to point and range from is m
to 35 ni.

NVc made our experiments with NL[fL = 5. The scales which were used are shown
in Table 1. The results of our experiments are shown in Table 2.

Table 1. Scale structure

Level number I	 1 2 3 1	 4 5
Scale h, km 1 10 000 15 000 12 500 1 1 250 6?5

Table 2. Convergence of the iterative procedure

Multiscale
cycle

L2 norm of the
residual

Rate of decrease
of the norm

Initial 2.5510+1

1 6.5610 -1 0.027
2 3.7610 -2 0.054
3 2.0510 -3 0.054
4 8.8 710 -510 -5 0.043

DISCUSSION: FURTHER IMPROVEMENTS

The. algorithm described above represents the first step toward development of a
fast and efficient solver for the atmospheric data assimilation problem. It has been
shown that the multi resolution algorithm can provide a, fast solver. As long as the
number of measurements is moderate (e.g., less than a. few thousand), this algorithm
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by itself is already effective enough. However, for larger sets of measurements, a major
part of the work per cycle can be saved by a more advanced multiscale algorithm that
features the following improvements.

First, as already mentioned, a fast evaluation of the operator Pf (i.e., of the
multi-summation in Eq. (3)), can be based on the method of [5]. (See also [7]).
Fast multi-summation can also be used for fast filtering.

Secondly, at each scale h in any region where the number of of measurements per
O(h x h) cell is large, the multitude of residuals can be replaced by their proper
local averages on a grid with mesh size O(h). Similarly in such regions, the
correction u(n+1) — uln> will also be calculated on such a grid and will only later
be interpolated to the measurement points. Actually, the residual averagings
and the correction interpolation will not be done directly between the finest
(measurements) level and each scale -h level but will be transferred sequentially
through all intermediate levels.

Thirdly, the residual filtering can be replaced by distributive relaxation (as in
[5]). The latter is simple in the grid regions mentioned above. In other regions,
the filtering techniques may be easier to apply.

These improvements will reduce the work of a cycle to a few operations per mea-
surement, hopefully retaining the same convergence rates.
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Effective Boundary Treatment for the Biharmonic Dirichlet Problem*

A. Brandt

J. Dymt

Department of Applied Mathematics and Computer Science
The tilleizmann Institute
Rehovot, 76100, Israel

SUMMARY

The Biharmonic equation can be rewritten as a system of two Poisson equations
[6, 4]. Multigrid solution of this system is expected to converge with the same amount
of work as solving two Poisson equations, requiring less than 70 floating point oper-
ations (scalar multiply or addition) per fine grid point to reach a solution using an
FMG algorithm. For periodic boundary conditions, this goal is attained by simple,
straightforward application of multigrid. For Dirichlet boundary conditions, how-
ever, convergence is impeded by poor interaction with the boundaries. Attempts to
overcome the slowness without specifically addressing the boundaries have resulted
in multigrid algorithms not attaining the Poisson convergence rate [3, 7].

We present three methods of boundary treatment with which full multigrid effi-
ciency can be obtained. All implement an approach described by Brandt [1], concen-
trating some additional effort near the boundary. The first approach [9, 5] simply
adds a number of relaxation sweeps over points close to the boundary. The second [8]
uses joint relaxation on near-boundary points. The third method [5] takes something
from each of the first two methods, resulting in a solver more suitable for highly
parallel applications.

`Research Supported by Israel Ministry of Science Grant 4135-1-93, and by the C. P. Gauss
Minerva Center for Scientific Computation at the Weizmann Institute of Science, Rehovot, Israel.

tPresent Address: Department of Mathematics DRB 155, USC, 1042 W. 36 th Pl, LA, Calif.,
90089-1113.
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Introduction

The biharmonic operator surfaces in a large number of applications. It is more effi-
ciently solved as a system of two Poisson equations. The finite difference multigrid
solver for this system is sensitive to the boundary conditions associated with the
problem; for some, fast convergence is achieved with no special effort, while other
boundary conditions require careful treatment of the gridpoints at and about the
boundary to attain full multigrid efficiency.

The Dirichlet boundary conditions are an example of the second type. Without
special care, the multigrid boundary convergence rate dominates the process after
a short while, slowing down the entire process. Several methods for treating the
boundary have been developed. Two are presented here, along with a newly devised
method, more suitable for use with parallel computation.

The Biharmonic Dirichlet Problem

The biharmonic equation is
,L2u = f
	

(1)

within a given domain SZ, along with two boundary conditions on oSZ, where A
represents the Laplacian operator. The Dirichlet boundary conditions are

U =
au — (2)
an

on the boundary OQ. In [4], Ciarlet and Raviart quote Glowinski [6], who suggested
that the equation can be more efficiently solved as a system,

Du—v = 0
AV = f.	 (3)

They prove that this system of equations can be solved with (single-level) efficiency
equal to that of a Poisson equation solver'. The problem has also been extensively
analyzed in multigrid literature [8, 9, 3, 7]. The latter two prove formally the con-
vergence of straightforward multigrid solvers for (3), or slight modifications thereof
(in [7]). The algorithms considered use a relaxation sweep over the entire domain
as the smallest `unit of computation'. As a result, they are slow, requiring a large
number of sweeps at each level to converge [3] or converging relatively slowly [7]. The
algorithms described in the former two references implement (in different ways) an
idea described by Brandt [1], concentrating on the area near the boundary, where
slow convergence holds up the entire process.

1 Note that evaluating both equations of the system requires less work than evaluating the bihar-
monic equation, although this, of course, is not the main computational benefit.
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Basis For Comparison

The desired cycling convergence rate for multigrid solvers of (3) is the interior smooth-
ing rate of the Poisson equation (for whatever number of relaxations is performed on
the finest grid per cycle). For lexicographic ordering, this amounts to a factor of 2
per sweep, while for Red-Black ordering it is 4 for one sweep, 16 for two and 27 for
three [1].

These rates, however, are achievable only for 2-level algorithms with ideal intergrid
transfers. For practical multigrid applications, the convergence rate can be somewhat
smaller, depending on the cycle parameters (including choice of intergrid transfers).
Thus, the convergence of the Dirichlet boundary condition solver should be compared
with that of a solver of (3) with periodic boundary conditions and otherwise identical
parameters (there being no coupling of the equations near the boundary, this behaves
exactly like two Poisson equations; note that an additional constraint must be sup-
plied to each equation to make it nonsingular). Table 1 shows the convergence rates
attained for various types of cycles, using full weighting and bi-linear interpolation for
coarsening and prolongation respectively and Red-Black relaxation ordering. Using
higher order interpolation would reduce the gap between the W(2,1) smoothing rate
and attained periodic convergence.

Cycle W(1,1) W(2,1) V(1,1) V(2,1)
Interior Smoothing Rate 16 27 16 27

Periodic B.C. convergence 15 19 8.5 12.5

Table 1: Comparison basis. Interior smoothing rates and attained multigrid
cycling rates for periodic boundary conditions.

Boundary Condition Discretization

The Dirichlet boundary conditions (2) constrain the values of u on the boundary
and of the derivative of u normal to the boundary to some given values. The nor-
mal derivative is discretized by introducing a set of virtual u-points, parallel to the
boundary and one mesh size from it (e.g., for the unit square, lines of points u(—h, y),
u(1 + h, y), u(x, —h), and u(x, l + h)). Typically, the normal derivative is approx-
imated using a central difference between the virtual points and the first interior
u-points.

The second equation in (3) holds in the interior, but not on the boundary or the
virtual layer. v, however, is defined on the boundary as well as in the interior. When
performing relaxation, the boundary conditions on u and on an are used to set u
values on the true and virtual boundary 2 , respectively, while the first equation in (3)
on the boundary is used to determine v there.

2Actually, in all the algorithms implemented here, the virtual layer is implicit. The normal
derivative boundary condition is used to substitute interior and boundary values of u whenever a
virtual u is called for.

99



60	 U

2e+08
1.5e+08

le+08
5e+07

0
-5e+07
-1e+08

-1.5e+08

0

60

Boundary Slowdown

Applying the multigrid algorithm to the Dirichlet problem results in convergence
rates much slower than those obtained with periodic boundary conditions. Figure 1
describes the problem better than a hundred words (but we'll try anyway... ). Clearly,
the effectiveness of the multigrid solver near the boundary is much less than for interior
points. As a result, the asymptotic convergence rate of the entire solution grinds to
a near halt.

IrvplotI

Figure 1: Boundary slowdown. A residual map (for Av = f) after a num-
ber of multigrid cycles without special boundary treatment. The
boundary residuals dominate.

A number of methods have been suggested to treat the slowness caused by the
boundaries. Brandt in [1] has suggested adding extra relaxation sweeps at and around
the boundaries, and has proved [2] that by doing so the efficiency dictated by the
interior smoothing rates (as predicted by local mode analysis) can be attained. The
additional work required is negligible relative to a full sweep on the entire domain.
This idea has been partially implemented by Michel [9], who derived the adjusted
residual transfers described above, and used them to measure convergence rates for
lexicographic Gauss-Seidel relaxation. It is implemented here for Red-Black ordering.
A different idea was suggested by Linden [8] and also by Papamanolis [10], who
propose simultaneous relaxation of the boundary (v only, as u is given there) along
with one neighboring interior point. Experimentally, this method has produced good
results for grids up to 256 by 256. It only works, however, for the slower lexicographic
relaxation ordering. After presenting these two methods, a new method fusing the
two approaches will be presented, based on using simultaneous relaxation on a wider
and deeper boundary strip. This method achieves the desired convergence rate for
Red-Black ordering as well (but only for W cycles). Its main advantage (relative to
the first method) lies in greater efficiency for massively parallel implementations.
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Boundary Relaxations

In this method, a small number of relaxation sweeps are performed over the boundary
and a small layer of points adjacent to the boundary. The extra work per relaxation
sweep is O(-,I-N) (N the total number of points), thus negligible relative to a full
sweep (O(N)). The results to be presented were obtained using the following steps
for a relaxation sweep:

e Perform the following NREP times:

1. Relax v on the boundary.

2. Relax u and v on DEPTH interior layers, starting nearest to the boundary.

9 Using Red-Black ordering, relax the entire domain (including the boundary).

In all experiments, the domain is the unit square. Simultaneous relaxation is per-
formed at interior points, meaning that new values are computed for both v and u
(satisfying both equations of (3) there) each time the point is relaxed. NREP and
DEPTH are parameters of the solver. The boundary-layer relaxation uses sequential
ordering, although Red-Black ordering would probably serve just as well. Sensitivity
of the algorithm to the order of execution (boundary relaxations before body, bound-
ary relaxations from the border inward, etc.) was not rigorously tested. However, a
casual sampling indicates that using Red-Black ordering for the boundary relaxations
doesn't affect the results, while relaxing the boundary layer from the interiormost part
to the boundary worsens performance somewhat.

Finest Grid NREP DPTH V(1,1) V(2,1) W(2,1) W(1,1)
64 0 0 <1.5 <2 <4 <4

1 2 3 5 10 4
1 5 9 16 8

2 2 5 10 16 9
64 3 6 10 18 10

1 2 3 8 6
3 2 9 13 20 9

3 10 13 18 13
2 2 5 9 16 9

128 3 2 8 12 20 9
3 3 8 13 18 13
2 2 5 8 16 9

256 3 2 8 12 20 9
3 3 1	 8 11 1	 18 13

Table 2: Cycling convergence rates.

Most of the experimentation was performed on a 64 x 64 finest grid, with other
grids being tested to examine the effect of the gridsize on the necessary boundary
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treatment. In all computations the coarsest grid was 4 x 4, except for the 256 x 256
finest grid, for which the coarsest grid was 8 x 8, as the software was designed for a
maximum level depth of six. Table 2 sums it up.

Let us now try to make some sense out of the jumble of numbers in Table 2.
First, it is evident for all types of cycle that a boundary layer of depth one (with
any amount of boundary passes), or a single boundary pass (with boundary layer
up to three deep) will not do (some of these results are not displayed in the table).
For (2, 1) cycles (W and V), two passes with a width two layer bring convergence to
about 80% of the periodic b.c. rate. Adding another pass improves results to 100%.
For V(1,1) cycles, nearly the same is true.

The situation is a little different for W(1, 1) cycles. Here, the maximal convergence
rate obtained is about 13, slightly lower than the periodic b.c. rate of 15. Three passes
are necessary over a boundary layer of width three.

For W cycles the results seem to be independent (or, at worst, imperceptibly
dependent) on the gridsize. For V cycles, however, results deteriorate slowly with
growing grids, requiring slowly increasing values for NREP and DEPTH (although
the additional work remains negligible).

UU	 V

Figure 2: Treated boundary. A residual map (for Av = f) after 30 multigrid
cycles, adding boundary relaxations (three sweeps of a three-deep
boundary layer). The boundary residuals are of the same magni-
tude as the interior residuals.

The added relaxations on the boundary alter the residual map shown in Figure 1.
Figure 2 shows the result — with three boundary sweeps over a boundary layer three
units wide, after thirty W(2,1) cycles (long after convergence to machine accuracy is
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Figure 3: Joint relaxation (Linden's method).

attained, if desired; for the purpose of measuring asymptotic convergence rates, the
error is artificially magnified between cycles), the residuals on the boundary are still
of the same order of magnitude as those in the interior. Thus, the goal of converging
as fast as a solver for the Poisson equation has been accomplished for W(2,1), V(2,1),
and V(1, 1) cycles (and nearly so for W(1, 1) cycles).

It is interesting to note that the boundary treatment can be overdone (too much of
a good thing... ). After a point, adding more sweeps for a given layer-width diminishes
performance, probably due to the jump in residual magnitude at the interface between
the boundary strip and the interior.

This is the only method of the three presented here that reaches optimal perfor-
mance for V as well as W cycles. The main drawback of this method is its unsuit-
ability to massively parallel architectures, as body relaxation cannot proceed until
the requisite number of boundary relaxations has been performed (rather than wait
for two or three extra relaxations per sweep, it would be preferable to perform three
complete cycles with no boundary treatment, which will, for W(1,1) cycles, reduce
the residuals by a factor of over thirty).

Joint Relaxation

An idea proposed independently by Linden [8] and Papamanolis [10] suggests relaxing
each boundary v point together with its neighboring point (u and v), that is, solving a
system for three simultaneous variables. At the corners, both near-corner v points are
relaxed with the interior-corner point, a four-variable system. The variables joined in
relaxation are shown in Figure 3.

The method works well only for W cycles, and only when the boundary layer is
relaxed in lexicographic ordering. Table 3 shows convergence rates for an implemen-
tation of Linden's version of the algorithm, using both lexicographic and Red-Black
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ordering on the boundary and on the interior. Poisson-solver convergence rates are
obtained for lexicographic ordering, but not for Red-Black. The same is true for other
W cycles, though the results are not displayed. A curious feature of the solver (using

Finest Grid Lex. RB
32 12 12
64 8-10 12
128 8-10 12
256 8-10 1	 11

Table 3: Cycling convergence rates, 	 (2,1) cycle, Linden's method, lexi-
cographic and Red-Black ordering.

lexicographic ordering) is that it appears to have two stable rates of convergence,
converging for a while at about 10 per cycle, then at about 8. Theoretically, the
eight rate should dominate, as this is the smoothing rate for lexicographic ordering
(in a (2, 1) cycle) predicted by local mode analysis. But this didn't happen for more
than 150 cycles using a 128 x 128 finest grid (on a 200 cycle trial, the first 25 cycles
converged at a rate of about 10 per cycle, the next 60 at about 8, the next 60 at
about 11, and from then on at about 8).

Merging Methods

Using a method that, in a sense, merges the two ideas above, a new form of bound-
ary treatment is obtained, more suitable for parallel implementations. Relaxation is
performed in a manner similar to Linden's algorithm, although Red-Black ordering
is used. A number of combinations were tested, one of which worked well. In the
method which worked (Figure 4), three interior points were relaxed along with two
boundary points (an eight variable system). At the corners the four cornermost inte-
rior points and their four boundary point neighbors combine to form a twelve variable
system. What happens, in effect, is that nearly every point on the boundary layer
is relaxed twice (simultaneously with the interior), once with the red interior points,
and again with the black ones. The exceptions are two points in each corner which
don't get a second relaxation.

Results are summarized in Table 4. In order to simulate parallel implementation
of the method, the boundary solver does not use new values of u and v computed in
the present half-sweep. Rather, the boundary relaxation during the `red' part of the
sweep uses values computed prior to the sweep, and during the `black' part — values
computed by the `red' half.

Finally, it is worth noting that, with a bit of preprocessing, all the variables linked
in joint relaxation can be relaxed in parallel, with the number of operations per vari-
able proportional to the number of `neighbors' of the system of equations. `Neighbors'
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Figure 4: Joint relaxation. A single (u) variable at each boundary point and 
two variables at each interior point. 

include the right hand sides of the equations3, and all u and v variables participating 
in the equations but not solved for. Thus, the boundary system requires eighteen op- 
erations per variable (each 'operation' consisting of a constant multiplication and an 
addition), and the corner system twenty. Super parallel implementations can perform 
these computations in logarithmic time, as they are totally independent of each other. 
For comparison, relaxation of an interior point (after some economization) requires 
nine or ten operations to update u (the new value of v is computed in the first four). 
Here, each operation consists of a constant multiplication or  an addition. 

Table 4: Cycling convergence rates, Red-Black ordering, boundary relaxed 
as in Figure 4. 

3Qn the finest grid, where the right hand side doesn't change from cycle to cycle, a bit of 
preprocessing and some memory can reduce all the right hand side neighbors to a single operation 
per variable. The first and second methods will then each require only eleven operations per variable, 

V(2,l) 
11 
9 
7 
6 

and the corner system a mere nine. 

V(l, 1) 
6 
5 
4 

3.5 

W(2,l) 
20 
20 
20 
20 

Finest Grid 
32 
64 
128 
256 

W(1,l) 
14 
14 
14 
14 



FMG Convergence 

Using FMG and the boundary treatments outlined above, the biharmonic equa- 
tion can be solved in a single cycle to a point where the dominmt tern  in the m o r  
(for some norms) is due to the truncation error (the error due to the approxima- 
tion of the equation on a grid) rather than algebraic error (the error in the solution 
of the equation). Table 5 shows the error in the solution obtained after one, two, 
and three multigrid cycles using the FMG dgorithm to provide the initial guess 
for the finest level. Cubic interpolation is used to transfer the coarse grid solu- 
tion (U and v) to the fine grid. The differential solution for the system tested was 

Table 5: FMG. Error (relative to the differential solution) after one V(1, I), 
one, two and three W(1,1) cycles, and one W(2,l) cycle. 

x2(l - x ) ~  y2(1 - Y ) ~ ,  and the errors in the solutions on each grid are measured relative 
to this function. Three error norms (or seminorms) are shown: A,, 4 (J-), 

v 

and H2 (JJ uzz + uh + 24,). 

Clearly, after even one V(1,I) cycle4, the error ( L ,  and H I )  is primarily clue 
to truncation - in fact, in this particular case the algebraic error happens to cancel 
part of the truncation error, as solving the system to a higher degree of accuracy 
increases the distance from the differential solution. This is not true for the H2 error, 
which does indeed get significantly reduced by further cycles. Using a higher order of 
interpolation to transfer the initial guess to the fine grid should correct this. 

The number of operations (per fine grid point) required to solve the biharmonic 
equation will therefore equal the work necessary to perform a single V(1,l) cycle on 
each grid (coarsest to finest). Assuming 9 operations (constant multiply or add) per 
point for each relaxation sweep (10 on coarser grids), about 16 for coarsening and 
interpolation combined (note that residuals need be transferred from Red relaxation 
points only), and neglecting the work added by the boundary treatment, this gives a 
total of less than 70 operations per point to solve. 

4These results were obtained using joint boundary relaxation. Using extra boundary sweeps gives 
a similar but slightly better solution. However, for larger grids, it may be necessary to use boundary 
sweeps, use more points in joint relaxation, or use W(1,1) cycles. 
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MULTIG ID ACCELERATION OF TIME-ACCURATE DNS
OF COMPRESSIBLE TURBULENT FLOW*
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P.O. Box 217, 7500 AE Enschede, The Netherlands

ABSTRACT

An efficient scheme for the direct numerical simulation of 3D transitional and
developed turbulent flow is presented. Explicit and implicit time integration schemes
for the compressible Navier-Stokes equations are compared. The nonlinear system
resulting from the implicit time discretization is solved with an iterative method and
accelerated by the application of a multigrid technique. Since we use central spatial
discretizations and no artificial dissipation is added to the equations, the smoothing
method is less effective than in the more traditional use of multigrid in steady-state
calculations. Therefore, a special prolongation method is needed in order to obtain
an effective multigrid method.

This simulation scheme was studied in detail for compressible flow over a flat plate.
In the laminar regime and in the first stages of turbulent flow the implicit method
provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse
grid. At increased resolution this speed-up is enhanced correspondingly.

INTRODUCTION

Multigrid methods have proven to be very successful when computing steady
solutions to the Reynolds-averaged Navier-Stokes equations [6,12]. In these equations
a turbulence model is introduced and an approximation for the mean turbulent flow
field is obtained. Many turbulent flows are only statistically stationary, however,
and the actual solution is strongly time dependent. The development of numerical
simulation methods for the time accurate simulation of turbulent flow forms a subject
of intensive research (see [3,4,9,10,13]) . In particular the transition from laminar to
turbulent flow and the early stages of fully developed turbulence in relatively simple
geometries are presently accessible to time-accurate numerical simulation.

*This work was supported by the J.M. Burgers Centre and by the Netherlands Organization for
Scientific Research (NWO).
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DNS forms a key tool for computing detailed and reliable results for turbulent flow
in simple geometries, which can subsequently be used in the validation of numerical
methods and sub-grid models for large eddy simulations. In this paper we focus on
an efficient higher order accurate method for direct numerical simulation (DNS) of
compressible flow. In this paper results will be illustrated for the compressible flow
over a flat plate.

Because of the large variety of length scales present in high-Reynolds turbulent
flows, a large number of grid points is required. The grid should be chosen such that
the relevant modes with smallest length scales can still be adequately represented,
resulting in very fine meshes. The time step is limited by accuracy requirements
and stability conditions unless an absolutely stable time integration method is ap-
plied. In general, the stability conditions are far more restrictive than the accuracy
requirements, especially in the laminar regime. Stability conditions for explicit time
integration methods lead to a linear relation between the grid size and the time step if
the convective terms in the equations are most restrictive. Thus, the required number
of time steps is proportional to n (the number of grid points in each grid direction). In
principle, absolutely stable (thus implicit) time integration methods are more suitable
for this type of problem, since no stability restrictions are imposed on the time step.
However, implicit methods are more expensive per time step. Hence, effective tech-
niques are required for a fast solution of the nonlinear system of equations resulting
from the implicit time discretizations in order to render these methods useful.

Summarizing, the following dilemma is observed. Application of explicit time
integration methods leads to a large number of (relatively cheap) time steps, with a
total number of operations a n4 . With an implicit scheme a relatively small number
of (expensive) implicit time steps is required, leading to b n3 operations. However, in
general b is considerably larger than a.

The main purpose of our study is the development of efficient tools for solving
the system of equations that arises from application of an implicit time integration
scheme to the compressible Navier-Stokes equations. The method presented in this
paper is based on the work by Jameson [6,7] and Melson et al. [12]. For Reynolds-
averaged Navier-Stokes (RaNS) equations they have proposed an iterative-implicit
method which is based on a multigrid technique, leading to a considerable speed-up
in comparison with explicit methods. The RaNS equations contain a lot of dissipation,
which leads to a fast convergence of the relaxation method. In our equations, however,
the dissipation is very small. As a result, we obtain a smaller speed-up than Melson
et al.

This paper is set up as follows. In the following section, a general description of
the equations is given. Numerical solution techniques for the problem (including a
multigrid technique) are presented in section 3. In section 4 computational results
will be presented. Finally, we will give some conclusions.
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GOVERNING EQUATIONS

The equations describing the flow are the well-known Navier-Stokes equations,
which represent conservation of mass, momentum and energy. In terms of dimension-
less variables (density p, velocity components u j and energy density e) these equations
have the form (the summation convention is used):

atp + aj(Puj) = 0	 (1)

	

at(Puk) + aj(Pukuj) + akp — ajOkj = 0	 k = 1, 2, 3	 (2)
ate + aj((e + p)uj) — 9j(Uijui — qj ) = 0	 (3)

Here at and aj denote partial differentiation with respect to time and the coordinate
xj , respectively. The pressure p is given by

P = (-y-1)(e— 1Puiui) (4)

in which -y denotes the adiabatic gas constant, which is set to -Y = 1.4. The viscous
stress tensor Uij is a function of the velocity components uj:

air ReAui + aiuj — 2bij (Uk) (5)

where Re is the Reynolds number (the fluid viscosity is taken constant). Furthermore,
qj represents the viscous heat flux, given by

1	 a'T	 (6)
qj	 (-y — 1)RePrMr

where Pr is the Prandtl number, for which we use Pr = 0.72, and Mr is the reference
Mach number. The temperature T is given by the ideal gas law:

T _ 7MT p	 (7)
P

In the Navier-Stokes equations (1-3), two types of fluxes can be distinguished.
The convective fluxes consist of the first order spatial derivatives in the Navier-Stokes
equations. These are of hyperbolic type and in Von Neumann analysis of the linearized
equations, they give rise to imaginary eigenvalues. The viscous fluxes are parabolic
and add dissipation to the system. This dissipation is 0(11Re).

The behavior of the solution of the Navier-Stokes equations roughly can be charac-
terized as follows. The nonlinear terms in the convective fluxes provide a continuous
generation of modes with a small length scale from the components with a larger
length scale. On the other hand, the dissipative fluxes add a certain damping to the
system. This damping is very small for the components with a large length-scale,
but it is larger for the small-length-scale ;.components. In the transitional stage from
laminar to turbulent flow, small disturbances in a laminar flow give rise to growth of
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large-scale eddies (which correspond to the most unstable modes in linear stability
theory). These eddies generate eddies with smaller length scales. This continuous
flow of energy to the eddies with smaller length scales is truncated at the scale where
the dissipation counterbalances the growth effects, so that a statistically station-
ary turbulent flow is obtained. This "viscous length scale" strongly depends on the
Reynolds number. In the turbulent regime a broad spectrum of different modes in
the flow develops.

NUMERICAL METHOD

In this section the discretization of the spatial derivatives and the explicit and
iterative-implicit time integration methods for our problem will be discussed.

Spatial discretization

For the spatial derivatives in the equations, fourth order accurate central five-
point difference schemes are used. Since artificial dissipation may seriously influence
the solution during the transition from laminar to turbulent flow, the schemes are
devised in such a way that no artificial dissipation is required. Odd-even decoupling
is prevented by using a filtering procedure that just eliminates the shortest modes,
see e.g. [4].

Explicit time integration

After discretizing the spatial derivatives in the governing equations, the equations
take the following form (with discrete state vector U):

	

atU + f (U) = 0	 (8)

In the numerical solution of this problem, we denote the numerical solution at time
level to by U1.

We have implemented a second order compact-storage four-stage Runge-Kutta
method. The method is suitable for our problem, since the stability region contains a
considerable part of the imaginary axis (up to 2 .\,F2i). Thus, this method gives stable
results if the size of the time step satisfies the CFL condition:

	

At A. < CCFL	 (9)

with CCFL :.. 2-\,F2. The largest eigenvalue am of the discrete linearized convective
flux is given by

C l ul l	 I u2 1	 l u31	 ^P	 1	 1	 1

	
( 10)

	

Am = A AX, + Ax2 + Ax3 + p 	 Axl + Ax2 + Ax3)	
10
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with A = 3 —6 + 4,46- + s V —39 + 16,F6 :. 1.37 if fourth order accurate central
five-point finite difference approximations are used on an orthogonal equidistant grid.
Thus, increasing the number of grid points leads to a proportional reduction of the
time step.

Iterative-implicit time integration methods

In order to speed up the solution method, an implicit time integration scheme
has been applied. A-stable methods (i.e., those that have a region of stability which
includes the whole of the left half-plane (also referred to as absolute stability)) are
preferred, so that the time step is not restricted by stability conditions, but only by
physics. An iterative procedure is applied for the solution of the system of equations
resulting from the implicit scheme, thus the approach is called an iterative-implicit
method.

We will only consider implicit linear multistep schemes. Because of the com-
plexity of the equations and the large number of points involved in our problems,
more advanced schemes are not considered here. The order of A-stable linear multi-
step methods cannot exceed two (see [2,11]). Suitable methods are Backward Euler,
the Trapezoidal Rule, and the two step Backward Differentiation Formula, BDF(2).
Since Backward Euler is only first order accurate and generates considerable numeri-
cal damping, we have decided not to use it. The Trapezoidal Rule is the second-order
A-stable linear multistep method with smallest error constant [2,11]. However, since
periodic eigenfunctions are not damped, extra smoothing is required in many appli-
cations. The BDF(2) method is preferred, because it is less sensitive and has a larger
stability region.

For eq.(8), BDF(2) with constant At is defined by

3 Un+1 — 4. Un + Un-1 = —2 f ( Un+1 ) At	 (11)

In order to solve eq. (11) , it is written as

aoV + f (V) = g
	

(12)

where V stands for the unknown solution Un+l, g = (4Un — Un-1 )/(2At) is a known
forcing function and ao = 3/ (20t) for this time integration method. Other implicit
time integration schemes can be cast in the same form (12) by adjusting the constants
and forcing functions.

An iterative method for solving eq.(12) consists of the following steps:
1. computation of a starting solution V°,
2. relaxation method for improving the solution,
3. truncation of the relaxation method if the desired accuracy is achieved.

Our approach for these steps will be presented below.
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Starting solution

It is clear from the above that the solutions at two previous time levels are re-
quired to calculate the solution at a new time level. This is inherent to the second
order accurate discretization of the time derivative in eq. (11) . The availability of
solutions at previous time levels can also be exploited to obtain a good starting so-
lution at the new time level. The better the starting solution corresponds with the
solution to eq.(11), the smaller the amount of work that is necessary to calculate the
solution within the required accuracy. A suitable starting solution is obtained from
extrapolation of the solution from previous time levels. For constant time steps At
quadratic extrapolation yields

V° = 3 Un — 3 Un-1 + Un-2 	 (13)

Another second order extrapolation method uses the time derivative of U given by
the function f:

VO = Un-1 — 2 f(Un) At	 (14)

A second order extrapolation method with a number of similar terms in the truncation
error as in the truncation error of the BDF(2) formula is

Vo = 3 (4 Un — Un-1 — 4 f (Un ) At + 2 f (Un-1) At)	 (15)

The truncation errors of eq.(14) and BDF(2) are very different. As a result, more
relaxations are required if extrapolation (14) is used than if eq.(13) or eq.(15) is
applied. The choice of either eq.(13) or eq.(15) does not have a large influence on the
required number of relaxations.

Iteration method; application of multigrid

A standard method to solve equations of the form (12) is the Newton-Raphson
iteration method. In this method, a linearization of the flux vector around the known
state Un is used, see e.g. [13]. However, application of this method goes at the
expense of a large matrix inversion.

Multigrid methods [1,5] are often applied for the efficient computation of steady-
state solutions to RaNS equations. Because of the large number of grid points and
the large variety of typical length scales in the solution, application of these methods
leads to significant accelerations compared'to classical iteration methods if suitable
smoothing methods are used. In fact, our problem (12) is of the same form; hence we
can utilize the same technique each time step. This is described below.
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Transfer operators

The solution is restricted to coarser grids by injection, and the defect vector by
full weighting.

A special treatment of the prolongation is required. Basically, the correction
is prolonged to the finer grid by means of trilinear interpolation. This prolongation
operator works well for stationary flow simulations, since the fine grid operator indeed
satisfies the requirement of damping the high frequency components in the error. In
the present solver, however, the high frequency components which may be created
by the prolongation process are very slowly damped since the discretization method
does not contain artificial damping. Therefore, after every prolongation first the
shortest modes are removed from the correction by applying a filtering operator to
the corrections. This filter eliminates the shortest modes.

Smoothing method

The rapidly varying eigenfunctions (so-called rough eigenfunction, see [14]) cannot
be represented well on coarse grids. Therefore, an effective smoothing method is
required.

A common technique for the computation of steady-state solutions to the Navier-
Stokes equations is solving the time dependent equations with multistage methods
(see e.g. [7]) . We have chosen a similar approach for our problem (12) . In order to
solve (12), we find the steady state solution of the following pseudo time evolution
equation:

aTV + aoV + f (V) = g	 (16)

The advantage of writing the problem in this form is that it has the good stability
properties of the implicit time integration method, whereas the flexibility of explicit
time integration schemes is maintained. Furthermore, convergence acceleration meth-
ods can be applied in a manner similar to steady-state calculations.

We have chosen the following second order accurate Runge-Kutta method:

VO = VM

(1 + 4 aOAr)V1
(1 + 1 aOAT)V2
(1 + R aoOT)V3
(1 + 2ao0T)V4
(1 + aO®T)V5

= VO —

= VO —

= VO —

= VO —

= VO —

4(fc(VO) + fd(VO)
1 
(fc(VI) + fd(VO)

g(fc(V2) +.fd(V2)
12(fc(V3) + fd(V2)
(fc(V4) + fd(V4) —

— g)AT
g)AT

— g)OT	 (17)
— g)AT
g)AT

Vm+1 = V5

in which f = f, + fd . The dissipative part (fd) of the flux vector is only evaluated
at a few stages, as proposed by e.g. Jameson [7, 8]. This both saves calculation time
and increases the stability.
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Furthermore, in this time stepping scheme, the linear term aoV in eq.(16) is treated
implicitly. This is easily possible, as the term is diagonal, and useful, since it improves
the stability of the pseudo time stepping method: since ao > 0 the stability function
is modified, which leads to a larger stability region and a considerable reduction of
the amplification factor, see e.g. [12].

If ao = 0, the CFL number can be taken to be 4.0. From a linearization of the
stability function around AT A,,,, = 4.0, the following conditions can be derived for
small ao/A,,, > 0:

AT (A,,,, — ao)	 < 4.0	
(18)

AT (A,,,, + i2 ao) < 4.5

Other convergence acceleration techniques

The convergence is more accelerated by the application of local pseudo time step-
ping. Since a steady state equation is solved, the pseudo time step AT need not to be
equal in each point. The maximum allowed AT is chosen in each point from eq.(18).

At this moment, we are testing a Newton-Raphson type approach. This approach
is based on a linearization of the function f around the solution V' (see eq.(16)).
Using upwind discretizations for modifications of the solution, then, the characteristic
variables associated with the largest eigenvalue are solved implicitly. First test results
indicate that a speed-up of 10 to 20% can be obtained.

Truncation of the relaxation process

For the time being we have chosen the following approach. The iterations are
truncated if the residual is below a prescribed value. The maximum value is chosen so
that the truncation error is smaller than the discretization error of the time integration
method.

APPLICATION TO A TRANSITIONAL FLOW

In this section we present some results from application of the techniques described
above to a transitional wall-bounded flow.

The flow is computed in a rectangular domain, with no-slip isothermal wall condi-
tions at the wall, symmetry conditions at the upper boundary, and periodicity in the
horizontal directions. The initial solution consists of the similarity solution for a com-
pressible boundary layer combined with a small-amplitude disturbance, consisting of
a number of unstable modes which are obtained from linear stability theory.

The computations presented here were done with the iterative-implicit time in-
tegration method. In the multigrid process, V-cycles are used with 1 pre-relaxation
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and 2 post-relaxations. The relaxation process is truncated if the residual has be-
come less than a certain prescribed value. This value is chosen such that the resulting
truncation error is smaller than the errors due to the discretizations.

The equations are discretized on a domain with 64 x 64 x 64 grid points, which is
adequate at the stage of transition and quite coarse in the turbulent regime.

Discretization errors

First we will show that in the laminar regime the small time steps required for
stability of the explicit time integration method are not necessary for accuracy.

In the laminar regime, only disturbances with relatively large length-scales are
present. The following table shows the relative errors due to the spatial discretization
for the growth rate of the most unstable mode for different grid densities. El and E2

are the relative errors of the growth rate at two different locations: in the boundary
layer and further in the domain, respectively.

n I	 el e2

32 0.005
64
LO5

0.0003
128 0.0000

TABLE 1
Relative errors in growth rate of most unstable mode

due to the spatial discretization, at two locations in the flow
(n stands for the number of grid points in each grid direction)

The results in Table 1 show the 4th order accuracy of the spatial discretization
method.

Discretization errors due to the time integration are given in Table 2.

At El E2

0.05 0.0000 0.0000
0.10 0.0002 0.0000
0.25 0.001 0.0003
0.50 0.003 0.001
1.00 0.01 0.005

TABLE 2
Relative errors in growth rate of most unstable mode

due to the time discretization, at two locations in the flow

It is clear from these data that for a 64 x 64 x 64-grid, a time step At = 0.50 may
be chosen which leads to an error in the growth rate due to the time integration
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comparable to the error arising from the spatial discretization. This value is in large
contrast with the size of the time step limit for the explicit time integration method:
for this grid At < 0.04 is required. The large discrepancy between these two values
of the time step is the main motivation for this study. In a later stage, when modes
with smaller length scales become more important, this discrepancy becomes smaller.
This is sketched in Figure 1.

Since the number of operations per pseudo time step is proportional to the num-
ber of grid points, the amount of work done on the coarse grids can be neglected.
Furthermore, the required amount of CPU time for one explicit time step is approx-
imately equal to the time for one pseudo time step with eq.(17) on the finest level.
Thus, the ratio of the CPU time per implicit and explicit time step is the measured
number of pseudo time steps on the finest grid. Typical numbers will be given in the
following subsection.

accuracy demand

stability demand
--------------------------------------

laminar	 turbulent

Figure 1: Typical behavior of the time step limit based on accuracy and stability
requirements in the transition from laminar to turbulent flow

From a comparison of numerical results obtained with the explicit and the implicit
scheme, we conclude that the differences are very small in the laminar regime. Figure
2 illustrates that with fixed time step At = 0.5 the results are accurate up to t ':Z^ 2250.
The accuracy of the implicit time integration method is increased if smaller values
are used for the implicit time step. Thus, choosing time steps that are larger than the
value prescribed by the stability condition for the explicit time integration method is
allowed in the laminar regime.

Comparison of the efficiency of the explicit and implicit method

Various criteria can be used for determining the size of the time step. The applica-
tion of the iterative-implicit time integration method is illustrated with the following

time

step
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Figure 2: (a) Comparison of the development of the maximum value of the second
vorticity component with explicit time integration (solid line) and with the implicit
method (At = 0.5). (b) Relative error due to the large time step

choices: (a) choose a fixed time step (At = 0.5), or (b) vary the time step so that the
system of equations can be solved in about 2 V-cycles. Figure 3 shows a comparison
of the work involved with both choices and with the explicit time integration method.

The differences between the amount of work with fixed and variable time steps
(both with the iterative-implicit time integration method) can be explained as follows.
The iterative-implicit time integration method outlined above is similar to a predictor-
corrector method. Predictor-corrector methods have a bounded stability region. The
stability can be increased by choosing smaller time steps or by increasing the number
of corrections. For a large number of predictor-corrector methods, the length of the
part of the imaginary axis in the stability region increases less than linearly with the
number of corrections, see e.g. the stability regions for Adams-Bashforth methods
in [11]. Therefore, we expect that reducing the time step size At is cheaper than
increasing the number of cycles.

The stability requirements for the explicit time integration method lead to a max-
imum time step At :^ 0.04, so that 250 explicit time steps are needed per 10 time
units. Apparently, the implicit time integration scheme is cheaper than the explicit
scheme if the implicit time step is sufficiently reduced. In our experiences for t > 2400
the grid should be reduced for a sufficient representation of the shortest modes; again
our implicit scheme is more efficient than the explicit scheme.
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Figure 3: Number of pseudo time steps per 10 time units on the finest grid with (a)
a fixed time step and (b) a variable time step compared with (c) the number of time
steps for the explicit time integration method. In this time interval, the transition
from laminar to turbulent flow occurs.

Finally, it is noted that if the multigrid method is not used, solving the system
of equations takes about 5 times more CPU time. Thus, the use of this method is
decisive for the success of the implicit scheme.

CONCLUSIONS

We have compared the application of an explicit and an iterative-implicit time
integration scheme to time-accurate DNS of compressible turbulent flow. Convergence
acceleration techniques such as multigrid are crucial for an effective iterative solution
of the system of equations. For the application presented in this paper, the iterative-
implicit method is faster than the explicit solver. However, due to the small amount
of dissipation in the equations a smaller speed-up is obtained than in methods for the
RaNS equations.
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FIRST-ORDER SYSTEM LEAST SQUARES FOR
VELOCITY-VORTICITY-PRESSURE FORM OF THE STOKES
EQUATIONS, WITH APPLICATION TO LINEAR ELASTICITY

ZHIQIANG CAI°, THOMAS A. MANTEUFFEL t , AND STEPHEN F. MCCORMICK#

Abstract. In this paper, we study the least-squares method for the generalized Stokes equations (in-
cluding linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The
least-squares functional is defined in terms of the sum of the L 2 - and H-1-norms of the residual equations,
which is similar to that in [6], but weighted appropriately by the Reynolds number. Our approach for
establishing ellipticity of the functional does .not use ADN theory, but is founded more on basic principles.
We also analyze the case where the H-1 -norm in the functional is replaced by a discrete functional to make
the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned
by well-known techniques.

Key words. least squares, Stokes

AMS(MOS) subject classifications. 65F10, 65F30

1. Introduction. Recently, there has been substantial interest in the use of least-
squares principles for numerical approximation of the incompressible Stokes and Navier-
Stokes equations, especially those based on vorticity (more precisely, velocity-vorticity-
pressure); for example, see [5, 12, 13, 14, 19]. Its attractions include accurate approximation
to meaningful physical quantities, formulation of a well-posed minimization principle, elim-
ination of the need for artificial stablization techniques, and freedom in the choice of finite
element spaces (which are not subject to the LBB condition). The computational results
provided in these papers indicate that such methods have great promise. However, they do
not yield optimally accurate approximations for the case of Dirichlet boundary conditions
(see the analysis in [6]). In recent work by Bochev and Gunzburger [6], the ADN approach
(see [2]) was extended to the vorticity formulation of the Stokes equations with rigorous error
analysis. The least-squares functional is defined to be the sum of squares of the norms of the
residual of each equation, where the norms are determined by the indices assigned to each
equation by the ADN theory (see [1]). To be specific, consider the two-dimensional station-
ary Stokes equations with Dirichlet boundary conditions. Then ADN theory was used in [6]
to show that the least-squares functional II f— (VVI w +vp)IIq+II vx u—w IIQ+1+II ® ' UII4+i
is equivalent to the sum of squared norms of each variable, II u IIQ+2 + Il w liq +1 + Ilpllq+1 ^ for
all q E R and f = 0. In particular, they consider the above functional with q = 0, then
replace the H'-norms by mesh-dependent L2-norms, h-2 II .

 11 20 (see also [2]). This mesh-
dependent least-squares approach yields optimally accurate approximations for each variable
with respect to approximation subspaces. However, it is not clear that an optimal solution
algorithm for the resulting discrete equations can be developed at this stage of research,
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albeit the matrix is symmetric and positive definite.
In this paper, we consider a least-squares functional similar to that in [5] with q = -1,

but weighted appropriately by the Reynolds number. This is designed for the vorticity
formulation of the pressure-perturbed variant of the generalized Stokes equation (which
includes linear elasticity) with Dirichlet boundary conditions in two and three dimensions.
Instead of applying ADN theory, we directly establish ellipticity and continuity of the
functional in a product norm involving Re and the La- and H 1 -norms. The H'1 -norm
in the functional is further replaced by the discrete H -1-norm to make the computation
feasible, following the discrete H-1 least-squares approach proposed by Bramble, Lazarov,
and Pasciak [3] for scalar second-order elliptic equations. Such discrete H-1 functionals
are shown to be uniformly equivalent to the Sobolev norms weighted by the Reynolds
number. This property enables us to show that standard finite element discretization error
estimates are optimal with respect to the order of approximation as well as the required
regularity of the solution, and that they are uniform in the Reynolds number. Moreover,
the resulting discrete equations can be preconditioned by multigrid associated with velocity
and by diagonal matrices associated with vorticity and pressure uniformly well with respect
to the Reynolds number, the mesh size, and the number of levels.

The paper is organized as follows. Section 2.1 introduces the (generalized) Stokes
equations, the vorticity formulation, and some preliminary results. We introduce the least-
squares functional weighted appropriately by v for the vorticity system, then establish its
ellipticity and continuity in Section 2.2. Section 3 discusses the finite element approximation
and Section 4 considers the discrete H -1 -norm least-squares functional and solution method
for the resulting system of linear equations.

2. Formulations of Least-Squares Functionals. In this section, we describe the
weighted least-squares functional for the vorticity formulation and show its ellipticity and
continuity in the appropriate Hilbert spaces. In Subsection 2.1, we start by defining the
(generalized) Stokes equation and its vorticity formulation; we next give some notation for
Sobolev spaces, the divergence and curl related Hilbert spaces, and their norms; we then
include some preliminary results of functional analysis. In Subsection 2.3, we introduce
a least-squares functional weighted appropriately by the Reynolds number, then directly
show its ellipticity and continuity.

2.1. The Stokes Equation and Its Vorticity Formulation. Let Q be a bounded
open domain in Rd (d = 2 or 3) with Lipschitz boundary afl. The pressure-perturbed form
of the generalized stationary Stokes equation in dimensionless variables may be written as

(2.1)	 J -vA u + V p = f,	 in SZ,
l V• u+ S p = 0,	 in S2,

where the symbols A, V, and V . stand for the Laplacian, gradient, and divergence operators,
respectively; f is a given vector function; v is reciprocal of the Reynolds number Re; f is
a given vector function; and S is some nonnegative constant (S = 0 for Stokes and S = 1
for linear elasticity with v = 'a , where µ and A are the (positive) Lame constants). For
more details on linear elasticity, see [6]. We consider the (generalized) Stokes equations
(2.1) together with the Dirichlet velocity boundary condition

(2.2)	 u=0 on &2

124



and the mean pressure condition

(2.3)	 in p dx = 0.

Let curl = ®x denote the curl operator. (Here and henceforth, we use notation for
the case d = 3 and consider the special case d = 2 in the natural way by identifying V
with the (XI, x2)-plane in R3 . Thus, if u is two dimensional, then the curl of u means the
scalar function

vxu= 81u2-82ui

where ul and u2 are the components of u.) It can be easily checked that

(2.4)	 V x (®x u) _ -A u + V (® • u).

(For d = 2, relation (2.4) is interpreted as

®1 (vx u) _ -A u + V (V • u),

where ®1 is the formal adjoint of v x defined by

_	 a2q

	

X1 4 	 _81q )

Introducing the vorticity variable

w=0x u,

using the identity (2.4), and remembering the "continuity" condition 0 • u + S p = 0, then
the generalized Stokes equation (2.1) may be rewritten in vorticity form as follows:

	

vVxw+(1+vb)vp = f,	 in Q,
(2.5)	 v x u - w = 0 1 	 in 12,

	

O • u + b p = 0,	 in Q.

Next, we establish notation. We use the standard notation and definition for the Sobolev
space Hs (SZ) d for s > 0; the standard associated inner product and norm are denoted by
(•, •)s,0 and II • Il s, n, respectively. (We supress the subscript d because dependence of the
vector norms on dimension will be clear by context. We will omit the measure Q from the
inner product and norm designation when there is no risk of confusion.) For s = 0, Hs(Q)d
coincides with L2 (SZ) d . In this case, the norm and inner product will be denoted by II - II
and (•, •), respectively. As usual, Ho(Q) will denote the closure of D(Q) with respect to the
norm II • Its and H- '(Q) will denote its dual with norm defined by

IIoII —s 	sup=	
< `P ' >

OOOEHo(0)	 11011-

Define the product spaces HO' ( Q)d = rjd 1 Ho(S2) and H- 1 (St)d = rja 1 H -1 (Q) with stan-
dard product norms. Let

H(div; n) _ {v E L2 (Q) d : ® • v E L2(Q)}
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and

H(curl; fl) _ {v E L 2(n)d : ®x v E L2(n)2d-3},

which are Hilbert spaces under the respective norms

II V IIH(ai,;n) ° (IIv II 2 + 1I ® • V II 2) 2

and

IIVIIH(curi;n) = (II v II 2 + II®X VII2^ 2

Define their subspaces

Ho(div; 9) _ {v E H(div; fl) : v • n = 0 on Oft}

and

Ho(curl; fl) _ {v E H(curl; fl) : yTv = 0 on Oft},

where yTv = v • r for d = 2 and yTv = v x n for d = 3, and n and r denote the respective
unit vectors normal and tangent to the boundary. Finally, define the subspace L2 (fl)d of
L2 (fl)d by

L2(ft)d = {v E L2 (1t)d : / v= dx = 0 for i = 1, ..., d}.
n

Here and henceforth, we will use C with or without subscripts to denote a generic
positive constant, possibly different at different occurrences; this positive constant is inde-
pendent of the Reynolds parameter v and other parameters introduced in this paper, but
may depend on the domain Q. The next lemma is an immediate consequence of a general
result of functional analysis due to Necas [12] (see also [8]).

LEMMA 2.1. For any p E QQ), there exists a positive constant C such that

(2.6)
	

IIPII «INP11-1•

A result analogous to Green's formula also follows:

(2.7)	 (V x z, 0) _ (z, ®x 0) - 
180

0 • (z x n) ds

for z E H(curl; ft) and -0 E H1(fl)d
Finally, we will summarize results of Lemma 2.5 and Remark 2.7 in Chapter I of [8]

that we will need in subsequent sections.
LEMMA 2.2. For any v E Ho(div; St) n Ho(curl; 12), there exists a positive constant C

such that

(2.8)	 IIVII1 < C (II ® • V II + II®x VII)
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2.2. Least-Squares Functional. Our least-squares functional is defined by the weighted
sum of the L2- and H -1-norms of the residual equations of system (2.5):

(2.9)G(u, w, p, f) = II f - (v®xw +( 1 + vb)V p)1121+
v2 II ®x u- wll 2 +v2 II ®•u + bp112.

(A similar functional without the weights of the Reynolds parameter v for the Stokes equa-
tions was considered by Bochev and Gunzburger in [5].) The least-squares problem we con-
sider is to minimize the above quadratic functional over V = Ho (R) d x L2 (ft)2d-3 x QQ)

find (u, w, p) E V such that

	

(2.10)	 G(u, w, p; f) =	 inf	 G(v, a, q; f).
(v, o• , q)EV

Next, we use an approach that departs from the established ADN theory (cf. [5]) to show
ellipticity of the functional.

THEOREM 2.1. For any (u, w, p) E V, positive constants Cl and C2 exist independent
of v such that

	(2.11)	 G'i (v2 II u IIi + v2 11w 11 2 + (1 + vb)211p112^ < G( u , w, p; 0)

and

	

(2.12)	 G(u, w, p; 0) < C2 (v2 II u IIi + v2 11 w 11 2 + ( 1 + US)21Ip112)

Proof. Upper bound (2.12) is straightforward from the triangle and Cauchy-Schwarz
inequalities. We proceed to show the validity of (2.11) for (u, w, p) E Ho(f2)d xH(curl; ft)x
(Qn) n H 1 (Q)). It will then follow for (u, w, p) E V by continuity. Now from (2.7) and
the Cauchy-Schwarz inequality, for any 0 E H'(ft)d we have

1 
Uvb (o p,O) = v(vvxw+(l+vb )o1?,O) +(Vxu- w,VXO)- (vxu,VXO)

< C 11 Il vvx w + (1 + vb )v pll-1 + II ®x u - w ll + Ilvx u ll) I1-0111,

which, together with Lemma 2.1, implies that

1 
Uvb llpll s C 1 

vvb 
IIvpII-1

	

(2.13)	 < C (U (Ivvx w + (1 + v6 )vp ll -1 + 11 ®x u - w ll + Ilox ull^

By (2.7), the Cauchy-Schwarz and triangle inequalities, Lemma 2.2, and (2.13), we have
that

Ilex u11 2 = (vxu - w, vx u)+ 1 (vv xw +(1+vb)vp, u)

+ 1 v vb (p, 0 • u + bp) - 
b(1 

v 
vb ) (p, p)

< Ilvx u - w ll Il ex ull + vllvvx w + (1 + vb)v p11-1 Ilulll

+ 1 vvb HAI IN • u + b pll
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< v Il vvx w + (1 + vb )v PII-1(Il vx ull + II v • u + b PII + bIIPII)

+Ilex u — w ll Il ex u ll +	 v
1+vS 

IIPII II v.0 +bPII

<	 Ilvx u — w il + v Ii vvx w + (1 + vb )v PII -1 + II v • u + b P llll vx ull (	 ^

+ 2 G(u, w, p; 0)
v

< 2 Ilex u11 2 + C
2 G(u, w, 

P; 0)•

Hence,

(2.14)
	

Ivx u11 2 < C2 G(u, w , P; 0)•

But (2.14), (2.13), the bounds

I w II <— Il vx u — w II + Il vx u jl and IIv • u ll < II v • u + b PII + b IIPII,

and Lemma 2.2 imply (2.11). This completes the proof of the theorem. 0

3. Finite Element Approximations. We approximate the minimum of G(u, w, p; f)
in (2.10) using a Rayleigh-Ritz type finite element method. Assuming that the domain Q
is a polyhedron, let Th be a partition of the Q into finite elements, i.e., Q = U k E7h K

with h = max{diam(K) : K E Th }. Assume that the triangulation Th is quasi-uniform,
i.e., it is regular and satisfies the inverse assumption (see [7]). Let V h = Uh x Wh x Ph
be a finite-dimensional subspace of V with the following properties: for any (u, w, p) E

Hr+l(Q)d x Hr(S2)2d-2) n V,

(3.1)	 inf (II u — v ll + h Ilu — vll l ) < Chr+1Ilull r+j,
vEUh

(3.2)	 inf (IIw — o II + h IIw — a II1) < ChrIIwllr,
QEWh

(3.3)	 inf (IIP — q II + h IIP — glll) < Chr llPIIr-
gEPh

where r > 1 is integer. It is well-known that (3.1)—(3.3) holds for typical finite element
spaces consisting of piecewise polynomials with respect to quasi-uniform triangulations (cf.

[7])•
The finite element approximation to minimizing G(u, w, p; f) in (2.10) on V becomes:

find (uh , wh, ph) E Vh that satisfies

(3.4)	 G(uh, wh, ph; f) =	 inf	 G(v, a, q; f).
(V, a,q)EVh

Denote the norm induced by the functional according to

III( u, w, P)III = (v2 ll u lli + V2 li w ii2 + (1 + v6 )
1

IIPII 2) 2 .

THEOREM 3.1. Assume that (u, w, p) E (Hr+l (Q)d x H r (Q)2d-21 n V is the solution

of problem (2.10). Then	 JJ

(3.5)	 11 K ul w, P) — ( uh, wh, Ph)IIIV < C hrdr(u, w, P),
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where C depends only on the domain S2 and the ratio of the constants C2 and C1 in Theo-

rem 2.1 and where

(3.6)	 dr(u, W, p) _ (v2 II U II I+1 + v2 II W I1 2 + ( 1 + vs)211PIlr)
2

Proof. It is easy to see that the error (u - Uh, W - Wh, p - ph) is orthogonal to Vh with
respect to the inner product corresponding to the norm III - IIIV . Bound (3.5) now follows
from Theorem 2.1 and approximation properties (3.1)-(3.3). 0

REMARK 3.1. The above result indicates that the finite element approximation is op-
timal, both with respect to the order of approximation and the required regularity of the
solution (see [3]). More specifically, bound (3.5) holds with

dr(u7 W i p) - (U2 II u IIT+1 + Ilpllr) 
2

since  = Oxu and II VXU IIr < C IIuIIr +1•

4. Solution Method and Discrete H-1 Functional. Theorem 3.1 indicates that
the finite element approximation based on the functional G is also optimal with respect to
the required regularity of the solution. Notice that the functional involves the H -1 norm,
which in turn requires solution of a boundary value problem for its evaluation. There are
two existing approaches to make the method computationally feasible: the mesh-dependent
least-squares scheme proposed by Aziz, Kellogg, and Stephens [2] (see also [5]) and the
discrete H -1 -norm scheme proposed by Bramble, Lazarov, and Pasciak [3]. As mentioned
in the introduction, it is not clear that a fast solution algorithm for the resulting discrete
equations from the mesh-dependent least-squares method can be developed at this stage of
research. In this paper, we will therefore adopt the discrete H -1 -norm approach. Following
[3], the H -1 -norm in the functional is replaced by a discrete norm. This discrete H-1
functional is computable and can be uniformly preconditioned by well-known techniques.

To this end, let A : H -1 (f2)d —> Ho(S2) d denote the solution operator for the Poisson
problem

(4.1)	
-0	 = v,	 in	 S2,

	

¢^ = 0,	 on OS2,

i.e., Av = ¢ for a given v E H`(S2)d is the solution to (4.1). It is well-known that (A•, )
defines a norm that is equivalent to the H -1 (f2)d norm. Let Ah : L 2 (S2) d --> Uh be defined
by AhW = 0, where 0 is the unique solution in Uh satisfying

in VO-V /idx=((P,O), VIPEUh.

Assume that there is a preconditioner Bh : L2 (S2) d —> Uh that is symmetric with respect
to the L2 (S2) inner product and spectrally equivalent to Ah , i.e., there are positive constants

Cl and C2 , not depending on h, that satisfy

(4.2)	 Cl ( AhO, OWBhO, O) !^ C2 ( AhO, O), V O E Uh.

Following [3], define A h = h2I + Bh where I denotes the identity operator on Uh . In
the remainder of this section, we analyze the least-squares approximation based on the
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functional

Gh (u , w, p; f) = (Ah( - (v®x w + ( 1 + vs ) ®p)), f - (vvx w + ( 1 + vb)v p))

(4.3)	 + v211®xu - wll2+v211 ®•u + bpll2.

Define the norm corresponding to the functional Gh by

III(u , w, p)IIIvh = VGh ( u , w, p; o)•

Let Qh : L2 (g )d --> Uh denote the L 2 (p )d orthogonal projection operator onto Uh . We
assume that Qh is bounded on H 1 (Q)d , i.e.,

(4.4)	 IIQhvIII < C IIVII1, d v E H1(si)d.

REMARK 4 .1. The symmetry of Bh with respect to the inner product on L 2 (Q)d implies
that Bh = Bh Q h . Similarly, Ah = Ah Q h . Thus, (4.2) holds for any v E L2(S2)d.

It is easy to check that assumptions (3.1) and (4.4) imply that

(4.5)	 II(1- Qh)v II-1 <- Ch II v II, d v E L2(Q)d,

and that (see [3])

(4.6)	 IIQhv1121 < C (A hv, v) < C IIvII21, b v E L2( St)d.

LEMMA 4.1. For any (u, w, p) E Ho(Sl) d x H(curl; D) x (Lo(S 2) n H 1 (SZ)), positive
constants Cl and C2 exist, independent of h and v, such that

Cl (v2 11 U I1 2 + V2 11 W I1 2 + (1 + Vb )2 IIp Il 2) <_ III( u , w, P )1112Vh

(4.7)	 < C2 (v2 1J U I1 2 + v2 h2 11V X w 11 2 + v2 II w l1 2 + h2 (1 + vs ) 2 II v p II 2 + (1 + va)211pI12)

Proof. By Remark 4.1 and (4.6), we have that

(AhO, 0) < C (h2 11011 2 + (AhO, 0)) < C (h2 11011 2 + II
0

II2 1) , d 0 E L2(n)d,

which, together with the triangle inequality and Theorem 2.1, imply the upper bound in
(4.7). To prove the first inequality in (4.7), by Theorem 2.1 it suffices to show that

Il vvx w + (1 + Vb )vp1121 < C (Ah(VV X w + (1 + Vb)V p), VV  w + (1 +Vb)® p)

for any w E H(curl; Q) and any p E H 1 (Q). From (4.5), (4.6), and Remark 4.1, for any

0 E L2 (Q)d we have

II0II ? 1 <- 2 (II( I - Qh)^I!? 1 + IIQhOII? 1)

< C (h2 1101I 2 + ( AhO, 0)) .

< C (Ah ab, 0)-

This completes the proof of the lemma. 0

130



REMARK 4.2. If h C H(curl; 9) and Ph C Lo( Sl) fl H 1 (S2) satisfy an inverse
inequality of the form

Il vxw ll < Ch- 'Ilw ll and II ®p ll 5 Ch- 'Ilpll,

respectively, then the second inequality of (4.7) can be replaced by v2 II uIIi { v2 II w I1 2 (l +
vS)2IIpII2 for any u E Ho(ft) d, any  E Wh , and any p E Ph. It is well-known (cf. [7]) that
the above inverse inequalities hold for typical finite element spaces consisting of piecewise
polynomials on quasi-uniform triangulations.

THEOREM 4.1. Let (uh, Wh, ph) E Vh be the unique minimizer of Gh (u, w, p; f) over

Vh and let (u, w, p) E (H r+1 (R)d x Hr (ft)d x Hr (Q)) nV be the solution of problem (2.10).
Then

48 v u— uhlll +vllw— whli +(1+vb p—ph ll _Chr v2 u 2	 2 2 2
(	 ) II	 )II	 <	 ( II ilr+1 + ( 1 + vb) Ilpllr)

where C is independent of the mesh size h and the Reynolds parameter v.
Proof. It is easy to see that the error (u — uh, w — wh, p — ph) is orthogonal to Vh with

respect to the inner product corresponding to the norm III - I I IV,,.• Bound (4.8) now follows
from Lemma 4.1 and approximation properties (3.1)—(3.2). 0

For the finite element spaces Wh and Ph satisfying the inverse inequalities in Re-
mark 4.2, the discrete H' 1 functional Gh(u, w, p •, 0) can be preconditioned by the func-
tional v2 II uIIi + v2 II w Ii 2 + ( 1 + vb ) Z llp ll 2 that decouples velocity, vorticity, and pressure un-
knowns, because they are uniformly spectral equivalent in the mesh size h and the Reynolds
parameter v (see Lemma 4.1 and Remark 4.2). We can use any effective elliptic precondition-
ers associated with velocity u, including those of multigrid type, and simple preconditioners
associated with vorticity w and pressure p, including those of diagonal matrix type.

Acknowledgments. We thank Professors Pavel Bochev and Seymour Parter for help-
ful discussions.
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FIRST-ORDER SYSTEM LEAST SQUARES FOR THE STOKES
EQUATIONS, WITH APPLICATION TO LINEAR ELASTICITY

Z. CAI', T. A. MANTEUFFEV, AND S. F. MCCORMICKt

Abstract. Following our earlier work on general second-order scalar equations, here we develop a least-
squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a
pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and
trace equations, we are able to establish ellipticity in an H l product norm appropriately weighted by the
Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces
in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods
applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover,
our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for
the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.

Key words. least squares, multigrid, Stokes equations

AMS(MOS) subject classifications. 65F10, 65F30

1. Introduction. In earlier work [9, 10], we developed least-squares functionals for
a first-order system formulation of general second-order elliptic scalar partial differential
equations. The functional developed in [10] was shown to be elliptic in the sense that its
homogeneous form applied to the n + 1 variables (pressure and velocities) is equivalent to
the (Hl ) n+' norm. This means that the individual variables in the functional are essentially
decoupled (more precisely, their interactions are essentially subdominant). This important
property ensures that standard finite element methods are of H1-optimal accuracy in each
variable and that multiplicative and additive multigrid methods applied to the resulting
discrete equations are optimally convergent.

The purpose of this paper is to extend this methodology to the Stokes equations in two
and three dimensions. To this end, we begin by reformulating the Stokes equations as a
first-order system derived in terms of an additional vector variable, the velocity flux, defined
as the vector of gradients of the Stokes velocities. We first apply a least-squares principle
to this system using L2 and H' 1 norms weighted appropriately by the Reynolds number,
Re. We then show that the resulting functional is elliptic in a product norm involving Re
and the L2 and H 1 norms. While of theoretical interest in its own right, we use this result
here primarily as a vehicle for establishing that a modified form of this functional is fully
elliptic in an H1 product norm scaled by Re.

This appears to be the first general theory of this kind for the Stokes equations in general
dimensions with velocity boundary conditions. Bochev and Gunzburger [6] developed least-
squares functionals for Stokes equations in norms that include stronger Sobolev terms and
mesh weighting, but none are product H 1 elliptic. Chang [11] also used velocity derivative
variables to derive a product H 1 elliptic functional for Stokes equations, but it is inherently
limited to two dimensions. For general dimensions, a vorticity-velocity-pressure form (cf.
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DE-FG03-93ER25165.
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[4, 15]) proved to be product H 1 elliptic, but only for certain nonstandard boundary con-
ditions. For the more practical (cf. [14, 17, 19]) velocity boundary conditions treated here,
the velocity-vorticity-pressure formulation examined by Chang [12] can be shown by coun-
terexample [3] not to be equivalent to any H 1 product norm, even with the added boundary
condition on the normal component of vorticity. Moreover, this formulation admits no ap-
parent additional equation, such as the curl and trace constraints introduced below for our
formulation, which would enable such an equivalence. The velocity-pressure-stress formu-
lation described in [7] has the same shortcomings. (If the vorticity and deformation stress
variables are important, then they can be easily and accurately reconstructed from . the
velocity-flux variables introduced in our formulation.)

While our least-squares form requires several new dependent variables, we believe that
the added cost is more than offset by the strengthened accuracy of the discretization and
the speed that the attendant multigrid solution process attains. Moreover, our modified
functional requires strong regularity conditions; this requirement is to be expected for ob-
taining full product H 1 ellipticity in all variables, including velocity fluxes. (We thus obtain
optimal H 1 estimates for the derivatives of velocity.) In any case, strengthened regularity
is not necessary for the first functional we introduce.

Our modified Stokes functional is obtained essentially by augmenting the first-order
system with a curl constraint and a scalar (trace) equation involving certain derivatives of
the velocity flux variable and then appealing to a simple L 2 least-squares principle. As in
[10] for the scalar case, the important H l ellipticity property that we establish guarantees
optimal finite element accuracy and multigrid convergence rates applied to this Stokes least-
squares functional that are uniform in Re.

One of the more compelling benefits of least squares is the freedom to incorporate
additional equations and impose additional boundary conditions as long as the system is
consistent. In fact, many problems are perhaps best treated with overdetermined (but
consistent) first-order systems, as we have here for the Stokes equations. We therefore
abandon the so-called ADN theory (cf. [l, 2]), which is restricted to square systems, in
favor of more direct tools of analysis.

An important aspect of our general formulation is that it applies equally well to the
Dirichlet problem for linear elasticity. This is done by posing the Stokes equations in a
slightly generalized form that includes a pressure term in the continuity equation. Our
development and results then automatically apply to linear elasticity. Most important, our
optimal discretization and solver estimates are uniform in the Lame constants.

We emphasize that the discretization and algebraic convergence properties for the gen-
eralized Stokes equations are automatic consequences of the H 1 product norm ellipticity
established here and the finite element and multigrid theories established in Sections 3-5
of [10]. We are therefore content with an abbreviated paper that focuses on establishing
ellipticity, which we do in Section 3. Section 2 introduces the generalized Stokes equations,
the two relevant first-order systems and their functionals, and some preliminary theory.
Concluding remarks are made in Section 4.

2. The Stokes Problem, Its First-Order System Formulation, and Other
Preliminaries. Let Q be a bounded, open, connected domain in -R n (n = 2 or 3) with
Lipschitz boundary o9Q. The pressure-perturbed form of the generalized stationary Stokes
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equations in dimensionless variables may be written as

(2.1)	
—v0 u + ®p = f,	 in 52,

	

V . u + S p = g,	 in 52,

where the symbols A, ®, and V . stand for the Laplacian, gradient, and divergence operators,
respectively; v is the reciprocal of the Reynolds number Re; f is a given vector function; g
is a given scalar function; and S is some nonnegative constant (8 = 0 for Stokes, 8 = 1 for
linear elasticity). Without loss of generality, we may assume that

(2.2)	 J g dz =	 pdz = 0.
st

(For 8 = 0, equation (2.1) can have a solution only when g satisfies (2.2), and we are then
free to ask that p satisfy (2.2). For 8 > 0, in general we have only that fn g dz = 8 fa p dz,
but this can be reduced to (2.2) simply by replacing p by p — j and g by 0 in (2.1).)
We consider the (generalized) Stokes equations (2.1) together with the Dirichlet velocity
boundary condition

(2.3)	 u = 0 on 852.

The slightly generalized Stokes equations in (2.1) allow our results to apply to linear
elasticity. In particular, consider the Dirichlet problem

j —µ0 u — (A + µ)0V • u = f,	 in Q,
(2.4)	 1	 u = 0,	 on 852,

where u now represents displacements and y and A are the (positive) Lame constants. By
A u here we mean the n-vector of components A u;; that is, A applies to u componentwise.
This is recast in form (2.1)-(2.2) by introducing the pressure variable s p = —V • u, by
rescaling f, and by letting g = 0, 8 = 1, and v = ". (It is easy to see that this p
must satisfy (2.2).) An important consequence of the results we develop below is that
standard Rayleigh-Ritz discretization and multigrid solution methods can be applied with
optimal estimates that are uniform in h, A, and u. For example, we obtain optimal uniform
approximation of the gradients of displacements in the H s product norm. This in turn
implies analogous H s estimates for the stresses, which are easily obtained from the "velocity
fluxes". For related results with a different methodology and weaker norm estimates, see
(13].

