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Abstract

Current Connection Machine (CM) Fortran codes developed for the CM-2 and the CM-5

represent an important class of parallel applications. Several users have employed CM Fortran

codes in production mode on the CM-2 and the CM-5 for the last five to six years, constituting a
heavy investment in terms of cost and time. With Thinking Machines Corporation's decision to

withdraw from the hardware business and with the decommissioning of many CM-2 and CM-5
machines, the best way to protect the substantial investment in CM Fortran codes is to port the

codes to High Performance Fortran (HPF) on highly parallel systems. HPF is very similar to CM
Fortran and thus represents a natural transition.

Conversion issues involved in porting CM Fortran codes on the CM-5 to HPF are presented. In
particular, the differences between data distribution directives and the CM Fortran Utility

Routines Library, as well as the equivalent functionality in the HPF Library are discussed. Several

CM Fortran codes (Cannon algorithm for matrix-matrix multiplication, Linear solver Ax=b, 1-D
convolution for 2-D datasets, Laplace's Equation solver, and Direct Simulation Monte Carlo

(DSMC) codes have been ported to Subset HPF on the IBM SP2 and the SGI Power Challenge.

Speedup ratios versus number of processors for the Linear solver and DSMC code are presented.

1. Subhash Saini is an employee of Computer Sciences Corporation. This workwas funded through NASA
contractNAS 2-12961.
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1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program, located at NASA Ames Research

Center, is a pathfinder in high performance computing for NASA and is dedicated to advancing

the science of computational aerodynamics. One key goal of the NAS organization is to

demonstrate by the year 2000 an operational computing system capable of simulating an entire

aerospace vehicle system in one to several hours. It is currently projected that the solution of this

Grand Challenge problem will require a computer system that can perform scientific

computations at a sustained rate approximately 1000 times faster than 1990 generation

supercomputers. Most likely such a computer system will employ hundreds or even thousands of

powerful RISC processors operating in parallel.

NAS currently supports two CRAY C90 systems: a TMC CM-5; the HPCC cluster comprising

16 SGI Power Challenges; 2 HP PA 7200; 2 IBM RS 6000/590 workstations; an IBM SP2 and

Intel Paragon; 250 SGI workstations (R2000, R3000, and R4000), and 95 Sun workstations. The

CM-5 was decommissioned on March 31, 1995 and the Intel Paragon is scheduled to be

decommissioned on July 31, 1995.

High performance Fortran (HPF) [1-4] addresses the need of a large number of parallel

computers users. NAS has a large base of CM-5 users and a significant number of production

codes with good performance being run on it. We know that other large CM-5 and parallel

computer centers such as NCAR, AHCRC, LANL are faced with same problem. We believe that

this is also true for many large commercial and government sites. Most of the codes on CM-5 are

written in CM Fortran, and users are extremely reluctant to switch to message-passing paradigms.

This paper is organized as follows: Section 2 gives taxonomy of various programming models

available on parallel computers. Section 3 gives the reasons for using HPF at NAS. Section 4

presents the general characteristics of CM Fortran codes and their similarities with Fortran 90 and

HPF. Section 5 discusses the various conversion issues involved in porting CM Fortran codes to

HPE Section 6 deals with programming tools available in the programming environment of CM

Fortran and HPE Section 7 gives brief a overview of currently available HPF compilers. Section 8

presents results of porting CM Fortran codes to HPE Deficiencies of current HPF compilers are

given in Section 9. Conclusions are presented in Section 10.

2 Taxonomy of Programming Models

Currently, the following programming models are in common use on various highly parallel

systems:

2.1 Message Passing Paradigm

Message passing is the most common programming model available on highly parallel systems.

One of the oldest message-passing libraries is NX on Intel iPSC/860 [5] and Intel Paragon [6].

The syntax requires the programmer to explicitly decompose arrays and communicate data.

Parallel Virtual Machine (PVM) [7] and Message Passing Interface (MPI) [8] are considered two

de facto standards. MPI is expected to become a standard. However, native MPI is yet not

supported on the IBM SP2 [27] or the CRAY T3D.

Explicit message passing is not viewed by most of the users as a long-term solution to the

scientific community's programming needs but merely something necessary in the short term until

parallel languages and efficient compilers are developed and commercially available. This will

obviate the need for users to explicitly specify and manage the interprocessor communication in
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theirapplications.It iswidelybelievedthatHPFoffersthebesthopeforachievingthisobjective.
2.2 Data Parallel Paradigm

In data parallel model, the same operation is performed on many data elements by many

processors simultaneously. Global data structures are distributed uniformly and processing power

follows data. Conceptually, each processor computes only one element of each dataset. Data

parallelism is a simpler programming paradigm that scales naturally as data grows. Some commonly

used data parallel languages are as follows:

