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Integrated Controls-Structures Design Methodology
for Flexible Spacecraft

E G. Maghami,* S. M. Joshi, t and D. B. Price _

NASA Langley Research Center, Hampton, Virginia 23681

This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the
control system design are performed simultaneously. The integrated design problem is posed as an optimization
problem in which both the structural parameters and the control system parameters constitute the design variables,
which are used to optimize a common objective function, thereby resulting in an optimal overall design. The
approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-
based flexible structure experiment. The numerical results obtained indicate that the integrated design approach
generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the
structural design and control design are performed sequentially.

Nomenclature

A_ = compensator state matrix

A_l = closed-loop system state matrix
B = control influence matrix

Bc = compensator input influence matrix
C = pointing-error influence matrix

di = outer diameter of structural elements in
section i

draax = maximum allowable value for di

dmin = minimum allowable value for di

E = steady-state average control power
Em_ = maximum allowable steady-state average

control power

e = pointing-error vector

C ( ) = expected-value operator

G = compensator output matrix

Gp = symmetric and nonnegative-definite position

gain matrix

Gr = symmetric and nonnegative-definite rate gain
matrix

J = objective function for design optimization

L. = Cholesky factor matrix for the position gain
matrix

Lr = Cholesky factor matrix for the rate gain
matrix

Mact = mass of the actuators

Mmax = maximum allowable mass of the system

Ms_ = total mass of the system

P = positive-definite solution matrix in the
Kalman-Yacubovich relations

p, = steady-state root-mean-square pointing error

pm_, = maximum allowable steady-state

root-mean-square pointing error

Px = state covariance matrix for the system

Q = arbitrary nonnegative-definite matrix in the
Kalman-Yacubovich relations

Tr( ) = trace of ( )
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u = control input vector

z = plant state vector

Xc = compensator state vector

yp = position output vector

Yr = rate output vector
ot = constant scalar

Otli, ot_, ot3_,ot4i = controller design parameters for dynamic

dissipative controller

I I_ = infinity norm

Introduction

ANY of space missions under consideration at present, as
well as envisioned for the future, will utilize large struc-

tures in low Earth and geostationary orbits. Example of such

missions include multipayioad space science platforms, space anten-

nas, space processing facilities, etc. Such missions typically require

large-size, lightweight components such as large solar arrays, an-

tennas, and platforms. However, large size and light weight of such

structures results in high flexibility, which makes it more difficult to

control them with specified precision in attitude and shape. There-

fore, there is a need to develop a methodology for designing space

structures that are optimal with respect to both structural design and
control design.

The traditional approach to spacecraft design is essentially a se-

quential one, wherein the structural design is first performed based

mainly on the loading, orbital, and thermal considerations. The con-

troller design is next performed to optimize the performance for the

fixed structure. However, the performance of the spacecraft so de-

signed is inherently limited. For example, an H-2 or H-infinity con-

troller that is designed to be robust to unmodeled structural dynamics

may necessarily have very low gain (and therefore low performance)
in order to satisfy the additive uncertainty robustness condition. J To

obtain higher performance, it would then be necessary to redesign
the structure to increase the frequencies of the higher modes and

to reduce the effect of the unmodeled dynamics. Another exam-

ple of necessity of structural redesign is when the transfer-function

matrix of the spacecraft has invariant transmission zeros that are
within the required controller bandwidth. In that case, the closed-

loop transfer function will have deep notches at those frequencies.
One way to change the transmission zeros is to move the actua-

tor and sensor locations. 2.3 However, the extent to which the zeros

can be moved is limited. For example, when the actuators and sen-
sors are collocated, the frequencies of the zeros can be moved no

further than the open-loop structural frequencies. The only way to

obtain higher-frequency zeros is to increase the structural mode fre-

quencies, which can only be accomplished by structural redesign.

