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Preface

The purpose of these notes is to provide a practical introduction to forward-error-
correcting coding principles. The document is somewhere between a review and a how-to
handbook. Emphasis is on terms, definitions, and basic calculations that should prove useful
to the engineer seeking a quick look at the area. To this end, 41 example problems are
completely worked out. A glossary appears at the end, as well as an appendix concerning
the Q function. The motivation for this document is as follows: The basic concepts of
coding can be found in textbooks devoted to communications principles or in those dealing
exclusively with coding. Although each is admirable in its intent, no elementary treatment,
useful for quick calculations on the job, exists. I have taken a short course on coding, given
by Prof. E.J. Weldon, Jr., as well as one given in-house at NASA Lewis. These notes are for
those who have not had the time either to take such courses or to study the literature in some
detail.

The material included is primarily that found in basic textbooks and short courses. The
reader should not anticipate developing sufficient skills to actually design a code for a
specific purpose. Rather, the reader should be far enough along the learning curve to be able
to read and understand the technical literature (e.g., IEEE Transactions on Information
Theory). The topics I chose to discuss here were those that almost always cropped up in the
references and apparently are the ones the beginner should learn. The emphasis is on
definitions, concepts, and analytical measures of performance whenever possible.

The “questions of coding” from an engineer’s viewpoint may be stated as, Should coding
be used? And if so, which code? What performance improvement can be expected? A basic
measure of performance is the coding gain, but establishing an accurate formula is not a
trivial exercise. Here, I summarize the essential process to determine approximate values.
Some software packages are now available to permit simulations, but they are more
appropriate for true experts on coding.

Here, I consider “coding” to be only forward error correcting (FEC), as opposed to other
uses of the term, which are source coding, encryption, spreading, etc. In practice, code
performance is modulation dependent; thus, the code should be matched to both the
channel’s characteristics and the demodulator’s properties. This matching is seldom, if ever,
done. Usually, some standard, well-established code is used, and its appropriateness is
determined by the closeness of the bit error rate to system specifications.

A goal of these notes is to present an orderly development, with enough examples to
provide some intuition. Chapter 1 reviews information theory and defines the terms “self,
mutual, and transmitted information.” Chapter 2 reviews channel transfer concepts.
Chapter 3 treats modulo-2 arithmetic and channel terminology. Chapter 4 gives an overview
of block coding. Chapter 5 goes deeper into block codes, their performance, and some
decoder strategies and attempts to cover finite field algebra, so that the beginner can start
reading the literature. A code may be looked upon as a finite set of elements that are
processed by shift registers. The properties of such registers, along with those of the code
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elements are used to produce coders and decoders (codecs). The mathematics of finite
fields, often referred to as “modern algebra” is the working analysis tool in the area, but
most engineers are not well grounded in its concepts. Chapter 6 introduces convolutional
coders, and chapter 7 covers decoding of convolutional codes. Viterbi and sequential
decoding strategies are treated.

No attempt at originality is stated or implied; the examples are blends of basic problems
found in the references and in course notes from various short courses. Some are solutions
of chapter problems that seemed to shed light on basic points. Any and all errors and
incorrect “opinions” expressed are my own, and I would appreciate the reader alerting me of
them.
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Chapter 1
Information Theory

Both this and the following chapter discuss information, its measure, and its transmission through a
communications channel. Information theory gives a quantitative measure of the “information content” in a
given message, which is defined as the ordering of letters and spaces on a page. The intuitive properties of
information are as follows:

1. A message with more information should occur less often than one with less information.

2. The more “uncertainty” contained in a message, the greater the information carried by that message. For
example, the phrase “we are in a hurricane” carries more information than “the wind is 10 mph from the
southwest.”

3. The information of unrelated events, taken as a single event, should equal the sum of the information of
the unrelated events.

These intuitive concepts of “information” force the mathematical definitions in this chapter. Properties 1 and
2 imply probability concepts, and these along with the last property imply a logarithmic functional
relationship. In other words, the amount of information should be proportional to the message length, and it
should increase appropriately with the richness of the alphabet in which it is encoded. The more symbols in the
alphabet, the greater the number of different messages of length n that can be written in it.

The notion of self-information is introduced with two examples.

ExampLE 1.1

Assume a 26-character alphabet and that each character occurs with the same frequency (equally likely).
Assume m characters per page, and let each page comprise a single message. Then, the total number of
possible messages on a given page is determined as follows: Let the position of each character be called a slot;
then,

1. First slot can be filled in 26 ways.
2. Second slot can be filled in 26 ways, etc.

Because there are m slots per page, there are (26)(26)...(26), that is, m terms and 26™ possible arrangements.
(In general, the number of permutations N of k alphabetic symbols, taken n at a time, is

N=K

and each permutation is considered a message.)

Define each arrangement as a message. The number of possible messages on two pages is 262", Now by
intuition assume that two pages will carry twice as much information as does one page. Taking logarithms of
the possible arrangements yields



2
log [26 m] == information on 2 pages
log[26”‘ ] information on 1 page

Thus, the log of the total number of available messages seems to make some sense. (The end of an example
will henceforth be designated with a triangle A.)
A

Before moving on, I must discuss pulses, binary digits, and symbols. In general, a source of information
(e.g., the digital modulator output) will emit strings of pulses. These may have any number of amplitudes, but
in most cases only two amplitudes are used (thus, binary pulses). The two amplitudes are represented
mathematically by the digits 0 and 1 and are called binary digits. Thus, electrical pulses and binary digits
become synonymous in this area. Often, groups of binary digits are processed together in a system, and these
groups are called symbols.

DEFINITIONS

Binit—A binary digit, 0 or 1. Also called a bit.

Baud —The unit of signaling speed, quite often the number of symbols transmitted per second. Note that
although baud is a rate, quite often the words “baud rate” are given, so that the meaning is basically vague. The
speed in bauds is equal to the number of “signaling elements” sent per second. These signaling elements may
or may not be groups of binary digits (someone could mean amplitudes of sine waves, etc.). Therefore, a more
general definition is the number of signal events per second. Baud is also given a time interval meaning; it is
the time interval between modulation envelope changes. Also, one finds the phrase “the duration of a channel
symbol.”

ExampLE 1.2

Consider a source emitting symbols at a rate of 1/7 symbols per second. Assume that m distinct message
symbols are available, denoted by x1,x2,3,....Xp and together are represented by x. For simplicity, at this point,
assume that each symbol can occur with the same probability. The transmission of any single symbol will

represent a certain quantity of information (call it /). Because all symbols are equally likely, it seems
reasonable that all carry the same amount of information. Assume that / depends on m in some way.

1= f(m) (a)

where f is to be determined. If a second symbol, independent of the first one, is sent in a succeeding interval,
another quantity of information / is received. Assume that the information provided by both is I + I = 21. Now,
if there are m alternatives in one interval, there are m? alternative pairs in both intervals (taken as a single event
in the time 27). Thus,

21 = f(m?) (b)
In general, for k intervals
Kl = f(m*) (©)

The simplest function to satisfy equation (c) is log; thus,

f(m)=Alogm



where A is a constant of proportionality and the base of the log is immaterial. The common convention is to
define the self-information of an m-symbol, equally likely source as

I=log,m bits (@

when the base is chosen as 2. Observe that the unit for information measure is bits. The value of equation

(d) is the quantitative measure of information content in any one of the m symbols that may be emitted.
A

Observe in example 1.2 that

1
1=log2m=—logz(;)=—log2(pi) (1.1)

The probability of any symbol occurring, p; = 1/m, is used to generalize to the case where each message
symbol x; has a specified probability of occurrence p;.

DEFINITION
Let x; occur with probability p;; then, the self-information contained in x; is

](xi)é—logz p(x,-) i=1...m (1.2)

Next, the average amount of information in any given symbol is found for the entire ensemble of m available
messages.

DEFINITION
(I(x;))= il’("i)’ (x;) & H(x) (1.3)

i=l

where H(x) is the average self-information or self-entropy in any given message (symbol). It is also called the
entropy function. The average self-entropy in x; can also be defined as

H (‘i) = P(xi)l ("i) 1.4

Finally,
m
H{x)3 - z p(x;)logz p(x;)  bits/symbol (1.5)
1
or in briefer notation
m
H(x) == p(i) log p(i) 1.6)
-



Observe for the special case of equally likely events, p(x;) = 1/m,

m
H(x)= 2%1082 m=log, m

i=]

or

H(x)=I(x;) 1.7

The logarithmic variation satisfies property 3 as follows: The term “unrelated events” means independence
between events. For events o and J, the joint probability is

plaN B) = p(a, B) = p(aB)

(these notations are found in the literature). Then,

pla. B)2 p(olB)p(B) = p(a)p(B) (1.8)

where the second equality means p(a‘ﬁ) = p(a), which defines independence between acand 3. Hence, if &
and f are independent,

I(aN B) = I(a, ) = —log p(cx, B) = —log| p(a@) p(B)] = —log p(ex)—log p(B) = I(a) + (B)

or the information in both events, /(¢ B), is the sum of the information contained in each.

Notation in this area is varied and one must become accustomed to the various forms. Thus, in the literature
either capital P or p is used for probabilities, probability densities, or probability distributions. The meaning is
clear in all cases. Recall that in probability theory the words “density” and “distribution” are used
interchangeably and one must adjust accordingly. In this document, the notation is as consistent as possible.
Observe carefully in the preceding discussion the interplay between self-information, average information over
the ensemble, and average information about a specific symbol. Coupling this with several binary digits per
symbol and noting that the units for self-information are bits gives a rich mixture for endless confusion. Also,
the special case for equally likely events is often used in examples in the literature, and many of this case’s
results are, of course, not true in general.

ASIDE
The relationship to thermodynamics is as follows: First, recall the evolution of the entropy concept. The
change in entropy in a system moving between two different equilibrium states is

240
S=-5=] — 1.9)
2= = ) T (
reversible

where S, — S) is the entropy change, 4Q is the change in heat (positive if moving into the system), and T is the
temperature at which it is exchanged with the surroundings. The slash through the symbol for the change in Q
alerts the reader that heat (Q) is not a perfect differential. The constraint “reversible” means that the change



from state 1 to state 2 occurs over a sequence (path) of intermediate equilibrium states. A “reversible path”
means no turbulence, etc., in the gas. In general,

2
S,—8, 2 J'l — (1.10)

and the equality only occurs for reversible (physically impossible, ideal situations) changes. Later, another
definition arose from statistical thermodynamics, that is,

S=klnW (11D

which is apparently an absolute measure (not just a change). Here, k is Boltzmann's constant and W is the
“thermodynamic probability” of the state of interest. Unlike normal probabilities, W is always greater than 1.
It represents the number of microscopic different arrangements of molecules that yield the same macroscopic
(measurable quantities are identical) state. The calculation of W starts from first principles. From the theory, the
equilibrium state of a system has the largest W and hence the maximum entropy. Another concept from
statistical thermodynamics is the distribution function of a system f. It is defined by

dN = f(x, Y2 Vs Vy Vg t)dx dy dz dv, dvy dv, = f(7,V,1)dr &v

which means the number of particles at point (x,y,z) with velocity components (v, v), ;) at time ¢. Note that
f is a particle density function.

f= number of particles = dN _dN 1.12)
vol (real space) vol (velocity space) drdv )
Then, Boltzmann’s H theorem states that
Hé”flnfd?dv (1.13)

and he showed that

H =—(constant) S .

where Scasical is the classical entropy of thermodynamics. Basically, this says that the measured entropy is the
average over the distribution functions available to the system. The reason for the log variation in equation
(1.11) is as follows: Assume that the entropy of a system in a given state is some function g of the
thermodynamic probability of being in that state, that is,

S, = kg(WA)

where the subscript A denotes the state of interest and Wy is known by some method. If a similar system is in
state B,

Sp = kg(Wp)

From experiments, it was known that if the systems were mixed (combined), the resulting entropy S4p was



S =8, +S5p

Therefore,

Sap = kg(Wag)

But if W p is the number of arrangements of the combined system, then from counting rules
Wp=W,Wp
A little reflection shows that a possible choice for g is log:
§,p = kIn(W,5) = kIn(W,Wy)= kIn(W,)+kIn(Wy) =S, +5p

From this, the logarithmic variation was born. (End of aside.)

Observe that equations (1.5) and (1.13) are similar in form; Shannon (1948) mentions this in his paper. For
this reason, he chose the symbol H and the name entropy for the average information. The link with
thermodynamics can be established as follows: Consider a container of gas with all molecules in one corner.
Because in this condition the “uncertainty” in the position of any molecule is small, let W represent the
thermodynamic probability of this condition (W} > 1, by definition). For this particular case Wy = 1, since only
one microscopic arrangement makes up this state. Recall that the gas molecules are dimensionless points, so
that permutations at a specific point are not possible. Because the probability that all molecules are in one
corner is very small, this is a rare event and has very low Scjassical- When in equilibrium any single molecule
can be anywhere in the container and the uncertainty in its position is large, the thermodynamic probability is
W, > W,. Thus, the entropy (in a thermodynamic sense) has increased. When in equilibrium any single
molecule can be anywhere in the container and the uncertainty in its position is larger than in the previous case,
the Sjassical is much larger and the entropy (in a thermodynamic sense) has again increased. With information,
low probability of occurrence gives large self-information; the probability here is always less than 1. In other
words, W and normal probability are reciprocally related, so that uncertainty is the common thread. Thus,
average information, not information, and classical thermodynamic entropy vary similarly (where uncertainty
is the common thread). This similarity occurs only because of the intuitive constraints imposed on [ and H at
the beginning of this chapter. Mathematically, both S and H are defined by density functions f and p,
respectively;

Suassions = —(constant) [ [ £1n £ dFav

H(x)= -—2 p(xi)log p(x‘-)
i=0

As a final remark, note that thermodynamic entropy increases and decreases as does £, which varies with the
number of states available to the system. As the boundary conditions (pressure, volume, temperature, etc.)
change, so does the number of available states. After the number of states has been determined, one must also
find the distribution of particles among them. With f now found, Sctassical 1S found by its formula. Therefore,
entropy, as we all know, is not an intuitive concept.

ExampLE 1.3

Consider a source that produces symbols consisting of eight pulses. Treat each symbol as a separate
message. Each pulse can have one of four possible amplitudes, and each message occurs with the same
frequency. Calculate the information contained in any single message.



number of messages = 43
The self-information is
1(x;) = log, (4%) = 16 bits/message
The entropy in any message is
H(x) = logy (4%) = 16 bits/message

Here, I(x;) and H(x) are equal, since all messages are equally likely.

A

Now, I introduce some alternative units for information. If the base of the log is 2, the unit is bits. If the base

is 10, the unit is hartleys. For natural logs (In), the unit is nats or nits.

ExampLE 14

Consider the English language to consist of 27 symbols (26 letters and 1 space). If each occurs at the same

frequency,

N

1 :

H=Y =5 logz (27)=476 bits/ symbol
i=1

The actual frequency of occurrence yields H = 4.065 bits/symbol.

A key property of H(x) is
H(x) is a maximum when p(x)) = p(x2) = ... = p(x;)

That is, all symbols occur with the same frequency,

H(x)| ax =08y N

where N is the total number of equally likely messages.

ExampLE 1.5
Show that H(x) is a maximum when all p(x;) are equal.

N
H= —Zpi log p; = —(pl logp, +p, logp, +..+py logpN)
i=1
Observe that for any term

1
d(plog p) = [p;+ log pjdp = (1+log p)dp



Then,

dH = —[dpl(l+logp1)+dp2(1+logp2)+...+de(l+logpN)]

Because

pl+p2+...+pN=1

we have

dp, +dpy +...+dpy =0 (a)

By using equation (a), dpy can be eliminated

dH = —[dpl logp +dpylogpy +...+dpy logpN]
= —[dpl log py +dp, log py +...+(~dp; —dpy ...~ dpy.., ) log PN]

Combining terms gives

—-dH =| dp, log(ﬂ)+ dp, log(ﬁz—J+ ..+ dpy. log( PN ) (b)
PN PN PN

Observe in equation (b) that dpy, dpa, ..., dpy— are now completely arbitrary, since the constraint in
equation () has essentially been removed. In other words, dpy has been removed in equation (b). Inspection

shows that H is concave down (), so that at the maximum dH = 0 and equation (b) gives

logﬂ—:log&.:u.=logpN‘l ___0

PN PN PN

because the dpy, dpy, ..., dpy— values are now arbitrary. Then,

P_P . _PN-L_ ©
PN PN PN
or
pL=py=--=PN-1 AP
Note that because
N-1

py=1- 3 p=1-(N=Dp

i=l



any term in equation (c) is

p =
1—-(N-1)p
or rearrange to find
1
=— d
P=y (d)
A

This chapter defined the term “message” and introduced the intuitive constraints applied to the measure of
information. Then, it showed the utility of the log of the number of permutations, and covered the blending of
pulse, binary digit, and symbol used in information theory. Bit and baud were discussed, the term “self-
information” was introduced, and the term “average information” (or entropy) was defined. After alluding to
notational variations, the chapter discussed the links between information theory and classical thermodynamic
entropy. The last example showed H(x) to be a maximum for equally likely outcomes.