2.2.1 CM Fortran

CM Fortran [9] is a proprietary language of Thinking Machines Corporation. It is implemented as a

data parallel language with Fortran 90 [10] arrays as its parallel data structures. All Fortran 77

operations and intrinsic functions are extended to act point-wise on arrays. New intrinsic functions are

provided for constructing and transforming arrays. In addition, CM Fortran also has a FORALL

statement and a FORALL construct. The application programmer sees only a single thread of control

and views data globally. Distribution of data and computation, communication, and synchronization

are managed automatically. The programmer can modify data distribution or invoke special

communication patterns. The programmer has to be very careful about the pattern of interprocessor

communication and to limit it to the near-neighbor, if possible. The interprocessor communication is

typically coded using intrinsic functions such as CSH I FT and EOSH I FT. In many CM Fortran codes,

data parallel syntax can be difficult to decipher, especially when the code makes extensive use of

CSHIFT and EOSHIFT. Array elements not explicitly distributed are mapped according to an

implementation-dependent default distribution called the canonical distribution (see Section 5.4 for

details)

2.2.2 High Performance Fortran

HPF, the premier high-level language for parallel programming is based on a number of existing

languages such as CM Fortran [9], Fortran 90 [10], Fortran D [11], and Vienna Fortran [12]. HPF

allows users to write a single parallel program that can execute on both distributed-memory (IBM

SP2) and shared-memory machines (DEC TurboLaser or SGI Power Challenge XL). HPF eliminates

the complex, error-prone task of explicitly telling the compiler how, where, and when to pass

messages between processors on distributed-memory machines, or when to synchronize processors

on shared-memory machines. HPF codes can execute a single program on a distributed-memory

cluster, a single Symmetric Multiprocessing Processor (SMP), or a cluster of SMPs.

Extensions incorporated into HPF provide a means for explicit expressions of parallelism and data

mapping. These extensions are (a) directives advising the compiler how data objects should be

allocated to processor memories, and (b) new language features such as the FORALL statement and

FORALL construct borrowed from CM Fortran. HPF uses compiler directives PROCESSORS,

ALIGN, DISTRIBUTE, and TEMPLATE to map array elements to abstract processors in a two-

level mapping: (i) The array elements are first aligned with an abstract index space called a template

[22]. (ii) The template is then distributed onto a rectilinear arrangement of abstract processors.

2.2.3 Cray Research Adaptive Fortran (CRAYW)

CRAFT [13-15] derives its features from Fortran 77, Fortran 90, Fortran D, and HPE CRAFT has

the following three directives: (a) Data Sharing Directives: Data sharing directives distribute data,

such as an array, over the memory of the processor elements (PEs). The CRAY T3D system
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distinguishes between data objects that are private to a task and those that are shared among all tasks;

(b) Work Sharing Functions and Directives: CRAFT provides an implicit programming method called

work sharing. Work sharing directives divide the work by distributing iterations across all available

processors. Also, functions are available for determining if a code is in a parallel or sequential region;

(c) Synchronization Functions and Directives: CRAFT provides synchronization functions and

directives to coordinate the processor tasks: Barriers, ATOMIC UPDATES, LOCKS, CRITICAL

sections, EVENTS, and EUREKA functions. HPF emphasizes on its data distribution mechanisms

whereas CRAFT emphasizes on work distribution mechanism. The drawback of CRAFF is that codes

written using CRAFT-specific directives are not portable to another machine.

2.2.4 Silicon Graphics Power Challenge XL

SGI's Power Fortran Accelerator (PFA) is a source-to-source optimizing Fortran preprocessor that

discovers parallelism in Fortran code and converts those programs to parallel code [15-17]. Cray

CDIR$ directives are accepted. One can also insert compiler directives for parallelization.
Interprocessor communication is handled by cache coherent hardware. Parallelization can be

achieved (i) Fully automatically: done by PFA, (ii) Semi-automatically: User manually inserts

directives, (iii) Manually: User inserts library/system level call. CPUs communicate and synchronize

through coherent shared memory. The drawback is that codes written using SGI-specific directives
are not portable to an other machine.

2.2.5 Convex Exemplar SPI000

Semiautomatic parallelization in conjunction with the hardware's ability to dynamically distribute

array elements provides a shared memory paradigm for existing Fortran 77 codes [18]. Convex-

specific directives are available to aid the compiler in achieving parallelization. Application

developers can use these directives to force the parallelization of data-dependent loops and can code

explicit synchronizations among the threads to correctly handle the dependencies. More advanced

users can use features supporting explicit parallel thread management, explicit synchronization, and

explicit data distribution. The drawback is that codes written using Convex-specific directives are not
portable to another machine.

2.2.6 Fujitsu VPPS00

Parallel processing is performed using VPP Fortran compiler directives to Fortran 77 [19]. It is

based on index decomposition and distribution onto processors while maintaining the correspondence
between partitioned DO loops and distributed data. Here also, the drawback is that codes written

using these Fujitsu-specific directives are not portable to another machine.