Thus the structural design and the control design problems are sub-

stantially coupled, and must be considered concurrently in order to
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obtain a truly optimal spacecraft design. Let C denote the set of the

control design variables (e.g., controller gains), and S the set of the
structural design variables (e.g., member sizes). Ifa structural mem-

ber thickness is changed, the dynamics will change, which will then

change the control law and the required actuator size (and mass).
That in turn, will change the structural model. Thus the sets C and S

depend on each other, and a methodology for simultaneous optimal

control and structure design is highly desirable.

To facilitate analytical treatment, missions involving large space

structures can be roughly divided into four classes. Class I missions

include flexible spacecraft with no articulated appendages, which

require fine attitude pointing and vibration suppression (e.g., large

space antennas). Class II missions consist of flexible spacecraft with

articulated multiple payloads, where the requirement is to fine-point

the spacecraft, and also each individual payload, while suppressing
elastic motion. Class III missions include rapid slewing of spacecraft

without appendages, and class IV missions include general nonlin-

ear motion of a flexible spacecraft with articulated appendages and

robot arms. Class I and II missions represent linear mathematical

modeling and control-system design problems (except for actua-
tor and sensor nonlinearities), whereas class III and IV missions

represent nonlinear problems.

In this paper, the development of an integrated controls-structures

design approach for class I missions is addressed. The integrated

design problem is posed in the form of a simultaneous optimiza-
tion with respect to both the structural and the control design

variables. Two controller strategies are considered, namely, the

static and dynamic dissipative controllers, which are well known

for their stability robustness in the presence of unmodeled dy-

namics, parametric uncertainties, first-order actuator dynamics, etc.

The integrated optimization problem is posed as a single-objective

optimization, wherein various measures of performance, such as

root-mean-square (rms) pointing errors, transient response, etc., are

optimized subject to constraints on the cost de fined in terms of the to-
tal mass of the spacecraft and/or the required control energy. The

integrated design approach is applied to a geostationary platform

concept, and also to an experimental test bed.

Controllers for Integrated Design

Control system design for large flexible space structures (LFSSs)

is a challenging problem because of their special dynamic character-

istics, which include a large number of significant structural modes;

low, closely spaced structural mode frequencies; very small inher-
ent damping; and lack of accurate knowledge of the parameters. In

order to be practically implementable, the controller must be of a

reasonably low order and must also satisfy the performance specifi-
cations (i.e., rms pointing error, closed-loop bandwidth, etc.). It must

al so have robustness to nonparametric uncertainties (i.e., unmodeled

structural modes), and to parametric uncertainties (i.e., errors in the

knowledge of the design model). Two major categories of controller

design methods for LFSS are model-based controllers (MBCs) and
dissipative controllers. An MBC generally consists of a state esti-

mator (a Kalman-Bucy filter or an observer) followed by a linear-

quadratic regulator. The state estimator utilizes the knowledge of

the design model (consisting of the rigid rotational modes and a

few structural modes) in its prediction part. Using multivariable

frequency-domain design methods, such controllers can be made
robust to unmodeled structural dynamics, that is, the spillover ef-

fect can be overcome._ However, such controllers generally tend

to be very sensitive to uncertainties in the design model, in partic-

ular, to uncertainty in the structural mode frequencies. L4 An ana-

lytical explanation of this instability mechanism may be found in
Ref. 4. Achieving robustness to real parametric uncertainties is, as

yet, an unsolved problem, although considerable research activity

is in progress in that area using H-infinity and structured singular-
value methods.