Let curl = v x denote the curl operator. (Here and henceforth, we use notation for
the case n = 3 and consider the special case n = 2 in the natural way by identifying X22
with the (x l , x2) plane in X23 . Thus, if u is two dimensional, then the curl of u means the
scalar function

®xu=81u2-82u1,

1 Perhaps a more physical choice for this artificial pressure would have been p = — zµ ® • u, since it then
becomes the hydrostatic pressure in the incompressible limit. We chose our particular scaling because it
most easily conforms to (2.1). In any case, our results apply to virtually any nonnegative scaling of p, with
no effect on the equivalence constants (provided the norms are correspondingly scaled); see Theorems 3.1
and 3.2.
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where u l and 112 are the components of u.) The following identity is immediate:

(2.5)	 vx (vx u) = —® u + v (v • u).

(For n = 2, (2.5) is interpreted as

vl (v x u) = —® u + v (v • u),

where vl is the formal adjoint of vx defined by

__	 ^2q )vlq 	_02q •)

We will be introducing a new independent variable defined as the n2-vector function
of gradients of the ui , i = 1, 2, ..., n. It will be convenient to view the original n-vector
functions as column vectors and the new 7a 2-vector functions as either block column vectors
or matrices. Thus, given

111

112
U=

11n

and denoting ut = ( 11 17 112) ..., un), then an operator G defined on scalar functions (e.g.,
G = v) is extended to n-vectors componentwise:

Gu t = (Gu 1 , Gu t , ..., Gun)

and

Gut

Gu = Gu2

Gun

If Ui - Gui is a n-vector function, then we write the matrix

U =— Gut
 = (U1, U27 ..., Un)

U11 U12 ... U1n

U21 U22 ... U2n

	

Unl Un2 	 Unn

We then define the trace operator tr according to

n

trU =	 Uii.
i-1

If D is an operator on n-vector functions (e.g., D = vx), then its extension to matrices is
defined by

DU = (DU1i DU2 , • • •, DU.).
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When each DU i is a scalar function (e.g., D = v•), then we will want to view the extension
as a mapping to column vectors, so we will use the convention

DUl
DU2

(DU) t =

DUn

We also extend the tangential operator n x componentwise:

n x U = (nxU 1 , n  U2, •••, nxUn).

Finally, inner products and norms on the matrix functions are defined in the natural com-
ponentwise way, e.g.,

n	 n

IIUII 2= 	IIU ,11 2=	 IIUA2.

If we introduce the velocity flux variable

U = vut = (v ul , v u2i ... , v un) ,

then the Stokes system (2.1) and (2.3) may be recast as the following equivalent first-order
system:

	

U — v ut = 0,	 in	 52,

(2.6)	
—v (v • U) t + v p = f,	 in	 52,

v • u+Sp = g,	 in	 52,

	

U = 0,	 on a52.

Note that the definition of U, the "continuity" condition v • u + Sp = g in S2, and the
Dirichlet condition u = 0 on OQ imply the respective properties

(2.7)	 v x U= 0 in 52, tr U+ S p= g in 52, and n x U= 0 on 852.

Then an equivalent extended system for (2.6) is

U — v ut = 0, in 52,
—v (v • V'+ v p = f, in Q,

v • u + S p = g, in 52;
(2.8) vtr U + Sv p = vg, in 52,

v x U = 0 1 in Q,
U = 0, on 852,

n x U = 0, on 852.

Let D(Q) be the linear space of infinitely differentiable functions with compact support
on Q and let V(52) denote the dual space of D(52). The duality pairing between V(52) and
D(52) is denoted by < •, • >. We use the standard notation and definition for the Sobolev
spaces H'(Q) n and H s (852) n for s _> 0; the standard associated inner products are denoted
by (•, •)s,n and (•, ) 	 and their respective norms by II • (ls,sj and II • Ils,an• (We suppress
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the superscript n because dependence of the vector norms on dimension will be clear by
context. We also omit Q from the inner product and norm designation when there is no
risk of confusion.) For s = 0, H'(Q)" coincides with L2 (Q) n . In this case, the norm and
inner product will be denoted by II • I) and (•, •), respectively. As usual, Ho(Q) is the closure
of D(Q) with respect to the norm II - II3, and H-'(Q) is its dual with norm defined by

II<PII -s =	 sup	 W,

OOOEHo (n)	 110113

Define the product spaces Ho(p) n = rj 1 Ho(S2) and H-s (SZ) n = rj 1 H-'(Q) with stan-
dard product norms. Let

H(div; Q) = {v E L2 (Q) n : V • v E L2(Q)}

and

H(curl; Q) = {V E L2 (Q) n : V XV EL2 (Q)2n-s},

which are Hilbert spaces under the respective norms

II V IIH(div;SZ) = ( II V 11 2 + Ii v ' VII2) 
2

and

IIVIIH(curl;2) _ ( IIVII2 +IIVX 
V112 

Define their subspaces

Ho(div; Q) = {v E H(div; 92) : n • v = 0 on OQ}

and

Ho(curl; Q) = {v E H(curl; 0) : -y Tv = 0 on OQ},

where yTv = -r • v for n = 2 and yTv = n x v for n = 3; n and T denote the respective unit
vectors normal and tangent to the boundary. Finally, define

Lo(Q) n = {v E L2 (Q) n :
ja

v=dx=0 for i= 1,...,n}.

It is well-known that the (weak form of the) boundary value problem (2.1)-(2.2) has a
unique solution (u, p) E Ho (Q) n x QQ) for any f E H- '(Q) and for g E H 1 (S2) (e.g., see
[16, 17, 14]). Moreover, if the boundary of the domain Q is C l,1 or a convex polyhedron,
then the following H 2-regularity result holds:

(2.9)	 Ilvu112 + IIpIIi < C (Il fllo + IIv9111)

(We use C with or without subscripts in this paper to denote a generic positive constant,
possibly different at different occurrences, which is independent of the Reynolds number
and other parameters introduced in this paper but may depend on the domain Q or the
constant 8.) Bound (2.9) is established for the case v = 1 and S = 0 in [16, 17]; the case for
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general v and S = 0 is then immediate. The case d > 0 follows from the well-known linear
elasticity bound II u 112 + 11 o, 111 < C II f IIo, where f is the (unsealed) source term in (2.4) and
a is the stress tensor. We will need (2.9) to establish full H 1 product ellipticity of one of
our reformulations of (2.1)-(2.2); see Theorem 3.2.

The following lemma is an immediate consequence of a general functional analysis result
due to Necas [18] (see also [14]).

LEMMA 2.1. For any p in La(p), we have

(2.10)	 11PIl < C IN P11 -1•

Proof. See [18] for a general proof. 0
A curl result analogous to Green's theorem for divergence follows from [14] (Theorem

2.11 in Chapter I):

(2.11)	 (vx z, di) _ (z, ®x ¢) - fell 	 (n x z) ds

for z E H(curl; Q) and 0 E H1(Q)'.
Finally, we summarize results from [14] that we will need for G 2 in the next section. The

first inequality follows from Theorems 3.7-3.9 in [14], while the second inequality follows
from Lemmas 3.4 and 3.6 in [14].

THEOREM 2.1. Assume that the domain Q is a bounded convex polyhedron or has C"'
boundary. Then for any vector function v in either Ho(div; Q) nH(curl; Q) or H(div; Q) n

Ho(curl; Q), we have

(2.12)	 IIVII2 < C 
(11V112+ 

II v • 
V112+ 

Il vx V 11 2) .

If, in addition, the domain is simply connected, then

(2.13)	 IIVII2 < G' OR V 11 2 + Ilvx v 111 .

3. First-Order System Least Squares. In this section, we consider least-squares
functionals based on system (2.6) and its extension (2.8). Our primary objective here is to
establish ellipticity of these least-squares functionals in the appropriate Sobolev spaces.

Our first least-squares functional is defined in terms of appropriate weights and norms
of the residuals for system (2.6):

G, (U, u, p; f , g) = IIf+ v(V.U)I _VpI121 +v2IIU-vu1112

(3.1)	 +v211o'u+bp-g112•

Note the use of the H-1 norm in the first term here. Our second functional is defined as a
weighted sum of the L2 norms of the residuals for system (2.8):

G2(11,u, p;f,9) = IIf+ v(o 'U)t- op112 +v211U- vu1112
(3.2)	 + v211v•u+Sp-g112+v2IIVXU112+v2llvtrU+B®p-®g112.

Let

V1 =L 2 (0) n2  x Ho(Q) n x L2 (Q) and V2 = V x Ho(Q) n x (H1(s2)/R),
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where

V ={VEH'A n2 : nxV=® onOQ}.

Note that V2 C V 1 . For i = 1 or 2, the first-order system least-squares variational problem
for the Stokes equations is to minimize the quadratic functional Gi(U, u, p; f, g) over Vi:
find (U, u, p) E Vi such that

(3.3)	 Gi(U, u, p; f, g) =	 inf	 Gi(V, v, q; f, g).
(v, v, q)EVi

THEOREM 3.1. There exists a constant  independent of v such that for any (U, u, p) E
Vl we have

(3.4)	
c (v2 11U11 2 + v2 11 u 11i + Ilp ll 2) <- Gi(U, u, p; 0, 0)

and

(3.5)	 G1 (I?, u, p; 0, 0) < C (v2 111111 2 + v2 11 u l1I + 11p112)

Proof. Upper bound (3.5) is straightforward from the triangle and Cauchy-Schwarz
inequalities. We proceed to show the validity of (3.4) for (U, u, p) E Wl = {H(div; Q) n x
Ho(g) n x (L2 (Q) n H 1 (Q))}. Then (3.4) would follow for (U, u, p) E Vl by continuity. For
any (U, u, p) E W1 and 0 E Ho(Q) n , we have

(0 p, O) = (— v (V • U) t + 0 p, O) — v (11, V Ot)

< li - v (v ' U) t + v pIi-1110111 + v llull I1 v ot ll-

Hence, by Lemma 2.1, we have

(3.6)	 11P11 <- C (11- v (v ' 
U)t 

+ v p 11 -1 + v 111111) .

From (3.6) and the Poincare-Friedrichs inequality on u we have

V 211 
u1112

v2 (D ut — U, v ut ) + v (—v (v ' U) t + V p, u) + v (p, V . u + sp) — vS(p,p)
< v2IIvut-U_1111Vut11+v11-v(v•U)t+vpl1-111u111+vIlpllIlo'u+bp11

< (v ll vut -UI+ C 11- v (o 'U) t + ®p11- 1 ) vllvutll

+C II - v (o 'U) t + op ll-l v llo ' u+apll + Cv211U11II®•u+apll•

Using the E-inequality, 2ab < !a2 -} -b2 , with = 1 for the first two products yields

(3.7)	 V 211 
Ut ll 2 < CGI (v_, u, p; 0, 0) +C v2 11U1111 o ' u+6p11•

Again from (3.6) and the Poincare-Friedrichs inequality on u we have

v211UI12
v2 (U — V ut , U)+v(u, —v(v'U)I+vp)+v(®' u+6p, A— v8(p,A

< v21111-®utlIIIUII+Cvll® utllll-v(v•U)t+®pll-1+vllpllll®•u+Spll
< v211U-vutl1111111+CvllVutllll-v(V.U)I+op11-1

+CII-v(®'U)t+®pll-1v11v•u+8p11+CV211111111®'u+Spll•
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Using the --inequality on the first three products and (3.7), we then have

v2 IIUII 2 < CGi(U, U, P; 0, 0) +C v2 llvu1112+CV2IIUIIIIv•u+apll
< C G I (U, u, p; 0, 0) + C v2 I IUI I I l v • u + a pl l •

Again using the --inequality, we find that

(3.8)	 v211UI12 < C G l (11, u, p; 0, 0).

Using (3.8) in (3.6) and (3.7), we now have that

IIp I I 2 < C Gl (U u, p; 0, 0) and v2 11 V ut 11 2 < C Gl (U, u, p; 0, 0) .

The theorem now follows from these bounds, (3.8), and the Poincare-Friedrichs inequality
on u. q

The next two lemmas will be useful in the proof of Theorem 3.2.
LEMMA 3.1. (Poincare-Friedrichs-type inequality.) Suppose that the assumptions of

Theorem 2.1 hold. Let p E H l (0) satisfy fa p dz = 0; then

(3.9)
	

11PI1 < CIPI1,

where C depends only on 0. Further, let q E (HO' (Q) n H 2 (Q)) n; then

(3.10)	 Ilv • qIl <_ Ci v • q11,

where C depends only on Q.
Proof. Equation fn p dz = 0 implies p = 0 at some point in Q. The first result now

follows from the standard Poincare-Friedrichs inequality. The second result follows from
the fact that fey v • q dz = 0. q

LEMMA 3 .2. Under the assumptions of Theorem 2.1 with simply connected 52, for any
p in H l (52) we have:
(n = 2) let 0 = (01i ¢2 ) t and q = (ql , q2 ) t ; if each q; E Ho (o)nH2 (52) and each ¢= E H1(52)

is such that DOz E L2 (Q) and n • v Ot = 0 on 852, then

	

(3.11)	 Iv•q+aPl1 <_c (iv•q +tr vl^it + aPli +Ilo0112^;

(n = 3) let ) = (0 1 , 02 , 03) and q = (ql , q2i q3 ) t ; if each qi E Ho(Q) n H 2 (Q) and each
,Oi E H 1 (52) 3 is divergence free with AOi E L2 (Q) n and n x (vxOj = 0 on 852,
then

	

(3.12)	 Iv• q +Spl1 <C ( i v • q + trvx4) + s Pli +IIA4D )

Proof. (n = 2) The assumptions of Theorem 2.1 are sufficient to guarantee H2-regularity
of the Laplace equation on S2; that is, the second inequality in the equation

I VX OI1 <C1012 < C IIAOII-

Note that tr (vl 01, vl 02 ) = vx 0. Then, from the above and the triangle inequality, we
have

®•q+bPl1 < 2 (Iv • q + ®x + s Pl1 + I ®x^l1) < C (I v • q+ tr v'-¢t + b Pl 1 + II®^112)
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which is (3.11).
(n = 3) Bound (2.13) with v = ®x -d^ and identity (2.5) applied to each column of ®x 4)
imply that

I tr ®x p l2 < 3 I®x (D1^ < C ( 11 V • vx X 11 2 + II ® x®x 4)112 = C 11®112

since each Ot is divergence free. Eqn. (3.12) now follows from the triangle inequality as for
the case n = 2. 0

THEOREM 3 .2. Assume that the domain 0 is a bounded convex polyhedron or has Ci, i

boundary and that regularity bound (2.9) holds. Then, there exists a constant C independent
of v such that for any (U, u, p) E V2, we have

	

(3.13)	 C (v2 IIUII i +v t Il u ll i + Ilpll i^ < G2(11, u, p; 0, 0)

and

	

(3.14)	 G2 (11, u, p; 0, 0) < C (v2 IlUlli + vt Il u lli + Ilulli

Proof. Upper bound (3.14) is straightforward from the triangle and Cauchy -Schwarz
inequalities. To prove (3.13), note that the H -1 norm of a function is always bounded by
its L2 norm. Since V2 C V 1 , then G i < G2 on V2 . Hence, by Theorem 3 . 1, we have

	

(3.15)	 V2 11UI1 2 + vt Il u lli + 11p 11 2 < CGi (U, u, p; 0, 0) < CG2 (U, u, p; 0, o).

From Theorem 2.1 and (3.9), we have

(3.16) vt IIUiI ^ +Ilulli <_ C (v2 I IUI1 2 + v2 II ( V _ U) 1 11 2 + v2 11 o x UII 2 + II V u112)

It thus suffices to show that

C (v2 11(v • U) 1 11 2 + II V PI12}

	

(3.17)	 <II-v(®•U) t+VP112+v2ItrU + 8p12+v2IlvxU112.

We will prove (3.17) only for the case n = 3 because the proof for n = 2 is similar. First, we
assume that the domain Q is simply connected with connected boundary. Since n x U = 0
on 852, the following decomposition is admitted :

	

(3.18)	 U = v qt + v x 4b,

where q E Ho(Q) n n H2 (Q) n and (D is columnwise divergence free with n x (®x .1b) = 0 on
852. Here, we choose q to satisfy

	

(3.19)	
®q = (® • U) t ,	 in	 Q,
q =	 0,	 on 852,

Then, V = U - ®qt is divergence free and satisfies n x V = 0'. Since 52 has connected
boundary we know that fr n • V = 0'. Thus, Theorem 3.4 in [14] yields V = ®x 4), where
®•4)=0t.
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By taking the curl of both sides of this decomposition, it is easy to see that

(3.20)	 II® III = Il ex _U11 <- IIUIII,

so that II ® III is bounded and Lemma 3.2 applies. Hence,

II- v (® 'U)` + ® PI12+v2ItrU+SPI2+v211vxUII2
(by equation (3.18))

II- v®q+VPI12+v2Iv'q+trvxt+8p12+v2IIAtII2
(by Lemma 3.2)

> II-voq-1- ®pII2-FCv2Iv•q+aPli
(by Lemma 3.1)

> II- vOg+vpli2+cv21lo'g+Sp112
(by regularity assumption (2.9) with u = q)

> C (v2 II A 811 2 + IIV PI12)
(by equation (3.18))

C (V2 
Ilv ' UII 2 + ilo PII2)

This proves (3.17) and, hence, the theorem for simply connected SZ.
The proof for general Q (i.e., when we assume only that 00 is C' , ') now follows by an

argument similar to the proof of Theorem 3.7 in [14]. 0
We now show that the last two terms in the definition of G 2 are necessary for the

bound (3.13) to hold, even with the extra boundary condition n x U = 0. We consider the
Stokes equations, so that S = 0. Suppose first that we omit the term IIVXUII 2 but include
the term IlvtrU11 2 . We offer a two-dimensional counterexample; a three-dimensional
counterexample can be constructed in a similar manner. Let v = 1, u = 0, and p = 0.

Choose any w E D(Q) such that OVw # 0 and define

U = vl (VW)I.

Clearly, n x U = 0. It is easy to show that

®•U=0 and trU=vx(vw) =0.

However,

(vxU)t =0Vw00

by construction. Thus,

G2 (U, u, p; 0) = 11UII2,

which cannot bound IIU11 2. That is, since w E D(Q) is arbitrary, we may choose it so
oscillatory that IIUII1/IIUII is as large as we like. This prevents the bound (3.13) from
holding.

Next suppose we include the II®x UII 2 term but omit the II®trUII 2 term. Now set
52 = (0, 1) 2 , v = 1, u = 0, and p = cos(k7rx l ) sin(7X2) and choose qi to satisfy

—® qt = — a:p,	 in Q,
q= =	 0,	 on 9Q,
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for i = 1, 2. Then

ql =	
k

^(k2 + 
1) sin(krx1) Sin(7rx2).

We also know that

II v g2II < C II 82p II = I17rcos(kTrx l ) cos(?rx2)II < C,

where C is independent of k. Now set

Ui=Vqi

for i = 1, 2. Then n x Ui = 0 and

G2(U, u , p ; 0) = II o q - o p II 2 + IIo g II 2 = IIo q 11 < c,

where C is independent of k. On the other hand, we have

IIp II l > C k,

which again prevents the bound (3.13) from holding.

4. Concluding Remarks. Full regularity assumption (2.9) is needed in Theorem 3.2
only to obtain full H 1 product ellipticity of augmented functional G.2 in (3.2). This some-
what restrictive assumption is not necessary for functional G1 in (3.1), which supports
an efficient practical algorithm (the H -1 norm in (3.1) can be replaced by a discrete in-
verse norm or a simpler mesh weighted norm; see [5] and [8] for analogous inverse norm
algorithms) and which has the weaker norm equivalence assured by Theorem 3.1.

Nevertheless, the principal result of this paper is Theorem 3.2, which establishes full H1
product ellipticity of least-squares functional G 2 for the generalized Stokes system. Since we
have assumed full H 2-regularity of the original Stokes (linear elasticity) equations, we may
then use this result to establish optimal finite element approximation estimates and optimal
multiplicative and additive multigrid convergence rates. This can be done in precisely the
same way that these results were established for general second-order elliptic equations (see
[10], Sections 3-5). We therefore omit this development here. However, it is important to
recognize that the ellipticity property is independent of the Reynolds parameter v (Lame
constants p and A). This automatically implies that the optimal finite element discretization
error estimates and multigrid convergence factor bounds are uniform in v (a and y). At
first glance, it might* appear that the scaling of some of the H 1 product norm components
might create a scale dependence of our discretization and algebraic convergence estimates.
However, the results in [10] are based only on assumptions posed in an unscaled H 1 product
norm, in which the individual variables are completely decoupled; and since the constant v
appears only as a simple factor in individual terms of the scaled H 1 norm, these assumptions
are equally valid in this case. On the other hand, for problems where the necessary Hl
scaling is not (essentially) constant, extension of the theory of Sections 3-5 of [10] is not
straightforward. Such is the case for convection-diffusion equations, which will be treated
in a forthcoming paper.
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TOWARDS AN FVE-FAC METHOD FOR DETERMINING
THERMOCAPILLARY EFFECTS ON WELD POOL SHAPE

David Canright and Van Emden Henson
Mathematics Dept., Code MA

Naval Postgraduate School
Monterey, CA 93943

SUMMARY

Several practical materials processes, e.g., welding, float-zone purification, and
Czochralski crystal growth, involve a pool of molten metal with a free surface, with
strong temperature gradients along the surface. In some cases, the resulting ther-
mocapillary flow is vigorous enough to convect heat toward the edges of the pool,
increasing the driving force in a sort of positive feedback. In this work we examine
this mechanism and its effect on the solid-liquid interface through a model problem:
a half space of pure substance with concentrated axisymmetric surface heating, where
surface tension is strong enough to keep the liquid free surface flat. The numerical
method proposed for this problem utilizes a finite volume element (FVE) discretiza-
tion in cylindrical coordinates. Because of the axisymmetric nature of the model
problem, the control volumes used are torroidal prisms, formed by taking a polygonal
cross-section in the (r, z) plane and sweeping it completely around the z-axis. Con-
servation of energy (in the solid), and conservation of energy, momentum, and mass
(in the liquid) are enforced globally by integrating these quantities and enforcing con-
servation over each control volume. Judicious application of the Divergence Theorem
and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads
to an implicit algebraic system to be solved at each time step.

It is known that near the boundary of the pool, that is, near the solid-liquid
interface, the full conduction-convection solution will require extremely fine length
scales to resolve the physical behavior of the system. Furthermore, this boundary
moves as a function of time. Accordingly, we develop the foundation of an adaptive
refinement scheme based on the principles of Fast Adaptive Composite Grid methods
(FAC). Implementation of the method and numerical results will appear in a later
report.

INTRODUCTION

Several practical materials processes, e.g., welding, float-zone purification, and
Czochralski crystal growth, involve a pool of molten metal with a free surface, with
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strong temperature gradients along the surface. In many cases (e.g., laser welding)
convection in the liquid metal is driven primarily by thermocapillary forces, and even
in cases where other forces are stronger overall, thermocapillary forces may still be
dominant near the edge of the pool [4]. Previous work [2] showed how vigorous ther-
mocapillary convection can lead to localized intense heat transfer and high velocities
in the "cold corner" region where the liquid free surface meets the solid.

The present work examines how this localized heat transfer modifies the shape of
the solid-liquid interface bounding the pool. When convection is vigorous, the high
heat flux in the corner may melt away the solid near the surface, resulting in a sort
of "lip" around the edge of the pool. This phenomenon is modeled computationally,
and the steady solution sought for a wide range of the two governing parameters.
This is a work in progress, in which numerical methods are proposed and developed
for the problem. Implementation of the method and numerical results will appear in
a later report.

PROBLEM STATEMENT

A half-space of a pure material is subjected to concentrated heating on the flat
horizontal surface, giving a pool of molten material surrounded by solid. The total
heat flux Q is constant, and far away the solid approaches the uniform cold tempera-
ture T, (see Figure 1). Above the horizontal free surface is an inviscid, nonconducting
gas. Surface tension of the liquid is assumed strong enough to keep the free surface
flat (small Capillary number), but with surface tension variations due to a linear
dependence on temperature. The resulting thermal and flow fields are assumed to
be axisymmetric and steady, but the time-dependent equations are given below, to
facilitate a numerical approach using time-like iterations to reach the steady solution.

Then the system is governed by conservation of energy in the solid and by con-
servation of energy, momentum, and mass in the pool:

	

solid	
at 

= K 
V2 T

	

liquid	 at + u • v T = V2 T

at 
+u•vu=-1Vp +vv2u

A
0•u=0

with the conditions at the boundaries and at the solid-liquid interface given by

aT _ 0
az

aT
k az = —q(r)
v=0

solid surface (z = 0)

liquid surface (z = 0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Q

insulated	 r
	 insulated

flow	 z

liquid

T= T„

solid

T ---> Tc

Figure 1: Problem Formulation: a half-space of pure material is subjected to concen-
trated surface heating Q that results in a molten pool. (Outside the surface heating,
the surface is adiabatic.) The melting temperature is Tm , and far away the solid is at
the cooler temperature T,. The flat liquid surface is subject to thermocapillary forcing,
which drives convection in the liquid. Axisymmetry is assumed.

A_u = —7 aT	 (g)

	

axis (r = 0)	
aT = 0
	 (9)

u=0	 (10)
av _ 0	

(11)
ar

	far away (r, z —^ oo)	 T T,	 (12)

	

interface (r = f (z, t))	 T = T,,,, 	 (13)

u=v=0	 (14)

—(k VT) I = —(k VT), + pLV (z, t)	 (15)

Here T is temperature, t is time, K is thermal diffusivity, u is the velocity vector with
components u and v in the r and z directions (cylindrical coordinates), p is density,
p is pressure, v is kinematic viscosity, k is thermal conductivity, q(r) is the imposed
surface heat flux (large at r = 0, falling off to zero at some small value of r, such that
fo q(r)27rr dr = Q), p is viscosity, ry (assumed constant and positive) is the negative
of the derivative of the surface tension with respect to temperature, Tm is the melting
temperature, r = f (z, t) gives the position of the solid -liquid interface, L is the latent
heat of fusion, and V (z, t) is the normal velocity of the phase-change interface (that
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is,

V(z, t)= Of 1+(af)2 n

where the unit normal vector is

= (r + afi)l 1+(af)2ar	 ar

in terms of the coordinate unit vectors).

To nondimensionalize the equations, we use a heat flux scale of Q and a tempera-
ture scale (relative to the cold temperature) of AT - T71 — T,. Then thermal conduc-
tion gives the length scale d - Q/kOT (so q scales as Q/d2 = (kOT) 2/Q), the ther-
mocapillary coupling gives the velocity scale us - y OT/M, and the convection time
scale is t, = d/us = µQ/k70T2. The viscous pressure scale is µus /d = kly0T2/Q.
From the phase-change condition, the phase -change time scale is tp = pLQ21(kOT)3.

The resulting dimensionless equations are

	

solid	
Ma at 

= V2 T	 (16)

	

liquid	 Ma at + u • V Tl = V2 T	 (17)

Re (^^ +u • Vu^ =—Vp + V2 u	 (18)

V • u = 0	 (19)

with the boundary conditions

solid surface (z = 0)
az =

0 (20)

liquid surface (z = 0) az = —q(r) (21)
V = 0 (22)
au_aT

(23)
09Z ar

axis (r = 0) : aT = 0 (24)

U = 0 (25)
av =
ar

0
(26)

far away (r, z -+ oo) T	 0 (27)
interface (r = f(z,t)) T = 1 (28)

u=v =0 (29)
—VTi = — VT, + AV (30)

where from this point on the variables denote the dimensionless quantities. The main
dimensionless parameters are the Marangoni number Ma - usd/r, = yQ/µkr, and
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the Reynolds number Re - usd/v. Their ratio gives the Prandtl number: Pr
v/r, = Ma/Re. The other dimensionless parameter is the ratio of time scales, A
tp lt, = ryQL/vk'AT, and so plays no role in the steady-state solution where V -+ 0.

For the numerical solutions, it is convenient to eliminate the pressure by adopting
a stream-function/vorticity formulation for the flow:

	

Re 9 — O x (u x W)l _ —v x v x w	 (31)
at

	W = vxvx (r	 (32)
r /

	

_ 1 a^	 _ 1 aT
U	

r 19Z 
	

r ar	
(33)

where IF is the axisymmetric stream function and w is the vorticity vector (having
only one component, in the B direction), with the flow boundary conditions

	

liquid surface (z = 0)	 T = 0	 (34)

w	 (35)
,9r

	

axis (r = 0)	 T=0 	 (36)

W = 0	 (37)

	interface (r = f (z, t)) 	 T = aXF = 191F = 0	 (38)
ar	 az

With the assumption of small Capillary number, the resulting small surface de-
flection can be determined as a small perturbation to the flat interface from the
dimensionless normal stress condition at the surface:

09V _ 1 1 d	 dhl
— p + 2 09Z = Ca 

r dr 
r 

dr	
(39)

where Ca - ryOT/a is the Capillary number for surface tension a, and the deflection
z = h(r) is taken positive upward. The contact line at the edge of the pool is assumed
pinned (h = 0), and volume is conserved globally to determine the constant reference
pressure level.

CONDUCTION SOLUTIONS

As a starting point for the numerical method, an analytic solution for the tem-
perature in the conductive limit is used; this limit corresponds to Ma —^ 0 (for which
the time scale used in nondimensionalizing is inappropriate). If the unit surface heat
input were concentrated at a single point, then the conductive solution would have
spherical symmetry:

T (r' 
z) 

27rR	 R — r2 + z2
	

(40)
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For a distributed (axisymmetric) heat source q(r), the point source solution (40) can
be used as a Green's function, and the solution found by superposition:

	

°° 	 q(A)AdBdpT(r, z)	 (41)
0 

f2,r
 2?r p +r -2pr cos 0+z

	

fo

°°	 q(A) A	 2F1(2^ 2; l; +4
p2 + z2 ) dP	 (42)

(p + r) + z

2
	(P	 )

where 2F1 is the generalized hypergeometric function (see [1]). This formula can be
used to find the temperature for any input heating distribution q, and the isotherm
T = 1 specifies the interface position.

Using this thermal solution with the interface position fixed, the flow equations
(31)-(38) are solved numerically in the viscous limit Re -+ 0 (again, the time scale
used is inappropriate in this limit). This gives the basic state, which has no fine
details (except near the concentrated heating, where the flow can be described by an
asymptotic solution [3]). This state is used as a starting point for solutions with low
Ma and high Pr.

NUMERICAL METHODS

For computational purposes, the idealized problem of an unbounded solid is trun-
cated to a finite domain in cylindrical coordinates, extending in both the radial and
vertical directions a distance of four times the diffusion length scale d. The boundary
condition on this artificial boundary is that the temperature should decay in the same
way as the conduction solution for the point source, that is,

aT _ T

aR	 R	 (43)

where R = Vr2 -+z2  is the spherical coordinate. This asymptotic matching condition
is reasonable (for several diffusion lengths away from the pool) and is far less restrictive
than imposing the Dirichlet condition (T = 0) on the outer boundary.

To calculate the steady state for various values of Ma and Pr, the time-dependent
equations are stepped in time using the Crank-Nicholson method to obtain the ad-
vantages of absolute stability and large time steps. Then at each time step, an elliptic
problem must be solved. For this, multilevel methods are used, based on a uniform
grid in the (r, z) quarter-plane and the Fast Adaptive Composite (FAC) grid approach
to ensure resolution of all small-scale local details. At the solid-liquid interface, each
grid has irregular elements to fit the interface. At each time step, the position of
the interface is adjusted based on the normal velocity V from (30). (Note that the
dimensionless parameter A in (30) can be adjusted to control how quickly the inter-
face changes.) The difference equations on the grid are developed using the Finite
Volume Element (FVE) method. This method combines the exact conservation of
mass, momentum, and energy of the finite volume method with the flexibility of the
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finite element method in handling complicated boundary conditions, irregular grids,
etc. (See [5] for an introduction to FAC and FVE methods.) The resulting system
of algebraic equations is solved at each time step. FAC is a method in which the
solutions at the various grid levels are used to correct the composite grid solution,
and the type of solver used on each grid level is unimportant. In this work both
direct methods and iterative solution by line relaxation are used as solvers at each
grid level.

FVE STENCILS

To recapitulate, the complete system of dimensionless equations is

solid:	 aT — 1 V V T	 (44)
at	 Al a

liquid:	
aT 

+ V • (uT) = 1 V V T	 (45)
T	 Ala

	

T 
Vx(uxw) _ — 1 VxVxw	 (46)

Re

	

w = V X V X ( 8)	 (47)
r

where u = V x 
(r

	 r
 an 

r + r 
an z
	 (48)

with the boundary conditions

solid surface z = 0
az

= 0 (49)

liquid surface z = 0
az

= —q(r) (50)

T=0 (51)

w = aT 0 (52)

axis r = 0 aT = 0 (53)

IF = 0 (54)

W = 0 (55)

far away r, z --} oo
aR R	

(where R - r2  -+z2 ) (56)

interface r = f (z, t) T = 1 (57)

T =  = 0
n

(58)

_ (aT)
(59)

L\ 9nsa

where n refers to the direction normal to the interface (outward). (Note: fo q(r) r dr =
1.)
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Figure 2: FVE Grid: the orientation of the triangular finite elements (solid) and the
square finite volumes (dashed) are shown. On each triangular element, the variables
are assumed linear between the three nodes. This allows consistent calculation of the
gradients across the volume boundaries. Note that this is only a cross section in the
(r, z) plane; the volumes extend in the 0 direction to form rings.

The Finite Volume Element (FVE) approach to discretizing the system involves
decomposing the domain in two ways: as the union of a set of elements, whose
vertices compose the set of grid points on which the unknowns are defined; and as
the union of a set of control volumes, one for each grid point (see Figure 2). The
unknowns are interpolated over each element, based on the values at the grid points,
giving a continuous representation over the whole domain. This representation is
used to integrate the conservation equations over each control volume. Hence, each
control volume gives three equations involving the three unknowns at the associated
grid point, as well as the values at neighboring points.. The resulting set of discrete
equations for the finite element representation of the solution satisfies the conservation
laws exactly over any volume made up of the union of control volumes, including the
whole domain. (Actually, the boundary conditions may eliminate some of the control
volumes.)
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Figure 3: From axisymmetry, each control volume results from sweeping the square
cross-section in the (r, z) plane about the z axis, giving a toroidal prism shape. Hence,
the uniform grid gives control volumes that increase with radial position.

For this axisymmetric problem, each control volume is a toroidal prism, the result
of taking a polygonal cross-section in the (r, z) plane and sweeping it all the way
around in the 0 direction (see Figure 3). Then, integrating the convection-diffusion
equation (45) over a control volume, interchanging time derivatives and spatial inte-
grals, and applying the divergence theorem gives

dt ff 
	 • (u T) rdl = ' icfi • ®Trdl 	 (60)

where the 27r resulting from integration in 0 has been factored out, A refers to the
cross-sectional area (polygon) of the volume, C refers to the closed curve bounding
that cross-section, and n is the unit vector normal (outward) to C.

For the vorticity (46) and stream function equations (47), the control volume is
a vorticity tube, and the appropriate integral is over the cross-sectional area A (with
normal vector B). Then, applying Stokes' theorem gives

d  ^JA w • B dr dz —
 ic 

i (u x w) dl = — Re j t • 0 x w dlC
	

(61)

ic	 A
i• u dl = f f w - b dr dz	 (62)

where i is the unit vector tangent to C, in the positive 0 sense.

Except near the phase-change interface, a uniform grid is applied with step size h
in both the r and z directions (see Figure 2). (Portions of this grid may be subdivided
into smaller uniform grids by the FAC method.) Each square of the grid is divided
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Figure 4: The conservation integrals for each control volume cross-section involve six
separate area integrals over the six triangular elements adjoining the central point;
the line integrals involve eight separate parts (the NW and SE elements each contain
two segments.

into two triangular elements by a diagonal (in the direction of increasing r + z), and
linear interpolation is used over-each triangular element. The control volume cross
sections are squares of side h, centered on each grid point (except for half-squares at
the boundaries and small quarter-squares at the corners).

Then in the integrated conservation equations (60, 61, 62), the area integrals are
over six triangular regions (portions of the six elements), and the line integrals are
over four line segments, each with halves in two different elements (see Figure 4) . In
terms of components, the integrated equations are

dt 
If  T r dr dz + fN aqf T dr — fE aT T dz — fS  ar T dr + fW az T dz

Ma (L az
aT

r dr + fE aT r dz — fS  az rdr — fW aTr dz l ,

(63)
d	 09T w
— f f cvdrdz + f1V dr— aXF W

fEaz
dz— aXF w	 191F W

fS	 dr+ fW dz
dt	 a 	 Or r  r  ar r  az r
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(64)

	

— f

a^ 1	 19T19Tl	 aT l	 aT 1

	

f	
fN

w dr dz = 	dr + f	 dz - f
s
	dr - f

ur
-dz,	 (65)

	

f	 azr	 Ear 7'	 azr	 arr
where from here onward, w refers to the one nonzero component of vorticity, and
the labels N, E, S, and TF refer to the four line segments of the line integrals by
"compass direction" relative to the central node.

Substituting the piecewise linear element representation of the unknowns into the
above integrals gives the discrete (in space) equations. (NVe use 1llaple to evaluate and
sum the integrals for these equations.) The equations are then presented in stencil
notation. In stencil notation, for example

a b c

d e f

)

T,

g h i

where the center of the matrix e is the coefficient of T at the gridpoint P, the other
entries (a, b ...) in the matrix are the coefficients of the values the unknown (T) at
the neighboring gridpoints, and r and z are horizontal and vertical coordinates of P,
respectively. Blank entries indicate zero coefficients, and a central E indicates the sum
of all the other coefficients in the matrix. Note that in the nonlinear convective terms,
each of the coefficients of T or w is itself expressed as a stencil in IF (each centered at
the same point P); to save space, the T is left out of the vorticity convection stencil.

At a typical grid point, the discretized equations become

d h2	 2— 5E 1+ 5E
1s

	

2 - 11 E 	 14	 2 + TA E T

	

s	 1sdt 24 1 — 1s E 2 + Ae

	

1	 —1

—2 1	 1

1	 2

	

+ —	 —1	 1	 1	 —1	 T T

	

8r 	
—1	 2

	

1	 1 —2

—1	 1

I1=	 1 — 2E —4 1 + 2E T	 (66)
Ma	 1

157



d h2	
2 1	 1	 [A1]T [A2]qf

2 14 2 w+— [A3]'F [CA] IF [A4 1 T w
dt 24 1 2	 8r [A5 ] XF [A6]T

1 — $E+	 8E-
1

1 -$E+ -[4 +1(E+-E-)] 1+$E - W
Re

-$E+	 1 + $E-

(67)

2
1+ — [2 + 1 + + 1- 1 1- T _ —rh 2 14 2 w	 (68)

1	 24	 1 2

where the internal stencils

-1 + 2E+ E-
[CA]X - 1 + E+ -E+ + E- 1 - E- T,

2E-

2 E+	 1	 -1 2E-
[Al] - -2 1 - ZE+ 	 [A2] =	 1-

2+1 + —1-
[A3] = 	 2 E+ -1 - E+	 ,	 [A4] -	 —1 + E - 2 E	 ,

—1 + -	 2+1-

[15 ] -	 1+	 ,	 [A6] =	 1+!E E - — 2
-2E+ - 1 	 1 -2E-

and the definitions

+ _ E	 E	 +E =_ h/r, E	
1— E/2' E	 1+ E/2' 1	 1— E/2' 1	 1+ E/2'

are employed and r is the radial coordinate at the central point P. Note that for
those integrals in r with-integrands containing 1 /r, that factor was pulled outside the
integral to avoid logarithms; the error introduced is of the same order as that due
to the piecewise linear representation itself. Also, the heat equation was resealed by
1 1r, and the stream function equation was resealed by r.

The radial dependence of the coefficients is a direct result of the axisymmetric
geometry. This dependence makes the calculation somewhat more complicated than
the corresponding two-dimensional problem. But far from the axis, where r » h and
hence E « 1, the equations approach the corresponding two-dimensional versions,
facilitating comparison.
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Discretized Boundary Conditions

Along the surface z = 0, each of the three boundary conditions for the three
unknowns requires different treatment. The temperature at each grid point along
the surface is determined by a heat balance over the corresponding control volume,
with a half-square cross section (h x h/2). The contribution of the surface to the
convective flux integral is zero, since there is no velocity normal to the surface, and
the contribution of the surface to the diffusive flux integral is given by the Neumann
type boundary condition f q(r)r dr. The resulting discrete equation is

dh2	
2— sE l+i E

dt 24 2 — 2E 7+ 16 E 2 + 16E T

/	 1

1

+ 8r

—1 )

—1 T2
	

—1

	

1	 r+h/2
— i ( I

Ma 2 4E —2 2 + 4E T + r Ma Jr-h 2 q(r)r dr
	 (69)

Here we specify the heat flux as a symmetric function of r that decays smoothly to
zero at some finite radius Amax, while satisfying fo q(r)r dr = 1:

llz 2

q (r ) = p ax 
[1 — (Pmax I ]	 r _< Pmax	 (70)

	

0,	 r > Pmax

For the calculations, we use Pmax = 4

The thermocapillary stress condition at the surface specifies the vorticity: W = a .OT
However, because of the linear interpolation between grid points, a is not well defined
at grid points on the surface. Hence, for the surface ' only, the vorticity is specified
at half-grid points (i.e., r = (i + 2 )h), and triangular finite elements are formed
with neighboring points. This keeps the discretization of this important condition at
the same order of accuracy as the other equations, but entails special treatment of
the grid points next to the surface. The surface is also a streamline, where X 0
(Dirichlet condition). Using that fact and these special surface vorticity elements
gives the following flow equations for points by the surface (a distance h from the
surface) :

 (	 2	 1	 [B,]`F [B2]IF
d h2 is	 ^^	 d h	 1	 B	 C^ B4 T

	

dt 24 s 144 8 w + dt 16	 T + 8r [ 3]	 [ B]	 [ ]

	

—1	 1
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	 T - Re $ - 16 E+ - [ 4 + 6 E+ - 16 E-] 8 + 16 E- w

[D1] [D2] [D3]

1 1	 ( )

+R	
71

Re h -1 + 1 E+ _ 1 E+ - 1 E- 1 + 1E- 
T

2	 s	 a	 s	 z	 s

	

1 + — [2 +1 + + 11 1 - ,1, = rh2 s 144 
s 

w + rh	 T
24	 16 _ 1	 1

(72)
where

	

-1 + 4E+	 E-

	

[CB]= 2+4E+ 1- ZE + + 4E	 4-E

2 + 4 E+ E+ 1	 -1 2 E-
[B1 ] _ -2 1 - 2E+	[B2] =	 1

2+1+ —1-
[B3] = 2 1+4+  -1-E+	[B4]	 4 + 4 E 4 2E

[D1] - - 1+ -4 4	 [D2] = 1+ -2 - ! 'E+. 2

and [D3] -	 4 + 2 E+ - 4

Along the z axis, symmetry requires that there is no heat flux across the axis,
nor flow, nor shear stress, so both IF and w are zero there. Then for points on the
axis, the discrete heat balance over the cylindrical control volumes (half-square cross
section h/2 x h) gives:

,	 (	

1

	

T
	 1 T

1 s	 —1
d h2	 A 11	 1

2hdt 24	 4 T+	
1 IF	 T T

4

—2 T
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1

1	 23 2 T = 0 (73)
Ala	 1

2

where the equation was scaled using the average r = h/4. The homogeneous Dirichlet
conditions on T and w apply to points on the axis, and for grid points neighboring
the axis, the usual stencils apply; no special treatment is necessary.

The temperature at the grid point at the origin is determined by a small control
volume (quarter-square cross section h/2 x h/2) with specified surface heat flux and
no flux (nor convection) through the axis:

1 ) 'V

1

1	 5
2	 4

5 3 1
T + 2h	 —1	 T

dh
dt 24	 4 4 

1
23

Ala	 2 1 T Ala h f

h/2 

q(r)r dr	 (74)

Again, at the origin, both IF and w are zero (note the two boundary conditions on
vorticity are consistent at this point, due to the symmetry). Hence, the usual surface
flow equations apply to the grid point next to the origin.

At the far boundaries of the computational domain, the boundary condition on
the heat diffusion equation in the solid is that it decays in the same way as the
spherically symmetric solution for a point source:

R
aT	 T	 r

VT = 8R R = — A = —T 
r 

r — T 
z

R2 z
	 (75)

where R - r2 + z2. This allow the heat flux across the artificial boundary to
be computed in terms of the temperature there, a Robin type boundary condition.
Below we give the discrete equations for the two edges (half-square volumes) and
three corners (quarter-square volumes) where this boundary condition is applied.

At the edge where r is at its maximum the stencil is given by

d h2	 2 — 3 	 1	 2 — $E — 8P

dt 24 
2- 11 E 7-1566	 T—	 1-2E —2+4E-4p	 T=0

1	 1	
Ala
	 1	 1 _ 11-96

 16 	 2	 16E	 2	 8E 8p

where p - hr/(r 2 + z2).

At the edge where z is at its maximum the stencil is

2d h 2_16E 7 — 5 6 2+ 1E) T— 1 a ^i' ry T=0
dt 24 1 — 166 2 + 166	 Ma	 1
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where

1	 1	 3	 1	 1
a=— 

1 
E-1(1— 

1 
E)(, Q=-2—	 1

3	 Y= +1 —1(1+ 1
2 

4	 3	 2	 3E)^

and ( - hz/(r2 + z2)

At the corner where both r and z are at a maximum the stencil is

2

dt24 
2 — ^ E 4—E	 T—6 16 M u	 T=0

Ma
v 

1 - 16 E 2	 16E

where
µ=1—^E-1(1—lE), v--1+3E-3[p+(1-2E)^],

2 4	 8	 3	 8	 8	 9
and	

1 1	 1
2-8E-8p.

At the corner where r = 0 and z is at a maximum we have the stencil

d h 2	
5 2 T— 1
	 _3_i( 1— 1 T=0.

	

dt 24_	 Ma	 2 1 3	 6
2	 2

Finally, at the corner where r is maximum and z = 0 the stencil is

d h	 2	
3E	

1	 2 8E $p2

	

dt24 
2-2E 3—$E	 T

—Ma 
2 -4E -1+$e-8p	 T=O.

Tracking the Phase-Change Interface

One of the biggest challenges in models of phase change is the tracking over
time of the position of the two-phase interface. As one of the main goals of the
current research is the examination of the effects of thermocapillary convection on
the interface shape, great care is necessary in accurately modeling the geometry and
dynamics of the phase change process.

The grid structure must be modified near the interface. (While it would be possible
to quantize the interface position to lie on grid points, that would make moving the
interface difficult and would introduce errors that would be magnified in the multilevel
representation.) We represent the interface as piecewise linear between the points at
which it crosses the diagonals of the main grid, which have slopes equal to 1. This
representation assumes that the interface orientation never reaches an angle of 135°
(or —45°) relative to the surface (i.e., parallel to the main diagonals); this seems
reasonable, considering the interface is an isotherm that meets the surface at 90° and
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must end at 00 at the axis. (A more general approach would include representations
for several different local grid orientations.)

The movement of the interface through melting or solidification is governed by
the local heat balance near the interface. Hence the main requirement for the control
volume around each interface point (along the diagonals) is that the volume contain
the interface both at the current time and at the next time step, that is, the control
volumes must allow room for movement. (Then for the next time step, new control
volumes may be used.) Hence, not only the current interface position, but also an
estimate of the future position, is required to construct the current local grid. An
alternate approach is to adjust the solidification timescale parameter A at each time
step to constrain the maximum motion of the interface to remain within the interface
control volumes; physically this would correspond to time-dependent latent heat L.

To keep the geometry as simple as possible while allowing the interface points to
move along the main diagonals, we construct the control volumes on a diagonal grid.
(Here we refer to the control volumes by their cross sections in the (r, z) plane.) The
main diagonals are spaced a distance h/V2- apart, and control volume boundaries in
that direction lie midway between them. Control volume boundaries in the perpen-
dicular direction are spaced the same, unless such boundary would cross the current
or predicted interface, in which case that segment is removed, giving a double-wide
volume (v/2-h x h/^,F2). [Note: it is conceivable that, if the interface orientation
exceeds 90°, triple-wide control volumes may be necessary.] Then any grid points
within the interface control volumes are removed. If space remains between the inter-
face control volume and the remaining regular grid, an auxiliary grid point is inserted
on the diagonal a distance h/ V"2- from the regular grid point, with its diagonal square
control volume (h/v/-2 x h/v2). [Note: to simplify the programming, the auxiliary
points could be omitted; then the control volumes for the interface points will be
either single width (no grid point removed) or triple width (one grid point removed).]
Then the control volumes for the regular grid points adjoining this diagonal grid are
pentagons in one of three configurations: at an "inside" corner with one diagonal side,
two regular sides, and two regular half-sides; at a straight edge, either horizontal or
vertical, with one regular side, two regular half-sides, and two diagonal sides; or, at
an "outside" corner with three diagonal sides and two regular half-sides.

The auxiliary grid points form triangular elements with neighboring regular grid
points and/or neighboring auxiliary grid points. This leaves trapezoidal elements
adjoining the interface. Note that triangulating these trapezoids could result in very
complicated relations between elements and volumes. Therefore we use a "warped"
bilinear interpolation on these trapezoidal elements.

Where the interface intersects the surface or the axis, the grid must be further
modified to track these important points. This involves computing the heat balance
on a diagonal surface (or axis) control volume and tracking the position of the interface
along the diagonal. Depending on the proximity of the interface point on the diagonal
to the surface (or axis), then either the interface is extrapolated from the point inside
the surface perpendicularly to the surface or the "interface point" on the diagonal
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outside the surface is used to linearly interpolate the interface to the surface.

The interface is defined as the isotherm where T = 1, and on the interface the fluid
velocity is zero (no slip), and so T = 0. The unknown vorticity at interface points is
determined by the stream function equation integrated over the liquid portion of the
control volume; here the circulation can be calculated (with no contribution along
the interface, due to no slip) to find the unknown strength of the vorticity tube:

ff 
l	 ic,
w dr dz =  i• udl	 (76)

A

where Al is the liquid area, with bounding curve Cl . (Note that this equation contains
no time derivative.)

The only remaining unknown is the future position (along the diagonal) of the
interface point. This is governed by the heat balance over the liquid and solid portions
of the control volume:

A Ma-1
 dt A  r dr dz =

jC
dt ff

Trdrdz
t+As

fi•(uT)rdl
l

+Ma-1 n • V Tr dl	 (77)
C,+Cs

where Al + AS indicates the entire control volume, with bounding curve Cl + Cs.
(Note that A, and C, vary over the time step, while the control volume as a whole
does not.) The interpretation is that the heat coming in by convection and diffusion
goes to raise the temperature inside (though the interface temperature is fixed) and
to melt some solid, increasing the liquid portion of the volume (the first term).

The discrete equations are very complicated for regular grid points bordering
the diagonal interface grid and for interface points, and so are not reproduced here.
To guard against typographical errors, the stencils were derived using the symbolic
mathematics capabilities of the Maple software ([6]). Maple converted the result-
ing expressions into C language code, which were cut and pasted directly into our
simulation code.

The diagonal grid around the interface requires local diagonal coordinates. We
call these (x, y), where

X = z + r	 so that	
r = (x — y) /2	 (78)

y=z — r	 z=(x+y)/2

Then the velocity becomes

r ay	 r ax
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Note that the (x, y) coordinates are scaled down in length by a factor of V2_ relative
to the (r, z) coordinates, and on the diagonal grid the values of the (x, y) coordinates
are integer multiples of h (rescaled). In the area integrals, the Jacobian gives dr dz =
dx dy/2, but in each of the line integrals, the scaling of the differential is exactly
compensated by the scaling of the derivative (with respect to x or y). The slight
complication of rescaling is more than offset by the simplification of the algebra;
otherwise factors of v/2- would abound. The bilinear interpolation for the trapezoidal
elements is also in terms of the (x, y) coordinates, both to simplify integration with
respect to the diagonal coordinates, and to avoid the singular case where the trapezoid
is a diagonal perfect square, which cannot be interpolated with a bilinear form in (r, z).

Conclusion

In this preliminary work we have developed a finite volume element method for deter-
mining the shape of the weldpool. The governing equations and boundary conditions
have been discretized in space, and a time-stepping method can be applied to solve
the equations. An FAC method has been devised for resolving the fine details near
the moving interface and is being implemented as part of the continuing research.

The basic numerical methods discussed have been implemented in code and tested.
A future report will describe the details of the time-stepping, the FAC resolution near
the interface, and the numerical results on the total problem.
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SUMMARY

Fast methods are proposed for solving the system KNx = b resulting from the
discretization of self-adjoint elliptic equations in three dimensional domains by the
spectral element method. The domain is decomposed into hexahedral elements, and
in each of these elements the discretization space is formed by polynomials of degree N
in each variable. Gauss-Lobatto-Legendre (GLL) quadrature rules replace the integrals
in the Galerkin formulation. This system is solved by the preconditioned conjugate
gradients method. The conforming finite element space on the GLL mesh consisting of
piecewise Q 1 elements produces a stiffness matrix Kh that is spectrally equivalent to
the spectral element stiffness matrix KN . The action of the inverse of Kh is expensive
for large problems, and is therefore replaced by a Schwarz preconditioner B h of this
finite element stiffness matrix. The preconditioned operator then becomes Bh 1KN•

The technical difficulties stem from the nonregularity of the mesh. Tools to esti-
mate the convergence of a large class of new iterative substructuring and overlapping
Schwarz preconditioners are developed. This technique also provides a new analysis
for an iterative substructuring method proposed by Pavarino and Widlund for the
spectral element discretization.

INTRODUCTION

In the past decade, many preconditioners have been developed for the large systems
of linear equations arising from the finite element discretization of elliptic self-adjoint
partial differential equations; see e.g. [5], [10], [21]. An especially challenging problem
is the design of preconditioners for three dimensional problems. More recently, spec-
tral element discretizations of such .equations have been proposed, and their efficiency
has been demonstrated; see [11], [12], and references therein. In large scale problems,
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long range interactions of the basis elements produce quite dense and expensive fac-
torizations of the stiffness matrix, and the use of direct methods is not economical due
to the large memory requirements 191.

Early work on preconditioners for these equations was done by Pavarino [15],[16],
[17]. Some of his algorithms are numerically scalable (i.e., the number of 'iterations
is independent of the number of substructures) and optimal (the number of iterations
does not grow or grows slowly with the degree of the polynomials). However, each
application of the preconditioner can be very expensive. The bounds for the condition
number of the preconditioned operator grow only slowly with the polynomial degrees,
and are independent of the number of substructures.

Following Pahl [13], who based his work on the work of Deville and Mund [6]
and of Canuto [4], the above constructions give rise to different, spectrally equivalent
preconditioners using block partitioning of the finite element matrix generated by
Q 1 elements on the hexahedrals of the Gauss-Lobatto-Legendre (GLL) mesh. This
observation and experiments for a model problem in two dimensions were made by
Pahl [13], who demonstrated experimentally that this preconditioner is very efficient.
Thus, high order accuracy can be combined with efficient and inexpensive low-order
preconditioning. We remark that similar ideas also appear in [20] and references
therein, and that the spectral equivalence results of Canuto [4] and generalizations for
other boundary conditions were also obtained independently by Parter and Rothman
[14].

The previous analysis of Schwarz preconditioners for piecewise linear finite ele-
ments for the h-method has relied upon the shape regularity of the mesh [8], [7], [3],
which clearly does not hold for the GLL meshes. We extend the analysis to such
meshes, deriving estimates for these finite element preconditioners of spectral element
methods.

We give polylogarithmic bounds on the condition number of the preconditioned
operators for iterative substructuring methods, as well as a new proof of one of the
estimates in [18]. We remark that the tools developed here can be used to analyze
overlapping Schwarz methods defined on the GLL mesh.

DIFFERENTIAL AND DISCRETE MODEL PROBLEMS

Let Q be a bounded polyhedral region in R 3 with diameter of order 1. We consider
the following elliptic self-adjoint problem:

a(u, v) = f (v) V v E Ho (52), 	 (1)

where

a(u, v) = Jn k(x)®u • ®v dx and f (v) = fn f v dx for f E L2(f2).
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This problem is discretized by the spectral element method (SEM); see [12].
Namely, we triangulate fl into nonoverlapping substructures J11 i }M 1 of diameter on
the order of H. Each Qi is the image of the reference cube fl = [-1, +11 3 under a
mapping Fi = Di o Gi where Di is an isotropic dilation and Gi is a C' mapping
such that its derivative and the inverse of its derivative are uniformly bounded by a
constant close to one. Moreover, we suppose that the intersection between the closure
of two substructures is either empty, a vertex, a whole edge or a whole face. Each
substructure fli is a distorted cube. We notice that some additional properties of the
mappings Fi are required to guarantee an optimal convergence rate. We refer to [2],
problem 2 and the references therein for further details on this issue, but remark that
affine mappings are covered by the available convergence theory for these methods.
We assume for simplicity that k(x) has the constant value ki > 0 in the substructure
fli , with possibly large jumps occurring only across substructure boundaries. Our
estimates for iterative substructuring algorithms are independent of these jumps.

We define the space PN (fl) as the space of Q N functions, i.e. polynomials of
degree at most N in each of the variables separately. The space P N (fli) is the space
of functions vN such that vN o Fi belongs to PN (Sl). The conforming space Po (fl) C
H01 (fl) is the space of continuous functions the restrictions of which to fli belong to
PN (fli) for i = 1, ..., M.

The discrete L2 inner product is defined by

K N
(u, v)N = E E k • (u o Fi ) , (v o Fi ) • IJi l(^j , Sk, ^l) • Pjpl pi,	 (2)

i=1 j,k,l=1

where ^j and pj are, respectively, the Gauss-Lobatto-Legendre (GLL) quadrature
points and weights in the interval [-1, +1]; see [2].

The discrete problem is: find UN E Po (fl), such that

aQ(UN, vN) _ (VuN , VvN ) N = f (vN) d vN E PO (^)	 (3)

We choose as basis functions the functions ON of Po (fl) that are one at the GLL
node j and zero at the other nodes, which gives rise in the standard way to the
linear system KNx• = b. Note that the mass matrix of this nodal basis generated
by the discrete L2 inner product (2) is diagonal. The analysis of the SEM method
just described and experimental evidence show that it achieves very good accuracy
for reasonably small N for a wide range of problems; see [2], [12], and references
therein. The practical application of this approach for large scale problems, however,
depends on fast and reliable solution methods for the system KNx = b. The condition
number of KN is very large even for moderate values of N; see [2]. Our approach is
to solve this system by a preconditioned conjugate gradient algorithm. The following
low-order discretization is used to define several preconditioners in the next sections.
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The GLL points define a triangulation T h of iE into parallelepipeds, and on this
triangulation we define the space Ph (fl) of continuous piecewise trilinear (Q 1 ) func-
tions. The spaces Ph (fli ) and Po (fZ) are defined analogously to PN (fl;) and Po (fl).
The finite element discrete problem associated with (1) is: find uh E Po (f2) such that

a(uh, vh) = .f(vh) d vh E Po (Q )•	 (4)

The standard nodal basis {? } in Ph (fl) is mapped by the Ft , 1 < i < M, into a basis
for Po (fZ). This basis also gives rise to a system Khx = b in the standard way.

We use the following notations: x --{ y , z }- u, and v -- w to express that there
are positive constants C and c such that

x< Cy, z> c u and c w< v< C w, respectively.

Here and elsewhere c and C are moderate constants independent of H and N.

Let h be the distance between the first two GLL points in the interval [-1, +1]; h
is proportional to 1/N 2 [2], and the sides h i , i = 1, 2,3 of an element K belonging to

Th satisfy
1 1N 2  -< hi -< 11N,

depending on the location of K inside ft. The triangulation is therefore not shape
regular.

GENERAL SETUP AND SIMPLIFICATIONS

Let fiN be a function belonging to PN(h), and let fi h Ihh fcN be the function of
Ph(h) for which

fih(xG) = fiN(xG ),

for every GLL point xG in !ft.  Then

^uh^Hi(^)	 I uNI Hi(^) ^ a(,('uN,uN),	 l5)

and

( uhjj' ,(^) -- 11 uN I1 2 (n)	 (fiN, uN )N ,	 (6)

where aQ is given by (2) and (3) with Ji - 1; see [4] and [2]. We remark that these
results and generalizations for other boundary conditions were obtained independently
by Parter and Rothman [14]. The basis of these results is the Hi stability of the
interpolation operator at the GLL nodes for functions of Hi([-1,+1]), proved by
Bernardi and Maday [1], [2].

Consider now a function v defined in a substructure fl% with diameter of order H.
Changing variables to the reference substructure by v(;i) = v(Fj (x)) and using simple
estimates on the Jacobian of Fi , we obtain
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II u IIL2 (n, ) x xd 1I f 1ILZ (fl ) ,	 (7)

and

IuIHI(n,) -- xd-2 1 u 1 H I (h ) 7 	 (8)

where the dimension d is equal to 1, 2, or 3.

These estimates can be interpreted as spectral equivalence of the stiffness and mass
matrices generated by the norms and basis of the discrete spaces introduced above.
Indeed, the nodal basis {ai? } is mapped by interpolation at the GLL nodes to a nodal

basis of P'(S2). Then, (5) can be written as

	

fiT Kh fi X fiT KNU,	 (9)

where u is the vector of nodal values of both fiN or fih, and Kh and KN are the stiffness
matrices corresponding to I • IH, (^) and a,

Therefore, if Kh') and KN)are the stiffness matrices generated by the basis {¢^ }
and {^N}, respectively, for all nodes j in the closure of Sgt and by I ' 12 

I ( 	 and
aQ,nt (, •), then

uT K (')u - UT K(')uh —	 N -7

where u is the vector of nodal values, by (9), (8), and (5). The stiffness matrices KN
and Kh are formed by subassembly [7],

uTKhu = Etu(t)TKh') u(t) ,	 (10)

for any nodal vector % where the u (t) are the subvectors of nodal values in Sgt ; an
analogous expression holds for KN . These last two relations imply that

	

ikT Kh u X uT KN U,	 (11)

for any vector u. All these matrix equivalences and their analogues in terms of norms
are hereafter called the FEM-SEM equivalence.

We next show that the same reasoning applies to the Schur complements Sh and
SN , i.e., the matrices obtained by eliminating the interior nodes of each S gt in a classical
way; see [7]. Let UN be Q-discrete (piecewise) harmonic if aQ (UN, vN) = 0, for all
i and all VN belonging to Po (fli ). The definition of h-discrete (piecewise) harmonic
functions is analogous. It is easy to see that u  SNU aQ (uN , UN) and that uT Shu =
a(uh, uh), where uh and UN are, respectively, Q and h-discrete harmonic and u is the
vector of the nodal values on the interfaces of the substructures.

The matrices Sh and SN are spectrally equivalent. Indeed, by the subassembly
equation (10), it is enough to verify the spectral equivalence for each substructure
separately. For the substructure Sgt , we find:
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uTSN,t) u = aQ,ni (UN, UN) >- aaj( IN( UN ), IN(UN )) ^!	 (12)
afli(Wh(INUN), Wh(INUN)) = ai2 i (Uh,Uh) = UTShu,

where IN is the interpolation at the nodes of Th, W h is the h-discrete harmonic ex-
tension of the interface values, and the subscript f2i indicates the restriction of the
bilinear form to this substructure. Here, we have used FEM-SEM equivalence and
the well-known minimizing property of the discrete harmonic extension. The reverse
inequality is obtained in an analogous way.

In his Master's thesis [13], Pahl proposed the use of easily invertible finite element
preconditioners Bh and Sh,wB for Kh and Sh , respectively. If the condition number
satisfies

n(Bh1Kh) < C(N)	 (13)

with a moderately increasing function C(N), then a simple Rayleigh quotient argu-
ment shows that rc(Bh 1 KN ) -{ C(N), with an analogous bound for Sh,wB and SN.
Since the evaluation of the action of Bh -1 and Sh,'WB is much cheaper, these are very
efficient preconditioners.

Therefore, we only need to establish (13) and its analogue for Sh and SWW' B . We
note that the triangulation Th is nonregular, and that all the bounds of this form
for Schwarz preconditioners established in the literature require some kind of inverse
condition or regularity of the triangulation, which does not hold for the GLL mesh. In
this paper we only analyze the iterative substructuring algorithms, but remark that the
analysis for overlapping methods is a straightforward consequence of our techniques.

SOME ESTIMATES FOR NONREGULAR TRIANGULATIONS

We state here all the estimates necessary to extend the technical tools developed in
[7] to the case of nonregular hexahedral triangulations. We let K = [-1, -}-1] 3 be
the reference element and K be its image under an affine mapping F. K C 1l is an
element of the triangulation Th with sides hl , h2 and h3 . The function u is a piecewise
trilinear (Q 1 ) function defined in K. Notice that in this subsection we use hats to
represent functions and points of K.

The first result concerns the expressions of the L 2 and Hl norms in terms of the
nodal values. Let ei be one of the coordinate directions of K, and let a, b, c and d be
the nodes on one of the faces that is perpendicular to ei, and let a', b', etc. be the
corresponding points on the parallel face. The notation xa denotes a generic node of
K, and a, a', are the images of a and a', etc. The next lemma follows by changing
variables, and by using the equivalence of any pair of norms in the finite dimensional
space Q1(K).

Lemma 1.

JIUIIL2(K) — hih2h3 E(U (xa))2	 (14)
xQ
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I ax. u ll i2 (K ) ^ h1h?h
3
	(u(x,) — u (x«)) 2 	 (15)

=	 xa=a,b,c,d

In the next lemma we give a bound on the gradient of a trilinear function in
terms of bounds on the difference of the values at the nodes (vertices). The proof is
elementary and is omitted.

Lemma 2. Let u be trilinear in the element K such that l u(a) — u(b)I < CIa — bl /r
for some constants C and r, and for any two vertices a and b of the element K. Then

Ivul < r .

Lemma 3. Let u be a trilinear function defined in K, and let V be a C 1 function
such that I vd ) < C/r and 1191 < C for some constants C and r. Then

ax, Ih ( ^du) I L2 (K) 	 ^' ( IuI HI(K)+ r—Z IIuII LZ(K))	 (16)

Here C is independent of all the parameters, and Ih is the interpolation to a Q1
function of the values in the vertices of K.

Proof. By equation (15), and letting h l , h2i and h3 be the sides of the element K:

Iaxilh('du)IILZ(K)	
h1h2h3	

(u(x)z9Fk(x) — u(x')19Fk(x'))2.
S	 x=a,b,c,d

Each term in the sum above can be bounded by

(u(x)19(x) — u(x) 19 (x') + u(x),9(x') — u(x')i9(x'))2 <

2 ((u(x))2(V(x) — 
tg

(x/) ) 2 + (u(x) - u(x'))2(tg(x'))2)

The bound on W implies that l V(x) — ,9(x')I < Chi/r, and therefore

'{ 
h,h2h3( 

E (u (x ) — u (x') ) 2 +	 (u(x))2h2 )I	 h(^u)IIL2(K)	 h?	 rlaxiI 
s	 x=a,b,c,d	 x=a,b,c,d

I U IH1(j{) + r-21 Jul u II Lz(K),	 (17)

since V is bounded.

O
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TECHNICAL TOOLS

We introduce notations related to certain geometrical objects, since the iterative
substructuring algorithms are based on subspaces directly related to the interiors of the
substructures, the faces, edges and vertices. Let S ia be the union of two substructures
Ili and fZ„ which share a common face, .ck. Let W; represent the wirebasket of the
subdomain f1j , which is the union of all the edges and vertices of this subdomain. We
note that a face in the interior of the region fl is common to exactly two substructures,
an interior edge is shared by more than two, and an interior vertex is common to still
more substructures. All the substructures, faces, and edges are regarded as open sets.

The preconditioner Sh,WB that we use is defined by subassembly of the matrices

Sh,WB . Therefore we can restrict our analysis to one substructure. The results for the
whole domain follow by a standard Rayleigh quotient argument. It is also enough to
estimate the preconditioning of Sh by Sh,WB, because these results can be translated
into results for each substructure by the equivalences (5), (7), and (8).

The assumption that the {Fi }M1 are arbitrary smooth mappings improves the
flexibility of the triangulation, but does not make the situation essentially different
from the case of affine mappings. Therefore, without loss of generality, we assume,
from now on, that the Fi are affine mappings.

In some of the following results, we state the result for substructures of diameter
proportional to H, but prove the theorem only for a reference substructure. The
introduction of the scaling factors into the final formulas is routine.

Lemma 4. Let iih be the average value of u h on W;, the wirebasket of the subdo-
main nj . Then

I1uh1l L2(wi) <_ C( 1 + log(N))IIu'`IIHI(^i)'

and

Iluh — uwi IIL2 (wi) < C(1 +log(N))I uhlHl(Sli)•

Similar bounds also hold for an individual substructure edge.

Proof. In the reference substructure, we know that Ph C 0, where 0 is a
standard Q 1 finite element space defined on a shape regular triangulation that includes
Th . This can be done by refining appropriately all the elements of T h with sides larger
than, for example, 3h/2.

Now we apply the well-known result for shape regular triangulations, lemma 4.3
in [7], to get both estimates, recalling , that in the reference substructure h x 1/N2.

