
NASA-CR-203083

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-016

WVU-SRL-96-016

WVU-SCS-TR-96-27

/tS- y_i-_-,'<--.+

A Framework tbr Peri'orr_dng V&V Within Reuse-Based

Software Engineering

tiy r,c, ward A. Addy

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

(J[go_abol]'sh [)ate John R. Callahan Date

Man_r, Software Engineering WVU Principal Investigator

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED

SOFTWARE ENGINEERING

Edward A. Addy

eaddy@wvu.edu

NASA/WVU Software Research Laboratory

ABSTRACT

Verification and validation (V&V) is

performed during application development

for many systems, especially safety-critical

and mission-critical systems. The V&V

process is intended to discover errors,

especially errors related to critical

processing, as early as possible during the

development process. Early discovery is

important in order to minimize the cost and

other impacts of correcting these errors.

In order to provide early detection of errors,

V&V is conducted in parallel with system

development, often beginning with the

concept phase. In reuse-based software

engineering, however, decisions on the

requirements, design and even

implementation of domain assets can be

made prior to beginning development of a

specific system. In this case, V&V must be

performed during domain engineering in

order to have an impact on system

development.

This paper describes a framework for

performing V&V within architecture-

centric, reuse-based software engineering.

This framework includes the activities of

traditional application-level V&V, and
extends these activities into domain

engineering and into the U'ansition between

domain engineering and application

engineering. The framework includes

descriptions of the types of activities to be

performed during each of the life-cycle

phases, and provides motivation for the
activities.

INTRODUCTION

Verification and Validation (V&V) methods
are used to increase the level of assurance of

critical software, particularly that of safety-
critical and mission-critical software.

Software V&V is a systems engineering

discipline that evaluates the software in a

systems context. The V&V methodology
has been used in concert with various

software development paradigms, but

always in the context of developing a

specific application system. However, the

reuse-based software development process

separates domain engineering from

application engineering in order to develop

generic reusable software components that

are appropriate for use in multiple

applications.

The earlier a problem is discovered in the

development process, the less costly it is to

correct the problem. To take advantage of

this, V&V begins verification within system

application development at the concept or

high-level requirements phase. However, a

reuse-based software development process

has tasks that are performed earlier, and

possibly much earlier, than high-level

requirements for a particular application

system.

Paper submitted to

Symposium on Software Reusability (SSR '97)

A FRAMEWORK FOR PERFORMING V&V W1THIN REUSE-BASED

SOFTWARE ENGINEERING

Edward A. Addy

NASA/WVU Software Research Laboratory

NASA/WVU Software IV&V Facility

100 University Drive

Fairmont, WV 26554

eaddy@wvu.edu

304-367-8353 (voice)

304-367-8211 (fax)

A Framework for Performing V&V Within Reuae-Bued Software Eagmeming

In order to bring the effectiveness of V&V
to bear within a reuse-based software

development process, V&V must be

incorporated within the domain engineering

process. Failure to incorporate V&V within
domain engineering will result in higher

development and maintenance costs due to

losing the opportunity to discover problems

in early stages of development and having to

correct problems in multiple systems already

in operation. Also, the same V&V activities

will have to be performed for each

application system having mission or safety-
critical functions.

On the other hand, it is not possible for all

V&V activities to be transferred into domain

engineering, since verification extends to the

installation and operation phases of

development and validation is primarily

performed using a developed system. This

leads to the question of which existing

(and/or new) V&V activities would be more

effectively performed in domain engineering

rather than in (or in addition to) appLication

engineering.

This paper describes a framework for

performing V&V within reuse-based
software. The framework identifies V&V

tasks that could be performed in domain

engineering, V&V tasks that could be

performed in the transition from domain

engineering to application engineering, and

the impact of these tasks on appLication
V&V activities. The criteria and motivation

for performing V&V in domain engineering
are also considered.

VERIFICATION AND VALIDATION IN

TRADITIONAL SYSTEM

APPLICATION ENGINEERING

V&V has been performed during application

system development, within the context of

many different development methodologies,

including waterfall, spiral, and evolutionary

development. V&V is a set of activities

performed in parallel with systexn

development and designed to provide

assurance that a software system meets the

operational needs of the user. It ensures that

the requirements for the system are correct,

complete, and consistent, and that the life-

cycle products correctly implement system

requirements. The V&V process evaluates

software in a systems context, using a

structured approach to analyze and test the

software against system functions and

against hardware, user and other software
interfaces.