Chapter 2
Channel Transfer

This chapter considers a discrete memoryless source (DMS) transmitting symbols (groups of binary digits)
over a memoryless channel (fig. 2.1). The source emits symbols x that are impressed onto the transmitted
waveform «, which then traverses the channel medium. The received waveform v is then demodulated, and the
received sequence is denoted by Y. How closely Y matches x yields a measure of the fidelity of the channel.
The word “channel” is loosely defined, in that it may include portions of modulators, demodulators, decoders,
etc. In general, it means some portion between the source and sink of the communicating parties. The fidelity
of the channel is represented as either a channel transition probability matrix or a channel transition diagram
(fig. 2.2). In this figure, the term p{y; lxi means the conditional probability that y; is received in the ith time
slot, given that x; was transmitted in that slot (with the delay in the system appropriately considered). In
principle, these entries are determined by measurement on a given channel. Because of the property of
probabilities for exhaustive events, the sum over any row must be unity. It follows that a particular output, say
¥n, s obtained with probability

p(y,)= 2p(y,,lxm Jp(x) @1

where p(xp,) is the probability that x,, was input to the channel. The entropy of the channel output is
N
H(y)== p(yn)log p(ys)  bits/symbol (2.2)
n=]

and the entropy of the output, given that a particular input, say x,,, was present, is

H{lkm) =3 p{onben) 1083 p(3aken)

n=1

When averaged over all possible inputs, the conditional entropy of the output given the input H| (yix) is

N
H(yx)= 2 Y (%> ¥n)10g2 Pyaltm)  bits/symbol (2.3)

m=1 n=1



Source Channel Receiver

_,\_V:{x1,X2,....Xm} Z={V1v)’2:---v)'n}
={x} —>i ={y;} —i

Figure 2.1.—Basic communications channel. (The source emits
symbols x; (with shortened notation i), and at the receiver the
symbol yj appears. The difference between x; and ¥ is the
corruption added by the channel.)

Inputs Qutputs
ply11x1)

X4

plyyixa)}
p(Y1 le)

plynlx2)

m P ¥n | Xrm) ’
(@
p(y1llx\1\) --------- Pynix1)
p(y1x) =
(b) pmi' Xpn) == ;("y,,;lxm )

Figure 2.2.—Channel transition diagram (a) and altemnative
representation of channel transition matrix {b).

where the relationship

2% ¥) = P{Yalm )P (%)

has been used for the probability that the joint event that the input was xp and the output was y, has occurred.
In a similar fashion, the conditional entropy H(xly) can be defined by replacing y,,Ixm) by p(xmly,,) in
equation (2.3).

Recall that entropy is the average amount of information; therefore, H (x[y) is the average information about
x (channel input) given the observation of y at the receiver. This knowledge is arrived at after averaging over
all possible inputs and outputs. Because H(x) is the entropy for the input symbol with no side information (not
knowing the channel output), it follows that the average information transferred through the channel is

I(x;y)= H(x)-H(x]y)  bits/symbol (2.4)
where I(x;y) is defined as the mutual information. By Bayes’ theorem

I(x;y)= H(y)-H(y|x)  bits/symbol (2.5)



In either case, I(x;y) can be written as

1(I‘Y)=i S (%3, ) 08 Bl ). bits / symbol (2.6)
, m=1 n=1 e 2 p(xm)p(yn)

where p(xm,y,,) = p(y,,|x,,, )p(x,,,) = p(x,,, |y,, )p(y,,) are the joint probabilities of the event that the channel
input is x,, and its output is y,.

By the theorem of total probability, the mutual information can be expressed as a function of the channel
input probabilities p(x,,) and the channel transition probabilities p(y,l |x,,,). For a specified channel, the
transition terms are fixed and are presumed to be determined by experiment. With mutual information defined,
the maximum, which Shannon (1948) defined as the capacity of a channel, is defined as

C= I{x;
max (x:y)

The channel capacity C is the maximum amount of information that can be conveyed through the channel
without error if the source is matched to the channel in the sense that its output symbols occur with the proper
probabilities such that the maximum mutual information is achieved. The p(x,,) under the “max” in the
preceding equation means that the source is appropriately adjusted to achieve the maximum. The alteration of
the probabilities of the source’s output symbols p(x,) to maximize the probability of successful (error free)
transmission is assumed to occur by appropriate coding of the raw source output symbols. The early thrust in
coding theory was to search for such optimum codes.

Although developed for a discrete channel (finite number of inputs and outputs), I(x;y) can be generalized
to channels where the inputs and outputs take on a continuum of values (the extreme of “soft” modulators and
demodulators).

An alternative approach to redeveloping equations (2.1) to (2.6) is to start with the reasonable definition of
joint entropy H(x,y) (let N = M = n for simplicity):

H(xy)4 -En: zn',p(xi,y,-)log plxyi) ==, . pliJ)log pli.J)
i=1 T

j=1

If x; and y; are independent
p(x-v;) = px)p{y; ) = POIPLI)
Then,
H(xy)= =2, ¥, pi)p(}) og[p(i}p(J)]
= -ﬁ: p](i) log P(‘)Z p(j)—z p(J) log p(f)z p(i)= H(x)+ H(y)
; ; j i

If there is some dependence

pli. j) = p(ili)p(j) = p(jli) p(i)

then,

13



H(x ) ==Y, p(i)log p(i) 3. pjk) =~ . Pli)p(Jli) log p(1¥) = H(x)+ H(six)
i J i
where
H(ylx)2 —22 p(i, j)log p( ki)

is the conditional entropy. It is also called the equivocation of x about y or the equivocation of y given x. It can
be shown that

H(x,y) = H(x)+ H(y{x) = H(y) + H(ly)

Then, the mutual information is defined by

I(x;y) & H(x)-H(xly) = H(y)~H(5}x)

';;p( ,,y,)l gp(x,-)p{yj)-l(y’ )

In my opinion, the key to enabling the subtraction of the equivocation from the self-entropy is just the additive
property of entropy by its basic definition. Many variations on this theme are found in the literature; mutual
information is sometimes called delivered entropy. Also, there are more axiomatic and perhaps more
mathematically rigorous presentations, but I think that the above essentially covers the basic idea. The Venn
type of diagram shown in figure 2.3 is sometimes used, and it can be helpful when following certain
presentations.

AN 7~

Hix, y)

Figure 2.3.—Venn diagram for various entropy terms and their
relationship with mutual term /{x; y).
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For computational purposes, the relationships between logs are

log,q x
log, x = =3.321928 log,; x = 1.442695 Inx
log,, 2

ExampLE 2.1

The classic binary symmetric channel (BSC) with raw error (or crossover) probability p serves as an easy
demonstration of the procedures discussed above. The two symbols x; and x2 have frequencies of occurrence
such that

pln)=a
p(x)=1-a=p
the channel diagram is
xl zq ‘yl
p
g=1-p
p
X5 o -

2 q Y2

and the channel transition matrix is

. Pib) pvafx)
[” q] pnfa) plrales)

The final objective is to determine the capacity, and the sequence of steps to find it are as follows: First, the
entropy of the source symbols xj, x3 is

H(x)=—alog a—(1—a)log (1—a)

Then, from the definition of conditional entropy,

HOR) ==Y, 3 ;e |

i=1 j=1
and using p(xi,y j) = p(y Ji |xi)p(xi )

2 2
y]x = ZZP x, ()’j’xz)l()gp(yj|x1)

i=1 j=1

2
= 2 Yp(»|x:) 1og p(mx; )+ p(x;)p(y2|x;) 1og p(32|x;)



= ~{p(x)p(nx1) tog p(yibi) + plx1)p( 32l ) 1og pyzlxr)
+p(x2)p(n[x2) log P{mlxz) + P(x2)p(v2lx2) log p(y2le2)}
=—{ag log g+aplog p+ Pplog p+ Pq log g}

=—{(a + B)q log g +(a+ B)p log p}
=—plog p—qlogq

8H,(p)

Next, find H(y):

H(y)rgp(y,-)wg )

Now,

p(n)= P(yll"l)i’("l) + P(yllxz )P(Iz) =go+pp

Pr,)= P(>’2|"1)P("1) + P(y2|x2 )P(xz) =pa+qp
Then,

H(y)=~(qa+ pB) log(ge + pB)—(po + gB) log(pa + 4B)
Then, the mutual information is
1(x:y) = H(y)~H(ylx) = Hz(ga + pB)~H,(p)
where Ho(u) is the entropy function for a binary source,
Hy(u) 2 —ulog u—(1—u)log(l—u)

Figure 2.4, a sketch of Ha(u), shows that H3(0.5) = Hy_ has a maximum of unity; thus, the channel capacity
is

C=1-H,(p)=1+plog p+(1—p) log(1-p)  bits/symbol

where a = = 1/2 by observation of the plot. Then finally,



08 —

Hz ()

04 —

0.2

0.0 0.2 0.4 0.6 0.8 1.0
u

Figure 2.4.—Entropy function for binary source.

€4 Casc
Cgsc =1+ plog p+{1—p)log(l—p)  bits/symbol

A

Figure 2.5 gives channel capacity C versus the crossover probability p. The capacity can be given in various
units; namely bits per symbol, bits per binit (binit means binary digit), or bits per second. For example, if
p =0.3, then C = 0.278 bit/symbol, which is the maximum entropy each symbol can carry. If the channel were
perfect, each symbol could carry the self-entropy H(x), which is calculated by the size of the source’s alphabet
and the probability of each symbol occurring. The 30-percent chance of error induced by the channel can be
corrected by some suitable code, but the redundancy of the code forces each symbol to carry only 0.278 bit.
Another interpretation of C follows by assuming that each transmitted symbol carries 1 bit. Then, C is the
remaining information per symbol at the receiver. When p = 0.3, each received symbol carries only 0.278 bit.
This rather drastic loss of information (72.2 percent) for p = 0.3 occurs because, although only 30 percent are
in error, the receiver has no clue as to which ones. Thus, the code to tell the receiver which symbols are in error
takes up a large amount of overhead. In the original development of the theory, the symbols, which are
composed of binary digits, were assumed to be mapped by the modulator into some specific analog waveform
to be transmitted over the channel. If the received waveform were demodulated in error, the number of actual
binary digits in error could not be determined. Thus, errors are basically message errors, and the conversion
from message error to binary digit error is always vague.

Finally, consider the case for a continuous source (one that emits analog waveforms). The definition for the
entropy is as before, with the summation going to the integral:

H=- j_}";(x) log] p(x)] dx
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p

Figure 2.5.—Channel capacity C versus crossover
probability p for binary symmetric channel.

The problem is to determine the form for p(x) that maximizes the entropy, under the constraint that the average
power is fixed (i.e., the variance is fixed for voltage waveforms). This constraint is

jw x2p(x)dx = o’

The basic constraint for probability densities is

J p(x)dx =1
which forces p(x) to be Gaussian:
P(I) = 1 e—xz 126*
aJZn

where o is the average signal power. Evaluating the integral for H gives the maximum entropy for an analog
source,

H(x)= log(d«/izeT )

The classic formula for channel capacity is arrived at by considering a theoretical code with signal power S.
The entropy of the code is

1
Hg = 5 log(27eS)

18



If the channel is the classical additive white Gaussian noise (AWGN), no fading or intersymbol interference
(ISI) allowed, the noise entropy is

1
Hy = 5 log(27eN)

where N is the average noise power. The capacity is thus

C8 Hg, y—Hy =%log(l+%)

Now, the maximum information rate Ry, is
where

(W = bandwidth) is the Nyquist rate for no ISI. Then,

—l—log(1+£)
2 N S
o T o)

2W

where N = N,W. Here, the noise power spectral density N, is in watts per hertz (single sided), and again the
constant average signal power is S. If

where R = k/n is the code rate, then

E
= -}— log2 1+2R=L bits/ sec
2 N

o

Here, k is the number of actual information symbols emitted by the source, and the encoder takes them and
outputs n total symbols (adds the appropriate coding baggage).

This classic capacity formula differed from the general opinions of the day in the following ways:
Apparently, it was thought that the noise level of the channel limited the maximum information that could be
transmitted. Shannon’s (1948) formula shows that the rate of information transfer is actually bounded and is
related to the basic parameters of signal power S, bandwidth W, and noise power spectral density N,,. Another
measure of the upper limit for information transmission is called the cutoff rate. It is less than C and arises as
follows.

19



The capacity as defined earlier is the absolute upper limit for error-free transmission. However, the length of
the code and the time to decode the symbols to extract the desired message may be prohibitively long. The
cutoff rate serves as more of an implementation limit for practical decoders. It turns out that the computations
required to decode one information bit for a sequential decoder has asymptotically a Pareto distribution, that
is,

P(comp > N)< N~ N>>1

where “comp” means the number of computations and N is some large chosen number. The coefficient ais the
Pareto exponent, and it along with B (another constant) depend on the channel transition probabilities and the
code rate R. This relationship was found by Gallager (1968) and verified through simulation. The code rate and
the exponent are related by

_ Ey(a)
a

R

where

1 1 I+a

Eo(a) = a—logy | 1 - p)1+& + pl+a

is the Gallager function for the BSC. The solution when =1 yields R A Ry, the computational cutoff rate. In

general, systems use 1 < o < 2. The value Ry sets the upper limit on the code rate. For the binary input/
continuous output (very soft) case,

Ry =1-loga(1+ %'

and for the discrete memoryless channel/binary symmetric channel case (DMC/BSC)

Ry =1-logy[1+2{p(1=)]

Then, the probability of a bit error is

o—KRo/R
l_z-mo/k-n]}z

Pbits{ R<Ry

where K is the constraint length of the encoder. The terms “sequential code” and “constraint length” will be
defined in chapters 6 and 7.

Other variations on cutoff rate can be found. However, they often are involved with channel coding
theorems, etc., and most likely the discussion deals with upper bounds on message error rates. Two such
expressions are

P(message error)< Cg 27"k R<Ry

P(message error) < Cg 27Kk R< R,

20



The leading coefficients Cg are determined experimentally and depend on the channel and the code rate. The
exponent n is the block length for a block code, whereas K is the constraint length for a convolutional code.

ExAMPLE 2.2

What are the self-information and average information values in a coin-flipping experiment? Here, the
symbols are heads and tails. Then, self-information is

I(head) = —log, G) =1 bit

and the average information is

1 1 1Y [=1 bit/fii
H(symbol) = 3 log, (5)- log, (5) {=1 bﬁ/sylﬁmol

head tail

so the entropy is 1 bit/symbol or 1 bit/flip. Other units, such as nits per flip or hartleys per flip, could also be
used by changing the base of the log.
A

ExampLE 2.3
This is an interesting exercise on “units.” Consider transmitting the base 10 digits 0,1,2,...,9 by using a code
consisting of four binary digits. The code table is

0 0000
1 0001
2 0010
151111

Note that decimals 10 to 15 (corresponding to 1010 to 1111) never appear. The total number of symbols
N is 10 for this channel. Now, the self-information per symbol (assuming that all are equally likely) is

I(x;)=logy10  bits
Then, forming the ratio of the number of information bits transmitted per binary digit gives
bit bit

_bits___10g510 g3 D o 08328
binary digit 4 binit bit

Here, binit stands for binary digit. Quite often, binit is shortened to “bit,” which gives the rather confusing unit
of “bit per bit.” Here, each binary digit carries only 0.83 “information bit” (or self-information) because only
10 of the possible 16 sequences are used. The value 0.83 is further reduced by propagation over the channet
after being acted upon by the channel transition probabilities.

Similarly, the capacity for the binary symmetric channel can be written as

C=1+plog; p+(1—p)logy(1—p)  bits/binit or bits/symbol



where the latter units are information bits per symbol. The capacity can also be given as a rate as was done for
the AWGN channel:

C=W log2(1+%) bits / sec

Thus, one must be aware of the possible confusion about what “bit” means. If one is just talking about the baud
of a channel (the number of symbols transmitted per second), information content is not considered. The term
“bits per second” is then a measure of system speed, and information is not the issue. The bits in this case are
just binary symbols that the modem can handle, and any pseudorandom bit stream can pass and carry
absolutely no information.

A

EXAMPLE 2.4
Approximately eight basic channel models are used in the literature:

Lossless

Deterministic

Ideal

Uniform

Binary symmetric (BSC)
Binary erasure (BEC)

. General binary (GBC)
M-ary symmetric

@AW=

For the lossless channel the probability matrix contains only one nonzero element in each column:

¥ N
3
M - T 1 3 1
% - =00 =0
: ys 88 2
w e MO S5O0
X2
5 0 O
7 —y; 0 0 0 1
X3 ! >yy6
Here, C = log Q, where Q is the number of source symbols.
The deterministic channel has only one nonzero element in each row
X 1
X, 1 S » 10 0.1
1 1 00
. O)=[0 1 o
X4 o— 1 X POPIZI0 1 0
Y2
x o 010
: 0 0 1]
X6 —>e Y3
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Here, C = log Z, where Z is the number of output symbols.

The ideal channel is
8 1 > 100
X2 L ¥2 pOix)=|0 1 0
01
X3 ! y3 0

Here, C =log Q = log Z, where Q and Z are the number of source and output symbols, respectively.
In the uniform channel model, every row and column is an arbitrary permutation of the probabilities in the
first row:

Vs 8 .
x N
! . 111
2 4 4
Ve — v,
V> 111
X2 Yy x)=|—= — —
= 2 PObk)=|7 7 3
hr s 4 11t
2
X3 > Y3 ~424_

Q
Here, C=logQ+ z p(y,, |x,,,)log p(yn |xm). Here, @ is the number of input symbols.

n=1
The BSC model uses the formula for the uniform channel model:

*1 3

X2 > Y2

Here, C=logy 2 +plogp+gloggqg.
For the BEC model, the middle output y; is the erasure. An erasure is a demodulator output that informs the
user that the demodulator could not guess at the symbol.

X1

LS n
q
Y2  Erasure o) p g 0
plylx =[ ]
0 g p
q
X2 7>

X3
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Here, C=p.
For the GBC model

p(yx) [Z 1:;

m
Here, C= log\:z 2% ] One must find the x; by solving the following set:
i=1

m
X+t PimXm =ZP1j log py;
i=l

m
Pmi*¥1 %"+ Pmm*m =mej]°gpmj
=

Solve for x = x;, i = 1,...,m. Alternatively,

_ —BH, (o) + aH (B)

c o

+ log{l + 2[”2(0‘)—”2(3)]/([’-“)}

24
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The M-ary symmetric channel sends not binary symbols but M-ary ones, where M is an integer.

i l1-p 1-p 1-p 7
P 1 M-1 M1
1-p '
m-1 F
P(ylx) =
]—'p
M-1
1-p I-p - P
M-1 T M-l J

Here, C = log M—(1—p)log(M—1)—H,(p).