2.2.7 DEC Alpha Server 8400 51300 (TurboLaser)

The control parallelism can be handled directly by the KAP parallel-processing directives. A user
can also insert KAP-specific directives for parallelization. The drawback is that codes written with

KAP-specific directives are not portable to another machines.

2.3 Explicit Shared Memory Model (CRAY T3D and Meiko)

In the explicit shared-memory model, the user is responsible for explicitly managing the data

transfers and communication by explicitly specifying two addresses: a local address, and a remote

address, which is really a tuple (PE number, local address). This is done by shared-memory access

libraries interface. This interface allows users to address the global memory explicitly, without the

compiler needing to know how to compute glob addresses. The two functions (shemm_get and
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shemm_put) are used to read from/to any remote PE and map directly onto the low level CRAY T3D

concepts of loads and stores. These functions have been used to optimize all the existing CRAY T3D

benchmarks including NAS Parallel Benchmarks [20]. Meiko also has implemented this programing

model, which is difficult for users to implement and is not portable to another computer.

3 Why HPF at NAS?

The NAS CM-5 was decommissioned on March 31, 1995. Several users had been using CM

Fortran on CM-2 and CM-5 for the last 5 years; thus, there is a heavy investment in CMF codes [21].

Since CM Fortran very close to High Performance Fortran (HPF), there is a natural transition from

CM Fortran to HPF. Users prefer HPF to Message Passing Paradigm because of programming ease.
The availability of the excellent CM Scientific and Subroutines Library (CMSSL) [25] on the CM-5,

and almost negligible parallel mathematical and scientific libraries using the message-passing

paradigm, speaks of the ease of developing applications and scientific libraries in this data parallel

language. There is a hope of rich mathematical and scientific libraries in HPE In addition, Subset

HPF compilers are available on the NAS IBM SP2 and the NAS High Performance Computing and

Communication Program (HPCCP) cluster; thus, CM-5 users can port their codes to HPF.

4 Characteristics of CM Fortran Codes

A quick look at any CM Fortran code reveals that it is comprised mostly of the following
statements, structures, and directives:

a. Array syntax, which is a part of Fortran 90 language.

b. W}IERE statement and WHERE construct, which are parts of Fortran 90 language.

c. Intrinsic shift functions: CSHIFT and EOSHIFT which are parts of Fortran 90 language.

d. FORALL statement and FORALL construct, which are parts of HPF specification.

e. CMF$ LAYOUT directives for data distribution - like HPF compiler directives.

f. CMF$ ALIGN directive for data alignment - like HPF directive ALIGN.

g. CM Fortran utility routines with equivalent routines in HPF Library.

h. Parallel I/O that have no counterpart in HPE as there is no parallel I/O in HPE

It is clear that, except for parallel I/O, porting CM Fortran codes to HPF is a natural transition [21].

5 Porting CM Fortran Codes to HPF

In this section, we discuss the various conversion issues involved in porting CM Fortran codes to
HPF [21 ].

5.1 Data Distribution Directives

CM-5's Run Time System (RTS) distributes array elements among the processors available to the

program. The particular distribution of an array is called its layout [23]. The layout chosen by the RTS

without intervention from the user is the canonical layout or canonical distribution. The main reason

to use layout directives is to improve performance over what a user cannot obtain using the canonical

layout. The CM Fortran data distribution directives are much simpler than ones available in HPF. For

the CM Fortran on the CM-5, there are two layout directives: LAYOUT and ALIGN. For CM Fortran

running on the CM-2, in addition to these two there is a third directive called COMMON.

5.1.1 LAYOUT Directive

In CM Fortran, an arbitrary numbers of arrays of an arbitrary number of dimensions can be

specified in the same CMF$ LAYOUT directive as shown in Figure 1. Note "weight" 2 in 2 : NEWS in
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Example: 1(a)

INTEGER, PARAMETER :: N=256
REAL*8, ARI_¥(n,n,n) :: a

CMF$ LAYOUT a( :SERIAL,2:NEWS,:NEWS)

Example: 2 (a)

INTEGER, PARAMETER :: m=128
REAL*8, ARRAY(m,m) :: x

REAL*8, ARRAY(m) :: y

CMF$ LAYOUT( :SERIAL,2:NEWS),y(:NEWS)

Example: 1 (b)

INTEGER, PARAMETER :: N=256

REAL*8, DIMENSION(n,n,n):: a

CHPF$ DISTRIBUTE a(*,BLOCK,BLOCK)

Example: 2 (b)

INTEGER, PARAMETER :: m:128

REAL*8, DIMENSION(m,m):: x

REAL*8, DIMeNSION(m) :: y

CHPF$ DISTRIBUTE x(*, BLOCK)

CHPF$ DISTRIBUTE y(BLOCK)

Figure 1: Use of layout directive in CM Fortran. Figure 2: Use of distribute directive in HPE

,out directive. I_ere _s no concept ot weight in HPh However, HPF does not allow specilying more

than one array in the same line of CHPF$ DISTRIBUTE due to the stringent attributed form of the

distribution directive as shown in Figure 2. In summary, SERIAL translates into * and NEWS

translates into BLOCK.