In the abstract "Schwarz convergence theory, the crucial point in the estimate of
the rate of convergence of the algorithm is to demonstrate that all functions in the
finite element space can be decomposed into components belonging to the subspaces
in such a way that the sum of the resulting energies is uniformly, or almost uniformly,
bounded with respect to the parameters H and N. The main technique for deriving
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such a decomposition is the use of a suitable partition of unity. In the next two
lemmas, we explicitly construct such a partition.

Lemma 5. Let 77k be the common face between Sgt and S2„ and let Oy,, be the func-
tion in Ph(f2) that is equal to one at the interior nodes of .17k, zero on the remainder
of (os2= U afl;), and discrete harmonic in f2= and f2;. Then

1eyk 1H
l (s2 i ) < C(1 + log(N))H.

The same bound also holds for the other subregion 52,.

Proof. We define the functions Bg and 'y in the reference cube; Oyes and 79Y"
are obtained, as usual, by mapping. We construct a function drk having the same
boundary values as ®^k , and then prove the bound for the former. The standard energy
minimizing property of discrete harmonic extensions then implies the bound for 8,rk.

The six functions which correspond to the six faces of the cube also form a partition
of unity at all nodes at the closure of the substructure except those on the wirebasket;
this property is used in the next lemma.

We divide the substructure into twenty-four tetrahedra by connecting its center
C to all the vertices and to all the six centers C k of the faces, and by drawing the
diagonals of the faces of S2; see Fig 1.

The function z y,, associated with the face Fk is defined as being 1/6 at the point
C. The values at the centers of the faces are defined by ^.F'; (C;) = 8;k , where Sjk is
the Kronecker symbol. d .Fk is defined to be linear on the segments CC; for j = 1, ..., 6.
The values inside each subtetrahedron defined by a segment CC; and one edge of the
cube are defined to be constant on the intersection of any plane through that edge and
are given by the value, already known, at the segment CC;. The values at the edge of
the cube belonging to this subtetrahedron are then modified to be equal to zero. Next,
the whole function ^.Fk is modified to be a piecewise Q 1 function by interpolating at
the vertices of all the GLL nodes of the reference cube.

We claim that JVz .T Jx)l _< C/r, where x is a point belonging to any element K
that does not touch any edge of the cube, and r is the distance between the center of
K and the closest edge of the cube. Let ab be a side of K. We analyze in detail the
situation depicted in Fig. 2, where ab is parallel to CCk. Let a be the intersection of
the plane containing these two segments with the edge of the cube that is closest to
ab. Then J^y, F (b) — i9yk (a) :^ D, by construction of z9 .F,., where D is the size of the
radial projection of ab on CCk . By similarity of triangles, we may write:

(^^k(b)	 k(a), < C
dist(a)b)'	

(18)
ri

where r' is the distance between a and the midpoint of ab. Here we have used that the
distance between a and CCk is of order 1. If the segment ab is not parallel to CCk,
the difference J^y,; (b) — ^.Fk (a)( is even smaller, and (18) is still valid. Notice that r'
is within a multiple of 2 of r. Therefore Lemma 2 implies that JV^gg (x)l < C/r.
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Figure 1: One of the segments CCk

In order to estimate the energy of ^x, ; , we start with the elements K that touch
one of the edges of the face .Fk . Let h3 be the largest side of one of these elements.
Since the nodal values of z .r,; at K are 0, 1, and 1/6,

j19J- l H l (K) <_ Ch3,

by a simple use of equation (15). By summing over K, we conclude that the energy
of d ^k is bounded independently of N for the union of all elements that touch one of
the edges of the face ."k.

To estimate the contribution to the energy from the rest of the substructure, we
consider one subtetrahedron at a time and introduce cylindrical coordinates using the
substructure edge, that belongs to the subtetrahedron, as the z-axis. The bound now
follows from the bound on the gradient given above and from elementary considera-
tions. We refer to [7] for more details.

The following lemma corresponds to Lemma 4.5 in [7]. This lemma and the pre-
vious one are the keys for avoiding Hoo t estimates and extension theorems.

Lemma 6. Let t9fk (x) be the function introduced in the proof of Lemma 5, let Fk be
a face of the substructure Qj, and let Ih denote the interpolation operator associated
with the finite element space P h and the image of the GLL points under the mapping
F,. Then,

I'(79Yku)(X) = u(x)'
k

C

Ck

Figure 2: Geometry underlying equation (18)
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for all nodal points x E fZ, that do not belong to the wirebasket W„ and

Ih (
V.

Fk u)IHIc^,) < c( 1 +log(N))'IIuIIHI(Qi)'

Proof. The first part is trivial from the construction of ^ .F. made in the previous
lemma. For the second part, we first estimate the sum of the energy of all the elements
K that touch the wirebasket. The nodal values of the interpolator Ih (a9^k fih ) in such
an element are 0,0,0,0, fi(a), fi(b), z9^k (c)fi(c) and i .F,(d)fi(d); ^^k lies between 0 and
1. Moreover, we denote by h3 the side of K that is larger than the other two sides
hl and h2 = hl . Note that this larger side is parallel to the closest wirebasket edge.
Since h l < h3i and using equation (15), we obtain:

I IYYk fi )IH l (K) < Ch3 (0(a) + fi2 ( b) + (^^k(c)fi(c))2 + (h,,k(d)fi(d))2)•

Then, by using the expression of the L2-norm in the two segments that are parallel to
the edge, and lemma 4, we have:

E I Ih OYi, fl ) IH l (x) < C(1 + log (N))IIuIIH1(^;)^
K

where the sum is taken over all elements K that touch the boundary of the face ,Fk.

We next bound the energy of the interpolant for the other elements. Since I VVY" I <
C/r, where r is the distance between the element K and the nearest edge of SZ (see
the proof of the previous lemma), Lemma 3 implies that

II``(^"u)IH1(K) < C E (Iu IH I (K) + r-211uIIL2(K)),
KCfl	 KCh

where the sum is taken over all elements K that do not touch the edges of h.

The bound of the first term in the sum is trivial. To bound the second term, we
partition the elements of S into groups, in accordance with the closest edge of 9;

the exact rule for the assignment of the elements that are halfway between is of no
importance. For each edge of the wirebasket, we use a local cylindrical coordinate
system with the z axis coinciding with the edge, and the radial direction, r, normal to
the edge. In cylindrical coordinates, we estimate the sum by an integral

	

c	 r
r-2 I I fi I I i2 (x) < C	 J (fi)2 r2 drd9dz.

KCI i	 Ir_h

The integral with respect to z can be bounded by using Lemma 4. We obtain

r-2
II u II i2 (K ) < C(1 + log ( C1h ))I I u I IHI(h) f_h

c 
r-ldr

KCf2

and thus
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IIh(^,ku)I
KCSt	

Hi(K) < c( 1 + log(C/h))211fiI1H1(f1).

O

Lemma 7. Let zua k̂ , and iih k be the averages of u  on Mk , and Wk , respectively.
Then,

(ua.Fk)2 c G'HIIUhIIL2(ayk)1

(UWk)2 G CHHUhIIL2(Wk).

The proofs are direct consequences of the Cauchy—Schwarz inequality.

Lemma 8. Let u  be zero on the mesh points of the faces of Q j and discrete
harmonic in i1;. Then

(UhIH,(0j) - CI IUhi IL2(Wj)

This result follows by estimating the energy norm of the zero extension of the
boundary values by means of equation (15) and by noting that the harmonic extension
has a smaller energy.

ITERATIVE SUBSTRUCTURING ALGORITHMS

The first algorithm we analyze is a wirebasket based method, based on Algorithm 6.4
in [7]. This is a block-diagonal preconditioner after transforming the original matrix
to a convenient basis.

To use the abstract framework of Schwarz methods [7], we only need to prescribe
spaces whose union is the whole space, and the corresponding bilinear forms.

Each internal face Tk generates a local space V.rk of all the h-discrete harmonic
functions that are zero at all the interface nodes that do not belong to this face. Notice
that the functions belonging to Vy,k have support in the union of the two substructures
Sgt and S2; that share the face .Fk. The bilinear form used for this space is a(•, •).

We also define a wirebasket subspace that is the range of the following interpolation
operator:

IWUh —	 uh(xk)^Pk {	 uaFkOF'.
xk E Wh	 k

Here, Wk is the discrete harmonic extension of the standard nodal basis functions Ok,

Wh is the set of nodes in the union of all the wirebaskets, and uahFk is the average of
uh on aFk. The bilinear form for this coarse subspace is given by
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bo(u, u) = (1 + log(N))	 k4 inf II u — ci 1112(w,)

These subspaces and bilinear forms define, via the Schwarz framework, a precon-
ditioner of Sh that we call Sh,wB-

Theorem 1. For the preconditioner Sh,wB, we have

K(Sh 1WBSN) < C(1 + log(N))2,

where the constant C is independent of the N, H, and the values k i of the coefficient.

Proof. We apply, word by word, the proof of theorem 6.4 in [7] to the matrix Sh,
using the tools developed in the previous section. This gives

K(Sh 1Sh) < C(1 + log(N))2.

The harmonic FEM-SEM equivalence (12) and a Rayleigh quotient argument complete
the proof.

We do not give the complete proof here because it would be a mere restatement
of the proof in [7].

The next algorithm is obtained from the previous one by the discrete harmonic
FEM-SEM equivalence, .by which we find a preconditioner SN,WB from the precondi-
tioner Sh,wB studied above. Each face subspace, related to a face Fk, is composed
of the set of all Q-discrete harmonic functions that are zero at all the interface nodes
that do not belong to the interior of the face .Fk.

The wirebasket subspaces are defined as before, by prescribing the values at the
GLL nodes on a face to be equal to the average of the function on the boundary of
the face. The bilinear forms used for the face and wirebasket subspaces are aQ (•, •)
and bo(•, •), respectively. Notice that this is the wirebasket method based on GLL
quadrature given in [19].

The following lemma shows the equivalence of the two functions UN and uh with
respect to the bilinear form bo(•, •).

Lemma 9. Let uh be a Q 1 finite element function on the GLL mesh of the interval
I = [-1, +1], and let uN be its polynomial interpolant. Then

inf I I u h - c I 112(r) - inf I I uN — C II L2(1)

Proof. We prove only the < part. The inequality without the infimum is valid for the
constant Cr that realizes the inf in the right hand side by the FEM-SEM equivalence.
By taking the inf in the left hand side we preserve the inequality.
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Theorem 2. For the preconditioner SN,WB , we have

K (SN,WB SN) < C(1 + log(N))2

where the constant is independent of the parameters H, N and the values k= of the
coefficient. Proof. In this proof, the functions with indices h and N are all discrete
harmonic functions with respect to the appropriate norms, related in the same way as
UN and Uh, i.e. uh = Wh (INUN). According to equation (10), it is enough to analyze
one substructure Qi at a time, and prove the following equivalence:

bO, Wi(UN, UN) + 1: IuN — uN,aJ:k BN,Y H' 1 (sti ) ^	 (19)
.Fkcni

bo,Wi(Uh, Uh) + E Iuh — Uh,a,-k eh,YjH' 1(Qj)'

Yk cf2i

We prove only the < part; the proof of the other inequality is analogous. Lemma
9 gives an upper bound of the first term of the left hand side by the corresponding
term in the right hand side.

Each term in the sum on the left hand side can be bounded by

2I UN — uh,aY,k BN,.'kIH, (jji ) + 2I(71h,8Yk — uN,aY )BN,.FkIHl(sii)

The first term of this expression can be bounded by the corresponding term on the
right hand side by interpolation and the harmonic FEM-SEM equivalence. The second
term is bounded by

H(1 + log(N))(uh ,ayk — uN,a.Fk l 2 =

H(1 + log(N))I(u — Ch , Wi )h,a.rk — (u — Ch,Wi)N,a.T,1"

where Ch , Wi is the average of uh over W=. Here we have used the estimate on the
energy norm of 8h,Yk which implies a similar estimate for BN,Tk . Applying the Cauchy-
Schwarz inequality, as in lemma 7, and the FEM-SEM equivalence, we can bound this
last expression in terms of the first term in the right hand side of equation (19).
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Abstract

Multigrid algorithms for nonconforming and mixed finite element methods
for second order elliptic problems on triangular and rectangular finite elements
are considered. The construction of several coarse-to-fine intergrid transfer
operators for nonconforming multigrid algorithms is discussed. The equivalence
between the nonconforming and mixed finite element methods with and without
projection of the coefficient of the differential problems into finite element spaces
is described.

INTRODUCTION

In this paper we consider multigrid algorithms for numerical solution of the model
problem

—V • (aVu) = f in Q,
u = 0 on aQ,	

(l.l)
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using nonconforming and mixed finite element methods, where Q C W, n = 2,3 is a
simply connected bounded polygonal domain with the boundary aQ, f E L2 (Q), and
the coefficient a E L— (Q) satisfies

0 < al < a(x) < a2 i	x E S2,	 (1.2)

with fixed constants al , a2 . The W-cycle multigrid algorithm for numerically solving
(1.1) using the P, -nonconformingfinite element method over triangles has been ex-
tensively studied in [6, 9, 15]. It has been shown that the W-cycle algorithm with
a particular coarse-to-fine intergrid transfer operator (the so-called averaging oper-
ator) is convergent under the assumption that the number of smoothing iterations
on all levels is big enough. In [18] a convergence analysis for multigrid algorithms
for (l.l) on triangular and rectangular elements, based on the abstract theory in [8]
for multigrid methods with nonnested spaces, has been introduced. This analysis
applies to both the )/V-cycle and the variable V-cycle. It was shown in [18] that opti-
mal convergence properties of the W-cycle multigrid algorithm and uniform condition
number estimates for the variable V-cycle preconditioner can be established with the
averaging intergrid transfer operator.

In this paper the V-cycle and W-cycle multigrid algorithms for numerically solving
(1.1) using the nonconforming finite element method both over triangles and rectan-
gles are considered in detail. Special attention is paid to the construction of several
coarse-to-fine intergrid transfer operators for the nonconforming multigrid algorithms.
In particular, we introduce a new intergrid transfer operator and indicate the conver-
gence of the V-cycle algorithm, which has not been proved before. Our preliminary
results show that a similar operator also works for the biharmonic problem.

The multigrid algorithms for mixed finite element methods are also considered
here. The mixed methods require the solution of linear systems in the form of a
saddle point problem, which can be expensive to solve. An alternate approach was
suggested by means of a nonmixed formulation. Namely, it has been shown that the
mixed methods are equivalent to a modification of nonconforming Galerkin methods
[1, 2, 14, 27]. The modified nonconforming methods yield a symmetric and positive
definite problem (i.e., a minimization problem). However, various bubble functions
have been used to establish the equivalence between the two methods, which can be
again expensive from the computational point of view. In [15] a new approach has
been introduced to establish the equivalence between the mixed and nonconforming
methods without using the bubble functions. The projection of the coefficient a of the
differential equation (1.1) into finite element spaces has been incorporated into the
mixed formulation. Recently, we have been asked if the equivalence still holds without
the coefficient projection. A positive answer will be given in this paper. In particular,
a comparison between the usual and projected mixed methods is given, and we show
that the latter version gives us considerable computational savings, without any loss
of accuracy, as observed before [20].

The remainder of the paper is organized as follows. In the next section multigrid
algorithms for the Pi-nonconforming method over triangles are developed. Then in
the third section multigrid algorithms for triangular mixed methods are considered.
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An extension to the corresponding rectangular elements is carried out in the fourth
section. Finally, numerical experiments on the performance of the present approaches
are given in the fifth section. The later analysis is carried out for the two-dimensional
case; it works for the three-dimensional case without substantial changes [15, 17, 16].

NONCONFORMING MULTIGRID ALGORITHMS

Problem (1.1) is recast in weak form as follows. We define the bilinear form a(•, )
as follows:

	

a(v, w) _ (aVv, Vw),	 v, w E H1(Q),

where (,) denotes the L Z (Q) or ( LZ (Q)) 2 inner product, as appropriate. Then the
weak form of (1.1) for the solution u E Ho (Q) is

a(u, v) _ (f, v),	 b v E Ho (Q).	 (2.1)

For 0 < h < 1, let Eh be a triangulation of Q into triangles of size h and define
the P, -nonconformingfinite element space

Vh = {v E L2 (Sl) : v IE is linear for all E E Eh,v is continuous
at the midpoints of interior edges and
vanishes at the midpoints of edges on afj.

Associated with Vh , we introduce a bilinear form on Vh ® H01 (Q) by

	

ah(v, w) _ E (aVv, Vw)E,	 v, w E Vh ® Ho (Q),
EEEh

where (•, • ) E is the LZ (E) inner product. Then the P, -nonconformingfinite element
discretization of (1.1) is to find uh E Vh such that

	

ah(uh, v ) = (f, v),	 d v E Vh.	 (2.2)

After we use a set of bases in Vh , (2.2) leads to the following linear system:

	

Ahuh =	 F'h, 	 (2.3)

where Ah is symmetric and positive definite.

To develop a multigrid algorithm for (2.1), we need to assume a structure to our
family of partitions. Let ho and Eho = Eo be given. For each integer 1 < k < K, let
hk = 2-k ho and Eh, = Ek be constructed by connecting the midpoints of the edges
of the triangle in Ek_1, and let Eh = EK be the finest grid. We replace subscript hk

simply by subscript k.

Let Ik_ 1 : Vk_1 -+ Vk denote some as yet unspecified coarse-to-fine intergrid
transfer operator. By an abuse of notation, we also denote by Ik_ 1 the matrix of this
operator with respect to the bases { i- 1 , ... , ,n kl 1 1 of Vk_1 and { 1 ... ,Fmk } of
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Vk , and Ik- 1 : Vk —+ Vk- 1 the transpose of Ik-1 1 Finally, let wk indicate a parameter,
which is chosen to be not smaller than the largest eigenvalue of Ak.

We now formulate our multigrid algorithm for (2.3). The following algorithm
defines a multigrid operator Bk : Vk -+ Vk.

MULTIGRID ALGORITHM 2.1. Let 1 < k < K, and µ be a positive integer. Set
Bo = AO 1 . Assume that Bk-1 has been defined and define Bkg for g E Vk as follows:

1. Set x°=Oandq°=0.

2. Define x' for l = 1 1 ... , m(k) by

x^ = 
x1-1 + W

k
-1(g - Akxl-1)

3. Define ym ( k) = xm(k) + Ik-1 qP , where qi for i = 1, ... , µ is defined by

q$ = qi-1 + Bk-1 [Ik-1 (g - AkX m(k) ) - Ak-lq2-11	(2.4)

4. Define y l for l = m(k) + 1,. , 2m(k) by

yl = y1-1 + Wk 1 (g - Aky
d-_1 ) .

5. Set Bkg = y2"'(k)

In Algorithm 2.1, m(k) gives the number of smoothing iterations and can vary
as a function of k. Ifµ = 1, we have a V-cycle multigrid algorithm. If µ = 2, we
have a W-cycle algorithm. A variable V-cycle algorithm is one in which the number of
.smoothings m(k) increase exponentially as k decreases (i.e., µ = 1 and m(k) = 2h-k).

We now consider the problem of how to construct a coarse-to-fine intergrid transfer
operator Ik-1 . We first review three known operators, and then introduce a new one.

EXAMPLE 1. The first operator is the so-called averaging operator, which was
first defined in [6] and [9]. For v E Vk-1, let q be a midpoint of an edge of a triangle
in £k; then we define Ikv by

0

(Ik-l y) (q) =	 v(q)	
1	 1

2 
{vjE,(q) + vjE2(g)}

if q E aQ,
if q ^ aE for any E E £k-1,
if q E aE1 n aE2 for some El, E2 E £k-1

With this operator, as mentioned in the introduction, it has been first shown in [6,
9] that the )/V-cycle algorithm (i.e., µ = 2) is convergent under the assumption that
the number of smoothing iterations on all levels is big enough (following the standard
proof of convergence for conforming methods [4, 3]). Then in [18] a convergence
analysis for Algorithm 2.1 was given, which establishes optimal convergence properties
of the W-cycle multigrid algorithm and uniform condition number estimates for the
variable V-cycle preconditioner; see the theorem below. Since this operator does not
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preserve the energy norm, the standard proof of convergence given in [5, 8] for the
conforming finite elements does not work for the nonconforming V-cycle. In fact,
while we can establish the stability property [6, 9, 15]

ak(Ikv, Ikv) < Cak-1(v , v),	 V v E Vk-1,	 (2.5)

with C independent on k, the constant C is in general bigger than two, as observed
in [18].

EXAMPLE 2. The second example was originally described in [33], and then
used in [17] for analyzing domain decomposition methods for mixed finite element
methods. If v E Vk_ 1 and E E £k- 1 with the vertices qi and the midpoints qi of its
edges, i = 1 1 2, 3, then

k
Ik_1 v (gi)=v ( qi),	 i — 11273,

Ik-l
v (gi)=N1 Ej v(q'j )	 if qi ^ OQ,

Ik-1v(gi)=' F-j v	 if qi E o9Q,

where N1 and N2 are the number of the adjacent midpoints qj and q," to qi of the
interior edges and the boundary edges of the elements in £k- 1 , respectively.

EXAMPLE 3. The third example [17, 21] is very similar to that in Example 2.
If v E Vk_ 1 and E E £k- 1 with the vertices qi and the midpoints qi of its edges,
i = 1, 2 7 3, then

1)2737

4L 1 V ( gi )=JI E9eEK, v IKj(gi)	 if qi aQ,

Ik-l v ( gi ) =N2 Ej v(1')	 if qi E aQl

where N1 is the number of elements Kj E £k- 1 that meet at qi and N2 is defined as
in Example 2.

Note that Examples 2 and 3 define the value of Ik_ 1 v at the vertices of elements
in £k and thus lead to a continuous piecewise linear function on £k. Hence Ik_1v

is obviously in Vk . Also, since the operators in Examples 2 and 3 do not preserve
the energy norm, we can only establish the optimal convergence properties of the W-
cycle multigrid algorithm and the uniform condition number estimates for the variable
V-cycle 'preconditioner via the standard convergence proof [4, 8], as in Example 1.

With the three definitions above, we now state a convergence result, whose proof
is given in [18].

The convergence rate for Algorithm 2.1 on the kth level is measured by a conver-
gence factor Sk that satisfy

ak ((I — Bk Ak)v , v)I < Skak(v, v),	 V v E Vk.

k
Ik- lv(gi)—v(qi),	 2 =
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Theorem. (i) Define Bk by it = 2 for all k in Algorithm 2.1. Then there exists
C > 0 independent of k such that for a large enough m

Sk<S= CC + ^.

(ii) Define Bk by µ = 1 and m(k) = 2K-k for k = 1, ... , K in Algorithm 2.1. Then
there are rlo, 77 1 > 0, independent of k, such that

r/oak(y, v) :^ ak ( BkAkv , v) :5 rll ak(v , v),	 by E Vk,

with ?7o > mk 1/1 2 and 71l G C+rn k 2/2

C+m(k)	 m(k)

EXAMPLE 4. We now define the operator Ik_ 1 : Vk-1 -} Vk by

ak(Ik—l v, w) = ak(v, w), dv E Vk-1, w E Vk.	 (2.6)

With this definition, the inequality (2.5) is trivially satisfied with C = 1. Hence the
abstract theory in [8] can be applied to show convergence of both the V-cycle and the
W-cycle algorithms with one smoothing iteration. However, the Ik_ 1 in (2.6) is not
practical. The cost to obtain Ik-lv for v E Vk-1 is almost the same as that to solve
the original linear system. The problem is that Ik-lv cannot be explicitly determined.
To get around this obstacle, we now consider the operator Ik -1 : Vk -+ Vk-1 defined
by

ak- l(Ik—lv' w) = ak(v , Ik-lw), Vv E Vk , w E Vk—i.	 (2.7)

The operator Ik-1 can be explicitly determined by the simple relation (the proof will
be presented in a forthcoming paper)

( 1k-iv) (gl ) = 2(v (ga) + v(qB)),

for v E Vk (see Figure 1). With use of the operator Ik-1 and its transpose It-1
in Algorithm 2.1, we can prove convergence of both the V-cycle and the W-cycle
algorithms. This will be given in the forthcoming paper. We remark that the same
construction of the operator Ik

-1 can be carried out for Morley's elements for the
biharmonic problem.

MULTIGRID ALGORITHMS FOR MIXED METHODS

The Raviart-Thomas space [31] over triangles is given by

Ah = { v E (LZ (Q)) 2 : V IE _ (a'+ a2 x, aE + a2 y) , aE E IR, E E Eh},

Wh ={wE!L2 (Q):wI E is constant for all EEEh},

Lh = {µ E L2 (aEh ) 	 is constant, e E aEh ;	 0, e C o9Q1

188



FIGURE 1. The illustration of the definition of Ik-1.

where (94 denotes the set of all interior edges. Then the hybrid form of the mixed
method for (1.1) is to seek (Qh , Uh, Ah) E Ah x Wh x Lh such that

E (V • °'h, w)E = (f, w), b w E Wh,
EEEh

(agh, v) —	 [ ( Uh, 0 - v )E — ( A h, v - VE)aE] = 0,	 d v E Ah,	 (3.1)
EEEh

(Uh ' vE, f.G)aE = 0,	 d y E Lh,
EE-6h

where vE denotes the unit outer normal to E and a = a-1 . The solution O'h is
introduced to approximate the vector field

a = —aDu,

which is the variable of primary interest in many applications. Since 0' lies in the
space

H(div; Q) = {v E (L Z (Q)) 2 : V • v E L2(Q)}

and we do not require that Ah be a subspace of H(div; Q), the last equation in (3.1) is
used to enforce that the normal components of gh are continuous across the interior
edges in aEh , so in fact O'h E H(div; Q).

There is no continuity requirement on the spaces Ah and Wh , so Ch and Uh can be
locally (element by element) eliminated from (3.1). In fact, from [15], (3.1) can be
algebraically condensed to the symmetric, positive definite system for the Lagrange
multiplier Ah:

Mhah = Fh ,	 (3.2)

where the contributions of the triangle E to the stiffness matrix Mh and the right-hand
side Fh are

	

mE — E yE F,E — _ (aJE, LE)E 
+ ('IE, vE)e` ,	 (3.3)

23 (a,1)E	
z	

(a, 1)E	 E

where vE denotes the outer unit normal to the edge eE, vE = I eEI vE, I eEI is the length

Of eE, JE = (f,1)E (x, y)/(2I EI ), and I E I denotes the area of E.
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Let Ph denote the L Z (Q) projection operator onto Wh , ah = Pha, and fh = Ph f .

Also, set

fh (fhlE - 2 \3	

a
ah) JE1

and

(ah 1®O, V ^O)E.
EEEh

Then as shown in [15], the system (3.2) corresponds to the system arising from the
triangular nonconforming finite element method: find Oh E Vh such that

	

ah(Oh, ^0) = (fh, S0), VSO E Vh -	 (3.4)

Hence Algorithm 2.1 can be used to solve (3.2), i.e., the mixed method (3.1). It should
be also noted that the natural degrees of freedom, i.e., the values at the midpoint of
edges, of Lh and Vh are the same.

After the computation of Ah, .Uh and Uh (if they are needed) can be recovered as
follows. Set UhIE = (aE + bEx,cE + bEy) and fE = fh(E• Then it follows from [15]
that

LbE=-2

aE	 l)E C^3 1 I eEI vE l)^hl eE + 2	 x)E/ ,

CE=—
 (a,l)E C^x=1 I eEI	 Ad eE + 2	 y)E^

and
3

uh)E = 
2IEI (aUh , (x , y))E + E Ahl ei ((x , y), LE),i , E E Eh.

i=1

We now consider a modified version of the mixed method (3.1) in which the
coefficient a is projected into the space Wh [20]: find (Uh , Uh, Ah) E Ah x Wh x Lh

such that

(v - Uh, w)E = (f, w), V w E Wh,

EEEh

	

(ahUh , v ) - L [(Uh, V - v)E - (Ah, v - VE)8E] = 0,	 b v E Ah,	 (3.5)
EEEh

	

(Uh ' VE, µ)8E = 0,	 V y E Lh.

EEEh

Associated with this projected formulation, the linear system has the form in place
of (3.3):

MEE_ yE ' yE 	 F^ _ _ (`JE, yE)E + 
('JE, vE)e ` 	 E E £h.	 (3.6)

z,	
(a, 1)E	 IEI	 E

The corresponding nonconforming system becomes: find Oh E Vh such that

	

ah(Oh, ^0) = (fh, ^0 ), `d O E Vh,	 (3.7)
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The present systems in (3.6) and (3.7) are simpler than the corresponding systems
in (3.3) and (3.4). The advantage of the projected mixed formulation over the usual
one is more obvious for the mixed finite element method over rectangles, which will
be carried out in the next section.

RECTANGULAR ELEMENTS

In this section we consider the lowest order Raviart-Thomas space over rectangles
[31]. Let £h be a partition of D into rectangles oriented along the coordinate axes,
and let Q i,j (E) be the space of polynomials of degree not bigger than i in x and 3 in
y. The rectangular mixed space [31] is defined by

Vh( E )=Q1,o(E) x Qo,1(E),

Wh(E)=Po(E),

Lh(e)=Po(e).

We first consider the usual mixed method (3.1). For each E E Eh , set

X	 a,x2 E _	 a,x E
a _ y _ay /« ,y2 E _ a ,y EE	

(a,x)E	 (a,1)E (a,y)E (a,l)E

X . __ (X'1)eE _	 ^ e y — (y, )eE _ (ems

aeE (a ,X)E	 (a,1)E aeE (a,y)E (a,1)E

AE=(a, x )EaE + (a, ylEa'

Then, following [15], it follows that the contributions of the rectangle E to the stiffness
matrix and the right-hand side are

mg= (a 1) E VE ' VE +. AE (a, x) Eae; a; vE l)vij

1	 11	

E E

— AE (a ^ x)E(a, y lEaeE a	 2)eE VE VE 1)

1y
 y	 ''( 1 ) .7(2)	

(	 )— AE ( a, x)E(a, Y)EaeEaeEVE vE	 4.1

1	 2	 y	 y. 	 .7(2)

+AE (a^ y)Eae* ae; 
V-1'VEE E

FE=A (a, x)E(a, y)E 1 aEaxEVEl) + aEaeEVE2))

Namely, we again have the linear system (3.2) for the Lagrange multiplier A h for the
rectangular elements. Also, after the calculation of Ah, we can compute O'h and Uh as
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follows. For each E E Eh , let O'hl E = (aE + bEx, CE + dEy). Then we have

aE = S ^4 1 S ((a, x)Eaf- — AE I eEI) VE — (a, x )E (a, y )ECtyi	 )}^h)eE

—(a, x)E(a, y )Ea'. E}1 ( (a ) 1 )E AE) ,

CE = 5 ^4 1 { ( (a,
y)2	 1)

 —AEI eEI) vE2) — (a ^ x ) E (a, y)EaeE vE l) } ^h I eE

—(a, x)E(a, y )EaE f E}^ ( (a, 1 )EAE) ,

bE = AE E4 1 (—(a,  x )EaeE vE 	 (a^ y )Eae, q	 I

/

^h I eE +	 1 (a, y )Eay	 E,

dE = AE ^4 1
^( 1 )	 f	 y	 t (2)

( (a) x)EaeEvE	 — (a, y )EaeE VE 	A
x--!-(a ,

eE + 
AE 

	 x)EaEf E,

and

	

4	 _
uE — (a, 

IEI(A 
y)E JE 

(aEax. vE1) + 
aEaeEvE2)) Ah leE + aEaEfE}

E	 i=1

We now consider the projected mixed method (3.5) on rectangles. For each E E Eh,

let I vEl' = 
IvE1)

I — I
'(2)

, and let AXE and DyE denote the x-length and the y-length
of E, respectively. Then (4.1) reduces to

_	 3E2
mE — (a 1)EvE

E. 
",E + RE(a,1)E IvEI'I vEI',

£' E_— (JE IEi )E 
+ VEI VI),'

where

RE = OxE -F DyE^ JE = RE (DyEx, L^xEy) .

The Orh and uh can be computed in a much simpler way. Let (xE , PE) denote the
center of the rectangle E. Then we have

E	 4aE= (	 ^i=1 {
6^	 z ( 1)	 z(2)
R (I vE I — I vE I) —

1	 E ( 1 )
pxE vE	 ^h I eE —

tBAY2
RE

bE=	 6E	
Fl4 

1 (	
2(1)I	

^(2)I)
(a,1 )ERE	

—I vE 	 + I vE 	 +

DfE'

E

JEJ

CE (a E ^4 1 { R (— I vE l) I + I vE2) I) pyE vE2) JAhlei 
_ yE x2 f E'

6 E	 4	 i(1)	 i(2)	 OxFdE= 
(a,1) ERE ^2= 1 (I vE 	 I — I vE 	 I) +	 R

Ef E

and

2RE	
(AYE

+ ®xEI vE2) I) AhleE + (a1 2)REEI 7 -uhE=
x=1
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Now we see that the projected mixed method produces a much simpler system. The
equivalence between the mixed method and the nonconforming method can be estab-
lished as in the triangular case [15]. In the present case, the corresponding noncon-
forming space is

Nh = {I E = aE + aE C + aEy + aE(^2 — y2), aE E IR, `dE E £hi

if El and E2 share an e
l
dge e, then fe ^aE, ds = fe ^^M2 ds;

and faEnan ^ I ao ds = 0 } .

Moreover, the definition of Algorithm 2.1 remains the same here provided that a
coarse-to-fine intergrid transfer operator can be defined for the rectangular elements.
As an example, we give a variant of the operator in Example 1. Other cases can be
similarly extended.

Let {Ehk}k=o be a family of triangulations of Q such that Eh, = Ek is constructed
by connecting the midpoints of the edges of the rectangles in £k_1. Following [1], we
define the coarse-to-fine intergrid transfer operators It-1 : Vk _ 1 ^ Vk as follows. If
^ E Vk_ 1 and e is an edge of a rectangle in Ek , then Ik_ 1 ^ E Vk is defined by

01	 1 f vds
el fe Ikvds =	 l el

^  I2 f(V IE,  +vIE2)ds

if e C aQ,

if e¢aE for any EEEk_1,

if e C aEl n aE2 for some El , E2 E Ek-1

The results in the previous theorem remain the same here [18]. We remark that
the analysis in the paper applies to differential problems with a tensor coefficient
and a lower order term. Also, while we only considered the Raviart-Thomas spaces
on triangles and rectangles, other mixed finite element spaces (see, e.g., [11, 12, 13,
19, 22, 28, 29, 31]) can be similarly dealt with. For more information on these
extensions, refer to [15, 17, 16, 18]. Finally, refer to [10, 23, 24, 25, 26, 30, 32, 34, 35]
for multigrid algorithms for mixed finite element methods using different approaches
than the present one.

NUMERICAL EXPERIMENTS

We present the results of a couple of numerical examples to illustrate the theory
developed in the earlier sections and to show a comparison between the results ob-
tained here and those generated by the well established conforming finite element and
finite difference multigrid algorithms [7, 8]. Thus we apply the numerical data given
in these earlier papers. These results are reported in [18]; more numerical results
can be found in [15]. Numerical experiments for comparisons among the operators
described in section two will be for future work.
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EXAMPLE 1. In the first example we consider the Laplace equation on the unit
square

(5.1)	
—Au = f in Q = (0,1)2,

u = 0 on &2.

hK (r," Sv) (r"w' Sw) (r.vv, Svv)

1/8 (1.48 1 .43) (1.46 1 .40) (1.45, .39)
1/16 (1.64 1 .46) (1.47, .42) (1.47, .41)
1/32 (1.81 1 .50) (1.48 1 .43) (1.48 1 .43)
1/64 (1.86, .51) (1.48 1 .43) (1.48 1 .43)
1/128 (1.96, .54) (1.48, .43) (1.48, .43)

Table 1. Convergence Results for Example 1

We approximate the solution to (5.1) using the triangular nonconforming method
(i.e., the triangular mixed method). The analysis of section two guarantees that
the condition number of BK AK for the variable V-cycle algorithm can be bounded
independently on the number of levels and the W -cycle algorithm has an optimal
convergence property. Table 1 gives the condition number K for the system BKAI,

and the reduction factor for the system I — BKAK as a function of the mesh size
on the finest grid, where the V-cycle, W-cycle, and variable V-cycle algorithms are
indicated by (K,,, S„), (^,, , S,,,), and (K,,,,, S,,,,), respectively. The V-cycle and W-cycle
schemes use one smoothing step. The coarse -to-fine intergrid transfer operator in
Example 1 of section two is used. (To see how the convergence rate depends upon
the number of the smoothing steps, refer to [15].) For all of the runs, the coarse grid
is of size ho = 1/2. As noticed in the conforming case [8], the variable V-cycle and
the W-cycle algorithms have essentially identical computational results. This is due
to the fact that both algorithms have exactly the same number of total smoothings
on each grid in the multi-level iteration. While there is no complete theory for the
V-cycle algorithm with the averaging transfer operator, it is of practical interest that
the condition numbers for this cycle remain relatively small, but the convergence
rate deteriorates with the mesh size. Finally, compared with the numerical results
obtained in [7, 8], we see that the nonconforming multigrid algorithms in fact compare
favorably with these standard multigrid algorithms.

EXAMPLE 2. In the second example we consider the following model problem
with a variable coefficient a(x):

—V • (aVu) = f in Q = (0,1)2,
u = 0 on aQ.

Similar results as in Table 1 are obtained for this problem using the triangular ele-
ments. Hence we examine the rectangular elements. This example uses the same set
of data as the first example does. The numerical results are shown in Table 2. The
same facts as in the first example are also observed here.
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hK (Ktv, S„) (l'w, J.) (Kvv, S.)

1/8 (1.54 1 .44) (1.50 1 .42) (1.51 1 .42)
1/16 (1.65 1 .46) (1.52 1 .44) (1.52 1 .43)
1/32 (1.86 1 .51) (1.53 1 .45) (1.53 1 .45)
1/64 (1.95, .53) (1.53 .45) (1.53 1 .45)

1/128 (2.07 1 .60) (1.53 1 .45) (1.53 1 .45)

Table 2. Convergence Results for Example 2
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SOLVING ELLIPTIC PROBLEMS IN

STRENGTHENED SOBOLEV SPACES
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SUMMARY
Fourth-order elliptic boundary value problems in the plane can be reduced to op-
erator equations in Hilbert spaces G that are certain subspaces of the Sobolev
space W2 (0) = G(2) . Appearance of asymptotically optimal algorithms for
Stokes type problems made it natural to focus on an approach that considers
rot w = [D2w, —Dl w] = i as a new unknown vector—function, which automati-
cally satisfies the condition div is = 0. In this work, we show that this approach
can also be developed for an important class of problems from the theory of
plates and shells with stiffeners. The main mathematical problem was to show
that the well-known inf-sup condition (normal solvability of the divergence op-
erator) holds for special Hilbert spaces. This result is also essential for certain
hydrodynamics problems.

1. INTRODUCTION

Fourth-order elliptic boundary value problems can be reduced to operator
equations in Hilbert spaces G that are certain subspaces of the Sobolev space
W2(9) = G(2) . Construction of asymptotically optimal grid approximations
and, most particularly, asymptotically optimal algorithms are very difficult now
because the associated spline subspaces are not of Lagrangian type. These diffi-
culties evoked a series of attempts to reduce such problems to second-order dif-
ferential equations, but with no essential progress in the construction of asymp-
totically optimal algorithms.

Appearance of asymptotically optimal algorithms for Stokes type problems
made it natural to focus on an approach that considers
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[u1, u21 = ! = [ 8w , — 8w ] - [D2w, —Dl w] = rot w	 (1.1)
8x2 8x1

as a new unknown vector—function, which automatically satisfies the condition
div u = 0 (see [1-9]). (This condition explains why we prefer to use rot w
instead of grad w.)

In what follows, we assume, for simplicity, that 0 is a simply connected
domain with Lipschitz piecewise smooth boundary r. We suppose that

W = W2 (S2; r°)

consists of w E G(2) that, with their first derivatives, vanish on the set r° C r,
where one-dimensional measures of r° and rl - r \ r° are positive and ro is a
connected arc.

We start by considering classical variational problems (plates without stiff-
eners), that deal with variational problem of finding

w = argmin -1)(w), 	 (1.2)

where the energy functional is defined by

^(w) - I2 (w) — 21(w),	 (1.3)

2 2

	

I2(w) =Das,r, (Ds Dr w) 2 )0 + 2(ao, DiwDiw)o,	 (1.4)
s=1 r=1

the conditions

	

a1,2 = a2,1, a, ,r(x) > no > 0, s = 1, 2, r = 1, 2, 1 	 (1.5)

	

al , l(x)a2 , 2(x) — ao(x) > IC1 > 0, `dx E 0,	 f

are satisfied, and

1(w) = (f1,1, D2 W )o — (.f1,2, Dl w)o.	 (1.6)

Here, (u, v)o = (u, v)L,1n1 and fi,r E L2 (Q), r = 1, 2.
Next, we consider a subset S of S2 consisting of straight line segments (stiff-

eners or stringers) S1 , ... , S,,,. For simplicity, we assume that the end points
of each stiffener belong to r. Thus (considered as cuttings lines), they define a
partition of S2 into a set of blocks (panels) P1i ... , P,,,,. We also assume that, if
an inner point of a Sr belongs to r, then Sr belongs to r 1 (note that m' = 1
if S c r). (r' - r U S corresponds to the union of the panel boundaries.) We
replace I2 (w) by

M

I2(w) = I2 (w) +	
Sr

[cr,1(D;w)2 + cr,2(D,A, 	 ]ds,	 (1.7)
r=1 S
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where Cr ,i and Cr , 2 are positive constants (r E [1, m]), s and n - n refer to the
respective arclength parameter and normal with respect to Sr, r E [1, m], and
the Hilbert space W consists of functions in W2 (o; r°) with special traces of
D,w and Dnw on each Sr. These traces must belong to W2 (Sr), r E [1, m], so
we may define the inner product (w, w')w by

M(w , w')2,52 E[(Cr,l r DawDB w )o,S, + (Cr,2, D,DnwD,Dnw )o ,sj.	 (1.8)
r=1

If the end points of a stiffener Sr belong to r°, then these traces must belong to
0

W2 (Sr). The case with only one end point of Sr on ro is fairly similar. Also,
we may replace 1(w) in (2.8) by

M
1(w) = 1(w) + ^[lfr,l^ Ds w)o,s,, + (fr,21 D'Dnw)0,Sr]1 	 (1.9)

r=1

where f,, 1 E L2(Sr), f,.,2 E L2 (Sr), r E [1, m]. This implies that we deal with
the original variational problem

w = arg min [12 (w) — 21(w')]. 	 (1.10)

First use of analogous problems in pre-Hilbert spaces dates back to the paper
of S. Timoshenko in 1915; see also [10,11].

2. REDUCTION TO STOKES TYPE SYSTEMS

Let s - s"r =— [cos ar, sin a,] determine the direction of Sr, r E [1, m]. Then

ii - i1r - [— sin ar, COS ar]

and, in accordance with (1.1), on Sr, we have

D,w = —Cos aru2 + sin arul - I,,,(u)

and
D,aw = Sin aru2 + Cos aru l - Ir ,n(i), r E [1, m].

With the Hilbert space W in (1.10), we associate a Hilbert space rot W. This
we describe by introducing a Hilbert space G i C (W2 (Q; ro ))2 , whose elements
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are vector fields ii belonging to (W21 (Q; Fl ))2 and such that the traces of Ir , , (u)
and Ir ,, (u) on Sr (they exist in the sense of traces of functions in W21 (0)) satisfy

I,-,,( 'u) E W2(Sr), 1,,. (6) E W2(Sr), r E [l, m].	 (2.1)

The inner product in Gl is defined by

( u, —) G 1 = (u, 01,0
M

+E[( l , Ir,s( u ) Ir,s( v))l,Sr +	 (2.2)
r=1

(if the end points of a stiffener Sr belong to I' O , then the above traces must
O

belong to (W21 (Sr)) 2 ; the case with only one end point of Sr on I' O is fairly
similar). Then rot W C GI is a subspace of solenoidal vector fields.

We replace (1.10) by the problem of finding u E G - G l x G2 (with G2
L2 (9)) such that

6 1,1(u l; u1) + b 1,2( U 2; ul) = 11(ul), dui E Gl	 (2.3)
62,1( U l i u2) _ 0 , d 2 E G2,

where
61,1(u1; ul) = bl , l (u l; u1)+

M

E[er, 1 ( 1 , Ir , s (u) Ir , s ( 16^)) 1 , Sr +Cr,2( l , Ir ,n( i )Ir,n(ur))l,sr]	 (2.4)
r=1

and

11(u'1) _ (f1,1, ul,1)0 + (f1,2, ui,2)0
M

+ E[(fr,l, Dslr,s (i ))O,S,. + (fr,2, D, Ir,n (u^))O,Sr]•
r=1

Here b l,l (u l ; ui) is the bilinear form associated with the case where S = 0 and

b2,1(u l; u2) _ (div ul, ui)o = b 1,2(U2; u1)

The following lemma is fundamental (necessary proofs can be found in [9]).
Lemma 2.1. Let P be a domain with piecewise smooth boundary 8P. Suppose

that 8P contains a straight line segment r*(P) - S * and let 11O (P) = 8P \ S*.
Suppose also that the Hilbert space G 1 (P) is defined as in (2.2) with only one
stiffener S* . Then, a constant K* and v E G l (P) exist such that

(16* , n) O, S• = 1

and

[1v"*11,P	 ,
IDsvU ^oS.]ll2 < K* Idiv v jo ,p.	 (2.5)
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Theorem 2.1. Let the Hilbert space Gi be defined as above and let
G2 = L2 (Q). Suppose that S C 1' i . Then there exists oo > 0 such that

div

sup	 ^^ i, p o 

n 
> 

o jP j o,n, 	a > 10, VP E G2	 (2.6)

holds.
The obtained result is a generalization of the well-known inf-sup condition

(see cite[6 ,8-10,12,13]; it is interesting that first attempts to analyze relevant
problems were made in [14]). We note also that (2.6) can be written in the form

j1divt 1l < a-'.

Theorem 2.2. Let the Hilbert space G i be defined as above and G2 = L2(Q).
Suppose also that the partition of n into a set of panels Pi , ..., P,,, is such that
each pair Pi and Pi+i, i E [l, m - 1], has a common side Si,i+i E S and P,,,
has a side on t i (which might belong to S). Then there exists oo > 0 such that
(2.6) holds.

Theorem 2.3. Consider variational problem (1.10) replaced by (2.3). Suppose
that S is such that the respective spaces Gi and G2 lead to (2.6). Then the rotor
of the solution of (1.10) is the first component of the solution of (2.3).

Similar results hold for the more difficult problem that differs from (2.3) in
0

choices of Gi and G2 . Elements of Gi = G° _ (W21 (Q))2 are vector fields u",
0

belonging to (W2 (0)) 2 , such that the traces of 1, , . (6) and I,. , , (u) on Sr satisfy
(2.1); the inner product in G i is defined by (2.2); and G2 = L2 (0) \ 1 = G2.

0
This problem is associated with (1.10) under the choice W = (W2 (0)) 2 (the
inner product is defined by (2.2)).

3. PROJECTIVE-GRID (MIXED FINITE
ELEMENT) METHODS

We confine ourselves to domains such that t is a closed broken line. We
can then apply triangulations Th (15) (possibly composite with a finite number
of the levels of local refinement) and make use of spline spaces Gi = Gi , h and
d2 = G2,h• Here 62 consists of piecewise constant functions with respect to
the triangles T E Th (S2) (or augmented triangles in case of composite triangula-
tions with local refinement like indicated in [8]); Gi consists of piecewise linear
functions with respect to the triangles T1/2 E Th/2 (0), where this triangulation
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is a refinement of Th (SZ) with ratio 2. Note that there is nothing essentially
new in construction of subspaces Gl and 02 in comparison with the case where
S = 0 because all elements of the old dl belong to the new one. (Of course, it
is natural to construct original triangulations by refinement of the original pan-
els, so we assume that triangulations Th (0) yield triangulations Th (Pi) for all
panels Pl , ..., P,,,,. We also assume that to is a union of some sides of triangles
Th E Th(0)).

Theorem 3.1. For the spline spaces G1 and G2i there exists a constant ao,
independent of h such that

(div a",

	

c P)0 
stn 

> 0-o IPlo,si 010 > 0, VP E G2 .	 (3.1)
,	 II9 

Now it is clear that the convergence of our PGMs can be analyzed in ac-
cordance with the well-known theory. It is natural to make assumptions of the
form

Ilu llll+-y,pj < Ki,i,	 (3.2)

Il1r,n(u1)II1 +'Y,S, < Kr,n,	 Il 1r,,(u 1)II1+ -y , s. < Kr,,,	 (3.3)

and

I u2I1-y,p, < K2,i,	 (3.4)

where i = 1, ... , m', r = 1, ... , m, and y E (0, 1]. Then it is easy to prove that
asymptotic approximation properties of the strengthened Sobolev spaces are the
same, and we can obtain the error estimates

	

II f1l — u1IIG^ + II fL 2 — U2 II0 < Kh-y .	 (3.5)

4. MULTIGRID CONSTRUCTION OF
ASYMPTOTICALLY OPTIMAL

PRECONDITIONERS

Our PGM yields grid systems of type

Lu
L1,1 L 1,2	 u1	

f i
	

(4 .1)[ L21	 0	 u2 — 0	 4.1

such that ( L l,l ul, vl)H, = 6 1,1( 26 1i 7 1), for all ul E Hl and Vl E H1.
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Here Hl and H2 are standard Euclidean spaces associated with G1 and 62i
respectively ( dim H l = dim G I , dim H2 = dim G2); the operator L2,1 is such
that

(L2,1u1,v2) = (div 1^17' 2)0,0n, b261 E dl,Vf12 E G2,

and L12 = Li 1
The resulting system differs from the case where S = 0 only for the nodes

on S. We confine ourselves to the case where

bl,l(ul, vl) = (u, V)G1

and (u, )G1 is just

m

(u, _)1,n +E[cr,1( 1, Ir,s(u)Ir,a (v))1,s,+Cr,2(1,I,,.(u)I,,n(v))1,S.1. 	 (4.2)
r=1

Here, cr ,1 and cr ,2 are nonnegative numbers, r E [1, m], and

2

(u, v)1 ,n _ E(Dku, Dkv)o,n.
k=1

We assume that we deal with standard nested triangulations

T,(1+1)(!^) = T(1+1)

of levels I+ 1 = 1, ...,p, where TM is the coarse triangulation, T (P) = Th/2(SZ),
and refinement ratio is 2.

With each triangulation T(1) we associate a standard finite element subspace

G(1> C G = W2 (Q; to)	 (4.3)

consisting of continuous on the domain Q and piecewise linear functions (with
respect to this triangulation) which vanish on I'o, 1 = 0, ... , p.

Let QQ) be a set of vertices P,(1) of triangles Ti , which do not belong to
Po, and let each vertex (node) 4 1) be in correspondence with the standard
basis continuous on 0 piecewise linear function ^Y ) (x) such that z Y) (P(1) ) = 1

and 1Gi 1) = 0 at the remaining nodes, and ^Y ) (x) is linear on each triangle
Ti E T(1) (0). Then

G(1) _ {u : u =	 uM0(x)}, 1= 0, ...,P,	 (4.4)

Pi(l) En(l)

where N1+1 is the number of nodes in Q (1+1) , N1+ 1 = Nr + Np),

RNt+1 — H(1+1) = H1 1+1) x H21+1) , H(1+1) = HO),
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and

u1+1 = {u;} E H (1+1) , ul F1 = [u11+1)+ u21+1)]T, ue1+1) E 
H(1+1) , s = 1, 2.

Along with the basis f ^V+1) (x)} for 6(1+1) ,1 = 0, ... , p — 1, we consider the
hierarchical basis leading to the splitting

G"r(1+ 1) = 6(1+1) 621+1) C G, l = 1, ..., p — 1	 (4.5)

where 621+1) = 6U)

and

6(1+1) _ {u : u E 6(1+1) , u(P,^' ) ) = 0 for all Pi 0) E 0(1) }.	 (4.6)

Along with this splitting for 6 (1+1) , we consider

	

Gp+1) = G(1+1) ® G21+1) C V, l E [O,P— 1],	 (4.7)

where the components of the vector-functions

	

u(l+1) _ [,u(1,1+1) u(2 ' 1+1)] E Ci(1}1)	 (4.8)

belong to the spaces 611+1) and 621+1) , respectively. We emphasize that G21+1)

G(1) and that the components of u"(1+1) E G(1}1) vanish at the vertices of trian-
gles Tk E T(1) . We note also that the Gram matrices for the two indicated bases
for the space (!(1+1) take the standard block form

	

p+1) = L(^i l) L(1+1)	 p+1) _ L(111) L(121)
L	 _ 

L211
1) 

L2121)	
L	 = 

L( 
1)	

L212	
(4.9)

Lemma 4.1. The angle a between the subspaces G21+1) = G(1) and G(1+1) is
not smaller than the angle between the respective subspaces when S = 0.

Proof. It suffices to introduce the semiinner product

M014)s = ^[cr,l( 1 , Irs(u)Ir,d(v ))l,s^ + Cr , 2 (1Jr ,n ( i ) Ir ,n ( 1 ))1,5,]	 (4.10)
rcl

and to observe that (u(1+1) , u'(1) )S = 0 if u(1+1) E G(1+1) 0
Note that if we deal only with isosceles rectangular triangles in T h (Q), then

a > it/4.
Now in accordance with the theory of optimal model operators given in

[9,15-17], we need to approximate the block Ll^i l) = L1 .1 E C(H(1+1) ) (here,

,C(H(1+1) ) refers to the space of linear operators that map H( t+1) into itself).
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Lemma 4.2. Suppose that the basis functions for G1{+1) are indexed so that
the two basis functions associated with each node on S have consecutive numbers.
Then there exists a block diagonal matrix A(',+' ) E C(H('+1)), with blocks in
R 21 or Rix' and constants o'oj > 0 and o'1,1 > 0, independent of I and
coefficients c,. ,l and c,. ,2 (r E [l, m]), such that

0 10, lA(j',l l) < L(l l) < Q1 lAi^1 1) , d-F 1 E [1,p]	 (4.11)

Proof. We may take

A(!i1) =A('i 1)+Asli1

where, for all 0+1) E G (i
i+1) , we have

(A('+1)u(1+1)^u('+1))f1'+o = Iu(1+1)I1'n

and

(As i u('+ ' ) , ul'+ll),,i,+l) = II ^I+111Is

Moreover, we see that A('+')   is a positive diagonal matrix (its elements are uni-
formly bounded) and As i i) is a nonnegative block diagonal matrix (its elements
are O(1/h(1+1))) q

Note that if c,. ,l = c,.,2i (r E [l, m]), then A('+' is diagonal.
Theorem 4.1. Let the operator A, , , be the Gram matrix for the basis func-

tions in Gl . Then there exists an asymptotically optimal model operator BI — A
such that the constants of spectral equivalence and the estimates of the required
computational work in solving systems with BI are independent of c,. ,l and
C,,2 (r E [l , m])•

Proof. It suffices to apply construction of the model cooperative operators
B(d+1) and B(r+1) from [9,15-17], in combination with the above lemmas. q

Now we define

B= I i0 B2
 0 

J
,	 (4.12)

where B2 is, for example, a diagonal matrix whose diagonal elements are areas
of our triangles in Th (S2). Then it can be proved (see [6,9]) that

II L IIH(B)—H(B- 1 ) <_ bi 12 , IIL—lIIx(B- =).-.H(B) < bo 1121

where the constants are independent of h. These inequalities, probably for the
first time, were discussed in [18,19] and written in the form

soII v IIB <_ II Lv IIB-= < S111vIIB, dv E H.
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They may be regarded as a consequence of the correctness of the original elliptic
problem and they yield inequalities

boB < L * B-1 L < b1B

and
sp (B-1L*B-1L ) C [bo,bi]

(see [6,9,19,20]). Therefore, for solving (4.1), it is reasonable to use iterations

Bu"+1 = Bu" — r„(L*B'1(Lu" — f), 	 (4.13)

convergence of which is determined by the constants bo and b 1 (more precisely,
by their quotient). Note that if we consider L as mapping of the Euclidean space
H(B) into H(B- 1 ) then its conjugate operator L' is given by L' = B'1L*B -1
(in our case, we have L* = L).

Thus, we actually work with the symmetrization defined by the chosen pair
of spaces; it leads to the system

Au = B -1 L*B' 1 Lu = B-1 L*B' 1 f

with the symmetric operator A considered as a mapping of the Euclidean space
H(B) into itself.

In case of the modified Richardson method (4.13), the adaptation proce-
dure from [6,9] for the constants bo and b 1 is available; the modified conjugate
gradient method can also be used.

5. EXAMPLE OF SPECTRAL PROBLEMS

Next, consider the special case of spectral problems in the strengthened
Sobolev spaces (this problem is connected with estimating linear interpolation
error in a triangle for a function with standard extra smoothness and is impor-
tant for error estimates of the finite element method associated with piecewise
linear functions; similar problems were considered in [3,18] for common Sobolev
spaces).

Let T be the triangle with vertices (0, 0), (1, 0), and (0, 1), and let the
strengthened Sobolev space W consist of functions w E W22 (T) that vanish at
these vertices and such that

II D2wIIo,s < oo,

where S denotes the vertical side of T. In other words, we assume that
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r1

J
(D2w )2dx2 <

0

We define the inner product in this strengthened Sobolev space by

(w, w')w = (w , w')2,T + (D2 w, D2WI  ) O'S.	 (5.1)

We seek

_	 Iwlw

	

Al w E W\O I w I1,T + ID2wIo,S	
(5.2)

(see (3.2), (3.3) with y = 1).
The Hilbert space Gl consists now of vector functions

ul = 'al = [u l,l, U 1,2] E ( W2 (T))2
such that

	

01011) = J 1 u1,1(0 , X 2)dx 2 = 0 , 02 1 u1 ) = J 1 u 1,2(x l, O )dx 1 = 0 ,	 (5.3)
J0	 0

and

ID2Ul,l Io,S < oo.	 (5.4)

We define the inner product in this strengthened Sobolev space by

( d1, ul)Gi = (i 1, ul)1,T + ( 192u1 , 1 , D2ui,1)O,S.	 (5.5)

The space rot W is defined by

rot W = {u l : u l E G 1 and div u l = W.	 (5.6)

Theorem 5.1. Problem (5.2) is equivalent to finding

Iu1IGA,	 ,	
(	 )

u lETOt W\0 IulI
- 	 min	 2	 2	 5.7

O,T + Iu1,lI0,S

and is reduced to a particular case of the eigenvalue problem:

	

(ul; vl)G1 + b(vl; u2 ) = A[(ul; vl)O,T + (ul,l, vi,l)O,S], b'01,	 (5.8)

	

b(ul;v2) = 0, VV2 ,	 (5.9)

where
b(u 1; v2) = (div u 1 , v2 )0,T .	 (5.10)
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Proof. It suffices to rewrite (5.2) in terms of rot w. It is also simple to obtain
(2.6) for the indicated G 1 and G2 = L 2 (T). 0

It is not difficult to show that, for the indicated problem, we may apply
PGMs, based on quasiuniform triangulations and local refinements around the
vertices of T and in the vicinity of S. We stress that the basis for the approx-
imating spline subspaces Gl,h and G2,h are the same as for the case S = 0
(elements of G l , h must satisfy nonlocal condition (5.3)). We thus obtain PGM
of the form: Find u l E G l,h and u l E G2, h such that u l # 0 and

	

(u l; v l)G 1 + b( v l; U2) _ A (u 1; vl)o,, dvl E 61,h,	 (5.11)

b(u l ; v2) = 0, bv2 E G2, h. 	 (5.12)

It is very important that (3.1) holds.
Problem (5.11), (5 . 12) can be rewritten in operator form ( in the Euclidean

space H = Hl x H2 ) as

Lu = L 
L2 ,1 L1,2 J l U1 J = AMu 

=_A Miul 
J .
	 (5.13)

To obtain effective algorithms for (5 . 13), we suggest the penalty method,
yielding the problem

L1,1 L 1 ,2	 u1 
= a Mlul	 a	 (5.14)

L2,1 —aJ2 [ u2 ]	 [	 > 00 	 ,

where J2 is a diagonal positive matrix with the diagonal elements equal to areas
of augmented triangles in Th (T). Problem (5.14) is reduced to the standard
problem

S1u1 = (L1 , 1 + 1/aL1 , 2J2 1 L2 , 1 )u1 = AM1u1	 (5.15)

in the Euclidean space H 1 . Moreover, an asymptotically optimal model op-
erator B1 for L1,1 can be constructed like in Section 4 (L 1 and B1 are spec-
trally equivalent operators). This implies that it is possible to indicate a nearly
asymptotically optimal model operator D 1 for S1 with the constants of spectral
equivalence independent of a (operators of such type were obtained in [4,6]).
Therefore, it is possible to indicate nearly asymptotically optimal algorithms
for problems of type (5.8)—(5.10) and solve them with high accuracy if need be.
But, when a moderate accuracy is required, a simpler approach based on the
penalty method might be more useful. For example, as in [21], it is possible to
replace (5.7) by

Iu1 I2 	 1/aldiv U, 12

^1(a)	 uiEGn\O	 Iul12,T + Iu 1,1I2	
(5.16)
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and make use of the simplest triangulation and PGM.
Note that along the same lines we can consider problems that have stiffeners

on other sides of our triangle.
Our approach can be generalized to more general spectral problems in the

strengthened Sobolev spaces typical for stability analysis of stiffened plates.
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Abstract

A parallel multilevel strategy is developed using spectral (p) finite elements. Hierar-
chic bases are particularly well suited since the element matrices and vectors are nested
and the multilevel projections easily performed. Since the basis degree is used to specify
the multigrid level, an EBE strategy is natural for the multilevel technique. Results are
presented for two candidate nonlinear elliptic transport problems: the augmented drift-
diffusion equations of semiconductor device modeling and the stream function-vorticity
equations of incompressible fluid dynamics.

Introduction

Finite element methods in which refinement is accomplished by increasing the degree p of
the polynomial basis can give superior error convergence rates for similar computational
work than the more commonly used h refinement schemes. However, the condition num-
ber of the matrix deteriorates with increasing p. This motivates the need for an effective
preconditioner, and a multilevel scheme in which the basis degree serves as the grid level is
a natural choice. Hierarchic basis functions, which are constructed by adding appropriate
functions to the existing lower-degree polynomials, lead to matrices and vectors which are
nested. This may be a particularly suitable choice for multilevel methods, since the pro-
jections for hierarchic multilevel schemes are easily performed at little computational cost

[8 , 9]•
Element-by-element strategies have proven to be efficient and scalable for parallelization

of finite element methods using gradient iterative solvers [1, 2, 5, 6]. The basic idea in the
parallel EBE scheme is to avoid assembling the system and instead perform matrix-vector
and dot products in parallel at the element level. All matrices and vectors are stored in
element format. Moreover, in this approach, multilevel operations such as residual calcu-
lation, restriction and prolongation can be confined to an element and hence require no
interprocessor communication. The only steps that require communication are the smooth-
ing iterations and the coarse level solve. A further advantage of spectral multilevel methods
is that the number of elements in the domain remains constant, and hence the decomposi-
tion of the domain is fixed across grid levels. An important issue with parallel multilevel
methods defined in this way is the ratio of communication to calculation. Although this
ratio may be small for the fine level (high-degree basis), on coarser levels it gets successively
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larger, and at some point the communication time may dominate the total computational
time. Further details of the p-type approach are given in [7, 8].

P-type Multilevel Scheme

An alternative to refining the mesh by making the element size h smaller is to increase
the degree p of the polynomial basis. This strategy results in exponential convergence
when the solution is sufficiently regular. One disadvantage of the p-type finite element
method, however, is that the conditioning of the matrix deteriorates with increasing p.
This deterioration is dependent on the type of basis used. One way to counter this is to
apply a preconditioner to the system. A p-type multilevel method may be defined by using
the degree of the polynomial basis as the grid level. The intergrid transfers can then be
naturally defined in terms of expansions in the appropriate bases.

The analysis of a finite element Galerkin multilevel scheme is best carried out in the
variational setting. In this way the Galerkin statement can be formulated on each grid level,
and the consistency of the projection operators with the finite element discretizations on
the associated grid levels is assured. The approach here follows that in [4, 8]. We proceed
by considering a representative linear elliptic problem on a domain Sl with a boundary o9Q:

	

L(u) = f in 9	 (1)

	

u = g on aQ	 (2)

where L denotes the differential operator. Applying the method of weighted residuals and
integrating by parts, the variational statement of the problem has the form: Find u E H
with u = g on OQ such that

	

a(u,v) = f(v) Vv	 E H	 (3)

with v = 0 on OQ. Here a(•,•) denotes the bilinear functional, f(•) is a linear functional
and H is the appropriate space of admissible functions. Introducing a finite element dis-
cretization and a polynomial basis so that SP C H, we define the approximate variational
problem on grid level p as: find up E SP with up = g on &2 such that

	

a (up,vp ) = f(vp) dvp E SO 	 (4)

where the subscript on SP indicates that the test functions vP = 0 on aStP . Introducing the
finite element expansion and evaluating the integrals in (4) leads to a linear system of the
form

	

APUP = bp	 (5)

where p once again indicates the grid level. Now consider a multilevel scheme where (5)
corresponds to the fine grid system. Application of an iterative smoother to this system
yields an approximation up and associated error e * = up — up. Substituting this into (4),
the error eP is specified by the residual equation

	

a(eP,vP ) = r * (vP ) for all	 vP E So	 (6)

where

	

r*(vp) = f ( vp ) — a( u* , vP).
	 (7)
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Next, introduce a coarser level q such that Sq C SP . Since all vq are in Sq and thus in
SP we can test against the set of bases vq [4] so the solution of (6) also satisfies the property

	

a(eP,vq) = T* (vq ) for all vq E So	 (8)

where r * (vq ) = f ( vq ) — a(u*, vq ). This system is obviously underdetermined, so we take the
best (Galerkin) approximation e q* E So to eP. That is, find eq E So such that

	

a(e9,vq ) = r* (vq ) for 
all 

vq E So	 (9)

Substituting the finite element expansion in (9) yields the coarse level system for the
error correction vector

Aqe* = rg .	 (10)

where Aq is computed by evaluating the bilinear form on the space Sq and the right side
vector defines a natural projection of the residual from SP to Sq . More specifically, (7)
implies

T*(vq) = f( vq ) — a (up ,vq )'	 (11)

Note that this requires the a(•, •) inner product of uP and vq.

Introducing a polynomial expansion for uP and polynomial test function vq

Np

	

UP = E(PP)jO (X), vq = Og (X)	 (12)
j=1

where OP and 0q denote the respective basis functions for SP and Sq and (QP) j are the nodal
degrees of freedom. Upon substitution in (11) this yields

Np

	

T* ( Oq ) = J (Oq) — E Aq;P (aP)j	 (13)
j=1

where A!P = a(oq , OP) , or in matrix form

r* = f — Aq,Pp*q	 q	 P

Now rq in (14) can also be computed in a more traditional manner by developing a
projection of r* from the high level space to the coarser level space as follows: First, expand
the test function Oq in the higher-dimensional basis as

SNP`
Oq — L mqk opk

k=1

Then, substituting (15) into (13),

T* (^q ) _ = f(0g ) — a(uP , Og)

Np((	
Np

mP,gf loP ) —	 mq!Pa( u* , OP)
j=1	 j=1

Np

mq^Pr*(OP )	 (16)
j=1

(14)

(15)
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or in matrix form
rg* = Mg,P(bP — APu** ) = Mq ,pr*P 	 (17)

At this point we need to determine the actual values of Mq,ik  in order to be able to carry
out the projection. First let us consider the standard Lagrange bases. These bases have the
interpolation property: the value of each basis function is one at the node corresponding to
the basis function, and zero at all other nodes, i.e. Oi (xj ) = Sze. It follows that

Np

O9(Xi) — 1: mi'k Ok(Xi) = m%qjP	 (18)
k=1

and the components of the projection matrix Mq,P are simply the values of the coarse grid
basis at the fine grid nodes.

To complete the multilevel concept in the variational setting, a prolongation operator
is needed which will project the error correction in equation (10) to grid level p. A natural
choice for the prolongation operator is the transpose of the restriction operator in (17).
Then the fine grid correction approximating e* in SP is computed from the coarse grid
result according to

SP = ( Mq,P)Teq*	 (19)
As in the standard multigrid method, these error corrections are added to the approximate
solution on the finer level to obtain the corrected approximation uP = u*+6p and smoothed
by fine grid iteration to get a new u* for the next V-cycle.

The advantages of hierarchic bases become apparent when we extend the previous mul-
tilevel analysis to this setting [7, 8]. The change-of-basis coefficients in (15) for Lagrange
bases are simplified for hierarchics because the basis for the space Sq is explicitly contained
in the basis for SP . That is,

Oq =OP 1 <i <Nq
	 (20)

which implies
mop — 6 . -	 i = 1, ... , Nq , 7 = 1, ... , NP .	 (21)

Since the higher-degree basis explicitly contains the lower-degree basis, the finite element
matrix and vector contributions corresponding to the lower-degree polynomials are nested in
the matrix and vector contributions for the higher-degree polynomials. Similarly, coarsening
implies simply deleting the appropriate rows and columns of the matrix. These properties
are useful in the multilevel context. More specifically, the residual projection in (13) becomes
r* (0?) = r*(OP) for i = 1, 2, ... , Nq . That is, the components of the residual projection to
the subspace Sq are trivially the first Nq components of the fine grid residual. Hence, only
the first Ng components of the residual vector need to be computed. Similarly, the coarse
grid matrix A q is now the leading Nq x Nq minor of the fine level matrix A P . Hence Aq

does not need to be recomputed.