A

EXAMPLE 2.5

Assume a well-shuffled deck of 52 cards. How much entropy is revealed by drawing a card? Since any card
is equally likely,

H =log, 52 = 5.7 bits = In 52 = 3.95 nats = log;q 52 = 1.716 hartleys
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Chapter 3
Mathematical Preliminaries
3.1 Modulo-2 Arithmetic

Modulo-2 arithmetic is defined in the two tables below.

Addition @ Multiplication
0
1

0
0
1

- O
o QO
— | -

1
1
0

The dot (or inner) product of two sequences is defined as

(10110)-(11100)A1-180-1©1-161-0©0-0=100818080=0

A sequence of modulo-2 digits has no numerical significance in most coding discussions. However, a

polynomial representation for a string of binary digits is used universally; for example,

11010011 e 10 x@ > @xb @ x7

Here, a one in the ith position means the term x' is in the polynomial. Here, i starts at zero on the left, but just
the opposite notation is used in many treatments in the general literature. The polynomials (like integers) form

a ring and factoring is an important property; for example,

(" e1)=(xe1)’ @x@1)x’ @ 1)

Because the factoring is not readily apparent, tables of such factorizations are often needed. Multiplication of
two sequences is best done by just multiplying the polynomials and then transforming back to binary digits as

the following example shows.

ExampLE 3.1
Multiply 101101 by 1101.
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10110l 102X, 1101 > 16x®x°

(1ex2@x3exs)(1®xex3)=1ex2eex3eax5@axex3eax4e;? el or of @b

=10x0x20x ®x* ®x® o 111110001

Note that

36 1 =0
O x° =0
etc. A

Modulo-2 addition and multiplication are associative and commutative. A product of ny - n3 has
(n1 & ny — 1) digits.

Modulo-2 division is just like ordinary algebra; for example, (x3 @ l) + (xz @ x).

ﬁ_ﬂﬁ] @1 |x®1 <—quotient
Lox’
21
P @x

x @1 <«—-remainder

Convolution of two sequences is as follows: (1101)*(10011)

1{0(0])1|1 . )
Stepl 1011 alignment (here, 1101 is reversed)
i|0f{0}1]1 121 (6 ) |
Step2  101[1 -1=1 (first term in result)
11901111 0-1®1-1=001=1
Step 3 10111 : 1= =
1100t ] 0-1€0-1€1-0=0
Step 4 1fol1l1 : . 0=
110(0]1]1 &0 _ _
Step 5 ARIERE 111©0-190-001-1=1000081=0
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1-191:1€0-000-1=10160000=0

11010111
1101011 ® _
Step 7 TTol1h 1-191-020-1=1
1{0]10]1|1 0®1.1=
Step 8 110 h1 1 1-1=1
1{0i0j1]1 I1=1
Step 9 Tonn 17

~ (1101)*(10011) = (11000111)

3.2 Channel Terminology

The terminology is not always clear in that different portions of the communications system may be
included in the “channel.” A basic block diagram for a block-coded channel is given in figure 3.1. Here, the
channel symbols are just n-bit binary sequences (i.e., 1011...). Figure 3.2 represents a system wherein the
symbols are strings of binary digits and all strings are of a specified length. This figure then shows the

additional boxes that convert from binary digits to strings of such digits.

The “channel” is often just the transmission medium, but “channel symbols” are emitted from the

demodulator, so that the channel boundaries are fuzzy. The inputs to the encoder are k-bit messages, source
bits, information bits, etc. The encoder emits n-bit code words, code bits, channel bits, bauds, channel

symbols, etc. A more detailed model is given in figure 3.3 for convolutional codes.

Next, the message energy is defined to be

T
E,= _[0 S2(r) dt

k-bit n-bit

Sequences, sequences;
Data or A Dfteee ~| FEC s blts/sec; Modulator
message encoder
source
{binary)

Noise —»! —
Distortion —» Transmission
medium
R, R

Data | R | FEC s A
sink decoder Demodulator

Figure 3.1.—Basic communications system using block coding.

Channel —~
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101

1001 <— Symbol B,

Symbol
Binary } | Binary Binary-to- A
data encoder channel- Moduiator
symbol
converter
Transmission
medium
Data - Channel- l
inary |, | bol-
sink decoder inary Demodaulator
converter
1101 «—» Symbol A “— Channel

etc.
Figure 3.2.—More detailed block diagram for basic block-coded
channel.
Data |, |Convoiutional Block timing Block or
source encoder digits and convolutional
resynchron- interleaver
ization bits J
Modulator
Noise —— 3
Channel — Tran;mission
N\ medium
AGC to
Deinterleaver (= Demodulator provide
soft
! decisions
Decoder
]
Data sink

Figure 3.3.—Communications channel using convolutional coding.
{The source and sink are separated by the convolutional codec,

interieaver/deinterieaver, synchronization units,

demodaulator pair.)

and modulator/

where S(?) is shown in figure 3.4. The received energy in a binit (called a bit) is

E
E, ==m
LA

In block coding, the source data are segmented in k-
calculates some parity check bits (by modulo-2 addition of some of the k bits) and outputs the original k bits
along with the check bits. The number of binits (bits) from the encoder is n, thus, an (n,k) encoder. In most
cases, the n bits are constrained to the same time interval as are the original k bits. Thus, the channel bits
contain less energy than do the source bits. In other words, the message energy in either a

k-bit source sequence or an n-bit channel sequence is the same.

30
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bit blocks and passed to the encoder. The encoder




AS(t)

|

0 T ,
Figure 3.4.—Arbitrary message waveform.

1

where E; is the received energy in the channel symbol. The quantities R, r, Ry, n, and k are related by

e

<1

N | x
~
Il
| >

where

r code rate or code efficiency

R data rate or information symbol rate, bits/sec

R;  symbol rate, channel symbol rate, chip rate, baud, etc.

Thus, coding increases the bandwidth as well as the number of errors emitted from the demodulator. The
increase in errors is due to the reduced energy per pulse now available to the demodulator. When the coding is

turned off, the demodulator makes decisions on energy values Ej, whereas with coding the decisions are made
on E; and E < E;, where

Es =£Eb=rEb
n

The correction capability of the code overcomes the extra demodulator errors. At the receiver, let
P = received power in modulated signal = ER;

Then the signal-to-noise ratio (SNR) is

or

From a coding point of view, the system appears as shown in figure 3.5. The message sequence m enters the
encoder and is mapped into the code vector sequence u . After propagation through the channel, the decoder
acts on the sequence z and outputs m; and one assumes that i = m with high probability. Systematic
encoders, which produce code words of the form indicated in figure 3.5, are considered in most cases.
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m u

m
FEC
]—* encoder Channel ] Decoder A‘—'
€ T Best
Message z2=u @ e estimate for
message

Figure 3.5.—Basic block coder/decoder system. (The code
vector y is corrupted by the channel's noise vector e. The
decoder attempts to remove ¢ and recover the message.)

0o b1
// \\ ,I, N\
/ ;= Null zone = / *\
/ \ 2 \
/ \ ’ \
// \\ ,/ \\
b1 | s | | RS

000 001 010 011 100 101 110 119
Analog-to-digital output

= Eight levels —

Figure 3.6.—Soft-decision decoder, here quantized to
standard three bits or eight levels. (The null zone is
used by the demodulator to alert the decoder that
the particular bit is completely uncertain or has been
"erased.”)

Systematic means that the original message bits are preserved (kept in order) and the parity bits are appended
to the end of the string.

Figure 3.5 summarizes the basic steps used in error correction. The message vector, say m = 1011, is
mapped into the code vector u = 1011001 by the encoder circuit. The received vector z is the modulo-2
addition of the transmitted sequence u and the error vector ¢ added by the channel. The task of the decoder
may be listed as follows:

.Is e=0?
If ¢ # 0, determine e.
Develop, or reconstruct, é by some decoding algorithm. Hope that & = e.

Remove the effect of the corruption due to ¢ by just adding it to the received vector z; z+ é=u+eteé.
. If & = e, the decoding is successful and the error is corrected.

N

Obviously, step 3 is the key one in the procedure. How to perform it is essentially the basic task of decoding
techniques.

When the demodulator outputs binary (hard) decisions, it gives the decoder the minimal amount of
information available to decide which bits might be in error. On the other hand, a soft decision gives the
decoder information as to the confidence the demodulator has in the bit. In other words, a hard-decision
demodulator outputs just two voltage levels corresponding to one or zero. A soft-decision demodulator on the
other hand, generally outputs three-bit words that give the location of the best estimate of the signal (fig. 3.6).
In other words, the output 000 corresponds to a strong zero, whereas 011 corresponds to the weakest zero.
Similarly, 111 corresponds to a strong chance that a one was transmitted. Another demodulator output is the
null zone, or erasure output. When the signal is about equidistant from either a one or a zero, the demodulator
sends a special character to alert the decoder that the bit’s value is essentially uncertain.
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Chapter 4
Block Codes

This chapter covers the basic concepts of block codes; chapter S, a “second pass,” adds much of the detail
needed for in-depth understanding.

The forward-error-correcting (FEC) encoder accepts & information bits and outputs n bits. The n — k added
bits are formed by modulo-2 sums of a particular set of the k input bits. The output blocks of » bits are the code
words. For n-tuples consisting of binary digits, there are 2" distinct n-tuples. Of these, only 2¥ are chosen as
permissible code words. Let «; and u; be code vectors. The code is linear if u; @ u; is also a code word. A
linear block code is a set of 2¢ n-tuples (a vector subspace; i.e., a subset of the possible 2" n-tuples). Figure 4.1
illustrates the concept of selecting code words from the entire vector space. The large dots represent the code
words, and the small dots represent possible received vectors, which are code words corrupted by the channel
(i.e., noise vectors added to code vectors). The code words should be widely separated (i.e., the sequences of
ones and zeros should be as different looking as possible) to minimize decoder errors. It would be preferable
if k ~ n, but generally 2% << 2" for good codes.

ExampLE 4.1
Assume that the code word u was sent and that the channel creates two errors; that is, let

Then, z = u ® ¢ = 1001000. Somehow the decoder must recognize that z is not a possible code vector

and then determine e.
A

The basic idea is to generate a code that permits the decoder to perform its function. Two matrices are
developed that keep track of the digital strings that make up the code; these are the code generator G and the
parity check H. Although they are generally developed in parallel, G is discussed first.

Let the set { ¥1,¥5,....¥; } form a basis in the subspace; then define the code generator G by

011100
G=|1 01010
110001

The generated code word is ¥ = m G, where m is the message vector that defines the operation of the encoder.
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Figure 4.1.—Schematic for n-dimensional vector space.
(The large dots are the set of n-tuples that form the
code. The unused vectors may appear at the decoder
if the demodulator makes an error.)

ExampLE 4.2
For a (6,3) code, choose

1
G=|0
1

e O

o O -

00
10
01

O =

Note that the rank of Gis k. Also note that the last three columns form the identity matrix. The code is

systematic if
G=|P,!
= [- : -k]

where P is the parity array portion. The code word is

u = (n—k) parity bits, my,...,m;
[SE—"

k message bits

Note that here the “block” is turned around (i.e., the parity check bits are first and the message bits follow).
Both forms of G are used in the literature:

or

The code word set is the row space of G. The all-zero word is always a code word.

ExXAMPLE 4.3
For a linear (5,3) code, choose

34



Q)

1l
SO =
[ R ]
- O Q
S = =

1
0
1

The number of code words is 2% = 23 = 8. All of the code words are 00000 [10011][00101] 10110[01010]
11001 01111 11100, where the boxed ones form the basis. The code has k (here three) dimensions. Arrange
these basis code words as

1001 1 11
G={0 1 011 0=[g3:~] ~P={1 0
00 110 1 ' 01

Only the P matrix distinguishes one (n,k) code from another. Encode via G as follows:

C=v, G

where Vv, is the message vector and C is the code word. Let v, = (101). Then,
0011

(101)jo0 1 0 1 0O|=10110=C
0101

Observe that €= |:2m Yom E], which means that the message is transparent or that the code is systematic.

A

4.1 Standard Array

The “standard array” is a table that describes the partitioning of received sequences such that a decoding
strategy can be applied. The table is constructed as follows: The first row starts with the all-zero code word on
the left, and all remaining code words, arranged in any order, fill out the row. Next, choose an error pattern and
place it under the all-zero code word. For example, consider a (6,3) code generated by

1Q

Il
— et T
D) e
O -
S O
o —= O
-0 O

The first row of the standard array is then
000000 011100 101010 110001 110110 101101 011011 000111

where the code words are found by using the 2% = 22=38 message vectors. That is, for m = 101

011100
[10]{1 0 1 0 1 0|=101101=code word
110001
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which is the sixth entry in the row. Note that the error pattern chosen for the next row cannot be any of the
entries in the first row. Choose 100000 and add it to all the entries in the first row and place these sums under
the code word used; that is, the first code word is 011100 and adding it to 100000 gives 111100, which is
placed under 011100. The table is

000000 | 011100 101010 110001 110110 101101 011011 000111
100000'111100 001010 010001 010110 001101 111011 100111

Choose another error pattern (which does not appear anywhere in the table yet) and form the next row. For
010000, the table is

000000 | 011100 101010 110001 110110 101101 011011 000111
100000 | 111100 001010 010001 010110 001101 111011 100111
010000 | 001100 111010 100001 100110 111101 001011 010111

Continuing in this manner, the table becomes

000000 [ 011100 101010 110001 110110 101101 011011 000111
100000 | 111100 001010 010001 010110 001101 111011 100111
010000 | 001100 111010 100001 100110 111101 001011 010111
001000 | 010100 100010 111001 111110 100101 010011 001111
000100 | 011000 101110 110101 110010 101001 011111 000011
000010 | 011110 101000 110011 110100 101111 011001 000101
000001 | 011101 101011 110000 110111 101100 011010 000110
100100 | 111000 001110 010101 010010 001001 111111 100011

Observe that the table has 2" = 26 = 64 entries, which are all of the possible 6-tuples. The code words are on
the first row, and there are 2k = 23 = 8 of them. The error patterns with the fewest number of ones (hence,
fewest errors) form the first column. The last entry was found by inspecting the table and choosing a vector
with the fewest ones that was not in the table. The rows of the table are called cosets. The entries in the first
column are called coset leaders. The entry in any row is the sum of that row’s coset leader and the code word
at the top of the column. All entries to the right of the vertical line and below the horizontal one represent all
possible received vectors. A decoding scheme would choose the code word at the top of the column as the most
likely one sent. Recall that the coset leaders are chosen to be the most likely error patterns. There are ok
cosets and each coset contains 2X n-tuples. Suppose the received vector is 101 100 (which is the sixth entry in
row 6); then, a maximum-likelihood decoder (MLD) would choose 101101 (the column header) as the
probable code word.

In summary, the table as described would operate as follows: The decoder would recognize the first row as
valid code words and pass them on. If any of the vectors in the fourth quadrant of the table (49 entries) are
received, the decoder can process them and determine the coset leader (error pattern). Adding the error pattern
¢ to the received vector will generate the code word at the top of the column. The last coset leader (100100) is
the only double-error pattern discernible. Thus, for this special case the decoder can detect and correct all
single-error patterns and one double-error pattern (the last coset leader). If any other double-error pattern
occurs, the decoder will make a mistake. In other words, the decoder formed from this table is able to
recognize just the errors that form the first column. The array gives a good intuitive understanding of decoding
strategy and the ways errors can pass undetected. Note that the code is not just single-error correcting but can
correct the given double-error pattern in the last row. In other words, the correctable patterns do not always fall
into easily quantified limits.
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ExAMPLE 4.4

Choose an (n,k) = (6,3) code and let G be

1 01!100
G=[1 11101 0
01110 0 1

which is slightly different from the G used in the previous discussion. Here,

"y
]
—_ = O
—

[ B

The 2* code vectors are the three rows of G and their @ sums. Thus, the code words are

101100 111010 011001 010110

100011 110101 001111 000000

The table is

000000 | 001111 110101 100011 010110 011001 111010 101100

000001 | 001110 110100 100010 010111 011000 111011 101101

000010 | 001101

000100 | 001011 etc.

001000 | 000111

etc. etc.

A

DEFINITIONS

The following definitions are needed for further discussion: Hamming weight is the number of ones in a
code word w(u); for example,

w(001101)=3

Hamming distance d(u, v) is the number of places by which the code vectors ¥ and v differ, or the number of
bit changes to map u into v. Let

u = 110110
v = 100101
sd(u,v)=3

It turns out that
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Figure 4.2.—Hamming distance. (if y is transmitted and if
either of the vectors to the left of the dashed line are de-
coded, y is chosen. If either of the vectors to the right of
the dashed line are decoded, v is chosen and an error
occurs.)

d(u,v) = w(u® v) = w(010011)=3
The minimum Hamming distance dpyy is the distance between the two closest code words; it is also the weight

of the “lightest” code word. The error correction power of a given code is determined by dpin. The number of
correctable errors ¢ in a received word is

This equality follows from “nearest neighbor decoding,” which says that the received word is decoded into the
code word “nearest” in Hamming distance (fig. 4.2).

ExaMPLE 4.5

Assume that the transmitted code word is & = 10001 and that the received word is z = 10010. Then, since
z=u®e,

e=7® u=00011

The ones in e correspond to the bits in error. Define  to be the weight of e. Here, t = 2; thus,

implies that dy;, should be 5 or 6 to correct all possible double-error combinations in any code word.

In an erasure, the error location is known, but no hint is given as to the bit value; for example,
z=1101_101
T . L
erasure (a glitch such that digit is erased)
Then, define
e number of errors corrected
ey  number of errors detected

p number of erasures corrected
X number of erasures

38



It follows that
dnpinZec+eg+l=x+2e.+12p+1 eq2e.