In view of the sensitivity problem of MBCs, dissipative con-

trollers, which utilize collocated and compatible actuators and sen-

sors, offer an attractive alternative. Dissipative controllers utilize

special passivity-type input-output properties of the plant and offer

robust stability in the presence of both nonparametric and para-

metric uncertainties, t'5 The simplest controller of this type is the

constant-gain dissipative controller. Using collocated and compati-

ble actuators and measurement sensors, the constant-gain dissipative

control law is given by

u = -Gpyp - GrYr (1)

where Gp and Gr are symmetric and nonegative-definite. This
control law has been proven to give guaranteed closed-loop sta-

bility despite unmodeled elastic modes, parameter errors, certain

types of actuator and sensor nonlinearities, and first-order actuator
dynamics, t The drawback of this controller is that its performance

is inherently limited because of its simple mathematical structure.
In order to obtain higher performance while still retaining the

highly desirable robust stability, dynamic dissipative compensators

can be used. The main characteristic of all dissipative controllers

is that they do not rely on the knowledge of the design model to

ensure stability, although they utilize it to obtain the best possible

performance. A dynamic dissipative controller is given by

k,_ = A,:x,: + Bcyr (2)

u = -Gxc - Gryr - Gpyp (3)

where Ac is strictly Hurwitz (all its eigenvalues are in the open left

half plane), and the positive-realness lemma relations 6 hold:

A_ P + P Ac = - Q (4)

G -- Brp (5)

withP=Pr >OandQ=Qr >0.
Equations (2-5) represent a two-level controller, wherein the in-

ner loop consists of a static position-plus-rate feedback and the outer

loop consists of a dynamic compensator. This controller assures ro-

bust asymptotic stability regardless of unmodeled structural dynam-
ics or parametric uncertainties. 5 In the absence of zero-frequency

modes (e.g., for a ground-based experiment), Gp and Gr can be null
matrices without destroying the robust asymptotic stability; that is,

the inner loop is not required. These results have also been recently

extended to systems with zero-frequency modes. 4

Integrated Design Formulation

The integrated controls-structures design approach was consid-
ered for two different systems. The first system is the Earth Pointing

System (EPS), which is a multiuser geostationary platform concept.
The second system is the Controls-Structures-Interaction (CSI)

Evolutionary Model, which is an experimental test bed at NASA

Langley Research Center. The two problems are discussed.

Integrated Design of the EPS Model
The EPS concept, shown in Fig. 1, consists of a 10-bay, 30-m-

long truss structure with two radial rib antennas (7.5- and 15-m
diam) at the ends. All the members (i.e., constituting the truss, the

antennas, and the antenna supports) are assumed to be hollow tubes
with circular cross section and 1.59-ram thickness. The antennas

are assumed to be locked (i.e., fixed with respect to the truss) dur-
ing normal operation, so that the problem is that of controlling the

pointing and vibration of the entire structure. It is assumed that a
three-axis contrul-moment gyro (CMG) and collocated attitude and
rate sensors, located at the center of mass of the structure, are used

for accomplishing the control.

Fig. 1
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Schematic of the Earth pointing system.
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Table 1 Integrated design of the EPS model

Design

rms Structural Actuator
pointing, mass, mass,

/zrad kg kg

Control

power, Design

N 2 - m 2 Variable

Initial 73.6 442.06 150 2.98
Control-optimized 26.9 442.06 150 3.00
Integrated

without actuator mass 16.94 404.21 150 3.00
with actuator mass 17.01 400.32 298.73 3.00

The approach followed herein is to formulate the integrated design
problem as a single-objective optimization problem. The structural

design variables used are outer diameters of the truss and antenna

support members with the thickness fixed. In particular, the truss was

divided into three sections, and the outer diameters of the longerons,
battens, and diagonals within each section constitute nine design

variables. Two additional structural design variables are the outer

diameters of the support members for the two antennas, making a

total of ! 1 structural design variables. A static dissipative control

design was chosen for the integrated design with the elements of the

Cholesky factorization matrices of the nonnegative-definite position
and rate gain matrices chosen as design variables:

Gp = L,Lre, G, = LrLrr (6)

In this design problem, the closed-loop performance measure is

the steady-state root-mean-square (rms) pointing error at the large
antenna due to white-noise disturbances of unit intensity at the in-

puts. In order to achieve a realistic design, constraints are placed

on the steady-state average control power and the total mass. Addi-

tional side constraints are placed on the structural design variables

for safety and practicality reasons. Lower bounds are placed on these

variables to satisfy structural integrity requirements against buck-

ling and stress failures. On the other hand, upper bounds are placed
on these variables to accommodate manufacturing limitations. Thus,

the first design problem is as follows:

Minimize the steady-state rms pointing error at the large antenna:

T 1
J = min limCFr{£[e(t)e (t)]})_ - Pe (7)

with respect to the tube outer diameters di (i = 1, 2 ..... 11) and the

elements of Lp, L,, subject to the constraints:

E --= lim Tr{E[u(t)ur(t)]} < Emax (8)

Mstr < Mm_x (9)

dm_° <_ d, <_ dm_ (l O)

Here e : Cx is taken as the 3 x 1 attitude vector at the large antenna.

The steady-state rms pointing error is computed from the steady-

state covariance of the closed-loop state, i.e.,

P,=[Tr(CPxCr)] ½ (11)

where Px denotes the steady-state covariance of the state, which is

determined from the solution of the following Lyapunov equationT:

A_IPx + PxA r = --BB r (12)

The results for this design problem are summarized in Table 1.

An initial design based on the nominal structure and a controller,
which achieves good rigid-body performance, was first obtained.

The nominal structural mass is 442.06 kg, and the actuator mass

was assumed constant at 150 kg. For the nominal structure, the

first modal frequency was about 0.6 Hz, corresponding to a large

antenna-support mode, and the first truss mode was at about 6 Hz.

A design model consisting of three rigid-body modes and the first

ten flexible modes of the structure was used in the design process. A
0.5% open-loop modal damping was assumed for the flexible modes.

The nominal static dissipative control gain matrices were diagonal,
with elements chosen to give satisfactory closed-loop frequency

and damping for the rigid-body dynamics and to maintain the rms

pointing error within the required tolerance.

Table 2 Optimization data for the EPS model

Section

Upper Lower Initial Final
bound, bound, value, value,

m m m m

1 (longeron) 1 0.15 0.01 0.051 0.107
2 (batten) 1 0.15 0.01 0.051 0.030
3 (diagonal) i 0.15 0.01 0.051 0.025
4 (Iongeron) 2 0.15 0.01 0.051 0.066
5 (batten) 2 0.15 0.01 0.051 0.010
6 (diagonal) 2 0.15 0.01 0.051 0.010
7 (longeron) 3 0.15 0.01 0.051 0.066
8 (batten) 3 0.15 0.01 0.051 0.041
9 (diagonal) 3 0.15 0.01 0.051 0.058
10 (support) Large 0.15 0.01 0.051 0.149

antenna

11 (support) Small 0.15 0.01 0.051 0.010
antenna

The integrated design software tool CSI-DESIGN, which is un-

der development at NASA Langley Research Center, was used to
perform both the integrated controls-structures designs and control-
optimized (or conventional) designs. Employing a four-processor

AIliant FX-80 computer, the integrated optimization was performed
using the Automated Design Synthesis (ADS) software. 8 An interior

penalty function method was used to solve the nonlinear program-
ming problem. Algorithms for minimizing the bandwidth of the

banded matrices, as well as expressions for analytical eigenvalue-
eigenvector sensitivity, have been incorporated.

With the average control power Em_ constrained at 3, the initial
design gives an rms pointing error of 73.6/_rad. The conventional
design approach was next followed, wherein the control gains (12

elements of the two Cholesky factors Lp and L,) were optimized for
the fixed nominal structure. This control-optimized design yielded
an rms pointing error of 26.9 /_rad. Next, an integrated design
was performed, wherein both the structural and control design vari-
ables were allowed to change simultaneously. This resulted in an rms

error of 16.9 grad which represents a 37% reduction from the con-
ventional design. Also, the structural mass was slightly lower than

the nominal design. The lower-bound values, upper-bound values,
initial values, and optimal values of the structural design variables
are summarized in Table 2. The integrated design redistributed the
structural mass from the battens and diagonals of the last two sec-
tions of the main bus (closest to the small antenna) and small antenna
support members to the large antenna support members and the sec-