The subspace problem for the error correction in Sq again has the form in (10). That
is,

Age* = rq.	 (22)

In a two-level scheme this system is solved for e4. The projection of e* to the higher level
space SP is trivial because of the explicit inclusion of the basis (recall (20)). Hence the
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corrected high level approximation is simply obtained by adding the Nq components of eq
to the first Nq components of uP. This new approximation in SP can then be iteratively
smoothed and the cycle repeated.

Since Mg,P extracts the first Nq components of a vector of length Np , equation (22) on
the coarse grid can then be expressed as

Ag e*q = Mq,P(bp — Apu*P ) = bq — Mq ,PApUP 	
(23)

An alternative to the standard error correction method described above takes advan-
tage of the nesting of the matrices and vectors [9] to operate directly on the associated
components of up and b p . First note that Mq,P = [I 0] so (23) implies

Age* bq — [Aq AgP]Up* = bq — Aqu** — AgpUPP 	 (24)

where we have used the block partitioning

	

A
	 [P 	 AqP	

—u*	
u*

4 	 (25)— A A	 P	 u*P9	 PP	 pp

then (24) implies, on transposing Aquq

AgUq = bq — AgpUPP' 	 (26)

where uq = eq + uq is the subvector corresponding to the first Nq components of the new
high-level iterate. This form has two advantages. First, it emphasizes the fact that the full
residual need not be computed. Second, no intermediate correction needs to be projected
and added to the fine level approximation.

For reasons of convenience and parallelization, a simple point Jacobi iteration is the
preferred smoother for the multilevel scheme. Any smoother must efficiently damp the
high frequency error modes on the respective grids. For the relaxed Jacobi smoother, the
relaxation parameter determines which frequencies are damped more quickly than others.
If we assume that we wish to eliminate the highest frequency eigenmode corresponding to
the leading eigenvalue of the discrete operator, we obtain the relaxation factor for optimum
multilevel smoothing [7, 15]

— ( (x, Ax) )_1	
(27)

(x, Dx)

where D is a diagonal matrix with Dii = Aii.

Since this relaxation factor w is a function of the matrix A, it changes with both the
problem and the discretization. Hence, the optimum relaxation needs to be repeatedly
calculated for each decoupled equation matrix. This value can be conveniently calculated
using a power series method.

There are two main choices for a multilevel strategy applied to a linear system: a
V (or W) cycle, or a full multigrid cycle. The full multigrid (FMV) cycle uses nested
iteration to improve the initial guess on successively finer grids. The strategy for solution of
the nonlinear problem uses block iteration and successive approximations. Hence, at each
nonlinear (or block) iteration, there exists a good initial guess on the fine grid. For this
reason only V-cycles are used here as a multigrid cycling scheme.
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The Jacobi smoother can generate oscillations in the cross-wind direction for convection
dominated problems. The magnitude of these oscillations is proportional to the magnitude
of the residual. In order to minimize these oscillations, an initial coarse grid correction (no
pre-smooths) is performed at the first V-cycle. This initial correction further improves the
initial guess from the previous block iterate, and convergence is improved [7].

Multigrid cycling schemes such as the Full Approximation Scheme can be used on the
full nonlinear problem. Two alternative approaches are used here for the nonlinear problem.
First, the multilevel solver is used only as the linear system solver for the fine grid problem,
which is run to convergence using successive approximations and continuation. The second
approach is a nested iteration scheme: The coarsest grid problem is run to convergence
on the full nonlinear problem, including continuation in the boundary voltage or Reynolds
number. The solution is then projected to the next finest grid and the problem on this grid
level is then run to convergence at the final voltage or Reynolds number. This strategy is
repeated until the highest grid level is reached.

Parallelization

Finite element methods divide a given problem domain into a union of elements for discrete
solution. Hence, schemes in which blocks of elements are operated on by a processor and
the processor decomposition follows element boundaries provide a natural way in which
to parallelize finite element methods [l, 2, 5, 61. Adjacent elements share nodes on the
element interface, so the information associated with these nodes may be stored on different
processors. This information is updated during matrix-vector product or inner product
operations. This means that messages must be passed between processors in order to update
these values. The ratio of communication to computation is important because it can limit
efficiency. The use of high-p elements, which have more internal degrees of freedom, results
in a higher computation to communication ratio compared to low-p elements.

For a message passing paradigm, the time to send a message is given by

tm = a+ ^Lm
	

(28)

where a is the startup time or latency, ^ is the time per byte for message transfer, and
L,,, is the length of the message in bytes. For transfers in which a large amount of data is
to be transferred, the key is to send as few messages as possible so that the startup time
is minimized. Otherwise the startup time may dominate the communication time. The
optimum situation would be to send one long message so that the latency is essentially
hidden.

The previous argument motivates the need for message bundling using sendlists. A
data structure is developed in which each processor has a pointer array which contains the
element and node numbers that are shared with another processor. The order in which
this information is to be placed into a message is also stored. Thus, when a vector is to be
updated, a message vector is filled in order and sent to the appropriate processor. In turn,
a message is received from that processor. A pointer array indicates which element and
local node corresponds to which position in the array, in the same way as for the message
which was sent. In this fashion all of the communication between adjacent processors can
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be accomplished using one message each way, and message latency is minimized. There is,
however, some overhead in the packing and unpacking phases.

In the present work we can use an element-type data structure and recast all matrix-
vector or projection operations at the element level. This means that instead of addressing
a vector by its global node number, it is addressed by its element and local node number.
In addition, each element has a pointer array which stores its neighbor elements and which
points are shared with this neighbor. A specific processor will store information only for
elements local to that processor. Elements are therefore addressed by the number local to
that processor rather than a global element number. The pointer array for neighbor infor-
mation includes the local element number and processor number for neighboring elements.
This format facilitates parallel coding.

The formation of the matrix and RHS vector for finite element methods is usually
accomplished by forming the local element matrices and vectors and summing them to get
the global matrix and RHS as implied in the multilevel formulation of the previous sections.
However, in the present parallel algorithm we no longer form the global matrix and RHS, but
leave them in element form. The matrix and RHS calculation phase is therefore completely
parallel. If the matrix is to be preconditioned using a global Jacobi preconditioner (diagonal
scaling), then the diagonal elements of the matrices may be assembled to find the scaling
factor. This accumulation phase will involve communication across processor boundaries.

Iteration by point iterative methods (Jacobi, SOR, etc.) as a smoother or gradient
methods (CG, BCG, etc.) for the coarse grid solve involves repeated matrix-vector multi-
plications or dot products. Calculation of either one requires that the information on shared
nodes be updated. However, the multilevel residual calculation and projection operations
require no communication. The residual calculation on the fine grid is (17)

rP = bP — AP UP (29)

This is seen, however, as a sum of element contributions. Let AP, rp'„ bP be the element
matrix and vectors, respectively. Introducing the Boolean adjacency or connectivity matrix
which relates global to local variables for element e

E

bp = E Be bP (30)
e=1

and similarly
E

AP = E Be APB, (31)
e=1

Then

E	 E

rP 	 —	 Be bP —	 Be APBeUP
e=1	 a=1
E

_ E Be (be — AP UP)
e=1
E

_ E Be rP (32)
e=1
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and we can use directly the element residuals

	

re = b e — Ae Ue	 (33)P	 P	 P P

Note also that because the element bases are defined locally we can introduce a local change
of basis at the element level and corresponding to the global matrix Mq,P in (17) or (21)
we have the element projection matrix Me ,P . Then the element residual projection follows
in a manner analogous to (17) as

re = Mq,Pre	 (34)q	 e P

Thus residual calculation and restriction take place on the element level, without commu-
nication, and are completely parallel operations. The prolongation to finer grid operates on
the error vector, which is the solution on the coarser grid. This vector is stored in summed
format, and hence no updating is necessary. Therefore, prolongation can also take place on
an element and is once again completely parallel.

Results

The above method is now formulated for two nonlinear, coupled transport problems. The
first test case is the augmented drift-diffusion equations, which model the flow of electrons
and holes in semiconductor devices. The steady state, scaled form of the equations is
[3, 12, 16, 17]

A2AO = n—p—C

	

V • (µnVn — µnnVO) = R	 (35)

V-(ApVp+µPpVO) = R

where 0 is the electrostatic potential, n and p are carrier concentrations, µn and µP are
mobilities, R is the recombination-generation rate, C is the doping, and a is the scaled
Debye length. The boundary conditions are Dirichlet at the contacts (0, n, p specified) and
homogeneous Neumann elsewhere.

Equations (35) are decoupled iteratively and successive approximations used to solve
the nonlinear problem [7, 8, 10]. At each nonlinear iteration, three linear subsystems are
obtained, which are solved successively with a multilevel method using available solution
iterates of the other field variables [7].

The model problem for the augmented drift-diffusion equations is an n+ — n — n+ diode
with doping of 5 x 10 17 and 2 x 1015 in the n+ and n regions, respectively, device length
of 0.3µm, active length of 0.1µm, and an applied bias of 0.5V. Plots of the electrostatic
potential and electron concentration from source to drain contact are shown in Figure 1.
Although this is a 1-D problem, it was solved on a 2-D domain with homogeneous Neumann
conditions on the two horizontal sides. This solution was computed using a uniform 9 x 9
grid of 81 quintic elements, and a multilevel solver which used linear elements as the coarsest
level.

The second application is the stream function-vorticity equations for incompressible
Navier-Stokes flow in two dimensions. The steady state form of the equations is [7, 13, 14]

	

—v®(+ u • of = f	 (36)
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Figure l: Potential and electron distribution solutions, n+ - n - n+ diode, 0.5V bias

where 0 is the stream function, C is the vorticity, u is the velocity, and f is the divergence
of the body force.

Following the same procedure as in the previous problem, the equations are iteratively
decoupled using successive approximations. Again, the linear systems arising from substi-
tution of the appropriate basis and integration are solved with a multilevel scheme, and
available solution iterates of the field variables are used.
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Figure 2: Stream function and vorticity contours, driven cavity, Re = 50

The model problem for the stream function-vorticity equations is the driven cavity
problem. The velocity of the top of the cavity is normalized to one and the viscosity is
chosen so that the Reynolds number of the flow is 50. Contour plots for the stream function
and vorticity are shown in Figure 2. The same grid and 5-level scheme was used as in the
previous case.

Calculation of the eigenvalue (or relaxation parameter) for the relaxed Jacobi smoother
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in a power series scheme generally requires a moderate number of matrix-vector multiplies.
If this were done at each nonlinear iteration for each decoupled linear system, the cost would
quickly become a significant part of the total computation and communication time. How-
ever, if the sparse systems corresponding to a particular equation don't change enough to
significantly alter this eigenvalue estimate over several block iterations, then the calculation
can be done infrequently, and the cost can be amortized over several nonlinear iterations.
In practice, this is found to be the case for both the augmented drift-diffusion and stream
function- vorticity equations. Hence the relaxation parameter is only recomputed every ten
block iterations, or at the start of a continuation step.

For multilevel schemes applied to a decoupled problem, there are two convergence rates
of interest. The first is the convergence rate of the multilevel solver operating on a particular
linear system. The second is the convergence rate of the successive approximation method
applied to the nonlinear problem, the so-called block iterations.

Figure 3 shows the L 2 norm of the residual at each fine grid smoothing step for the
augmented drift-diffusion problem, on grids of 576 quadratic elements and Sl quintic el-
ements, respectively. These two grids have approximately the same number of degrees of
freedom. The solver uses the number of levels equal to the degree of the fine grid basis.
The plots display a sawtooth shape, with the beginning of each sawtooth corresponding to
the formation of the new linear system at each nonlinear iteration. This is followed by a
linear portion which represents the convergence of the multilevel scheme to the solution of
the linear system. The large jump in each of the plots is the beginning of the new contin-
uation step in applied voltage, which corresponds to a new problem. The linear behavior
of multilevel convergence is evident and is to be expected. The convergence rate is better
for the potential equation than for the transport equation. This is due to the fact that the
transport equation leads to a linear system which is nonsymmetric. The envelope of the
peaks is also decreasing, and this represents the convergence of the nonlinear iterations.
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Figure 3: Multigrid convergence, augmented drift-diffusion, quadratic and quintic elements

The same types of behavior are demonstrated in Figure 4 for the stream iunction-
vorticity problem at Re = 50. The convergence of the nonlinear iterations is more defined
for this problem, and there is no big jump corresponding to a continuation step. Again,
the multilevel convergence is linear. The convergence of the linear system corresponding to
the transport equation at this low Reynolds number is not slower than that for the stream
function equation.
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Experiments were performed to test the performance of the nested iteration strategy
on both model problems. The results indicate that the number of fine grid iterations is
significantly reduced. The convergence behavior once the finest grid is reached is very
similar to that shown previously for V-cycles without nested iteration.

Figure 7 shows the speedup on the Intel iPSC/860 hypercube for the stream function-
vorticity problem. The speedups are presented for a grid of 1024 quadratic elements and a
grid of 64 quintic elements, with a Lagrange basis used in both instances. The processor
decomposition is performed by ordering the elements in the square domain naturally and
distributing them to the processors in order. i.e. the first N elements go to the first
processor and so on, with Ne the number of elements and Np the number of processors.
The speedup for less than 16 processors is very good, with a parallel efficiency of .83
for 8 processors. The deterioration of performance above this level is due to the smaller
problem sizes on each processor, meaning the communication-computation ratio is larger.
The speedups are similar since the p = 5 case has fewer grid points (smaller problem size).
For the same number of elements as for the p = 2 case, the speedup will obviously be better.

Conclusions

The focus of the present study has been the use of a multilevel scheme for preconditioning
p-type finite element systems. We show that the spectral multilevel scheme serves as a useful
preconditioner for the fine grid discretization resulting from the application of spectral finite
elements. Convergence rates are linear for both chosen applications, and on both the self-
adjoint and transport equations. A simple point Jacobi smoother can be used provided the
correct relaxation is calculated for the corresponding problem and element degree. However,
the study of more advanced smoothers, especially for the convection-dominated transport
equations, is considered warranted.
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REVENGE OF THE SE ICOARSENING FREQUENCY

DECOMPOSITION MULTIGRID METHOD *

J. E. Dendy, Jr.
Theoretical Division, Los Alamos National Laboratory

Los Alamos, New Mexico 87545.

SUMMARY

The frequency decomposition multigrid method was previousl y- considered and modified so
as to obtain robustness for problems with discontinuous coefficients while retaining robustness
for problems with anisotropic coefficients. The application of this modified method to a problem
arising in global ocean modeling was also considered. For this problem it was shown that the
discretization employed gives rise to an operator for which point relaxation is not robust. In fact,
alternating line relaxation is required for robustness, negating the main advantage of the frequency
decomposition method: robustness for anisotropic operators using only point relaxation. In this
paper a. semicoarsening variant, which requires line relaxation in one direction only, is considered,
and it is shown that this variant works well for the global ocean modeling problem.

INTRODUCTION

Let us consider multigrid with standard coarsening on a rectangular grid of points; that is,
the coarse grid offspring of a, grid {x ,j : i. = 1, ... ,?n.; j = 1, ... , n} is the grid {xVi_1 , 2j_1 :

i = 1, ... , [m /21 ; j = L ... , [n /21 }. If point Gauss-Seidel with lexicographic ordering is the
smoothing scheme, it is well-known [1] that degradation in convergence occurs for the usual five
point discretization of

—aU, — bUyy = F,

when 0 < a « b or when 0 < b « a. One cure is to use line Gauss-Seidel as a smoother [1].
Another is to use semicoarsening instead of standard coarsening [2, 3, 4, 5]. Still another is to
employ algebraic multigrid [6, 71. Of these three, only algebraic multigrid also handles the case of
the skew Laplacian, i.e.,

— Ask,h Ui,j = 2h2 (4(ri,j — Ui-1,j -1 — ui—i,j+l — Ui+l,j -1 — Ui+l,j+l), 	 (l.l)

but at the expense of having to use unstructured grids. Another multigrid scheme which handles
both anisotropic coefficients and the skew Laplacian, using only standard coarsening and point
Gauss-Seidel as the smoother, is the rultigrid method considered by Brandt and Ta'asan [8]. The
idea of the method, as described by Ta'asan, is as follows: when relaxation is slowly converging,

* This work was performed under the auspices of the U.S. Department of Energy under contract
W-7405-ENG-36 and was supported by the Office of Scientific Computing of the Department of
Energy under Contract No® IBC-07-01-01.
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the finest grid error must have the form

nV=V

p +EeisJV,
j-1

where the V; are smooth, the eisi are highly oscillatory, and n < 2d (d being the dimension of the
problem). "This error cannot be approximated on a coarser grid, because it is too oscillatory.
Since [the] V,j are smooth functions, they can be approximated on the next coarser grid. Therefore,
n + 1 coarse visits are done, each time solving for another V ." [8] In the case that the V's
correspond to (0, 0), (0, 7r), (7r, 0), and (7r, 7r), Ta'asan argued that on the jth coarse grid visit, the
coarse grid equation should approximate the equation

LHUH = RH,

where
LH = IH e -iS^^h h iS'-ElhIh

9	
h	

- 
L e -^ - H

and

RH =IHe- is,'JhRhh

where Rh is the residual on the fine grid with spacing h and IH is bilinear interpolation from the
coarse grid with spacing H(= 2h) to the fine grid. In this case eis' JhIh is just IH with some
judicious sign changes. For specific cases, Ta'asan demonstrated that this methodology could
be simplified so that the coarse grid operators could be formed directly instead of variationally.
However, in the special case of V's corresponding to (0, 0) and (7r, 7r), [9] follows the methodology
just described.

A variant of Brandt and Ta'asan's method is the frequency decomposition multigrid method,
developed independently by Hackbusch [10]. To describe this method, let us assume doubly
periodic boundary conditions and suppose that the finest grid is the collection of points Q m shown
in Fig. 1. Subdivide Q m into the four sets {S2M-1 , k = 0, 1, d = 0,1} as shown. Define Ik : S2k -1 , Qm
by

(-1)k+' 2(-1) l (-1)k+

	

Ik,l = 1	 2(-1)k 	 4	 2(-1)k	 (1.2)

	

4	 (-1)k+i 2(-1) i (-1)k+i

where periodicity is invoked near the boundaries. Define Lk -1 = Ik i LM Ik ^, and let Ik , be the
residual operator, Ik , : Qm , Qm- 1 . Thus a two level method is given by:
1. Perform vl multi-color Gauss-Seidel iterations on Uu um = FM.

2. Solve LM-1 VM -1 = fM-1 =_
Ik 

1(FM - LM uM ), k = 0, 1, 1 = 0, 1 directly.kl

3. Perform um , um + Ik, ,V'u-1 k = 0, 1, 1 = 0, 1.

4. Perform v2 multi-color Gauss-Seidel iterations on LmuM = FM.

The frequency decomposition multigrid method is given by applying this process recursively. That
is, instead of step 2, one decomposes each of the Q ► 1 's into four subsets and treats each of these
with the two level process, continuing until the grids have few enough points that direct solution or
solution by iteration alone is efficient.
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Fig. 1: Qm -1 , i = o,1, j = o,1. Q 0 1 is designated
by solid dots, 0' is designated by nonsolid squares, etc.

The frequency decomposition method is not robust for problems with discontinuous
coefficients. In [11] we showed how to modify it to be robust for such problems while retaining
robustness for problems with anisotropic coefficients. We also considered application of this
modified method to a problem arising in global ocean modeling. For this problem it was shown
that the discretization employed gives rise to an operator for which point relaxation is not robust.
In fact, alternating line relaxation is required for robustness, negating the main advantage of
the frequency decomposition method: robustness for anisotropic operators using only point
relaxation. Given the necessity of performing alternating line relaxation, it is natural to consider
a semicoarsening variant of the frequency decomposition multigrid method. In this variant,
discussed in Section 2, the finest grid is coarsened only in the y-direction, and line relaxation by
lines in x is performed. This variant is robust for constant coefficient, anisotropic problems, but it
must be modified, as in [11], to be robust for problems with discontinuous coefficients. In Section 3
we consider the same numerical examples that were considered in [11]. In Section 4 we consider the
application of this modified method to the same problem considered in [11] arising in global ocean
modeling.

2 A SEMICOARSENING FREQUENCY DECOMPOSITION MULTIGRID METHOD

Let us consider multigrid with semicoarsening on a rectangular grid of points; that is, the
coarse grid offspring of a grid {xi ,.j : i = 1, ... m; j = 1, ... n} is the grid {xi , 2j_1 : i = 1 ' ... ' M; j =

L ... , [n/21 }. The robustness of line relaxation coupled with semicoarsening for constant coefficient
anisotropic problems was first reported in [2]. For problems with anisotropic and discontinuous
coefficients, a semicoarsening method was considered in [3] for three-dimensional problems. The
two-dimensional analogue of this method is considered in [4] and [5]. Both of these papers use
a technique due to Schaffer [12]; without this technique, the semicoarsening method would not
be competitive. However, this method is not robust for operators like —Ask ,h in (1.1). (Seethe
discussion in Section l.)

To describe the semicoarsening frequency decomposition multigrid method (SFDM), let us
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assume doubly periodic boundary conditions and suppose that the finest grid is the collection of
points Qm shown in Fig. 1. Subdivide Qm into the two sets JQm -1, k = 0, 11, where Qm- ' is the set of
odd x-lines and 0" the set of even lines of Q m . Define Ik : Qm- 1 , Qm by

Ik = 1 l 21
2 

(- 1)k

(-1)k
(2.1)

where periodicity is invoked near the boundaries. Define LM-1 = IkLM Ik and let Ik* be the residual
weighting operator, Ik : Qm — Qm- 1 Thus a two level method is given by:
1. Perform v1 red-black Gauss-Seidel line iterations, by lines in x, on LM uM = FM.

2. Solve Lk -1VM-1 = fM-1 =_ Ik(F`u — LM uM ), k = 0,1 directly.
3. Perform um <— um + IkVM -1, k = 0, 1.
4. Perform v2 red-black Gauss-Seidel line iterations, by lines in x, on LM um = Fm.

The semicoarsening frequency decomposition multigrid method is given by applying this process
recursively. That is, instead of step 2, one decomposes each of the O's into two subsets and
treats each of these with the two level process, continuing until the coarsest grid consists of a
collection of decoupled sets, each set consisting of just one x-line.

Since the frequency decomposition method is not robust for problems with discontinuous
coefficients, one would hardly expect SFDM to be robust for such problems. We use the same
numerical example employed in [11] to show in Section 3 that this expectation is justified. The key
ingredient for obtaining robustness for problems with discontinuous coefficients is to use operator
induced interpolation. The other ingredient is to use Galerkin coarsening, but that ingredient is
already present here.

Let us first recall how operator-induced interpolation is defined in the case of semicoarsening
[4, 12, 51 for nine point operators. It suffices to consider the two level method; let the template of
Lm at a given point be

NW N NE
W C E
	

(2.2)
SW S SE

For this discussion we do not need to introduce indices. For step 3 above, lo is just the identity for
odd lines; for even lines, let

A-V- + A°V° + A + V+ = 0

be the equation that would give the row V° = (i i j : i = 1, • • • , M) in terms of the rows V- = (Vj_1
i = 1, • • • , M) and V+ = (Vi j+1 : i = 1, - • • , M), for j even. Here A-, A°, and A+ are all tridiagonal
matrices;

A- = tridiag(SW S SE),

A° = tridiag(W C E),.	 (2.3)

and A+ = tridiag(NW N NE).

Then
V° = -(A°)-1(A-V- +A+ V+ ).	 (2.4)

Unfortunately, use of (2.4) yields a nonsparse interpolation, leading to nonsparse coarse
grid operators. Schaffer's idea [12] is to assume that - (A°)- 1 A- and (-A°)- 1 A+ can each be
approximated by diagonal matrices in the sense that B- and B+ are diagonal matrices such that

—(A°) -1 A- e = B - e and ( —A°) -1 A+ e = B+e,
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where e is the vector ( 1,	 1) T . To find B- and B + requires just two tridiagonal solves. The
interpolation formula for Io using B- and B + is

1 °=B V +B+V+

The derivation for 1 1 is a. bit different.. If we consider just Q' -1 , we have an ordinary
semicoarsening multigrid method, which is robust for operators which annihilate (0, 0), (0, 7r), and
(7r, 0). It is not robust for operators which annihilate (7r, ;r); to obtain such robustness is the role of
Qm-1. We can repeat the above argument, except that now e is the vector ( -1, 1, -1, 1, •)T . The
interpolation formula. for 11 using the resulting B- and B + is

o = — I B -I 1:-- — IB+117+
	

(2.5)

where IB + I [IB- I] is the diagonal matrix whose entries are the absolute values of the corresponding
entries of B+[B-].

It can be checked that in the case of constant coefficient zero-sum nine point difference
operators, this construction gives (2.1). The same procedure is used recursively in the multigrid
case. We use the notation

Jig ^J^k 
j, = 0 or 1
	

(2.6)

to denote the general level ill - k grid, k = 1, ... , M - 1. In analogy with the terminology used in
[11] we refer to this modification of SFDM as CSFDM for "child of the semicoarsening frequency
decomposition multigrid method."

There are some problems for which the presence of Qm -1 contaminates the solution process
and leads to slower convergence. Examples are given in Section 3. An analogous situation occurs
in [11]. There the solution was to design switches to detect the strength of certain frequencies and
to include the corresponding corrections with strength 0, 0 < 0 < 1. The same solution is employed
here. Consider Qm- 1 . Define

IC+SW+NW+SE+NEB
IC+W+S+E+NI

0 = m.ax(0,1 —

(In this description we ignore the possibility of zero divides to simplify the exposition.) Thus, (2.5)
is replaced by

V° = 0(-IB- I V- - IB+IV+).

Note that 0 is 0 for the standard five point discretization of the Laplacian and 1 for -Ask,h We

refer to this modification of CSFDM as GSFDM, for grandchild of the semicoarsening frequency
decomposition multigrid method.

3 NUMERICAL EXAMPLES

All of these examples appeared in [11]. They are for problems that are 64 x 64 in size, this size
problem being sufficient to illustrate the points we are making. We consider five problems. The
first is

—V • (D(x, y) DU ( x , y)) + a'( x , y) U (x , y) = F( x , y)
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i

7

0

in a bounded region 0 of R2 , where D = (D 1 , D2 ), Di is positive, i = 1, 2, and Di , 0', and F are allowed
to be discontinuous across internal boundaries r of P; moreover, D l » D2 and D l « D2 in different
subregions of Q is possible. Specifically, we consider

V • (DVU) + U = F on (0, 16.) x (0., 16.)
U doubly periodic, 	 (3.1)

for the region shown in Fig. 2 and for the values of D = D l =. D2 and F indicated there. The
differencing employed is given in [13].

F=O.
D=1000.

Fig. 2: Diffusion coefficients and right hand side for (3.1)

The second is the standard discretization of

Uxx — .000OlUyy = F on (0, 16.) x (0., 16.)
U doubly periodic,	 (3.2)

where F is chosen so that f F = 0, specifically

F(x y) —_ 1. if0.<y<4.or 12.<y<16.	 (3.3)
—1. otherwise.

The third problem is

{
ASk,h U = F on (0, 16.) x (0., 16.)

U doubly periodic, 	 (3.4)

where Lsk,h is given in (1.1) and F is given in (3.3). We note that for (3.4) to have a solution, F must
also satisfy Eij (-1) i (-1)j Fi,j = 0; this condition is fortuitously satisfied by (3.3).

The fourth problem has anisotropic and discontinuous coefficients,

0 • (DVU) + U = F on (0., 16.) ^c (0., 16.)
U doubly periodic, 	 (3.5)
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with the coefficients and right hand side given in Fig. 3. The differencing employed is given in [13].

F=0.	 F=O.
D1=100,	 D1=1000.
D2=100.	 D2=1000.

D1=100.
D2=1000.

F=O.
D1=1000.
D2=100. o. o.

F=O.
D1=1000.
D2=1000.

Fig. 3: Diffusion coefficients and right hand side for (3.4)

The fifth problem comes from [8]. We consider the operator Lh, " with template

where l a l < 1. We consider

where F is given in (3.3).

1 —2
i —a —2

	

a	 2	 a	 ,T2	 1	 1
—2 —a —2

Lh,.ssU = F on (0, 16.) x (0., 16.)
{l U doubly periodic,	 (3.6)

Table 1 shows the results for SFDM for these five problems. The first column indicates the
problem, the second.the number of V-cycles (less than eleven) to solve until the final residual r

satisfies Il r ll < 10- 6 , the third the convergence factor of the first cycle, the fourth the convergence
factor of the last cycle, and the last the average convergence factor. (Recall that the average
convergence factor for p V-cycles is defined as (IlrPll/Ilroll)', where it • II is the discrete L2 norm,
and rk is the residual on the finest grid after k V-cycles.) An initial guess of zero is used. Red-
black line relaxation by lines in x is used on all grids. The V-cycle employed uses v, = v2 = 1. In
Tables 2 and 3 we give the same data for GSFDM and GSFDM. One can see that CSFDM and
GSFDM perform much better than SFDM for (3.1) without degradation in convergence factor for
the other problems. The difference in CFDM and GFDM is dramatic only for (3.2) in contrast
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to the corresponding methods in [11]. Convergence factors for the semicoarsening variants are
comparable to those in [11] and even significantly better for (3.2) and (3.5).

TABLE 1:PERFORMANCE OF SFDM FOR. FIVE PROBLEMS
Problem Number CF-First CF-Last average CF

of Cycles Cycle Cycle
(3.1) 10* .38 .55 .53
(3.2) 7 .08 .08 .08
(3.4) 7 .08 .08 .0$
(3.5) 10* .34 .59 .56
(3.6) 6 .04 .07 .05

* fails to converge in ten cycles

TABLE 2:PERFORMANCE OF CSFDM FOR FIVE PROBLEMS
Problem Number CF - First CF - Last average CF

of Cycles Cycle Cycle
(3.1) 9 .10 .15 .14
(3.2) 7 .08 .08 .08
(3.4) 7 .08 .08 .08
(3.5) 10* .10 .21 .19
(3.6) 6 .04 .07 .05

* fails to converge in ten cycles

TABLE 3:PERFORMANCE OF GSFDM FOR FIVE PROBLEMS
Problem Number CF - First CF - Last average CF

of Cycles Cycle Cycle
(3.1) 9 .08 .14 .13
(3.2) 1 3.0 x 10 -9 3.0 x 10-9 3.0 x 10 -9
(3.4) 6 .03 .06 .05
(3.5) 10 .08 .19 .18
(3.6) 6 .03 . 06 .05

The coarsest grid problem in all three variants consists of a collection of decoupled sets, each
set consisting of just one x-line. If the problem is nonsingular, there is no difficulty in solving the
associated periodic tridiagonal systems. If the problem is singular, then the tridiagonal system for
Q01 1... o (see (2.6)) is singular. To attain uniqueness one need only add a positive number to one of
the diagonals of this tridiagonal system, pinning down the solution for this grid and thus assuring
a unique solution. Such a problem, of course, has a solution determined only up to a constant; i.e.,
the computed solution plus any constant is still a solution. A similar technique is used in [14]. In
the case of (1.1), the tridiagonal system for	 is singular; addition of a positive number to one
of the diagonals is all that is required in this case as well.
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For parallelization of SFDM and its offspring on the CM-5, we lay the grids out in the
obvious way. Efficient communication in x on all grids is obvious since each point communicates
only with its nearest left and right neighbors. Communication in y is efficient since each point
communicates with bottom and top neighbors a. power of two distant, and with the immediate left
and right neighbors of these points. Like the methods in [11, 15, 10], the methods here keep all
the processors busy on every grid level, and again this busyness is actually a disadvantage when
the number of points per processor exceeds one (vp ratio greater than one), for then the virtual
processors are kept busy on every level as well. In the method of [4], work is halved on each coarser
level until a. vp ratio of one is reached: from then on, work on each level remains constant, with
more and more processors becoming idle. But for SFDM and its offspring, work on each level
remains constant regardless of the vp ratio. For the method of [4] and a vp-ratio > 1, it is possible
to organize the problem so that efficient relaxation can be achieved per processor and — by doing
intra, processor moves — still achieve efficiency for interpolation and residual weighting; most of
the communication is done within individual processors, not between processors. But for SFDM
and its offspring as organized here, for sufficiently coarse levels, one is forced to pay the same off
processor communication penalty for every point of every grid.

4 APPLICATION TO A GLOBAL OCEAN MODELING PROBLEM

The original motivation for this work came from an application in global ocean modeling. In
[16] an elliptic equation is solved at each time step. This equation is differenced so that the (7r, 7r)

frequency is in the null space of the operator. The reason for this differencing is that it is required
for an energy conservation relation that is deemed to be important to long time integration of the
system. This differencing is common in the meteorological community, although some rebels are
attempting to introduce new models which do not employ it. There are other difficulties as well.
Since spherical coordinates are employed (fortunately with the regions near the poles left out), the
difference stencil (when normalized) is close to LkOl (see (3.5)), with jai close to 1, in some regions.
The diffusion coefficient depends on the depth of the ocean. On the scale of the grids used, this
depth jumps no more than a factor of a hundred from cell to cell. Land masses are dealt with by
the use of dead cells; that is, on land the equation that is solved is (Id)U = 0., where Id is the
identity operator. The presence of dead cells and discontinuous coefficients really rules out the
use of SFDM. Both CSFDM and GSFDM provide a mechanism for assuring that the coarse grid
dead cells do not couple to the coarse grid ocean cells. The final difficulty is that the boundaries,
approximated by lines of constant latitude and longitude, are ragged 	 coastlines tend to be
fractal.

Because of the existence of lines of latitude that intersect no land masses, for which periodic
boundary conditions are imposed, we need an efficient solver for periodic tridiagonal systems. Such
a solver is still not available in CMSSL (Connection Machine Scientific Software Library). Thus
we still employ a trick due to R. D. R.ichtmyer [17]: Let the unknowns of the periodic tridiagonal
system be indicated by {x i , - - -, x,,,). Set x?, = 0., and solve for {x i , • • • , x1z _ 1 1, denoting the
solution by s°. Set x,,,, = 1., and solve for {x l , • • • , x m _ 1 1, denoting the solution by s l . (The CMSSL
tridiagonal solution algorithms can be used to solve for s° and s l .) Every linear combination of
s° and s l has zero residual for f2,- - - , rn. – Q. It is easy to construct the linear combination that
has zero residual at 1 and m as well. This linear combination involves division by the difference
of residuals of the system at 1 for s° and s l ; this can involve the difference of two small, nearly
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equal numbers and lead to the tridiagonal system being solved to not very great precision. The
cure is to use the obvious defect correction algorithm to obtain more digits of accuracy. In [11] the
better conditioning of the coarse grid operators ( in comparison with the operators obtained from
semicoarsening) resulted in not having to use this defect correction algorithm.

In the original model, the solution of a steady state, zero row-sum, discrete, elliptic equation,
call it Lh Uh = Fh , was required at each time step. The problem of generating a compatible right
hand F  for testing was solved by applying the difference operator to a random grid function; the
F  thus generated satisfies Ei 'j F = 0 and Ei j (- 1) 8 (- 1)i FE = . 0. In [ll] many simplified situations
were investigated, with the intent of showing that the reason for poor convergence for the actual
problem was poor approximation on coarse grids due to the complicated boundary. We omit the
investigation of these simplified situations here since the behavior of the semicoarsening variants
parallels the behavior of the methods in [ll].

The original model was improved by requiring the solution of a time-dependent equation [18].
Thus at the nth time step, one must solve

G Uh,n 
+L 

h Uh,n = F+h,n
(At)2

where G%j = const.(area of (i,j)th cell). In this model the size of the time step, At, is limited by
a Courant condition. For the 256 x 128 problem considered here, the ratio of ^ G to the diagonal
of Lh ranges from .01 to 35.0 for the active cells, with a mean value, including dead cells, of .3.
There is no apparent correlation of the value of this ratio with the location of the boundaries, but
it was clear in [11] that the addition of this time step term to the operator greatly improves the
correction capabilities of the coarse grid operators. However, it was also shown that the time step
is not large enough to achieve a good convergence factor with relaxation alone. As in Section 3, a
zero initial guess is used.

TABLE 4:PERFORMANCE FOR THE GLOBAL OCEAN PROBLEM (4.1)
Problem Number CF — First CF — Last	 average CF

of Cycles	 Cycle	 Cycle
CSFDM 10* .03 .60 .34
GSFDM 10* .03 .63 .35
CSFDMA 10 .02 .42 .27
CSFDMB 5 .02 .12 .05
CSFDMC 5 .02 .11 .05

* fails to converge in ten cycles

The performance of CSFDM and GSFDM is in sharp contrast to the situation in [11],
where the addition of the time step term results in great convergence. There are three variants
of CSFDM listed in Table 4, CSFDMA, CSFDMB, and CSFDMC, the last two of which give
convergence equal to what was achieved in [11] with alternating line relaxation. To motivate and
explain these variants, it is necessary to recall the construction of operator induced interpolation in
the case of standard coarsening black box multigrid [13, 9, 19, 14]: At coarse grid points coinciding
with fine grid points, interpolation is just the identity. At a fine grid point lying vertically between

(4.1)
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two coarse grid points, interpolation at vij is given by avij _ 1 + bvi,j+1, where

a = -(SW + S + SE)/(6t% + C + E) and b = -(NW + N + NE)/(W -, C: + E) 	 (4.2)

and where we have used the notation of (2.2). That is, one thinks of summing away the x-
dependence to obtain a three point relation between vi,j _ 1j vij , and vi,j+1 . A difficulty with this
approach, when using standard coarsening, is that if p = C + NW + N + NE + W + E + SW + S + SE is
small, then instead of using W + C+ E in (4.2), one should use =SW - S - SE - NW - N - NE instead;
this point is discussed in [14].

In semicoarsening black box multigrid, the analogous choice would be to use

-NW-N-NE-SW-S-SE-W-E	 (4.3)

instead of C in (2.3). In normal semicoarsening black box multigrid [4] (and for Q —' here),
however, this choice leads to no improvement in convergence factor. For Q' -1 , the analogous
choice is to use

—NW—W—SW+S+N—SE—E—NEB	 (4.4)

instead of C in (2.3) to derive (2.5); this choice on coarser grids can lead to operators for which
C + NW + N + NE + W + E + SW + S + SE > 0 is no longer valid. Hence, it seems safer to use
(4.4) only for level M.

To summarize, in Table 4 CSFDMA, CSFDMB, and CSFDMC have the following meaning:
CSFDMA: CSFDM with (4.3) and (4.4) enforced at all levels.
CSFDMB: CSFDM with (4.4) enforced at all levels.
CSFDMC: CSFDM with (4.4) enforced only at level M.

Simple analysis shows what can go wrong N

operator
1_2

L= -1+c
1_2

with using C instead of (4.4). Let us consider the

1—c	 —12
2+r/ -1+e
1-c	 -12

where 77 and c are both nonnegative and small. In this case, if we use C instead of (4.3), IB- I and
IB + ) in (2.5) are both dia9(0), where 0 = 2I . Thus 0 < B < 2. A computation shows that Il LIl has
the form (2.2), where C = (1-20+48 2 )+(1+28 2 )x7+(1+20)c, W = E 2 } Zc, S = N = —20+202+0277+28c,
and SW = NW = NE = SE = 0 — 0 2 + 0 2 c. For q sufficiently large, W + C + E is positive and A° in
(2.3) is invertible. For c = .05 and 77 = .02, 0 = 12 , and C + W + E is negative. Thus by continuity,
C + W + E is zero for some values of g and c, and A° is singular; for nearby values of 77 and c, A° is
nearly singular, and ill-conditioning occurs. If we use (4.3), however, then 0 = 2, E = W = -' + Zc,
C = 1 + 2 71 + c, and W + C + E = i + 5c is always positive. Similar arguments show that if (4.3) is
always used, then C+NW+N+NE+W+E+SW+S+SE < 0 can happen on, coarser grids. Numerical
experiments show that this seems to happen on grids of the form S2M-k,k (see (2.6)), where k >_ 3 and
ji = ji+ 1 = 1 for some i. Such grids can be deleted [20, 8] without harming the convergence factor,
as illustrated by the nearly identical performance of CSFDMB and CSFDMC. Thus an alternative
would be to include the corrections from such grids with weight zero.
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AN OPTIMAL ORDER NONNESTED MIXED MULTIGRID
METHOD FOR GENERALIZED STOKES PROBLEMS

QINGPING DENGt

Abstract. A multigrid algorithm is developed and analyzed for generalized Stokes problems dis-
cretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved
by an element-independent analysis that the multigrid algorithm converges with an optimal order if there
exists a "good" prolongation operator. A technique to construct a "good" prolongation operator for
nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of aux-
iliary nested multilevel finite element spaces and define a prolongation operator as a composite operator
of two single grid level operators. This makes not only the construction of a prolongation operator much
easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of
the approximate properties for prolongation operators is also simplified. Finally, as an application, the
framework and technique is applied to seven typical nonnested mixed finite elements.

Key words. generalized Stokes problems, mixed methods, multigrid algorithm, nonnested

AMS(MOS) subject classifications. 65F10, 65N30

1. Introduction. This paper will develop an optimal order multigrid algorithm for
solving mixed finite element equations of the following generalized Stokes problems:

—Du+Vp= f, in 52,

(1.1)	 div u = g, in 52,
N

U = 0, on 9Q.

where Q is a bounded convex domain in R'. If f E H-1 (52) and g E Lo(Q), (1.1) is

uniquely solvable (cf. [20]). We refer to [7] and [20] for notations and definitions of the
function spaces used in this paper. The velocity—pressure variational formulation of the
saddle problem for (1.1) is to find [u,p] E (Ho(Q)) 2 x Lo(St) such that

(1.2)	 C([u,P], [v, q]) = F([v , 4]), d [v, q] E (Ho (Q))2 x Lo(Q),

where (•, •) - (•, •)n stands for the inner product in L2 (52) or (L2 (Q))2 , and

(1.3)	 C([u, p], [v, q]) _ (Vu, vv) — (P, div v) — (q, div u),

(1.4)	 FQv, q]) _ (f, v) + (g , q)•

Let Tk (k > 0) be a quasi-uniform triangular or rectangular partition of Q with mesh
size h k = hot—k . Tk is obtained by linking the midpoints of the three edges of all triangles

tDepartment of Mathematics, The University of Tennessee, Knoxville, TN 37996. deng@math.utk.edu
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sup
vkEXk

I(q, div vk)kl

II vk II k
>— yoll g llL 2 (Q), d q E Mk,(1.8)

of Tk_ 1 or by linking the midpoints of two opposite sides of all rectangles of Tk_ 1 . For
simplicity, we also assume that Q = U KETk K. Let Xk C (L2 (Q))2 , Mk C L2 (Q) be two

N
finite element approximate spaces of (Ho (Q)) 2 and L2 (Q) associated with Tk . The mixed
finite element method for (1.2) at level k is to find [u k, Pk] E Xk x Mk such that

N	 N

(1.5)	 Lk([uk,Pk], [ v , q]) = Fk([v , q]), d [ v , g] E X k X Mk,
N	 N	 N	 N	 N

where (•, • )k = E (•, • )K, and
KETk

(1.6)	 Lk([u,P], [v, q]) _ (Vu, Vv) k — (p, div v) k — (q, div u)k,

	

N N	 N N	 N	 N

(1.7)	 Fk([v, q]) _ (f, v )k + (J, q)k.

	

N	 N N

It is well-known that Xk and Mk must satisfy the Babuska—Brezzi condition, i.e.,
N

where 
II v k II k = (V y k , Vv k )k, and yo is a positive number independent of k and hk. We also

N	 N
assume that the following error estimate and interpolation property hold (cf. [13],[20]):

(1.9) IIU — Nk II L Z (Q) + hk (II u — u k Il k + IIP — Pk II L2 (n)) <— Chk(II UIIH 2 ( n) + IIPIIHI(n)),

(1.10) 11  — HkV IIL 2 (0) + h k(II v — Il k v 1I k + II q — 'rk g ll L2(n))

< Ch k (II vll x 2 (Q) + II g IIH I (Q)), e [ v , g] E (HZ (St) n Ho (
Q

))2 x (H' (Q) n LO(^))

Here r k = [Hk, 7rk] is the interpolation operator associated with Xk x Mk, [u, P] E (H2 (Q) n
N	 N

Ho (S2)) 2 x (H 1 (Q) nL2 (Q)) is the solution of (1.2), and [uk, Pk] E Xk x Mk is the solution
of (1.5).

However, most commonly used low order mixed elements, which have a matched
approximate order, do not satisfy (1.9). So, we have to modify them by using some special
techniques, such as bubble functions, nonconforming elements, and composite elements.
Unfortunately, the first two techniques must cause the nonnestedness of multilevel finite
element spaces, and so does the third one for many cases. Hence, it is of interest and
importance to study nonnested multigrid algorithms for mixed finite element equations
of (1.1). Simultaneously, we have to overcome some new difficulties since the standard
multigrid theory cannot be directly applied, and a prolongation operator other than the
natural injection must be chosen. However, we observe that usually only the finite element
velocity spaces are modified and the finite element pressure spaces are still some common
finite element spaces. Therefore, the multilevel finite element pressure spaces are still
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nested. In view of this observation, we always assume that the nestedness of multilevel
finite element pressure spaces holds.

The objective of this paper is to develop and analyze an optimal order multigrid
algorithm in a unified framework for finite element equation (1.5). The convergence of
the multigrid algorithm is proved by an element-independent analysis. The technique
to construct a "good" prolongation operator for nonnested multilevel spaces, that is, a
prolongation operator which satisfies conditions (1.11) and (1.12), is proposed. The idea
of defining the multigrid algorithm is adopted from [20]. Our convergence analysis mainly
relies on the properties (1.11) and (1.12) of the prolongation operator Ik_ 1 X k _1 x

N

Mk_1 —+ X k x Mk given as follows:
N

(l.11) 11[v, q] — Ik-1 [V, q]II o,k < Chk(II VIIk -1 + II g IIL 2 (Q)), b [v, q] E X k-1 x Mk -1,

(1.12) II [v' q] — Ik- 1 r k -1[V, g]II o,k < Chk(II VI I H 2 (n) + II q II Hl(11)),

V [v , g] E (H2 (SZ) n Ho (Q))2 x (H1 (Q) n Lo(Q)),

where II[v, glllo,k = (IIvIIL2 ( 0) + h kIIp IIL2 (n ) ) 2 — ((v,v) k +hk(p,p)k)2. Since the multilevel

finite element pressure spaces are nested, we define a prolongation operator as Ik-1 =

[IIk-i ik-1], where ik_1  is the identity operator on Mk-1 . Our basic idea of constructing
Hk_ 1 is to define Hk_ 1 as a composite operator of two single level operators which are
defined on two consecutive levels. Such an idea for constructing an intergrid operator is first
used for defining two-level Schwarz methods in [4] and [9], and then for defining multigrid
methods of plate elements in [10] (but those intergrid operators cannot be expressed in an
explicit form). Here, our approach for constructing an operator Hk_ 1 is to introduce two
auxiliary spaces Wk-1 and Wk corresponding to X k_1 and Xk and satisfying Wk _1 C

N	 N	 N	 N	 N

Wk C (Co (U)) 2 and to define Hk_ 1 = Ok o i o ak-1 = Ok o ak-1; ak-1 : Xk-1 '+ Wk-1
N	 N	 N

is an interpolation operator or the modification of an interpolation operator which uses a
local averaging technique and A : Wk —+ X k is a interpolation operator. By doing this,

N	 N

there are the following advantages. The first makes the construction of a prolongation
operator much easier but the final explicit form of such a prolongation operator is fairly
simple. The second reduces the verification of the properties for an intergrid prolongation
operator to the verification of similar properties for two single level operators. The third
allows us to define several different Ik_ 1 's. We remark that the convergence analysis can be
regarded as a simplification and improvement of [11] by X. Feng and the author. Additional
information about multigrid algorithms for solving the mixed finite element equations can
be found in [3],[5],[16],[21],[22], where only a few single cases are considered.

An outline of the rest of this paper is as follows.. In Section 2, the formation of the
prolongation operator Ik_ 1 and the properties of the operators a k and ,Qk are described in
detail, and the multigrid algorithm is defined for the mixed finite element approximations
of (1.1). In Section 3, the optimal convergence of the multigrid algorithm is demonstrated.
Finally, the abstract framework and technique developed in Sections 1-3 is applied to seven
typical nonnested mixed finite elements in Section 4. Throughout this paper, unless stated
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otherwise, C will denote a generic constant which is independent of the grid level k and
mesh size hk.

2. The prolongation operator and multigrid algorithm. In Sections 2 and 3,
we always assume that we are given a family of finite elment spaces Xk x Mk , k > 0 such

N
that Mk- 1 C Mk , k > 1 and (1.3)—(1.10) hold. We suppose that there exists a sequence
of nested finite element spaces { Wk lk>o associated with Tk , k > 0, i.e., Wk-1 C Wk C

(Co(?!))', k > 1. Also, we assume that two linear operators a k and Ok exist:	
N

(2.1)	 ak : [Xk + (Co(n))2] (D TT'k) --+ Wk,	 A : ( Wk C)[(Co(n))2 + Xk] --+ Xk.
N	 N	 N	 N	 N	 N

We assume that ak and A satisfy the following properties:

(H.1) ak oak = ak, on Wk,	 Ok c A = Ok, on Xk,N	 N

(H.2) 11 V — a k v ll L2(Q) <— Ch2II V II x2 (SI) , d v E (H2 (Q) n Ho (Q))2,

(H.3) 11V — a kVII L2 ( Q ) < ChkllVlik,	 d v E Xk,

(H • 4)	 11V = 0k v II L 2 (Q) < Ch k II V II xz (Q) , b v E (H2
 ( Q ) n Ho (Q))2,

(H.5) 11V — 0kvII L2(Q) < ChkII vII k, 	e v E Wk,
N	 N	 N	 N N

(H.6) II ak( v + w )II L 2 (Q) :5 C II V + wII Lz(Q), e v E X k , w E Wk,

(H.7) Il ak(v + w )IIL Z (jj) < C 11 V +wII Lz(Q ) , e v E Xk, w E Wk.

We now define the prolongation operator Ik_ 1 : X k _1 x Mk _1 Xk x Mk as follows:

(2.2)	 Ik-1 = [Hk-i, Z k-1] = [Ok 0 i o ak-1, 1 k-1]
	

[Ok 0 ak-1, Zk-1]

The relation of Hk_ 1 , ak-1, and ,6k are illustrated by the commutative diagram (2.3):

Xk	
)3k 
	 Wk

(2.3)	
xk-1^	 ^Z

X k-1	 Wk-1

Following [21], we define the multigrid algorithm for solving the mixed finite element
equation at level k as follows. Find [w, p] E X k x Mk such that

(2.4)	 Lk ([W , p], [ v , q]) = Gk ([ V , q]), d [ v , q] 'E Xk x Mk,
N	 N	 N	 N	 N

where Gk is a linear functional on X k x Mk . In particular, it takes the following form on

the finest grid: Gk ([v, q]) = Fk ([v, q]).
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Multi rig; d Algorithm
(i) If k = 0, (2.4) is solved directly.
(ii) If k > 0, let [w°, p°] E X k x Mk be an initial guess and define [wm+1, Pte'.] E Xk x Mk

as follows:
Smoothing step: For 1 < i < m, [w 2 , p Z ] is defined by

(w v) k + h2kV*, q)k = 
A k

-2 ( Gk[v, q]) —Lk ([W i
-1 ,  pi-1]' [v, q]), d [v, q] E Xk X Mk,

	(wZ-wZ-1I v )k + hk(P' - PZ-l 1 q)k = Gk([iD PZ ], [v, q]),	 H [v, q] E Xk x Mk.

Correction Step: Set

[wm+1 ^ P^"+1 ] = [w ^^ Pm l +,k-1 [0, T] ^

where [V, T] E Xk-1 x Mk _1 is the approximation of [0*, T*] E Xk-1 x Mk _1 defined by
N	 N	 _	 N

applying p iterations with zero as an initial guess of the level (k - 1) algorithm to the
residual equation

(2.5)	 Lk-1([ * , T* ], [v, g]) = Gk- 1 Q V , q]), b [v, q] E Xk-1 X Mk -1 -
N

Here,
Gk-1([v, q]) = Gk(Ik-1 [ v 9 q]) - Lk([w"L , Pm ], Ik-1[v , q])•'y	 N	 N	 N

In this algorithm, m is some positive integer to be determined and µ is any positive
integer constant greater than or equal to two. In addition, Ak = 0(hk2 ) is chosen to be
the maximal absolute value of the eigenvalue for the following eigenvalue problem. Find
[cp k , vk] E, Xk x Mk , A E R \ {0} such that

N

(2.6)	 Lk ([^Pk, vk], [v, q]) = A ((^Pk, v )k + hk(vk, q) k), d [v, q] E Xk X Mk.

3. Convergence analysis. In this section, we will discuss the convergence of the
algorithm defined in the previous section by using induction. A uniform error reduction
rate bounded away from one is proved in the two-grid case provided that sufficiently many
smoothing steps are performed. By standard arguments (cf. [2],[12],[14],[18]) the result is
then extended to the multilevel algorithm. To show the approximation property, we need
to assume H2 -regularity for (1.1), which is true if Q is a convex polygon (cf. [17]).

Clearly, the eigenvalue problem (2.6) has a complete set of eigenfunctions since Lk(', )
k }, for j = 1, 2,	 , Nk , be the eigenvalues and corre-is symmetric. Now, let {A j }, {^k, v

sponding standard eigenfunctions. Then, for any [v k, qk] E X k X Mk, cj, j = 1, 2, 	 , Nk,

exist such that [vk, qk] _ Ejkl cj [cp k , vk] . Thus, we define the mesh-dependent norm as

follows:
Nk	 z

(3.1)	 jjj[vk,gk]Ills, k= 	 c2jAj19
j=1

245



It is easy to verify the following inequalities: for V [u k, pk], [vk, qk] E X k X Mk,

	

N	 N	 N

(3.2)	 III[vk,gk]IIIO,k = II [ v k, gk]IIO,k,N	 N

(3.3)	 III[vk,gk]IIIs,k < Chk 3II'I[vk,gk]IIIt,k,	 t < s,
N	 N

(3.4)	 ILk([Uk,Pk],[vk,gk]) <— III [vk,Pk]III2,klll[vk,gkllllO,k.

Let (Ik_ 1 )* : Xk x Mk 	Xk-1 x Mk -1(k > 1) be defined by

(3.5) Lk-l((Ik-1)*[vk, qkl, [vk-1, qk-1]) = C kQ V k, qk], Ik-1 [vk-1, qk-1]),

V [ v k-1, qk -11 E Xk-1 X Mk-1, [v k, qk] E Xk X Mk.

Then we have

(3.6)	 III(Ik- 1) *[vk,gk]III2,k -1 < C III[ v k, gk]III2,k,	 b [ v k, gk] E Xk X Mk.
N	 N	 N	 N

LEMMA 3.1. Under the assumptions (H.1)-(H.7), the operator Ik-1 defined by (2.8)
and (2.9) satisfies the properties (1.11), (1.12) , i.e., Ik-1 is a "good" prolongation oper-
ator.

It is not difficult to prove Lemma 3.1 by using (H.l)-(H.7) and the triangle inequality.
Moreover, by using (1.5)-(1.12), (3.1)-(3.6), and a duality argument similar to that of
the proof of Lemma 3.4 (cf. [2],[5],[11],[14],[21]) 1 we can prove the following two lemmas,
which, along with Lemma 3.1, are the keys to prove Lemma 3.4 (approximate property).

LEMMA 3.2. Let d E L 2 (Q) and [aj, rj ] E Xj x Mj (j = k - 1, k) satisfy

(3.7)
	

Lj([aj, rj], [v, q]) = (d, q)j, d [v, q] E X; X Mj.

Then we have

(3.8)
	

IlUilli + II rAL Z (Q) < C II dIIL 2 (Q),	 (3 = k — 1, k),

(3.9)
	

I [Uk,rk] — [O k- 1, 7k-1]II0,k —< ChkII d II L2(Q).

LEMMA 3.3. Let F E L2 (Q) and [uj , rj ] E Xj x Mj (j = k - 1, k) satisfy
N	 N	 N

(3.16)	 L1([u1,rj], [ v , q]) = (F, v)i, d [ v , q] E Xj X Mj.
N	 N	 N N	 N	 N

Then we have

(3.11)	 II [9k-1,rk -1] — (Ik-1)*[17 k, rk]IIO,k- 1 —< ChkIIF`IIL2(n)•

We now establish the approximation property.
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LEMMA 3.4. (approximation property) The following inequality holds:

	

(3.12)	 III [ v , q] — Ik-1 (Ik-1) * [ v , q] I I I o,k < Chk I I I [ v , q] I I I2,k,	 d [v, q] E X k X Mk.
N	 N	 N	 N	 N

Proof. Let [^, 0] _ (Ik-1 )* [v, q] E X k-1 x Mk-1i for any [v, q] E X k x Mk . Then
N	 N	 N	 N	 N

	

(3.13)	 III [v, q] - Ik-1(Ik-1) * [ V 41 1110   ,k = II v — IIk-1 ( II L Z (S2) + h k II q — ® II L2 (n)-

By using a duality argument similar to that of [5] and [ll], we obtain

	

(3.14)	 II v — Hk-1 IIL 2 (Q) <— Chklll [v, q]II 12,k-N	 N

We now estimate IIq - 0II L 2 ( Q ) . Let [01 j, 7-j] E X j x Mj (j = k - 1, k) satisfy

	

(3.15)	 Cj([o j , Tj ] , [ v ', q ']) = (q - 0, q%, d [ v ', q'] E X j X Mj.
N	 N	 N	 N

Then we have

	

(3.16)	 Ijq - 0 IIL2 ( Q ) = (q - 0 , q)k - (q - 0, 0)k -1

_ Lk ( [O' k , Tk], [ v , q]) — Lk-1([O'k-1, 7k-11, [C, 0])N	 N	 N	 N

_ Lk ( [Uk , Tk ] — Ik-1 [0- k-1, 7k-11, [ v , q])•

Combining (1.11) and (3.4)—(3.11) and using the triangle inequality, we have

	

(3.17)	 IIq - 0 IIL 2 (Q) <_ Ch klll v, q]III2,k.

Thus, (3.12) follows from (3.13), (3.14) and (3.17).
Let [e Z , E a ] _ [w - w z , a - a'], j = 0 1 1, 2 1 ..., m + 1, be error functions of the ith

N	 N
iteration the multigrid algorithm defined in Section 2 with m smoothing steps at level k.
The following smoothing property was proven by Verfurth in [21].

LEMMA 3.5. (smoothing property) For any initial guess, the following inequality
holds:

	

(3.18)	 III[eM,E'^]III2,k <— Chk2m2III[e0,60]IIIo,k.

From the smoothing and approximation properties and by the standard perturbation
argument for showing convergence of a W-cycle multigrid algorithm.(cf. [2],[12],[14]7[18],[21]),
we get the following convergence theorem for the multigrid algorithm of Section 2.

CONVERGENCE THEOREM. Let Ik-1 be a "good" Prolongation operator and let y > 1
in the multigrid algorithm. Then a constant 0 < 7 < 1 and a Positive integer m exist, all
independent of the level number k, such that if

1110	 T *] — [0, T] I I Io,k < 7111 [0 * , T *] I l lo,k,
N	 N	 N
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then

(3.19)	 111[w,P] - [u
'"' 

P" 1 ]1110,k !^'Ylll[w,P] - [wo ,P ]111o,k.N	 N	 N	 N

4e Applications, In this section, we will apply the framework and technique devel-
oped and analyzed in the previous sections to seven typical nonnested mixed finite elements
for (1.1), which all satisfy

(4.1)	 Mk-1 C 111k, X k-1 ^'- Xk, k > 1.

To do this, we need to construct a sequence of nested auxiliary finite , element spaces W_ k

satisfying W k- 1 C Wk C (Co(S2)) 2 , to define the operators a k and A, and to give the

explicit formulations of the intergrid prolongation operators Hk_ 1 and Ik_1 = [Hk-1, ik-1]
for each specific element. Finally, we need to verify that a k and A satisfy the assumptions
(H.1)-(H.7). It then follows from Lemma 3.1 that Ik-1 is a "good" prolongation operator.
As has been explained before, we know that A and the restrictions of a k on (C0(S2))2
should be some interpolation operators. Therefore, it is quite clear that (H.1), (H.2), and
(H.4) hold. Thus, we only need to verify (H.3), (H.5), (H.6), and (H.7). The basic idea
for proving these four estimates is to use the fact that a linear operator from a finite
dimensional space to another finite dimensional space is bounded, and to combine the
standard scaling argument technique(cf. [4],[7],[9],[23]). Here we only give the proof for
the Crouzeix-Raviart nonconforming element. The proofs for other elements can be carried

out similarly. We hereafter denote by II# the local averaging of an interpolation operator
IIk ; that means, for any nodal parameter p, Ilkv( P) = IIk v(p) = v(p) if v is continuous

at p, and II#v(p) takes the local average of v at p if v has a jump at p. Finally, we remark
that our results show that the bubble function part of the coarse level correction can be
ignored in the prolongation step for all elements enriched by bubble functions and that
some prolongation operators in existing multigrid algorithms also can be derived by using
our technique.

Example 1: The Mini element and the Bernardi-Raugel element
These two elements are based on triangles (cf. [1],[6]). Here Tk is a triangulation of

Q for each k > 0. The Mini element is defined as follows:

(4.2)	 Xk = {v E (C0 (S2)) 2 , v I K E [P1 (K) ®spanJA i A 2 A 3 } ] 2 , V K E Tk},

(4.3)	 Mk = {q E C(S2) n L 2 (Q), q1 K E P1 (K), b K E Tk}.

The Bernardi-Raugel element is defined as

(4.4)	 Xk = {v E (Co (S2)) 2 , v I  E [Pi (K)]2 (3) span{P 1 , P2, P3}, V K E Tk},

(4.5)	 Mk = {q E L2 (Q), q 1K E Po(K), V K E Tk},
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where Aj (j = 1, 2, 3) are the barycentric coordinates and p, = A2 A3 n1, p2 = Al A3 n2, p 3 =

A, A2 n_3, and nj (j = 1, 2, 3) are the unit normal vectors of the edges opposite to the vertices
N

aj (j = 1, 2, 3). It is easy to see that (4.1) holds here.
For both elements, we choose the Wk, ak , and A as follows:

N

(4.6)	 Wk = {v E (Co(S2))2 , v IK E [Pl (K)] 2 ,V K E Tk},
N	 N	 N

(4.7)
	

ak = II k i	 Pk = III,

where IIk stands for the linear interpolation operator associated with Tk . Moreover, by
using direct computations, we have

(4.8)	 Ik-1 = LHk-1, i k-1J = [Pk ° ak-1, Z k-i] = 1nk-1 i Zk-1]

Now, as it has been explained, we can prove that Ik-1 defined by (4.8) is a "good"
prolongation operator. This shows that the CONVERGENCE THEOREM holds with Ik_1
defined by (4.8) for the Mini element and the Bernardi-Raugel element.

Remark 4.1. For the Mini element, we choose Wk , ak , and Ok as follows:

(4.9)	 Wk = {v E (Co(^
j
)) 2 , v + K E [P3 (K)] 2 ,b K E Tk}.

N	 N	 N

We define ak = IIk, Pk = Hk, where l{k and Ilk stand for the cubic interpolation
operator and the Mini element interpolation operator associated with Tk . Then we can
get another "good" prolongation operator defined by

Ik- i = LHk-, ,kZ k-11 = Lak ° ak-I, Z k-1J = Lnk I Zk-1]

Example 2: The CTouzeiX-Raviart P2 —PI element and the Taylor-Hood P2+ —P, element
They both are triangle elements, which have the same finite element approximate

spaces for the velocity field:

(4.10)	 X  = {v E (Co (5Z)) 2 , V  K E [P2 (K) ® span{ A, A2 A3} ] 2 , V K E Tk},

where Al (j = 1, 2, 3) are defined in Example 1. For the Crouzeix-Raviart P2 — Pl element,
the finite element space of the pressure field is

(4.11)	 Mk = {q E Lo(S2), 4I K E Pl (K), V K E Tk},

and, for the Taylor-Hood P2 — P1 element,

(4.12)	 Mk = {q E L0(SZ) n C(S2), q 1 K E P1 (K), V K E Tk}.
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Also, it is easy to show that (4.1) holds for these two elements. Here we choose W_ k as

in (4.9), i.e., the cubic conforming finite element space on Tk . We define ak = IIk, and
6k =IIk (or IIk), where IIk and IIk stand for the quadratic interpolation operator and the
Crouzeix-Raviart PZ - Pl (or the Taylor-Hood PZ - P1 ) element interpolation operator
associated with Tk . Then we have

(4.13) 	 Ik-1 = [Hk-1, Z k-1] _ [Ok o ak_1, 2 k-1] _ [IIk-1	 11(4.13)

It may be verified that Ik_ l defined by (4.13) is a "good" prolongation operator. Therefore,
the CONVERGENCE THEOREM holds with Ik_ l defined by (4.13) for the CrouzeiX-
Raviart PZ - Pl element and the Taylor-Hood PZ - P1 element.

Remark 4.2. For these two elements and the space W_ k , we can choose ak = II' and

^k =IIk, or ak =IIk and /^k =IIk . Then we have Ik -1 = LHk-1 , Z k- 1] _ [IIk , Zk -1] or

Ik-1 = [kHI ak_1], which are two "good" prolongation operators.

Example 3: The composite P1 - P1 element

This is a very simple composite element for (1.1). For each k > 0, Tk is a triangle
partition; Xk and Mk are defined as follows:

(4.14) Xk = {v E (Co (?j))2, vIK;
N	 N	 N E [Pl(Ki)] 2 , K = U3-1Yj, V K E Tk

(4.15) Mk = {q E L2 (Q) n C(SZ), q1 K E P1 (K), `d K E Tk},

where the Ki (i = 1, 2, 3) are obtained by connecting the three vertices of K with the
barycenter. Clearly, this element is stable and satisfies (1.8)-(1.10) (cf. [19]), and (4.1)
holds.

Here, we choose Wk defined by (4.7), i.e., the linear finite element space on Tk , and

define a k = IIk and	 IIk, where Il l  is defined in Example 1. Therefore, we have

(4.16)	 Ik-1 = [Hk-1 , Z k -1] _ [Ok o ak-1, Z k -i] = 
[II 

k, Zk -1],

which is a "good" prolongation operator. Thus we have that the CONVERGENCE THE-
OREM holds with Ik-1 defined by (4.16) for the composite P1 - Pl element.

Example 4: The Crouzeix-Raviart nonconforming element
This is the most well-known nonconforming finite element (cf. [8] ). For each k > 0, Tk

is a triangle partition; Xk, Mk are defined by

(4.17) X k ={v, vIK E [P1 (K)] 2 ,VK E Tk , v is continuous at P E Xk , v(P) = 0,P E a.Nk
N	 N N	 N	 N

(4.18) Mk = {q E L2 (Q), q 1K E Po(K),d K E Tk}.
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where and in the next example, .IVk stands for the set of midpoints of the edges of Tk in S2,
and a.Vk is the set of midpoints along aQ. Obviously, (4.1) holds for the Crouzeix-Raviart
nonconforming element. Here we define the Wk , ak , and A as follows:

N

	

(4.19)	 Wk = {v E (Co (S2))2 , v1, E [P2 (e)] 2 ,b e E Tk+1 },
N	 N	 N

	

(4.20)	 ak = IIk+1	 Qk = lIk,

where IIk is defined in Example 2 and II' stands for the standard Crouzeix-Raviart non-
conforming element interpolation operator associated with Tk . Then we obtain after some
computations

	

(4.21)	 Ik-1 = [Hk- 17 1-1] = [Pk o ak-1, Z k-11 = [IIk, Zk-11

Moreover, the following two Lemmas will show that Ik+1 defined by (4.21) is a "good"
prolongation operator. Hence, the CONVERGENCE THEOREM holds with Ik_ 1 defined
by (4.21) for the Crouzeix-Raviart nonconforming element.

LEMMA 4.1. ak and A defined by (4.20) satisfy (H.3) and (H.5), respectively.
Proof. We only give a proof for (H.3). Similarly, (H.5) can be carried out. For any

K E Tk , we denote a domain G(K) C Q such that G(K) = U{K' E Tk , K' n K 0 0}, and
let

aG(K) = akIG(K) : XkIG(K) -+ WkIK.

Thus, if aK n a2 = 0, then it is not Bard to show that Po(G(K)) C XkIG(K), aG(K) is a

linear operator, and

aG(K)Po = Po, bPo E Po(G(K)).

Furthermore, I I 
V v I I 

is a norm over X k I G(K) . Therefore, for any K E Tk with OK n aQ = 0,

we have, by using the standard scaling argument,

	

(4.22)	 II N - aG(K)vII Lz(K) < ChkllVVIIL2(G(K)) , V v E XkIG(K).