In the design phase, choose e + e, for the available dy;,, which freezes the decoder design. It can be shown
that

dmin$n-k+1
4.2 Parity Check Matrix

The parity check matrix helps describe the code structure and starts the decoding operations. For a
given generator

the parity check is given by

Hé[l :PT]
- "ﬂ“k:"
For example,
1 10!1 00 —
] =
G={0 1 110 1 0 -3
10110 0 1 -
Then,
1 00!/1 01
H=[0 1 011 1 0
00 1i0 1 1

The rank of H is (n - k), and its row space is the null space of the code words developed by G. Then,
GH'=0
Thus,

uHT=0

un

The parity check generation scheme can be determined by inspecting the rows of H. In the preceding
equation, let a; represent the ith digit in the message vector; then (in the right partition),

1. First row means that a; @ a3 is the first check digit.
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2. Second row means that a; @ a is the second check digit.
3. Third row means that a; ® aj is the third check digit.

Thus, H is useful in describing the encoding process. The equation
u§T=Q
is the key to detecting errors. Here, u is a valid code word. If

HT 20

then 7 is not a code word and the error pattern ¢ must be found. From the standard array, r is somewhere in
the table, and the header code word would be the decoded word. Consider a code word v= (v, ¥.), where m
means message portion and ¢ means check portion. Form the syndrome defined by

—| pT !
a-[e ;zn_k]
S=yHT=v, POy,

Thus, S is an (n — k) vector, where vy, P are the locally generated checks and v, are the received checks. If S
= 0, no errors are detected. If S # 0, errors are present. Thus, S is determined solely by the error pattern e.
Observe that if r=u®e,

S=rHT =(u®e)H =uH ©cHT =0®eH" =¢H'

That is, each error has a specific syndrome.
The properties of H are as follows:

. No columns are all zero.

. All columns are unique.

. The dual code of an (n,k) code is generated by H.Thatis, ugya = m H.

. The rank of H is the degree of G (row rank is the number of linearly independent rows).
. The number of checks equals the row rank of H T

VB WD =

4.3 Syndrome Decoding

Syndrome decoding is the basic decoding scheme used in block codes. Basically, it relies on the fact that
each error pattern generates a specific syndrome. Essentially, the decoder takes the message bits and
regenerates the parity checks. It then compares them with the transmitted checks (by modulo-2 addition). If the
sum is zero, no error is assumed. If the sum is not zero, at least one of the received digits is in error. The
decoder must then determine which bits are in error. The error correction procedure is as follows:

1. Calculate the syndrome S = r H T-eH T+uH T-eH T (there are 2% syndromes).

2. From S determine the error pattern (the tough step).

3. Let ¢ be the error pattern determined from step 2. Note that it may not be the true error pattern shown in
step 1.

4 Forma=r+¢



Note that if ¢ = ¢, then & = u and correct decoding is achieved. It will be shown, however, that the estimate
¢ is not always correct and a decoding error occurs. The probability of such an error is the measure of the
code’s strength. Since ok syndromes are possible for an (n,k) code, 2" error patterns are correctable. There
are 2" — 2"* uncorrectable patterns, and if ¢ is one of them, a decoding error occurs. Some complications
associated with syndrome decoding are as follows:

1. Several ¢ patterns yield the same syndrome S.

2. Some ¢ patterns are code words and thus undetectable errors.

3. Since a maximum-likelihood decoder (MLD) always assumes an e with the lowest weight (fewest
errors), decoding errors occur.

ExamrLE 4.6
Consider a (6,3) code, and decode using the standard array. Let

G=|v,|=|0 1 1 010
V3 1 01 0 01
Therefore,
1 0 0]
010
0 01
T=
B 1 10
011
1 0 1]

Then, the number of code words is 2k=23=38 (table 4.1).

TABLE 4.1. — CODE WORDS

Symbol | Code word | Weight
17 110100 3
Vo 011010 3
v3 101110 4
V4 101001 3
vs 011101 4
Ve 110011 4
vy 000111 3
vg 000000 0

The weight column shows that dyyi, = 3, so ¢ = 1; or single-error correcting is guaranteed. The array is
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000000 | 110100 011010 101110 101001 011101 110011 000111
000001 | 110101 011011 101111 101000 011100 110010 000110
000010 | 110110 011000 101100 101011 011111 110001 000101
000100 | 110000 011110 101010 101101 011001 110111 000011
001000 | 111100 010010 100110 100001 010101 111011 001111
010000 | 100100 001010 111110 111001 001101 100011 010111
100000 { 010100 111010 001110 001001 111101 010011 100111
010001 | 100101 001011 111111 111000 001100 100010 010110

Observe that the last coset has two errors and was chosen arbitrarily. Thus, a double-error pattern is correctable,
which is in addition to the guaranteed single-error patterns. The syndromes are

Then,

TABLE 4.2. — VALUES OF

¢ ANDS
J J

) 5
000000 | 000
o000t | 101
000010 | O11
000100 110
001000 | 001
010000 | 010
100000 | 100
010001 111

Then, each ¢; has a unique S;(table 4.2). Suppose that the channel adds the error

¢ = 100100
Then,

1 0 0]

010

0 01

§=[100100] 110 =1009110=010

011

|11 0 1]

and the decoder would choose ¢ = 010000 (from the previous ¢;-_S; table); thus, a decoder error has occurred.
A
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4.4 Classes of Code

Because the classes or types of code are extensive, only some of the more common ones are discussed here.
The classes or types are not mutually exclusive, as a subset of one class may be a subset of another class or
classes. The most useful codes are linear group block codes or linear convolutional codes. Some block codes
are listed below:

1. Cyclic codes—Codes where a cyclic shift in a code word generates another code word (i.e., if 10110110
is a code word, an end-around shift gives 01011011, which is also a code word).
2. Bose-Chaudhuri-Hocquenghem (BCH) codes—A cyclic code with the property

n=2"-1 m=34,5,..

To correct ¢ errors, one needs

or

kzn—-m, dpp22t+1

For example, let m =4, t=2, and k = 7. Thus, a (15,7) code results, and dpp;; = 5.

3. Golay codes—One of the three types of “perfect” code (i.e., a r-error-correcting code whose standard
array has all the error patterns of ¢ (or fewer) errors and no others as coset leaders). The two binary forms are
(23,12) and (24,12). For these, t = 1.

4. Hamming codes —Hamming codes have the properties

n=2"-1, n—-k=m m=123,..
dmin=3, t=1

Note that there are 2" different binary sequences of length n — & (delete the all-zero sequence); then,

n=2"-1
which defines these codes.

ExawmpLE 4.7
For the (7,4) Hamming code there are seven possible sequences of length three to choose from: 001, 010,
011, 100, 101, 110, 111. Choose four out of the seven; 4)= 35 choices. If the code is to be systematic (two

or more binary ones are needed), choose four out of four (hence, only one choice). However, the number of
permutations of the four is 4! = 24, which means 24 distinct choices for H. Choose the following pair:

[011] i
1 A
101 1000 | 011
110 0100 ! 101
aT =11l ¢= 0010 | 110
- 100 = 10001 ; 111
1
010 (-[-k) i (E)
| 001 ] - l

The encoder is designed from H (fig. 4.3). In the figure, m,, my, ms, and my are the message bits and C,, C,,
and Cj are the three checks. The checks are read from each column of H. Here,
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Figure 4.3.—Encoder for (7,4) Hamming code. (The three

checks are developed from the four message bits, my, my,
mq, and my,)

C1 =my @ ms 57} my
Co=m ®m3Dmy
C3=m ®my & my
For example, let the code word y=xG
x =1011
y =1011010

Assume an error in the fifth digit (counting from the left); then,

¢ = 0000100

and
At the decoder, calculate S

Because 100 is the fifth row of H, the fifth digit is in error. The decoder generates ¢ and adds this to z to

correct the error. This association of fifth with fifth is a special case and should not be considered typical. A
decoder for the (7,4) Hamming code appears in figure 4.4.

A
Hamming codes have the following miscellaneous properties:

1. The total number of distinct Hamming codes with n = 2™ — 1 is given by

pm—w

m—1

II@”-zj

number =

For the (7,4) Hamming code, m = 3 and
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Figure 4.4.—Decoder for (7,4) Hamming code generated in
figure 4.3.

- =(2® -1)(23 -2)(2° - 2%} = (7)(6)(4)
=0

1
.. number = -—7— =30

(7)(6)(4)
2. Dual Hamming codes are known as maximal length codes:
n=2"-1, d=2"-1, k=m

In the following codes, all nonzero code words have the same weight; hence, all distances between code
words are the same (referred to as “a simplex™):

1. Reed-Muller codes—Cyclic codes with an overall parity check digit added

r
n=2" k=2(m) dy =2"""
» i * min

i=0

2. Goppa codes—A general noncyclic group that includes the BCH (which are cyclic); mainly of theoretical
interest

3. Fire codes—Codes for correcting bursts of errors. A burst of length b is defined as a string of b bits, the
first and last of which are ones already there. Here,

_n=k+1
3

b

and
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n= LCM[z'" -1,2b- 1]

4. Reed-Solomon codes—Often used nonbinary codes with the following properties:

n=m(2"-1) bits, k=n-2 bits, d=m(2+1) bits

4.5 Decoders

The standard array partitions all the possible 2" n-tuples that may be received into rows and columns. The
decoder receives r and finds S. It determines ¢ by either a lookup table, or other means, and adds this to r to
recover the transmitted code word. This scheme is known as maximum-likelihood decoding (MLD). Block
decoders are generally classified as algebraic or nonalgebraic. Algebraic types solve sets of equations to
determine ¢; the others use special algorithms. A class of nonalgebraic decoders, called information set
decoders, includes Meggit and threshold types. The decoding processes are discussed in chapter 5. In general,
hard decisions are used, as soft decisions cause algorithm and circuit complexity problems. Some decoders
handle erasures as well as errors. Error-trapping decoders are discussed in Lin and Costello (1983).

4.6 Counting Errors and Coding Gain

For simplicity, only binary coding and decoding are assumed. Then, the energy between an uncoded and
coded bit is straightforward,

Ec=§E,,=rE,, (4.1)

where E_ is the energy for a coded bit (one leaving the encoder), E} is the energy for an information bit (one
entering the encoder), and r is the code rate. For the many digital modulation schemes used, the modems
generate and make decisions on symbols (groups of bits), so that the counting of bit errors is more involved. If
the codec is turned off, r = 1 and E, = Ep,. A given modulation scheme has a bit-error-rate-versus-E,/N, plot,
which is the probability of received bit error p;, versus the ratio of energy per bit to noise power. For binary
phase shift keying (BPSK) the relationship is

—o| [2Ee
Py —Q[ N, ] 4.2)

and is plotted in figure 4.5. Without coding, the theoretical probability of error is given by equation (4.2).
However, in a real system, the curve (fig. 4.5) would be pushed to the right somewhat to account for
implementation losses. When coding is applied, the probability of a bit error is (subscript ¢ means coded)

_ 2E, _ 2rE,
Pc"QL No) Q( No) (4.3)

Note that because

Pc>Pb
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more errors are emerging from the demodulator. The decoder only works on blocks of bits (code words);
therefore, the block error rate must be determined for blocks emerging from the decoder, given the channel bits
with error probability entering the demodulator. Once this block error rate is found, the resulting bit error rate
must be somehow calculated into the data sink. This last step is difficult, and many approximations are used
in the literature.

The probability that a block is decoded incorrectly may be called pp. In the literature,

prob (block decoded in error) = p,, (message error) = p,, (word error) = pg (decoder error) = pg

Once pp has been found, the probability of binit (bit) errors emerging from the decoder can be approximated.
Then, {pp ) , (here subscript s means error going into the data sink) can be plotted versus E/N,, to see how the
code performs. Figure 4.6 shows the uncoded BPSK curve along with those for two (n,k) codes. Note that the
vertical axis is both p, and (pb) Observe that the shapes of the two (pb) -versus-Ep/N,, curves are not the
same and that neither is representable by some standard Q(*) curve. Each has been calculated point by point.
The “threshold points” for both codes are near Ep/N, = 6 dB (where they intersect the uncoded curve). If
Ey/N, < 6 dB, coding degrades performance because the number of errors is so great that in each received
word the number of errors is larger than the error patterns the code has been designed for. Also, the
demodulator makes more errors than in the uncoded case, since now decisions are made on pulses with less
signal energy while coded. For E4/N,, > 6 dB, the correcting power kicks in and improves performance. In this
range, the cormrection capability overtakes the extra demodulator errors that occur due to the lower pulse energy
in coded conditions.

The coding gain is the difference in E,/N, between the coded and uncoded plots for the same pp = (pb)
For example, the gain for the (ny, k7) code at pp, = 1073 is about 1.5 dB. It can be shown that the asymptotic
gain is roughly
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Figure 4.6.—Bit error rate of two {n, k) codes along with basic

curve for BPSK. (At p = 1075 the (n,, ko) code has a 1.5-dB
coding gain.

G = gain (asymptotic)=10 log[r(t +1)] for hard decisions

=10 ]og[rdmin] for soft decisions

Here, G is in decibels.

ExaMpLE 4.8
Calculate the change in bit error rate between an uncoded and coded situation. Assume BPSK in Gaussian
noise, and assume that the (15,11) BCH ¢=1) code is used. Also assume that hard decisions are made. This
problem illustrates the nature of approximations needed to determine the coding gain. The decoder operates
only on blocks of digits; therefore, if a block is decoded incorrectly, the bit error rate cannot be determined.
Let p, and p, represent the uncoded and coded channel bit (more generally, symbol) error probabilities.

_ [ [2E, _ [ [2E,
) e

Here, E, and E_ are the bit energies in the uncoded and coded cases. Let Ey/N,, = 8.0 dB for purposes of
calculation and assume the data rate R = 4800 bits/sec. Then, without coding,




L 63096, —=R|Zt|=30286(44.8dB)
No NO NO

pu = 0(V12.62) =2.0425x10™*

where the following approximation for Q(x) was used:

Q(x)=-—1——exp -—f— x>3
_x«/ﬁ 2

The probability that the uncoded message block will be received in error (p,,, )u is calculated as follows: Each
block contains 11 digits (slots). The probability of no error in any slot is (1 — p,). For 11 consecutive slots, the
probability of no error is (1 — p,)'!. Then, the probability of some errors in a block is 1 — (1 — p)'L. Thus,

(Pm), =1-(1-p,) =1-(1-p,)!! =2245x107°

is the probability that at least one bit is in error out of all 11 in the message block.

With coding,
E _pE 11E
N, » 15N,
so that
’11 -3
P = Q( 5(12.62)] =1.283x10
Note that

Pc? Pu

as stated earlier. The code performance is not yet apparent, but it will be shown later that ( Pm ) .» the block
error rate for a t-error-correcting code, is

(Pm )c = _i(;' )(Pc)j(l - Pc)n—j

and here 1 = 1 and n = 15. A good approximation is just the first term; then,

(Pm), = (125)(1%)2(1 —p.)? =17x107

Observe that block error rate for coding (p,, )C is less than that for uncoded blocks (p,, )u ; that is,
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(Pm), =1.7%107 <(py), = 2245107

even though more bit errors are present at the demodulator output with coding. Note that

—~—~~

p’")u —
(p,,,) =132

2]

or the code has improved the message error rate by a factor of 13.2. Now, from the block error rate calculate
the resulting bit error rate. A commonly used approximation is

e, > lm pi(1-pc)""

i=t+1

and when ¢ = 1, this can be shown to reduce to (Sklar (1988), appendix D)

(Po), = Pc[l -(1- pc)H] =2285%107

Table 4.3 determines the message or block error rates for a range of Ep/N,; they are plotted in figure 4.7
along with the standard BPSK curve. Note that the coded case is worse than the uncoded one at 4 dB and
crosses at about 4.7 dB.

TABLE 4.3. — BLOCK ERROR RATES

Ep/No. Pu Pc (Pm)u (Pm)e
dB
2 0012576 01237 012996 0.2887
6 0.00241 000787 | 2.619x1072 | 5.874x1073
7 839x10~% | 3368x1073 | 9.19x1073 | 1.14x1073
8 soa3x10~% | 1.283x1073 | 2245x1073 | 17x1074
g5 | 8929%x1075 | 689x107% | 982x107% | 494x107*
00 | 3554x1075 | 345x107 | 391x107* | 124x107°
95 | 1273%107° 16x10% | 14x107% | 269x1070
o6 | 1022x105 | 136x10% | 113x10™ | 194x107S
10.0 405x10-8 | 68x1075 | 446x1075 | 486x1077

Table 4.4 gives the ( pb) or the bit error rate into the sink; this is plotted in figure 4.8. It crosses the BPSK
curve at about 5.5 dB. At (Ps ), = 1.0x1077, the gain is about 1.3 dB. The approximate gain given earlier is

G(asym)y =10 loglo[% (2)} =1.66dB

which agrees within the normal limits in such problems.
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Figure 4.7.—Coded (p,,) and uncoded (p,,), block error
rates (dashed lines) for (15, 11), t = 1 code.