Many CM Fortran codes developed on the CM-2 use the following COMMON directives:

CMF$ COMMON FEONLY /blkl/a(100,100)

CMF$ COMMON CMONLY /blk2/ b(100,100)

CMF$ COMMON INITIALIZED/blk3/c(100,100)

On the CM-2, these directives are meant to specify the home of a given array. The front-end is the

default home for array a(100,100) in COMMONblock blkl. The CM is the default home for array

b(100,100) in blk2. Array c(100,100) in blk3 is stored on CM and has front-end memory allocated
for initialization in a BLOCK DATA unit. These COMMON directives should remain untouched and the

compiler will ignore them.

5.1.2 ALIGN Directive

As discussed in the previous section, a LAYOUT directive can align a vector only with the first row or

column of array. However, an ALIGN directive can match the vector with any row or column of array.

In CM Fortran, for statically allocated arrays: (a) conformable arrays with canonical layouts are

aligned and (b) conformable arrays with identical noncanonical layouts are aligned. The ALIGN

directive can enhance the performance of an application by eliminating unnecessary data

communication when operations are performed on multiple arrays that would not normally be

aligned. The use of ALIGN directive in CM Fortran and in HPF is shown in Figures 3 and 4,

respectively. Many CM Fortran codes rely on the canonical alignment and do not use any ALIGN
directives. However, such codes, when ported to HPF must use the ALIGN directive for better

performance as there is no canonical alignment in the current implementation of HPF compilers. It is

recommended that HPF compilers should be free to use a canonical align when none is specified
by the user.

5.1.3 TEMPLATE Directive

In HPF, a template is an abstract space of indexed positions [22] - an "array of nothings" as
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Toalignvectorbwithfirstrowofmatrixa

INTEGER, PARAMETER :: N=256

REAL*8, ARIKAY(n,n) :: a

REAL*8, ARRAY(n) :: b

CblF$ ALIGN b(j) WITH a(l,j)

NTEGER, PARAMETER :: N:256

REAL*8, DIMENSION(n,n) :: a

REAL*8, DII4ENSION(n) :: b

CHPF$ ALIGN b(j) WITH a(l,j

Figure 3: Use of ALIGN directive in CM Fortran. Figure 4: Use of ALIGN directive in HPF.

opposed to, say, an "array oi- reals.'" One can use a template as an abstract align-target that can then 1:e

distributed. There is no concept of TEMPLATE in CM Fortran. In some HPF compilers (e.g., m

pghpf), if arrays are not aligned to the same template, the compiler does not recognize efficient

communication patterns. However, when arrays are aligned to a common template the compiler

generates efficient code. An example illustrating the use of template is shown in

Figure 8.

5.2 CM Fortran Utility Routines

CM Fortran utility routines provide convenient access from CM Fortran to the capabilities of

lower-level CM software [24]. Purpose of this was to provide a functionality and performance beyond

what was available from the compiler. With maturing of the compiler most of these functionalities

were included in the compiler. Nevertheless, many CM Fortran codes even today rely significantly on

these utility routines. Most of these routines have equivalent functionality in HPF Library routines of
HPE

5.2.1 Parallel Prefix Operations

Many CM Fortran codes use subroutines from CM Fortran Utility Library to perform prefix

operations, or scans on one axis of an array using

CALL CMF_SCAN_combiner (DEST, SOURCE, SEGMENT,AXIS, DIRECTION, INCLUSION, SEGMENT_MODE, MASK)

where combiner : {copy, add, max, min, ior, iand, ieor} . There areequivalent

routines in HPF library procedures. The only difference between these two set of routines is in

segment representation. For example, in CM Fortran Utility Library, segment vector
(/T, F, T, F, F, F, T, F, F/) represents three segments of size 2, 4 and 3. However, in HPF the

equivalent segment is given by (/T, T, F, F, F, F, T, T, T/. Conversion between these two forms
is easy using the parity-prefix function.

5.2.2 Parallel 110

On CM-5, the usual Fortran OPEN, WRITE, and READ statements do very fast parallel I/O for

large parallel arrays using Scalable Disk Array (SDA). There is no provision for parallel 1/O in HPE

Parallelism in I/O is necessary for performance of I/O dominated codes. The I/O dominating codes

such as out-of-core solvers written in CM Fortran will not perform well in HPF unless parallel I/O is
included in the HPF.

5.2.3 Random Numbers

On CM-5, CMSSL provides two versions of a lagged Fibonacci pseudo-number generator [25].