The term verification refers to the process of

determining whether or not the products of a

given phase of the software development

cycle fulfill the requirements established

during the previous phase, while validan'on

is the process of evaluating software at the

end of the software development process to

ensure compliance with software

requirements [1]. Verification is intended to

ensure that the product is built correctly,
while validation assures that the correct

product is built.

While verification and validation have

separate definitions, in practice the activities

are merged into the process of V&V. This

process evaluates software in a systems

context, using a structured approach to

analyze and test the software against syst¢_

functions and against hardware, user and

other software interfaces [2]. V&V is also

described as a series of technical and

management activities performed to

improve the quality and reliability of that

system and to assure that the delivered

product satisfies the user's operational needs

[3].

2

A Frmnewodt f_ Perfzrming V&V Within Retme-B_ed Softwm'e Engineering

V&V activities are designed to be

independent of but complementary to the

activities of the development and test teams.

Where the development team is usually

focused on nominal performance and the

testing is usually based on requirements and

operational prof'tles, V&V includes analysis
and tests on critical and off-nominal

behavior throughout all phases of the

development lifecycle. V&V activities also

complement the activities of the

configuration management and quality

assurance groups rather than being a

duplicate or replacement of these activities

[41.

A set of minimal and optional V&V

activities is def'med in the IEEE Standard

for Software Verification and Validation

Plans [5]. These activities are divided into

the life-cycle phases listed below. The

V&V tasks within each life-cycle phase are

shown in Figure 1.

• Management of V&V

• Concept Phase V&V

• Requirements Phase V&V

• Design Phase V&V

• Implementation Phase V&V

• Test Phase V&V

• Installation and Checkout Phase

V&V

• Operations and Maintenance
Phase V&V

V&V is performed as a part of a risk

mitigation strategy for application systems

having high risk. The riskscan be in areas

such as safety,security,mission, financial,

or reputation.The scope and levelof V&V

can vary with each project,based on the

criticalityof the system and on the role of

software in accomplishing critical functions

of the system[6]. V&V determines the

software involved in high-riskareas,and

V&V activitiesare focused on thiscritical

software.

JUSTIFICATION FOR PERFORMING

V&V WITHIN DOMAIN

ENGINEERING

Studies have shown that the cost and

difficulty of correcting an error increases

dramatically as the error is discovered in

later life-cycle phases[6]. V&V addresses

that issue in traditional system development

through activities that begin in the concept

or high-level requirements phase and

continue throughout all life-cycle phases.

The V&V activities are focused on high-risk

areas, so that errors in the high-risk areas
can be discovered in time to evolve a

complete and cost effective solution rather

than forcing a makeshift solution due to
schedule constraints.

Within reuse-based software engineering,

software engineering activities may be

performed prior to the concept phase of a

particular application system. In order to

extend the benefit of early error detection to

reuse-based software engineering, V&V

must be incorporated within the domain

engineering process. Performing V&V at

the domain level may also reduce the level

of effort required to perform V&V in the

individual application systems.

Although software is the target of V&V

activities, V&V recognizes that software

does not execute in isolation, but is an

integral part of a system[7]. In order to

provide assurance that critical functions will

be performed correctly, software must be
evaluated within the context in which the

software will execute. In reuse-based

software engineering, the context for V&V

must be provided by the domain model and
domain architecture.

3

PHASE

Management

Concept

Requirements

Design

Implementation

Test

Installation and
Checkout

Operations and
Maintenance

TASKS

Software Verification and ValidationPlanGeneration

Baseline Change Assessment

Management Review

Review Support

Concept Documentation Review

Software Requirements Traceability Anab_s
Software Requirements Evaluation

Software Requirements Interface Analysis
System Test Plan Generation

Acceptance Test Plan Generation

Design Traceability Analysis
Design Evaluation

Design Interface Analysis
Component Test Plan Generation
Integration Test Plan Generation
Test Design Generation

• component testing
• integration testing

• system testing

• acceptance testing

Source Code Traceability Analysis
Source Code Evaluation

Source Code Interface Analysis
Source Code Documentation Evaluation
Test Case Generation

• component testing
• integration testing

• system testing
• acceptance testing

Test Procedure Generation

• component testing

• integration testing
• system testing

Component Test Execution
Test Procedure Generation

• acceptance testing

Integration Test Execution
System Test Execution

Acceptance Test Execution

Installation Configuration Audit

V&V Final Report Generation
Software V&V Plan Revision

Anomaly Evaluation

Proposed Change Assessment
Phase Task Iteration

Figure 1: V&V Tasks for Life-Cycle Phases in Application Engineering

4

FRAMEWORK FOR PERFORMING

V&V WITHIN REUSE-BASED

SOFTWARE ENGINEERING

One model for reuse-based software

engineering is the Two Life-Cycle Model

shown in Figure 2, developed by the U.S.