tion of the main bus closest to the large antenna, thus increasing the
stiffness of these sections. This behavioral trend may be attributed

to a tradeoff between structural controllability and observability and
its excitability by disturbances. In other words, the stiffness (or flexi-
bility) of the structure is redistributed to establish a balance between

the ability of the control system to fine-point the structure efficiently,
and the ability of the structure to reject disturbances. The elements

of the 3 × 3 lower-triangular Cholesky factorization matrices Lp
and Lr are given in Table 3 for the control-optimized design and the
integrated controls-structures design.

In order to evaluate the effect of varying the actuator mass in the
integrated design process, the actuator mass was allowed to vary by

relating it to the infinity norms of the gain matrices (a worst-case
scenario), i.e.,

Matt = c_lul_ = a(lG,.l_[y,]_ -t- ]Gploclypl_) (13)

For this case the actuator mass increased from 150 to 298.7 kg, while
the rms pointing error and the structural mass were essentially unaf-
fected. This is attributed to the fact that the structure is rather stiffand

is not affected by small masses. The results obtained clearly show

the advantage of integrated design over the conventional approach.

Integrated Design of the ControLs-Structures Interaction
Evolutionary Model

An important part of the CSI program is the experimental valida-
tion of the design methods developed. The CS! Evolutionary Model
is a laboratory test bed designed and constructed at NASA Langley
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Research Center for experimental validation of the control design

methods and the integrated design methodology. 9 The phase-0 evo-

lutionary model, shown in Fig. 2, basically consists of a 62-bay
central truss with each bay 10 in. long, two vertical towers, and two

horizontal booms. The structure is suspended using two cables as

shown. A laser source is mounted at the top of one of the towers, and

a reflector with a mirrored surface is mounted on the other tower.

The laser beam is reflected by the mirrored surface onto a detector

surface 660 in. above the reflector. Eight proportional, bidirectional

gas thrusters provide the input actuation, while collocated servo
accelerometers provide output measurements. The phase-0 model

has six nonstructural modes due to suspension and many significant

elastic modes.

To perform the integrated design, the structure was divided into
seven sections: three sections in the main bus, and one section
each for the two horizontal booms and two vertical towers. Three

structural design variables were used in each section, namely, the
cross-sectional areas of the longerons, the battens, and the diago-

nals, making a total of 21 structural design variables. An integrated

controls-structures design was obtained by minimizing the steady-

state average control power in the presence of a white-noise input
disturbance with unit intensity (i.e., standard deviation intensity =

1 lbf), with constraints on the steady-state rms position error at the

laser detector (above the structure) and the total mass. That is, the

problem solved was as follows:
Minimize

E = lira Tr{C[u(t)ur(t)]} (14)

subject to

P, = lim Tr{C[e(t)er(t)]} ½ < P_ i15)

and a constraint on the total mass

Mst_ < Mma_ (16)

Here, the pointing-error vector e is taken as the 2 x 1 vector of

the position error at the laser detector. Both static and dynamic dis-

sipative controllers were used in the integrated design of the CSI
Evolutionary Model. Velocity signals required for feedback by the

dissipative controllers were obtained by processing the accelerom-
eter outputs. The static dissipative controller uses an 8 x 8 diagonal

rate-gain matrix with no position feedback. (Since this system has

no zero-frequency eigenvalues, position feedback is not necessary

for asymptotic stability.) Thus, in the integrated design with the

static dissipative controller, the total number of design variables

was 29. The dynamic dissipative controller used in the design was a
32-order controller consisting of eight fourth-order compensators

(one for each control channel). The compensator state matrix A¢

and input influence matrix Bc were defined as follows:

Ia° °01
i Ac2 Aic8

A c _

L 0

(17)

Table 3 Elements of Cholesky matrices for the attitude
and rate gain matrices of the EPS model