The implementation requires that every processor maintain a state table that is massaged on each call

to produce the next element in the output sequence. The two versions differ in the manner of

allocating these tables. For generating random numbers in CM Fortran, a subroutine called

CMF_RANDOM is used. The equivalent routine for generating random numbers in Fortran 90 is
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RANDOM_NUMBER. There is no equivalent to the fast version of random generators in Fortran 90 or

HPE It is recommended that the next release of HPF include fast random generator routine. The

current implementation of intrinsic subroutine RANDOMNUMBER is serial with very low
performance.

5.2.4 Sorting

Many CM Fortran codes use CMF_ORDER utility routine [24]. This routine places the rank of each

element along the specified axis of a source array into the corresponding element of the destination

array, under the control of a logical mask and is used as

CALL CMF_ORDER (DEST, SOURCE, AXI S, MASK)

This routine returns a rank vector. The routine close to this functionality is GRADE_UP routine from

the HPF Library. However, it requires a permutation of the input array indices that describes the
ordering.

5.3 FORALL Construct

Many CM Fortran codes use the FORALL construct [26]. Currently, Subset HPF compilers don't
provide this construct. Therefore the FORALL construct in CM Fortran codes needs to be converted

to FORALL statements. Many CM Fortran codes could not be ported to HPF because the FORALL

construct is not included with current HPF compilers.

5.4 Canonical Array Layout

In CM Fortran, by default, for every CM fortran array the CM Run-Time System (CMRTS) uses a

canonical data distribution. It is not necessary to use layout directives for CM Fortran arrays. The

CMRTS uses block layout of elements as opposed to cyclical layout. In HPF, compilers don't

distribute arrays by default and, in fact, they are replicated. For porting CMF codes to HPF, it is

necessary to insert HPF mapping directives to distribute the data. Code of Figure 7 relies on canonical

distribution feature of CM Fortran and therefore does not use layout directive. However, port of the
code in HPF is shown in Figure 8 and uses TEMPLATE, ALIGN, and DISTRIBUTE directives of

HPE It is recommended to vendors to include canonical alignment and canonical distribution as
default in HPF compilers.

5.5 CMSSL Library

Most of production codes running on CM-2 or CM-2 use routines from the CMSSL [25].

Commonly used CMSSL routines on CM-5 at NAS are FFTs, block and scalar pentadiagonal solvers,

and block tridiagonal solvers. None of these routines is available in HPF on any machine. One

software vendor has existing message-passing library modelled on IMSL. They are just starting on
implementation of a prototype F77_LOCAL extrinsic as a model around which a more extensive

tuned library can be developed. It's not clear at present whether this effort will be successful. At NAS,

an effort is underway to develop these routines in HPF [39]. It looks as though the big obstacle in

porting CM Fortran codes of CM-5 to HPF is the lack of CMSSL equivalent routines in HPF. The 3-D

FFT (FT) CM Fortran code from the NAS Parallel Benchmarks could not be ported to HPF because
of the absence of parallel 3-D FFT that can be used from HPE This obstacle must be overcome soon

to facilitate the easy porting of CM Fortran codes on CM-5 to HPF.

5.6 Communication Compiler

Many CM Fortran codes use a communication compiler to precompute the communications
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patterns [25]. This functionality is provided in CMSSL. There are no equivalent routines to replace

communication compiler routines. Thus, many CM Fortran codes using a communication compiler
when ported to HPF will run very slowly. This functionality should be considered for inclusion in
future HPF releases.

6 Programming Tools

A tool called PRISM is available for developing and optimizing CM Fortran codes [28]. The

PRISM programming environment is integrated and graphical within which users can perform

editing, debugging, data visualization, and performance analysis. It provides an easy-to-use, flexible,

and comprehensive set of tools for performing all aspects of CM-5 programming for CM Fortran

programs. No such tool is available for HPF programs. At this point, we discuss the functionality of

PRISM and give a work around for HPF programs until a tool is available for HPF programs.

6.1 Editing and Compiling

One can edit and compile source code by invoking the appropriate utilities from PRISM. Currently,

no such feature is available in any HPF compiler. The D editor developed by Ken Kennedy's group at
Rice University may be used as a starting point to develop the one for HPF [37].

6.2 Debugging a Program

Currently, no HPF debugger is available. However, for pghpf compiler [29-30] the user can

debug the generated Single Program Multiple Data (SPMD) Fortran 77 program on node using

multiple X windows. Although very inconvenient, this work around for debugging is very useful to

obtain a trace back of program that is crashing unexpectedly. This type of debugging can be done

either on a processor or on multiple processors. The advantage of debugging HPF code on a single
processor is that one can use standard debugger on the executable. We recommend that vendors

provide the HPF debugger as soon as possible. This debugger need not be very sophisticated in the
beginning.