For any K E Tk with aK n a2 :^ 0, 
I I o v II 

is still a norm over XkIG(K) since v vanishes
N

at all midpoints of the sides along 0s2. Therefore, (4.22) still holds. Hence, (H.3) follows
from summing up (4.22) for all K E Tk.

LEMMA 4 .2. ak and Qk defined by (1.20) satisfy (H.6) and (H.7), respectively.
Proof. We only considei (H.7). Similarly, (H.6) can be treated. For any K E Tk, it is

easy to see that

OK = PkIK : ( Wk +Xk)IK --+ XkI K

	

N N	 N

is a linear operator. So, by using the standard scaling argument technique, we have that

	

(4.23)	 IIaK(v+w)II <— C II( v + w)II, dv E X k I K , w E WkIK.
N	 N
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Thus, summing up (4.23) for all K E Tk , we complete the proof for (H.7).
Remark 4.3. If we choose

Wk = { v E (Co(? ))2 , v J *K E [PI (K)]2,d K E Tk},

ak = Ilk  and #k = IIk  where IIk is defined in Example 1, then

Ik-1 = [Hk-1 Z k-i] _ [Ok O ak-1, Zk-1]

is also a "good" prolongation operator. Again if we choose

Wk = {v E (Co (n))', v1, E [Pi (e)]2,d e E Tk+1},N	 N	 N

ak = II k+1 , and Ok = IIk, then we have a "good" prolongation operator again.

Example 5: A rectangular nonconforming element
This element was proposed in [15]. It can be regarded as an extension of the Crouzeix-

Raviart nonconforming element to the case of a rectangle. This element has five element
nodal parameters, which are the function values at the four midpoints of the sides and the
center of the rectangle. For each k > 0, Tk is a rectangle partition, X k and Mk are defined_	

N
as follows:

(4.24) X k = { v, v I K E PK , bK E Tk, v is continuous at P E Xk, v (p) = 0, V P E OA },N	 N N	 N	 N

(4.25) Mk = { q E Lo(S2), q 1k E Qo(K), `d K E Tk},

where
PK = { P(x) = P(FK 1 (x)), P E P}.

Here FK is an affine mapping from the rectangle K to the reference rectangle K, and
P = span{l, X1, x2 , V(x 1 ), V(x 2 ) on K}, cp(t) = a (5t4 — 3t2 ). Then, (4.1) holds for this
rectangular nonconforming element.

For this rectangular nonconforming element, we take Wk as follows:
N

	(4.19)	 Wk = { v E (Co (St)) 2 , v1e E [Q2( e ) ] 2 , V e E Tk+1},

a k = IIk+1 is defined as in Example 4, and Qk = IIk, which is the standard rectangular
nonconforming element interpolation operator associated with Tk . We then obtain

	

(4.31)	 Ik -1 = [Hk -1, Z k -1] _ [Ok o a k-1, Z k -11 _ [IIk, Zk -1]•

We can show that this Ik-1 is a "good" prolongation operator. Therefore, the CONVER-
GENCE THEOREM holds with Ik-1 defined by (4.31) for this rectangular nonconforming
element.
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SUMMARY

We provide a unified theory for multilevel and multigrid methods when the usual
assumptions are not present. For example, we do not assume that the solution spaces
or the grids are nested. Further, we do not assume that there is an algebraic rela-
tionship between the linear algebra problems on different levels. What we provide is
a computationally useful theory for adaptively changing levels. Theory is provided
for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse
to fine grid with no correction iterations) schemes. We include examples showing the
applicability of this theory: finite element examples using quadrature in the matrix as-
sembly and finite volume examples with non-nested grids. Our, theory applies directly
to . other discretizations as well.

INTRODUCTION

In this paper, we do not make the usual multigrid assumptions. In particular, the
grids are not necessarily nested. The norms correspond to inner products on a grid,
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but the inner products are not necessarily identical from level to level. There may
or may not be algebraic relationship between the linear algebra problems on different
levels.

We provide what is really three level analysis rather than the more traditional
two level theory. Among other things, this provides a rigorous basis for adaptively
changing levels.

Assume that there are . spaces M k , 1 < k < j, approximating some solution space
M. Also assume that dim M k < dim M k+1.

A set of approximate problems

Akuk + fk = 0, Uk, fk E M k, Ak E L(Mk),	 (1)

will be solved approximately instead of the desired linear problem

Au+f =0, u,f EM, AEL(M).

As usual in multigrid procedures, two sets of mappings between neighboring spaces
are assumed to exist: The prolongation (or interpolation) mappings are

Pk-1 : Mk-1 —^ .M k	 prolongation (or interpolation)

lZk : Mk -+ M k-1	 restriction (or projection)

In some cases, each Ak is related to Ak+1 by

Ak = )Zk+1Ak}1Pk.

However, the theorems in this paper do not assume this relation.

For partial differential equations that are discretized in a standard fashion, there
can be natural definitions for 7Zk+1 and Pk . Some of these are described in detail and
shown graphically in [l] and [5].

Now, define a k-level standard correction multilevel algorithm:

ALGORITHM MG( k, lµt}j=1i xk, fl, )

(1) If k = 1 or µk = 0, then solve Akxk + fk = 0 to some accuracy.
(2) If k > 1 and µk > 0, then repeat (2a)-(2c) for i = 1 7 • • • , µk:

(2a) Update xk using the pre-solver.
(2b) Solve a residual correction problem on level k 1:

xk ^— xk + Pk-1 MG( k — 1, {µQ}z= 1 7 0 1• Rk( Akxk + fk ))

(2c) Update xk using the post-solver.
(3) Return xk.
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It is assumed that 0 _< µ l , µj < 1 in this definition. In practice, µj > 1 is common,
but this can be interpreted as the repetition µj times of the algorithm for the case of

µj = 1.

On all but level 1 (the coarsest grid level), two solvers are associated with a level:
a pre-solver and a post-solver. These surround the coarser level correction (2b). In
most real applications, only one solver is associated with a level (one of the pre- or
post-solvers is the identity operation). The solvers can be smoothers, roughers, or
direct solvers.

In order to analyze Algorithm MG from an iterative method viewpoint, we trans-
form it into a nonstandard form similar to that introduced in [1]. First, add an
additional level j + 1, which is just a repetition of level j:

Mj+J = Mj, Pj = Rj+1 = I, Aj+1 = Aj, c1 ,.9 = C' 2 ,J = 
1.

The initial residual zj+1 is then given by

Aj+l xj+l + f = zj+,.

All analysis can now be done using residual correction problems.

Define the following:

zk+1 The residual on level k + 1 at some step.

x (k-1) The initial guess for level k; this is normally 0, except
on level J+ 1.

Now, define a k-level nonstandard correction multilevel algorithm:

ALGORITHM NSMG(k, {µQ }Q=l , zk+l, xk-1))

(1) Initial residual: Rk+ l zk+l E Mk.

(2) Initial pre-solve: Update xk- 1 ^ to get xk°
)
 such that

Akxk^^ + Rk+l zk+l = zk I where Il zk^^ Il	 Pkl)Il zk+lll

(3) Let xkll = xk°l , zkli = zk°l , and ryill _0 .
(4) If µ. k > 0, then repeat i = 1, • • • , µk:

(4a) If i > 1, then
(4al) Residual: Ak xki-1^ + Rk+l zk+ l = gk^)

(4a2) Pre-solve: Update x kx-1) to get xk2 ^ such that

Axk2) + Rk+l zk+l = zkzl , where 11 zkx) J) C p(')^^eka)^^
(4b) If k > 1, then

(4bl) Correction: yk
2) = Pk-1xkZ) 1 , where

4- 1 = NSMG(k — 1, {µ^}4 =1 , zk21 , 0) and

Ak- 1 x k2) 1 + Rk zk2) = zk2)1.
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(4c) Calculate u(k2):

II
z(') 	A	 (_)	 (')	 ( i )	 (i)^ k + kPk-lx k—1 I i C ^k II zk + Pk- lAk-lxk -1II

(4d) Residual: Ak(xkx) +'yk2) ) -^- ^k Fl zk } 1 = Bk2).

(4e) Post-solve: Update xka-) 
+ -'k2 ) to get xk2) such that

Akxk2) +'Zk+l zk+l = zka) , where II zkz) II < Eka) II ekZ) II •
(5) Return xkAk)

This is almost the same algorithm as was analyzed in [1]. The difference is in
step (4c). Here we calculate the norm of the difference between the effect of two
similar operators on the correction with respect to the residual before the correction
was computed.

Consider the example of adaptively changing levels based on reducing the residual
norm adequately. We can calculate c (

k2) while computing a correction in step (4b).
Based on the size of a (i) , we can determine if the current candidate for A0 1 is sufficient
in order to maintain convergence on level k (or a fast enough convergence rate). Should

L7k') be too large, more corrections on level k-2 or a better approximation on level k-1
might be appropriate.

In order to consider a priori analysis, the actual forms for joWand c (i) should
be substituted. Examples of these forms can be found for various elliptic partial
differential equations and iterative solvers in [2] and [3].

A second multigrid variant is a nested iteration scheme, which begins computation
on level 1 and traverses the levels to some level j, using each level k, k < j, to generate
an initial guess for level k + 1 and possibly for solving residual correction problems.
Define a k-level standard nested iteration multigrid scheme by

ALGORITHM NI(j, {fc k lk=l, x l, t.fkl k=1)
(1) For k=l,	 ,j, do

(la) If k > 1, then xk ^- Pk-lxk-1
(lb) xk —MG(k, {µ2}Q 1, xk, A)

(2)Return xj

Note that pt = 1, all f, corresponds to full multigrid (or nested iteration V cycle).
Choosing pt = 0, all i, corresponds to one way multigrid, i.e., no correction cycles
whatsoever (see [3] and [4]).

Define a nonstandard nested iteration multilevel algorithm by
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ALGORITHM NSNI(j, {µe}e=1 , A-1))
(1) repeat k = 1,•••,j:

(la) Initial guess: If k > 1, then

(lal) xk 
1) = Pk-1xkl- i 

1)

(lb) Residual: zk = Akxk-1) + fk.
( 1c) Solve:	 kx(µ'`) =NSMG 	}'	 zk , x^_ 1) ).k	 ( ^µQ P=1	 k

(2) Return x^A').

THEORY

In this section, we state some basic theorems, based on a simple theory that is
computationally useful, including for adaptively changing levels. See [5] for the proofs.

Associated with each level is a norm, lI ' Ilk . Assume that

Ci,kII u IIk < Il Pk u llk+l < C2,kll U ll kl `du E Mk,

where the forms of Ci,k and C2 , k are known; these constants can depend on the coef-
ficients in the differential problem and on the grid. A large value of C 2 , k will inhibit
the rate of convergence.

The basic theorem for Algorithm NSMG is the following:

Theorem 1. Assume the following for all levels 1 < k < j:

1. zj+i is the residual on level J+ 1 > 2.

2. z (kz) is the residual on level k at step i.

3• II Ak ) + AkPk-l x zk) l II < ^k2) II zkZ) + Pk-Pk-lx k2) l II.

4• II( 1 — Pk- lRk) zk2) II < ak2)ilzk2)il•

Let

Ei1) = E11) pi1) and E(	 —	
(Ek^)Pkx)akx) [akZ) + C2 , k- lEk^ 1 1)])

z=i \
	 L

Then,

Ilzk(uk)Ilk < 
EkAk)

Il zk+ i llk+ l

The proof of Theorem 1 is a double induction argument and can be found in [5].

A more precise analysis, based on an affine space decomposition of each ,/1/(k,

would follow the analysis in [1].
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The basic theorem for Algorithm NSNI is the following:

Theorem 2. Make the same assumptions as in Theorem 1. Further assume that
(1) is approximated by some G such that

AkG + fk = ek 	 (2)

starting from some initial guess xk = Pk—lG-1 • Given some {(k }k_1) we want

11 0111 <_ (111 A1 x1 + fi ll,

I1 ek1l :5 bkll ek-111,	 1 < k < 3.

Then
E("k)<(k for l<k<j	 (3)

for an appropriate choice of {{pk2), ek^)}2 =1 1 k=1'

The proof of Theorem 2 is obvious (see [3] for example). Note that by calculating
Skx) and o (') as a computation progresses, the choice of pkz) and ek' ) can be chosen
adaptively to ensure that (3) is satisfied.

The one way multigrid method is a common computational method in engineering
applications. It has been used for decades as a method for producing an initial guess
on the grid in which a solution to a problem is actually wanted. This process is
described in [4] for a procedure that he first saw in the 1920's.

Consider a typical partial differential equation problem to be solved numerically.
It is discretized on a set of grids Q k , 1 < k < j, with some notion of grid spacing (or
a mesh diameter) hk.

The basic theorem for one way multigrid is the following:

Theorem 3. Make the same assumptions as in Theorem 2. Further assume µk = 0,
1 < k < j, and that

ek =Chk, C,q,h >0EIR.
Then

(k = CC2,k(hklhk -1)4

is adequate to ensure that (2) is satisfied. Hence, (3) is satisfied with Pk(l) _ (k.

Once again the proof is obvious. Note Theorem 3 gives a simple bound for one
way multigrid that is independent of the solver used on each level.

FINITE VOLUME EXAMPLE

Consider the two-point boundary value problem

J —(a(x)ux)., + c(x )u = f (x ),	 x E S2 = [0 , 1 ]^	 (4)
l	 u(0) = u(1) = 0.
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A finite volume discretization of (4) yields

ai-1/2 ZZ k 1 + (Axici — a i-1/2 — a i.+1/2) t1k + ai+ 1 / 211' +1 = Oxi.fi, Z = 1, ... , N

on level k where a i+1/2 = 2Ai+1/2/(-Ax i+ A,xi+1), and Oxi is the length of cell (interval)
i. While the grid points xi+112 in a finite volume multigrid procedure are nested, the
locations of the unknowns a are not nested.

Clearly, one would not use a multigrid approach to solve this problem. However,
multigrid is a viable alternative for the equivalent multi-dimensional problem. The
following remarks generalize to the multi-dimensional case through the use of tensor
product formulations for the prolongation and restriction operators. We discuss the
one-dimensional case for clarity.

Let us define a restriction matrix

1 0

Rk
0
0

0
0=^
0

0 1

This is just piecewise linear interpolation. We can also define a prolongation matrix
Pk-1 = 2Rk T . This prolongation matrix corresponds to piecewise constant interpola-
tion; clearly, not a very accurate choice, but a demonstrative one.

If we formulate the coarse grid matrix from Ak-1 = Rk AkPk-1 and a restricted
right-hand-side from Rk , we obtain

a2i-3/2 Ui-1 + (Ox2iC2i + Ox 2i.-l C2i-1 — a2i-3/2 — a2i+1/2)uk-1+

a2i+1/2u +l = Ox2i-lhi-i + Ox2ihi, i = 1, ... , N12.

This is a reasonable coarse grid approximation where the only difference from the
finite volume discretization on the coarse grid would be in the use of the underlying
fine grid to discretize the finite volume integral.

A straightforward calculation of II (I — Pk- lRk) x ) II for arbitrary x shows that bk =
1/v/-2-.

A more practical prolongation matrix would use quadratic interpolation (see [5]).
The use of this prolongation matrix in the definition of the coarse matrices would
expand the bandwidth of each successive coarser matrix. This defeats the purpose
of multigrid where one expects to do less work on the coarser grids. The use of this
prolongation matrix with the piecewise linear interpolation restriction matrix gives
Sk = 531/32.

We can calculate Sk for multidimensional problems when tensor product meshes
are in use. The calculation of bk for the piecewise linear-piecewise constant case is

1 0 0 0 0 ... ... 0
0 1 1 0 0 ... ... 0

0 0 0 1 1 ... 0...

0 0 0 0 0 ... ... 1
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fairly easy. In this case, the Pk_ 1 1Zk calculation in one dimension separates into a
local computation. It effectively collects the cells on the fine grid pairwise to form the
coarse cell by averaging. In multiple dimensions, because of the tensor product nature
of Pk-1 and 7Zk, that still happens. Hence,.the algebra produces a worst case 4 of

( 2d — 1)/2d,

where d is the dimension of the problem. So,

d Sk

1	 1/2

2	 3/4

3	 7/8

This approaches 1 rapidly. However, in any given application, ak can be smaller.

The quadratic interpolation case provides better results in multiple dimensions, as
would be expected.

AN EXAMPLE OF THE FAILURE OF Ak = Rk+,Ak+1Pk

Consider the boundary value problem

2

(aij(x ) u. i).j + bi(x)u .,t + c(x)u = f(x),	 x E Q = [0,1]2,	
(5)i,j=1

U = 0,	 x E 052.

Let the k-level partition Sk of 52 consist of squares of side length 2-(k+1) , where t
is independent of k. Let the k-level finite element space M k consist of C°-bilinear
functions over Sk that vanish on 052. Then, the natural k-level Galerkin equations,

Ak uk = Ok ,

would be generated by seeking a function uk E .M k such that

2	 2

(aijuxt, vk ) + J (biuki , vk ) + ( CUk ' vk ) — ( f, vk), vk E M ks	 (6)
i,j.1	 i= 1

where (•, •) indicates the inner product on L2 (Q). Note that exact integration is not,
in general, feasible. Thus, it is usually necessary to invoke a quadrature rule to
approximate the integrals in (6). A (2 x 2)-Gauss quadrature rule suffices to maintain
unique solvability of the resulting linear equations, along with the proper asymptotic
order of accuracy of the k-level approximation to the solution of (5). Denote by (•, •)G
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the (2 x 2)-Gauss quadrature approximation to (, ). Define the k-level equations (5)
through the approximation

2	 2

(aij2GX i I vXj )G } ^(biZlX^, v k )G + (CZGk, vk)G = (f, vk)G, vk E .Mk.
i,j=1	 i=1

Consider the feasibility of the relation Ak = Rk+, Ak+1Pk by making a simple
parameter count. If the prolongation and restriction operators are defined in terms of
the parameters related to the vertex values of a single element in the coarser partition
and the vertex values of the corresponding four squares in the finer partition, it suffices
to consider a unit square S 1 for the coarser element (associated with index 1) and its
partition ( associated with index 2) into four squares, S^ , j = 1, ... , 4, for the finer
elements. Note that the sixteen quadrature points on S? are distinct from the four
quadrature points on S 1 . Thus, different values of the coefficients in the differential
equation enter into the formation of the equations (5).

First, let M, be the span of the four bilinear basis functions associated with the
vertices of S1 and .M 2 the span of the nine bilinear basis functions associated with
the vertices of S^ , j = 1, ... , 4. Let us slightly generalize the question as to whether
there exist Rk+j and Pk such that Ak = Rk+1Ak+1Pk by asking if there exist maps

P: M 1 —+ M2 and Q :.M 1 —+ M 2

such that
(A1u, v) = (A 2 Pu, Qv),	 u, v E .M 1 .	 (7)

Consider a simple parameter count. Each of the matrices P and Q has 36 entries. For
each nontrivial coefficient aij , bi , or c, the quadrature rule associates sixteen values of
the coefficient in the A 2-inner product and only four in the A l -inner product. Thus,
twelve independent constraints arise for each such coefficient. Since there are seven
possibly nontrivial, distinct coefficients, it is clear that it cannot always be possible
to satisfy ( 7). If there were fewer coefficients to handle, the maps could exist but have
rather strange relationships to standard interpolation procedures.

Consider a different question. Let us take reasonable definitions of P and Q and ask
to what extent (7) fails for locally smooth coefficients. Let P = Q be the embedding
operator between M1 and .M 2 , and consider the special case for which

aij (x) = Sija(x),	 bi(x) = c(x) = 0.

It follows easily from the Bramble-Hilbert lemma that

( A1'u , v ) — ( A2 PU , Qv ) = O(IJUJIJIv11),	 u, v E .M1,

where the norm is the norm in H 1 . If the analogous restriction and prolongation
operators are used at each level,

a(k2) = I + O(h2)
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if the Hl-norm is employed at each level. Thus, using the naturally associated quadra-
ture rule at each level is a reasonable choice for these choices for ?Zk+l and Pk.

CONCLUSIONS

The theory here is more precise than in [l]. Further, it is applicable to problems
that are not nested and/or ones in which the linear systems use quadrature in their
assembly. Also, the theory here allows multigrid software (e.g., [6]) adaptively to
change levels with a higher degree of precision than with the earlier theory.

The theory has been tested on several problems, ranging from simple (Poisson's
equation on a rectangle) to quite difficult (a turbulent flame simulation). In each case,
the theory has been very close to sharp in predicting what happens to the residual
norm on the next finer level. Hence, we can conclude that this theory is useful in real
computing situations in which level changes occur adaptively and standard theoretical
models do not apply.

REFERENCES

[1] Douglas, C. C. and Douglas, J., A unified convergence theory for abstract multigrid
or multilevel algorithms, serial and parallel, SIAM J. Numer. Anal., 30:136-158,
1993.

[2] Bank, R. E. and Douglas, C. C., Sharp estimates for multigrid rates of convergence
with general smoothing and acceleration, SIAM J. Numer. Anal., 22:617-633,
1985.

[3] Douglas, C. C., Multi—grid algorithms with applications to elliptic boundary—value
problems, SIAM J. Numer. Anal., 21:236-254, 1984.

[4] Southwell, R. V., Relaxation Methods in Engineering Science, Oxford University
Press, Oxford, 1940.

[5] Douglas, C. C., Douglas, J., and Fyfe, D. E., A multigrid unified theory for
non-nested grids and/or quadrature, E. W. J. Numer. Math., 2:285-294, 1994.

[6] Douglas, C. C., Implementing abstract multigrid or multilevel methods, in Melson,
N. D., Manteuffel, T. A., and McCormick, S. F., editors, Sixth Copper Mountain
Conference on Multigrid Methods, volume CP 3224, pp. 127-141, Hampton, VA,
1993, NASA.

264
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SUMMARY

The objective of this paper is to investigate the effects of the numerical dissipa-
tion and the resolution of the solution on coarser grids for multigrid with the Euler
equation approximations. The convergence is accomplished by multi-stage explicit
time-stepping to steady state accelerated by FAS multigrid.

A theoretical investigation is carried out for linear hyperbolic equations in one
and two dimensions. The spectra reveals that for stability and hence robustness of
spatial discretizations with a small amount of numerical dissipation the grid transfer
operators have to be accurate enough and the smoother of low temporal accuracy.

Numerical results give grid independent convergence in one dimension. For two-
dimensional problems with a small amount of numerical dissipation, however, only
a few grid levels contribute to an increased speed of convergence. This is explained
by the small numerical dissipation leading to dispersion. Increasing the mesh density
and hence making the problem over resolved increases the number of mesh levels
contributing to an increased speed of convergence. If the steady state equations are
elliptic, all grid levels contribute to the convergence regardless of the mesh density.

* Research sponsored by ARPA/ONR URI grant N00014-92-J-1890 and NSF DMS94-04942
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INTRODUCTION

Multigrid methods have for a number of years been used to accelerate the conver-
gence of the numerical solution to flow problems. This technique has been success-
fully applied to both subsonic and transonic speeds [6], [9]; however, in the hypersonic
regime multigrid is sometimes less robust [12].

The objective in this paper is to investigate the convergence properties of primarily
the Euler equations. The effects of the numerical dissipation and the resolution of
the solution on coarser grids are two areas of concern, see e.g. [4]. It is also intended
to investigate if multigrid in practice can give grid independent convergence [7] or,
if not, how many grid levels contribute to an increased speed of convergence. The
influence on the robustness and stability of the grid transfer operators (the restriction
and prolongation) and the smoother are also addressed and investigated.

To analyze the solution of a hyperbolic system of equations linear scalar equa-
tions are studied. Central and upwind spatial discretizations are considered and the
equations are integrated in time by an explicit multistage Runge-Kutta scheme which
serves as a smoother. The damping properties are investigated for a number of differ-
ent discretizations in space and time and for different restrictions and prolongations.

Numerical experiments are performed for two linear sets of equations in two di-
mensions that are hyperbolic in time. The steady state equations are hyperbolic and
elliptic. Numerical results are also presented for a transonic and a hypersonic case
solving the Euler equations. This paper is part of a doctoral thesis [3].

THE MULTIGRID METHOD

The FAS Multigrid Method

In the multigrid method several coarser grids are introduced by eliminating every
other point on a finer grid. Assume that L grids are used. Each level in the multigrid
method with a given grid is called a grid level. Denote the current grid level by l
when (1 _< l < L), where l = L is the finest grid and l = 1 is the coarsest grid. Let
the finest grid L consist of N cells and hence the coarsest grid of N12L-1 cells. The
FAS (Full Approximating Storage) multigrid algorithm by Brandt [1] for solving the
problem

Llv1 = .ft	 (1)
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can then be formulated as in [5]:

procedureFAS(l, v, f );
if	 (1 = 1) then

V := S(v, f, v3)	 Smoothing on coarsest
else

V := S(v, f, 1/1 )	 Pre — smoothing
w := ri-1 * v	 Restriction	

(2)d:= Li-i(w ) — rl-1 * (Ll(v) — f)	 De f ect
w := w	 Initial guess
for i := 1(1)y do FAS(l — 1, w, d) Recursive call
V := v + p11-1 * ( w — w)	 Coarse grid correction
V := S(v, f, v2)	 Post — smoothing

end;

where S is the Runge-Kutta smoother, r11-1 is the restriction from the finer grid level l
to the coarser level l —1, and p1-1 is the prolongation from level l —1 to 1. A sawtooth
cycle is considered with one pre-smoothing and no post-smoothing in the analysis,
i.e. 7 = 1, vl = 1, v2 = 0, v3 = 1. The algorithm (2) results in an iteration matrix
A defined as

Level l > 1	 Ml = (I —pi-1(I — Mi- 1) Ll ilr`-1Li)Sl	
(3)Level 1	 Ml = Sl

The Grid Transfer Operators

Central operators for the prolongation and restriction are considered with the
unknowns in the cell centers. The prolongation is denoted

at = pl_ 1 b1 -1	 (4)

and the simplest prolongation in one dimension is the piecewise constant injection
illustrated in Figure 1 where

a2j-1 = b;, a2i = b;	 (5)

which is of order mp = 1, i.e. it interpolates a polynomial of degree mp — 1 exactly.
We consider also a more accurate prolongation of degree mp = 2 that interpolates a
linear equation exactly

a2i = 4(3b; + b;+1), a2j-1 = 4 (3b; + b,- 1)	 (6)

For the restriction operators the transpose of the prolongation operators are used

ri-1 
= 2 

(pt-1) T	 (7)
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al	 a2i.l	 a2i	 aN

Fine	 1	 I	 1	 1	 .L	 1 	 1	 1	 11	 1	 I	 I

grid

	

i=0	 i=N

	

X=0.0	
1	 1	 1	 1	

x=1.0

Coarse
 P-0— I	 I	 ,.

	

4=0	 bl	bi	 bN/z i=N/2

Figure 1: Prolongation from fine to coarse grid.

resulting in

	

__	 2(a2j-1 + a2j)	 , m,. = 1	
(g)b,	

$(a2j-2 + 3a2j-1 + 3a2j + a2j+1) , m,. = 2

In [5] it is stated that the following condition must be fulfilled:

	

M, + mp > 2m
	

(9)

where 2m is the order of the differential operator. For convection problems, the
Euler equations, and the model equations considered here, 2m = 1, i.e. the piecewise
constant prolongation (mp = 1) and the restriction (m,. = 1) can in theory be used.
It will turn out, though, that interpolation of higher degree of accuracy is stabilizing.

The Smoother

Explicit Runge-Kutta time stepping is used as a smoother in the multigrid cycle
to accelerate the convergence to steady state. To solve for the steady state equation
L(v) = 0, vn is iterated in time using an m-stage Runge-Kutta scheme defined as

V (o) _ V 

v(1) = v(°) — a10tL(v(0))

V (-) = v (°) — a,,,,,AtL(v(M-1))

	

vn+1 = v (-)	 (10)

where the coefficients ai , i = [1, 2, ... , m], are chosen to make the smoothing efficient.

DAMPING PROPERTIES IN 1D

A Scalar 1D Test Problem

To analyze the behavior of a hyperbolic system of conservation laws a simpler
scalar one-dimensional test equation is considered:
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'9U	 09u

dt
+^T = 0; t>0, 0<x<27

u(x,0) = uo(x)	 (11)

with periodic boundary conditions for the Fourier analysis below.

The semidiscrete form of (11) can be written as

d	 1

dt2'^ + h (.f;+ 2 — f; z) = 0	 (12)

where

1	 1
f3 + i — ^ (U.1 + vj+1) — ^QAvi+. + h'^^^0327 F2

2

represents a cell face flux. A is a central dif ference operator. Q = 1 results in a
first order accurate upwind scheme; 0' ) = 0 for that scheme usually. Second order
accurate upwind schemes can be obtained by using limiters resulting in a non-linear
scheme. For the analysis, Q is considered to be a constant in order to have a linear
scheme. A central difference scheme with artificial dissipation is obtained when Q = 0
and r, (4) is a small positive constant.

Damping of Smooth Waves

To study the damping properties of the multigrid cycle in (2), a Fourier transform
of the iteration matrix Ml is considered denoted Ml . By coupling frequencies pairwise
between a finer and a coarser grid the transformed iteration matrix Ml becomes
a block diagonal matrix with 2 1-1 x 21-1 matrices on the diagonal. The damping
properties are investigated by calculating the eigenvalues to Ml.

The high frequency errors are damped by the smoother, the Runge-Kutta scheme.
The low frequencies (or the smooth waves) are not damped very well, but on the other
hand it has been shown [8] that the smooth waves increase their speed using multigrid
by a factor of 2 1 — 1 for the sawtooth cycle. Under some general conditions [3] it is
possible to derive an expression for the largest eigenvalue to the transformed iteration
matrix Ml for smooth waves :

max I A.j l 
= 1 — ( o-^1) 2 (C' (0, — 2) + 

A, Q1) + 0
(^3 )	 (13)

provided that the frequency ^1 = wh l is small enough, where w is the wave number
and hl is the constant cell length on the finest level 1. u is the CFL number, 02 is the
constant for the square term in the Runge-Kutta polynomial p(z) = 1 + z + F-!= (.^i'zi
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to an m-stage Runge-Kutta scheme. For a consistent Runge-Kutta scheme 02 = a,,,_,
in (10). Q l is the constant Q in (11) on grid level 1. Ci and At are two constants:

A1 =21 -1 ,- Cl= 
41-1

3	
(14)

that grow exponentially with the number of grid levels.

It is clear from (14) that 32 should be chosen 02 > 0.5 for good damping which is
the same as requiring the Runge-Kutta scheme to be first order accurate. It is also
clear that the multigrid increases the damping due to the factors A l and Cl in (13).
As could be expected most damping is obtained from a first order accurate upwind
scheme where Q 1 = 1. It can also be seen that the numerical dissipation on coarser
grids does not contribute to the damping of the smoothest waves. Only the term QI

on the finest grid appears in (13). This is true also for other values of v l , v2, v3 in
(2). Consequently, it is not possible to increase the damping of the lowest frequencies
by using a scheme with more numerical dissipation on coarser grids.

Even though the damping of smooth waves is increased by multigrid the propa-
gation of smooth waves dominates over the damping, which is illustrated in Figure 2.
A smooth wave is transported 90 iterations using one grid and 6 iterations with four
grids using an upwind discretization Q = 1, r (4) = 0. The step length is h = 256 Since
the speed of the smooth wave is increased by a factor of 15 the wave is transported
the same distance in the one-grid and four-grid cases. A three stage Runge-Kutta
method (32 = 0.6) is used and CFL = or = 1.

1.000

0.850

0.700

0.550

V

0.400

0.250

0.100

•0.050
0.000

a)
	

b)

0.150	 0.300	 0.450	 0.600'	 0.750	 0.900 1.0500.000 	 0.150	 0.300	 0.450	 0.600	 0.750	 0.900	 1.050
x	 x

Figure 2: Propagation of a smooth wave to the right with the upwind scheme, Q = 1,
a) 1 grid and 90 iterations, b) 4 grids and 6 iterations.
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Eigenvalues to the Iteration Matrix

To illustrate the damping properties for different spatial discretizations and grid
transfer operators the absolute value of the eigenvalues to the Fourier transformed
iteration matrix of the sawtooth cycle are plotted. For all cases a 5-stage Runge-
Kutta scheme with the coefficients (0.0814,0.191,0.342,0.574, 1.) is used [3] which is
first order accurate and provides optimal high frequency damping for both an upwind
scheme (Q = 1) and a central scheme (K(4) = s) 

for a CFL just above 2. The region
of stability for this scheme is shown in Figure 3. The scheme has the advantage
that different spatial discretizations can be used on different grid levels. In Figure 4

4.0	 -----------; ----------- ----------- r-----------; -----------r-----------; -----------------------

Central

0 Upwind
Im(z

CD QCDoo

°

0.0
0	 0

-7.0	 -5.0	 Re(z)	 -3.0	 -1.0	 1.0

Figure 3: Region of stability and locus of differencing operator for an upwind (Q = 1,
K (4) = 0) and a central (Q = 0, K (4) = 6 ) scheme with five stages, A Jp(z) I = 0.1.

the damping of a central scheme is shown using a piecewise constant prolongation

(M
P = 1) and its transpose for restriction (m,. = 1) with CFL = 2. The absolute

values of the eigenvalues to the matrices Ml , M2 , M3 , and M4 are shown as a function
of the frequency where Ml , the single grid case, is represented with a solid line in all
figures. The increased damping of the lowest frequencies can clearly be seen.

Even though the central scheme in Figure 4 is stable for grid levels 1 — 4 with
CFL = 2, divergence is obtained for lower CFL numbers. Figure 5 shows the same
scheme but with CFL = 1.25. This scheme is obviously unstable using 3 and 4 grids.
By increasing the accuracy of the prolongation and/or the restriction the scheme is
stabilized. The central scheme with r, (4) 

=I- 
is a scheme with a rather small amount

of dissipation. One could also use the dissipative first order upwind scheme on the
coarser grids to stabilize.
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The spectra for the central scheme in Figure 5 are plotted in Figure 6 with different
levels of accuracy for the prolongation and restriction. The eigenvalues outside the
region of stability can clearly be seen for the low order accurate grid transfer operators-,
the scheme is stabilized and the spectra brought closer to the single grid spectra
as more accurate grid transfer operators are used. Figure 7 shows the spectra for
an upwind method where the other conditions are the same as in Figure 6. This
dissipative scheme is stable for all prolongations, restrictions, and single grid stable
CFL numbers.

-1.0	 1.0	 -1.0	 1.0
	 -1.0	 Re(z)	 1.0

Figure 6: Spectra for single-grid, two-grid, three-grid and four-grid multigrid. r, (4) _
s,Q-=0,CFL=1.25. a)mp=1,m,.=1,b)mp=2, m,.=1,c)mp=2, m,.=2.

The following can be established. A certain amount of dissipation has to be
introduced to the system. A large amount of numerical dissipation can be used,
e.g., by choosing a first order accurate upwind scheme, which stabilizes the multigrid
iterations. If a good converged solution is desired, however, the amount of numerical
dissipation on the finest grid has to be rather small to avoid smearing the solution.
The multigrid cycle is then stabilized by increasing the accuracy of the grid transfer
operators, by choosing a Runge-Kutta scheme with a low order of accuracy and good
high frequency damping, and by doing several Runge-Kutta sweeps on coarser grids.

DAMPING PROPERTIES IN 2D

A Scalar 2D Test Problem

The 1D hyperbolic scalar equation in (11) is extended to 2D as:
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Figure 7: Spectra for single-grid, two-grid, three-grid and four-grid multigrid. K(4)
0,Q=I,CFL =1.25. a)MP=1,m,.=1,b)mP=2, m,.= 1,c)mP=2, mr =2.

at+ax +a^u =0, t>0, 0<x,y< 27r 	 (15)
y	 —	 —

where a is some constant. The discretization of (15) follows the 1D counterpart; a
similar Fourier analysis can be made assuming periodic boundary conditions with the
prolongation and restriction extended in a straightforward manner to 2D.

Damping of Smooth Waves

Some important observations can be made from a Taylor expansion of small fre-
quencies of the largest eigenvalue to the iteration matrix. In 2D it is possible for the
Fourier transformed exact operator i(^., + airy ) to vanish or to become very small.
i , i;y are the frequencies in x, y. For a two-grid problem where the problem is solved
exactly on the coarse grid and the exact operator vanishes this implies that the two-
grid algorithm-can only reduce the residual by a factor of a for the first order upwind
scheme (Q = 1), even though the problem is solved exactly on the coarse grid. The
situation is even worse for the central scheme which is only reduced by a factor of $.
This is fundamentally different than in 1D where the residual is reduced 0(6),

This observation has also been made by Decker & Turkel [2]. They point out that
a fourth difference dissipation on the fine grid and a second difference dissipation on
the coarser grid can lead to a situation with practically no damping. This means that
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the convergence rate per multigrid cycle cannot be made arbitrarily small. Since the
damping cannot be made arbitrarily small for a two-grid method with an exact solu-
tion on the coarsest grid, there is consequently no use in making too many smoothing
sweeps in 2D multigrid on coarser grids.

Similar observations have been made by Mulder [10], [11]. Mulder notices that
when the exact operator vanishes the discretization is of the order of the truncation
error. The order of accuracy of the restriction and/or prolongation must then be
increased. The equation (9) is no longer valid since one is actually looking at the
truncation error which can be viewed as a discretization of a higher order differential
equation with a value 2m > 1 for these waves. Mulder shows that the worst-rate
convergence can be estimated to 1 — 2 -P where p is the spatial order of accuracy.
This agrees with what is found above; for a first order scheme (p = 1) this is i.
When the exact operator vanishes and the remaining operator is the fourth difference
operator a third order accurate scheme is obtained which corresponds to 1— 2 -3 = $.

Both Decker & Turkel and Mulder conclude that the above estimates are too
pessimistic since they are worst case estimates. In real applications with non-periodic
boundary conditions, better rates of convergence are usually obtained.

NUMERICAL EXPERIMENTS

The 2D equation (15) is used for numerical experiments:

at + ax u+a a	 0;	
t>0, 0<x,y<1

y	
—	 —

u(x, y, 0)	 = 0	 (16)
u(0, y, t)	 = uo(y) = sin(27rmy)
u(x, 0, t)	 = u(x ) lit)

where a > 0 and m > 0 is an integer that determines the number of wave lengths
along the y-axis. The sine wave along the y-axis will propagate into the domain along
characteristics in a direction that depends on a. The exact steady state solution to
(16) is u = uo(y — ax). The convergence of the 1D equation (11) gives almost grid
independent results as the grid is refined [3] and is therefore omitted here.

The idea with this test case was to see how the convergence is influenced as the
number of grids increases. More specifically, what happens when the sine wave in
(16) is poorly or not at all resolved on coarser grids? How many grids can be used
and how does the dissipation influence the rate of convergence?

Figure 8 shows the converged solutions on the different grids at y = 0 for a central
scheme where a = 0.5, 'm = 4, ^(4) = is, and Q = 0. The converged solution is well
represented on the three finest grids; the deviation from the exact solution then grows
as the size of the grid is reduced.

In Figure 9 the rate of convergence is plotted for the same central scheme for grid
levels 1 — 5. A linear prolongation (mp = 2) is used with a lower order restriction
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Figure 8: Converged solution for the 2D scalar equation at y = 0 for the central
scheme ^(4) = is , Q = 0. Constants a = 0.5, m = 4.

(m,. = 1). This case does not converge if mp = 1 even though the Fourier analysis
in Figure 4 gives stable eigenvalues. The CFL number is CFL = 2 using the five-
stage scheme previously mentioned; sawtooth cycles are used. The convergence rates
are shown as the fine grid size is increased from N = 64 to N = 512 cells in each
direction. The convergence is very slow until the low frequency errors are pushed out
of the computational domain. ZFrom then on the high frequency errors that are left in
the domain are effectively damped by the smoother leading to a fast convergence. For
the finest grid the best convergence rate is achieved using three grid levels. However,
kinks on the curves of convergence for the four-grid and five-grid cases occur after a
while, which make these cases require more iterations than the three-grid case. Notice
also that multigrid gives almost no speedup for the coarser grid.

Further increase in the accuracy of the grid transfer operators has a very small
influence on the convergence rate. However, if the dissipation is increased on the
finest grid as shown in Figure 10, the kinks become smaller and almost vanish for the
first order upwind scheme where all grid levels contribute to an increased speed of
convergence. The solution for this dissipative scheme is poorly. resolved, though, on
all grids [3].

If the residuals are to be brought to machine accuracy, the amount of dissipation
is very important to gain from several grid levels in multigrid. If, on the other hand,
the iterations are to be interrupted when the error reaches the level of truncation
error, then almost all grid levels will contribute to the convergence [3].

For a hyperbolic linear system of equations where the steady state equations are
elliptic the situation is different. Equations (17) are hyperbolic in time but converge
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Figure 9: Rate of convergence with the central scheme, K (4) = is , Q = 0, a = 0.5,
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Figure 10: Rate of convergence, a =.0.5, m = 1, CFL = 2.0, mp = 2, m,. = 2,

N = 512. a) Central, ' (4) = 0.01. b) Central, r, (4) = 0.0625. c) Central, K (') = 0.2.
(CFL = 1.5). d) Upwind, Q = 1.
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to the elliptic Laplace equation. The equations are solved in the same way as the 2D
scalar. As can be seen from Figure 11 there is a speedup from all grid levels.

	

( ul )-E (1 0) a ( ul
)+( 0 1) a (U l 	0, 

t>0, 0 <x,y<1
C^t u2	 0	 1 ox u2	 1 0 ay u2

u l (x , y , 0 ) = u2(x , y , 0) = 0

ul (0, y, t) = sin(27rmy)
u2 (1,y,t) = 0

u l (x,0 ) t) = ul(x,1,t)

u2(x,0,t) = u2(x,1,t)

(17)
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0.	 1000.	 I t er.	 2000. 3000.

Figure 11: Rate of convergence with 2D elliptic equation, m = 4. Five stage Runge-
Kutta, CFL = 2.0 1 N = 256. a) central scheme r O) = -, Q = 0, mp = 2, m,. = 1.
b) upwind scheme rN = 0, Q

7 + 	 Qk= 11	
I 

= a, MP	 1, m,. = 1.
2	 z	 = 

For all cases the resolution of the solution on coarser grids appears to be of small
practical importance. The difference between the solutions on coarser and finer grids
lies in the high frequencies damped by the smoother. If a large amount of numerical
dissipation for the hyperbolic steady state problem is used, the convergence rates
are similar to the ones of the elliptic steady state problem. The high frequencies
are well damped and all grid levels contribute to an increased speed of convergence
even though the solution is poorly resolved on coarser grids. If a smaller amount
of numerical dissipation is used, however, the solution itself is better represented on
coarser grids. There is still a small difference in the solutions on finer and coarser grids.
The difference lies in the intermediate frequencies that are not damped very well by
the smoother. This difference and the fact that the exact operator can vanish cause
the convergence with multigrid to deteriorate for hyperbolic steady state problems.
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Convergence close to being grid independent is only obtained in one dimension and
for the elliptic steady state problem.

Finally some results for the Euler equations are presented. In Figure 12 the rate
of convergence is plotted for a 2D transonic calculation over a NACA 0012 airfoil at
a Mach number of 0.8 and an angle of attack a = 1.25°. The steady state equations
are mixed hyperbolic/elliptic in the dominating subsonic region, and the convergence
resembles, to a large extent, the linear elliptic steady state case, above which all grid
levels contribute to the convergence.

i1
+L°
xe ;	 ,

-4.5
0.	 620.	 1240.	 1860.0.	 1000.	 2000.	 3000. 0.	 2200.	 4400. ItC r. 6600.

Figure 12: Rate of convergence over the NACA 0012 airfoil using central scheme,
K (2) = 0.25, K(4) = s. Five stage Runge-Kutta with CFL = 2.0. mp = 1, m,. = 2. a)
Fine grid 65 x 17. b) Fine grid 129 x 33. c) Fine grid 257 x 65.

Figure 13 shows the rate of convergence for a hypersonic hyperboloid-flare problem
at a Mach number of 8.7 [3]. This problem is axisymmetric and represents the nose of
a space shuttle. The flow is supersonic almost everywhere. As can be seen the finest
grid has to be fine enough to gain from multigrid in accordance with the hyperbolic
steady state problem above.
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Figure 13: Rate of convergence for the hyperboloid flare. Five stage Runge-Kutta
with CFL = 1.5. Central scheme with r, (a) = 1.0, K(4) = 0.0625, mp = 2 1 m,. = 2. a)
finest grid 33 x 17. b) finest grid 65 x 33. a) finest grid 129 x 65.

CONCLUSION

The objective was to investigate the influence of the numerical dissipation and the
resolution of the solution on coarser grids for flow problems with multigrid.

If a low amount of numerical dissipation is used on the fine grid the multigrid
cycle is stabilized by increasing the accuracy of the grid transfer operators, by using
a Runge-Kutta scheme with a low order of accuracy and/or by adding more numer-
ical dissipation on coarser grids. For a higher amount of numerical dissipation, the
multigrid cycle is stable in any case.

Numerical results for model problems give grid independent convergence only in
one dimension and for . the 2D elliptic steady state problem. For the 2D hyperbolic
steady state problem with moderate numerical dissipation the convergence is grid
independent down to the level of truncation error but deteriorates in multigrid when
converged further. Only a few grid levels where the solution is over resolved contribute
to an increased speed of convergence. This is explained by the small numerical dissipa-
tion leading to dispersion and a vanishing exact operator. The convergence behavior
for the Euler equations was similar to that of the model problems.
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MULTIGRID AND KRYLOV SUBSPACE METHODS FOR THE
DISCRETE STOKES EQUATIONS

HOWARD C. ELMAN`

Abstract. Discretization of the Stokes equations produces a symmetric indefinite system of lin-
ear equations. For stable discretizations, a variety of numerical methods have been proposed that
have rates of convergence independent of the mesh size used in the discretization. In this paper, we
compare the performance of four such methods: variants of the Uzawa, preconditioned conjugate gra-
dient, preconditioned conjugate residual, and multigrid methods, for solving several two-dimensional
model problems. The results indicate that where it is applicable, multigrid with smoothing based on
incomplete factorization is more efficient than the other methods, but typically by no more than a
factor of two. The conjugate residual method has the advantage of being both independent of iteration
parameters and widely applicable.

Key words. Stokes, multigrid, Krylov subspace, conjugate gradient, conjugate residual, Uzawa

1. Introduction. Consider the system of partial differential equations

—Au +Vp= f on Q
(1) —div u = 0

U = 0	 on &2'
fop= 0

where n is a simply connected bounded domain in Rd , d = 2 or 3. This system, the
Stokes equations, is a fundamental problem arising in computational fluid dynamics;
see, e.g., [7, 12, 14, 17]; u is the d-dimensional velocity vector defined on f2, and p
represents pressure.

Discretization of (1) by finite difference or finite element techniques leads to a
linear system of equations of the form

(2) (B	 C ) ( p) — (0 )'

where A is a set of uncoupled discrete Laplacian operators and C is a positive semidef-
inite matrix. We consider here only stable discretizations, i.e., those for which the
condition number of the Schur complement matrix BA-1 BT +-C is bounded indepen-
dently of the mesh size used in the discretization. For finite element discretizations
with C = 0, this is a consequence of the inf-sup condition and upper bound

	

y < inf sup (q' dlv v)	 I(g, div v)I < r^

9	 v	 I v J1 JJgJJo	 (vJ1 JJgJlo

where y and F are independent of the mesh size. Here, I • 1 1 and II - Ilo denote the
H 1 seminorm and L2 norm, respectively, on the discrete velocity and pressure spaces,

. Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, e-mail: elman@cs.umd.edu. This work was supported by the
U. S. Army Research Office under grant DAAL-0392-G-0016, and by the National Science Foundation
under grant ASC-8958544.
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and the bounds are taken over all v and q in the appropriate discrete spaces; see
[7, 12, 14, 17].

In recent years, a variety of iterative algorithms have been devised for solving the
discrete Stokes equations. In this paper, we compare the performance of four such
methods:

1. a variant of the Uzawa method,
2. a preconditioned conjugate gradient (PCG) method applied to a transformed

version of (2),
3. a preconditioned conjugate residual (PCR) method;
4. multigrid (MG).

The Uzawa method is the first among these to have been devised [2] and it is often
advocated as an efficient solution technique, see e.g. [7, 12, 14]. The convergence
factor associated with it is proportional to (r, — 1) /(K + 1) where r, is the condition
number of the Schur complement BA-1 BT + C (see §2.5). The conjugate gradient
method, developed by Bramble and Pasciak [5], has a convergence factor propor-
tional to ( NfK- — + 1) but a larger cost per step than the Uzawa method. The
preconditioned conjugate residual method was developed by Rusten and Winther [24],
Silvester and Wathen [26], and Wathen and Silvester [31], and its convergence behavior
is determined by properties of the indefinite matrix. For multigrid, we consider ver-
sions derived from two smoothing strategies: a variant of the distributed Gauss-Seidel
method of Brandt and Dinar [6], and the technique based on incomplete factorization
developed by Wittum [35]; we refer to these as MG/DGS and MG/ILU, respectively.

These methods all have the property that for appropriate choice of precondition-
ers (or for multigrid, smoothers), their convergence rates are independent of the mesh
size used in the discretization. The actual costs of using them depends on both the
convergence rate and the cost per iteration. Our goal in this paper is to compare costs,
in operation counts, of using each of the methods to solve three discrete versions of (1).
For convergence to be independent of mesh size, the first three methods (Krylov sub-
space methods) require a preconditioning operator spectrally equivalent to the discrete
Laplacian. In an effort to unify the comparison of these ideas with multigrid, we also
implement this preconditioner using a multigrid method for the associated Poisson
equation. (Thus, the Krylov subspace methods can themselves be viewed as variants
of multigrid.) Our main conclusions are as follows. For problems where it is applicable,
one version of multigrid, using incomplete, factorization, requires the fewest iterations
and operations, but it is only marginally faster, i.e., by factors of approximately 1.5 to
2, than the Krylov subspace methods and the distributed Gauss-Seidel method. The
Krylov subspace methods are more widely applicable than either multigrid method.
Among the Krylov subspace methods, the conjugate residual method is slightly slower
than the conjugate gradient method and in some cases the Uzawa method, but it has
the advantage of not requiring any parameter estimates.

An outline of the rest of the paper is as follows. In §2, we present the solution
algorithms and give an overview of their convergence properties. In §3, we specify four
benchmark problems and the computational costs per iteration of each of the solution
methods. In §4, we present the numerical comparison.

2. Overview of methods. In this section, we present the four algorithms un-
der consideration and outline their convergence properties. The first three methods
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depend on a preconditioning operator Q A that approximates the matrix A of (2). We
assume that Q A is symmetric positive definite (SPD) and that

(3) 771 < 
((vQAv)) < 

772,

where 77i and 772 are independent of the mesh size used in the discretization. In
addition, finite element discretizations of (1) have a mass matrix M associated with
the pressure discretization. 1 The preconditioner will also include a SPD approximation
QM of M. Discussions of computational costs will be made in terms of various matrix
operations together with inner products and "AxPY's," i.e., vector operations of the
form y <— ax + y.

2.1. The inexact- Uzawa method. We use the following "inexact" version of
the Uzawa algorithm [11], which starts with uo = 0 and an arbitrary initial guess po:

for i = 0 until convergence, do

(4)
ui+l = ui + QA 1 (.f — (Aui + BTpi))
pi+1 = pi + a QM

1 (Bui+ 1 — Cpi)
enddo

Here, a is a scalar parameter that must be determined prior to the iteration.
In the "exact" version of this algorithm, Q A = A and the first step is equivalent

to solving the linear system Au i+1 = f — BT pi . When QM = 1, the exact algorithm
is then a fixed parameter first order Richardson iteration applied to the Schur com-
plement system (BA-1 BT + C)p = BA -1 f; QM is a preconditioner for this iteration.
The inexact Uzawa algorithm (4) replaces the exact computation of A-1 (f — BTpi)
with an approximation.

2.2. A preconditioned conjugate gradient method. Let .A denote the co-
efficient matrix of (2). Premultiplication of (2) by the matrix

	

T= (

QA1	 0 )

BQ Al 1 /

produces the equivalent system

(5) QA'A	 VBT	 u 	 Q —f

	

BQA l A — B BQA I BT + C	 p	 BQA1f

Let M = TA denote the coefficient matrix of this system. The conjugate gradient
method (CG) developed in [5] requires that the bilinear form

(6) [( q1 ) ' ( q2 	 = ((A — QA) v1, v2) + (q1, q2)
)J

1 If the finite element solution is expressed using a given basis {¢;} as p = E, 6;¢;, then IIPIIL,, =
(6, Mb)112.

285



define an inner product. Equivalently, the preconditioning operator QA must satisfy
(3) with ql > 1. It is shown in [5] that M is SPD with respect to the inner product
(6), so that CG in this inner product is applicable. The matrix

(7) I	 0 )= I 0 QM

is also SPD with respect to (6), so that this can be used as a preconditioner.
Let

Xo= "'
Ro — f — (Auo + B T po) 1

J( po)	 —(Buo — Cpo)

denote an arbitrary guess for the solution and the associated residual. An implemen-
tation of PCG is given below. Except for the nonstandard inner product, it is the
standard implementation, as given for example in [15, p. 529]. It is more efficient than
the version given in [5]. The preconditioner QA is implicitly incorporated into the
inner product. The use of a preconditioner (7) is new.

Ro = TRo, Ro = G-1Ro

Po = Ro, Wo = TAPo
a (n, = [Ro, Ro], 

aod) 
= [Po, M Po],	 ao = 

(n) /a
Xl = Xo + aoPo
Ri = Ro — aoAPo, R l = Ro — aoWo, Rl = G-1R1
for i = 1 until convergence, do	

/^	 /^
^ -1 = [Ri, Ri], 0(_j = ai-17 ^i-1 = N -1/N(^1

Pi = Ri + oi-1Pi-1, .MPi = TAPi

aN = ,^ n) , a^di = [Pi, M Pi], a i = a^ni/a^di
Xi+l = Xi + a i Pi, Ri+1 = Ri — aiAPi

Ri+ 1 = R i — aiMPj, Ri+i 
= G-1Ri

+1

enddo

To help identify operation counts, we describe the computation of jai) and {oi}

in more detail. Letting

Ti	 i	 i
Ri= ( Si ), R i = ( s

T
i ), Ri	

T
= 

Si

we have	 [Ri, Ri] = (Ti, ATi — Ti) + (9i, si); similarly, if

(8) Pi = c2 , APi = vx , MPi = 	 Qi 
lvz

di	 wi	 ( BQ A vi — wi(

then a^di = [Pi,MPi] = (ci,AQA 1 vi— vi) +(di, BQAI vi —wi). QA is referenced only in
the construction of QAl y in (8), so that only the action of the inverse of Q A is required.
Moreover, although the vectors Afi , Aci (for vi ) and AQA1 vi are used, the first two of
these can be computed using an AxPY. Consequently, only one matrix-vector product
by A is needed.
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2.3. The preconditioned conjugate residual method. Since A is symmet-
ric, variants *of the conjugate residual method are applicable. Let Xo denote the initial
guess and Ro its residual. The following algorithm implements the OR.THOMIN version
of PCR with preconditioner Q [3]:2

Ro = 2 — 'Ro, Po = Ro, So = Q-1 APo
aon) = (Ro, APo), aod) = (APo, So), ao = ao(n) /aod)

X1 = Xo + aoPo, R l = Ro — aoA& Rl = Ro — aoSo
for i = 1 until convergence, do

P^_i = — (ARi, Si-1)^ ^^ 1 = ai-1

Pi = Ri + A-1Pi-1 , APi = ARi + Oi-lAPi-1, Si = Q-1APi
a(n) (k, AA), a(d) = (AA, Si), ai = a (n) /a 

(d)

Xi+1 = Xi + aiPi,	 Ri+1 = Ri — aiAPi,	 Ri+1 = Ri — aiSi
enddo

Any symmetric positive-definite Q could be used as a preconditioner. As in [26], we
use

2 =( 0A QM)

2.4. Multigrid. As is well known, multigrid methods combine iterative methods
to smooth the error with correction derived from a coarse grid computation. We use V-
cycle multigrid for "transformed systems." Our description follows [34, 35]. Compare
[22, 30] for other multigrid methods derived from the squared system associated with
(2)•

Let —AP denote the Laplace operator defined on the pressure space, with Neumann
boundary conditions (see [16]), and let A p be a discrete approximation to —A P defined
on the pressure grid. Consider the following transformed version of (2):

(9) A BT I BT	

= (01 

	 BT
B —C 	 0 —Ap	 0 —AP) (  	 (u ) 	 P

(	 ) ( )

The coefficient matrix in (9) is

(10) A= 
C

A W)
B G

where W = ABT —BT AP and G = BBT +CAP . For appropriate discretizations of (1)
(see §3), W is of low rank, with nonzero entries only in rows corresponding to mesh
points next to 852. When C = 0, G can also be viewed as discretization of -AP. The
splitting

(11) .A=S — R

2 It is possible for this version of PCR to break down, with ai 0. The ORTHODIR version,
which uses a three-term recurrence to generate Pi, is guaranteed not to break down; it requires two
additional AXPY's. Our implementation switches from the O RTHoMIN to ORTHODIR direction update
if Ja i < 10 -4 , as described in [9]. In the experiments discussed in §4, this switch never took place.
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then induces a stationary iteration applicable to (2),

(12) uk+1 =	 l C
uk + I BT S-1 f — (Auk + BTPk)

C pk+1	 Pk	 0 — AP )	 —(Buk — Cpk)l C	 /
This is used as the smoother for the multigrid solver for (2). Specific choices for S are
given in §3.2.

Let Ru denote a restriction operator mapping velocity vectors in the fine grid (of
width h) to the coarse grid (of width 2h), let R,, similarly denote the restriction oper-
ator for the discrete pressure space, and let Pu and Pp denote prolongation operators
from the coarse spaces to the fine spaces. (For simplicity, we are omitting explicit
mention of h in this notation.) One step of V-cycle multigrid for solving (2), starting
with initial guess u°, p°, is as follows.

(ul , pl ) = MG(u°, po , f, g , ki, k2, h)

if h < ho, then	 % Recursive call

Starting with u°,p°, perform kl smoothing steps (12), producing ul/s,pl/3

rl/3 — f — (Au 1 /3 + BTpl/3 ),	 51/3 — —(B U1/3 — Cp113)

rc/3 = Rurl/3,	 Sc /3 = RPSl/3

(uC /3 , pC /3 ) = MG(0, 0, r^ /3, S C /3 , kl, k2, 2h)

u2/3 = U1/3 + Pu uc l3 ,	 p2/3 = p1/3 + Ppp2/3

Starting with u2/3,p2/3, perform k2 smoothing steps (12), producing ul , pl

else	 % Coarse grid solve when h = ho
T

Solve 
B C / (P i

ui

0 
directly

C	 J 
endif

We also use V-cycle multigrid derived from the discrete Laplacian as a preconditioner
to approximate the action of A` for the Krylov subspace methods; this is defined
analogously and we omit the details. For all multigrid methods, we use bilinear inter-
polation to define Pu and Pp , and Ru = PI, Rp = PT . The discrete operators at each
level are derived from the discretization on the associated grid.

2.5. Convergence properties. We briefly outline some convergence properties
of these methods; see the primary references for derivations of bounds. Each of the
methods generates a sequence of iterates ui ^ u, pi p such that, if e 2 is a represen-
tation of the error, then limier,,(IIeiII/IIeoII)1

/Z = p for some norm II ' II We refer to p
as the convergence factor.

We are assuming that the discretization and choice of QM are such that

(13) Ai :5
	 (BA—'BT + C)q) 

<_ A 2,
( q , QM q)

where Al and A 2 , and therefore, /-. - a 2 /Ai , are bounded independently of the mesh
size of the discretization. This is the case, for example, when QM is a suitable ap-
proximation of the mass matrix in finite element discretization [29, 32]. Note that K
is the spectral condition number of QM (BA— 'BT + C).
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The exact Uzawa algorithm has convergence factor p (I - a QM (BA -1 BT + C))

[12]. This is smallest for the choice a = 2/(a l + a2 ), in which case it has the value
(r, - 1)1(r. -I-1). Thus, the convergence factor for the Uzawa algorithm is independent
of the mesh. It is shown in [11] that the performance of the inexact Uzawa algorithm
is close to that of the exact one if the iterate ui+l satisfies

( 14)	 II.f - B T pi - Aui+1112 < rIOBu i - CpjjjQAl

where T is independent of the mesh size.
The PCG method is analyzed in [5, Theorem 1], where it is shown that the condi-

tion number of the coefficient matrix M of (5) is bounded by a constant proportional
to n. Thus, standard results for CG [15] imply that the bound on the convergence
factor for this method -is proportional to (Vr-, - 1)1( VfK- + 1). The constant of pro-
portionality depends on how close 771 is to rJ2 in (3), i.e., how well Q A approximates
A.

The PCR method is analyzed in [24, 26]. The analysis shows that the eigenvalues
of the preconditioned matrix Q-1 A are contained in two intervals [-a, -b] U [c, d],

where a, b, c, are d are positive constants that are independent of the mesh size. The
sizes of the intervals depend on K and the accuracy with which Q A approximates A. It
follows from the convergence analysis of CR [9, 27] that the convergence factor for the
preconditioned algorithm is independent of the mesh size. For example, it is shown

1- ,li
[9] that if d - c = a - b > 0, then the convergence factor is bounded by 2 	

1/2

where 6 = (be)/(ad).
It is shown in [36] that for finite difference discretization of (1) (see §3.1), two-grid

variants of multigrid are convergent with convergence rate independent of the mesh
size. The analysis applies to the ILU smoothing of §3.2, although it requires that the
prolongation be based on biquadratic interpolation. In practice, bilinear interpolation
has been observed to be sufficient [35]. Fourier analysis in [6] also suggests that
MG/DGS has convergence rate independent of mesh size.
REMARK 2.1. Several other proposed methods share properties with the version of
PCG under consideration. In particular, Verfurth [29] has shown that PCG applied
directly to the Schur complement system has convergence factor proportional to PCG;
however, this method requires accurate computation of the action of A -1 at each CG
step [23]. Bank, Welfert, and Yserentant [4] present a method making use of Q A ',Zt^ A

with convergence rate dependent on the accuracy of this approximation, but using an
additional inner iteration on the pressure space.

3. Solution costs. In this section, we outline the computational costs required
to solve three benchmark problems on Q = (0, 1) x (0, 1) for each of the solution
methods of §2.

3.1. Benchmark problems. We use four discretizations to produce test prob-
lems: "marker and cell" finite differences and three mixed finite element strategies.

1. Finite differences [19]. This consists of the usual five-point operator for each of
the discrete Laplacian operators of (1), together with centered differences for the first
derivatives Vp and div u. For the discretization to be stable, it is necessary to use
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FIG. 1. Staggered grids for finite difference discretization.
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staggered grids in 9Z. Figure 1 shows such grids on a mesh of width h = 1/4. In
order to define the velocity discretizations at grid points next to On, certain values
outside 52 must be extrapolated; for example, this is needed to approximate a2u1lay2

for points "x" next to the bottom of 4992.
2. Linear/constant finite elements. This choice consists of continuous piecewise linear
velocities on a mesh of width h, and piecewise constant pressures on a mesh of width
2h. The discrete pressures are not required to be continuous. The coarser pressure
grid ensures that the inf-sup condition holds [17]. We refer to this as the Pi(h)Po(2h)
discretization.
3. Piecewise linear finite elements. Here, continuous piecewise linear velocities on
a mesh of width h are paired with continuous piecewise linear pressures on a mesh
of width 2h. The inf-sup condition is also satisfied. We call this the Pi(h)Pl(2h)
discretization.
4. Stabilized piecewise linear finite elements. A stable discretization using piecewise
linear velocities and pressures on a single of mesh can be obtained using a stabilization
matrix C = OVA,,, , where A,,, is the discrete Laplace operator defined on the pressure
space, subject to Neumann boundary conditions [8]. This technique is equivalent to the
mini-element discretization [1] after elimination of the internal degrees of freedom. We
use 0 = .025, as recommended in [25]. We refer to this discretization as Pl(h)Pl(h).

The usual hat functions are used as the bases for linear velocities and pressures.
The coefficient matrix A of (2) for all these problems, as well as BT, C, and

BA-1 BT + C, are rank deficient by one; the latter three matrices share a constant
null vector. As a result, the discrete pressure solutions are uniquely defined only up to
a constant. In exact arithmetic, the solution methods under consideration correct the
initial guess with quantities orthogonal to the null space of A, so that the component
of the null space in the computed solution is the same as in the initial guess. For the
analysis, the lower bound of (13) refers to the smallest nonzero eigenvalue.

Note that our goal in considering these problems is to compare the performance of
the different solution strategies on a variety of problems. We highlight some properties
of each of the problems as follows:

1. finite differences, stable, #(pressure unknowns) .:s #(velocity grid points);
2. finite elements, stable, discontinuous pressures, #(pressure unknowns) :. 2

#(velocity grid points);
3. finite elements, stable, continuous pressures, #(pressure unknowns) ,zz^ 4 #(ve-

locity grid points);
4. finite elements, requires stabilization, continuous pressures, #(pressure un-
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knowns) :t^ #(velocity grid points).
We are not comparing the accuracy achieved by the discretizations, and remark only
that the three finite element discretizations display the same asymptotic convergence
rates. See [17, pp. 29, 50] for comments on accuracy of finite element discretization,
and [21] for analysis of the finite difference scheme.

3.2. Preconditioners and smoothers. The Uzawa, PCR, and PCG methods
require choices of QA and QM. For all cases, QA consists of one step of V-cycle
multigrid derived from the discrete Laplacian. The smoothing is based on damped
point-Jacobi iteration with damping parameter w = '2/3 [20], which ensures that
QA is symmetric. For the three finite element discretizations, QM is chosen to be the
diagonal of the mass matrix M; see [32]. (In the case of the Pi (h)Po(2h) discretization,
QM = M.) Although there is no mass matrix for finite differences, a natural analogue
in two dimensions is M = h2I, and this is used for Q M with finite differences.

We consider two multigrid smoothing strategies. The first is a variant of the
distributed Gauss-Seidel (DGS) iteration introduced by Brandt and Dinar [6]. The
splitting operator of (11) is given by

S=

 \ SA 0 IB SG

so that the smoother (12) has the form

uk+1 = SA 1 ( f — (Auk + BTpk))
pk+1 = SG '(—(B (uk + uk+1) + Cpk)

uk+1 = uk + uk+1 + BT pk+l

Pk+1 = pk — APpk+l •

For SA, we use the point Gauss-Seidel matrix derived from red-black ordering of
the velocity grid. (That is, if A = D — L — U with the red-black ordering, then
SA = D — L.) For finite differences, SG = (11w)T where T is the tridiagonal part
of G and w = 2/3; that is, SG corresponds to a damped one-line Jacobi splitting.
For Pi (h)Pl (h) finite elements, SG is the block Jacobi matrix derived from a two-line
ordering of the underlying grid. These are slightly more sophisticated versions of the
choice SG = diag(G) used in [6]. We refer to this multigrid method as MG/DGS.

The other multigrid smoother is the incomplete LU factorization (ILU) presented
by Wittum [35]. We use an ILU factorization of the matrix .A of (10), with no fill-in
in the factors. The ordering for 4 is problem dependent. For finite differences, it is
derived from an uncoupled red-black ordering of the underlying grid. That is, the grid
values for ul were listed first, in red-black ordering, followed by those for u 2 , and then
those for p. (See also Remark 3.3 below.) For Pl (h)Pi (h) finite elements, A is ordered
according to an uncoupled lexicographic ordering of the grid vectors. We denote this
method by MG/ILU.

In choosing preconditioners and smoothers, we have attempted to use methods
that are suitable for vector and parallel computers. Thus, we are using point Jacobi
smoothing for multigrid preconditioning, red-black Gauss-Seidel and line Jacobi for
the DGS iteration, and a red-black ordering for MG/ILU applied to finite differences.
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With the P1 (h)P1 (h) discretization, the operator G in the DGS method is a 19-point
operator that has block Property A for a two-line ordering of the pressure grid, so
that the two-line Jacobi splitting can be implemented efficiently in parallel. The ILU
smoother used with this problem is not efficient on parallel computers. Our multigrid
strategies do not address the issue of idleness of parallel processors for coarse grid
computations; see [10, 131 for discussions of this point for the discrete Poisson equation.

Parameters are required for the Uzawa, PCG and multigrid methods, and for the
multigrid preconditioner. These are as follows:

UzAwA: The optimal value of a for the exact Uzawa method, determined empirically,
is used for the inexact version. This requires computation of the extreme
eigenvalues of QM (BA — 'BT -I- C).

PCG: As noted in §2.3, the preconditioner must be scaled so that 77, > 1 in (3).
From the results of [5], it is desirable to have 77 i close to 1. In all tests, the
scaling is chosen so that 1 < ql < 1.02. This requires computation of the
smallest eigenvalue of QA'A.3

MULTIGRID: For the coarse mesh size ho in multigrid computations, we chose the one
of ho = 1/2 and ho = 1/4 that produced lower iteration counts. This turned
out to be ho = 1/2 for preconditioners and ho = 1/4 for solvers. The coarse
grid solution is obtained using Cholesky factorization for the preconditioners
and singular value decomposition for the solvers.