Design Control-optimized Integrated
Variable design design

Lp(1, l) 188.7 254.3
Lp(2, !) 7.1 1.2
Lp(3. l) 3.9 -1.7
L p(2, 2) 179.2 245.0
Lp(3, 2) 7.4 0.6
Lp(3, 3) 189.9 255.7
Lr(l. i) 212.5 223.3
Lr(2, !) -17.4 -2.9
Lr(3, 1) 15.3 8.3
L, (2, 2) 272.1 327.9
Lr(3, 2) -33.0 -I.0
Lr (3, 3) 293.8 403.3

iBcl 0 • ' • ]

0 Be2 •• ' 00

n c -_- . . .

0 0 ... Bcs

(18)

where Aci and Bci, i = I, 2 ..... 8, are, respectively, 4 x 4 ma-

trices and 4 × 1 vectors, defined in a controllable canonical form

as

°1 Iil0 1 0 B¢i =
Aci = 0 0 1 '

-- Ot'4i --_3i --0/2i --G/]i

(19)

Section 7

I Thruster

accelerometers

Fig. 2 Schematic of the CSI pha.se-0 evolutionary model.
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Fig, 3 l_pical strut of the CSI evolutionary model.
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Table 4 Integrated design of the CSI evolutionary model

Design rms displacement, in. Control power, lb 2

Open loop
initial structure 38.02 0.00
integrated structure 33.52 0.00

Control-optimized
S 4.00 7.87
D 4.00 6.63

Integrated
S 4.00 3.80
D 4.00 3.36

Table 5 Optimization data for the CSI evolutionary model

Design Lower Upper Initial Final
variable bound, in. bound, in. value, in. value, in.

1 0.08 0.38 0.15 0.273
2 0.05 0.38 0.08 0.094
3 0.05 0.48 0.08 0.128
4 0,08 0.38 0.08 0.08
5 0.05 0.38 0.08 0.050
6 0.05 0.48 0.08 0.050
7 0.08 0.38 0.08 0.26 l
8 0.05 0.38 0.08 0.082
9 0.05 0.48 0.08 0.086

10 0.08 0.38 0.15 0.339
! 1 0.05 0.38 0.08 0.080
12 0.05 0.48 0.08 0.111
13 0.08 0.38 0.15 0.298
14 0.05 0.38 0.08 0.085
15 0.05 0.48 0.08 0.148
16 0.08 0.38 0.08 0.080
17 0.05 0.38 0.08 0.051
18 0.05 0.48 0.08 0.051
19 0.05 0.38 0.08 0.121
20 0.05 0.38 0.08 0.050
21 0.05 0.48 0.08 0.053

Furthermore, the weighting matrix Q in Eq. (4) is assumed to be

diagonal, i.e.,

Q = Diag(qt, q2 ..... q32) (20)

Here, the scalar variables Otli, or2./, o_3i, _4/, i = 1, 2 ..... 8, and

q j, j = 1,2 ..... 32, were chosen for the control design variables.

Thus, the number of control design variables was 64, making the

total number of design variables 85. The finite element model of the
system has 3216 degrees of freedom; therefore, the bulk of the com-

putational effort is required for the solution of the structural eigen-

value problem of that size. The design model consisted of the first

20 normal modes of the structure, including six suspension modes
(modes due to the suspension of the structure) and 14 elastic modes.

In finite element modeling, truss elements are usually modeled
as homogeneous beam elements with uniform cross sections. This

implies that the mass of the element varies linearly with its cross-
sectional area, i.e., the mass density is constant. However, this is not

the case for the CSI Evolutionary Model, as shown in Fig. 3. This
figure shows a typical strut of the CSI Model, where it is observed

that the strut is rather nonuniform and is composed of three separate

sections, namely, joint area, bond area, and tube. This nonuniformity

of the strut makes the integrated design a bit more complicated,
since the effective mass density is not constant but is a function of

the effective cross-sectional area. Therefore, one cannot increase

or decrease the cross-sectional area of a strut arbitrarily, without
considering the nonlinear effects on the structural mass. In order to

ensure that the design coming out of the integrated design process

is realistic and fabricable, design guides have been developed for

longerons and battens (see Fig. 4) and diagonals (see Fig. 5). Each
of the points on these design guides represent a fabricable strut with

certain tube thickness and diameter. The lowermost points in these
figures have been curve-fitted by a rational function of the effective

area. These curves are minimum-mass design curves (since they
represent design points with the smallest mass densities), which are

used in the integrated design process to obtain realizable designs.