6.3 Profiling a Program

Currently, no profiling tool is available for HPF codes. However, PGI has developed a graphical
HPF profiling tool that does subroutine-level and line-level profiling of HPF codes. This tool is

undergoing a Beta testing and may be available soon on some machines. At this time, profiling of
HPF codes can be done manually by inserting a Fortran 90 intrinsic function SYSTEM_CLOCK. The

resolution of this function is implementation dependent. The pghpf compiler provides a resolution

of this intrinsic function as one microsecond. It is recommended that other HPF compiler vendors also
provide the same resolution.

6.4 Visualizing Data

One can visualize either variables (including arrays, structures, pointers, etc.) or expressions of CM

Fortran codes using PRISM. One can also provide a context, so that PRISM handles the values of data

elements differently, depending on whether they meet the condition specified.

Lack of good programming tools are slowing the development of new codes in HPE Parallel HPF

debugger should be made available as soon as possible for HPF to become more acceptable to users.

6.5 HPF Automated Translator

On CM-5, a tool called CM Automated Translator (CMAX) [31 ] is available to convert Fortran 77
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programs into CM Fortran. It is very desirable that a similar tool, HPF Automated Translator, be made

available to the users for converting Fortran 77 codes into HPF codes. This tool need not be especially

efficient to start but should provide some baseline HPF code. This tool should be separate from the

HPF compiler.

7 HPF Compilers

HPF compilers can be classified by two classes:

7.1 Subset HPF Compilers

Subset HPF [22] is intended by HPF Forum to include a minimum set of features from Fortran 90

and HPF to encourage and facilitate an early release of production quality compilers. Vendors may

include more features than listed in Subset HPE Although not required by Subset HPF, PGI [29-30]

has included KIND, Namelist I/O, etc. in their pghpf compiler. Currently, two Subset HPF compilers

one from PG [29] and other from Applied Parallel Research (APR) [32] are available on NAS IBM

SP2 and the HPCCP workstation cluster. The pghpf compiler has limited CM Fortran compatibility
as follows:

a. It supports both the CM Fortran and HPF names. For example, CM Fortran / HPF: DSHAPE/

SHAPE, DOTPRODUCT/DOT_PRODUCT, DLBOUND/LBOUND, DUBOUND/UBOUND.

b. It supports both the CM Fortran and HPF versions of array constructors. It accepts the CM Fortran

method of square brackets in the definition of array constructors, i.e., a = [ 1,2,3,4,5,6,7,8 ]

is a acceptable syntax. The corresponding syntax in HPF is a = ( / 1,2,3,4,5,6,7,8 / ).

c. It supports CM Fortran ARRAY keyword in place of the Fortran 90 standard D IMENS I ON keyword
as in:

CM Fortran: INTEGER, ARRAY (m) : : a, b;

HPF: INTEGER,DIMI_NSION(m) ::a, b

d. The three CM Fortran intrinsic functions CSHIFT, EOSHIFT and RESHAPE have names identical

to corresponding functions in Fortran 90, but different calling sequences. Porting of these functions

from CMF to HPF is shown in Figures 5 and 6. In HPF, boundary argument in EOSHIFT is not yet
implemented.

y = CSHIFT(x, DIM:I, SHIFT=-1)

y = CSHIFT(x, I, -1)

b=EOSHIFT (a, DIM=I, SHIFT=-1, BOUNDARY= [ 1 : 4 ]

b=EOSHIFT(a, I, -i, [1:4])

y = CSHIFT(x, SHIFT:-1, DIM:I)

y : CSHIFT(x, -I, I)

b=EOSHIFT (a, SHIFT=-1, BOUNDARY: [ ] : 4 ] , DIM=I

b=EOSHIFT(a, -i, [1:4], l)

Figure 5: Use of CSHIFT and EOSHIVr in CM Fortran. Figure 6: Use of CSHIFF and EOSHIVI" in HPF

e. The following intrinsics of CM Fortran: DIAGONAL, FIRSTLOC, LASTLOC, PROJECT, RANK

and REPLICATE have no equivalent in Fortran 90 or HPE

7.2 Full HPF Compiler

The DEC Fortran 90 V 1.3 compiler the first to support both the ANSI/ISO Fortran 90 standards

and the full de-facto HPF specification as claimed by DEC in a recent press release [33]. However,
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their claim is false as their compiler does not support REALIGN, REDISTRIBUTE or transcriptive

mapping. The Digital Parallel Software Environment V1.0 provides key pieces of the software

development and execution environment for parallel HPF applications. It includes program

development tools like a debugger and profiler, as well as underpinnings such as optimized message

passing and parallel system management tools. However, both are only available for DEC Alpha

platforms running Digital OSF-I and not on any other machines [33].

8 Results of Porting CM Fortran Codes to HPF

In this section, we will discuss the porting of CM Fortran codes from the CM-5 to HPF on the IBM

SP2 and SGI Power Challenge.