10-¢

TABLE 4.4. — BIT ERROR RATE INTO SINK

EL[N,, Pc (Py),
dB
2 0.1237 0.1042
6 7.87x107> |8.249x107%
7 3368x107> | 1.554x1074
8 1.283x1073 | 2.285x10™5
85 |68872x107% | 6.611x1076
9.0 3.45x107% | 1.664 %1078
9.5 16x107% | 3.59%x1077
9.6 136x10™4 | 2.583x 1077
10.0 6.81x10™° | 6.48x1078

A

The calculation of the probability of a bit error from a decoder is necessarily vague, since the causes for
errors are found in signaling technique, signal-to-noise ratio, interference, demodulator type, decoder
implementation, code, etc. Essentially, the decoder emits blocks that should be code words. However, the
blocks can be erroneous for two basic reasons. First, the error pattern could be a code word; thus, an
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Figure 4.8.—Bit error rate of (15, 11), t =1 code (dashed line).

undetected error event occurs. The number of incorrect bits is indeterminant; all we know is that the block is
in error. Second, the error pattern could have more errors than the code can handle; this is sometimes called
algorithm or code shortcomings. Summarizing the determination of code gain again,

1. The uncoded bit error rate is known from basic modulation theory; for example, (n,k)(BPSK)

4 )

2. The coded bit error rate is then calculated for an (n,k) code as

_ , 2E, - k
Pe N, n

3. The uncoded message, or block, error rate can be found by

(Pm)u =1‘(1_Pu)k

but it is not necessary in the final analysis.

4. The coded message, or block, error rate must be found. Many expressions are available, and a commonly
used one is

(pude= 3 (1) rt-p™
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5. Once this is found, the number of bit errors into the sink (Pb)s is calculated. A commonly used
expression is

(Po), =% ii U) pi-p)

i=r+l

which is written in terms of the coded probability p.. The form of (pb) is nearly the same as (p,, ), except
that each term in ( is weighted by the factor i/n.
6. Plotting p, and C pb on a common scale permits the graphical determination of the gain.

The interplay between p,,, (p,,, ) .» and (pb) s depends on the code structure, the algorithm implementation,
and the form chosen for G. Different equations are found for ( Pm ) . and ( Pb ) , because various assumptions
are used and special formulas are valid for specific codes. Thus, the literature is rich in formulas, many of
which are summarized here.

4.6.1 Formulas for Message or Block Errors
The following notation is used:

(Pm). =ps

In the concept of the weight distribution of a code, the number of code words with the specific weight i is
represented by A;. The complete set of {A;} represents the complete weight distribution for the specific code.
The weight distributions for some codes are known and published, but many codes have unknown
distributions. The distribution is denoted by the enumerating polynomial

n
Ax)= Y Ax'
i=l

where A; is the number of code words with weight i. For the dual (n, n — k) code, the enumerator is known to
be

B(x)=2_k(l+x”)A(l—x)

1+x

For Hamming codes,

n-1 n+l
A(x)=— — [(l+x)"+n(l+x) 2 (1-x) 2 }
For their duals, which are maximal length codes 2™ — 1, m),

A(x)=1+(2" —1);;2""1
For the Golay (23,12) code,

A(x) =1+253 (x7 +2x8 4230+ x’6)+ 1288 (x” +x12)+ B
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For the extended Golay (24,12) code,
A(x)=1+759(x" + 1) +2576 x'? + 52

Note that for the extended code, the odd-weight code words (weights 7, 15, 11, and 23 of the basic code) have
been eliminated. For Reed-Solomon codes,

N L (i-1) ii-p _ X
A=\ . (4“1)2(—1)] o 1g7 i2 D= Dy, =2
i “ j
j=0
An (n,k) code can detect 2" ~ 2K error patterns. Of these, 2" are correctable. The number of undetectable
error patterns is 2% _ 1. The most commonly used formula for pp is
B (n ) i
-1
PR = (pm)c = .;1(1-) Pe (I_Pc)
i=t+

which is due to algorithm shortcomings (i.e., more errors than the code can handle). The block errors due to
undetected errors may have the following forms:

n .
pp(undetected) = 2 Api(1-p)"
i=dpin
(note that A; = 0 for { < dpyn) OF
(undetected) =1 in A\ )= i " d(l )"_j
pplundetected) = & i | Pe Pc = j Pe\l = Pc

J=dgin-1

For the special case of codes withn —k=1,

pp(undetected) =-;— n even
nl
EAY n-2j
=z 2 pc (1-‘pc) nodd
=N

In general, the complete expression for pg is the sum of both; that is,

pg (total) = pp + pp (undetected)

However, in the literature it is seldom clear what approximations are made (i.e., if the undetected portion is
omitted or not).
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Many bounds for pp have been developed to help in the general case, and the most commonly discussed
ones are

1. Sphere packing (upper bound case)
n

n\ -
pp < 2 (j)pg(l—pc)"j n odd

dpin +1

n n . _:
< z (]j pl(t-p )" n even

2. Union bound

!
n 2
=Ly . irn y
2 12 (1_ , V2 j e .
2(]'/2)”g (1-pe) fz (i)pé(l Pc) j even

3. Sphere packing (lower bound case). Let ¢ be the largest integer such that

onk 5 ga(’:)

and

k("
Ny =2" _Z(i)
i=0

Then,

t o) . e
PB>1—Z(JPL (I—Pc)n I“Nr+1 P£+l (l_pC)n !
i=0

4. Plotkin (a lower bound). This is a bound on the minimum distance available. The effect on pp is therefore
indirect.

n—k>2dmin—2—log2 dmm

In these formulas, the inequalities become exact only for the “perfect codes” (i.e., Hamming, Golay, and
repetition).
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4.6.2 Formulas for Bit Errors Into Sink
The most common formula for the bit error rate from the decoder, which goes to the sink, is

(Ps), = % Zﬁi(’szi'(l A
i=t+1

where f; is the number of remaining errors in the decoded block. Obviously, this number is vague and the
following limits are generally imposed:

i—-t<BiSi+t

Here, i is the number of errors entering the decoder. Other forms are

i drin
(Po), = d:m pp(undetected); pp(undetected) = ’2’; —
(p), = 2=

The reasoning behind these formulas is as follows: Under the pessimistic assumption that a pattern of i bit

errors (i > 1) will cause the decoded word to differ from the correct word in (i + ¢) positions, a fraction

(i + t)/n of the k information symbols is decoded erroneously. Alternatively, a block error will contain at least

¢ + 1 errors (if it is detectable) or 2¢ + 1 bit errors (if it is not). Thus, on the average the factor 1.5¢ + 1 results.
A result published by Torrieri (1984) is perhaps most accurate:

(P ) =dmin 2 n pi (l—p )n—i+_1_ i i n pi(l—p )n—i
bls n i|e c n = i e c
=

min

or

= —n%l U) pL(t-pc)"”

The first equation is exact for the odd-n repetition code, d =n, k = 1.

Some simple bounds on ( p,,)s can be developed as follows: Consider 1 sec of transmission; the number of
code words transmitted during this interval is 1/T,,, where Ty, is the duration for a code word. Since each code
word contains k information symbols, the total number of information symbols transmitted is &/T;,. The number
of word errors is pp/T,. If azdenotes the number of information symbol errors per word error, the bit error
probability is

_ozpB/Tw= j2:3
(po), = KT, ok
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which is simply the ratio of the number of information symbols in error to the total number of information
symbols transmitted. The problem, however, is to determine ¢, which varies from case to case. As a worst case,
assume that each word error results in k information symbol errors; then,

(%L<n

The lower bound is obtained by considering the most favorable situation in which each word error results in
only one information symbol error. For this case &= 1 and

)4
(Pb)s > TB

For small values of , the bounds are tight and (p;)_~ ps.

A simple approximation for the high E,/N, cases is as follows: Here the symbol error probability is quite
small, and word errors are probably due to ¢ + 1 symbol errors. Of these ¢ + 1 symbol errors, (¢t + 1)(k/n) are,
on the average, information symbol errors; thus,

a=0+0£
n
and the approximation
(py) =L p
b)s=—, PB

follows. Another upper bound is

(%Lszwmﬂ)

where

p=1- log2[1+1f4pc(1 —pc)]

is the cutoff rate.
The following bounds on dy, indirectly affect ( pb)

5

1. Varsharmov-Gilbert-Sacks bound

2. Elias bound
min 24(1- A)
n

where 0 <A <1 and A satisfies the equation
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r=k 14 At0g, A+ (1-A)log,(1- 4)
n

All BCH codes (which are used often) are known for n < 1023, and the relationships between n, dpin, and
t are

-ﬁ“l—l dmin €VEN
2
=
dmi;'l d_i. odd

n—k>b-1+logyn

where b is the burst length.
For Hamming codes a special formula exists:

(ps), =1-70(1- )" =11 P (1= pc)" = 72P2(1- pe)

where 7; is the number of coset leaders of weight ; and
n - X
Yis(i} ZO’Y‘ =2n"
=

4.7 Formula Development

The extensive compilation of formulas for pg and (pp); Was necessary, since (pp); is needed to calculate the
coding gain. Coding gain is the main figure of merit for a communications system application. The computed
gain for a given code is at best rather approximate, and the uncertainty at (Pp)s = 1073 is about
0.9 dB (difference between bounds). At (py); = 1075, this reduces to about 0.5 dB. Since the realizable gain for
most practical situations is about 3.5 to 4.5 dB, the uncertainty is about 25 percent. This fact is part of the
reason why bit-error-rate testers (BERT’s) are often used to evaluate a codec pair on a simulated channel.

The columns of the standard array divide the n-tuples into subsets of words “close” to the column header.

The number of n-tuples N, in each set obeys the following (for a t-error-correcting code):

N, 21+ n+ +n
. 2 n+2 S

Note that there are exactly n pattemns that differ from the column header in one position,zgg} patterns that
differ in two positions, etc. Previous examples show that almost always some patterns are left over after
assigning all those that differ in ¢ or fewer places (thus, the inequality). Since there are 2" possible sequences,
the number of code words N, obeys
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which is known as the Hamming or sphere packing bound.
Several developments for the block error rate pg are presented here. Note that

prob( any one bit received correctly) = (1 - pc)
prob (all n received correctly) = (1 — p.)"
prob (received block has some error) = 1 — (1 — p,)*
prob (first bit in error; others correct) = p(1 — p)*!
prob (just one bit in error ) = np (1 — p)*!

The last expression follows, since the bit in error can be in any of the n possible slots in the block and all others
are correct.

prob( two or more errors) = [1 -(1- pc)"}— np(1-p)"~"

Here, the first term is the probability of some error; the second is the probability of one error. This last
expression is the probability for a single-error-correcting (and only single) code. Sometimes, this is called the
undetected incorrect block error probability, but the same terminology also applies to the case when the error
pattern is itself a code word. Thus, some confusion is possible. Rewrite this as

prob( two or more errors) = pB(undetected if Hamming)
=p?n(n-1) p. small

= ( pcn)2 P, small, n large
The calculation for two errors is as follows: For a particular pattern of two errors, the probability of error is

P? (1 - Pc)n_z

That is, two in error and n — 2 correct. The total number of different patterns that contain two errors is

() s

or the number of combinations formed by choosing from a pool of n distinct objects, grabbing them two at a
time. The distinctness of n stems from each slot carrying a label. Then,

prob(two errors) = (;) pE(1-p)"?

Generalizing to ¢ errors gives

prob(¢ errors) =UJ p(1- pc)"-[
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Note that

n

2(3] pli-p) " =(1-p.) =1

£=0

Alternatively, the coefficient for two errors can be viewed as follows: Observe that

)55

is also the number of permutations of n objects, two of which are alike (the errors) and n — 2 of which are
alike (the undamaged bits).

To end this section, refer to table 4.5, which catalogs the various expressions for p, for many digital
modulation schemes. These equations may be plotted when needed to perform a gain calculation.

TABLE 4.5—MODULATION ERROR RATES

2E, Ey 1 E, .
LetA= , B= == LC== - ; R = bit rate.
\: e Q[ N, ] Q[ No) 2cxp[ N, it rate.

Type of signaling Required Pu
bandwidth
Baseband unipolar R/2 B
Baseband polar RI2 A
Bandpass binary phase shift keying | R

(BPSK)
Bandpass quadraphase shift keying | R/2

A
A}coherem detection; matched filter; hard decision
(QPSK, gray coded)

Minimum shift keying (MSK) 3R/2 A coherent

C noncoherent
On-off keying (OOK) R B coherent

C noncoherent (Ey/N, > 1/4)
Frequency shift keying (FSK) R +24f B coherent

(Af=fo-f1) | C noncoherent
Differential phase shift keying R C noncoherent
(DPSK)

Differentially encoded quadrature | - ——-- -~ 2B

phase shift keying (DEQPSK)

M
1 Esymbol i(M Esymbol
Mary 7= ---s Fiymbol v GXP(‘T z,(-l)J i) —J-A',—
o o

j=2

4.8 Modification of Codes

Often, there is a need to modify a specific code to conform to system constraints. In other words, the values
of n and k must be changed so that the code “fits” into the overall signaling scheme. The block length can be
increased or decreased by changing the number of information and check bits. The block length can be kept
constant while changing the number of code words. The changes that are possible will be illustrated for the
Hamming (7,4) code. The basic (7,4) code is cyclic and the defining matrices are
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1 10i1 0 0 0]
01110100

G= .

*“l1 1110010
1 0110 0 0 1
1001101 1]

H=[0 1 0i1 110
00 110 1 1 1]

For cyclic codes, another notation is used for the generator, namely the generator polynomial. This polynomial
and what it means are discussed in chapter 5. For the above G, it is

g =1 +x+x)

The changes to the code are illustrated in figure 4.9, which is the example in Clark and Cain (1981).

A code may be extended by annexing additional parity checks. The added checks are carefully chosen to
improve code weight structure (i.e., to modify the set {A;}). For a single overall parity check addition, the
check is equal to the remainder obtained by dividing the original code word by the polynomial x + 1. With the
additional check the weight of all code words is an even number. Thus, the (7,4), d = 3 (the subscript min is
dropped for convenience) Hamming code becomes an (8,4), d = 4 code. Because the new code is no longer
cyclic, no generator polynomial is given. All codes with an odd minimum distance will have it increased by
one by the addition of an overall parity check. A code may be punctured by deleting parity check digits.
Puncturing is the inverse of extending. The deleted check is carefully chosen to keep the minimum distance the
same as that before puncturing. A code may be expurgated by discarding some of the code words. For cyclic
codes, this can be accomplished by multiplying g(x) by x + 1. For the case (x + 1), the new generator is
8(x) (x + 1), and the code words are just the even ones from the original code. A code may be augmented by

(7,4) cyclic code
d=3
gy =14+x+x3
1001011
H=l 0101110
0010111
Expurgate Extend
Augment Puncture
(7,3) cyclic code Shorten (8,4) noncyclic code
d=4 d=4
g = (1 +0(1 +x+x3)

1000110 11111111
H=|0100011 Lengthen | 4 _{01001011
~ 0010111 100101110

0001101 00010111

Figure 4.9.—Changes that specific (7,4) code can assume for
specific applications.
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adding new code words. Augmentation is the inverse of expurgation. Any cyclic code can be augmented by
dividing out one of its factors. For example, if g(x) has the factor x + 1, then g(x)/(x + 1) generates another
code with the same code word length. A code may be lengthened by adding additional information symbols.
For a binary cyclic code that has a factor x + 1, the lengthening is done in two steps. First, augment by dividing
by x + 1; then, extend by adding an overall parity check. A code may be shortened by deleting information bits.
For cyclic codes, this can be done by making a segment of the information symbols identically zero at the
beginning of each code word. A shortened cyclic code is no longer cyclic. In summary,

(n,k) = (n+1,k) extended by 1
(n,k) = (n—ik—1i) 0<i<k shortened by i

ExampLE 4.9
This example follows the discussion in Sweeney (1991). To shorten the code with matrices

o o o -
o o = O
o = O O
— e O

1 0 0]
010
0 0 1

(]
]
(e B
— O
— e O
b e

first set one of the information bits permanently to zero and then remove that bit from the code. Let us set the
third information bit to zero and thus remove the third row from G:

1000110
G =0 1 00101
0001111
Next, to delete that bit, remove the third column:
100110
G =|0101 01
001111

The parity check matrix changes as follows: The checks at the end of the deleted row in G appear as the third
column of H, so that the third column should be deleted:

nn

i
O = -
—_— O =
— =
o O -
S = O
- O O

which is a (6,3) code.
A second example of shortening uses the (15,11) code with H:
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0
0
1

011000
110 0
11 1
11000

1
0
1
1

0 00
0101
1 100

0 0 01

Removing all the odd-weight code words by deleting all the even-weight columns gives

I
Tu

1000‘

0
1 0101

1

0 0

10010
1 000

1
1

0

1

=4

which is a (8,4) code with d
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Chapter 5
Block Coding (Detailed)

5.1 Finite Fields

An (n,k) code comprises a finite number of code words, and if certain properties are incorporated, the code
words can be treated as elements of a finite field. A finite field is the set {0,1,2,3,..., p — 1}, which is a field of
order p (p is a prime number) under modulo-p addition and multiplication. It can be shown that the order of
any finite field is a prime, and such fields are called prime or Galois fields. They are denoted as GF(p).

ExampLE 5.1
In modulo-p addition, take two elements in the field and add them (ordinary addition); the modulo-p sum is
the remainder obtained by dividing the result by p. For p = 5, the table below summarizes the procedure.

@101 2 3 4
0101 2 3 4
1{1 2 3 4 0
212 3 4 01
3134 01 2
414 01 2 3

In modulo-p multiplication, take two elements and multiply (ordinary); the remainder after division by pis
the result. The table below summarizes the operation for p = 5.

A

It is possible to extend the field GF(p) to a field of p™ (where m is a positive integer) elements, called an
extension field of GF(p), denoted by GF(p™).

EXAMPLE 5.2
GF(2) is the set {0,1} with modulo-2 addition and multiplication
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®[0 1 10 1
0‘01 oloo
11 0 1

From here on, only a + is used for modulo-2 addition, for convenience.