REMARK 3.1. For the Uzawa method, the choice of QA does not guarantee that the
condition (14) is satisfied. The results of [11, 33] as well as those of §4 suggest that
with multigrid for Q A , ( 14) may be too stringent.
REMARK 3.2. The effectiveness of the multigrid solvers depends on the fact that the
commutator W in (10) is zero away from the boundary of Q. This is true for the finite
difference and stabilized Pl (h)Pl (h) discretizations, where pressures and velocities
are defined on the same grid, but not for the (stable) Pl ( h)Pl (2h) discretization.
Our experiments confirm that multigrid is ineffective for this discretization, and we
do not include it as an option. See [18, p. 248] for a discussion of this issue. For
the Pi (h)Po(2h) discretization, it is difficult to define the discrete pressure Poisson
operator AP , and we know of no multigrid implementation for this problem.
REMARK 3.3. For MG/ILU applied to the finite difference discretization, we also
tested several alternative ordering strategies, including an uncoupled lexicographic
ordering (i.e., like that used for Pl(h)Pl(h)), as well as several "coupled" lexicographic
orderings. For the latter strategies, velocity and pressure unknowns are not separated
from one another, see [28]. The performances of MG/ILU for all these orderings were
very close. For example, for h = 1/32 as in Table 4 below, the smallest average
iteration count with one smoothing step was 10 3 and the largest was 113.

3.3. Iteration costs. We identify the costs per iteration of each of the methods
by first specifying the "high level" operations of which they are composed, and then
determining the costs of each of these operations. High level operations are defined to
be matrix-vector products, inner products (denoted "( , )" in the tables of this section),
and AxPY's. Note that each of the techniques under consideration is formulated with

3 In the experiments described in §4, these were computed using a power method applied to QA I A-
I; five to ten steps were needed to obtain an estimate accurate to three significant digits.
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TABLE 1
High level operations for all solution algorithms.

Matrix-Vector Product AXPY (,	 )

Uzawa 1 A	 1 BT	 1 QA 1 1 (np ) 1 (nu + np)

1B	 1C	 1QM

PCG 1 A	 1 BT	 1 QA1 4 (nu + np ) 3 (nu + np)
2B	 1C	 1QM 2(nu)

PCR 1 A	 1 BT	 1 QA 1 5 (nu + np ) 4 (nu + np)

1B	 1C	 1QM

Multigrid (1 + ki + k2 ) A	 1 Ru

Preconditioner (kl + k2 ) SAi	1 P.
Multigrid Solver 1 A	 1 BT	1 Ru 1 (nu + np)

(Excluding 1 B	 1 C	 1 RP

smoother) 1 Pu	 1 Pp
I  2 B	 IAp

DGS Smoother 1 B	 1 C	 1 SA1
1 SGl

ILU Smoother 1 A	 2 BT	 1 AP

1B	 1C	 is—'

essentially the same set of these operations; consequently, we expect operation counts
to give a good idea of their comparative performance.

The high level operations are shown in Table 1. Matrix-vector products include
operations with matrices that define the problem or method, such as A or Ru, as well
as preconditioning and smoothing operators such as QA 1 and SA" The latter com-
putations are themselves built from other matrix operations, and some of these are
also identified in the table. All multigrid entries correspond to operations performed
on one grid level. For multigrid solvers, the smoothing operations are presented sep-
arately; these operations would be performed kl times during presmoothing and k2
times during postsmoothing. The lengths of the vector operations are listed in paren-
theses. We are assuming that one inner product will be used in the convergence test,
and the counts in the table include this.

The costs of matrix-vector products are estimated to be the number of nonzeros in
the matrices used. This is roughly one half the number of "FLOPs" required, and it is
also proportional to the number of memory references. These costs, for discretizations
in which the velocity unknowns come from an n x n grid, are shown in Table 2. The
costs of vector operations are taken to be the length of the vectors.

Combining the data of Tables 1 and 2 gives an estimate for the cost per iteration
for each of the solution methods under consideration. These numbers are all propor-
tional to n2 , and we present in Table 3 the cost factors obtained by omitting this
factor, rounded to the nearest integer. For the multigrid methods (preconditioners
and solvers), the cost of one full multigrid step is estimated as 4/3 times the cost of
the computations on the finest grid; this is approximately the cost of full recursive
multigrid in two dimensions.

293



TABLE 2
Costs for matrix-vector products.

Fin. Diff. I Pl (h)Po(2h) I Pi (h)Pi (2h) I Pi(h)Pi(h
A IOn2 10n2 10n2 10n2
B, B T 4n2 4n2 8n2 12n2
C 0 0 0 5n2

QM ln2 0.25n2 0.25n2 ln2
SA' (Jacobi) 2n2 2n2 2n2 2n2
SA' (Gauss-Seidel) 6n2 6n2 6n2 6n2
SG1 3n2 - - 9n2
AP 5n2 - - 5n2
R,,,, P„ 6n2 4.5n2 4.5n2 4.5n2
RP , PP 3n2 - - 2.25n2
S -1 19n2 - - 41n2

TABLE 3
Cost factors.

Uzawa PCR PCG MG/DGS MG/IC
Finite kl = k2 = 1 84 107 109 148 175
Differences kl = k2 = 2 116 139 141 244 297
Pl (h)Po(2h) kl = k2 = 1 79 98 101 — —

k2 = k2 = 2 111 130 133 — —
P1 (h)P1 (2h) kl = k2 = 1 86 104 111 — —

k2 = k2 = 2 118 136 143 — —
Pi (h)Pi (h) kl = k2 = 1 101 124 134 247 333

k2 = k2 = 2 133 156 166 421 591
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TABLE 4
Iterations.

Uzawa PCR PCG MG/DGS MG/ILU
Finite kl = k2 = 1 36 41 30 24 12

Differences kl = k2 = 2 28 33 23 15 9
Pl (h)Po(2h) kl = k2 = 1 34 41 29 — —

k2 = k2 = 2 26 34 23 — —
P1(h)Pi (2h) kl = k2 = 1 89 57 38 — —

k2 = k2 = 2 89 50 31 — —

Pi (h)Pi (h) kl = k2 = 1 39 47 32 20 8

kl = k2 = 2 38 40 25 10 7

4. Experimental results. We now present the results of numerical experiments
for solving (2). All experiments were performed in MATLAB on a SPARC-10 worksta-
tion. For each solution algorithm, we solved three problems derived from three choices
of f consisting of uniformly distributed random numbers in [-1, 1]. The initial guess
in all cases was uo = 0, po = 0. The stopping criterion was

I1 RiI12/II RoIl2 < 10-6 ,

where

Ri \
0 ^ — \ B C / \A

We found that performance was essentially in the asymptotic range for h = 1/32, and
all results are for this mesh size.

We present three types of data: iteration counts, estimates for convergence factors,
and plots of residual norms as functions of operation counts. The iteration counts are
averages over three runs of the number of steps needed to satisfy the stopping criterion;
these are shown in Table 4. The estimates for asymptotic convergence factors are the
averages of (II1?5+iII2/IIRsII2)l/i over all steps after step five; here Rk represents the
average of the kth residual norm over the three runs. These are shown in Table 5. We
chose step five rather than step zero because performance was often better in the first
few steps than later, when the asymptotic behavior is seen. Finally, Figures 2 — 5 plot
the averages of the residual norms against operation counts.

We make the following observations on these results.
1. Where it is applicable, multigrid requires the smallest number of iterations and
has the smallest convergence factors. MG/ILU is superior to MG/DGS in these mea-
sures. These observations agree with those of [35]. In addition, where it is applicable,
MG/ILU requires the smallest number of operations. However, multigrid is only ef-
fective for discretizations where velocities and pressures are defined on the same grid..
2. The Krylov subspace methods and MG/DGS are roughly equal in cost. The Krylov
subspace methods are more widely applicable than multigrid.
3. The performances of all these methods are very close. In terms of operation counts,
the ratio of costs of the most expensive and least expensive method is no worse than
2.3.
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TABLE 5
Estimates of convergence factors.

Uzawa PCR PCG MG/DGS MG/ILU
Finite kI = k2 = 1 .67 .70 .66 .62 .39

Differences kl = k2 = 2 .60 .64 .57 .50 .31
PI (h)Po(2h) ki = k2 = 1 .69 .69 .70 - -

k2 = k2 = 2 .58 .66 .55 . - -
Pi (h)Pi (2h) kl = k2 = 1 .82 .79 .75 - -

k2 = k2 = 2 .84 .78 .70 - -
Pi (h)Pi (h) kl = k2 = 1 .70 .75 .68 .56 .24

kI = k2 = 2 .70 .74 .62 .33 .21

FIG. 2. Operation counts for finite difference discretization.
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4. No Krylov subspace method is clearly superior to the others. PCG exhibits a
somewhat faster convergence rate than PCR, and the Uzawa algorithm is surprisingly
competitive with the other two methods. This appears to derive from the dependence
of PCG and PCR on both the spectral condition number h from (13) and the accuracy
of the preconditioner Q A as an approximation to A; for both these methods, the
iteration counts go down in all cases when the number of smoothing steps in QA
increases. The Uzawa method appears to be less sensitive to the accuracy of Q A . The
values of K for the three problems are:

Finite differences 4.14	 PI(h)PI(2h) 22.71
Pi (h)PO (2h)	 4.87	 PI(h)PI(h)	 9.91

The Uzawa method is least effective for the PI (h)PI (2h) discretization, which has the
largest condition number.
5. The Uzawa and PCG methods depend on choices of iteration parameters. These can
be estimated relatively inexpensively (e.g., using a coarse grid for the Uzawa method,
and a few steps of the power method for PCG), but this increases the cost of these
methods and makes implementing them considerably more difficult. In contrast, PCR
is independent of parameters except for those needed for the multigrid precondition-
ing, and it is therefore easier to implement. Thus, there is a tradeoff between these
methodologies: PCR converges slightly more slowly than PCG and, often, than the
Uzawa method, but it has a simpler implementation.
6. For each of the solution strategies except PCG, it is less expensive to use one
smoothing step than two.
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Abstract

We present an optimal preconditioning algorithm that is equally applicable to the
dual (FETI) and primal (Balancing) Schur complement domain decomposition methods,
and which successfully addresses the problems of subdomain heterogeneities including
the effects of large jumps of coefficients. The proposed preconditioner is derived from
energy principles and embeds a new coarsening operator that propagates the error glob-
ally and accelerates convergence. The resulting iterative solver is illustrated with the
solution of highly heterogeneous elasticity problems.

1. Introduction

With the advent of parallel processing, domain decomposition (DD) based
iterative algorithms have become increasingly popular for the solution of finite ele-
ment systems of equations. Indeed, domain decomposition provides a higher level
of concurrency than global algebraic approaches, and is simpler to implement on
most parallel computational platforms [ref. 1]. In general, the subdomain equa-
tions are solved using a direct skyline or sparse factorization based algorithm,
and the interface problem is solved iteratively—usually, by a preconditioned con-
jugate gradient (PCG) algorithm (for symmetric problems). The success of such
an iterative algorithm hinges on two important properties: numerical scalabil-
ity, and parallel scalability. A subdomain based iterative method is said to be
numerically scalable if the condition number of its corresponding interface prob-
lem does not grow or grows "weakly" with the mesh size h and the subdomain
size H. For example, if the interface problem has a condition number K that
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grows asymptotically as

= O (1 + log' ( ^ ))	 (1)

then, the underlying subdomain based iterative method is numerically scalable.
The practical implications of a condition number such as that described in Eq. (1)
are twofold:

® Suppose that a given mesh is fixed: one processor is assigned to every
subdomain, and the number of subdomains is increased in order to increase
parallelism. In .that case, h is fixed and H is decreased. From Eq. (1), it
follows that the condition number of the interface problem decreases. This
implies that the number of iterations for convergence can be expected to
decrease with an increasing number of subdomains.
• On most distributed memory parallel processors, the total amount of avail-
able memory increases with the number of processors. When solving a certain
class of problems on such parallel hardware, it is customary to define in each
processor a constant subproblem size, and to increase the total problem size
with the number of processors. In such a case, h and H are decreased, but the
ratio Hlh is kept constant. In theory, it follows from Eq. (1) that a numeri-
cally scalable DD algorithm can solve larger problems with the same number
of iterations that are required for smaller problems simply by increasing the
number of subdomains.
In practice, numerical scalability is most interesting when parallel scalability

can also be achieved. The latter property characterizes the ability of an imple-
mented algorithm to deliver a larger speedup for a larger number of processors.
Therefore, a subdomain based iterative method that boasts both numerical and
parallel scalability is clearly an "ultimate" solution algorithm. Unfortunately,
numerical scalability can be achieved only if, at each CG iteration, the DD algo-
rithm can propagate the error globally to accelerate convergence. Since a global
propagation usually induces long range communication, it follows that numerical
scalability and parallel scalability are often two conflicting objectives. Domain
decomposition theory . suggests that a good approach for tackling this issue is to
augment the DD algorithm with a coarse "grid" problem [ref. 2-41 that is large
enough to disseminate significant information globally and yet is small enough to
keep computations and communication affordable. Moreover, specialized iterative
algorithms are now available for solving efficiently these coarse grid problems on
massively parallel processors [ref. 5,6]. Therefore, an ultimate DD based iterative
solver is conceivable.
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The dual Schur complement method, also known as the Finite Element Tear-
ing and Interconnecting (FETI) method [ref. 7-10], is among the first DD meth-
ods to have demonstrated numerical and parallel scalability for the solution of
self-adjoint elliptic partial differential equations (PDE) discretized with unstruc-
tured finite elements. This method has also been shown to outperform several
popular direct and iterative algorithms on both sequential and parallel computing
platforms [ref. 1,101. Essentially, the FETI algorithm can be viewed as a two-step
CG-based iterative procedure where subdomain problems with Dirichlet bound-
ary conditions are solved in the preconditioning step, and related subdomain
problems with Neumann boundary conditions are solved in the second step. We
refer to the FETI method as the dual Schur complement method because on the
outset it constructs the dual Schur complement operator. For time-independent
elasticity problems, the condition number of the unpreconditioned FETI interface
problem grows asymptotically as [ref. 1,11]

= O ( h )	 (2)

When preconditioned with a subdomain based Dirichlet operator, the condition
number of the FETI interface problem varies as [ref. 1,11,12]

K = O (1 + logo (h )), Q < 3	 (3)

The conditioning results (2) and (3) highlight the numerical scalability of the
FETI method with respect to both the mesh size h and the number of subdomains
(which is related to 1 1H). The parallel scalability of this DD method—that is,
its ability to achieve larger speedups for larger number of processors—has also
been demonstrated on current massively parallel processors for several realistic
structural problems [ref. 1,51.

The numerical scalability of the FETI method is due to a coarse problem
naturally present in the formulation of the interface problem. In order to guar-
antee the solvability of the local Neumann problems associated with floating
subdomains—that is, subdomains without enough essential boundary conditions
to prevent the local stiffness matrices A ( - ) from being singular—a small auxiliary
global problem with at most 6 unknowns per subdomain is solved at each PCG
iteration. In [ref. 11], it was shown that this auxiliary problem indeed plays the
role of a coarse problem; it provides a satisfactory mechanism for global propaga-
tion of the error, which accelerates convergence so that the number of iterations
is practically independent of the number of subdomains.
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Another numerically scalable algorithm for elasticity problems is the Bal-
ancing DD method [ref. 13]. This method is essentially an important improve-
ment of the well-known Neumann-Neumann DD algorithm [ref. 14]. The original
Neumann-Neumann DD method can be summarized as a two-step CG-based iter-
ative procedure where subdomain problems with Neumann boundary conditions
are solved in the preconditioning step and subdomain problems with Dirichlet
boundary conditions are solved in the second step. We refer to this method as
the primal Schur complement method because on the outset, it constructs the
primal Schur complement operator. The original Neumann-Neumann method
lacks a coarse grid problem for propagating the error globally and accelerating
convergence. In practice, its rate of convergence deteriorates significantly when
more than 8 subdomains are introduced [ref. 15]. As in the FETI method, the
coarse problem of the Balancing DD algorithm is defined in terms of the null
spaces of the local stiffness matrices. This coarse problem restores the scalability
of the original Neumann-Neumann method for a large number of subdomains.

However, it should be noted that the theoretical scalability and optimal
conditioning properties of the FETI and Balancing DD methods hold in prac-
tice when the subdomains have good and/or comparable aspect ratios, and the
partial differential equation to be solved does not feature large (subdomain) co-
efficient jumps [ref. 1,111. Each of these two issues represents a different type
of subdomain heterogeneity that must be dealt with. In [ref. 16], the authors
have proposed a remedy to the first problem in the form of a mesh partition-
ing optimizer that delivers subdomains with good aspect ratios. In [ref. 17], an
ad-hoc scaling procedure was discussed in the context of the Neumann-Neumann
DD method for handling potential subdomain heterogeneities. In this paper, we
present a rational and superior approach for tackling simultaneously and indif-
ferently all kinds of subdomain heterogeneities. Our methodology is based on
energy principles and is best described as a smoothing scheme. However, we also
formulate it as a preconditioner. For problems with more than two subdomains,
this smoothing scheme generates a coarse grid subproblem that propagates the
error globally and accelerates convergence. Because of space limitations, we con-
sider only the case of the FETI or dual Schur complement method. However, the
experienced reader will be able to easily transpose the described methodology
to the case of the Balancing or primal Schur complement method. We report
some preliminary numerical results that demonstrate superior convergence rates
for highly heterogeneous elasticity problems.
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2. The FETI or dual Schur complement method

The problem to be solved is

Ax = b	 (4)

where A is an n x n symmetric positive semi-definite sparse matrix arising from
the finite element discretization of an elasticity problem defined over a region Q,
and b is a right hand side n-long vector representing some prescribed forces. If Q
is partitioned into a set of N9 disconnected subdomains SPO , the FETI method
consists in replacing Eq. (4) by the equivalent system of subdomain equations

A(sY9) = b(9) — B ( 9)T A	 s = 1 .. N— ^	 ^	 s

s= N,

E B (a) x(9) = 0
9=1

where AO) and b(9) are the restriction of A and b to the disconnected sub-
domain QW , A is a vector of Lagrange multipliers representing the normal
derivatives of the primal variable of the problem on the subdomain interface
boundary r (,,) , and BW is a signed Boolean matrix which describes the in-
terconnectivity of the subdomains. From a physical viewpoint, the first of
Eqs. (5) represents the subdomain equations of equilibrium with Neumann
boundary conditions, A represents the "gluing" forces between the disconnected
subdomains (Figure 1), and the second of Eqs. (5) represents the compat-
ibility of the subdomain solutions x (9) across the subdomain interfaces r, =
s= N,
U I'(8) . A more elaborate derivation of Eqs. (5) can be found in [ref. 1,7-11].
s=1

Mesh Tearing	 Mesh Reassembly

Figure 1. Schematic description of the FETI method.

(5)
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In general, the mesh partition will contain some Nf floating subdomains,
and therefore the Neumann problems

A(s)x(s) = b(s) — B(s)T A s = 1 .. N f	 (6)

will be singular. To guarantee the solvability of these problems, we require that

(b(s) — B (s)T A) 1 Ker (A(s) )	 (7)

and compute the solution of Eq. (6) as

X (8)	 A(s)+ (b(s) — B(s)T A) + R(s)a(a)	 (8)

where A(s)+ is a generalized inverse of A(S) that need not be explicitly computed
(see, for example, [ref. 9]), R(S) = Ker (A(s) ) is the null space of A(s) , and a(s)

is a vector of six or fewer constants (there are, at most, six rigid body modes in
a three-dimensional elasticity problem). The introduction of the few additional
unknowns a (s) is compensated by the additional equations resulting from (7):

R(s)T (b(s) — B(S)T A) = 0	 s = 1, ..., Na	(9)

Substituting Eq. (8) into the second of Eqs. (5) and using Eq. (9) leads (after
some algebraic manipulations) to the following FETI interface problem:

—GIT	 0 I a 
[A] 

= I d J	 (10)

where

s=N,
FI = 1: B(s)A(s)+B(S)T 	 Gj = [ B (1) R(1) ... B(N!)R(N!)

s=1
s=N,

a = [a(1)T ... a(Nf)T ] T 	 d = E B(s)A(S)
+b(3); 

e(S) = b(S)T R(s)
s=1

A(s) ' = A($)-1 if S2(8) is not a floating subdomain

A(s)+ = a generalized inverse of A(S) if Q00 is a floating subdomain

Clearly, F1 is the sum of independent subdomain operators. Under certain condi-
tions, it can be shown that FI is the sum of the inverses of the subdomain Schur

306



complements [ref. 1,11], which justifies the labeling of the FETI method as the
dual Schur complement method. It possesses some interesting spectral properties
that trigger a superconvergent behavior of a CG algorithm applied to the solu-
tion of (10) [ref. 1,11]. Because the above interface problem (10) is indefinite,
the second step of the FETI method consists in solving it via a preconditioned
conjugate Projected gradient (PCPG) algorithm with a preconditioner Fj 1 and
the projector

P	 I — GI (GI TGI ) -1 GIT	
(11)

More specifically, the PCPG FETI algorithm can be formulated as follows
[ref. 1]:

1. Initialize

AO = GI (GITGI) —le

r° = d — FIAO

2. Iterate k = 1, 2, ... until convergence

Project	 wk-1 = PT rk-1

Precondition	 zk-1 = FI1wk-1

Project	 yk-1 = P zk-1

rk = yk-1 T wk-1/yk-2T wk-2 (r1 = 0)

p  = yk-1 + (1pk-1 
(P1 = 

yo)S

V  = yk-1 T w k-1 /pkT FIPk

A  = Ak-1 + ykPk

rk = rk—i — vkF'7pk
1

The reader can easily check that, because of the presence of the second projec-
tion step, the iterates are independent of the particular choice of the generalized
inverse in Eq. (8).

The application of the projection operator P in (12) means that a coarse
problem of the form (GI TGI )y = c (size < 6 x Nf < 6 x N,) must be solved
(twice) in each FETI iteration. It was shown in [ref. 11] that this coarse problem
has the expected beneficial effect of coupling all subdomain computations and
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propagating the error globally, so that the condition number of the interface
problem can be bounded as a function of H/h but is independent of the number
of subdomains.

Two preconditioners have been previously developed for the FETI method:
(a) a numerically optimal Dirichlet preconditioner that can be written as

1	 s_N, 
s	 s T	

a N, 
s 0	 0	 3 T

Fi	 —	 B() 0 A(`) — A(b)0 A=E )—' A(b ) 
I B() _ ^° Bl) 

1 0 5'bb), B( )
bb	

!^
s=1	 s=i

(13)

where A' ) denotes the primal Schur complement of subdomain Q 00 and the sub-
scripts i and b designate internal and interface boundary unknowns, respectively;
and (b) a numerically efficient "lumped" preconditioner that lumps the Dirichlet
operator on the subdomain interface unknowns

_ 1	 s=NB

L = E B^9) 
0
0 0

F	
8) B(9)T	 (14)

[	 `4bs=1	 b

-
-1	 —L -1

Unlike FD , the preconditioner FL is not mathematically optimal. However,

it is more economical than FD and has often proved to be more efficient [ref.

For practical elasticity problems, the FETI method with either the Dirichlet
or Lumped preconditioner is numerically and parallel-wise scalable, when the
subdomains have good aspect ratios and no large coefficient jumps. The objective
of this paper is to present a third preconditioner that generalizes the two described
above and successfully addresses all kinds of heterogeneity problems.

3. Preconditioning with an energy based smoothing procedure

3.1. The two-subdomain problem

In order not to obscure the main idea of this paper by the complexity of
the notation needed for a problem with an arbitrary number of subdomain, we
consider first the case of a problem with two heterogeneous subdomains. The
general case of a system including multiple (Ns > 2) and arbitrarily connected
subdomains is treated in Section 3.2.

At each iteration of the PCPG FETI algorithm, the matrix vector product
Fjpk produces a jump in the iterate x k across the subdomain interfaces. (In the
sequel, we drop the superscript k for simplicity.) For a heterogeneous problem—
for example, a problem with different subdomain stiffnesses—this jump is bound
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to be rather large. Elementary mechanics theory suggests that the solution x(')
in the stiffer subdomain QW will be closer to the desired converged solution
than the solution in the more flexible subdomain. This in turn suggests that the
computed solution x should be smoothed after each PCPG iteration as follows:

(1)	 (2)	 (1)	 (2)

x b = x b = xI = (1 — a)x b + ax 
(2)	 0 < a < 1

x^ e) = A^8)-1 b^8) — A^8) x (e)
a	 a:	 ( a	 ab	 b )

= X t̂ 8) — A= )-'A(6)(xbs) — x68) )	 s = 11 2

Once again, the subscripts i and b designate the internal and interface boundary
unknowns. Equations (15) state that first a smoothing of the solution is imposed
on the interface boundary between the two subdomains, then a local Dirichlet
problem is solved in each subdomain to propagate the beneficial effect of this
smoothing to the internal unknowns. Of course, the important question is how
to select the optimal smoothing parameter a.

Let SI denote the displacement jump on 1'I defined as

SI = x 62) — 
xbl>	 (16)

From Eqs. (15) and (16), it follows that x61) and x(2) can be rewritten as

(15)

where

x61) = x61) + Ax 61)	 x62) = x62 ) + AX (2)	 (17)

Oxbl) = aSI	 AX(2) _ —(1 — a)SI	 (18)

First, we note that Eqs. (5) can be rewritten as

A î )	A î i)	0	 0	 0 P) f=1)

Ai^
b)T

	Abb)	 0	 0	 B
(I)T

x61) f61)

0	 0	 Ali ) 	 Aab>	 0
x=2) = f8 2) (19)

0	 0	
Aib)Z	

Abb)
	 B(2 )T x62)

fb2)

0	 B(1)	 0	 B (2)	 0	 J L a J L	 0

and that after smoothing, they become

A^ )	A=b)	 0 x(1> Mi) 0

A(	 Abb) + Abb)	 Afb ) I — bbl) 
a 

bbl) + rb (20)
0	 A^2)	 A(2)

ab	 a:
xz b()

a 0
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where rb is the interface residual induced by smoothing. From Eq. (19), it follows
that

rb = Sbb)®xbi) + S(2)AX(2)
)O) 	 (21)

where Sbb) is the Schur-complement with respect to the interface boundary un-
knowns of the stiffness matrix of subdomain n(-):

Sbb ) = Abb^ — Aib)T 
A(i)_ ' A (b8)

 Aib)(22)

Rewriting the induced interface residual in terms of the solution jump S I as

rb = rb (a) = (aSbb ) + (a — 1)S (2) )bj	 (23)

leads to the conclusion that the optimal parameter a of the smoothing procedure
(15) is that which minimizes r b . However, rather than minimizing directly some
norm of rb , we propose to adopt a Rayleigh-Ritz approach where the smoothed
solutions x(i) (a) and x (2) (a) given in Eqs. (15) are viewed as kinematically ad-
missible fields parameterized by a, and to minimize the corresponding energy
of the global system. For the two-subdomain problem discussed here, the total
energy can be written as

A=)	 Aab)	 0	 x(1)

£(a) = 1 [ x^i)T xT 
x^2)T ] A^
	 A(1) + A(2) A(2)

	
XI

	

2	 a	 I	 :	 ab	 bb	
T 

bb	 ab	
^2)

0	 A(b)	 A()	 x:

f ,(i)	 (24)
— 

L

i^OT xT x^2 )T 
J f(1) +f(2)

	

a	 I	 a	 J

f^ 2)

which in view of Eqs. (15)—(23) simplifies to

E(a) = C — 2aSI 
Sbb )SI + a2sl (Sbb) + S(2)
	 (25)(25)

where C is an expression that does not depend on a. Differentiating £ with
respect to a, recalling Eq. (16), and enforcing the condition

d£ —
— 26T S(2)SI + 2abT S(1) + S(2)	 = 0) IS	 26

da	 I bb	 I ( bb	 bb	 ( )

310



finally gives

aD —	 k(2)Dk(1)D + k(2)D	

/k(1)D = sTSb 1 % = (X(2) — X(1) )TS6 1) (X(2) — X(1))

k(2)D = STS (2) SI = (x62 ) — X ( 1 ))TS(
2

) (x b2
) — x61))

To the authors of this paper, the importance of the above selection of the pa-
rameter a is best recognized from a physical viewpoint. Indeed, the smoothing
procedure described by Eqs. (15) and (27) consists in treating the two sub-
domains as two linear springs connected in series, computing the jump of the
displacement field at their connection, and redistributing this jump among both
springs according to their "relative stiffnesses" 0 ) and k (2 ) . While the idea of
estimating a local measure of the stiffness of a subdomain to build a scaling ma-
trix for the subdomain preconditioner is not new [ref. 1,17], the derivation of
the smoother presented in this paper sheds new light on the precise treatment
of all kinds of stiffness heterogeneities. More importantly, Eqs. (27) give for the
first time rational estimates 0 ) and k (2) of the local measures of the subdomain
stiffnesses that clearly contain, among others, the effect of material properties
(PDE coefficients), mesh resolutions, and aspect ratios. From a mathematical
view point, these constants can be described as the Schur-complement norms of
the jump of the solution at the subdomain interfaces. Note that if the two sub-
domains and their finite element models are identical, Eqs. (27) give 0 ) = k(2)
and aD = 1/2. If the two subdomains differ only in a constant, for example,
Young' s modulus E, then Eqs. (27) give aD = E(2) 1(E(1) + E (2) ). This clearly
shows that the smoothing procedure proposed in this paper includes the scaling
schemes proposed in [ref. 1,17] as a particular case. However, if the subdomains
do not differ only in one constant, the scaling procedure a D = E (2) /(E(1) + E(2))
is not applicable, but the smoothing scheme proposed here is. Moreover, for prob-
lems with more than two subdomains, we will show in Section 3.2 that, unlike
the scaling procedure discussed in [ref. 1,17], the smoothing algorithm presented
in this paper generates a coarse grid problem that accelerates convergence.

The superscript D in Eqs. (27) is used to highlight the fact that computing
the smoothing parameter aD requires solving subdomain Dirichlet problems that
are similar to those induced by the optimal Dirichlet preconditioner (13). Clearly,
this establishes that the smoothing procedure (15,27) can be viewed as an im-

D -1
proved optimal Dirichlet preconditioner FI	. Alternatively, we can construct

(27)
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a more economical variant of the proposed smoother where the effect of the in-
terface smoothing is not back-propagated to the subdomain internal unknowns.
Following the derivation presented above, the reader can easily check that such a
strategy leads to a smoothing procedure similar to that given by Eqs. (15) but
where the Schur-complement matrices S (' ) are replaced by the "lumped" interface

bb

stiffness matrices Abby , and to the following "lumped" averaging parameter

L	

k(2)L

a = ^(1 >L 
+ 

k(2 ^L

0)L = STA( ' ) bj = (ub2) ' UM)TA(1)(U (2)
 — u61))

k(2)L = STA (2) bj = (u (2) — uM)TA(2)(ub2) — U(1))

Of course, smoothing with the above lumped strategy can also be viewed as
L-1

preconditioning with an improved lumped preconditioner F j	 The compu-
_—L-1

tational advantages of Fj	 are obvious since A(') are readily available, and
bb

sparse matrix-vector multiplications rather than forward-backward substitutions
are needed to evaluate the smoothing parameter aL.

3.2. The multiple subdomain problem and the new coarsening operator

Here, we generalize the smoothing procedure presented in the previous sec-
tion to the case of multiple (N9 > 2) and arbitrarily connected subdomains.

Let b( ') denote the restriction of the Boolean operator B ( ' ) defined in Eqs. (5)

to the interface boundary r(,) of a given subdomain Q ( ' ) . Using the inter-
nal/interface subdomain partitioning of the unknowns we have

	

B( ' ) _ [ 0 b( ') ]	 (29)

The interface boundary of each subdomain can be broken into edges and therefore
b( ') can be partitioned as

b( s) _ [ b( 9 ),=	 b( s),i	 ...	 b( -9),1 1 	 (30)

where b( '),j is the restriction of b( ') to the j-th edge of r(,) . Note that Eq.
(30) implies that every interface point is assigned to one and only one edge, and
therefore a crosspoint is treated as a single point edge. Finally, we introduce the
unsigned equivalents of B ( ') , b( ') , and b( '),j and designate them with a circumflex.

(28)

312



Using this notation, the jump of the solution x across an edge j between two

subdomains Q(3) and QW can be written as

b(3),j X (b3)J — b(t),j xbt) ,j = x (b3)J — xbt),j	 (31)

where x (b3) 'j is the trace of the subdomain solution x(3) on the the edge j. Conse-
quently, the generalization to an arbitrary number of subdomains of the smooth-
ing procedure proposed in Eqs. (15) is given by

;i( 3)J = y/^( t),j b( s),jT b( t),j xbt),j
b	 N

r(,0 33-	 (32)

x83) _ —A8i)-1 A	 3)8b)Axbs) + x8

It remains to find the optimal values of the edge coefficients # (3)J . For this
purpose, we follow conceptually the same Rayleigh-Ritz approach presented in
Section 3.1. Let Axbs) 'j be defined as

AxWJ = ';( 8 ) ' i — x(bs),j	 (33)

If the coefficients 0(3),j are constrained to have a unit sum

E 
P( 3),j = 1	 (34)

r(Ia)E)j

then from Eqs. (31)-(33) it follows that

Ax(3),j = —b(s),jT	 ^(t),j b(s,t),j	 (35)
b

r(0E)j, tos

For a problem with an arbitrary number of subdomains, the total energy can be
written as

3= Na

E( (^(3),7 ) _ E
u( 3 )T A( 3)u( s) — u(

3)T {'(3)	 (36)3=1	 J

If the effect of interface smoothing is back-propagated to the subdomain interiors
(Dirichlet smoothing), £(,6 (3) ,?) can be rewritten as

E(/^(3),.^) _	 i(s)T,S(3)x(3) — x(3)T (3) — A i	 J3)A`3)-1 (3))
b	 bb b	 b	 (fb	 b	 ii	 i

3=i	
(37)

1 3=N,

2 s=1
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where C is a function that does not depend on the edge parameters #(e)J . On
the other hand, if the effect of interface smoothing is not back-propagated to the
subdomain interiors (lumped smoothing), E(PO ) ,j) will have an expression similar
to that of (37) but with Abb) replacing every occurrence of Sbb) . Minimizing the
energy with respect to the edge smoothing parameters '9E = 0) leads after
some algebraic transformations to

#(P),k(sj4,9)^i b(s)'.1T 
['sbb)].7,k 

b(e) ' ksIP^ 9), k) = 0 vi, I'(4)

r(,°) E)i r(k) E), r(P)3k

8:$9 	 P:03

(38)

where [S( )]; is the Schur-complement of A (3) associated with the edge j and k.
Hence, the edge smoothing parameters 6 ( '),j are given by the solution of a coarse
auxiliary problem of size as small as the number of edges in the mesh partition.
There is no question that the above system of equations (38) is quite complicated
to read. However, there is also no question that it is easy to program since the
1(9),k are Boolean operators.

3.3. Dealing with the variable preconditioner

Since the values of the jumps of the iterate xk across the subdomain edges
change in each iteration k, it follows from Eqs. (27) and (28) that the proposed
preconditioner changes in every FETI PCPG iteration. Of course, one can al-
ways freeze the coefficients Q (9),j after the first or a few iterations. However, a
reorthogonalization is always used in practice with . the FETI method [ref. 1], so
that the variation of the preconditioner with the iteration number is not an issue.
We note that we have previously demonstrated (see [ref. 1], for example) that
this reorthogonalization is cost-efficient because it is applied only to the interface
problem, and it does not significantly increase the total CPU time for solving the
global problem.

4. Numerical results

In order to demonstrate the potential of the proposed preconditioner, we con-
sider the plane stress analysis of a two-dimensional heterogeneous structure com-
prising steel and rubber subcomponents (see Figure 2). The. global structure is
clamped at one end and is subjected to a horizontal and vertical point loads at the
top of the other end. The nearly incompressible rubber subcomponents are char-
acterized by a Young modulus E( rubber) = 5.0 x 107 N/mm2 and a Poisson ratio
,( rubber) = 0.48, and the steel subcomponents by E""' = 2.05 x 10 11 N/mm2
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and veteel = 0.3. The numerical difficulties of this problem are spurred by its
high degree of heterogeneity, measured here by the ratio E, ""I/Erubber = 4098,
and by the presence of a crosspoint between extremely stiff and extremely flexible
subdomains.

Figure 2. A heterogeneous steel/rubber plane elasticity problem.

Four different meshes are constructed for the solution of this problem using 4, 16,
64, and 256 subdomains. All meshes verify H/h = 8. The FETI method is used
with: (a) the Dirichlet preconditioner weighted by the number of subdomains
connected to an interface point, (DR) and (b) the smoothing based new Dirichlet
preconditioner summarized in Eqs. (32) and (38) (SMTH). The convergence re-
sults are reported in Table I where Neq and Nat, denote, respectively, the number
of equations associated with each finite element discretization and the number of
iterations. All computations are performed using MATLAB.

Table I. Solution of a Steel/Rubber Heterogeneous Plane Elasticity Problem

FETI solver
Dirichlet precond. (DR) vs. new smoothing based Dirichlet precond. (SMTH)
Global convergence criterion: JjAx - b11 2 < 10 -6 x IjbI12

H h Neq Ns Nat, Nit,
(DR) (SMTH)

1/2 1/16 612 4 35 11
1/4 1/32 2520 16 105 39
1/8 1/64 10224 64 153 80
1/16 1/128 41478 256 246 82

The FETI method is shown to converge three times faster with the new smoothing
based Dirichlet preconditioner than with the original Dirichlet preconditioner.
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GII PERFORMANCE PARALLEL MULTIGRID
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SUMMARY

We describe a high performance parallel multigrid algorithm for a rather general class of unstruc-
tured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured
multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan
and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse
grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse
developed by Baumgardner and Frederickson.

INTRODUCTION

The fundamental task of the algorithm PUMG is to solve a large sparse linear system of the form

Au=v
	 (1)

as efficiently as possible, since it will likely need to solve it repeatedly. We assume that a tolerance
e has been given, and that an approximate solution u is acceptable if the residual

r = v — Au	 (2)

satisfies 11 r 11 G E. For clarity we refer to u as an e—approximate solution when this is the case. In
many cases the sparse matrix A will be symmetric and positive definite, which makes the theoretical
analysis easier, but we observe excellent convergence for rather general nonsymmetric systems as well.
We assume that egn.(1) is the discretization, by some linear process, of the continuous linear system

Au = v	 (3)

on a smooth two- or three-dimensional manifold Q. One of the advantages of the algorithm PUMG
is that this may as well be an unstructured discretization. Internally, PUMG uses a cell-based
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discretization algorithm to construct the coarse grid approximations, even though the given sparse
linear system (1) may have been the result of a quite different discretization process.

The continuous linear system (2) may well be the variational equation of a nonlinear system which
is to be solved by Newton's method, or it may represent an implicit time step in the evolution of
a hyperbolic system

.77(t, u(x, t)) = v(x, t). 	 (4)

PUMG was developed for the implicit time step of a hyperbolic system of this form, namely the
shallow water equations on a sphere, which explains our interest in efficiency.

Higher order interpolation is the first key to higher performance in the unstructured multigrid
algorithm PUMG. Since the concept of polynomial reconstruction on which we base our interpolation
is not yet widely known, we devote the third section to a clarification of this idea and a description
of how it is used to construct the interpolation operator Q used in PUMG.

The second key to higher performance in PUMG is the use of more than one coarse grid at
every level, in a manner somewhat analogous to that in the algorithm PSMG [13][14]. We make this
concept of tree structured multigrid more precise in the fourth section. The third key is the use of a
well tailored local approximate inverse in the smoothing step of PUMG. In the fifth section we discuss
the quadrature based smoother QBS introduced by Baumgardner and Frederickson at the 1993 Copper
Mountain Conference and contrast it with the IL1U, LS and DB smoothers.

UNSTRUCTURED CELLULAR DECOMPOSITIONS

There is no longer any doubt about the advantages of unstructured grids in the high precision
solution of many real world problems. Their flexibility allows the gridding of complicated domain
shapes more readily, and allows local mesh refinement in regions where the solution develops high
gradients. The early work of Bank and Sherman [3-5], Bank and Rose [2], and others gives ample
evidence of this, along with the fact that multigrid can be adapted to the solution of these problems.
Convergence rates for unstructured multigrid algorithms remain somewhat slower than they are for
classic multigrid however, which is one of the motivations for the current algorithm. We observe that
general cellular -decompositions of a domain offer computational advantages over decompositions that
use only tetrahedra and hexahedra. For example, several times as many tetrahedra of a given maximal
diameter are required to fill a region as are required for well-proportioned cells. This increases the
cost of most aspects of the computation. We claim that the concept of cell center is not important
in cellular discretizations, as it is better to think of a quantity as distributed over the cell rather than
located at any one point. For higher order accuracy this distribution will, of course, be nonuniform.
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IIIGHER ORDER POLYNOMIAL RECONSTRUCTION

The first key to high performance in a multilevel solver for unstructured grids is a high-order
interpolation operator Q for transferring a subgrid solution to the next higher level. From the cellular
discretization viewpoint, this implies a model for the distribution within each coarse cell of the
variable to be interpolated to the finer cells.

We will construct this distribution using a polynomial reconstruction algorithm R that constructs
a polynomial p i in each cell Ci using the state u j in neighboring cells Cj . Exactly how we choose
a neighborhood will depend on several factors, including the desired degree k of the reconstruction.

We will require at least (kd I cells, including cell Ci itself, to reconstruct a polynomial of degree

k in d dimensions. When the cellular decomposition is fairly uniform we usually find that the cells
contiguous to a given cell, together with that cell, form a sufficiently large neighborhood to support
quadratic reconstruction. Boundary cells will need to use a more one sided neighborhood if they
require the same degree of reconstruction. The effect of this is not so severe if there is a layer or two
of smaller cells near the boundary, with further refinement in the corners. This boundary refinement
is often advantageous for a variety of other reasons, one of the advantages of an unstructured grid.

To make the concept of neighborhood precise we denote by Ni the set of indices j of the cells Cj
in the chosen neighborhood of cell Ci . For simplicity we will assume that the system we are solving
is scalar, and we will represent it with a state vector u = (ui). The vector of polynomials that results
from the reconstruction will be denoted pi = (pi) in the following discussion. In each case the index
i runs over the list of cells in the unstructured grid.

We will define an operator R that constructs a polynomial of degree k in each cell to be a k-exact
polynomial reconstruction operator if it satisfies the following three axioms:

Axiom 1; The operator R preserves cell averages. If we denote by S the discretization operator that
computes the average of a variable over each cell, then R satisfies

p = Ru ==:> u = Sp.

Axiom 2: The operator R is k-exact in that it reproduces polynomials of degree k exactly:

pEPk , u=Sp==^,p=Ru.

Axiom 3: The operator R is local in that it constructs the polynomial in cell Ci using the values of
u j in neighboring cells Cj only:

uj = 0 , 1 E Ni ==^* (Ru) i	 0.

Note that Axiom 1 simply states that R is a right inverse of the averaging operator S:

SR = I	 (5)

and Axiom 2 states that R is a left inverse to S restricted to the space of degree k polynomials:

RSp = p, p E Pk .	 (6)
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From these two equations it should not be surprising that the reconstruction operator R is a pseudo-
inverse of some sort. in fact, the construction below builds R as a sparse block matrix, each row of
which constitutes a Moore-Penrose pseudo-inverse of S.

This concept of k-exact reconstruction on unstructured grids was introduced by Frederickson and
Barth [12] for use in a high-order CFD solver on unstructured grids, and has been further developed
by Barth [b], Coirier and Powell [9], and others for a variety of applications in fluid dynamics.
This appears to be the first application or k-exact reconstruction to an unstructured and non-nested
multigrid solver.

Numerical Construction of R

We prescribe a unique operator R satisfying these three axioms by choosing the one with the
smallest coefficients, in the least squares sense. This description of R as the solution of a variational
problem allows it to be constructed with the linear least squares procedure that we describe below.
Better yet, this construction is fairly inexpensive, as each row of R, when represented as a block
matrix, is constructed independently. The computation proceeds as follows:

Step 1: For each j, choose a list Nj of
/
n j cells that neighbor the cell Cj , (including the cell Cj

itself), enough so that nj > I d .
Step 2: For each j, choose a local basis < pl , p2i ... , p,' > for Pk on the cell Cj , compute

the averages of these m =i d I basis functions on cell Cj, and enter these as the jth

column of the matrix W:

Wij = (Sp0 j •

Step 3: For each j, form the m by nj matrix V by deleting all columns of W not in Nj and
translating the remaining columns to the local coordinate system of cell Cj . Beginning
with a QR-factorization of the matrix VH , compute the Moore-Penrose pseudo-inverse
of V and enter this as the jth row of the sparse block matrix representation of the
reconstruction operator R. During the QR-factorization make sure that the matrix is of full
rank, otherwise the list of neighbors must be increased.

In practice we avoid forming the matrix V H explicitly for input to the QR algorithm, and instead
apply the transpose of the QR-factorization algorithm to V itself. This modified algorithm factors V
into the product of a lower triangular matrix L and an orthogonal matrix Q, and therefore is sometimes
referred to as the LQ-factorization of a matrix. We recommend the use of either Householder rotations
or Givens reflections in carrying out the factorization. Finally, we wish to warn the reader of a
notational conflict: the Q and R of QR-factorization have nothing to do with the reconstruction
operator R or the interpolation operator Q that we discuss next.

The Operator Q
The interpolation operator Q that transfers the state u from a coarse grid to a finer grid is constructed

from the reconstruction operator R in such a way that each application of the operator Q is equivalent
to the following three steps:
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Step 1: Reconstruct pi = (Ru) i on each cell Ci of the coarse grid.
Step 2: Intersect each cell Ci of the coarse grid with every cell Ci, of the finer grid, and transfer

pi to that intersection.
Step 3: On each cell Ci, of the fine grid apply the averaging operator S to the resulting piecewise

polynomial function.

For the sake of computational efficiency, however, this use of the reconstruction operator R in
constructing Q is carried out only during the setup phase, and results in an explicit sparse matrix
representation of the interpolation operator Q. The most difficult step in this construction is forming
the grid which is the intersection of the coarse grid and the fine grid because our grids are not generally
nested. In saying this we assume that the averaging operator S, which is able to compute the average
over an arbitrary cell of a polynomial p E Pk , is already available.

TREE STRUCTURED PARALLEL MULTIGRID

The second key to rapid convergence is the use of more than one coarse grid at every level,
resulting in a tree structured algorithm. The convergence is sufficiently faster for difficult problems
to justify the somewhat greater computational complexity, which is not excessive if the subgrids are
coarse enough. The code complexity is not significantly greater, as the code fragment shown in Figure
1 demonstrates. The variable node in this routine points to a data structure that contains everything
that would be needed at one level of an ordinary multigrid algorithm such as FAPIN; in addition,
this data structure includes pointers to the nodes that contain the next finer grid and pointers to the
nodes that contain all coarser grids.

LOCAL APPROXIMATE INVERSES AS SMOOTHERS

The third key to the strong convergence of PUMG is the use of a well engineered local approximate

inverse Z to remove the high frequency part of the error via the two step smoother

r<— v — Au	 (7)

U <-- u + Zr.	 (8)

The widely used ILU smoother, or incomplete Cholesky smoother introduced by Van der Vorst [10]
and Meijerink and Van der Vorst [15], is almost of this type, but not quite, for although Z = U-1bL-1
is implicitly local and can be applied at much the same cost as the other three smoothers described
below, it has a derivation which differs considerably. The idea behind incomplete Cholesky is to
follow the Cholesky algorithm for computing the lower triangular factor L and the upper triangular
factor, U with one exception: as each element is computed, it is set equal to zero if it is located outside
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void PUMG::solve( pumg_node *node ){
if( NULL == node->upper_node ){

node->data_in_u = 1;
resid( node->r, node->v, node->A, node->u, node );

}

else{
node->data_in_u = 0;
project( node->v, node->P, node->upper_node->r, node );
copy( node->r, node->v, node );

}

smooth( node->u, node->Z, node->r, node );
resid( node->r, node->v, node->A, node->u, node );
for( int i=0; i<node->num sub_grids; i++ ){

PUMG::solve( &(node->1ower_node[i][0]) );
}

if( 0 < node->num—sub_grids ){
resid( node->r, node->v, node->A, node->u, node );

}

smooth( node->u, node->Z, node->r, node );
if( NULL != node->upper_node )

interp( node->upper_node->u, node->Q, node->u, node );
}

Figure 1. The main loop of PUMG.

of the prescribed neighborhood N of the identity. In the earliest version this was taken to be exactly
the nonzero set of the sparse matrix A, and in later versions this was enlarged for difficult problems,
to avoid zeroing our elements of significant size.

The ultimate goal of the approximate inverse smoother Z is to minimize the spectral radius of
the whole multigrid cycle, with the sparsity pattern of Z as the only constraint. Although it is easy
enough to construct such an optimal Z for constant coefficient periodic problems, as demonstrated in
[ 14], it becomes rather expensive for general unstructured grids. A much less costly approach is to
focus on the smoother step alone, and construct Z so that

II (I — AZ)r JI 	 (9)

is small for all r of high spatial frequency. More precisely, we would like to minimize the maximum
of this expression as r varies over the null space of the projection operator P. Alternatively, one could
focus on the errors rather than the residuals, and seek Z such that

II (I — ZA)eII	 (10)

is small for all e such that Ae is in the same null space. These are global optimization problems,
however, and expensive enough that we would prefer a local alternative. We describe three effective
alternatives below.
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The LS Approximate Inverse
The first of these, the LS approximate inverse Z, is constructed explicitly as the minimum of the

quadratic functional

M(Z) = III — AZ 11 2 	 (1- AZ) i j 
1 2
 =
	 ((I_ ZH AH) (I — AZ)) ..	 (11)

g,2
i, j	 i

(the square of the Frobenius norm) subject to the constraint that Z must vanish outside chosen
neighborhood N of the identity. The quadratic functional M has the property that the minimizing Z is
easily computed one column at a time. To see this, let z k denote the kth column of Z, let yk = Axk,

and let Nk denote the kth column of N, namely the set of indices i such that z (or Zi,k ) is allowed
to be non-zero. Then

M(Z) E Mk (Z),	 (12)

k
where

Mk(Z) —	 I (6i,k yk) I 2 .	 (13)
i

Thus to construct the optimal Z we only need to choose zk to minimize Mk (Z) and do so for each
k. But this optimal zk satisfies the system of equations

Bi ,jzj — A k , i E Nk ,	 (14)

where
Bi j= f (AH A) i j if i E Nk and) E Nk	 (15)

0	 otherwise

If we wish to focus on the errors, rather than the residuals, and ask that Z minimize III — ZAIj2 subject
to the same sparsity constraints, we find that the rows of Z satisfy essentially the same equation, but
with AAH replacing AHA in the definition of the small matrix B, and with A rather than A  on
the right hand side.

The LS approximate inverse was introduced by M. W. Benson in his 1973 thesis, referenced in
[7], and has served as an effective smoother in the v-cycle multigrid algorithm FAPIN for twenty
years now. (See [8] and [1] and the reports referenced therein.)

The DB Approximate Inverse
When the sparse matrix A is self adjoint there is another approximate inverse that is even easier

to compute because it doesn't involve forming blocks of the normal matrix AHA; in most situations
this approximate inverse works almost as well as the LS approximate inverse in a defect-correction
smoother. The idea is to weight the quadratic functional M(Z) with A-1:

M(Z) —	
((I — ZHAH)A— ' (I  — AZ)) —

	
(I — ZH A — AZ + ZHAZ) 

	 (i6)
and observe that the columns of the optimizing Z now satisfy the system of equations

Ai,jz^ = bi,k , i E Nk .	 (17)

7

This is also discussed in [7] and the reports listed therein.
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The Quadrature Based Smoother (QBS)

For an even more effective smoother we recommend the quadrature based smoother introduced
by Baumgardner and Frederickson at the 1993 Copper Mountain conference. The idea of behind QBS
is to minimize a quadratic functional of the form

.F(Z) _ ^ ci11J — ZA ) e i^^A^	 (18)
i

where the carefully chosen set of errors e i , together with the weight c i associated with each, are chosen
to represent the expected error before smoothing. In particular, they are chosen so that the associated
residuals ri = Aei span the null space of the projection operator P. This quadratic functional may be
viewed as quadrature approximation to an energy integral of the form

F( Z ) _	 JI(I — ZA)e^^Adµ(e),
L2

where the measure µ is chosen to represent the energy in the error just before smoothing. Indeed,
they may be put exactly into this integral form by the simple expedient of choosing the measure IL
to vanish except at the points ei and giving it the value ci there. It is this viewpoint that allows us
to refer to the errors ei as quadrature points in L2..

Because these quadratic functionals are positive definite, they each have a unique minimum when
restricted to the space of sparse matrices Z of given sparsity structure. In every case the algorithm
for constructing this optimum Z is entirely local, because the first variation b.F is a block diagonal
matrix, each block of which involves only one row of Z and nearby rows of A. To be specific, the
(sparse) row z = zi of the sparse matrix Z satisfies an equation of the form

Wz = b,	 (19)

in which W and b are constructed as follows. For each of the e k , evaluate Yk = s k Aek , where sk is
the sparsity of the row e k . Let ek denote the element of the vector e k in that row. Then

W = I: ckYkYT k and b = E ckYk ek •	 (20)
k	 k

Because Z is sparse this system is easily solved, for the order of the system is the number of nonzeros in
a row of Z. We have found that by choosing the quadrature points ek and the weights ck appropriately
we are able to construct a nearly optimum smoother. In very difficult situations, with strongly varying
coefficients and/or cell sizes in some localities, we allow Z to fill a larger neighborhood of the identity
in these localities in order to obtain a spatially uniform rate of convergence. All in all, our best
smoother for these problems is QBS. When there are few enough of ek , this least squares approach
reduces to an exact solve, and the resulting smoother anihilates these errors exactly. In this case
we might also refer to Z as a collocation approximate inverse by analogy with other collocation
algorithms in numerical analysis.
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CONCLUSION

We find that higher order interpolation, important to faster convergence in an unstructured multigrid
algorithm, can be effectively constructed using the polynomial reconstruction algorithm of Barth
and Frederickson. Tree structured multigrid algorithms are an additional means of gaining faster
convergence in unstructured multigrid. The most efficient smoothers for unstructured problems of this
sort are the quadrature based smoothers indtroduced in 1993 by Baumgardner and Frederickson.

We would like to conclude with a note of thanks to Craig and Marietta Douglas for the bibliography
[I I ] which they have constructed for our use, and to Steve McCormick for organizing this sequence
of conferences. The catalytic effect on multigrid research of both of these efforts is clear to all of us.
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A CELL-CENTERED MULTIGRID ALGORITHM
FOR ALL GRID SIZES*

Thor Gjesdal
Christian Michelsen Research A/S

N-5036 Fantoft, Norway

SUMMARY

Multigrid methods are optimal; that is, their rate of convergence is independent
of the number of grid points, because they use a nested sequence of coarse grids to
represent different scales of the solution. This nesting does, however, usually lead
to certain restrictions of the permissible size of the discretised problem. In cases
where the modeler is free to specify the whole problem, such constraints are of lit-
tle importance because they can be taken into consideration from the outset. We
consider the situation in which there are other competing constraints on the resolu-
tion. These restrictions may stem from the physical problem (e.g., if the.discretised
operator contains experimental data measured on a fixed grid) or from the need to
avoid limitations set by the hardware. In this paper we discuss a modification to
the cell-centered multigrid algorithm, so that it can be used for problems with any
resolution. We discuss in particular a coarsening strategy and choice of intergrid
transfer operators that can handle grids with both an even or odd number of cells.
The method is described and applied to linear equations obtained by discretisation
of two- and three-dimensional second-order elliptic PDEs.

INTRODUCTION

Multigrid methods have during the last decades developed into an important tool
in many areas of scientific computation. Because they use a nested sequence of grids
to represent different scales of the solution, the multigrid algorithms are optimal in
the sense that their computational complexity is linearly proportional to the total
number of unknowns in the discretised problem. This nesting does however lead to
certain restrictions on the permissible size of the discrete problem, similar to those
encountered in other efficient `divide-and-conquer' algorithms such as the fast Fourier
transform or cyclic reduction. In a standard multigrid algorithm, coarsening is usually

* This work was supported by the Research Council of Norway through Grant number 100556/410
and program number STP-30074.
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performed by doubling the mesh-spacing. The number of cells in the grid will then
be of the form nl = C1 2k , where ni is the number of cells in direction l and C, is some
suitable (small) integer. Early applications of multigrid methods for general grid sizes
consisted of padding the fine grid with empty cells. Such padding can lead to potential
large overheads in storage requirements and computational complexity. Dendy [1] and
Adams [2] have both described modifications of vertex-centered multigrid algorithms
that are extended to handle general grid-sizes. In cases. with an odd number of cells,
Dendy employs a dummy point on the coarse grid, while Adams has devised a special
coarsening strategy using a uniform grid spacing at all levels.

Often the modeler is free to specify the whole problem, and then such constraints
are of no importance because they can be taken into consideration from the outset.
We consider here the situation in which there are other competing constraints on
the resolution. These restrictions may stem from the physical problem (e.g., if the
discretised operator contains experimental data measured on a fixed grid) or from
the need to avoid limitations set by the hardware. We believe that these restrictions
must be overcome if the multigrid methods are ever to become a standard inventory
in the modeler's toolbox.

In this paper we discuss a modification to the cell-centered multigrid algorithm,
so that it can be used for problems with any resolution. The cell-centered algorithm
is attractive because cell-centered discretisations are in widespread use, and cell-
centered multigrid also has the ability to handle problems with discontinuous or
rapidly varying diffusion coefficients using standard grid transfer operators [3, 4, 5].

In the next section we will describe the method with special emphasis on the grid
coarsening and construction of the intergrid transfer functions. We will apply the
method to linear equations obtained by discretisation of two- and three-dimensional
second-order elliptic PDEs and show that the convergence rates are indeed indepen-
dent of the grid size (even grids with an odd number of cells).

MULTIGRID ALGORITHM

Two level algorithm

To describe the method, we will consider a two-level algorithm for the discretised
problem

Au = b,

where A is the discretised differential operator, which we assume is linear. The
two-level algorithm consists of a smoothing step and a correction step where the
update to the solution is calculated on a coarse grid. The two components of the
multigrid algorithm are complementary; that is, smoothing is used to reduce high
frequency error components, while the coarse grid correction is good at eliminating
low frequencies in the error. We will denote coarse grid quantities by an overbar, and
we can then write the algorithm in symbolic form as

M = S-2 (I — PV RA) S-1,
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Level	 5 4 3 2 1
nxxny	 64x64 32x32 16x16 8x8 4x4

65x17 33x9 17x5 9x5 5x5

Figure l: Multigrid hierarchy for five-level system to illustrate grid coarsening strat-
egy.

where M is the two-level error reduction operator; R, P are the restriction and pro-
longation operators, and 5 is the smoothing operator with vl , v2 the number of pre-
and post-smoothing sweeps, respectively. We obtain the multigrid algorithm by re-
cursive application of the two-level algorithm to solve the coarse level defect equation
Ae = Rr = R(b — Au).

Grid coarsening

For a given fine grid, we choose the coarse grid size as

ni = [ni /2] + mod(n l , 2)	 (1)

where L•] is the floor function. Standard coarsening, or coarsening in all coordinate
directions, is performed as far as possible. For rectangular grids, semi-coarsening is
then continued until the coarsest grid has a small number of cells in each direction. In
this way, a coarse grid hierarchy is defined for any fine grid, and multigrid iterations
can be performed. To illustrate the coarsening strategy, figure 1 shows an example
of two five-level systems. The first example shows the standard case with a suitable
number of cells and full coarsening in four levels. In the second example we have `bad'
numbers (an odd number of cells in both directions and a moderately rectangular
grid). Then we apply full coarsening for two levels and continue semi-coarsening for
two levels to obtain a small system on the coarsest grid.

Transfer operators

In this section will we describe the restriction and prolongation operators. For
simplicity we will concentrate on the one-dimensional operators. We will then describe
briefly how we obtain the higher dimensional operators.

The grid transfer operators must satisfy the well-known accuracy requirement

MR + MP > 2M,

where MR and mp are the order of the restriction and the prolongation, respectively,
and 2M is the order of the differential operator. The order of the grid transfer opera-
tors and this rule can be determined either by considering how the interpolation acts
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on the Fourier components (Brandt [6], Hemker [7]) or the order of the polynomials
used in the interpolation rule (Hackbusch [8]). If we consider second order elliptic
operators, we will use a restriction based on linear interpolation, which gives MR = 2,
and for the prolongation we will use piecewise constant interpolation (mp = 1). This
seems to be more robust than the opposite alternative (MR = 1, MP = 2) [9].

Prolongation, or coarse -to-fine interpolation, is performed by cell -based piecewise
constant interpolation; that is, the coarse grid function values are transferred directly
to the fine-grid points that belong to each coarse grid cell.

The fine-to-coarse restriction is defined by the average

2Gi = (Ru) i =	 R(i, )u«i+j , a = rn lnj	 (2)

The one -dimensional restriction operator is given by the adjoint of linear interpola-
tion. In the standard case, where n is an even number, this restriction is simply given
by the stencil

R=4[1 3 3 1].

In general, when n is either odd or even, we can envisage two methods to construct the
restriction operator. First, we can adopt an approach akin to that of Adams [2] and
assume that both the coarse and the fine computational grids are given as a uniform
distribution of cells on the unit interval, with spacing h = 1/n. The restriction
weights can then be calculated by

R(i,	 max {0,1 = 1(21 + j — 1 )h — (i — 2)h) /h .) } .	 (3)

This will give a three- or four-point stencil in all cases. These restriction weights
should be scaled so that they add up to the ratio n/n [10]. If the fine grid has an
even number of cells, this formula will reproduce the standard stencil.

This approach will unfortunately not produce a stable coarse-grid operator when
we use the Galerkin approximation, and as a consequence the convergence rate of the
method will deteriorate. We have therefore instead developed a restriction operator
based on true cell-based coarsening. In this case, one cell at the boundary will be
identical to the boundary cell at the finer level, as illustrated in figure 2. A similar
aproach was suggested by Hutchinson and Raithby [11] in connection with the use
of a low-order restriction operator. For a restriction based on the adjoint of linear
interpolation we must modify the stencil in the cells close to the boundary. We get

R(n — 1,:) _ [ 
4 4 1 — w 0 ]^

R(n, :)	 _ [ w 1	 0	 0 ],

where w = alb. If k is the number of immediately preceding finer levels that has an
odd number of cells, . a and b are given by

al = 1 ak = 2ak_1,

bi = 3 bk = 2bk-1 — 1.
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Fine Grid

Coarse grid

Figure 2: Fine and coarse cells at boundary when the fine grid has an odd number of
cells. The numbers indicate the restriction weights for the end point.

When semicoarsening is used, a direction exists in which n = n. In this case
a = 1, and both the restriction and the prolongation are given by the identity operator
I=[0 1 0].

In the multidimensional case, the stencils for restriction and prolongation are
determined by tensor products of the one-dimensional stencils. If we let i and j
denote multi-indices, we will for example have for the restriction stencil in 3D

R3D (i j ) = R- ( z 1,7i)R1 (z2J2) RZ (i3J3)•	 (4)
In other words, in two- and three dimensions restriction will be given by the adjoint
of bi- and tri-linear interpolation, respectively.

Coarse grid approximation

There coarse grid matrices are determined by the use of the Galerkin approxima-
tion A = RAP. The Galerkin coarse grid approximation is preferable to straightfor-
ward discretisation, because the coarse grid operator can be automatically calculated
from the fine grid stencils. This can give the multigrid solver the appearance of a
black-box solver where the user only has to supply the coefficients of the discretised
equations.

Because the restriction operator is based on bi- and tri-linear interpolation in
higher dimensions, the coarse grid stencil will be full (9 points in 2D, 27 points
in 3D.) The stencil elements can readily be calculated by the algorithm given by
Wesseling [10].

Smoothing

A point that should be noted is that the coarsening strategy we described in the
previous section may change the (an-)isotropy of the coarse-grid operator compared
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to the operator on the fine grid. This might have to be taken into consideration when
we select the smoother. In two dimensions the alternating line Gauss-Seidel method
is a robust smoother that is not too expensive. In practice its performance is often
quite comparable to Red-Black point relaxation even for isotropic operators. In 3D,
the only really robust smoother is alternating plane relaxations, which unfortunately
is rather expensive even if a multigrid method is used, to solve the two-dimensional
planes. It is therefore difficult to recommend this smoother without reservation. If
we have enough knowledge of the problem at hand to decide that a line relaxation
method would suffice, a potential gain can be harvested, but for a truly black-box
solution plane relaxation is probably the safest bet.

Implementation aspects

In this section we will discuss briefly some practical aspects of the algorithm. The
use of one-dimensional interpolation rules makes the implementation fairly modular,
and by using features such as derived data types and dynamic memory allocation that
are now available in Fortran we have written a combined two- and three-dimensional
solver where the PDE can be discretised on any compact stencil (the most common
are 5, 7, or 9 points in 2D and 7, 12, 19, or 27 points in 3D). With the use of recursion,
it is also possible that the solver calls itself for plane smoothing in 3D problems.

Depending on how restriction and prolongation are treated, a modest overhead re-
lated to the transfer operations will be realized. In our implementation, this overhead
is on the order of nx x ny x nz floating point operations (roughly equivalent to one
residual calculation on the fine grid) per iteration and nx+ny+nz memory locations.
The overhead related to work can however be eliminated if all stencil elements are
precomputed and stored. This option will of course lead to a larger storage penalty.

COMPUTATIONAL EXAMPLES

In this section we will demonstrate the convergence of the method for some selected
test examples.

Laplace/Poisson equation

First we consider the Laplace equation on rectangular, regions with Dirichlet or
Neumann boundary conditions.

V2u = 0, x E n
U = 1 1 x E ,9Q or

^
n = 0

1 x E &22
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Table 1: Two-Dimensional Laplace Equation with Dirichlet Boundary Conditions

Grid size	 Levels Reduction factor Iterations
31 x 31	 4 0.051 10
32 x 32	 4 0.052 10
33 x 33	 4 0.052 10
50 x 50	 5 0.050 10
63 x 63	 5 0.074 11
64 x 64	 5 0.053 10
65 x 65	 5 0.059 10
99 x 99	 6 0.061 10

150 x 150	 6 0.053 10
65 x 33	 5 0.058 10
101 x 50	 6 0.053 10

2D and 3D calculations with a uniform fine grid

The first set of calculations is performed on the Laplace equation with Dirichlet
boundary conditions in a case in which the grid spacing is the same in each direction,
so that the fine-grid operator is isotropic. The iterations start off from random initial
values in the unknowns and are performed until the residual norm is reduced by a
factor of 10 -12 . The average residual reduction rate, K, is defined as

1/n

Ciir'112

Table 1 shows results of two-dimensional calculations using alternating line Gauss-
Seidel as the smoother for a series of different grid sizes. The results are given for a
V(0,1) (sawtooth) cycle. We see from the table that the method works equally well
for problem sizes that include both `good' and `bad' multigrid numbers.

Results of three-dimensional calculations are given in table 2. The results indicate
that the alternating line smoother is sufficiently robust to handle cases in which either
odd-numbered grids or semi-coarsening lead to anisotropy in the coarse grid problems

Table 2: Three-Dimensional Laplace Equation with Dirichlet Boundary Conditions

Grid size Line GS Plane GS
Reduction Iterations time Reduction Iterations time

31 x 31 x 31 0.036 9 0.93 0:016 7 5.36
32 x 32 x 32 0.031 8 1.00 0.015 7 5.67
33 x 33 x 33 0.031 8 1.07 0.029 8 7.73
32 x 15 x 19 0.034 8 0.29 0.014 7 1.81
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Table 3: Two-Dimensional Laplace Equation with Homogeneous Neumann Boundary
Conditions on a Stretched Grid

Stretching factor: 1.0 1.2 100
Grid size K n K n /C	 n

8 x 8 0.139 8 0.136 8 0.024	 5
16 x 16 0.169 9 0.153 8 0.067	 7
32 x 32 0.210 9 0.221 9 Diverge

as long as the problem on the fine grid is isotropic. The dramatic slow-down seen
in the case where we use alternating plane relaxation may be caused by the start-up
overhead of the multigrid solver. A way to alleviate this might be to rework the
plane-smoother to precompute the coefficients in all the planes. This will however
lead to a considerable storage overhead. Another alternative is to investigate whether
the three-dimensional coefficients that are already computed can be used also in the
plane solver.

Examples with a non-uniform grid

In this section, we will study the effect of anisotropy by introducing a nonuniform
grid. Botta and Wubs [12] have shown that solution of partial differential equations
on a stretched grid can pose a challenging test case for iterative methods. One of
their test cases consists of the two-dimensional Laplace equation on the unit square
with homogeneous Neumann boundary conditions. The initial field is given by f =
X2(1 — y) 2 , and the convergence criterion used is that the absolute error should be
below 10'. The grid is generated by geometric stretching so that s = h2+1 1ha is
constant. We use a V(0,1) cycle and . the alternating line smoother; the results are
shown in table 3. We note that the method fails to converge for large values of the
stretching factor. The experiments indicate that a critical stretching factor exists
depending on the grid size,- and that iterations will diverge if the stretching is greater
than this limit. In practice will we however only encounter moderate stretching,
because an appreciable loss of accuracy occurs even for stretching factors larger than,
say, s — 5/4.