8.1 Parallel Matrix Multiplication in HPF

The algorithm we have implemented is based on Cannon algorithm [34]. This algorithm was earlier

implemented by the author on CM-5 using CM Fortran and on CRAY T3D using the CRAPT model

[35]. It is implemented using only the Fortran 90 intrinsic function CSHIFT. CM Fortran

implementation of this algorithm is shown in Figure 7, whereas HPF implementation is shown in Figure
8. In CM Fortran version, no layout directives are used to distribute the data as default data distribution

is canonical distribution. However, in HPF version three directives (TEMPLATE, DI STRIBffTE, and

ALIGN) are used to distribute and align the data. Performance and scalability of the HPF version of

Cannon algorithm is compared with other parallel implementations and will be published separately
[36].

8.2 Gaussian Elimination

The other code ported from CM Fortran to HPF solves systems of linear equations, Ax= b, using

Gaussian elimination followed by backward substitution. Fortran 90 functions used in this program are

MAXLOC, SYSTEM_CLOCK, SELECTED_REAL_KIND, and RANDOM_NUMBER. HPF functions or

directivesusedare PROCESSORS, NUMBER_OF_PROCESSORS (), TEMPLATE, ALIGN, and

DISTRIBUTE. We alsousedFORALL statement.We usedvariousdistributionschemes such

(block, block) , (cyclic, cyclic) , and (block, *) toinvestigatethecommunication

behavior and performance results will be published separately [36]. Speedup of this linear solver for A

= 1000 x 1000 with blocked distribution as a function of processors for the IBM SP2 and SGI Power

Challenge, and is given in Figure 9. Note that on both the IBM SP2 and SGI Power Challenge,

performance first increases and then decreases. Results of these figures were obtained using the pghp f
compiler.

8.3 Laplace Equation Solver

We solve Laplace's equation on a unit square by point Jacobi relaxation method, with the boundary
condition that f = 1 on y = 1 and 2 elsewhere on the boundary, and the initial condition that f = 0 in the

interior. The port from CM Fortran to HPF was straightforward. Various distribution schemes were tried

and performance results (as a function of number of processors and different grid sizes) will be
published separately [36].

8.4 Convolution

CM Fortran code performs a one-dimensional convolution over the first dimension of a two-

dimensional dataset. This codes tests the performance of the Fortran intrinsic function EOSHIFT. The

port of this code to HPF was straightforward. Once again, various distribution schemes were tried and

performance results will be published elsewhere [36].
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PROGRAM nasmult

PARAMETER (n : 1024)

DOUBLE PRECISION, ARRA¥(n,n) :: x, y, z, xl, yl

INTEGER iskew(n)

x=2.0

y=3.0

z=0.0

c Multiply two square matrices x and y using Cannon's algorithm

FORALL (i =l:n) iskew(i) = i - 1

xl = CSHIFT( x, 2, iskew )

yl = CSHIFT( y, i, iskew )

z = 0.0d0

DO ( n ) TIMES

z=z+xl*yl

xl = CSHIFT( xl, 2, 1 )

yl = CSHIFT( yl, i, 1 )

ENDDO

PRINT *, z(l, i), Z(n, n)

z = 0.0d0

c Multiply two square matrices x and y using Fortran 90 library

z = MATMUL(x, y)

PRINT *, z(l, i), z(n, n)

END

Figure: 7 Parallel matrix multiplication in CM Fortran using Cannon algorithm.

PROGRAM nasmult

PARAMETER (n = 1024)

DOUBLE PRECISION, DIMENSION(n,n) :: x, y, z, xl, yl

INTEGER iskew (n)

IHPF$ TEMPLATE T(n,n)

1HPF$ DISTRIBUTE T (BLOCK, BLOCK)

IHPF$ ALIGN (:, :) WITH T :: Z

IHPF$ ALIGN (:,*) WITH T(:,*) :: x

|HPF$ ALIGN (*,:) WITH T(*,.} :: y

x = 2.0

y = 3.0

z = 0.0

c Multiply two square matrices x and y using Cannon's algorithm

FORALL (i =l:n) iskew(i) = i - 1

z = z + xl * yl

xl = CSHIFT( x, 2, iskew )

yl = CSHIFT( y, I, iskew )

z = 0.0d0

z = z + xl * yl

xl = CSHIFT( xl, 2, 1 )

yl = CSHIFT( yl, i, 1 )

PRINT *, z(l, I), Z(n, n)

z = 0.0d0

c Multiply two square matrices x and y using Fortran 90 library

z = MATMUL(x, y)

PRINT *, z(l, i), z(n, n)

END

Figure: 8 Parallel matrix multiplication in HPF using Cannon algorithm.
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8.5 Direct Simulation Monte Carlo (DSMC)

Particle simulation using direct simulation Monte Carlo (DSMC) is a technique for analyzing low

density flows and is routinely used for performing engineering analysis of aerospace vehicles. In the

CM Fortran implementation of the code, there is fine-grain parallelism associated with the particles in

the simulation and coarse-grain parallelism associated with the cells used in the simulation [38].