5.1.1 Properties of GF(2™)
The notation GF(g) is used often; here, g =2 (in general, ¢ = 2™). A polynomial fix) with coefficients from
GF(2) is

F(x)= fo+ fix+ fox® 4ot frx"

where f; =0 or 1 is a polynomial over GF(2). There are 2" polynomials of degree n. Division of polynomials
is crucial. Let

f(x)=1+x+)c4+;c5+x6

g()c)=1-l»x+x3

Then,
f(x)/8(x):
x3+x+1|:c6+x5+x4+x+1|x3+x2 « g(x)
x° +xt 4 x>
O+ +x+l
O+xd+x?
x? +x+1 e r(x)
or

f(x)=g(x)g(x) + r(x)

where g(x) is the quotient and r(x) is the remainder. When r(x) = 0, fis divisible by g and g is a factor of f. If

fx) has an even number of terms, it is divisible by x + 1. A root of f{x), x,, means fix,) =0.A polynomial p(x)

over GF(2) of degree m is said to be irreducible over GF(2) if p(x) is not divisible by any polynomial over

GI;(ZI) of degree less than m but greater than zero. Any irreducible polynomial over GF(2) of degree m divides
T+ 1.

EXAMPLE 5.3 s
Note that p(x) = x"f +x+1divides x2 ~'+1=x7 +1, so that p(x) is irreducible.

A

An irreducible polynomial p(x) of degree m is primitive if the smallest positive integer n for which p(x)
divides ¥* + 1is n = 2™ — 1. A list of primitive polynomials is given in table 5.1. For each degree m, only a
polynomial with the fewest number of terms is listed; others exist but are not given.



TABLE 5.1. — PRIMITIVE
POLYNOMIALS

m Polynomial

1+x+x3

1+x+x4
5

6

l+x+x
l+x+x

1+x3+x7
1+xz+x3+J54+x8
1+x4+x9

10 1+x3+xlo

11| 1+x%2+x

O 00 N N R W

12| 1+xex?+x0+512

13 1+x+x3+x4+x13

A useful property of polynomials is

5.1.2 Construction of GF(2™)
To construct a field, first introduce a symbol & and then construct the set

F={O,I,a,az,a3,...,aj,...} ada1

Because the set is infinite, truncate it in the following way: Since

2= q(x)p(x) p(x) primitive
replace xby a
a® 7 +1=g(a)p(a)
Set p(a) = 0; then,
a2 li1=0
or
a? =1

which truncates the set to

F={0,1,a, az,...,azm‘z}
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ExAMPLE 5.4
Construct the field GF(24) by using p(x) =1 + x + x*. Note that p(x) is given in table 5.1. Set
p(o)=0:

l+a+a*=0

Then,
a*=1+a
This last identity is used repeatedly to represent the elements of this field. For example,

o’ =aa =a(l+a)=a+a?

(16 =aa5 =a(a+a2)=a2+a3

7 2

[#4 =aa6 =a(a +a3)=a3+a4

=¢Jt3+1+oz=1+oz+ot3

etc. Note that o' = 1. Three representations of the field are given in table 5.2.

TABLE 5.2. — THREE REPRESENTATIONS
FOR ELEMENTS OF GF(2*) GENERATED
BY p(x)=1+x+x*

Power 4-tuple
0 0 (0000)
1 1 (1000)
a o (0100)

o? o? (0010)
o3 o | (ooon
at ll+a (1100)
o’ o+a? (0110)
a® o + & | (oo
o |l+a +o’ | aon
ob 1+ o (1010)
o« P +a3 | (o101
alo 1+ o + a2 (1110)
all a + o® +a>| (o111
2 | 1+ a + o2 +&3| auy
a? | a? +a® | o1
a1 +a3 | qoon

Observe that the “elements” of the field are 4-tuples formed from ones and zeroes. Each element has three
representations, and each is used in different steps in subsequent discussions. A general element is given the
symbol B. For example,
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1

pod?ol+a+ra’+a’ o (1111)

Let B be a root of a polynomial of degree less than m in GF(2™). Let ¢(x) be the smallest degree polynomial
such that ¢(8) = 0. Then, ¢(x) (it is unique) is the minimal polynomial of 8. Minimal polynomials derived
from the GF(24) field are given in table 5.3.

TABLE 5.3. — MINIMAL POLYNOMIALS
OF ELEMENTS IN GF(24)

[Generated by p(x)=1+x+ x4.]

Conjugate roots Minimal polynomial
(4] x
cata ol x+1
a3a6 a9 a12 x4+x+l
a5a10 x4+x3+x2+x+1
o ol a3 ot x4+x3+1

5.2 Encoding and Decoding

The simplest encoding/decoding scheme is best explained by a specific example; the one chosen is the
example in Lin and Costello (1983).

ExampLE 5.5
For a (7,4) Hamming code, choose the generator as

O = =
— O
(== R
o O -~ O
o = O O
- o O O

<

]

IR

Q

Here, the parity check digits are at the beginning of the code word. The circuit to encode a message vector
u = (uq, uy, uy, u3) is given in figure 5.1. The message register is filled by clocking in u3, us, uy, ug and
simultaneously passing them to the output. Next, the modulo-2 adders form the outputs v = (vg, v}, v7) in the
parity register. The switch at the right moves to extract v. The parity check matrix is

— e O
b et b
—_ O =

The coset leaders and corresponding syndromes are
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The circuit to perform the correction is shown
modulo-2 adders form the syndrome (sq, 51, 52)-
pattern, and the last row of adders serves to add ¢;

Message register —

u .
[- Uy Uy ug Uz
™M
Y
c N P
\/ 3/
Vo  J V1 Vo
Parity register —~~

Figure 5.1.—Encoder for (7,4) Hamming code.

Syndrome Coset leader

T o001 000000
010|0100O0O0O
001|00100O00O0
1100001000
011/0000100
1110000010
1 010000001

in figure 5.2. The received bits are entered as rg, ..., r¢. The
A combinatorial logic network calculates the appropriate error
to r; and correct the word, which is placed in the “corrected

output” buffer. If only a single error is present, only one e; is present, and the corresponding r; is corrected.
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&

A A

Corrected output

Figure 5.2.—Decoder for (7,4) Hamming code.



5.2.1 Cyclic Codes and Encoders

Many codes are cyclic (an end-around shift of a code word is also a code word; i.e., if 1001011 is a code
word, then 1100101 is the first end-around shift and is also a code word). Such codes can be represented by a
generator polynomial g(x). The recipe for an (n,k) code is

y(x) = u(x)g(x) 5.1

where

Y(x)=vo +Mx+vpx2 4. 4y xF!

u(x) =g + X +upy x> +. 4 uy_yx<7!

k-1

glx)= 1+g1x+g2x2 Fot Xt T+ xtk

A property of g(x) is that g(x) for an (n,k) code divides x” + 1; that is,

(x" +l) = g(x)h(x)
or
x+1 =(1+x+x3)(l+x-#-:c2 +x4)

This factoring is not obvious and must be found by table look-up in general. Further factoring is also possible
in this case:

x7+1=(1+x)(1+x+x3)(l+x2+x3)

where there are two g(x) factors, both of degree 3. Therefore, each generates a (7,4) code. Observe that the
code word y(x) in equation (5.1) is not in systematic form but can be put in that form with the following
procedure:

1. Premultiply the message u(x) by ¥* .

2. Divide x**u(x) by g(x) to obtain a remainder b(x).

3. Form y(x) = ¥* *u(x) + b(x).

ExamMrPLE 5.6
Encode u(x) = 1101 = 1 + x+ x> with g(x) = 1 + x + X in a (7,4) code. Form

3 6

x3(1+x+x3)=x +xt+x
Form

S +xttx
x"+x+1

71



The quotient is g(x) = x> with remainder b(x) = 0. Then,

(x)= x> +x* +x® =0001101

Note that the last four digits (1101) are the message and the first three (000) are the parity check digits.
A

ExamrLE 5.7
This problem shows the correspondence between the generator matrix and the generator polynomial for
cyclic codes. Consider a (7,4) cyclic code generated by

gx)=1+x+x°

Determine its generator matrix G in systematic form. The procedure is to divide x"k*i by g(x) for
i=0,12,..k-1.Fori=0,x"*=x>

x3+x+1l x3 |l «q(x)
L4x+l

x+1 «r(x)

so that x> =q(x)g(x)+r(x)=>x3 =1xg(x)+(1+x).Fori=1,

xn-k+1 = x4
After division,
x4 =xg(x)+ (x + x2)

Continuing,

= (l+x2)g(x)+(x2 +x+ ])

xS = (x3 +x+ l)g(x)+ (1+ xz)
Rearrange the above to obtain four code polynomials

vo(x)=1+:c+)c3

vi(x) = x+x* +xt

vz(x)=1+x+x2+x5

V3(Jc)=1+.x2 +x8

which are found by adding together the single term £*) on the left with the remainder. That is, £ is added to
(1 + x) to form vg(x). Use these as rows of a (7 x 4) matrix; thus,
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1101000

01 1i01 00| [ |
Q=111§0010=[1~’:£n_k]

10 1:00 01

Note that g(x) can be read from G by observing the first row of G. The row 1101000 cormresponds to %0, x!, and
x> so that

1 3

gx)=x"+x'+23 =1+x+x

5.2.2 Encoder Circuits Using Feedback
Most encoders use feedback shift registers. Recall that the code word can be found in two ways,

v(x) = u(x)g(x)

or

v(x) = x"*u(x) + b(x)
where the generator polynomial has the form

g(x)=1+gx+ g2x2 +...+ g,,_k_lx”'k'l +x"k

Figure 5.3 gives the basic encoder scheme. The multiplication of the message vector by Xk basically adds
zeros onto the left of the message vector, which gives enough bits for n complete shifts of the register. The
operation proceeds with switch I closed and switch I down. The machine shifts k times, loading the message
into the registers. At this time, the message vector has moved out and comprises y(x), and at the same time the
parity checks have been formed and reside in the registers. Next, switch I is opened, switch II moves up, and
the remaining n — k shifts move the parity checks into v(x). During these shifts the leading zeros appended to
u(x) earlier are shifted into the register, clearing it.

Switch |

e\

I ] I - _9
Ay %y 1 Vv,
- J I o
Y \\\ !(X)
n—k shift register

X yix) - Switch Il

Figure 5.3.—Basic encoder for cyclic codes.
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EXAMPLE 5.8
Encode the message vector u(x) = 1011 into a (7.4) code by using the generator polynomial g(x) =1 +x + X

W(x)=1011=1+x>+x°

Eu(x)= x>+ X +x®
2" ¥ u(x) = v(x) + b(x) = u(x)g(x) + b()

. b(x) = remainder mod g(x) of x"*u(x) = S+x5+x8

For the (n — k), three-stage encoding shift register shown in figure 5.4, the steps are as shown. After the fourth
shift, switch I is opened, switch II is moved up, and the parity bits contained in the register are shifted to the
output. The output code vector is y = 1001011, or in polynomial form, y(x) =1 + L+ +

A

Next, consider the syndrome calculation using a shift register. Recall that the syndrome was calculated by
using modulo-2 adders in figure 5.2; a different method using registers is given in figure 5.5. Here, the received
vector is shifted in; and after it has been loaded, the syndrome occupies the register. The lower portion gives
the syndrome calculator for the (7,4) code used in previous examples. Note that the generator matrix used for
the case in figure 5.2 yields the same generator polynomial as shown in figure 5.5; thus, different
implementations of the same decoding scheme can be compared.

O w0
XM yix)
Input Shift Register Output
queue number contents

0001011 0 000 -
000101 1 110 1
00010 2 101 1
0001 3 100 0
000 4 100 1
00 5 010 0
0 6 001 0
- 7 000 1

Figure 5.4.—Cyclic encoder steps while encoding message
vector y(x} = 1011.
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Switch |

X y(x)
W (2 @
X
RIS oy >SN o e S— < S P
Switch |

) —~D—~ D— - > Sl

Switch Il

7Agl)=1+x+x3

Figure 5.5.—Decoder using shift register. (a) General syndrome
calculator. (b) Calculator for specific (7,4) code given by gener-
atorglx) =1 +x + x°.

5.3 Decoders

In syndrome decoding for general block codes and for the special case of cyclic codes, the difficult step of
determining the error pattern e commences once the syndrome is known. Many algorithms have been
developed for this stage of decoding; and their evolution and implementation form a large body of material in
the journals. Each has its good/bad, cost/complexity tradeoffs, etc. According to Clark and Cain (1981)
decoders are algebraic or nonalgebraic. Algebraic decoders solve simultaneous equations to find e; also, finite-
field Fourier transforms are sometimes used. Only hard-decision decoders are discussed here, since they find
the most use. Soft-decision decoders (nonalgebraic, such as Massey’s APP (a posteriori probability),
Hartmann-Rudolph, Weldon, partial syndrome, etc.) are omitted. The nonalgebraic decoders use properties of
codes to find e, and in many instances a code and decoder are “made for each other.” Some schemes discussed
here are also used with convolutional codes, as covered in chapters 6 and 7.

The delineation of decoding algorithms is not crisp. For example, some authors use Meggit decoders as a
classification with feedback decoding being a subset. Others, however, include Meggit decoders as a special
form of feedback decoding. Following the lead of both Clark and Cain (1981) and of Lin and Costello (1983),
the discussion of decoders begins with cyclic codes.

5.3.1 Meggit Decoders
The algorithm for Meggit decoders depends on the following properties of cyclic codes:

1. There is a unique one-to-one correspondence between each member in the set of all correctable errors
and each member in the set of all syndromes.

2. If the error pattern is shifted cyclically one place to the right, the new syndrome is obtained by advancing
the feedback shift register containing S(x) one shift to the right.

These properties imply that the set of error patterns can be divided into equivalence classes, where each class
contains all cyclic shifts of a particular pattern. For a cyclic code of block length n, each class can be identified
by advancing the syndrome register no more than » times and testing for a specific pattern after each shift.
Figure 5.6 shows a basic form for a Meggit decoder that uses feedback (some forms do not use feedback). The
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Gate

Storage buffer ——»@-»

n(x)——I——— Gate |

Gate
¥ y .
Syndrome calculator |

v S
Pattern detector

yei

Gate

!

Figure 5.6.—Feedback Meggitt decoder.

Mo B

received vector is shifted into the storage buffer and syndrome calculator simultaneously. At the completion of
the load step, a syndrome resides in the syndrome calculator. Next, the pattern detector tests the syndrome to
see if it is one of the correctable error patterns with an error at the highest order position. If a correctable
pattern is detected, a one appears at the pattern detector’s output; the received symbol in the rightmost stage of
the storage buffer is assumed to be in error and is corrected by adding the one to it. If a zero appears at the
pattern detector’s output, the received symbol at the rightmost stage is assumed to be correct, and no correction
is needed (adding a zero does not change it). As the first received bit is read from the storage buffer (corrected
if needed), the syndrome calculator is shifted once. The output of the pattern detector is also fed back to the
syndrome calculator to modify the syndrome. This effectively “removes” the effect of this error on the
syndrome and results in a new syndrome corresponding to the altered received vector shifted one place to the
right. This process repeats, with each received symbol being corrected sequentially. This basic idea has many
variations and many differences in the number of times the received vector is shifted versus the number of
times the syndrome calculator can change. Also, the phase of shifts can vary. In this manner, bursts of errors
are handled as well as shortened cyclic codes. The Meggit decoder for the (7,4) code is shown in figure 5.7.

Storage buffer

) Muttiplexer]—={ [ T | | | IJ-*EP—’

Output
Syndrome calculator

Wr=a

<— Pattern detector

ra

]

Gate

!

7.8 gk} =1 + x +x3
Figure 5.7.—Meggitt decoder for specific (7,4) cyclic code.
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5.3.2 Error-Trapping Decoders

Error-trapping decoders are a subset of Meggit decoders, and several forms and enhancements on the basic
concept exist (e.g., Kasami’s method). They work because of the following property: If errors are confined to
the n — k high-order positions of the received polynomial r(x), the error pattern e(x) is identical to Ry,
where S ®)(x) is the syndrome of 5(""‘)(x), the (n — k)th cyclic shift of r(x). When this event occurs, it
computes =i‘(""‘)(x) and adds AJ‘S""‘)(x) to r(x). In other words, the scheme searches segments of_r(x) in hopes
of finding a segment that contains all the errors (error trapping). If the number of errors in r(x) is z or less and
if they are confined to n — k consecutive positions, the errors are trapped in the syndrome calculator only when
the weight of the syndrome in the calculator is ¢ or less. The weight of S(x) is tested by a (n — k)-input threshold
gate whose output is one when ¢ or fewer of its inputs are one. Its inputs come from the syndrome calculator.

5.3.3 Information Set Decoders

Information set decoders work on a large class of codes (hard or soft decision). In an (n,k) group code, an
information set is defined to be any set of k positions in the code word that can be specified independently. The
remaining n — k positions are referred to as the “parity set.”” If the generator matrix for the code can be written
in echelon canonical form, the first k positions form an information set. Any other set of positions can form an
information set if it is possible to make the corresponding columns of the generator matrix into unit weight
columns through elementary row operations. For example, consider the (7,4) Hamming code whose generator
is

Q)

]
©C O O =
o O = O
o - O O
-0 O O
—_— = O =
O = = =
_ =~ O

By adding the first row to the third and fourth rows, this matrix can be transformed to

S O = O
o = O Q
-0 O O
S O O m
QO = i s
_—— = O

This has the effect of “interchanging” columns 1 and 5. Positions 2, 3, 4, and 5 now form an information set
(have only a single one in their columns). This example shows that a necessary and sufficient condition for
being able to “interchange” any arbitrary column with one of the unit weight columns is that they both have a
one in the same row. By this criterion, column 1 can be interchanged with column 5 or 6 but not with
column 7, column 2 can be interchanged with column 6 or 7 but not with column 5, etc. Since the symbols
contained in the information set can be specified independently, they uniquely define a code word. If there are
no errors in these positions, the remaining symbols in the transmitted code word can be reconstructed. This
property provides the basis for all information set algorithms. A general algorithm is as follows:

1. Select several different information sets according to some rule.

2. Construct a code word for each set by assuming that the symbols in the information set are correct.

3. Compare each hypothesized code word with the actual received sequence and select the code word that
is closest (smallest metric, closest in Hamming distance).