We also performed the same experiment in a 3D case with a 32 3 grid, and we
noticed that for moderate stretching rates, s < 2, we obtained essentially no degra-
dation in the convergence using the alternating line smoother. For s = 5, we did,
however, notice a significant slow-down as expected.

Stone's problem

This problem was introduced by Stone [13] as a test case for the Strongly Implicit
Procedure (SIP), which is a relaxation method based on an incomplete LU decompo-
sition. The problem consists of a heterogeneous diffusion problem on the unit square
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Figure 3: Geometry for Stone's model problem.

given by

V • [diag(If,,, If,)Du] = f, (x l y ) E [0,1]
 2,

n• Vu = 0.
r

The geometry of the problem, specifying the conductivities and the sources, is de-
picted in figure 3. This problem was solved on a grid with 30 x 30 cells, using 4 levels
in the multigrid iterations. The initial field was identically zero. The convergence
factors for this problem are given in table 4.

SIMPLE pressure correction equation

The pressure correction equation in the SIMPLE algorithm for solution of the
incompressible Navier-Stokes equations can be interpreted as an elliptic operator in

Table 4: Stone's Model Problem (c = 10 -8)

Cycle Reduction factor Iterations
V(0,1)
V(1,1)

0.24
0.09

13
8
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Table 5: Pressure Correction Equation in the Two Backward Facing Step Examples;
Results for the First 20 Outer Iterations

Iteration
BF_ S

K n
BFS-POR

K	 n

1 0.100 9 0.125 10
2 0.101 9 0.253 15
3 0.096 8 0.267 15
4 0.090 8 0.234 13
5 0.081 8 0.174 11
10 0.080 7 0.185 11
20 0.096 8 0.179 10

Average 0.089 0.191

the form
D(yGp') = Du,

where D and G are discretised divergence and gradient operators, respectively, p' is the
pressure correction and u is the intermediate velocity field. The diffusivity y consists
of the inverse of a diagonalisation of the momentum operator and geometric terms.
The equation is usually employed with homogeneous Neumann boundary conditions.
The multigrid solver has been used to solve the pressure correction equation for the
test case of a backward-facing step at Re = 800. The step size was half the channel
height, and the channel had a length of 30 step heights. The grid had 30 x 10 cells,
which gives a grid aspect ratio of 5 : 1.

In the first test, the standard set-up from the benchmark results of Gartling [14]
was used. In order to assess the effect of the use of porosities on convergence rates,
we performed a second test in which a thin vertical plate with zero porosity and a
height equal to the step height was placed in the channel downstream of the two main
recirculation bubbles. Table 5 shows the residual reduction rates for the multigrid
solver in the two examples. The results show that even though the convergence of the
solver deteriorates in the case for which we have zero porosity (and as a consequence,
zero diffusivity y), its performance is still good.

CONCLUSIONS

We have described a generalisation of the cell-centered multigrid algorithm to
cover problems with general resolution. Smoothing and the multigrid scheduling are
not affected by the extensions, but changes have been made in the grid coarsening
strategy and, consequently, in the design of the intergrid transfer operators. We found
that cell-based coarsening was better than a mapping of the coarse grid to a uniform
mesh. Numerical experiments show that the solver gives multigrid convergence for all
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grid sizes in a number of test cases. The alternating line Gauss-Seidel relaxation is a
good smoother for the two-dimensional solver. Its performance was also satisfactory
in some 3D problems. In some cases involving extreme grid stretching the method
seems to fail. This failure is, however, of small practical importance.
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Abstract

A robust solver for the elliptic grid generation equations is sought via a numerical study. The
system of PDEs is discretized with finite differences, and multigrid methods are applied to
the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect
to the robustness and efficiency. Different smoothers are tried to improve the convergence of
iterations. The methods are applied to four 2D grid generation problems over a wide range
of grid distortions. The results of the study help to select smoothing schemes and the overall
multigrid procedures for elliptic grid generation.

INTRODUCTION

Numerical grid generation arose from the need to compute solutions of partial differential equations
defined over physical domains with complicated geometry. By transforming a physical domain to a
simpler computational region (e.g., a square or a cube), the complication of the shape of the domain
is removed from the problem. Although the transformed PDEs over the simple region are usually
more complicated, they are easier to discretize with finite difference or finite volume methods. The
domain transformation can be viewed as an introduction of a general curvilinear grid on the original
domain. This explains the name: grid generation.

The basic grid generation problem can be formulated in the following way: given a physical
domain Q E Rd , a computational domain U E Rd , and a nonsingular parametric mapping ax of the
domain boundaries

ax:au —+asp

extend this mapping to a mapping
x:U-+0

from the computational region to the physical domain. Here d denotes the dimension of the space
containing Q, e.g., d = 2 describes planar problems. Such a mapping x is called a boundary-
conforming map, and the map generates a boundary-conforming curvilinear grid in domain Q.

Elliptic grid generation is one of the popular methods for constructing boundary conforming grids.
It constructs the grid mapping x as the solution of a system of elliptic partial differential equations
defined on U subject to the boundary condition satisfying x(aD) = asz. A major advantage of this
approach is that the curvilinear grid in Q is smooth, which results in small truncation errors_ in finite
difference discretizations of transformed differential equations. A major disadvantage is that the
grid construction itself involves a numerical solution of a system of quasi-linear elliptic PDEs and

°supported by 1994 University of Missouri at St. Louis Research Award
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requires much longer execution times than other types of grid generation (algebraic, parabolic, or
hyperbolic).

ELLIPTIC GRID GENERATION AND DISCRETIZATION

A general elliptic grid generation system of equations can be written as

	

Tx=F,	 (1)

with Dirichlet boundary conditions x(W) = aQ, where T is a second order, quasi-linear, elliptic
differential operator and F is the inhomogeneous part of the system (usually a first order differential
operator) .

A widely used elliptic system for grid generation (see [2]) is the inhomogeneous Thompson-
Thames-Mastin (ITTM) generator given by the following equations (in two dimensions):

a2	 02	 a2 1
0922 a^ 2 — 2g12 	

+ 911 a772 I x = —922PXC — 9ligxn,	 (2)

where g11 = x£ •x£, 912 = xg •xn, 922 x,, - x,, are the elements of the metric matrix and p, q are user
defined functions which allow some measure of local control of grid cells. This system, together with
appropriate Dirichlet boundary conditions, defines the mapping x : U —+ 0 from the computational
to the physical domain. For the derivation of the ITTM equations and other examples, see [2, 3].

Equations (2) may be solved numerically via standard central finite differences on a uniform,
Cartesian grid in the computational domain U. Due to the presence of mixed derivatives, the nine-
point stencil must be used. Grid points are indexed lexicographically by a two-tuple of integers
i = (i l , i2), i1 = 1, 2,..., M, i2 = 1, 2,..., N. Let X = (XI, X 2 ), where Xi is the approximation
of x(^il , rgi ,), be blockwise ordered. Orderings used in multigrid smoothers may be different and are
specified with the smoothers. In blockwise ordering we have ( , Xa , X + 1 , • • • , X; , X2 l ,	 ). The
discretization results in the following nonlinear algebraic system:

(G22(X)(Dll + PDl) — 2G12(X) D l2 + G ll(X)(D22 + Q D2 )) X = F,	 (3)

where Gki are diagonal matrices with symmetric finite difference approximations of the metrics
9kj evaluated at the nodes indexed by the two-tuples i. The matrices Dll, D12, D22, Dl , and D2
represent symmetric finite difference operators approximating the derivatives; P and Q are diagonal
matrices corresponding to the user defined functions p and q, and F is a vector containing the values
of the mapping x at the boundary nodes.

The nonlinear system (3) can be solved iteratively in one of several ways. The Newton iterations
typically converge faster for problems with mild grid distortions but lead to singular Jacobians and
divergent iterations for strong distortions. Lagging the metric coefficients Gki produces a more
robust but slower solver. At each step a linear system is to be solved of the form

(G22 (Xn ) (D11 + PDl) — 2G12 (X')Dl2 + G ll(Xn )(D22 + QD2)) Xn+l = F,	 (4)

where Gkl (X") denotes diagonal matrices with symmetric finite differences approximations of the
metrics gki at (Xn).

A simpler nonlinear iteration also lags the P and Q terms yielding the system

(G22(X" ) Dll — 2G12(X'b ) D12 + Gil (Xn )D22) Xn+l = F — (G22 (Xn )PDl + Gil (Xn )QD2) Xn.
(5)

Using blockwise ordering both of these systems can be written in a block diagonal form

	

AX=b,	 (6)
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where

A = I 0 i Az ) ,	 X = f XZ I ,	 b = bz	 (7)

At each step of the iteration the sparse nonsymmetric linear system (6) is solved using a linear
multigrid method with a V-cycle. The initial guess X° is provided by an algebraic grid generation
algorithm [2, 31.

In this paper we study the performance of various multigrid smoothers for equations (4) and 5).

MULTIGRID

In the multigrid solution of linear systems (equations (4) and (5) we have looked at 17 smoothers.
Seven of them were point Gauss-Seidel with various ordering: horizontal forward (PHF), vertical
forward (PVF),vertical backward (PVB), horizontal symmetric (PHS), vertical symmetric (PVS),
alternating forward (PAF), and alternating symmetric (PAS). Nine other smoothers were line Gauss-
Seidel variants: horizontal forward (LHF), vertical forward (LVF), vertical backward (LVB), hori-
zontal symmetric (LHS),vertical symmetric (LVS), alternating forward (LAF), alternating backward
(LAB), alternating symmetric (LAS), and alternating forward zebra (LAFZ). The last method con-
sidered was the point incomplete LU factorization smoother (PILU). Obviously the above smoothers
have different complexity counts per one iteration. Clearly, PVF and PVB have the same complex-
ity as the PHF smoother; PHS, PVS, and PAF require twice as many computations, and the PAF
smoother is 4 times as costly. The complexity of line smoothers is as follows: LHF, LVF and LVB
smoothers require 11/9 of PHF computations, the LHS, LVS, LAF, LAB, and LAFZ smoothers cost
22/9 times more, and the LAS smoother takes about 4.5 times as long.

The linear multigrid algorithm used the V-cycle with single pre-smoothing and single post-
smoothing at each level. The coarsest grid was as coarse as possible: it consisted of one internal
point (and eight on the boundary). The Galerkin coarse grid approximation was used, and a direct
solver applied on the coarsest level. The prolongation operators were bilinear, and the restriction
operators were scaled adjoints of the prolongation operators.

NUMERICAL EXAMPLES AND RESULTS

To measure performance of the algorithms, the reduction factors were used. At each step of nonlinear
iterations, n multigrid V-cycles were applied. Define r = IIR IIfrob/N3 , where R = b — AX is the
residual of equation (6), and II - Ilfr,b denotes the Frobenius norm. Denoting the norm of the residual
after the i-th V-cycle by ri we define the i-th reduction factor pi by

Pi = ri/ri -1

and the average reduction factor by 	
P = (rn/r0)1/n

The four test problems, the square, the trapezoid, the L-shaped domain (backstep), and the
airfoil, were chosen from the "grid gallery" given in [2). The domains and some 16x16 curvilinear
grids generated by the ITTM equations are given in figure 1.
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Figure 1. Grids generated on various 16x16 domains: SQUARE, TRAPEZOID, BACKSTEP,
and AIRFOIL with elliptic generators.

The first and second problems are very simple with small mixed derivatives. Problems three
and four are harder due to high values of mixed derivatives in some parts of the computational
domain. The grid control functions p and q in the ITTM equations were chosen so that the grid cells
were concentrated at the "bottom" of the domains. In the case of the airfoil the physical domain
is doubly connected. A cut emanating from the tail of the airfoil enables it to be mapped onto a
computational square. The bottom of the square corresponds to the surface of the airfoil.

We performed a series of numerical experiments for all four test problems by varying the param-
eters of the control functions. First, the reduction factors of 25 V-cycles with different smoothers
were measured for the first nonlinear iteration. To determine the best performance, the relaxation
parameter was varied from 0.1 to 1.9 by 0.1. Tables 1-4 give the reduction factors from the first 3
V-cycles and the average reduction factor for all 17 smoothers. The listed results are for grid control
functions p = 0 and q(^, ,q) _ —5 exp(-5r7) in the ITTM equations, but the results are typical for
a wide range of control function parameters. The multigrid iteration terminated after 25 V-cycles,
or after machine accuracy was reached, whichever occurred first. The last ( "asymptotic") reduction
factor p as for each smoother was also given. If the last 3 reduction factors differ by less than 0.0005,
then the value of pas was marked with an asterisk.

From these tables, we make the following observations:
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o All point and line Gauss-Seidel smoothers work for all the test problems. The "optimal"
relaxation parameters w vary significantly as the problem changes, but all of them turn out to be
larger than 1 (overrelaxation). However, the multigrid iterations converged for every tested value of
0.1 < w < 2.

• With the PILU smoother, the relaxation parameter is much less sensitive to the changes of
the problem and the grid control functions. In fact, the best values of w were contained between
0.7 and 0.9. However, the PILU smoother was divergent for the airfoil problem (example 4) for any
value of w.

+ The decrease of the reduction factor obtained from applying symmetric or alternating Gauss-
Seidel smoothers rather than forward (or backward) ones do not seem to justify the computational
costs. The reduction factors for the former are larger than the square of the reduction factors for
the latter. However, the issue of choosing the best ordering for the problem remains. The smoothers
with similar computational complexities have widely different reduction factors in examples 3 and
4.

® Line Gauss-Seidel smoothers perform better than point Gauss-Seidel smoothers of similar
complexity on more difficult problems (examples 3 and 4) and nearly the same on easy problems
(examples 1 and 2).

With the above observations the best smoothers were tested in the full nonlinear iteration for
examples 3 (backstep) and 4 (airfoil). The iterations described in equations (4), and (5) were im-
plemented with initial guesses supplied by an algebraic grid generator. The residuals p i after each
nonlinear iteration were computed using the "exact" values of the metric tensor in the ITTM equa-
tion. The "exact" metric tensor was computed by running the iterations until machine convergence
was reached prior to the actual tests. Fifty iterations were performed, unless the process was inter-
rupted earlier when the residual reached 10'. The results are contained in tables 5 and 6. The
line Gauss-Seidel smoothers can be seen to give faster results.

CONCLUDING REMARKS

The object of the study, of which the preliminary results are reported here, was to select the most
robust smoothers for multigrid in elliptic grid generation. Since the shape of the physical domain in
the grid generation and the control grid functions usually induce elliptic grid equations with sharply
varying coefficients (and possibly large convective terms), the optimal smoothers may be found from
among the line ILU methods. We plan to investigate this possibility next. Also we are working on
a study of smoothing for the full approximation storage (FAS) [l, 4] to apply multigrid directly to
the nonlinear system (3).
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Table 1: 128x128 SQUARE Reduction Factors with "Optimal' Relaxation

Smoother w Pi P2 P3 l Pas p

PHF 1.1 0.151 0.152 0.155 11 0.144* 0.151
PVF 1.2 0.192 0.149 0.123 12 0.239* 0.164
PVB 1.1 0.204 0.175 0.192 13 0.202* 0.189
PHS 1.3 0.084 0.051 0.056 8 0.087* 0.071
PVS 1.3 0.084 0.051 0.056 8 0.087* 0.071
PAF 1.4 0.065 0.059 0.059 7 0.060 0.060
PAS 1.4 0.027 0.021 1 0.022 6 0.026* 0.024
LHF 1.0 0.295 0.153 0.129 11 0.133* 0.106
LVF 1.0 0.225 0.152 0.138 11 0.140* 0.140
LVB 1.0 0.225 0.152 0.138 11 0.140* 0.140
LHS 1.1 0.134 0.061 0.052 8 0.057* 0.060
LVS 1.0 0.065 0.053 0.053 8 0.057* 0.056
LAF 1.3 0.051 0.026 0.026 6 0.030* 0.031
LAB 1.3 0.052 0.027 0.028 7 0.032* 0.032
LAFZ 1.0 0.048 0.040 0.049 7 0.053* 0.049
LAS 1.4 0.016 0.010 0.010 5 0.011 0.011
PILU 0.9 0.041 0.031 0.025 6 0.022 0.027

* "asymptotic"

Table 2: 128x128 TRAPEZOID Reduction Factors with "Optimal' Relaxation

Smoother w Pi P2 P3 l Pas P
PHF 1.2 0.237 0.199 0.175 14 0.286 0.214
PVF 1.1 0.238 0.200 0.180 14 0.244 0.206
PVB 1.2 0.279 0.1.94 0.193 15 0.250* 0.227
PHS 1.3 0.114 0.091 0.111 11 0.154 0.130
PVS 1.3 0.112 0.089 0.108 10 0.146 0.123
PAF 1.3 0.109 0.078 0.076 9 0.099 0.086
PAS 1.4 0.040 0.037 0.044 7 0.053 0.046
LHF 1.1 0.408 0.197 0.195 14 0.266 0.216
LVF 1.0 0.248 0.185 0.171 13 0.186 0.177
LVB 1.1 0.240 0.201 0.200 13 0.198* 0.195
LHS 1.2 0.207 0.098 0.086 10 0.106 0.101
LVS 1.1 0.089 0.088 0.084 9 0.088 0.086
LAF 1.3 0.067 0.039 0.041 7 0.047 0.046
LAB 1.3 0.075 0.046 0.049 8 0.052* 0.053

LAFZ 1.1 0.108 0.058 0.077 9 0.099 0.089
LAS 1.5	 1 0.050 1 0.015 0.014 6 0.016 01019
PILU 0.9	 1 0.059 1 0.032 0.034 9 1	 0.191 0.093

* "asymptotic"
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Table 3: 128x128 BACKSTEP Reduction Factors with "Optimal' Relaxation

Smoother W Pi P2 P3 l Pas P
PHF 1.5 0.356 0.349. 0.467 24 0.833 0.715
PVF 1.7 0.551 0.456 0.490 24 0.689 0.645
PVB 1.6 0.749 0.428 0.463 25 0.700 0.628
PHS 1.5 0.179 0.281 0.379 25 0.745 0.630
PVS 1.7 0.311 0.394 0.452 25 0.618 0.549
PAF 1.7 0.276 0.321 0.422 23 0.626 0.543
PAS 1.8 0.243 0.318 0.376 25 0.459 0.418
LHF 1.7 0.550 0.451 0.536 25 0.695 0.659
LVF 1.4 0.303 0.258 0.359 25 0.475 0.416
LVB 1.4 0.313 0.306 0.412 24 0.547 0.500
LHS 1.7 0.290 0.441 0.489 25 0.613 0.553
LVS 1.4 0.226 0.193 0.188 22 0.376* 0.311

1.6 0.179 0.147 0.199 18 0.282* 0.245
1.6 0.194 0.202 0.220 22 0.358 0.307

L
1.4 0.723 0.104 0.201 23 0.527 0.465

LAS 1.7 0.081 r 0.103 0.119 14 0.236 0.153
PILU 0.7 0.148 10.115 0.115 14 0.167 0.151

* "asymptotic"

Table 4: 128x128 AIRFOIL Reduction Factors with "Optimal' Relaxation

Smoother W Pi P2 P3 l Pas P
PHF 1.6 0.856 0.464 0.515 20 0.683 0.609
PVF 1.6 0.900 0.404 0.433 20 0.685 0.612
PVB 1.6 0.747 0.509 0.472 25 0.825 0.684
PHS 1.7 0.367 0.531 0.494 20 0.522 0.482
PVS 1.7 0.360 0.498 0.480 20 0.501 0.474
PAF 1.7 0.588 0.396 0.463 20 0.467 0.478
PAS 1.7 0.221 0.252 0.233 20 0.406 0.292
LHF 1.6 0.959 0.412 0.425 20 0.712 0.607
LVF 1.1 0.175 0.184 0.171 15 0.226* 0.189
LVB 1.1 0.175 0.184 0.171 15 0.226 0.189
LHS 1.7 0.365 0.513 0.495 20 0.500 0.489
LVS 1.1 0.079 0.057 0.052 10 0.124* 0.083
LAF 1.1 0.119 0.123 0.116 13 0.184* 0.187
LAB 1.1 0.119 0.124 0.118 13 0.185* 0.186

LAFZ 1.2 0.298 0.080 0.097 12 0.132* 0.123
LAS 1.2 0.041 0.032 0.036 9 1 0.087* 0.056
PILU n/a n/a I	 n/a n/a n/a I	 n/a I	 n/a

* "asymptotic"

345



Table 5: Comparison of Smoothing Performance in Nonlinear Iterations for 128x128 BACKSTEP
with Initial Residual ro = 4.30e - 02

Smoother PVB PVS LVF LAF
Equation (4)

# iter 50 48 45 46
rdast 1.12e-10 5.01e-11 9.10e-11 9.65e-11

p 0.674 0.651 0.642 0.649
Equation (5)

# iter 50 29 29 26
mast 1.32e-10 5.69e-11 4.23e-11 6.45e-11

p 0.676 0.494 0.489 0.458

Table 6: Comparison of Smoothing Performance in Nonlinear Iterations for 128x128 AIRFOIL with
Initial Residual ro = 5.85e - 02

Smoother PHF PVS LVF LVS
Equation (4)

# iter 50 50 50 50
rlast 6.49e-09 8.56e-09 6.80e-09 6.65e-09

A 0.726 0.730 0.727 0.726
Equation (5)

# iter 50 31 30 28
rlast 5.15e-09 9.50e-11 4.58e-11 5.16e-11

p 0.723 0.521 0.497 0.495
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SUMMARY

To solve a given fine mesh problem, the design of a multigrid method requires the defini-
tion of coarse levels, associated coarse grid operators and inter-grid transfer operators. For
non-structured simplicial meshes, these definitions can rely on the use of non-nested trian-
gulations. These definitions can also be founded on agglomeration/aggregation techniques
in a purely algebraic manner. This paper analyzes these two options, shows the connections
of the volume-agglomeration method with algebraic methods and proposes a new definition
of prolongation operator suitable for the application of the volume-agglomeration method
to elliptic problems.

1 Introduction
Unstructured meshes are now a common tool in large scale scientific computing. With
respect to structured grids, the use of this type of data representation offers the advan-
tage of larger flexibility in adapting the mesh to complex geometries and complicated
solutions. However, this approach also places a larger demand on the design of dis-
cretisation methods and solution algorithms. 'As a matter of fact, classical solvers
using the regularity of the mesh may fail or become less efficient on non-structured
meshes. Among the solvers that have appeared in the last two decades, multigrid
type algorithms have been among the more successful. These methods were origi-
nally formulated for structured grids. To run efficiently on non-structured meshes,
the solution algorithms have to be adapted or re-formulated. In structured MG al-
gorithms, the building blocks of the methods are the inter-grid transfer and coarse
grid operators. The main difficulty with these methods is, thus, to adequately design
these operators. Unstructured multigrid algorithms add the additional difficulty on
defining the coarse levels. This paper presents some approaches to solving this diffi-
culty.
We first consider geometrical methods that explicitly define a hierarchy of grids. The
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simplest method follows a coarse to fine path and generates fine levels starting from
a given coarse level. More sophisticated methods generate all levels independently.
These last methods place an excessive burden on the mesh generator algorithms, and
we will indicate a possible way to automate them. The third geometrical method we
will consider is the volume agglomeration MG technique of Lallemand & Dervieux [1]
based on finite volume discretisations.
Another possible way to face the difficulty of the generation of coarse levels is to rely
on a purely algebraic method. These methods can be interesting because they avoid
the geometrical complexities that make the generation of coarse levels tedious in the
geometrical approaches. However, these methods are much more difficult to design
and analyze. We show, however, that any algebraic method can be interpreted as a
geometrical one and as an example analyze in this setting the volume agglomeration
MG method. We first show that this method can be viewed as an equation summing
technique and then use a geometrical interpretation to analyze some of its deficiencies.
We then propose a possible way to improve this method.

2 Geometrical methods
In this section, we consider methods that explicitely define a hierarchy of grids.

2.1 Nested mesh approach

Let Q be a bounded polygonal domain of the plane, and consider a coarse triangu-
lation T of this domain defined by the set of nodes A(,. For simplicity, we assume
that this initial triangulation is regular and quasi-uniform with mesh parameter hl.
Associated with this triangulation, we consider the finite element space of piecewise
linear functions M 1 . The spaces M; will be recursively defined by adding nodes at
the midpoints of the edges of the triangles of T_ 1 and decomposing each triangle
into four congruent triangles. We observe that the regularity and quasi—uniformity
constants of the mesh are maintained by this process. Each element of M; belongs
to M;+1 and thus we obtain a sequence of nested spaces

M1C M2 C ... CMn

such that dim M; = 4 dim Mj_1. In addition, denoting hj = ma
7
x{h,l, we exactly

rE

have hj+l = hj/2.

To connect the different levels, we need linear operators between them. For this,
we first- equip each space M; by an inner product (.,.) j defined, for instance by :

(u, v); = h^ E u(x) v(x) d(u, v) E M'
XEJV,
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By the quasi-uniformity assumption, this inner product induces a norm denoted by
11. (I; equivalent to the L2 norm on M;. The prolongation operator is simply the
identity, and the restriction operator 13+1 can be defined by

Vi+1 u;+" v;); — (u;+i ' VA+ 1 	 (1)

Z'+1 is then some kind of L2 projection on 3vtj.

We now describe the algebraic counterpart of these definitions.
For each space .M;, we consider the usual nodal basis {cps } defined to be 1 on node
Xi E JV; and 0 on all other nodes E N; . The choice of this basis induces a natural
one-to-one mapping between M; and IR.nj ( nj = dim M;) which we denote as rj :

nj
r, : U E IR.nj _+ Lui Cpi E .M;

i=1

For simplicity, each space IR.nj is equipped with the scalar product

nj
< u, v >j= hj6 Lui vi

i=1

such that we have
< u,v >;= (r,u, r,v),

The identity of M; considered as an operator from IR.nj into IR.nj+l will be denoted
by 11 +1 defined by

rj = rj+1 I1+1

in such a way that the following diagram commutes (see Figure 1.). From definition

r;+i
'M;+ 1 E— IRnj+i

Id	 T	 T	 I?+ 1

.M; E-- Wj

r;

Figure 1: Commutative diagram defining the algebraic prolongation.

(1), we see that the algebraic expression of the restriction operator Iji-1 is given by
the scaled matricial transpose of IJI_1

(hj-

hj 2	
t

l)

7 	 (Ij
-1)
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Remark 1: For future reference, we note that in the definition of these opera-
tors, the functional spaces are first defined, and then the algebraic expression of the
transfer operators are deduced from them.

The previous method is very simple and exactly fits into the classical variational
multigrid theory. However, it implies a large dependence of the fine mesh node
distribution on the coarsest level. Indeed, the mesh division algorithm is a fine mesh
generation algorithm, and unfortunately this is a very poor one. Thus, the meshes
generated this way are of poor quality (hence, the fine mesh solution will also be of
poor quality). Moreover, in many cases, the fine mesh is given, and thus the solvers
must be able to deal with an arbitrary given fine mesh instead of building it.

A solution can be to relax the constraint of nestedness of the meshes; this is the
non-nested approach that we describe now.

2.2 Non-nested approach
In this approach coarse and fine triangulation are generated independently using any
given mesh generators. The solution, residuals, and corrections are transferred back
and forth through the different levels using linear interpolation between two succes-
sive levels. Thus, now I1-1 represents the linear interpolation between the non-nested

spaces M;_1 and M;, and Ijj-1 is its adjoint with respect to the inner products of
.M; and M; _ 1.
From a practical standpoint, the algorithms are the same regardless of whether or
not the triangulations are nested; algebraic operators 4_ 1 and 4_ 1 are needed to
transform the internal representation of coarse grid functions expressed in terms of
basis functions of M;_ 1 into their internal representations as fine level functions (in
a different basis even in the case of nested spaces). Therefore, in the implementation,
little difference exists between the nested and non-nested cases. However, the addi-
tional complexity of the non-nested approach appears in the fact that the transfer
operators between the different levels are difficult to compute. Regardless of the order
of the prolongation, one must determine in what triangles the fine node are located.
Thus, this approach requires the use of efficient search algorithms.
We also remark that there are now different choices for the definition of the coarse
grid operator. The most natural one is to define it by a re-discretisation of the contin-
uous problem on the coarse grid. This choice preserves the bandwidth of the original
operators; however the alternate "Galerkin" definition

A,- 1 = Ijj-'A'Iji-1

can be more efficient (with this definition, the error after an exact correction step is
purely in A.- ' Ker (Iji -1 ) ). Of course, the "Galerkin" definition does not preserve the
bandwidth of the original operator. In CFD, the non-nested multigrid method appears
to be one of the most successful strategies (see, for instance, [2]). However, the need
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to generate multiple meshes of the same geometries (that have in addition to respect
some ratio between the discretisation parameters of the different levels) results in an
excessive burden on the user; a method that relies on the use of many independently
generated meshes is simply not practical (especially in 3-D). Consequently, algorithms
that consider the generation of the coarse level spaces as part as the solution procedure
have to be developed to make these techniques practical. The following method [3] is
designed for this task. A recent work by Chan and Smith [4[ uses a similar idea.

2,3 Node-nested algorithm
For structured grids, coarse levels are generated by removing one point over two in
each coordinate direction and reconnecting the set of remaining nodes. This set of
points thus forms a maximal independent subset of the vertices of the fine grid. We
recall that a subset S of the vertices of a graph is said to be independent if no two
vertices of S are connected by an edge of the graph. An independent subset S is called
maximal if adding any additional vertices snakes it dependent. It is easily realized
that in order to extract a coarse mesh with mesh parameter N 2h from a given
non-structured one with mesh parameter h, we precisely need to define a maximal
independent subset from the vertices of the triangulation. Considering a vertex P
in a maximal independent subset S, we see that its nearest neighbours in S are at
a distance — 2 in the graph. Hence, their physical distance from P will be of order
2h. In practice, it is not always desirable to form a maximal independent set. The
major reason is that defining a maximal independent set from the boundary nodes
can destroy the actual geometry. Typically in a maximal independent subset, half the
boundary nodes are removed. However, some of the boundary nodes are crucial for
the description of the geometry and have to be kept at every stage of the coarsening
process.

Therefore, the algorithm must first identify these nodes. Considering that the
nodes that actually define the geometry are the nodes where the curvature is non-
zero, this is done by computing the curvature of the boundary nodes and enforcing
that the nodes having curvature above a given threshold are kept on all level during
the coarsening process. Once this identification process is performed, the following
algorithm ,can be used:
First, place all the nodes of the current triangulation in a list. Sort this list in such a
way that the special nodes defining the geometry are listed first, the boundary nodes
are listed next, and the interior nodes are listed last. Then apply :

for every node in the list do

if node is selected

then remove all its neighbours

end do
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This algorithm reduces the number of nodes roughly by a factor of 4 and produces
a set of unconnected nodes. A coarse mesh can be obtained from these points by
triangulating them. It is in principle possible to use any mesh generation strategy to
perform this task; here, a Delaunay-Voronoi method is used.
Figure 2 presents an example of the application of this technique to a triangular mesh
around a spark plug.

Figure 2.a: Initial level. 	 Figure 2.b: After one coarsening.

Figure 2.c: Second coarsening. 	 Figure 2.d: Coarser mesh.

Figure 2: Node-nested meshes around a spark plug.

The main advantage of this variation of the non-nested algorithm is that the gen-
eration of the coarse levels is part of the solution algorithm; the only input provided
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by the user is the fine mesh. In addition, the restriction and prolongation operator
can be computed very efficiently, any node of the fine level being itself a coarse node
or having at least one neighbor that is a coarse node. For application of this method
in CFD see [5] for Euler computations and [5], [6] for Navier-Stokes ones.

2.4 Volume Agglomeration Multigrid method
The previous methods appeal at one stage or another to complex geometrical informa-
tions. The Volume Agglomeration MG of Lallemand and Dervieux [1] is an attempt
to use only the minimal information given by the connectivity relation of the mesh.
This method was originally introduced for first order hyperbolic problems as

aq + V.F(q) = 0	 (2)

and for finite volume discretisation. Consider, for instance (see Figure 4.a below),
the dual control volume mesh of the triangulation of Figure 2.a. To form the coarse
grid control volume meshes, neighborings cells are agglomerated together to form a
larger coarse cell. This strategy is the exact counterpart of the cell-centered multi-
grid strategy devised-by Wesseling for cell-centered structured algorithms [7]. Figure
3 illustrates this strategy for structured meshes.	 Figure 4 illustrates it for the

Figure 3: Cell centered multigrid methods.

non-structured mesh of Figure 2. The coarse grids are thus composed of a tiling of
the space made of arbitrary polygons. Devising a discretisation on these general-
ized meshes is not difficult for first-order equations. Application of a finite volume
approach results in the same discrete formula as on a regular dual cell mesh:

a f q+ ^ F(q).n"dl*= 0	 (3)
at ci	

jE-(z)

and the same numerical flux that is used on the fine mesh can be used to evaluate the
integrals. To set up a multigrid strategy, we also need to define the restriction and
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prolongation operators. According to the finite volume philosophy where the value
associated with a cell can be interpreted as the mean value of the function on this
cell, this is done by (we use here the simpler notation j — 1 —> H and j —> h when
only two levels are involved)

Figure 4.a: Initial level.	 Figure 4.b: After one coarsening.

Figure 4.c: Second coarsening.	 Figure 4.d: Coarser generalized mesh.

Figure 4: Volume agglomerated meshes around a spark plug.
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Prolongation

IHUH I j = UH 1 1(i)	 (4)
where l(j) is the coarse cell containing the fine cell whose index is j.

Restriction 1

(Ih Uh)j —	 (Uh)i	 (5)
iE'Hj

where 'Hj is the set of fine cells that constitute the coarse cell CH.

All the ingredients necessary to set up a lnultigrid strategy are thus at hand. Ap-
plication of this technique to the 2-D Euler equations has been done in [1] and in 3-D
in [8]. Additional computations have also been done in [9]. All these experiments
reveal that the volume agglomeration method is extremely efficient for hyperbolic
problems. The generation of the coarse grid is purely automatic and does not require
complex mesh manipulations. The computational efficiency of the method is compa-
rable to those of the non-nested approach and of regular structured MG techniques; it
is seen that this method largely supersedes the non-nested lnultigrid methods. How-
ever, when applied to an elliptic problem, this technique experiences difficulties. A
good way to understand these difficulties is to interpret this method as an algebraic
one.

3 Algebraic methods
In the recent past, several attempts have been reported to use only algebraic in-
formations from the discrete problems to be solved. These methods are known as
aggregation/disaggregation methods [10] or algebraic lnultigrid methods [11]. Sup-
pose that we want to solve a linear system on Ilan:

Ax= f.

where A is a symmetric, positive definite matrix. Let {ei} {i=1,...,n} be the canonical
basis of IRn , define J'Hj}{j=1,...,P1 to be a partition of 11, ... , n} into P disjoint sets,
and define two vectors t, z E IRn . Two linear operators between IRn and IRP can be
constructed by:

IH : IRn —+ IRP : restriction or aggregation operator:

Ih : { (Uh)j}{j=1,...,n} --+ J(VH)j}{j=1,...,P} = l 	 zk(Uh)k}{j=1,...,P}	 (6)
kE'Hj

'It would have been more consistent to define the restriction as (Ih	 FiEHuh)j =
	J 

meS ( Cii)(uh)i
 Cimes

	

EiEH,	 ( )
We use here this definition because the interpretation of the volume agglomeration method as an
algebraic one yields a simpler expression.
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IH : IRP --^ IR" : prolongation or dissaggregation operator:

`P

	

IH : {(UH)j} {j=1,...,P}	 Vh = E(UH)kHkt 	( 7)
k=1

where Hk is the euclidian orthogonal projection operator onto {ei}{iEHkI— With the
help of these two operators, given a linear operator Lh E L(IR", IR"), a coarse grid
correction operator belonging to L(IRP , RP) can be defined by

LH = IHLhIH	 (8)

It is easy to check that the coefficients of the coarse grid matrix are given by

(LH ) i,, =<< z, Hi LhH;t >>	 (9)

where << ., . >> is the inner product in IR". This type of method provides a
very general setting to construct multi-level techniques. They are known as aggrega-
tion/dissagregation methods and have been introduced for problems in economics or
social sciences where they appear in a very natural manner. AMG methods repre-
sent an improved variation of these methods, where the way to define the partitions
JRj}{j=1,...,P1 and the transfer operators are deduced from an analysis of the matrix
A itself.

If we now interpret the Volume Agglomeration MG in an algebraic setting and
construct the coarse grid operator in the "variational' way, it is easy to see that this
technique is equivalent to an equation summing technique. Let L h be the matrix
resulting from the fine grid discretisation, and suppose that Lh is reordered in such a
way that

L1,1i ... , L1,P

Lh =	 >

	

LP, 1 i	 , LP P

where Lij is a Card(Hi) x Card(Hj ) block matrix whose coefficients are 1p,q for
p E xi and q E 'Hj . The Volume Agglomeration method results in the choice t = z =

(1,1 1 ... , 1 1 1) t , and from (8) we see that the coefficients of the coarse grid matrix LH

are defined by

(LH)i,j —	 1p,q
PEx:,gEHj

which exactly corresponds to summing all the entries belonging to the same block.
Moreover, if the fine grid matrix results from a nearest neighbor stencil, it will also
be the case for the coarse grid one. It is also well known that the "variational' way
to construct coarse grid operators implies the preservation of the M-matrix property
of the fine grid one.

The analysis of this type of algebraic technique is extremely difficult because no
reference is made to the differential equation to be solved or to the mesh on which the
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solution is sought. We note, however, that if the original problem has a differential
background it is easy to recover functional information from any definition of algebraic
transfer operators. For simplicity we consider that the restriction operator is defined
as the adjoint of the prolongation operator and that the inner product on IR P is
inherited from the one in IR" in the following sense:

< UH, VH >H=< IA UH> IAVH >h

This will allow the algebraic theory to fit into the variational framework. We now
simply invert the direction of the diagram displayed in Figure 2 to realize that any
algebraic definition of a prolongation operator is equivalent to an implicit definition
of a coarse grid space ,M H by setting

rH = rhlH : IRP ' Mh

and
MH = R(rH)

Thus one has naturally M H C .Mh with continuous injection, and we recover the

rhlHh (IRP )	 C	 .Mh

rH	 T	 T rh

IRP

1H

Figure 5: Diagram defining the coarse spaces.

framework of the nested spaces variational theory.
Remark 2: Here, we note that we have first defined the transfer operator and then
have deduced the definition of the functional spaces associated with them. This is
exactly the converse of remark 1.
Moreover it is easy to get an explicit form of a basis of .M H by:

Proposition: Let {ei}i=1 ... p be the canonical basis of IR P , then the family {rH(ei)}i=l ... P
is a basis of MH.

The previous remark can help in the design or analysis of multigrid algorithms.
Using it to analyse the volume agglomeration method applied to elliptic equations, we
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consider the fine level discretisation space as defined by the usual nodal basis function
Ok and we get:
Proposition: The Volume Agglomeration MG method is equivalent to a nested vari-
ational method where the coarse grid space is generated by the basis functions:

_ 1: Ok Vj = 1, ... ,P	 (10)
kE'H j

We see that the coarse grid space .M A is a very poor one; it does not even contain
linear functions. This space is, thus, not dense in Hl , and this implies that the solution
of the coarse grid problem is a very poor approximation of the fine grid solution. For
instance, consider the 1-D case and define Lh as the usual three point finite difference
approximation of the-Laplacian, i.e. in stencil notation Lh= n2 [- 1 7 2, —1]. With the
notations of Figure 6, the prolongation operator Ig is defined by

(IH(Ux))2i = (UH)i	 and (IH(UA))2i+1 = (US)i	 (11)

with (9), the coarse grid problem writes

1	 1 (Rh)2i + (Rh)2i+1	 (12)HZ [-1, 2, —1]UH = 
2	 2

h
31 21.1 21.2 21.3

H
1.1 i

Figure 6: VA-MG in 1-D.

As already noted in [12], a factor 2 is missing in the right-hand side, and the coarse
grid operator is not a consistent approximation of the Laplacian. These problems are
also well known in structured cell centered multigrid methods, (see [7]). In the recent
past, several attempts have been proposed to overcome this problem. In [12], the
analysis of the 1-D example given previously was extended to 2-D structured meshes,
and it was shown that a simple scaling allows a consistent approximation of the
Laplace operator to be recovered. The coarse grid problems were then scaled by a
factor of 2 k where k is the level number. This strategy gave good results. It has been
recently used in [13] for 2-D steady viscous flows with k — E turbulence modelling and
found to be rather efficient from a practical point of view. An alternate approach has
also been proposed in [9], where the prolongation operator is choosen by an Algebraic
Multigrid heuristic and the coarse grid operator is defined by the variational method.
However in practice, this strategy was too costly, and the numerical results reported
in [9] use the same scaling strategy as in [12].
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4 A prolongation operator for Volume Agglomer-
ation

For structured cell centered multigrid methods a simple remedy for the above problem
consists in defining prolongation and restriction operators that have higher orders of
accuracy. For instance in the 1-D case, the definition (11) is replaced by

( IH( UH ) ) 2i = 4 (UH)i + 4(UH)i-1
( IH( UH))2i+1 = 4( UH)i + 4(UH)i+1	

13)

This exactly corresponds to a linear interpolation between the barycenters of the
coarse cells.

For finite element nonstructured meshes, a similar approach can be considered.
The set of the coarse cells CH(i = 1, ... , n) constitute a tiling of the domain Q.
If we associate with each coarse cell CH a unique point i E CH (for instance, the
gravity center of the cell), we can triangulate this set of points by any convenient
mesh generator algorithm. Although this approach will certainly be efficient, we see
that it has few advantages against the node-nested method. With the objective of
keeping the amount of geometrical information as small as possible, we try here a
simplified variation of this approach that seems to give good results.

Thus, let JH be a prolongation operator having the necessary degree of accuracy.
For instance take JH as being the operator defined by a triangulation of the gravity
centers of the coarse cells. Then, there exists an n x n operator ah such that JH =
ahlHh , where IH is the straight injection (4). In a finite volume framework, IH is
the operator that takes a constant by cell function on the coarse grid and returns the
salve constant by cell function on the fine grid. On the other hand, J H takes the same
constant by cell function on the coarse grid but returns a piecewise linear function.
Thus, ah can be interpreted as a reconstruction operator; it transforms a constant by
cell function in a piecewise linear function. As an example, let us consider the 1-D
case: JH is defined by expression (13), while IH is given by (11). (See figure 6.) On
the interval defined by the gravity center of the coarse cells i and i + 1 the operator
ah transforms the piecewise constant function whose values are UH on cell i and UA 1
on cell i + 1 into the linear function

U ( X ) = UH + (x — x i+112)( Ug 1 — UH)/2h

and ah represents the interpolation of this function on the fine grid. From (11) and
(13), it is readily seen that the expression of ah is

	

(ahu)2i = 3
	 1

44 u2i + 4u2i-1

	

3	 1
(ahu)2i+i = 4 u2i+1 + 4u2i+2

OT

(ahu)k = 1
2uk + 1

4uk+1 + 1
4uk-1
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e	 -^

i+1/2

i	 i+1

Figure 7: 1-D reconstruction procedure.

Two-dimensional structured cases also reveal that ah can be interpreted as a re-
construction operator and can be written as

(ahu)k = 1: aiui

iUn(k)

where n(k) is the set of neighbors of k, and the ai are coefficients that depend on the
geometry.
We then propose to use the same strategy for non-structured meshes. In order to
obtain a formula as easily as possible, we define the operator a h by

EiUh(k) 1101(Ci)ui 	
(14)a>1, uk =

EiU .(k) vol(Ci)

That is, we.replace the geometric coefficients ai by a very crude weighting. Although
rather heuristic, this approach seems to give good results. We now report numerical
results for solving the Laplace equation on a non-structured triangular mesh around
a NACA airfoil with homogeneous Dirichlet boundary conditions.

Figure 8.a shows the convergence curves on three different meshes (i.e. 800, 3000
and 12000 nodes) obtained by a two grid method with full solution of the coarse
grid problem and two Jacobi relaxations on the fine mesh. The straight injection
(11) is used in this experiment. It is clear that the convergence factor becomes
worse as the size of the mesh increases. On the other hand, Figure 8.b shows the
results obtained for the same experiment using the improved prolongation (14). The
convergence factor is much better, and it is clear that mesh-independent results are
obtained. Finally, the same experiment is performed with improved prolongation (14)
in a V-cycle setting using 7 different levels for the 12000-node triangulation, 6 for the
3000-node triangulation and 5 for the 800-node triangulations (Figure 9). Again it is
seen that mesh independent results are obtained and that there is no ' decrease in the
performance with respect to the 2-grid case.
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Figure 9: V-cycle with the improved prolongation.
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SUMMARY

A preconditioning theory for Schwarz methods is presented. The theory establishes sufficient
conditions for multiplicative and additive Schwarz algorithms to yield self adjoint positive def-
inite preconditioners. It allows for the analysis and use of non-variational and non-convergent
linear methods as preconditioners for conjugate gradient methods, and it is applied to domain
decomposition and multigrid. This paper illustrates why symmetrizing may be a bad idea for
linear methods. Numerical examples are presented for a test problem.

INTRODUCTION

In this paper, we consider additive and multiplicative Schwarz methods and their acceler-
ation with Krylov methods, for the numerical solution of self-adjoint positive definite (SPD)
operator equations arising from the discretization of elliptic partial differential equations. The
standard theory of conjugate gradient acceleration of linear methods requires that a certain
operator associated with the linear method—the preconditioner—be symmetric and positive
definite. Often, however, as in the case of Schwarz-based preconditioners, the preconditioner
is known only implicitly, and symmetry and positive definiteness are not easily verified. Here,
we try to construct natural sets of sufficient conditions that are easily verified and do not re-
quire the explicit formulation of the preconditioner. More precisely, we derive conditions for
the constituent components of MG and DD algorithms (smoother, subdomain solver, trans-
fer operators, etc.), that guarantee symmetry and positive definiteness of the preconditioning
operator which is (explicitly. or implicitly) defined by the resulting Schwarz method. We exam-
ine the implications of these conditions for various formulations of the standard DD and MG
algorithms.

The outline'of the paper is as follows. We begin in the next section by reviewing basic linear
methods for SPD linear operator equations and by examining Krylov acceleration strategies.
A simple lemma will illustrate why symmetrizing may be a bad idea for linear methods. In
the third and fourth sections, we analyze multiplicative and additive Schwarz preconditioners.
We develop a theory that establishes sufficient conditions for the multiplicative and additive
algorithms to yield SPD preconditioners. This theory is used to establish sufficient conditions for
multiplicative and additive DD and MG methods, and it allows for analysis of non-variational
and even non-convergent linear methods as preconditioners. In the final section, -we report
results of numerical experiments with finite-element-based DD and MG methods applied to a
difficult test problem with discontinuous coefficients to illustrate the theory and conjectures.

'This work was supported in part by the NSF under Cooperative Agreement No. CCR-9120008.
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LINEAR ITERATIVE METHODS

Notation., Let W be a real finite-dimensional Hilbert space equipped with the inner-product
•) inducing the norm II • II = (•, The adjoint of a linear operator A E L(W, W) with respect

to (•, •) is the unique operator AT satisfying (Au, v) _ (u, ATV) , Vu, v E X An operator A is
called self-adjoint or symmetric if A = AT; a self-adjoint operator A is called positive definite or
simply positive if (Au, u) > 0, Vu E W, u :A 0. If A is self-adjoint positive definite (SPD), then
the bilinear form (Au, v) defines another inner-product, which we denote as (•, ')A - It induces
the norm I I• 11A =  (,) A2.

The adjoint of an operator M with respect to (•, • ) A, the A-adjoint, is the unique operator
M* satisfying (Mu, v)A = (u, M* V)A , Vu, v E W. From this definition it follows that

M* = A-' MT A .	 (1)

M is called A-self-adjoint if M = M* and A-positive if (Mu, u)A > 0, Vu E W, u =4 0.
If N E L(W j, W2), then NT E L(W2 ,'l 1 ) is defined as the unique operator relating the

inner-products in il l and W2 as follows:

	

(Nu, v) W2 = (u, NTV) W1 , Vu E W 1 , Vv E W2 .	 (2)

Since it is usually clear from the arguments which inner-product is involved, we shall often drop
the subscripts on inner-products (and norms) throughout the paper.

We denote the spectrum of an operator M as a(M). The spectral theory for self-adjoint
linear operators states that the eigenvalues of the self-adjoint operator M are real and lie in
the closed interval [Am;n(M), Am.(M)] defined by the Raleigh quotients:

(Mu, u)	 (Mu, u)
Amin(M) = min	 ,	 Amax(M) = max

u; 0 (Ulu)	 UOO (Ulu)

Similarly, if an operator M is A-self-adjoint, then its eigenvalues are real and lie in the interval
defined by the Raleigh quotients generated by the A-inner-product. A well-known property is
that if M is self-adjoint, then the spectral radius of M, denoted as p(M), satisfies p(M) = IIMII•
This property can also be shown to hold in the A-norm for A-self-adjoint operators.

Lemma 1. If A is SPD and M is A-self-adjoint, then p(M) _ 1I M IIA-

Linear methods. Given the equation Au = f, where A E L(W, W) is SPD, consider the
preconditioned equation BAu = B f , with B E L(W, W). The operator B, the preconditioner,
is usually chosen so that the linear iteration

un+l = U  — BAun + B f = (I — BA)un + B f ,	 (3)

has some desired convergence properties. The convergence of (3) is determined by the properties
of the so-called error propagation operator, E = I — BA.

We now state a series of simple lemmas that we shall use repeatedly in the following sections.
Their short proofs and further references can be found in [5].
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Lemma 2. If A is SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Lemma 3. If A is SPD, then E is A-self-adjoint if and only if B is self-adjoint.

Lemma 4. If A and B are SPD, then BA is A-SPD.

-Lemma 5. If A is SPD and B is self-adjoint, then II EIIA = p(E)•

Lemma 6. If E* is the A-adjoint of E, then II EIIA = IIEE*IIA-

Lemma 7. If A and B are SPD and E is A-non-negative, then II E IIA < 1.

Lemma 8. If A is SPD and B is self-adjoint, and E is such that

— C1(u, u)A < (Eu, u)A < C2 (U , U) A, bu E W,

for Cl > 0 and C2 > 0, then p(E) = IIEIIA < max{C1i.C2}.

Lemma 9. If A and Bare SPD, then Lemma 8 holds for some C 2 < 1.

The following lemma illustrates why symmetrizing is a bad idea for linear methods. It
exposes the convergence rate penalty incurred by symmetrization of a linear method.

Lemma 10. For any E E L(-H, W), it holds that:

p(EE) <_ II EE IIA <_ II E IIA = II EE*IIA = p(EE*).

Proof. The first and second inequalities hold for any norm. The first equality follows from
Lemma 6, and the second follows from Lemma 1. q

Note that this is an inequality not only for the spectral radii but also for the A-norms of
the nonsymmetric and symmetrized error propagators. The lemma illustrates that one may
actually see the differing convergence rates early in the iteration as well.

Krylov acceleration of SPD linear methods. The conjugate gradient method was developed
by Hestenes and Stiefel [4] as a method for solving linear systems Au = f, with SPD operators
A. In order to improve convergence, it is common to precondition the linear system by an SPD
preconditioning operator B —_ A', in which case the generalized or preconditioned conjugate
gradient method results. Our goal in this section is to briefly review some relationships between
the contraction number of a basic linear preconditioner and that of the resulting preconditioned
conjugate gradient algorithm.

We start with the well-known conjugate gradient contraction bound [3]

i+1

Ile
i+I IIA < 2 1-	 2

	
Polk = 2 6'+1 IIe°IIA,

1 + VKA(BA) )

where r1A (BA), the A-condition number of BA, is the ratio of extreme eigenvalues of BA.
The following result gives a bound on the condition number of the operator BA in terms

of the extreme eigenvalues of the error propagator E = I — BA; such bounds are often used in
the analysis of linear preconditioners (cf. Proposition 5.1 in [9]).
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Lemma 11. If A and B are SPD and E is such that

— C1 (U, u)A < (Eu, u)A < C2(u, u)A, bu E 71,

for Cl > 0 and C2 > 0, then the above must hold with C2 < 1, and it follows that

KA (BA) :5 
+ Cl

1 —C2

Remark 1. Even if a linear method is not convergent, it may still be a good preconditioner.
If C2 << 1 and if Cl > 1 does not become too large, then r1A (BA) will be small and the
conjugate gradient method will converge rapidly, even though the linear method diverges.

The next result connects the contraction number of the preconditioner to the contraction
number of the preconditioned conjugate gradient method (see [10] for a proof).

Lemma 12. If A and B are SPD and III — BAII A < 6 < 1, then Sig < 6.

Krylov acceleration of nonsymmetric linear methods. The convergence theory of the conju-
gate gradient iteration requires that the preconditioned operator BA be A-self-adjoint (see [1]
for more general conditions), which from Lemma 2 requires that B be self-adjoint. If a Schwarz
method is employed which produces a nonsymmetric operator B, then although A is SPD, the
theory of the previous section does not apply and a nonsymmetric solver such as conjugate
gradients on the normal equations [1], GMRES [6], CGS [7], or Bi-CGstab [8] must be used.
Further on, we shall use the preconditioned Bi-CGstab algorithm to accelerate nonsymmetric
Schwarz methods. In a sequence of numerical experiments, we shall compare the effectiveness
of this approach with unaccelerated symmetric and nonsymmetric Schwarz methods, and with
symmetric Schwarz methods accelerated with conjugate gradients.

MULTIPLICATIVE SCHWARZ METHODS

Consider a product operator of the form:

E = I — BA = (I — B 1 A)(I — BO A)(I — B1 A),	 (4)

where B1 , Bo, and Bl are linear operators on W, and where A is, as before, an SPD operator
on X We are interested in conditions for Bl , Bo, and B1 , which guarantee that the implicitly
defined operator B is self-adjoint and positive definite and, hence, can be accelerated by using
the conjugate gradient method.

Lemma 13. Sufficient conditions for symmetry and positivity of operator B, defined by (4),
are:

1. B1 = —T1, 

2. Bo = Bo ;

3. 111 — B1 AII A < 1;
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4. Bo non-negative on 'h.

Proof. By Lemma 3, in order to prove symmetry of B, it is sufficient to prove that E is A-self-
adjoint. By using (1), we get

E* = A -Z ETA = (I — BTA)(I — Bo A) (I BiA),

which equals E following from conditions 1 and 2.
Next, we prove that (Bu, u) > 0, Vu E li, u 0 0. Since A is non-singular, this is equivalent

to proving that (BAu, Au) > 0. Using condition 1, we have that

(BAu, Au) = ((I — E)u, Au)
= (u, Au) — ((I — Bi A)(I — BO A)(I — B 1 A)u, Au)
= (u, Au) — ((I — BO A)(I — B1 A)u, A(I — B1A)u)
= (u, Au) — ((I — B 1 A)u, A(I — B 1 A)u) + (Bow, w),.

where w = A(I — B 1 A)u. By condition 4, we have that (Bow, w) > 0. Condition 3 implies that
((I — B 1 A)u, A(I — B 1 A)u) < (u, Au) for u =,4 0. Thus, the first two terms in the sum above
are together positive, while the third is non-negative, so that B is positive. q

Multiplicative domain decomposition. Given the finite-dimensional Hilbert space R, consider
J spaces Ilk, k = 1, ... , J, together with linear operators Ik E L(Rk , R), null(Ik ) = {0}, such
that Ik Hk C_ W = EL1 104 -  We also assume the existence of another space W O , an associated
operator Io such that IoRo C R, and some linear operators I k E L(W, 71 k ), k = 0, ... , J. For
notational convenience, we shall denote the inner-products on Wk by (•, •) (without explicit
reference to the particular space). Note that the inner products on different spaces need not
be related.

In a domain decomposition context, the spaces Wk, k = 1, ... , J are typically associated
with local subdomains of the original domain on which the partial differential equation is
defined. The-space Ro is then a space associated with some global coarse mesh. The operators
Ik , k = 1, ... , J are usually inclusion operators, while Io is an interpolation or prolongation
operator (as in a two-level MG method). The operators Ik , k = 1, ... , J are usually orthogonal
projection operators, while I o is a restriction operator (again, as in a two-level MG method).

The error propagator of a multiplicative DD method on the space R employing the subspaces
104 has the general form [2]

E = I — BA = (I — IjRjIJA) • • • (I — IoRoIoA) • • • (I — IjRjI'A) , 	 (5)

where Rk and Rk , k = 1, ... , J, are linear operators on Wk and Ro is a linear operator on Wo.
Usually the operators Rk and Rk are constructed so that Rk ti Ak1 and Rk Ak 1,  where Ak
is the operator defining the subdomain problem in W k . Similarly, Ro is constructed so that
Ro . Ao 1 . Actually, quite often Ro is a "direct solve", i.e., Ro = Ao 1 . The subdomain problem
operator Ak is related to the restriction of A to Wk . We say that Ak satisfies the Galerkin
conditions or, in a finite element setting, that it is variationally defined when

Ak = Ik AIk ,	 Ik = I^ .	 (6)
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Recall that the superscript "T" is to be interpreted as the adjoint in the sense of (2), i.e., with
respect to the inner-products in W and ilk.

Propagator (5) can be thought of as the product operator (4) by choosing

1	 J

I — B1 A = (I — IkRkIkA) , Bo = IoR°I° , I — B1 A = J1 (I — IkRkIkA)
k=J	 k=1

where B1 and B1 are known only implicitly. This identification allows for the use of Lemma 13
to establish sufficient conditions on the subdomain operators Rk , Rk , and Ro to guarantee that
multiplicative domain decomposition yields an SPD operator B.

Theorem 1. Sufficient conditions for symmetry and positivity of the multiplicative domain
decomposition operator B, defined by (5), are:

1. Ik=CkIT, Ck >0, k=0,...J;

2. Rk =RT , k=1,...J;

3. Ro = Ro ;

4. IIrjk=1(I - IkRkIkA)II 
A < 1 '

5. Ro non-negative on Flo .

Proof. We show that the conditions of Lemma 13 are satisfied. First, we prove that 13 1 = B1
which, by Lemma 3, is equivalent to proving that (I — B1 A)* = (I — B1 A). By using (1), we
have

J	 *	 J	 1T	 1

J1 (I — IkRkIkA) = A-1 (k=111 (I — IkRkIkA) I A = (I — (Ik)T Rk(Ik)T A)
JJJ 	 k=J(k=1 

which equals (I — B1 A) under conditions 1 and 2 of the theorem. The symmetry of Bo follows
immediately from conditions 1 and 3; indeed,

Bo = (IoRoI°)T = (I°)TR0 (Io)T = (colo)Ro(co l l°) = IoRoI° = Bo .

By condition 4 of the theorem, condition 3 of Lemma 13 holds trivially. The theorem follows
if one realizes that condition 4 of Lemma 13 is also satisfied, since,

(Bou, u) = (I°R°I°u, u) = (RoI°u, Io u) = co 1 (RoI°u, I°u) > 0 , du E W .

Remark 2. Note that one sweep through the subdomains, followed by a coarse problem
solve, followed by another sweep through the subdomains in reverse order, gives rise to an
error propagator of the form (5). Also, note that no conditions are imposed on the nature of
the operators Ak associated with each subdomain. In particular, the theorem does not require
that the variational conditions be satisfied. The theorem also does not require that the overall
multiplicative DD method be convergent.
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Remark 3. The results of the theorem apply for operators on general finite-dimensional
Hilbert spaces with arbitrary inner-products. They hold in particular for matrix operators on
Wy , , equipped with the Euclidean inner-product or the discrete L2 inner-product. In the former
case the superscript "T" corresponds to the standard matrix transpose. In the latter case, the
matrix representation of the adjoint is a scalar -multiple of the matrix transpose; the scalar
may be different from unity when the adjoint involves two different spaces, as in the case of
prolongation and restriction. This possible constant in the case of the discrete L2 inner-product
is absorbed in the factor ck in condition 1. This allows for an easy verification of the conditions
of the theorem in an actual implementation, where the operators are represented as matrices
and where the inner-products do not explicitly appear in the algorithm.

Remark 4. Condition 1 of the theorem (with ck = 1) for k = 1, ... , J is usually satisfied
trivially for domain decomposition methods. For k = 0, it may have to be imposed explicitly.
Condition 2 of the theorem allows for several alternatives which give rise to an SPD precon-
ditioner, namely: (1) use of exact subdomain solvers (if A k is a symmetric operator); (2) use
of identical symmetric subdomain solvers in the forward and backward sweeps; and (3) use of
the adjoint of the subdomain solver on the second sweep. Condition 3 is satisfied when the
coarse problem is symmetric and the solve is an exact one, which is usually the case.' If not, the
coarse problem solve has to be symmetric. Condition 4 in Theorem 1 is clearly a non-trivial
one; it is essentially the assumption that the multiplicative DD meth .)d without a coarse space
is convergent. Condition 5 is satisfied, for example, when the coarse problem is SPD and the
solve is exact.

Multiplicative multigrid. Consider the Hilbert space W and J spaces Wk together with
operators Ik E L(Wk ,W), null (Ik) = 0, such that the spaces Ik Wk are nested and satisfy

I17i1 C I2W2 C_ • • • C_ IJ_ 1 WJ_ 1 C_ Wi = X As before, we denote the Wk-inner-products
by (, ), since it will be clear from the arguments which inner-product is intended. Again, the
inner-products are not necessarily related in any way. We assume also the existence of operators
Ik E L(71, Wk) .

In a multigrid context, the spaces Wk are typically associated with a nested hierarchy of
successively refined meshes, with W, being the coarsest mesh and W j being the fine mesh
on which the PDE solution is desired. The linear operators Ik are prolongation operators,
constructed from given interpolation or prolongation operators that operate between subspaces,
i.e., Ik_ 1 E L(Wk_ 1i 'hk). The operator Ik is then constructed (only as a theoretical tool) as a
composite operator

Ik = IJ-1li-2 ... Ik+1Ik+1, k = 1, ... , J — 1.	 (7)

The composite restriction operators Ik , k = 1, ... , J — 1, are constructed similarly from some
given restriction operators Ik- 1 E L( k , 74-1). The coarse problem operators A k are related
to the restriction of A to Wk . As in the case of DD methods, we say that Ak is variationally
defined or satisfies the Galerkin conditions when conditions (6) hold. It is not difficult to see
that conditions (6) are equivalent to the following recursively defined variational conditions:

Ak = Ik 
f lAk+llk+1^

	

Ik+1 = (Ik +1 )T	 (g)

when the composite operators Ik appearing in (6) are defined as in (7).
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In a finite element setting, conditions (8) can be shown to hold in ideal situations, for
both the stiffness matrices and the abstract weak form operators, for a nested sequence of
successively refined finite element meshes. In the finite difference or finite volume method
setting, conditions (8) must often be imposed algebraically, in a recursive fashion.

The error propagator of a multiplicative V-cycle MG method is defined implicitly as

E=I—BA=I—DJAJ ,	 (9)

where AJ = A and where operators Dk , k = 2, ... , J, are defined recursively:

I — Dk Ak = (I — RkAk)(I — Ik_1Dk- 1Ik- 1Ak)(I — Rk Ak ), k = 2.... , J,	 (10)

Dl = Rl .	 (11)

Operators Rk and Rk are linear operators on Wk, usually called smoothers. The linear operators
Ak E L(Wk , Wk) define the coarse problems. They often satisfy the variational condition (8).

The error propagator (9) can be thought of as an operator of the form (4) with

Bl = RJ , Bo = IjJ- 1 DJ_1IJ-1 , Bl = RJ .

Such an identification with the product method allows for the use of Lemma 13. The following
theorem establishes sufficient conditions for- the subspace operators R k , Rk , and Ak in order
to generate an (implicitly defined) SPD operator B that can be accelerated with conjugate
gradients.

Theorem 2. Sufficient conditions for symmetry and positivity of the multiplicative multi-
grid operator B, implicitly defined by (9), (10), and (11), are

1. Ak is SPD on Wk, k = 2, ... , J;

2. Ik
-1 

= Ck(Ik-1)T, Ck > 0, k = 2,..., J;

3. Rk	 Rk , k=2,...,J;
R — RT^•	 1 — 1;

5. III — RJA II A < 1;

6. III — Rk AkIIAk <1,	 k=2,...,J-1;
7. R1 non-negative on W1.

Proof. Since RJ = RT, we have that Bl = B1, which gives condition 1 of Lemma 13. Now, Bo
is symmetric if and only if

BO = IJ_ D -l IJ-1 = (C IIJ-1)TDT- 
(C IJ

- )T — BT
J 1 J J — J J	 J 1 7 J 1	 0

which holds under condition 2 and a symmetry requirement for DJ_ 1 . We will prove that
DJ_ 1 = D^ 1 by induction. First, D l = D1 since R1 = Ri . By Lemma 3 and condition 1, Dk.
is symmetric if and only if Ek = I — Dk Ak is Ak-self-adjoint. By using (1), we have that

Ek = Ak 1 ((I — RkAk) (I — Ik- 1 Dk- lIk- 'Ak) (I — Rk Ak)) T Ak

_ (I — Rk Ak)(I — ( CkIk-_J DT 1(c 1(c-1 )Ak)(I — RkAk),
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where we have used conditions 1, 2, and 3. Therefore, Ek = Ek , if Dk-i = D 1. Hence, the
result follows by induction on k.

Condition 3 of Lemma 13 follows trivially by condition 5 of the theorem.
It remains to verify condition 4 of Lemma 13, namely that Bo is non-negative. This is

equivalent to showing that DJ_ 1 is non-negative on ?iJ- 1 . This will follow again from an
induction argument. First, note that D l = Rl is non-negative on lij. Next, we prove that
(Dkvk, vk) >_ 0, Wk E lik , or, equivalently, since Ak is non-singular, that (DkAkvk, Akvk) > 0.
So, for all vk E ?ik,

(Dk Ak vk, Ak vk) _ (Ak vk, vk) — (Ak Ek vk, vk)

_ (Ak vk, vk) — (Ak(I — Ik- 1Dk- llk- 1Ak)(I — Rk Ak) vk, (I — RkAk)vk)

_ (Akvk, vk) — (Ak(I — Rk Ak) vk, (I — RkAk)21k)
+ (Ak 1Tk-lDk-1 1k-1Ak(I — Rk Ak) vk, (I — RkAk)vk)

(vk, vk)A, — (Skvk, Skvk)A, + ck 1 (Dk-1 Vk-1, vk-1)

where Sk = I — Rk Ak and vk- 1 = Ik- ' Ak (I — RkAk)vk E Wk-1. By condition 6, the first two
terms add up to a non-negative value. Hence, Dk is non-negative if Dk _ 1 is non-negative. 0

Remark 5. As noted earlier in Remark 3, the conditions and conclusions of the theorem
can be interpreted completely in terms of the usual matrix representations of the multigrid
operators.

Remark 6. Condition 1 of the theorem requires all but the coarsest grid operator to be SPD.
This is easily satisfied when they are constructed either by discretization or by explicitly enforc-
ing the Galerkin condition. Condition 2 requires restriction and prolongation to be adjoints,
possibly multiplied by an arbitrary constant. Condition 3 of the theorem is satisfied when the
number of pre-smoothing steps equals the number of post-smoothing steps and, in addition,
one of the following is imposed: (1) use of the same symmetric smoother for both pre- and
post-smoothing; or (2) use of the adjoint of the pre-smoothing operator as the post-smoother.
Condition 4 requires a symmetric coarsest mesh solver. When the coarsest mesh problem is
SPD, the symmetry of Rl is satisfied when it corresponds to an exact solve (as is typical for MG
methods). Condition 5 is a convergence requirement on the fine space smoother. Condition 6
requires the coarse grid smoothers to be non-divergent. The non-negativity requirement for
Rl is a non-trivial one; however, if Al is SPD, it is immediately satisfied when the operator
corresponds to an exact solve.

ADDITIVE SCHWARZ METHODS

Consider a sum operator of the following form:

E = I — BA = I — w(Bo + B,)A, w>0,	 (12)

where, as before, A is an SPD operator and Bo and B l are linear operators on X

Lemma 14. Sufficient conditions for symmetry and positivity of B, defined in (12), are
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1. B1 is SPD in W;

2. Bo is symmetric and non-negative on W.

Proof. We have that B = w(Bo + Bl ), which is symmetric by the symmetry of Bo and B1.
Positivity follows since (Bou, u) > 0 and (B1 u, u).> 0, du E W, u =A 0. q

Additive domain decomposition. We consider the space W and the J subspaces IkWk such
that IkWk _C W = Ek=1 IkWk. Again, we allow for a "coarse" subspace IOWO C W.

The error propagator of an additive DD method on the space W employing the subspaces

IkWk has the general form (see [10])

E = I — BA = I — w(IoRolo + I1 R1 I 1 + • • • + IJhJIJ )A.	 (13)

The operators Rk are constructed in such a way that Rk - A— 1 , where the Ak are the subdomain
problem operators. Propagator (13) can be thought of as the sum method (12) by taking
Bo = IO ROIO and B1 = EJ=1 Ik RkIk . This identification allows for the use of Lemma 14
in order to establish conditions to guarantee that additive domain decomposition yields an
SPD preconditioner. Before we state the main theorem, we need the following lemma, which
characterizes the splitting of W into subspaces Iklik in terms of a positive splitting constant So.