Department of Defense Software for

Adaptable, Reliable Systems (STARS)

program. This model assumes a domain-

specific, architecture-centered approach to
software reuse. The domain model

describes the problem space of the domain,

and expresses requirements. The domain

architecture describes the solution space of

the domain, while the domain components

are intended to be used within application

systems to meet the functions described in
the domain architecture.

Addy developed a draft framework for

performing V&V within reuse-based

software engineering engineering by adding
V&V activities to the STARS Two Life-

Cycle Model. The application-level IV&V
tasks described in IEEE STD 1012 served as

a starting point. Similar tasks that seemed

appropriate were added to link life-cycle

phases in the domain level, and transition

tasks were added to link application phases

with domain phases. This draft fi'amework

was refined by a working group at Reuse

'96 [8], and the resultant framework is

shown in Figure 3. The specific tasks of

each phase at the domain and transition

levels are listed in Figure 4.

Domain-level V&V tasks are performed to

ensure that domain products fuWfll the

requirements established during earlier

phases of domain engineering. Transition-

level tasks provide assurance that an

application artifact correctly implements

the corresponding domain artifact.

Traditional application-levelV&V tasks

ensure the applicationproducts fulfdl the

requirements established during previous

applicationlife-cyclephases.

Performing V&V tasks at the domain and

transition levels will not automatically

eliminate any V&V tasks at the application

level. However, it might be possible to
reduce the level of effort for some

application-level tasks. The reduction in
effort could occur in a case where the

application artifact is used in an unmodifed

form from the domain component, or where

the application artifact is an instantiation of

the domain component through parameter

resolution or through generation.

Domain maintenance and evolution are

handled in a manner similar to that

described in the operations and maintenance

phase of application-level V&V. Changes

proposed to domain artifacts are assessed by

V&V to determine the impact of the

proposed correction or enhancement. If the

assessment determines that the change will

impact a critical area or function within the

domain, appropriate V&V activities are

repeated to assure the correct

implementation of the change.

Domain-Level Tasks

The domain-level tasks are analogous to the

application-level tasks, in that the products

of each phase are evaluated against the

requirements specified in the previous stage

and againstthe originaluser requirements.

The domain-level taskscan be divided into

thethreephases of domain analysis,domain

design,and domain implementation, which

correspond to the application phases of

requirements,design,and implementation.

During domain analysisV&V, the V&V

team shouldensurethatthe domain model is

an appropriaterepresentationof the user

requirements.(The singularterm "model" is

5

Domain Management

Existing

System
Artifacts

I [_'_ _,_,_,L,_
k,....___ Domain _ Domain

__, Design _ __lmplementation._

Domain] Domain] Domain

Model I Architecture] Components

New System] f. .] _
Reouirements _ i.L] Requirements _ System

[_ Application Engineering

System
Implementation

New

System

Figure 2: STARS Two Life-Cycle Model

Domain Management

Engineering_main

New and Domain Domain Domain

Existing Analysis Design Implementation
Artifacts and

Reff Domain Domain Domain
(Domain Model trchitecture

Concepts)
!!!!!!_ ii!_i!ill i

System Requiremen_ System . System
Requirements Analysis Design Implementation

(Common and System System New
Unique) System

Development:_ !!_..... "
"_*_ _.,'t_, _°" i

Verification Application Engineering

_1 Validation

Correspondence Program Management

Figure 3: Framework for V&V within Reuse-Based Software Engineering

6

A Framework for Pegforminl[V&V Within Reuse-Baaed Software Engineering

LEVEL PHASE TASKS

Domain

Engineering

Transition

Domain

Analysis

Domain Design

Domain

Implementation

Requirements

Design

Implementation

Validate Domain Model

Model Evaluation

Requirements Traceability Analysis (especially

forward traceability for completeness)