The results of the integrated design is presented in Table 4. Using
a constraint on the maximum rms pointing error of 4.0 in. and a con-

straint on the total mass of 1.92 lb • s2/in. (nominal mass of the CSI

Evolutionary Model), a conventional control-optimized design was

performed first (with the structural design fixed at the initial values)

using both the static and dynamic dissipative controllers, where the

average control power [Eq. (14)] was minimized with respect to the

control design variables only. The static dissipative controller gave

an average control power of 7.87 lb 2, whereas the dynamic dissipa-

tive controller gave a better average control power of 6.63 Ib 2.

Next, an integrated design with the static dissipative controller

was performed, wherein the average control power E is minimized

with respect to both control and structural design variables. The
integrated design reduced the average control power by more than

50% to 3.80 lb 2, which demonstrates the clear advantage of in-

tegrated design over the traditional sequential design. Using this

integrated design as the initial design, another integrated design us-

ing the dynamic dissipative controller was performed. This design

gave an almost 50% reduction in the average control power from
its corresponding control-optimized design. However, the structure

did not change much, thus indicating that the structure obtained

with the static dissipative controller is also an optimal structure for

this dynamic dissipative controller. The results clearly show that

an integrated design can yield a substantial improvement in the
overall design.

The initial and final values of the structural design variables,

along with the corresponding lower bound and upper bound val-
ues are presented in Table 5. Keeping in mind that the tube cross-

sectional areas of the nominal CSI Evolutionary Model structure arc

0.134 in. 2 for the longerons and battens and 0.124 in. 2 for the diag-
onal, it is observed from Table 4 that all three sections of the main

bus (particularly the middle section) and the laser tower are con-

siderably stiffened, while the horizontal booms and the reflector

tower became more flexible, partly to satisfy the mass constraint.

Generally, in those sections that showed an increase in stiffness,
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Table 6 Diagonal elements of rate gain matrices for the CS!
evolutionary model (static dissipative controller)

Design variable Control-optimized design Integrated design

Gr (1, l) 0.245 0.283

Gr (2, 2) 0.627 0.289

Gr(3, 3) 0.425 0,210

Gr (4, 4) 1.566 0.220

Gr (5, 5) 0.743 0.198

Gr (6, 6) 0.355 0.208

Gr(7, 7) 0.449 0.281

Gr (8, 8) 0.268 0.476

Table 7 Control design variables for the CSI evolutionary model

(dynamic dissipative controller)

Control- Control-

Design optimized Integrated Design optimized Integrated

variable design design variable design design

At(4, 1) 27.84 85.33 At(20, 17) 27.47 79.81

Ac(4,2) 153.47 305.30 Ac(20, 18) 108.79 242.39

A_(4,3) 184.48 260.52 A¢(20, 19) 136.0 208.00

Ac(4,4) 50.43 76.47 Ac(20,20) 40.44 86.44

Ac(8,5) 26.49 86.40 Ac(24, 21) 28.08 78.46

Ac(8,6) 165.54 355.55 Ac(24,22) 126.61 264.51

Ac(8,7) 169.55 210.11 Ac(24,23) 173.12 228.82

At(8, 8) 103.21 88.65 A¢(24,24) 44.41 79.66

Ac(12,9) 15.70 73.17 Ac(28,25) 37.61 78.75

Ac(12,10) 168.42 324.34 Ac(28.26) 172.98 263.11

At(12, 11) 198.67 289.22 Ac(28, 27) 155.55 221.37
At(L2,12) 92.14 87.33 Ac(28,28) 103.41 89.15