NAS, in collaboration with Portland Group has ported this CM Fortran code to HPF. Speedup of HPF

code as a function of number of processors for the SGI Power Challenge is shown in Figure 10. Up to
12 processors, the code scales well. Beyond 12 processors, performance is almost flat. This is due to

inadequate bus bandwidth of 1.2 GB/s for the SGI Power Challenge.

9. Deficiencies of Current HPF Compilers

Some of the problems encountered with specific HPF compilers are summarized as follows:

9.1 Portland Group HPF Compiler

a. Currently, parallelism is achieved only through array assignment, WHERE statement, WHERE
construct, and FORALL statement.

b. Currently, the INDEPENDENT directive does not work.

c. DO loops are not parallelized; instead, they should be expressed as array assignments or FORALL
statements should be used.

d. Performance of transformational intrinsics (SUM,SPREAD,TRANSPOSE, etc.) is poor.

e. Three CM Fortran intrinsics (CSHIFT, EOSHIFT, and RESHAPE) have identical names as in

Fortran 90 but different calling sequences.

f. Most of the HPF codes do not compile with -03 or -02. This is a compiler bug. The absence of -03
functionality degrades application performance.

g. The HPF intrinsic function PROCESSORS_SHAPE is not yet supported.

h. Intrinsic functions such as MATMUL needs to be optimized for each architecture.

9.2 Applied Parallel Research HPF Compiler

a. DO loops are not parallelized by the HPF directive INDEPENDENT. However, APR inserts its

own directives for different iterations, to be spread over different processors.

b. In APR, intrinsic subroutines of Fortran 90 that are not yet available: random_number,
system_clock, and select_real_kind.

d. Many Fortran intrinsics(CSHIFT, EOSHIFT, and RESHAPE) have identical names as in

Fortran 90 but different calling sequences.

10 Conclusions

a. The porting of CM Fortran codes to HPF on the IBM SP2 and SGI Power Challenge machines

proved to be straightforward. Much of the effort was devoted to translating CM Fortran layout and

ALIGN directives to equivalent HPF distribute and align directives. Some time was also spent in
replacing CM Fortran Utility routines with HPF equivalent functions.

b. It is recommended to vendors that they make canonical data distribution and canonical align as
defaults in their HPF compilers.
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c. Vendors should also provide F©RALL construct for HPF compilers as soon as possible. Inclusion

of FORALL construct will facilitate the porting of large numbers of CM Fortran codes to HPF with

ease. Basic profiler and debugger tools should also be provided for HPF programs.

d. One of strong feature of CM Fortran is the ease-with which one can perform parallel I/O. It is

recommended to the HPF Forum to include parallel I/O consistent with CM Fortran. The capability
of a communication compiler should also be considered for inclusion in the next HPF revision.

e. CM Fortran codes relying on CMSSL library could not be ported to HPF and this led to a lot of

frustration. One of the biggest hurdles the NAS users are facing in porting CM Fortran codes to HPF

on the IBM SP2 is lack of parallel mathematical and scientific libraries, which can be used and called

from HPF codes. It has been argued in some quarters that the use of CMSSL library points to the poor

quality of the CM Fortran compiler. On the CM-2 and CM-5, a CM Fortran Utility Library was

available to work around for CMF compiler deficiencies. Eventually, most routines (including

routines for parallel I/O) of this utility library became part of the matured CM Fortran compiler. Just

as BLAS 2, BLAS 3, LIBSCI, and LAPACK are essential for successful parallel-vector

programming, parallel scientific libraries will also be needed for the success of HPF on highly

parallel computers. An immediate need for NAS HPF users is parallel Fast Fourier Transform, block

tridiagonal, and block pentadigonal solvers. We recommend to vendors that CMSSL is a logic library,
to emulate based on the fact that CMSSL is a industry leader and the production CM Fortran codes

far exceeds that of any other vendor. One of most powerful feature, of CMSSL is "multiple

instances." This feature permit users to perform multiple independent operations on different datasets
concurrently.

f. It is our belief that vendors should pay special attention for inclusion of an efficient data parallel

programming model as defined by the HPF Forum as a paradigm characterized by single-thread

execution, global name space, and loose synchronously. Although NAS recognizes that HPF may not

be a ultimate solution for perfect parallel programming, it seems to offer the best hope for
maintaining a single portable version of codes on all computing platforms.

g. The success of HPF hinges on the development of compilers that can provide reasonable

performance satisfactory to users. The first and foremost task for HPF compiler developers should be
to develop a HPF compiler that will generate code equal to or better than CM Fortran with

consistently high performance across all computing platforms. As the vendors move closer to that

goal, they should consider taking a more active role in the development of programming tools, as
well.

h. Computations such as FFT, banded tridiagonal solvers, finite element, n-body problems possess

regular but specific data access patterns that HPF compilers need to recognize and support.
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