5.3.4 Threshold Decoders
Threshold decoders are similar to Meggit decoders but need certain code structures. Majority-logic decoding
is a form of threshold decoding for hard-decision cases and has been used often. (It is seldom used now.)
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Threshold decoding uses circuitry to work on the syndrome to produce a likely estimate of some selected error
digit. The main point is that any syndrome digit, being a linear combination of error digits, represents a known
sum of error digits. Further, any linear combination of syndrome digits is thus also a known sum of error digits.
Hence, all 2" such possible combinations of syndrome digits are all of the known sums of error digits
available at the receiver. Such a sum is called a parity check equation and denoted by A; (the ith parity check
equation). Thus, each A; is a syndrome digit or a known sum of syndrome digits. A parity check equation A; is
said to check an error digit ¢; if ¢; appears in A;. A set {A;} of parity check equations is said to be orthogonal
on e, if each A; checks e, but no other error digits are checked by more than one A;. For example, the
following set is orthogonal on e3 (all additions are modulo-2):

A1=e1®e2 983
A2= e3@e4®e5
A3= €3 @86687

Although e appears in each A;, each of the other error digits appears in only a single A;. Majority-logic
decoding is a technique of solving for a specific error digit given an orthogonal set of parity check equations
for that error digit and is characterized by the following: Given a set of J = 2t + S parity checks orthogonal on
em» any pattern of ¢ or fewer errors in the digits checked by the set {A ;} will cause no decoding error (ie.,is
correctable) and patterns of ¢ + 1,....t + 5 errors are detectable if e, is decoded by the rule

¢, =1 if more than(J+S)/2 of the A; have value =1
¢, =0 if(J-S)/2 or fewer have values=1
error detection only if otherwise

Here, é,, denotes the estimate of ey, Thus, 7+ 1 corresponds to the effective minimum distance for majority-
logic decoding. Further, it can be shown that the code must have a minimum distance of at least J + 1. A code
is completely orthogonalized if dmin — 1 orthogonal parity check equations can be found for each error digit.

5.3.5 Algebraic Decoders
Algebraic decoders are used on “algebraically defined” codes, such as BCH codes. The algebraic structure

imposed on the codes permits computationally efficient decoding algorithms. First, the underlying structure
of these BCH codes must be studied. A primitive BCH code has

n=2"-1, n—-k<m, r<2m! m23
dmin >2t+1

The generator polynomial is of the form

g(x) = my(x)- my(x)- ms(x) -+~ ma; 1 (x)

(i.e., t factors).

Write the parity check matrix in the form (for n = 135)
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a a--a

LI=[§ 5 és] mk=(15,11)
a @ '4ajs

The {q;}, i = 1,...,15 are distinct nonzero elements of GF(2%). If errors occur in positions i and j of the received

word, the syndrome

S=eH =(s1,5.,53,54)
produces two equations in two unknowns
aq + aj =5

and

a,3+a}3- =53

If these equations could be solved for a; and a;, the error locations i and j would be known. Error correction
would then consist of inverting the received symbols in these locations. Because the equations are nonlinear,
any method of solving them directly is not obvious. However, it is possible to begin by eliminating one of the
variables. Thus, solving the first equation for a; and substituting into the second equation yields

s

@’ +sa;+sf+2=0
J 145 1 s
1

Had the first equation been solved for g;, the resulting equation would be the same, with g; replacing a;.
Consequently, both g; and g; are solutions (or roots) of the same polynomial:

s
0'=22+slz+s12+—i=0
51

This polynomial is called an error locator polynomial. One method of finding its roots is simple trial and error.
Substituting each of the nonzero elements from GF(2*) into this equation guarantees that the location of both
errors will be found. The complete recipe for decoding is as follows:

1. From r(x) calculate remainders modulo mj, m3, and ms; these result in partial syndromes s;. For a t-error-
correcting code, there are 2¢ such m-bit syndromes.

2. From the s;, find the coefficients for an e-degree error locator polynomial (e < £), where e is the number
of errors. The technique for doing this is called the Berlekamp iterative algorithm. This polynomial o(x) has the
significance that its roots give the location of the errors in the block. The roots are the error location numbers
o, i=0,.,14 (if n= 15).

3. Find the roots, generally by using the Chien search, which involves checking each of the n code symbol
locations to see if that location corresponds to a root.

4. Correct the errors. For binary codes, this entails just complementing the erroneous bit. For Reed-
Solomon codes (nonbinary), a formula for correcting the symbol exists.
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5.4 Miscellaneous Block Code Results

5.4.1 Reed-Solomon Codes
Reed-Solomon (R-S) codes use the following procedure:

1. Choose nonbinary symbols from GF(2™). Each symbol has m bits (i.e., let m = 8, a symbol is (10101010)
or eight bits).
2. Define g =2™ Then,

N=g-1  symbols/word
N-K=2t to correct ¢ symbols
dmin =2r+1
since dpin = N — K + 1, it is maximum-distance separable (largest possible dpip). On a bit basis,

N—an=m(2"’—l) bits

N-K—->m(N-K)  checkbits

which is cyclic (subset of BCH) and good for bursts.
3. Use Berlekamp-Massey or Euclidean decoders, which can correct

1 burst of length by(r —1)m +1 bits
2 bursts of length by (# —3)m + 3 bits

i bursts of length b;(r — 2i +1)m + 2i —1 bits

4. Let b be the maximum correctable burst length (guaranteed), and let £ be the length of the shortest burst
in a code word (1xxxxx1):

pit
2

For example, for (N,K) = (15,9)
t=3, m=4, d=17

If the code is viewed as a binary (60,36), R-S codes can correct any burst of three four-bit symbols, where
is in GF(2™):
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g(x)=(x+0’)(x+az)(x+a3) -~-(x+ad‘1)

g(x)=(x+a)- (x + O!6) for above example

ngx)=x0+al%%P +a*x* ot +abx? + x4+ af

5. To calculate the error probability, let
K
k== (Eb), =R+(Ep),
From p,, determine the channel symbol error rate psympol

m
psymbol =1- (1 - pC)
Let p,(E) be the probability of undetected error (symbol error):
)N -i

N
pu(E)= Z A; Psymbol (1 = Psymbol

i=]
Ag=1, A;=0 ISjsN-K

J=1=(N-K)

4=(7) h% (-l)h({;)[q"”"”""—l] for (N—K)+1< j <N

The probability of decoding error (symbol error) is
s N\ i N-i
p(E)= Z(l )Psymbol (1 - Psymbol)
i=r+}

The total symbol error probability is

N .
! AN\ N-j
P = PulE)+ P(EV=p(E) = = 3 (¥ JPhymbor(1 - Peym)
j=t+l

Now, to find bit error rate,
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(Pp), _1 M

for M-ary multiple -frequency shift keying(MFSK)
(pg),,, 2M-1
EJeot
or
( ) - 1.5t +1
Pb) N Prot
or

<1 M il JHEIN\ i N-j
(o) =35 2 N \J Psymbol(l_Psymbol)

5.4.2 Burst-Error Correcting Codes
Burst-error-correcting codes include the following types:

1. Burst detecting and efficiency correcting,

2. Fire codes, g(x)= (xc - 1)P(x), where p has degree m.
c2 dmin +b-1

m>b

where b is burst length and the code corrects all bursts < b and detects all bursts < dppy bits long. In general,

]
|
=

n—k>b-1+logyn
n—k>2(b—1)+logy(n-2b+2)

Detecting a burst of length b requires b parity bits, and correcting a burst of length  requires 2b parity bits.

A common application of cyclic codes is for error detection. Such a code is called a cyclic redundancy
check (CRC) code. Since virtually all error-detecting codes in practice are of the CRC type, only this class of
code is discussed. A CRC error burst of length b in the n-bit received code word is defined as a contiguous
sequence or an end-around-shifted version of a contiguous sequence of b bits, in which the first and last bits
and any number of intermediate bits are received in error. The binary (n,k) CRC codes can detect the following
n-bit channel-error patterns:

1. All CRC error bursts of length n — k or less

2. A fraction 1 — 2%~ of the CRC error burst of length b=n —k + 1
3. A fraction 1 — 2% of the CRC error bursts of length b>n —k + 1
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4. All combinations of dy, — 1 or fewer errors
5. All error patterns with an odd number of errors if the generator polynomial has an even number of

nonzero coefficients

Usually, the basic cyclic codes used for error detection are selected to have a very large block length n. Then,
this basic code, in a systematic form, is shortened and is no longer cyclic. All standard CRC codes use this
approach, so that the same generator polynomial applies to all the block lengths of interest. Three standard
CRC codes are commonly used:

1. CRC-12 code with g(x) ::1+x+x2 +x3 +x” +X12
2. CRC-16 code with g(x) =1 +x2 +x15 +xl6

3. International Telegraph and Telephone Consultative Committee (CCITT) CRC code with

g(x)=l+x5 +x12 4410

4. A more powerful code with

2 5 7 8 10 11 12 16 22 23 26 32

g)=l+x+x2 +xt + 00 4 x x84 x 0 M 2 10 4 X221 B P

has been proposed where extra detection capability is needed.

5.4.3 Golay Code
The weight enumerator for Golay code (23,12) is

A(z) =1+25327 +5062% +12882!! +12882'2 + 5062 +2532'6 + 22

Code (23,12) has d = 7 and ¢ =3 and corrects up to three errors.

(+3 +1) =1+ x)gy(x)g2(x)

4 5 6 10 i1

a@)=1+x*+x* + P+ x84+ 204 x

5 6 7 9

gx)=l+x+x+x"+x"+x +x”ém89(x)

Recall that

Forn=23,and =3,
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but 2048 = 211,

. ak k=
2 _El_l’ sk=12

Thus, 2'2 code words equals 4096 spheres of Hamming radius 3, closely packed. Each sphere contains 21
vectors. There are 2*% = 21! syndromes, which correspond one to one to all error patterns. Adding the overall
check bit gives code (24,12) (then r = 1/2), which detects all patterns of up to four errors. The extended code

(24,12) has diin = 8. Using the decoding table concept shows that exactly n patterns differ from the correct
pattern in one position, ’21 patterns differ in two positions, etc. Since there are almost always some patterns
left over (after assigning all those that differ in ¢ or fewer places),

N,21+n+(5)+---+(§')

where N, is the number of n-tuples in a column. Since there are 2" possible sequences, the number of code
words N, obeys

N, < 2"
l+n+(g)+---+(?)

(sphere packing bound). For an (n.k) code, N.= 2k thus,

2"
1+n+(g)+---+(;’)

Golay noted that n =23, k=12,and =3 provide the equality in the above—thus, the “perfect” (23,12) code.

2k

A

5.4.4 Other Codes
The following is some miscellaneous information about codes:

1. Hamming codes are single-error-correcting BCH (cyclic).
2. Fort=1codes,

k<n-logy(n+1)

r=kc1-Liogy(n+1),  2"-2%(n+D)
n n

3. A multidimensional code uses a matrix for a code word.

4. An alternative to the (n,k) notation uses M(n.d), where d is dmin.

5. A rectangular or product code produces checks on both the columns and rows of a matrix that is loaded
with the message. That is,
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m, my---m; [« row check
Iﬂj+1 D
1 M4l :
column
O O
check

6. Hardware cost is proportional to (n)-(1).

7. If searching for a code to apply to a system, see page 124 of Peterson and Weldon (1972) (i.e., given
required n, k, and dpyy, is a code available?).
5.4.5 Examples

ExaMPLE 5.9
The probability of one code word being transformed to another code word is

3

ExampLE 5.10
Reed-Muller codes are specified by n = 2™,

k=1+(’f’)+---+(§"), n—k=1+('{’)+...+(m_mr_1)

d = 2m—r

ExampLE 5.11
Maximum-length shift register codes (MLSR) are defined by

(n,k)=(2"'—1,m) m=12,3,---

They are duals of Hamming (2™ - 1, 2™ — 1 — m) codes. All code words have same weight of 2™! (except the
all-zero word). The distance is dmi, = 2™!. To encode, load the message and shift the register to the left
27 — 1 times.

1 2 3

om<—J———€+-P<——J
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ExAMPLE 5.12

Soft-decision decoders use the Euclidean distance between the received vector and permissible code vectors.
For example, suppose three successive waveform voltages from the demodulator are =0.1, 0.2, and 0.99 (a hard
decision about zero would yield (011) as the word). Let each of these voltages be denoted by y;, and assume
that some predetermined voltage levels in the decoder have been assigned x;. The Euclidean distance between
signal levels is defined as

i()’i - x.’)z

i=1

In soft-decision decoding, this distance measure is used to find the closest code word.

ExampLE 5.13
In general, dpin < n — k + 1 (Singleton bound). The equality implies a maximum-distance separable code;
R-S codes are such codes. Some upper and lower bounds on dpjy exist (fig. 5.8). Some formulas are

1. Gilbert-Varsharmov—For a g-ary code
a2 A <d—l " i
Y (F)a-0 <am <2 (F a1
i=0 i=0

2. Plotkin

kSn—2dmjn +2+1°32dmin

3. Griesmer—Let [d] represent the integer that is not less than d/2.

1.0

— Hamming

— Permissible
} codes
I}
]
—Elias
— Plotkin

— Gilbert-
{  Varsharmov

0 2 4 6 8 1.0
r=kin

Figure 5.8.—Some classic upper and lower bounds on dy,;, for
(n, k) block codes.
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4. Hamming

i=0
A
ExampLE 5.14
The distance between three words obeys the triangle equality
d(xy)+d(y z)2d(x2) (a)
Observe that
W(x®z) < W(x)+ W(z) (b)
which follows from the definition of weight and modulo-2 addition. Assume that
x=z@y=y®z
Then,
2=y@x=x®z
Use these in equation (b) to give
Wix@z)SW(y@z)+W(x®y)
or
d(x,z)<d(y,z)+d(x,y)
since
d(A,B)AW(A® B)
A

ExampLE 5.15
The structure for codes developed over GF(2™) is as follows: For example, let m = 4 and GF(16). The
elements are
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0 {0000)
1 (1000)

14

Let the string of input information bits be represented by x’s

[Raduiads R ey
a a; o
First, divide the string into four-bit blocks where each block is a symbol or element from GF(16), as shown

above. Next, clock the symbols @, into the encoder and output coded symbols.
A

EXAMPLE 5.16
To find a code, use appendixes in Clark and Cain (1981), Lin and Costello (1983), and Peterson and Weldon
(1972). The tables are given in octal.

Octal | Binary

101
110
111

PO Y NN
3

For example, octal 3525 means 011 101 010 101, which corresponds to the generator polynomial

g(x)=xlo+x9+x8+x6+x4+x2+1

Also, 23 corresponds to 010011 — Hex+lor

g(x)=1+x+x4

which is an (n,k) = (15,11) code.
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Chapter 6
Convolutional Coding

Convolutional encoding is more complex than block coding. Its explanation is somewhat involved,
since notation and terminology are not standard in the literature. Convolutional codes are “tree” or
“recurrent” in that some checks depend on previous checks. Following Lin and Costello (1983), a code
is denoted by (n,k,m), where k inputs produce n outputs and m is the memory order of the encoder. If the
encoder has a single shift register, m is its number of delay elements. For the encoder in figure 6.1,
m = 3. For each bit entering, the commutator rotates and outputs two bits; thus, the code is denoted as
(2,1,3). First, the impulse responses of the encoder are defined to be the two output sequences v{1) and
v®) when 7 = (1 000 ...), that is, a one followed by an infinite string of zeros. The shift register is
loaded with zeros before applying the input. Observe that four nodes feed the output modulo-2 adders,
and thus the impulse response contains four bits. By placing a one at the input node (the three delay
elements are still loaded with zeros), vD=1andv®=1.

After moving the one through the register,

v =10114 gD (6.1

v =1111849P (6.2)
where g(l) and g(z) are the impulse responses for this encoder. They are also called generator sequences,
connection vectors, or connection pictorials. The encoding equations become

7 =gxgh (6.3)

(2)

7D =g+g@ (6.4)

where * represents convolution in discrete modulo-2 fashion. For the general case, let

7V = (.8, 8".....8%) (6.5)
7 =(g. 5. 8.....8P) (6.6)
V= (vél), v(()z), vl(l), v1(2), .. ) 6.7

where v is the interlacing of v and v then, a compact encoding equation is
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Figure 6.1.—One implementation of (2,1 ,3) convolutional encoder.

<

where

gf)‘) g(()z) gfl) g§2) gél) g§2)
D2
00 g8 &8sl
00 00 gVgf?
G=
L
is the generator matrix (of infinite extent).
ExaMPLE 6.1
For
gV =1011
11 01 11
00 11 01
G=[00 00 11
00 00 00

For i to five places (i.e., ¥ = (10111)),

]
£

Q)

11
11
01
11

M (2) 00

Em'Em

gP=1111

00
11
11
01

00
00
11
11

288

[y
(=

6.8)

6.9)



11 01 11
00 11 01

00 11
00 00 00
00 00

11
11
01
11

1
11
01
11

8
888
8888

11
11
01

b—

—
—

A

The previous encoder can be redrawn in other ways, and this allows different means of describing the
encoding procedure. In figure 6.2, the encoder has been redrawn by using a four-stage shift register; but
observe that the first cell receives the first digit of i on the first shift. In the previous representation, the first
output occurred when the first bit was at node 1 (to the left of the first cell). Another set of connection vectors

G; can be defined for this encoder:

G =11, G,=01,

G3 =11,

G4=11

(6.10)

where the subscripts refer to the register delay cells. The number of digits in each vector is equal to the number

of modulo-2 adders. Let G* be a generator matrix and again let # have five places; then,

or

G*=(G, G, G; G,)

11 01 11 11
monu O
G*= 11 01 11 11
0 11 01 11 11
11 01 11 11
u
v

Figure 6.2.—Altemative encoder circuit of (2,1,3) convolutional

encoder of figure 6.1.