Ac(16, 13) 18.99 71.88 Ac(32,29) 26.00 111.66
Ac(16,14) 157.75 320.62 Ac(32,30) 109.89 317.25

At(16, 15) 51.20 242.72 Ac(32,31) 271.28 411.62

At(16. 16) 102.61 89.53 Ac(32, 32) 55.63 82.87

Table 8 Control design variables for the CSI evolutionary model

(dynamic dissipative controller)

Control- Control-

Design optimized Integrated Design optimized Integrated
variable design design variable design design

Q(1, 1) 3959.7 4395.2 Q(17, 17) 3739.4 3587.9

Q(2, 2) 8225.0 12008.9 Q(18, 18) 7461.6 10329.9
Q(3.3) 4879.7 ! 1986.5 Q(19, 19) 4469.6 10280.3

Q(4, 4) 518.1 3919.9 Q(20, 20) 637.6 3626.6

Q(5, 5) 3033.9 4350.1 Q(21, 21) 3889.8 3600.1

Q(6, 6) 6749.3 12481.5 0(22, 22) 7792.7 9997.3

Q(7, 7) 3584.0 12034.5 Q(23, 23) 4585.0 10014.4

Q(8, 8) 565.2 4351.7 Q(24, 24) 549.2 3558.6
Q(9, 9) 3103.4 3315.9 Q(25, 25) 3150.6 4303.9

Q(10, 10) 6588.5 9453.8 Q(26.26) 7345.8 12646.7
Q(I 1, 11) 3915.9 9414.6 Q(27, 27) 3670.0 12690.7

Q(12, 12) 276.6 3447.3 Q(28, 28) 746.4 4334.0
Q(13, 13) 3237.9 3397.7 Q(29, 29) 3348.2 7749.0

Q(14, 14) 7346.2 9804.8 Q(30, 30) 6710.7 20403.1
Q(15, 15) 4533.8 9698.0 Q(31,31) 2469.4 22056.7

Q(16, 16) 588.5 3307.7 Q(32, 32) 412.2 7474.9

the longerons increased in size more than the diagonals and the

battens, since they are most effective in changing the stiffness of a

section. The trends in Table 5 may be attributed to a tradeoff between

structural controllability, observability, and excitability. The areas

near the disturbance sources (actuator locations) were stiffened in

order to reduce the sensitivity of the structure to external distur-

bances at those locations, while ensuring that no appreciable loss of

controllability and/or observability occurred. The diagonal elements

of the rate gain matrix for the static dissipative controller are given in

Table 6 for the control-optimized design and the integrated controls-

structures design. It is observed that the elements of the rate gain

matrix for the integrated design are generally smaller than those for

the control-optimized design except for channels 1 and 8. The ele-

ments of the compensator state matrix At are given in Table 7 for

the control-optimized design and the integrated controls-structures

design. Also, the elements of the weighting matrix Q are presented

in Table 8 for both designs.

The results obtained for both the static and dynamic dissipative

controllers clearly show that integrated controls-structures design

methodology can yield a substantially superior overall design to the

conventional sequential design scenario.

Concluding Remarks

An optimization-based approach has been developed for per-

forming integrated controls-structures design of a class of flexible

spacecraft. The approach formulates the problem as a constrained

optimization problem, wherein the design variables consist of both

control and structural design variables. The approach uses static and

dynamic dissipative control laws, which provide robust stability in

the presence of parametric and nonparametric uncertainties. The

approach was demonstrated by application to integrated designs of

a geostationary platform concept, as well as a ground experiment

test bed. The numerical results obtained indicate that the integrated

design approach can yield substantially superior spacecraft designs

to those from the traditional sequential design approach. Further-

more, the automated nature of the integrated design approach can

accommodate a wide variety of design specifications and require-

ments. A practical software tool (CSI-DESIGN) is being developed

for performing integrated designs.
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