Verify Domain Architecture

Design Traceability Analysis

Design Evaluation

Design Interface Analysis

Component Test Plan Generation

Component Test Design Generation

Verify and Validate Domain Components

Component Traceability Analysis

Component Evaluation

Component Interface Analysis

Component Documentation Evaluation

Component Test Case Generation

Component Test Procedure Generation

Component Test Execution

Correspondence Analysis between System

Specification and Domain Model

Correspondence Analysis between System
Architecture and Domain Architecture

Correspondence Analysis between System

Implementation and Domain Components

Figure 4: V&V Tasks for Life-Cycle Phases at the Domain and Transition Levels

not intended to imply that only one model

will be constructed; this term is used to

mean the one or more models that express

the domain requirements.) Note that

ensuring that user requirements are satisfied

implies that the requirements in the domain

must be explicitly stated. Criticality

analysis is performed to ensure that high

risk requirements are appropriately

addressed, either mission-critical

requirements or those related to properties

such as safety and security. The criticality

analysis should also determine critical

functions that will be performed by
software. The domain model is evaluated to

ensure that the requirements are consistent,

complete, and realistic, especially in the

high risk areas. The model is evaluated to

determine responses to error and fault

conditions and to boundary and out-of-
bounds conditions. As the domain

engineering progresses into later phases, the

requirements are traced forward. This will

allow evaluation of the impact of changes to
the domain artifacts.

Domain design V&V tasks focus on

ensuring that the dornain architecture

satisfies the requirements expressed in the

domain model. Each requirement in the

7

A Framework for Performing V&V Within Retme-Based Soflwmre Engineering

domain model should trace to one or more

items in the domain architecture (forward

traceability),and each item in the domain

architectureshould trace back to one or

more requirements in the domain model

(reverse traceability). The domain
architecture is evaluated to ensure that it is

consistent, complete, and realistic.

Interfaces between components are

evaluated to ensure that the architecture

supports the necessary communication

between components in the architecture,

users, and external systems. Planning and

design of component testing are performed

during this phase. The component testing
should include error and fault scenarios,

functional testing of critical activities, and

response to boundary and out-of-bounds

conditions.

Domain Implementation V&V tasks ensure
that the domain components satisfy the

requirements of the domain architecture and

will satisfy the original user requirements.

The components should have a forward and

reversetracingwith thedomain architecture.

Components that are involved with

performing criticalactions should receive

careful consideration. The interface

implementation, both within components of

the architecture and with systems outside the

architecture, is evaluated to ensure that it

meets the requirements of the domain

architecture. Component test cases and test

procedures are generated, and component

testing is performed.

Integration test activities are explicitly

omitted from the domain-level tasking, since

integration testing is oriented toward

application-specific testing. Some form of

integration testing might be appropriate
within domain-level V&V in the case where

the architecture calls for specific domain

components to be integrated in multiple

systems. This limited form of integration

testing could be done along with the

component testing activities.

Correspondence Tasks

Correspondence analysis is a term not found
in IEEE STD 1012. The term is used within

this paper to describe the activities that are

performed to provide assurance that an

application artifact corresponds to a domain

artifact; i.e., the application artifact is a

correct implementation of the domain

artifact. Four activities are to be performed

duringcorrespondence analysis:

• Map the application artifact to the

corresponding domain artifact.

• Ensure that the application artifact has
not been modified from the domain

artifact without proper documentation.

• Ensure that the application artifact is a
correct instantiation of the domain

artifact.

• Obtain information on testing and

analysis on a domain artifact tO aid in

V&V planning for the application

artifact.

Correspondence analysis is performed

between the corresponding phases of the

domain engineering and application

engineering life-cycles. The system

specification for any system within the

domain should correspond to the domain

model. The system specification could

involve instantiating, parameterizing, or

simply satisifying the requirements

expressed in the domain model. Any

system-unique requirements should be

explicit, and the rationale for not addressing

these system-unique requirements within the
domain model should be stated.

The system architecture is analyzed to

ensure that it satisfies the requirements

specified in the domain architecture. Any

8

A Framework for Performing V&V Within Iku_-Btsed Software Engineering

variations should be documented along with

the reason for the variation. The rationale

for parameters chosen or options selected in

constructing the system architecture from
the domain architecture should be recorded.

The system components are analyzed to

ensure correspondence to domain

components. Again, variations, parameters,

and options should be recorded along with

their rationale. Baseline testing might be

appropriate in order to compare variants of a

domain component.

COMMUNICATING RESULTS

FUTURE WORK

Much work needs to be done to continue

development of the framework for

performing V&V within reuse-based

software engineering. This work includes

determining criteria for identifying domains

where V&V is appropriate; specifying

prerequisites, inputs and outputs for the
domain-level and transition-level V&V

tasks; and developing methods and tools to

perform the domain engineering V&V tasks.
Refinement of the framework will occur

when experiments are conducted in applying
V&V within critical domains.

Communicating V&V work products and

results is vital in to avoiding the repetition

of V&V tasks and to ensuring that potential

reusers can properly assess the status of

reusable components. V&V work products

and results should be associated with the

component and made available to domain

and application engineers. In some cases,

V&V efforts might be directed at a grouping

of components rather than at an individual

component, and this information should also

be available. Groupings might include

components that are expected to occur

together in several applications, or might
include variants of one domain artifact.