Lemma 15. Given any v E W, there exists a splitting v = Ek_1 Ik vk, Vk E ilk , and a
constant So > 0 such that

J
1: Il lk vkllA <- SOII v IIA•	 (14)
k=1

Proof. Since Ek_1 IkWk ='l, we can construct subspaces Vk C Wk such that Ik Vk n l^Vl _ {0},
for k 0 l and W = Ek_1IkVk. Any v E W, can be decomposed uniquely as v = Ek_1lkvk,

Vk E Vk . Define the projectors Qk E L(W, Ik Vk ) such that Qkv = Ikvk . Then,

J	 J	 J

E Il lk vkllA = E IIQk v IIA <- E IIQkIIA II v II2' -
k=1	 k=1	 k=1

Hence, the result follows with So = EJ I I Qk I I a • q

Theorem 3. Sufficient conditions for symmetry and positivity of the additive domain de-
composition operator B, defined in (13), are

1. Ik = ckIk , ck > 0, k = 0, ... , J;

2. Rk. is SPD on Wk, k = 1, ... , J;

3. Ro is symmetric and non-negative on Wo.

Proof. Symmetry of Bo and B1 follow trivially from the symmetry of Rk and Ro and from
Ik = ckIk . That Bo is non-negative on W follows immediately from the non-negativity of Ro
on WO.
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Finally, we prove positivity of B 1 . Define Ak = IkAIk , k = 1, ... , J. By condition 1 and the
full rank nature of Ik , we have that Ak is SPD. Now, since Rk is also SPD, the product RkAk
is Ak-SPD. Hence, there exists an wo > 0 such that 0 < wo < Ai(RkY k), k = 1, ... , J. This is
used together with (14) to bound the sum

E ck 1(Rk 1vk, vk) = E ck 1(AkA- 1
Rk 

lvk'vk) 
< 1 

ck 1(Akvk'vk) 
m#0 

(AkA^lRk 
v 

k, yk)

k=1	 k=1	 k=1	 ( k k, k)

J	 J	 J
^, Ck two 1 (Akvk, vk) _ ^WO 1(Alkvk, Ikvk ) —	 WO 1IIIkvkIIA	 \wp) IIvIIA
k=1	 k=1	 k=1

with v = Ek=1 Ik vk . We can now employ this result to establish positivity of B1:

	

J	 J	 J
II v IIA = (Av, v) _ ^(Av, Ikvk) _	 (Ik Av, vk) _ ^(RkCkl2lkAv, Rk 1 Ck 1/2vk).

k=1	 k=1	 k=1

By using the Cauchy-Schwarz inequality first in the R k-inner-product and then in RJ , we have
that

	

J	 11/2	 J	 1/2

II v IIA ^ (E(RkRk lc
 /2	 1/2

 Rk lck l/2vk) 
f	 (E(Rkck/2 IkAv, ck/2IkAv) l
l	 \_	 I

	

k-1	 k 1

So 1/2	 ( J
	 11/2	

So 1/2
C (WO )	 IIvIIA 1 E (Ik RkckIk Av, Av).)

	 = (w )	 IIvIIA (B1Av, Av)1/2
k=1	 O

Finally, we divide by IIvIIA and square to obtain

(B1 Av, Av) > 
SO II v IIA > 0 , VV E W, v =,40.

Remark 7. Condition 1 is naturally satisfied for k = 1, ... , J, with ck = 1, since the asso-
ciated Ik and Ik are usually inclusion and orthogonal projection operators (which are natural
adjoints when the inner-products are inherited from the parent space, as in domain decompo-
sition). The fact that I° = cola needs to be established explicitly. Condition 2 requires the
use of SPD subdomain solvers. The condition will hold, for example, when the subdomain
solve is exact and the subdomain problem operator is SPD. (The latter is naturally satisfied
by condition 1 and the full rank nature of Ik .) Finally, condition 3 is nontrivial and needs to
be checked explicitly. The condition holds when the coarse space problem operator is SPD and
the solve is exact. Note that variational conditions are not needed for the coarse space problem
operator.

Additive multigrid. Given are the Hilbert space 'K and J — 1 nested subspaces Iklik such
that 11 71 1 C_ I2 W2 C_ • • • C_ IJ_ 1 Wi_ 1 C Wi = W . The operators Ik and Ik are the usual linear
operators between the different spaces, as in the previous sections.
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The error propagator of an additive MG method is defined explicitly:

E = I - BA = I - w(I1 R1 I1 + I2R2 I2 + • • • + IJ-1RJ-,IJ-1 + RJ )A.	 (15)

This can be thought of as the sum method analyzed earlier by taking Bo = Fk-1 IkRklk and
B l = RJ . This identification allows for the use of Lemma 14 to establish sufficient conditions
to guarantee that additive MG yields an SPD preconditioner.

Theorem 4. Sufficient conditions for symmetry and positivity of the additive multigrid op-
erator B defined in (15) are

1. Ik =ckIk, ck >0, k=1,...,J-1;

2. RJ is SPD in 71;

3. Rk is symmetric non-negative in lik, k = 1, ... , J - 1.

Proof. Symmetry of Bo and Bl is obvious. Bl is positive by condition 2. Non-negativity of Bo

follows from

J-1	 J-1

(Bou, u) _ E (Ik Rk (cklk )'u, u) = E ck (RkIk u, Ik u) > 0, Vu E -71, u :h 0.
k=1	 k=1

D

Remark 8. Condition 1 of the theorem has to be imposed explicitly. Conditions 2 and 3
require the smoothers to be symmetric. The positivity of RJ is satisfied when the fine grid
smoother is convergent, although this is not a necessary condition. The non-negativity of
Rk , k < J, has to be checked explicitly. When the coarse problem operators Ak are SPD, this
condition is satisfied, for example, when the smoothers are non-divergent. Note that variational
conditions for the subspace problem operators are not required.

NUMERICAL RESULTS

The Poisson-Boltzmann equation describes the electrostatic potential of a biomolecule lying
in an ionic solvent. This nonlinear elliptic equation for the dimensionless electrostatic potential
u(r) has the form

	

(L,,,e,2N
-® • (e(r)®u(r)) + R'sinh(u(r)) = 

kB 	 E zi6(r - ri ), r E 1[83 , u(oo) = 0.
z-1

The coefficients appearing in the equation are discontinuous by orders of magnitude. The
placement and magnitude of atomic charges are represented by source terms involving delta-
functions. Analytical techniques are used to obtain boundary conditions on a finite domain
boundary.

We will compare several MG and DD methods for a two-dimensional, linearized form of
the Poisson-Boltzmann problem, modeling a molecule with three point charges. The surface
of the molecule is such that the discontinuities do not align with the coarsest mesh or with
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Figure 1: Example 1: Nested finite element meshes for MG.

the subdomain boundaries. Beginning with the coarse mesh shown on the left in Figure 1, we
uniformly refine the initial mesh of 10 elements (9 nodes) five times. leading to a fine mesh of
2560 elements (1329 nodes). Piecewise linear finite elements, combined with one-point Gaussian
quadrature, are used to discretize the problem. The three coarsest meshes used to formulate
the MG methods are given in Figure 1. For the DD methods, the subdomains, corresponding
to the initial coarse triangulation, are given a small overlap of one fine mesh triangle. The
DD methods also employ a coarse space constructed from the initial triangulation. Figure 2
shows three overlapping subdomains overlaying the initial coarse mesh. Computed results are
presented in Tables 1 to 4. Given for each experiment is the number of iterations required to
satisfy the error criterion (reduction of the A-norm of the error by 10 -10 ). We report results for
the unaccelerated, CG-accelerated, and Bi-CGstab-accelerated methods. The execution time
differs for each method; normalized costs are tabulated in [5].

Multiplicative multigrid. The results for multiplicative V-cycle MG are presented in Table 1.
Each row corresponds to a different smoothing strategy and is annotated by (vl , v2 ), with vl pre-
smoothing sweeps and v2 post-smoothing sweeps. An "f" indicates the use of a single forward
Gauss-Seidel sweep, while a "b" denotes the use of the adjoint' of the latter, i.e., a backward
Gauss-Seidel sweep. Two series of results are given. For the first set, we explicitly imposed
the Galerkin conditions when constructing the coarse operators. In this case, the multigrid
algorithm is guaranteed to converge (cf. [5]). In the second series of tests (corresponding to
the numbers in parentheses) the coarse mesh operators are constructed using standard finite
element discretization. In that case, Galerkin conditions are not satisfied everywhere due to
coefficient discontinuities appearing within coarse elements; hence, the MG method may diverge
(DIV).

The unaccelerated MG results clearly illustrate the symmetry penalty given in Lemma 10.
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Table l: Example 1: Multiplicative MG with variational (discretized) coarse problem

vl v2	 11 UNACCEL CG Bi-CGstab

f 0	 1165 (DIV) I >>100 (»100) 14 (16)
f b 55 (DIV) 16 (18) 10 (15)
f f 40 (31) 30 (»100) 9 (9)

ff 0 39 (48) »100 (»100) 8 (10)
fb 0 53 (DIV) »100 (»100) 10 (11)
0 ff 39 (29) 29 (»100) 8 (9)
0 fb 53 (DIV) 17 (99) 10 (12)

fb fb 1 34 (27) 12 (13) 8 (8)
ff bb 28 (18) 11 (11) 7 (7)
ff ff 24 (15) 12 (12) 6 (6)
ff f 24 (15) 17 (27) 6 (6)

ffff 0 25 (17) »100 >100) 7 (6)

Table 2: Example 1: Multiplicative DD with variational (discretized) coarse problem

Accel. subdomain solve forw forw/back forw/forty

UNACCEL exact 40	 (42) 38	 (39) 20	 (21)
symmetric 279	 (282) 146	 (149) 140	 (141)
adjointed - 110	 (112) 102	 (103)

nonsymmetric 189	 (191) 102	 (104) 95	 (96)
CG exact »500	 (5>500) 13	 (13) 20	 (20)

symmetric 140	 (56) 24	 (24) 29	 (27)
adjointed -	 - 21	 (21) 25	 (26)

nonsymmetric 135	 (83) 22	 (23) 28	 (28)
Bi-CGstab exact 9	 (9) 9	 (9) 6	 (6)

symmetric 23	 (23) 17	 (16) 16	 (16)
adjointed -	 - 14	 (14) 14	 (13)

nonsymmetric 19	 (20) 13	 (13) 13	 (13)

The nonsymmetric methods are always superior to the symmetric ones (the cases (f,b), (ff,bb),
and (fb,fb)). Note that minimal symmetry (ff,bb) leads to a better convergence than maximal
symmetry (fb,fb). The correctness of Lemma 10 is illustrated by noting that two iterations of the
(f,0) strategy are actually faster than one iteration of the (fb) strategy; also, compare the (ff,0)
strategy to the (ff,bb) one. The CG-acceleration leads to a guaranteed reduction in iteration
count for the symmetric preconditioners (see Lemma 12). We observe that the unaccelerated
method need not be convergent for CG to be effective. CG appears to also accelerate some
non-symmetric linear methods. Yet, it seems difficult to predict failure or success beforehand in
such cases. The most robust method appears to be the Bi-CGstab method. Note the tendency
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Table 3: Example 1: Additive MG with variational (discretized) coarse problem

v UNACCEL CG Bi-CGstab
f 175 (»1000) »100 (»100) 23 (52)

ff 110 (»1000) 119 (168) 19 (43)
fb 146 (»1000) 34- (54)	 4 23 (49)

ffff 95 (»1000) 28 (67) 17 (37)
ffbb 100 (»1000) 27 (47) 17 (34)
fbfb 95 (»1000) 28 (48) 20 (43)

Table 4: Example 1: Additive DD with variational (discretized) coarse problem

subdomain solve UNACCEL CG Bi-CGstab
exact »1000	 (»1000) 34	 (34) 25	 (27)

symmetric »1000	 (»1000) 57	 (57) 50	 (49)
nonsymmetric »1000	 (»1000) 69	 (65) 38	 (41)

to favor the nonsymmetric V-cycle strategies. Overall, the fastest method proves to be the
Bi-CGstab-acceleration of a (very nonsymmetric) V(1,0)-cycle.

Multiplicative domain decomposition.. Results for multiplicative DD -are given in Table 2. In
the column "forw" the iteration counts reported were obtained with a single sweep though the
subdomains on each multiplicative DD iteration. The other columns correspond to a symmetric
forward/backward sweep or to two forward sweeps. Four different subdomain solvers are used:
an exact solve, a symmetric method consisting of two symmetric Gauss-Seidel iterations, a
nonsymmetric method consisting of four Gauss-Seidel iterations, and, finally, a method using
four forward Gauss-Seidel iterations in the forward subdomain sweep and using their adjoint
(i.e., four backward Gauss-Seidel iterations) in the backward subdomain sweep. The latter leads
to a symmetric iteration; see Remark 2. Note that the cost of the three inexact subdomain
solvers is identical.

Although apparently not as sensitive to operator symmetries as MG, the same conclusions
can be drawn for DD as for MG. In particular, the symmetry pewilty is seen for the pure
DD results. Lemma 10 is confirmed since two iterations in the column "forw" are always more
efficient than one iteration of the corresponding method in column "forw/back." The CG results
indicate that using minimal symmetry (the "adjointed" column) is a more effective approach
than the fully symmetric one (the "symmetric" column). The most robust acceleration is the
Bi-CGstab one.

Additive multigrid. Results obtained with an additive multigrid method are reported in
Table 3. The number and nature of the smoothing strategy is given in the first column of the
table.

In the case of an unaccelerated additive method, the selection of a good damping param-
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eter is crucial for convergence of the method. We did not search extensively for an optimal
parameter; a selection of w = 0.45 seemed to provide good results in the case when the coarse
problem was variationally defined. No w-value leading to satisfactory convergence was found
in the case when the coarse problems were obtained by discretization. In the case of CG ac-
celeration the observed convergence behavior was completely independent of the choice of w;
see Remark 2. The symmetric methods (v = f b, f f bb, f b f b) are accelerated very well. Some of
the nonsymmetric methods are accelerated too, especially when the namber of smoothing steps
is sufficiently large. The best method overall appears to be the Bi-CGstab acceleration of the
nonsymmetric multigrid method with a single forward Gauss-Seidel sweep on each grid-level.

Additive domain decomposition. The results for additive DD are given in Table 4. The
subdomain solver is either an exact solver, a symmetric solver based on two symmetric (for-
ward/backward) Gauss-Seidel sweeps, or a nonsymmetric solver based on four forward Gauss-
Seidel iterations. No value of w was found that led to satisfactory convergence of the unaccel-
erated method. The CG-acceleration performs well when the linear method is symmetric and
worse if nonsymmetric. Again, the best overall method is the Bi-CGstab-acceleration of the
nonsymmetric additive solver.
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SUMMARY

A key ingredient in the simulation of flow in porous media is the accurate de-
termination of the velocities that drive the flow. The large scale irregularities of
the geology, such as faults, fractures, and layers suggest the use of irregular grids in
the simulation. Work has been done in applying the finite volume element (FVE)
methodology as developed by McCormick in conjunction with mixed methods which
were developed by Raviart and Thomas. The resulting mixed finite volume element
discretization scheme has the potential to generate more accurate solutions than stan-
dard approaches. The focus of this paper is on a multilevel algorithm for solving the
discrete mixed FVE equations. The algorithm uses.a standard cell centered finite
difference scheme as the ` coarse' level and the more accurate mixed FVE scheme as
the `fine' level. The algorithm appears to have potential as a fast solver for large size
simulations of flow in porous media.

The Mixed Finite Volume Element Discretization

In this first section, we briefly introduce the mixed finite volume element (FVE)
discretization technique. We will not dwell too much on the details of the discretiza-
tion itself as our focus here is on solving the discrete set of equations that the dis-
cretization produces; a detailed description of the discretization can be found in [7].

We begin by considering the following partial differential equation defined on a
domain Q in R2:

V . A (X) VO( X) =f(x) X E Q,	
(1)VOX • 7J	 = g(X) X E aQ.

Here we assume the diffusion coefficient A is diagonal, but values of the coefficients
may jump orders of magnitude at material interfaces. In the context of reservoir
simulation, this is the pressure equation for incompressible single-phase flow where
0 is the pressure in the reservoir Q, and the boundary condition specifies the flux
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v(ij)

Figure 1

on i9Q. As one of our goals for the new discretization is accurate approximations of
flow velocities, we will begin by reformulating this equation as a first order system
of equations where velocity appears explicitly in the equations. This is done by
introducing the flow velocity variables via the definition,

v = —AVO,	 (2)'

and then rewriting the partial differential equation in (1) as,

0•v= f.	 (3)

In the context of reservoir simulation, definition (2) is Darcy's law and equation (3)
is the mass conservation law. In reservoir simulation, this same approach of treating
flow velocity explicitly has been used in mixed finite-element methods with consid-
erable success [5],[6],[13]. Equations (2) and (3) along with the boundary condition
from equation (1) represent the first order system that we discretize using the mixed
FVE method. Because of the irregularity of reservoir geology, faults, layers, etc.,
uniform rectangular grids are not adequate in modeling the flow. The mixed FVE
discretization was developed for a logically rectangular grid of irregular quadrilater-
als. An example of such a grid is shown in Figure 1. To discretize this system, we
follow the finite volume element (FVE) principles developed in [3],[8],[9]. The two
major components of any FVE discretization scheme are a choice of control volumes
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to integrate the continuous equation over and a choice of finite element spaces for the
unknowns.

Important in developing the discretization for general quadrilaterals is the map-
ping relating a general quadrilateral to a reference one. Consider the quadrilateral P
with vertices (xoo, yoo), (x lo, ylo), (xoi, yol), and ( x11, yli) shown in Figure 2. Let the
reference quadrilateral P be the unit square. Then there is a unique bilinear mapping
of P onto P given by,

x (x , y ) = xoo + (x io — xoo)x + (xol — xoo)y + ( x 11 — xlo — xol + xoo)xy
y(x ,y) = yoo + (ylo — yoo)x + (yol — yooV + (yll — Y10 — yol + yoo)xy

If P is convex, then this mapping has an inverse. We restrict ourselves to convex
quadrilaterals, so for each (x, y) E P we have an associated point (x, y) E P. Shown
in Figure 2 are several vectors that will be useful later in describing the components
of our discretization technique. For each (x, y) E P we define four vectors.

X(x, y) is the image of the unit vector (1, 0) in P,

Y(x, y) is the image of the unit vector (0, 1) in P,
77,,(x, y) is a unit vector orthogonal to Y(x, y),
77Y (x, y) is a unit vector orthogonal to X(x, y).

381



Figure 3

For the finite element spaces we use the lowest order Raviart-Thomas elements
on the quadrilateral elements, see [2],[14] and [11]. They can be defined as follows.
The characteristic functions of the quadrilaterals provide a basis for the finite element
space for 0. The basis functions for v are. best seen by associating degrees of freedom
with normal components on edges of quadrilaterals. A typical basis function for
the finite element space for v has support on two adjacent quadrilaterals and has a
constant normal component on the edge shared by the quadrilaterals, and its normal
component is zero on other edges. The magnitude of the basis function is such that
the flux on the common edge is one,

v•nds=1.
edge

These conditions alone do not uniquely determine the basis function; the following
additional condition on the finite element space is needed. Within any quadrilateral
P,

V • 77X IIYII varies linearly with x, constant with y,
v • 77Y IIXII varies linearly with y, constant with x.

A typical basis function is represented in Figure 3. We note that the basis functions
have continuous normal components across grid interfaces. With this we can guar-
antee that our computed flow velocity will also have continuous normal component
across grid edges. The true physical solution also has this property, continuous nor-
mal component of velocities, but not every numerical scheme for approximating it
does, as pointed out in [12].

We now need to choose the control volumes. The quadrilaterals used to describe
the grid are the natural choice for the control volumes for equation (3). This will
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produce a scheme with a local conservation property on these quadrilateral grid cells.
So we integrate equation ( 3), over each grid cell Pi,j,

f\
7 • vdrdy = f .f•

Applying the divergence theorem, we get,

Ja P,,, 
v • rids = J

ptj 
f.

The left-hand side of this equation is just the sum of the fluxes on edges of P i,j , so
the discretization of the mass conservation equation is,

11 11 	 - 2( .j + 2' j+1 - Z'i j - ^P f•	 (4)

Here u. +1 j and ithj denote the discrete fluxes on the `east' and `west' edges of the grid
cell, respectively. Similarly, t , hi. and vh denote the discrete fluxes on the `north'
and `south' edges of the grid cell, respectively. If we assume f is (approximated by)
a function that is piecewise constant, we can replace the integral on the right hand
side by:

fi,j xAREA (Pi,j)
If we have more information about f, we can use a more accurate approximation
of the integral. In choosing the control volumes for Darcy's equation, we use the
following control volumes which straddle grid edges. Consider two adjacent grid
cells, P i_ l,j and Pi,j . Ui,j then consists of the image of ( 1/2,1), x (0, 1) under the
mapping for P i _ l,j and the image of (0,1/2) x (0, 1) under the mapping for P i,j . In
Figure 4, Ui,j is the shaded region. We associate this volume with the `vertical' edge
shared by P i_ l,j and Pi,j which the control volume straddles. We also have control
volumes associated with `horizontal' edges. For adjacent grid cells, Pi,j_ 1 and Pi,j,

Vi ,j consists of the image of (0, 1) x (1/2, 1) under the mapping for P i ,j_ 1 and the
image of (0, 1) x (0, 1/2) under the mapping for P i,j . The discretization of Darcy's
equation proceeds as follows. We dot equation ( 2) with clX(x, y) and integrate over
the `left half' of Ui,j . Similarly, we dot equation ( 2) with c,.X(x, y) and integrate
over the `right half' of Ui,j . Here c l and c, are scaling constants chosen in such a
way to eliminate integral terms on the interface between Pi_ l,j and Pi,j where 0' is
undefined. We then add the two integrals to get our final result. We will present
here only the form of the equation that this integration gives rise to. Note that we
perform the same kind of integrations for the V volumes as well, only here we dot
Darcy's law with a scaling of the vector Y. For the U volume shown in Figure 4, we
get a discrete Darcy equation relating the pressure drop between the two cells to the
fluxes on cell edges,

Cl ui-1,j + C2uiJ
+C3 u i+l,j + C4 Vi-1,j + C5 vi-1,j+l + C6vi ,j + C7vi ,7+ l	 (5)
+I E I (Oi,j - Oi- i ,J) = 0.
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Here I E I is the length of the edge shared by the two adjacent grid cells. The values of
the coefficients Cl, ... , c7 depend on the position of the vertices defining the two grid
cells and on the values of the diffusion coefficient within the two cells. The `cross'
terms, c4, ... , c7, will generally be nonzero even when the diffusion coefficient A is
diagonal. In summary, for each grid cell we have a discrete conservation equation of
the form of equation (4) and for each grid edge we have a discrete Darcy equation of
the form of equation (5).

A Multilevel Algorithm

Previously in [7], a multigrid algorithm was developed to solve the discrete set of
equations that the mixed FVE method produces. In this algorithm the mixed FVE
discretization was used on coarser levels and interpolation and restriction were done
in a way consistent with the finite element spaces and control volumes on different
grids as in [9]. This yields a very efficient algorithm with two limitations. The first is
that the jumps in the diffusion coefficient must occur (if at all) at grid edges on the
coarse grid. The second is that the irregularity is described in a coarse grid which
is then refined by bilinear coordinates to generate finer grids. One cannot apply this
mixed FVE based multigrid algorithm to the equations on the coarsest grid; they
must be solved some other way. In a practice, both these problems are limitations
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on the coarsest grid; it must be fine enough to capture the reservoir geology and the
jumps in the diffusion coefficient. These limitations may result in the set of discrete
equations on the coarsest grid being too large to solve directly. With these limitations
we were forced to seek an alternative algorithm, either to be used alone or as the solver
on the coarsest grid allowable in a mixed- FVE based multigrid algorithm.

We will explain our approach as a two level multigrid algorithm; this is somewhat
an incorrect name as we will have only one grid. The fine level problem is the mixed
FVE discretization of the first order system,

A-1v+VO=0,
0•v= f.

We will write the mixed FVE equations in matrix form as,

C	 h 0Oradh 
/ ( Oh ) — ( A)	 (6)

Here, M is the mass matrix that comes from the discretization of Darcy's equation
and gradh and divh are the grid h discrete operators corresponding to the continuous
operators grad and div. We define the residuals as,

ry _ 0	 M gradh 	vh
r 	 fh	 divh 0	 ) ( ^h	

(7)

where the variables with hats denote a current approximate solution to equation (6).
We define the errors as,

h	 h	 heV =v —v ,
eh =Oh —lh.

We then write the error equation,

M gradh 	ev	 ry
divh 0	 eh) — ( r 	

(8)
 )

Now rather than using a coarser grid with the mixed FVE discretization to approxi-
mate the error equation, we will use the same grid with a standard cell-centered finite
difference approximation. This will be our `coarse' level in the multigrid algorithm.
The `coarse' level version of the error equation can then be written in matrix form as,

	

h 
gradh 1 Oh 1 — ^h 1	 (9)

J	 J	 (J

The only difference between equations (8) and (9) is the mass matrix. Assume the
grid is rectangular and the diffusion coefficient is diagonal,

A — \ a., 0I0 ay
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Then in (9) the mass matrix M is diagonal and is computed from the diffusion
coefficient by

-1
h __ ax	 h	 h	 ( 10)

The point is that in equation (9) we can eliminate the velocity variables. We have,

V  = M-1 (gradhOh + rv)	 (11)

Using this we can write equation (9) as,

—divhM-lgradh Oh = r — divhM
-1

rv.	 (12)

Black box multigrid [4] was developed to solve precisely this type of equation. In
the multilevel solver, we use black box multigrid to solve this equation for 0, use
equation (11) to get vh , and use these approximations of the error to correct our
mixed FVE approximation. In summary when the grid is rectangular, we can use a
standard cell centered finite difference discretization as the `coarse' level for the `fine'
level mixed FVE discretization. We would like do something similar in the case of a
general quadrilateral grid. However, one of our motivations for looking at the mixed
FVE discretization was that it can be applied in a clear and direct way to general
quadrilateral grids where standard cell centered finite differences cannot. A rigorous
cell centered finite difference discretization for general quadrilateral grids does not
currently exist. Fortunately, we do not need to ask this much of the discretization
on the `coarse' level as we will use the solution from the mixed FVE discretization
for our final computation. We would like to use the `coarse' level discretization
only to accelerate the relaxation process on the `fine' level. We have chosen to use
equation (10) to define M in the general quadrilateral case just as in the uniform case.
There are perhaps more sophisticated ways of defining M, but we have found that this
simple definition works well for most grids. It is clear that for very distorted grids,
our M will be a poor approximation to M; however, we will see in the next section
that for mildly distorted grids the two level method works as well as in the uniform
grid case. This two level approach is similar to the work in [10] where black box
multigrid was used as a `coarse' level for a Lagrangian hydrodynamics application.

Computational Results

Problem 1

We begin with a test problem using a uniform square grid on Q = [-1, 11 x [-1, 1].
The numerical experiment is designed to test the robustness of the two level approach
with respect to discontinuities in the diffusion coefficient. The diffusion coefficients,
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a, and ay , were separately and randomly assigned values between.01 and 100 for each
grid cell. The problem is thus anisotropic and the coefficients jump several orders of
magnitude between cells. The two level algorithm described in the previous section
was used with two alternating line relaxation sweeps on the mixed FVE equations
before calling in black box multigrid to solve the ` coarse' problem and one alternating
line relaxation sweep after. Here x-line relaxation, for instance, means changing all
variables, 0, u, and v, associated with cells sharing the same j index so that all
discrete equations (conservation and Darcy) associated with those cells are satisfied.
This involves inverting a banded 4n — 3 by 4n — 3 matrix, where n is the number
of cells in the x-direction. This is a relatively expensive relaxation process, but it is
needed to deal with anisotropic coefficients. As pointed out in [1], block relaxation
is needed for smoothing when cells are coupled to some neighboring cells strongly
and to other neighboring cells weakly. One point to consider is: how well do we
need black box multigrid to solve the `coarse' problem? In [10] only one cycle of
black box multigrid was used to approximately solve the `coarse' problem. We found
that for this difficult test problem (note: black box multigrid convergence factors
were approximately equal to .6) that performing more than one cycle of black box
multigrid improved the overall convergence factors of the two level method. In the
results reported below we used five cycles of black box multigrid to approximately
solve the `coarse' problem, although similar multilevel convergence factors can be
obtained with fewer (say, two or three) cycles. The asymptotic convergence factors
for the two level method are presented below.

Grid size I Convergence Factor

16 x 16 .43
32 x 32 .44
64 x 64 .46

We see that this two level approach, while not having great convergence factors,
does exhibit convergence factors that are constant with growing problem size. The
point of considering this two level method was to allow us to deal with the problem
where the coarsest grid for the mixed FVE based multigrid algorithm is still too fine
and has too many unknowns to solve the mixed FVE equations using a direct method.
In practice, one could use the mixed FVE based multigrid algorithm until one reached
the coarsest grid that was aligned with the discontinuities in the diffusion coefficient.
Then, on this grid, use the two level approach of the previous section.

Problem 2

In this experiment we began with a uniform square grid on Q = [-1, 1] x [-1, 1]
and distorted the grid in the following way. We moved each interior vertex in both the
x and y directions separately by a random number between —.2h and .2h, where h was
the mesh size of the original square mesh. The resulting mesh for the 16 x 16 problem
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is shown in Figure 5. Then we discretized Poisson's equation, a., = ay = 1, using the
mixed FVE method and applied the two level algorithm described previously. Again,
two alternating line relaxation sweeps were performed before solving the `coarse'
problem and one alternating line relaxation sweep was performed after, and five cycles
of black box multigrid were used to solve the `coarse' problem. Average convergence
factors for the two level approach on different size grids are shown below.

Grid size I Convergence Factor

16 x 16 .07
32 x 32 .08
64 x 64 .08

The convergence factors are surprisingly good, given the quality of the approxi-
mation used on the `coarse' level. As discussed previously, we basically assume the
grid is uniform in forming the mass matrix k for the discrete Darcy equations on the
`coarse' level. This appears to work fine for the mildly distorted grids like the grids
in this numerical experiment and, quite likely, the grids one would use in practical
applications. When the grid is very distorted, say 50% rather than 20% distortion,
the two level algorithm can fail to converge and may even diverge. The reason is
that the very poor approximation of the mass matrix results in a correction from the
`coarse' level that has little, if anything, to do with the `fine' level error. It is possible
that this could be remedied by a more sophisticated choice for M, but this has not
been investigated.

Problem 3

In the next numerical experiment we use the same grids as in the previous experi-
ment and solve the mixed FVE discretization to the diffusion equation with diagonal
diffusion coefficient where on each cell in this grid the diffusion coefficients a,, and
ay were separately set to random values between .01 and 100. The results, average
convergence factors, are shown below.

Grid size I Convergence Factor

16 x 16 .43
32 x 32

_
.40

64 x 64 .38

While the convergence factors are not that great, they likely are acceptable espe-
cially if one is using the two level approach only on the coarsest grid of the mixed
FVE based multigrid algorithm. There the amount of work on finer grids in the
mixed FVE based multigrid algorithm will be much larger than the work of the two
level algorithm on the coarsest grid, even if several cycles of the two level algorithm
are required. This last experiment is reflective of the types of problems one would
solve in actual reservoir simulation. It appears that this two level approach has the
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potential to provide a fast solution to the more accurate mixed FVE discretization,
compared to standard cell centered finite differences, in cases where the previously
developed mixed FVE based multigrid algorithm cannot be applied.

Conclusions

The two level algorithm presented in this paper provides an efficient method for
solving the mixed FVE equations on general quadrilateral grids. One point about
the "poor" convergence factors for the two level method seen in problems 1 and
3: these results, in an indirect way, illustrate the superiority of the mixed FVE
discretization over the standard cell centered finite difference discretization when the
diffusion coefficient is discontinuous, even on uniform grids. The "poor" convergence
factors tell us that there is a significant difference between the discretizations, and as
demonstrated in [7], the mixed FVE discretization is the more accurate of the two.

REFERENCES

[1] A. Brandt, Multigrid Techniques : 198.E Guide, The Weizmann Institute of Sci-
ence, Rehovot, Israel, 1984.

[2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer
Series in Computational Mathematics Number 15, Springer-Verlag, 1991.

[3] Z. Cai, J. Mandel, and S.F. McCormick, "The finite volume element method
for diffusion equations on general triangulations," SIAM Journal of Numerical
Analysis, 28, 1991, 392-402.

[4] J.E. Dendy, "Black box multigrid," Journal of Computational Physics, 48, 1982,
366-386.

[5] R.E. Ewing and R.F. Heinemann, "Incorporation of mixed finite element meth-
ods in compositional simulation for reduction of numerical dispersion," SPE
12267, Proceedings of the 7th SPE Symposium on Reservoir Simulation, 1983,
pp. 341-347.

[6] R.E. Ewing, T.F. Russell, and M.F. Wheeler, "Simulation of miscible displace-
ment using mixed methods and a modified method of characteristics," SPE
12241, Proceedings of the 7th SPE Symposium on Reservoir Simulation, 1983,
pp. 71-81.

[7] J. Jones, "A mixed finite volume element method for accurate computation of
fluid velocities in porous media," Ph.D Thesis, University of Colorado at Denver,
1995.

390



[8] C. Liu and S.F. McCormick, "The finite volume element method (FVE) for
planar cavity flow," Proceedings of the 11th International Conference on CFD,
Williamsburg, VA, June 28-July 2, 1988.

[9] S.F. McCormick, Multilevel Adaptive Methods for Partial Differential Equations,
Vol. 6 in Frontiers in Applied Mathematics, Society for Industrial and Applied
Mathematics, Philadelphia, 1989.

[10] J.E. Morel, J.E. Dendy, M.L. Hall, and S.W. White, "A cell-centered Lagrangian-
mesh diffusion differencing scheme," Journal of Computational Physics, 103,
1992, pp. 286-299.

[11] P.A. Raviart and J.M. Thomas, "A mixed finite element method for 2nd order
elliptic problems," Mathematical Aspects of Finite Element Methods, 1. Galligani
and E. Magenes, eds., Lecture Notes in Mathematics, Vol. 606, Springer-Verlag,
1977, pp. 292-315.

[12] T.F. Russell, "Rigorous block-centered discretizations on irregular grids," Im-
proved Simulation of Complex Reservoir Systems, Reservoir Simulation Research
Corporation, Project Report No. 2, April 12, 1990.

[13] T.F. Russell and M.F. Wheeler, "Finite element and finite difference methods for
continuous flows in porous media," The Mathematics of Reservoir Simulation,
R.E. Ewing, ed., Society for Industrial and Applied Mathematics, Philadelphia,
1983, pp. 35-106.

[14] J.M. Thomas, "Sur 1'analyse numerique des methodes d'elements finis hybrides
et mixtes," These de doctorat d'etat, a 1'Universite Pierre et Marie Curie, May
1977.

391



Page intentionally left blank 



Implicit Extrapolation Methods for Variable Coefficient Problems

M. Jung

U. Rude

SUMMARY

Implicit extrapolation methods for the solution of partial differential equa-
tions are based on applying the extrapolation principle indirectly. Multigrid tau-
extrapolation is a special case of this idea. In the context of multilevel finite element
methods, an algorithm of this type can be used to raise the approximation order,
even when the meshes are nonuniform or locally refined. Here previous results are
generalized to the variable coefficient case and thus become applicable for nonlinear
problems. The implicit extrapolation multigrid algorithm converges to the solution
of a higher order finite element system. This is obtained without explicitly construct-
ing higher order stiffness matrices but by applying extrapolation in a natural form
within the algorithm. The algorithm requires only a small change of a basic low order
multigrid method.

Introduction

Implicit extrapolation is an efficient technique to improve the accuracy of a multilevel
solver. When combined with extrapolation, the multilevel principle is not only used
as the basis for a fast algebraic solver, but also to increase the approximation order.
The basic idea of extrapolation is to exploit discretizations on different levels.

In classical Richardson extrapolation, two or more approximations from different
meshes are combined linearly to eliminate the dominating terms of the error expan-
sion. For partial differential equations this has been studied in the context of finite
difference discretizations, see e.g. Marchuk and Shaidurov [1] and in the framework
of finite elements (FE), see e.g. Blum, Lin, and Rannacher [2]. These techniques are
explicit extrapolation methods, since they use approximate solutions directly.

Here we propose a different approach, where extrapolation is applied indirectly
to intermediate quantities of the solution process. Such methods are called implicit
extrapolation techniques. Methods of this type may be related to defect correction,
and — if combined with multigrid — to -r-extrapolation, see e.g. Brandt [3], Hack-
busch [4], Schaffer [5], or Bernert [6]. However, these methods are mathematically
still motivated by expansions of the truncation error, which in turn require uniform

393



meshes. A generalization to locally uniform meshes can e.g. be found in McCormick
and Rude [7].

In Jung and Rude [8] we have presented an implicit finite element extrapolation
technique which is based on extrapolating the quadrature rules used to compute the
stiffness matrices. In [8] it has been shown that within the nested spaces of a multi-
level finite element algorithm, this implicit extrapolation converts an h—hierarchical
to a p--hierarchical basis. This improves the approximation order, independent of
any uniformity constraints on the mesh and without requiring global asymptotic er-
ror expansions. On the other hand, the algorithm presented in [8] is algebraically
just a special case of multigrid -r-extrapolation, which differs from the usual multi-
level process only by an additional factor appearing in the restriction of the residual.
The method is therefore particularly convenient to implement in any given multigrid
algorithm.

The analysis of [8] was still restricted to problems with element-wise constant co-
efficients. In this present paper we will now generalize these results to show that an
analogous algorithm can be used for variable coefficients as long as the coefficients are
smooth enough to justify higher order approximations at all. The analysis is again
based on studying quadrature formulas for the stiffness matrices, and using extrapo-
lation to construct quadrature formulas which are exact for higher order polynomial
functions. For variable coefficients, this is now significantly more complicated and
our analysis requires nonstandard quadrature rules. These rules and the multilevel
algorithm are introduced in detail. The final section presents a numerical example
showing the efficiency of the method.

The boundary value problem and its finite element discretization

In this paper we consider two—dimensional second order elliptic boundary value prob-
lems given in the weak formulation

Find u E Vo such that a(u, v) = (F, v) for all v E Vo,	 (1)

with
a(u, v) = f (A(x)V .,u, Vxv) dx	 (2)

and
(F, v) = 10 v dx.	 (3)

Q is a two-dimensional bounded polygonal domain. The space Vo = Ho (Q) is a
subspace of the Sobolev space H 1 (Q), where the functions of Vo satisfy homogeneous
Dirichlet boundary conditions on the boundary (9Q. The restriction to this type
of boundary conditions is only to keep the exposition as simple as possible. The
generalization to somewhat more general boundary conditions is analogous to [8].

Furthermore, we suppose that the 2 x 2 matrix A(x) = ( aij( x ))i,j-i,2 is symmetric
and positive definite for almost all x E Q with aij (x) E W,,2.(Q). The function f
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belongs to the space WQ (Q) with q > 2. We need these assumptions to obtain a
discretization error. which is typical for FE discretizations with piecewise quadratic
functions and the application of appropriate quadrature rules for the computation of
the stiffness matrix and the load vector.

We now discretize (1) by three different finite element spaces. We suppose that two
nested triangulations TI-1 and T of the domain Q are given. The finer triangulation
7 results from TI- 1 by regular refinement, that is by connecting the midpoints of all
triangles SITi, r = 1, 2, ... , Rt_1i in T_ 1 . Corresponding to the triangulations T_1

and T we introduce the finite element spaces

VLJ = span{pii) 1 	: i = 1, 2, ... , Nt_i} C Vo, (4)

VL =	
VL1 U span {pie) : z = Nt-1 + 1, ... , Ni l C Vo, (5)

VQ =	 VL1 U span{q (i)1 i = Nd _1 + 1,—, Ni l C Vo. (6)

The trial functions pkx k = 1 1 l - 1, are continuous and piecewise linear in each
triangle of Irk and they satisfy

(2) ( x (' ) ) = bi j	 for i j ='1 2	 Npt-1	 ^^	 > ... ,	 t-1

p(' ) (x (' ) ) = Sig for i, = Nt-1 + 1,—, Nt.

Here x (j) = (4 ) , x2' ) ) denotes the coordinates of the node P(j) and Nk is the
number of nodes of Ek in Q. 6iJ is the Kronecker symbol.

The functions gli)1 , i = N1 _1 + 1, ... , Nt , of (6) are continuous and piecewise
quadratic in each triangle of T_ 1 . Again, they satisfy

giz)1(x(^)) = SiJ	 for i, j = NI-1 + 1, ... , Ni.

VL we call h-hierarchical basis and the basis of the space VQThe basis of the space 
is called p-hierarchical basis.

The finite element subspaces VL1, I VQ of (4), (5), and (6), respectively, give
rise to the finite element stiffness matrices KI 1 , KI , and KQ as well as the load
vectors f L 1 , f L , and f Q.

For the computation of the coefficients of the element stiffness matrices and the
element load vectors in general we must perform numerical integration. We therefore
need an appropriate quadrature rule which guarantees the same FE discretization
error as in the case of exact computation of the stiffness matrix and the load vector.
To investigate the effect of numerical integration we will use well-known results as
e.g. contained in [9]. For the sake of completeness we summarize some of them.

The application of quadrature rules for the computation of the matrix elements
and the elements of the load vector results in an approximate bilinear form a(ii, v) and
an approximate right-hand side (F, v^. Depending on the choice of the quadrature
rule and the finite element subspace V, i.e. V = VL1, V = VL , or V = VQ , we will
later describe a(u, v) in detail.
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The approximate bilinear form is called uniformly T%-elliptic, if there exists a
constant a > 0, a independent of V, such that

a(z 1 0 > a I I t 1Ii.2.0 for all i E T'.

Here 1 1 ' 1 11,2,o denotes the norm in the Sobolev space H l (Q).

Using numerical integration, the boundary value problem (1) is approximated by

Find fi E T such that a(u. i) = (F, i) for all i' E T'.	 (7)

Theorem 1. (First. Lemma. of Strang) Let the approximate bilinear form a. of (7)
be uniformly V'-elliptic. Then

I21 — 2cI I1,2,S2 < c 
OEV

nf S I I11 — Z'I 11.2.0+sup
 l	 u,Ef, IIte111.2.0	 } + CEp 	IIII	 Ji^' 1,Z,S2

with a. constant c which does not depend on the space 1

Let the solution u E Ho+1 (Q), a i j E II"CQ (S2), i, j = 1, 2, f E T ,Vq (52) with q > 2

and q > 21s, and let the FE subspace T' contain piecewise polynomials of degree s,
i.e. polynomials of degree s on the triangles of the triangulation. Furthermore, let
the quadrature rule be exact for polynomial of degree 2s — 2 on each triangle. Then
the following estimate holds (see also [9] )

2

Il u — fl, 11 1,2,Q < ch.s ^I 2r, Is+1,2.0 + E Il a ,.jlls...QII 11 IIs+1,2,52 + (I.flls,s,sl)
i,j=1

Here II . lis+1,2,o and I ' IS+1,Z,S2 denote norms in Ho+l (Q) as well as II IIS^ is a norm
in WQ (Q).

A multigrid algorithm with implicit extrapolation step

In Jung/Rude [8] we have studied the convergence properties of a multigrid algorithm
with implicit extrapolation step. However, the papers [8] were restricted to problems
with piecewise constant functions aijW and f (x) in T_ 1 : If such a problem is dis-
cretized by linear elements, and the multigrid algorithm is combined with (implicit)
extrapolation, the iterates converge to the solution given by quadratic elements. In
this paper we will generalize this result to the case of variable coefficients. It will
be shown that the extrapolation algorithm converges to the solution obtained with
quadratic elements. In the analysis of this more general case, we will use special
nonstandard quadrature rules.

In the following we will give a brief description of the smoothing procedure and
the restriction operator used. Then we formulate the multigrid algorithm and study
the convergence behavior.
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Numbering the nodes in T such that the nodes which are also in the coarse mesh
T-1 appear first, we induce a block partitioning of the stiffness matrices

if 
= K^ v Kl m	

KQ - KQ v 
KIQ m	

(8)L	 L	 Q	 Q l

Kt,m„ Kl,mm	 KQ KQ

In the multigrid algorithm we use the following smoothing procedures:

• Pre-smoothing Gl (ul' ) , Ki , f L ): Let the initial guess uU) _ (u ( '), u (') )T be

given. Set u1, 1) = ul ,, and compute an approximate solution zt ,,n of the system

KLL L (7+1) L (.7) ( )
l,mmzd,m — f M — Kl,mvul,v — Kl,mmul,m 9

by means of a linear iterative method starting with the zero vector. We suppose
that the error transmission operator of the method is of the type

Mt,,n = It,m - BI ' mm Ki M
Then set u (a + 1 ) _ (u(j+ 1) u(j) + z )

T_I	 — —t,v , —1'M—I'm,

• Post-smoothing GN(ui' ) , Ki , f L ): We use the same form of algorithm as for
pre-smoothing. However, we suppose that the error transmission operator of
the iterative method is of the form Mi,m = II,m, - BI, M n KI ,n such that the
overall multigrid operator becomes symmetric.

• We need the injection operator

I,
1 -1,inj : RN1 —, RNt_1

in our algorithm.

Algorithm MG-EX

Let an initial guess u(k'o) be given.

1. Pre-smoothing:

	

uik'1) - G` (uik'°), Ki 2_1	 (10)

2. Coarse grid correction:

(a) Compute the defect

d(ki - 3 (fLv -K vuiv'1) -K muaknl)) - 3 (fi 1-K1- 1 
jl— l,zn, (k,l)u) (11)

(b) Solve
Kl lwiki = dlki ; (12)

using y iteration steps of a usual symmetric multigrid ((l — 1)—grid) algo-
rithm, starting with the 0 vector and returning an approximate solution

(k)

wl-1
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(c) Correct

2G(k'2) 	
(
u (k '1) + Y(k) u(k,l) T—I	 (—1,v	 _I 1' _1"")

	
( 13)

3. Post-smoothing:
?d(k'3) = G I ILI 2) , Ki fL )	 (14)

and set ulk+l,o) = ulk,3)

Taking into consideration the definition of the smoothing procedures and the
equivalence of step 2(a) to

d1-1 — 
(3fl,v — 3fi 1) —

 (4,fL ^'
3 	 — 3Ki 1) uiv'1) — 3Ki Dui l)	 (15)

we can interpret our algorithm as a usual multigrid algorithm in the h-hierarchical
basis to solve the system of equations

I1 L,ex u = fL,ex	 (16)

	

I	 —1

with

4 fL

Ii L ex —	 3 liI v — 3 11i 1 3111 rn	
and	 L,ex — 3f,v 3—I-1	 17I	 4I1L	 4I1 L	

f —	 4 fL 	 ( )
3

IL
	 3 l,mrn	 3—1,rn

The main result of this section is that the iterates of the algorithm MG-EX
converge to a. FE solution which has the same order of discretization error as a FE
solution obtained by p-hierarchical FE functions (p = 2).

Before we prove this fact, we introduce the quadrature rules that are used to
compute the stiffness matrices and load vectors.

To obtain the entries of the stiffness matrices Iii 1, KL , and KQ, respectively, we
have to compute

a(pi')^pi2)) _ I (A(x)VxP(')(x),OxP(z)(x)) dx ^	 (18)

where p(2) , P(' ) stand for the functions PI-1, P1-1, i, j = 1, ... , NI-1 i p1 i) , p1'),

NI-1 + 1, ... , NI , in the case of the h-hierarchical basis. In the case of the p-

hierarchical basis the functions P(' ) , p (' ) stand for p1 01, Pij)1^ 2,^ = 1, ... , N1-1, q(')1^

qij i i, j = N1-1 + 1, ...

First we explain the quadrature rules used for the computation of the matrices
Ili 1 and Kl . From (18) we obtain for the entries of I1ii

I VXPW

	

(A(x)VxP(')(x),i1(x)) dx =	 f cr y (A(x)VxP('—)1(x), Vxpi ) 1( x )) fix, (19)
rEw(ij)-1

t-1

where
w^2'1 = {r	 pi2)1	 0 and pi' )1 T 0 on 6(r) .	 (20)
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We transform the integrals over S(T), into integrals over the reference element
A= {(6, 6) : 0 < 6 < 1, 0 < 6 < 1, 6 + 6< Q. This leads to

I(,) (A (x ) Vxp(j) (x),Vxp('),(x)) dx

= Io (A(x)(J^(
r
i)-TV^P(j)i(x(^)), (J(r^) -T V^P(Z)1(x(^))) Idet J(rl I <

Jo (B(T)(x)^E^Pp(T> (^), ^ ^PIXc T^ (^)) <	 (21)

with B (T) (x) = (J(r))-1A(x)(J(r)) -T Idet J(r) I and Jl(r) from the transformation

(T,2)	 (T,1)X 1	 xi	 — xl
(T,3)

xi
—	 (T,1)

xi
t	 (T,1)
S1	 x1

(Te2 )	 (Tel)
X 2 	 x2	 — x 2

(T,3)x2 — 	 (7- ' 1)x2 +	 (Tel)^2	 x2
(22)

^ 
1

x (T l)

=	 J(rl 	 + (T,l)
2 x2

Here x(`) ,i, j = 1, 2, a = 1, 2, 3, denotes the coordinates of the vertices of the
triangle SIT), and a(T) as well as O(T) are the local numbers of the vertices P (2) and
P(j) . The linear functions c^ IX(r ^, cpQ(T^, a (T) , ^(T>	 1, 2, 3, on the reference element are
defined by	

CC t
^1() = 1 — S1 — ^2^ (P2 	

1^ and ^3() — S2	 (23)

The following equivalent formulation of (21) is the basis of the application of our
quadrature rules.

With the directional derivative

a^0	 a^0	 19^0

ads = (96 - ail

we obtain

(T) aT p(r) O(P,(T)	 !T1	 aCfJ q(r^ 9 (p", ( , )	 9( o( T) "T' c,(r) 
bll ail a6+ b12 ( a l a^2 + a^2 a l 

l + b22 
a 2 a 2 d/	 )

(

(T) aT ^(T^ I 
^̂

IX(r ^	 (T) aT 
0

r) ar ( T IX(T)	 (T) T ^( r^ ^ T CY ( r ^ 1	
(	 )— fQ b11 ail aSl + b22 aS2 a6 + b12 aSs a6s f

 d6,	 25

where

b,1 ( x (6)) = 611 (x (^)) + b12) ( x ( )) ,	b22) ( x ( )) = b22) ( x ( )) + b)12( x ( ))

b12)	 —bWO) =	 12)(x(^))

(24)
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For the numerical integration of the three terms in (25) we use the following three
quadrature rules

^, z (^)d^ = measA	 1, 2.3.	 (26)

with
0) . ^(2) _ (0. ^) , and ^(3-) 	 (27)

respectively. Obviously the quadrature rules in (26) are exact for constant functions v.

The elements of the matrix Iii are computed in the same way. N e can write the
expressions for the computation of the matrix elements in the following formulation

a, (pi' ) p l t) ) _	 f (r) (-`,(x)Vxp(')(x).V.rp(t)(x)) d.2'
rEw('J)	 ,l-1

l-1

(-1(`1')(Ji r)) -TV7,P(')(r()), (J<<ri)—T^^plt)(a'(^))) Idea Jir1I d
rEw('j)t-1

4	
D`	 Q

	

(L7 `r ^( •2')\ ^4'^i.^(r)(^)•	 ^y^a(r)( )) dE,	 (28)

rEw('j) k_1 ,(A)
t-1

where again a(r) . /3^ r) = 1, 2.... , 6, are the local numbers of the nodes P ( ' ) and PW

wi2'i = r pi`) 0 0 and pi' ) 0 0 on S^ r l },	 = Uk 1 A(k) (see als o Figure 1), and

^1() = 1 — 1 — `2 , 	 2^1	 in AM
2 — 2^1 — 262 in A(2)

X4(0 =	 0	 in A(3)	
(29)

(P3(O _ ^2 ,	 1 — 26	 in A(4)

0	 in A (1)	 2g2	 in AM

26	 in A (2)	 0	 in	 A(2)
4^s() =	 2^1 	in A(3)	 4^s() —	 2 — 2^1 — 26 	 in	 A(3)

	

2^1 '+ 2^2 — 1 in A (4)	 t 1 — 2^1	in	 A(4)

To compute each integral over A sk) in (28) we use the equivalent formulation of
type (25) and a quadrature rule of type (26).

In the case of the p-hierarchical basis, we have to compute the entries of the
matrix KQ, i.e. expressions of the form (18), where p^2) , pi' ) stand for the functions

pi-)1, pi?)1, 2 1^ = 1, ...^ Nl -1^ 4i2)1,gi'1^ 2^1 — NI-1 + 1,... , N1.

Again we get

	

(A(x)Vxp(')(x), Vxp(^)(x)) dx =	 ^(r) (A(x)°,,p(')(x), Vxp(')(x)) dx , (30)
rEw,-,	 t -1

L-1
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X 2 6

a=3

0k3 a=5
a = 6 1	 (4)

p( 1 ) A(2)

a=1	 a=4 a=21

Figure 1: An arbitrary triangle Slri and the reference element 0

with	 from (20). After the transformation of the integrals over Sl' 1 into integrals
over the reference element 0 we obtain the integrals

^o `B(T)(x)^2 pe
r>(^)^ ^e ac r>( )) d^ .	 (31)

The functions a(*) and Op(T), a ( ' ' ) , /3 ( '' ) = 1, 2 1 ... 1 6, are defined by

01(S) = 1 - 6 - 6 , 	 02(^) = 6 ,	 03(^) = 6 ,

04(^) = 4 1(1 - ^1 - 6) , 	 05(^) = 4 16 ,	 06(^) = 46 (1  - 6 - 62)

The integral (31) we write in the form (25). For the numerical integration of
the resulting integrals over A we use quadrature rules, which we derive from the
quadrature rules (26) by extrapolation. Specifically, we apply for the computation of
the first, the second, and the third term the quadrature rules

v <	
3 (4'V(^(4)) + 4

v ( 6 (5) ) + 2v (& ) )) — 3v(^ (1) )^ meas0	 (33)

^o 
v d^ "' { 3 (4v (^ (7) ) + 4 v (& ) ) + 2v (^ (9) )) — 3v(^ (2) )^ meas 0	 (34)

^o v d^ -- ^ 3 (4v(^(10) + I 
v(^(11)) 

+ 
1 V ( (12))  — 1 V(^ (3) )^ meas A (35)

with 6(1), ^(2), 6 (3) from (27) and

6 (4)	 = (q, 0 )	 6(5)	 - ( 3 , 0 )	 ^(6)	 - l 4 2 )

^ (7)	 = ( 0 , 4) ,	 ^(8)	 = ( 0 ^ 4) ,	 -(9)	 = (2 , 4)	 (36)

^(10) _ (4i 4),	 ^(11) _ (4i 4),	
r(12) = (4, 4)

A simple calculation shows that the quadrature rules (33)—(35) are exact for quadratic
functions.
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Because of the smoothness of the coefficient functions ai9 in (2) one can prove
that the quadrature rules (26) and (33)-(35) lead for sufficiently small discretization
parameters h to a uniformly V-elliptic bilinear form

In the following we prove that the extrapolated stiffness matrix in (17) is equal
to the stiffness matrix resulting from a discretization with p-hierarchical functions,
where we assume that we use the quadrature rules (26) in case of the h-hierarchical
basis, and (33-35) in case of the p-hierarchical basis.

Lemma 2. If we compute the element stiffness matrices K^ 1 , Ki , and KQ as
described above, i.e. by means of the quadrature rules (26) and (33) - (35), the relation

K^,ex =KQ
	

(37)

holds.

Proof: The proof is based on comparing the matrices Kl 'ems and KQ element by
element. The extrapolated stiffness matrix Ki ' ems and the matrix KQ have the block
structure

IiL ' e^ = 3K 
v - 51KI 1 5K, m	

IiQ = KQv 
Ii

Qm
	

38l	
3 Kl v	 3 KL	 ' l

	
KIQ v K MM

The entries of the stiffness matrix Ki 1 are computed using relations (18)-(23)
and for the computation of the elements of the matrix Ki we use relations (28)-(29).

First, we now prove the identity of the coarse mesh blocks Kl vx = KQ v . Using
the quadrature rules of type (26) and the representation (25) with a (T) , O (T) = 1, 2, 3,
the elements of the matrix Kj, are defined by

L,ea,(aj)	 J

	

K l vv	 —	 11
rEw(tii)

t-1

4 6	 L (T )	 (t) a^P^(r^( (t) ) a4^a(r^( (t) ) _ 1 L (T)	 (1 ^ ^^Pp(r^
t
( (1 ^) aw' (r^

W
 i))

E ^tt bll3	 (x(S ))	 06(^ 1	 31/1 bll ( x (	 ))	
C^S1	 a6

4 9	 L (T)
( x ( (t))) 

a^a( T >( (t )) a^a(T^( ( t )) _ 1 L (T^
(x( C

(2^)) a^^(T^
t
( (2^) a^a(r)

t
(^(2))

	

^+ 3	 7t b22 S	 016
	 N2	 3''2 b22 S	

C^S2	 a6

4 12 a4'L (T )	 (t)	 p(r)Wt)) a(pa(*)(ti)	 1t(S 	 _	 L (T)	 t(g^ a4^^(*)t(S(3))	 (S(3))E 7	
a4^a(r)t

	

+ 3	 t b12 W ))	
C^Ss	 OG	

373 b12 ( x (S ))	 0^ '	 0S'	 }t-10

with -yl — y2 — ^3 = meas v, 74 — -y5 — 77 — 78 — 710 — 711 = meas 0 (k) , and
-ys = ^/^ = 712 = 2 meas 0(k).

For the entries of the matrix KQ we get by using relations (30)-(32) and the
quadrature rules (33)-(35)
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Q (*3*) _

rEw,'^)l-1

4 6 A (r )	 t(t) a acr)
C
( (t) ) a acT)

C
( (t) ) _ 1 Q (r)	 (1) aoo(o	 l )) a0acr)

C
(0))

3 E 7t bll (x (S ))	
C^S1	 aSl	

371 bll ( x(S ))	 at1	 aSlt=4	 S

+ 4 9 Q b (r) (x r ( t ) a0p(r)
t
WO ) a acr)(^ (t) ) _ 1 Qb

2 22
(r) 

x (z) a^'pcT)(^(2)) a «tr>
t
( (z))

3	 7t 22 (S ))	
a6	 aSZ	 37	 ( (S ))^	 (96

	 06t=7

4 12 Q (r)	 (t ) a ^c r)WO ) ayacr)(0 ) ) _ 1 Q (r )	 3 a c+)(S (3) ) a ac*)(S(3))

	

+ 3 ^ 7t b12 (x ( ))	 ads	ads	 373 b12 ( x (^( ))) 
^a^s	 ass	 }t=lo

with yQ = 72 = yQ = meas 0, yQ = yQ = yQ = -IQ = y10 = yQ 0.25 meas 0 and
yQ = -YQ =yQ =0.5 meas 0.

(1) (4) ^(5) (6) t(2)

S

r(7)

S

6(8) 6(9)

S

t(3) 6(10)

S

6(11) 6(12)

ail -1 -1 -1 -1
ail

-1 -1 -1 -1 a^Pl 0 0 0 0
a6l a^2 a6s

a(P2 1 1 1 1 a(,02 0 0 0 0 aW2 -1
a6l a62 a6s

a^i
0 0 0 0

^^a
1 1 1 1 ^3 1 l 1 1

s

2 -2 0 0 0 -2 ^^4 — 0 0 -2
ail adz s

a^^
— 0 0' 2 0 0 2 ^^5 — 2 -2 0N2 a6,

âi
— 0 0 -2

a^2
- 2 -2 0 ^^6 — 0 0 2

s
a04 0 2 -2 0 a04 0 0 0 -2

a04
0 0 0 -2

a6l N2 a6s

4905 0 0 0 2 45 0 0 0 2 494 5 0 2 -2 0
a6l 4962 ads

a06 0 0 0 -2 46 0 2 -2 0 a06 0 0 0 2
a6l 0962 a6s

Table 1: Values of the partial derivatives in the quadrature points

The symbol "—" in Table 1 means that th6 partial derivative does not exist in
this quadrature point. But we do not need these values for the computation of the
matrix elements of Ki ,ems
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If we examine the values of the partial derivatives acp«t r) /a^1 i acP«t r>/a62, acP«(r)109G,
a	 10961 , azh«(r)/a 2 i aOa(')1 09&, a(r) = 1, 2, 3, given in Table 1 and the relations
meas 0 = 4 meas 0 (k) , k = 1, 2. 3, 4, «t r) _ «. t r), a(r) = 1, 2, 3, we see that

K^ ' (2' )2x	 = I, Q ,(`i) for i, j = 1, 2, ...1V1- 1 , i.e. Iii , Z, = KQ,1 .

In the same way we can prove

	

KL'exmm = h Q	 I^ 
L'er 

= I1 Q	 and h L 'e^ = h Ql,vm.	 Imm	 I'Mv	 I'mi	 l,mm	 l,mm.

This completes the proof.

Next we discuss the computation of the entries of the load vectors. For the entries
of the vector f L 1 we get

(F+ p(')1) _	 ^tr) f (x)pil)1(x) dx =	 f^ .f (x ( ))^«t r) (6)1 det JI(r) I d6

rEwt`)	 t—i	 rEw(1-

(39)

with w1_ 1 = jr : pl- 	0 on S1-1

The integrals over A we compute by using the quadrature rule

v(6) d6 =	 v	 vC3(0, 0) + 3(1, 0) + 3v(0,1)^ meas A . 	 (40)

Obviously, this formula is exact for linear functions v.

The entries of the vector f are defined by

fL , ( z ) _ (F, pi Z))	 _	 16If (x)pi) (x) dx =	 fo f (x(^))^P«(r) (6)1 det J1(ri I d6

	

rE-(, _i 	w)	 f-1	 rE(i)
t 1

4

( i ) k=1rE ^
Efo(k> f(x(^))4^«(r)( )Idet Jiri^ d^	 (41)

t-1

with ( ' ) PI-1 for i = 1, ... , N1 _1 i plZ) =pi Z) for i = NI-1 + 1, ... , N1 and the

functions cp«(r) from (29). The integrals over A M are computed by a formula of the
type (40).

In the case of the p-hierarchical basis, the entries of the load vector. f Q are given

by

fQ,( i) _ (F P() _	 f (T> f(x)pii)(x)dx =	 f f(x (6))0«( r)(6)1 det j(r) 
d6

rEw(`) bt-1	 rELU

	

t-1	 1 1

(42)

with p(Z) = p(21 for i = 1, ... , N1 _ 1 , piZ) = gi2)1 for i = N1 _1 + 1, ... , N1i and the

functions «(r> from (32). For the computation of the integrals over ® we use the
quadrature rule

^o v (6) d^ _ ( 3 v (6 (1) ) + 1 V (6 (2) ) + 1 V(6(3))) meas A.	 (43)
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with &), o, = 1, 2, 3, from (27). This formula is exact for quadratic functions v.

Lemma 3. If the load vectors f L 1 , f and fQ are defined as described above, then
the relation

fL,ex = fQ	 (44)

holds.

Proof.• Using the relations (39), (41) and quadrature rules of type (40) for computing
the extrapolated load vector fi ,ex (see (17)) as well as relations (42) and (43) for
computing the load vector f Q , the proof follows immediately. 1

A consequence of Lemma 2 and Lemma 3 is the following Theorem.

Theorem 4. If the extrapolated stiffness matrix KI ,ex and the extrapolated load
vector fL,ex as well as the stiffness matrix KQ and the load vector f Q arecomputed
as described above, then the systems of a#ebraic FE equations

KI ,ex ul = fL,ex	 and	 KQui = fQ	 (45)

have the same solution.

Now we can immediately prove the following convergence theorem for the algo-
rithm MG—EX.

Theorem 5. Under the assumption that the extrapolated stiffness matrix Ki ,ex'

the extrapolated load vector fL,ex ' the stiffness matrix KQ, and the load vector f Q are
computed as discussed in this section, the following statements hold.

(i) The iterates of algorithm MG—EX converge to a FE solution which has the
same discretization error as a FE solution obtained by a FE discretization with
p—hierarchical functions.

(ii) The convergence rate of algorithm MG—EX does not depend on the discretization
parameter.

Proof.• The statement (i) follows from the interpretation of algorithm MG—EX as
a usual multigrid algorithm for solving the system of algebraic equation Ki ' exul =
fL,exand the equivalence of the systems of algebraic equations Kl 'exud = fL,ex and

KQu I — fQ.

Statement (ii) we can prove in an analogous way as done for the piecewise constant
coefficient case in [8] . 1

Remark: We can also formulate algorithm MG—EX in terms of a piecewise linear
nodal basis. All our results are also valid in this case.
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Numerical results

In this Section we want to confirm our theoretical results by a numerical example.
We will illustrate that the iterates of the algorithm MG—EX converge to the FE so-
lution which we would obtain by a discretization of problem (1) with p—hierarchical
functions. Furthermore, the numerical example shows that the convergence rate of
algorithm MG—EX is independent of the discretization parameter.

All algorithms have been implemented within the multigrid package FEMGP [10).
The computations were performed on a PC 80486 (33 MHz) using the LAHEY-
Fortran compiler.

Let us consider the problem (1), where Q = (0, 1) x (0, 1),

A
 = ( a10(x) a2 ^ )) , aii( x ) = (1.1—tanh(3x 1 +3x 2 -4.5)), and a22 (x) = 2ali(x).

\\	 x

The right—hand side f (x) is chosen such that the function

U ( X ) = x 1 (1 - x1)x2(1 - x 2 )(1 + tanh(3x 1 + 3X2-4.5))

is the exact solution of problem (1) .

Starting from the coarsest triangulation Ti (see Figure 2) the finer triangulations
have been generated by dividing all triangles of the triangulation Tk , k = 1, 2.... , l-1,
into four smaller congruent sub—triangles. In Table 2 we give the numbers of nodes
and the numbers of triangles in each triangulation.

O

Figure 2: Mesh T1 and iso—lines of the solution u

For Algorithm MG—EX we used as pre—smoother two sweeps of the lexicograph-
ically forward Gauss—Seidel method for solving system (9), one iteration step of a
(l — 1)—grid algorithm for solving the coarse—grid system (12), and two sweeps of the
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triangulation T T2 T3 T4 T5

number of nodes 78 281 1065 4145 16353

number of triangles 126 504 2016 1	 8064 32256

Table 2: Number of nodes and number of triangles in Tk , k = 1, 2, ... , 5

lexicographically backward Gauss-Seidel method in the post-smoothing step. The
initial guess was obtained by a full multigrid strategy. On the levels k = 1, 2, ... , l -1
a usual multigrid algorithm for solving the corresponding FE equations in the linear
nodal basis was performed. Within this k-grid algorithms one V-cycle with two
Gauss-Seidel sweeps lexicographically forward in the pre-smoothing step and two
Gauss-Seidel sweeps lexicographically backward in the post-smoothing step were
used. The convergence criterion for MG-EX was 	 ,

11fL,ex - Ki ,e xu,k+1 '° , jj < 10-4 11fL,"- Kl ,exu (°,01ll(46)

where	 denotes the Euclidean norm in the space R NA , and u(°'°) is the initial guess.

In Table 3 we present the number of iterations and the CPU-time needed by the
application of the algorithm MG-EX. An improvement of the convergence' behav-
ior of our algorithm we obtain by introducing additional pre-smoothing and post-
smoothing steps, i.e. before step 1 in the algorithm MG-EX we perform one iteration
step of the Gauss-Seidel method lexicographically forward and after step 3 one itera-
tion step of the Gauss-Seidel method lexicographically backward applied to the system
of algebraic equations Kl exul ,ex = fL,ex This is illustrated in column MG-EX(1) of
Table 3.

Algorithm MG-;-EX Algorithm MG-EX(1)
I number of

CPU-time
number of	

CPU-time 
iterations iterations

3 11 2.06 sec 6 1.54 sec

4 11 9.61 sec 5 6.28 sec
5 12 45.77 sec 5 27.54 sec

Table 3: Comparison of the algorithm MG-EX and the algorithm MG-EX(1)

Finally, we compare the discretization errors 11u - ul 
L ,,, 

1 1 and ^^u - uQ11 in the Hl-
norm and in the L2-norm. Here u  

,ex denotes the FE solution obtained by means
of Ahe algorithm MG-EX and uQ the FE solution by a discretization with piecewise
pro--hierarchical functions.

Table 4 shows that the algorithm MG-EX yields discretization errors which are
typical for discretizations with piecewise quadratic functions, i.e. we can observe an
error of order O(hl) in the H1 -norm and O(hl) in the L2-norm.
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Level l (lu — u!L"'11Hi L()u— u1'ex1ILz Il u—uQIIHi 1ju—u1QjILz

3 0.5038-03 0.4353-05 0.5038-03 0.4354-05
4 0.1246-03 0.5269-06 0.1246-03 0.5269-06
5 0.3101-04 0.5861-07 0.3101-04 0.5858-07

Table 4: Comparison of the discretization errors

Conclusion

In this paper we have presented the analysis of an algorithm which can alge-
braically be understood as multigrid with 7--extrapolation. In practice, this algorithm
is simple to implement, once a multigrid algorithm is available. However, we have
shown that the algorithm converges to the same solution as a higher order fine element
discretization. The algorithm can thus be used on unstructured meshes in an adap-
tive refinement setting. Furthermore, it is independent of global error expansions,
and can thus be applied locally.
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