The information on similar components
within the domain should be consistent in

content and format, in order to allow the

information to be easily used by both

domain engineers and application engineers.
The information that should be

communicated include the following:

• V&V Planning Decisions
Rationale

• V&V Analysis Activities

• V&V Test Cases and Procedures

• V&V Results and Findings

and

CONCLUSION

The concept of V&V seems to be

appropriate for reuse-based software

engineering. Just as with V&V in

application development, V&V should be

performed as part of a risk mitigation

strategy. The principle conclusions on

performing V&V within reuse-based

software engineering are listed below.

1. There are motivating reasons to perform

V& V during domain engineering.

V&V activities might be appropriately

performed during domain engineering. The

primary motivation for V&V within domain

engineering is to fred and correct errors in

the domain artifact in order to prevent the

errors from lacing propagated to the

application systems. This motivation is

especially strong where the application

systems perform critical functions. Even if

there are no critical functions performed by

the systems within the domain, V&V might

be appropriate for a component that has the

potential to be used in a large number of

application systems. The motivation

contained within the original premise

9

A Framework for Performing V&V WRhia Rett_-Based Sonware Engineerin s

considered by the working group was that of

reducing redundant V&V activities within

multiple critical applications. This
motivation seemed to have some merit, but

appeared to be weaker than the other two
reasons because of conditions described in

the second finding. The reasons for

performing V&V during domain

engineeringarelistedbelow:

• To reduce operational risk by

providing assurance that domain
artifacts are correct and consistent

with user needs

• To reduce the risk of a fault in a

component used in many systems

• To reduce redundant V&V efforts in

separate applications

2. V&V within Domain Engineering is

appropriate for some domains.

V&V tasks during domain engineering will

be of benefit when performed in a well-

defined domain that contains multiple

systems with high risk. The context in

which the components will be used should

be well understood, to provide a proper

framework for analysis and testing of the

component. The ability to perform V&V

will increase as the application artifacts

more closely match the domain components

(e.g., unmodified reuse, application artifacts

created through parameterization). The
V&V effort should be tailored to address the

critical areas within the domain, with the

level of effort being greatest in the areas of

highest criticality.

3. V&V is not appropriate in reuse outside

of architecture-centered domain

engineering.

Without the context of the domain, it is

impossible to perform V&V activities on a

component. This is consistent with the

concept that V&V should consider software

in relation to the system in which the

software is executing. It is not possible to

determine criticality or to consider the

impact of fault or error conditions in

isolation of context, and it is the domain

architecture that provides the context for the

systems in the domain.

Since general purpose reuse libraries do not

typically retain the context for which the

component can be reused, V&V would not

generally be an appropriate activity for these

libraries. This should not be understood as

an argument against ensuring that domain

artifacts are of a high quality and perform as

described. V&V is performed within

application development as a complement

and not a replacement of QA and testing.

QA and testing are always appropriate reuse

activities, even when V&V is not possible.

REFERENCES

1. IEEE STD 729, IEEE Standard Glossary

of Software Engineering, IEEE Computer

Society, 1983.

2. Wallace, Dolores R. and Fujii, Roger U.,
Software Verification and Validation: Its

Role in Computer Assurance and Its

Relationship with Software Project

Management Standards, NIST Special
Publication 500-165, National Institute of

Standards and Technology, 1989.

3. Lewis, Robert O., Independent

Verification and Validation, A Life Cycle

Engineering Process for Quality Software,

John Wiley & Sons, 1992.

4. Wallace, Dolores R. and Fujii, Roger U.,
"Software Verification and Validation: An

Overview", IEEE Software, May 1989.

10

A Framework for Performing V&V Within Reuse-Based Software Eagirs_ring

5. IEEE STD 1012, IEEE Standard for

Software Verification and Validation Plans,

IEEE Computer Society, 1986.

6. Makowsky, Lawrence C., A Guide to

Independent Verification and Validation of

Computer Software, Defense Technical
Information Center, USA-BRDEC-

TR//2516, June 1992

7. Duke, Eugene, L., "V&V of Flight and
Mission-Critical Software", IEEE Software,

May 1989.

8. Addy, Edward A., "V&V Within Reuse-

Based Software Engineering", Proceedings

for the Fifth Annual Workshop on Software

Reuse Education and Training, Reuse '96,

http:llwww.asset.com/WSRD/conferencesl

proceedings/results/addy/addy.html.

11