(6.11)
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Figure 6.3.—Third representation of (2,1 ,3) convolutional encoder
of figure 6.1.

which is just G in the previous example. Another representation of the enc?der is given in figure 6.3. Here, the
machine is at its fourth shift, so that from equation (6.7) the output is v3l vy~'. From either the example or
equation (6.11) for & = (10111),

# =(11,01,00,01,01,01,00,11) (6.12)

In figure 6.3 (as u4 enters)

VD = u,Gy ® 3G, ®uyGs ®uiGy =1-(11)@1-(0)©0-(1 )®1-(11)
=116019©00011=10©11=01

which is indeed the value in equation (6.12) ( the fourth pair). Thus, the fourth pair of outputs depends on ug4,
us, up, and uj, the memory (u3, u2, uy), or the “convolution.” Note that the last representation does not use a
commutator.

Here, the same encoder has been described with three different circuit representations and two different sets
of “connection vectors.” This multiplicity of representations and terminology can cause some confusion if the
reader is not careful when scanning the literature.

6.1 Constraint Length

Several definitions for the term “constraint length” can be found in the literature. The reasons for this
confusing state of affairs will become evident as the discussion progresses. One reason is the variability in
encoder design. For the simple case of a one-bit-in, three-bit-out encoder (fig. 6.4), the output commutator
representation means that three output bits are generated for each input bit. Therefore, the code has r=1/3 or
(n,k) = (3,1). Each block of n output bits depends on the present input bit (which resides in the first cell of the
shift register), as well as on two previous input bits. Loosely, the encoder’s memory is 2, which is both the
number of previous input bits and the number of shifts by which a given bit can influence the output (do not
count the shift when the bit first enters the shift register). The number of modulo-2 adders is three; in general,
let v represent the number of such adders. Thus, here v = n. Each input bit affects three consecutive three-bit
output blocks. So what is the “memory” of such an encoder? The various definitions of constraint length are
variations on the notion of memory. The previous circuit can be redrawn as shown in figure 6.5 (upper part).
Unfortunately, this encoder can also be drawn as shown in the lower part of the figure. The difference is the
decision of placing the present input bit into a shift register stage or not. Therefore, how many shift register
stages are needed for this particular (n,k) coding scheme?

Another encoder (fig. 6.6) has two input bits and three output bits per cycle; thus, (n,k) = (3,2). Finally, in
the case shown in figure 6.7, where k =3 and n = 4, if the three input rails are considered to be inputs to shift
registers; there is a zero-, a one-, and a two-stage register. In the case shown in figure 6.8, where k=2 and
n = 3, the output commutator rotates after two input bits enter. Two other variations (fig. 6.9) show some
modulo-2 adders that deliver outputs to other adders.
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1
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Figure 6.4.—General one-bit-in, three-bit-out convolutional
encoder.

3
—3

Figure 6.5.—Two altemative but equivalent representations of
encoder circuit given in figure 6.4.
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Figure 6.7.—General k = 3, n = 4 convolutional encoder.
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Figure 6.8.—Encoder where each register holds two input digits.

94



—P—>
T 2 4
/
D
- ) ) v
ur—Y —~T—
6
N
o . —

Figure 6.9.—Altemative encoder schemes wherein some
modulo-2 adders feed other adders.

With these variations for encoder construction a “memory” is somewhat hard to define. Consider a variation
on figure 6.5 depicted in figure 6.10. Here, each “delay element” consists of k stages and the input commutator
would wait at each tap until & bits entered the machine. After loading the third, or last, tap the output
commutator would sweep the remaining three outputs. For simplicity, assume that each “delay element” holds
only one bit; then, each shift register consists of K; single-bit elements. Here Ko=0, K1 =1, and K; =2. The
fact that the subscript equals the number of delay elements in this case is just an accident. (Figure 6.11 gives
some situations where the notation can be confusing.)

With this background, the following definitions can be stated:

1. Let K be the length (in one-bit stages) of the ith shift register. Let k be the number of input taps; then,

mA max K; memory order
= 1sigk

Figure 6.10.—Encoder wherein k-bit registers are employed
{variation on circuit in fig. 6.5).
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Figure 6.11.—Examples of encoders where con-
straint length, memory order, and number of shift
registers can be confused. (a) (2,1,3); m = K=
K=3. 0 (321K =1,Ka=1,m=K; =Ky =
1, K=2.

K ézK i total encoder memory

2. Following Lin and Costello (1983), k is the number of input taps and n is the number of output taps.
Specify a code by (n,k,m). Then,

CLAny =n(m+1)

which says the constraint length (CL) is the maximum number of output bits that can be affected by a single
input bit. This word definition is most often what is meant by constraint length. However, a slew of other terms
is used. Sometimes, m is called the number of state bits; then,

memory span A m+k

Often, the memory span is called the CL. Sometimes, m is called the CL. Sometimes, ny above is called the
constraint span. In many situations, the CL is associated with the shift registers in different ways. For example,
in figure 6.12, the K = 4 means the total encoder memory; whereas K = 2 is the number of k-bit shift registers.

3. Finally, the code rate needs to be clarified. A convolutional encoder generates n encoded bits for each k
information bits, and r = k/n is called the code rate. Note, however, that for an information sequence of finite
length k -L, the corresponding code word has length n(L + m), where the final n - m outputs are generated after
the last nonzero information block has entered the encoder. In other words, an information sequence is
terminated with all-zero blocks in order to allow the encoder memory to clear. The block code rate is given by
kL/n(L + m), the ratio of the number of information bits to the length of the code word. If L >> m, then
L/(L + m) = 1, and the block code rate and the convolutional rate are approximately equal. If L were small, the
ratio kL/n(L + m), which is the effective rate of information transmission, would be reduced below the code
rate by a fractional amount
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Figure 6.12.—Encoder where two two-bit registers are used A
and corresponding notational ambiguity. k=2, m=3,CL =K,
K=4o0orK=2.

*CI
—

oo Sk

Figure 6.13.—Popular r = 1/2, K = 7 = (m + k) convolutional encoder.

m
L+m

called the fractional rate loss. The nm blocks of zeros following the last information block are called the tail or
flush bits.

4. Quite often, the memory span (m + k) is designated as K, the constraint length. For example, a very
popular r = 1/2, K = 7 encoder (fig. 6.13) means (n = 2, k = 1). Here, the CL refers to the number of input
bits (m + k= 6 + 1), or the memory span.

6.2 Other Representations

With the convolutional term, constraint length, and other ideas covered, the many alternative representations
for encoders can now be discussed. The example below summarizes the previous notions.

ExampLE 6.2

Consider an encoder with delay cells R; consisting of k subcells each (fig. 6.14). Often, the constraint length
is the number of delay cells i. Here, every n (equal to v) outputs depends on the present & (those in cell 1) and
(K—1) previous k-tuples. Then, the code can be described as (n.k,K), and the constraint span is (Klk) v.
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Figure 6.14.—General convolutional encoder (upper) and
specific K = 3, v = 2 example.

For simplicity, assume one-bit cells; then, an encoder could be as shown in the lower portion of figure 6.14.
Write the output 3-tuple at a particular shift as (v, vz, v3). Then,

=R
Va2 =R1$R2@R3
V3 =R1@R3

Let the input stream be u = ug,...,4, 4B, 4C;-.. and assume that uc is shifted into R;. Then, R; contains ug and
R3 contains uy and

Vi = Uc
\&) =uc@u3 @uA

vi=uc®uy

The next representation uses a delay operator D as follows: Define
1 1 1 2 1
gV(D)=gL + gD+ gD + -+ D"
2
g( )(D): 882) +g{2)D+g§2)D2 +"'+g$3)D'"
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For the connection vectors of the previous sections, this means that
g0 =(011)= ¢gV(D)=1+D*+ D’

7P =(1111)= g?D)=1+D+D* + D?

Define
g(D)=¢"(D?)+ Dg®(D?)
Then,
#(D) & u(D™ )g(D)
for
u=(10111)=1+ D? + D* + D*
Then,

V(D)=u(D"’)[(l+D4+D6)+D(1+D2 +D4+D6)]
=1+D+D>+D’ + D’ + D'+ D' + PP

after the multiplication and modulo-2 additions, where the exponents refer to the position in the sequence.
Recall from equation (6.12) that

v =(11,01,00,01,01,01,00,11)

Therefore, the above expression in D notation gives
v =(1101000101010011)

This is again just the polynomial representation for a bit stream.

The next representation is the “tree” for the encoder (fig. 6.15). The particular path taken through the tree is
determined by the input sequence. If a zero appears, an upward branch is taken. If a one appears, a downward
branch is taken. The output sequence for a given input sequence is read from the diagram as shown. For the
input sequence 1011, the output is 11 01 00 10.

The next representation is the state diagram. The state of the encoder is defined to be the bits in the shift
register with the following association. For the (2,1,3) code developed earlier (fig. 6.1), the states are labeled
by using the following rule: The set of states is denoted by

80281830018y _,

where the subscripts are the coefficients
Si L d bo b] b2""'bK—l
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(a)
o0 -
00
1 01
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01 11
11 —E
10
I L0 -
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_— 00
1i 11 1
m 01 1 o1
00
11 _—E
10 oo
10 10
9 01—
®) 01

Figure 6.15.—Encoder {a) and tree for encoder (b).

where the integer i is expanded as
i=by20 + b2 + 5,22+

For this example, K = 3 (total encoder memory). Then, eight states are possible S, S1, 52, 53, 54, S5, S6, and S7.
The state notation and register contents correspond as follows:

Binary K-tuple | State
000 A
001 S4
010 Sy
011 Se
100 S
101 Ss
110 S3
111 S,

The corresponding state diagram (fig. 6.16) has the following interpretation: If the encoder is in state S, for
example, a zero input causes an output of 11 and movement to state So, and a one input causes an output of 00
and movement to state Sj.

The trellis is a state diagram with a time axis, and that for the above state diagram is given in figure 6.17.
Each column of nodes in the trellis represents the state of the register before any input. If a register has K
stages, the first K — k bits in the register determine its state. Only K — k bits are needed, since the end & bits are
dumped out as the next k input bits occur. The trellis has 2Kk nodes in a column, and successive columns refer
to successive commutation times. Branches connecting nodes indicate the change of register state as a
particular input of k bits is shifted in and a commutation is performed. A branch must exist at each node for
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Figure 6.17.—Trellis diagram for state diagram of figure 6.16.

each possible k-bit input. If the register is in some initial state, not all nodes are possible until K — & bits have
been shifted in and the register is free of its initial condition. After Lk input bits, a distance of L columns has
been progressed into the trellis, producing Ln output symbols. The trellis for the (2,1,3) code under
consideration has eight rows of nodes, corresponding to the eight states S,....57. Each column of nodes
represents a time shift (when a commutation occurs). The dashed and solid lines represent paths taken for a one
or zero input. For example, the input sequence « = 111 (assuming that the register is in Sy state) takes three
dashed paths and winds up at state S;. The outputs are labeled so that the output sequence is 111001. A block
of zeros will sooner or later move the register back to state Sp; this is called flushing. For this code, three zeros
are needed to flush (clear) the encoder (to return to state So from any other state).

6.3 Properties and Structure of Convolutional Codes

Recall that the codes have several modes of representation. The “algebraic” forms include connection
pictorials, vectors, and polynomials; as well as generator matrices. The tree, state, and trellis diagrams are
geometrical formulations.

A rather academic point is that of a catastrophic encoder. Such an encoder can get hung up so that a long
string of ones produces, for example, three output ones followed by all zeros. If the three leading ones are
corrupted by the channel, the decoder can only assume that all zeros constitute the message; thus, a
theoretically arbitrary long sequence of errors results.
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Figure 6.18.—Example of catastrophic encoder.

EXAMPLE 6.3
The encoder in figure 6.18 is a catastrophic encoder. Such machines can be easily recognized by noting the
connection vectors. They will have a common multiple. Here,

gV =110-1+D

g® =101-1+D?

but

1+ D? =(1+ D)1+ D) =g (1+ D)

Thus,

)

loe
1
—
<+
o

and their common multiple is 1 + D. Next, consider a code where

g =1+D?+D?

g(z) =1+D+D*+D?
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Now, g(z)/g(” = 1 with a remainder of D. Since a remainder exists, no common factor is present; hence, the
encoder is not catastrophic. In general, if the ratio equals D Cfor £2 0, the code is not catastrophic. The state
diagram reveals catastrophic behavior when a self-loop of zero weight (that from state d in fig. 6.18) exists.
This zero-weight self-loop cannot be in either “end” state in the diagram (here, a or ¢). In this diagram, a and
e represent the same state. Systematic codes are never catastrophic.

A

6.4 Distance Properties

Let A and B be two code words of length i branches in a trellis. The Hamming distance is as before
dy (A, B)=w(A@® B)

Define the ith-order column distance function d,.(i) as the minimum dg between all pairs of code words of
length i branches that differ in their first branch of the code tree. Another way of saying this is that d.(i) is the
minimum-weight code word over the first (i + 1) time units whose initial information block is nonzero. It
depends on the first n(i + 1) columns of G (for (n,k) code); hence, the word “column” in the definition. Two
special distances are defined in terms of the column distance function as follows:

drgin =d(i=m)

dree = dc(i — o)

The minimurmn distance dpy, occurs when i = m, the memory order; whereas dy. is for arbitrarily long paths.
Quite often, dy;y = dfree- The distance profile is the set of distances

d=[d.(1).d.(2),d.(3)....]

In general, these distances are found by searching the trellis. An optimum distance code has a dp;j,, that is
greater than or equal to the dp, of any other code with the same constraint length (memory order). An
optimum free distance code has a similar property with dfe,.

The next measure is the determination of the weight distribution function A;. Here, A; is the number of code
words of weight i (the number of branches is not important here). This set {A;} is found from the state diagram
as shown next.

The error comrection power in a block code sense would say

)
2
but this is a rather coarse measure. Observe for future reference that a tree repeats itself after K branchings. In
the trellis, there are 2X~! nodes for 25! states. For a given register, the code structure depends on the taps.

Nonsystematic codes have larger dg., but systematic ones are less prone to the accumulation of errors.
The final topic for this chapter is the generating function T(x) for a code. It is defined as

T(x)= z At

where A; is the number of code words of length i. The function is derived by studying the state diagram for a
specific code. Problem 10.5 of Lin and Costello (1983) is used to describe the procedure. The code is
described as (3,1,2) with encoder diagram shown in figure 6.19. The connection vectors are
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Figure 6.19.—Encoder (a) and state diagram (b) for (3,1,2) code.

gD =10, gP=001, g¥=(111)

From the encoder diagram the state diagram can be drawn as shown in the lower part of the figure. Next, the
S state is split into two parts as shown in figure 6.20, which constitutes the modified state diagram. Added to
the branches are branch gain measures x', where i is the weight of the n encoded bits on that branch. The Sg
state is separated to delineate paths that “reemerge” to that state after passing through several intermediate
states. If a self-loop is attached to the Sp state, it is dropped at this step. From the modified state diagram, the
generating function can be determined by using signal flow graph procedures. The Sy states on the left and

right are called the initial and final states of the graph, respectively. The terms needed are defined as

1. Forward path—A path connecting the initial and final states that does not go through any state more than
once

2. Path gain—The product of the branch gains along a path F;

3. Loop—A closed path starting at any state and returning to that state without going through any other state
twice. A set of loops is “nontouching” if no state belongs to more than one loop in the set. Define

4=1-3G +3.CiCe =Y cC,Cpto
i ik

top

where 2, C; is the sum of the loop gains, Y C;Cy is the product of the loop gains of two nontouching

1 . .
loops summed over all pairs of nomouchiné loops, tz C¢C,Cp is the product of the loop gains of three
o.p

nontouching loops summed over all triples of nontoﬁéhing loops, etc. Next, define 4, which is exactly
like A but only for that portion of the graph not touching the ith forward path. That is, all states along
the ith forward path, together with all branches connected to these states, are removed from the graph
when computing A ;. Mason’s formula for graphs gives the generating function as

2 Fi4;

T(x) =

A
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Figure 6.20.—Modified state diagram (a) of figure 6.19(b) and
path 2 and its subgraph (b).

where the sum in the numerator is over all forward paths. First, calculate 4, and this requires counting all
loops. Figure 6.20(a) shows three loops, which are listed here along with their path gains.

Loop |
1 58, G =x
2 |[5558 C=x*
3 | 5585 CG=x

There is only one set of nontouching loops, {loop 1, loop 3}, and the product of their gains is C;C3 = x* Thus,
A is found as

A=1—(x+x4+Jt3)+x4 =l-x-x

Now, to find 4}, there are two forward paths

Forward path |
1 505,5:5,8 K =1
2 505158y FB=x

where the gains are also found. Because path 1 touches all states, its subgraph contains no states; thus,

A]=1

Because path 2 does not touch state .3, its subgraph is that shown in figure 6.20(b). Only one loop exists here,
with gain = x; thus,
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Figure 6.21.—Augmented state diagram of figure 6.20.

Finally, the transfer function is

xB1exT(1-x) x’

3 =x7+x8+x9+2x10+3x”+4x12+

T(x)=

1-x—x l-x—-x

with the following interpretation: The coefficients of x7, %8, and x° are all unity and have one code word each
with weights 7, 8, and 9. Continuing in this manner, two words with weight 10, three with weight 11, etc.

Next, the augmented state diagram is made (fig. 6.21). Here, the branches are given added weighting. The
exponent of y is the weight of the output code word, and each branch is given the factor z. Repeating the
previous calculation gives

Loop |
1 | 8583 G =xyz

2 SlS3525‘ Cz = X4y223
3555 Cy= xjyz2

The pair of loops has gain Cy C3 = £ y2 2; thus,

4=1 —(xyz + x“yzz3 + x3yzz)+ x4yzz3 =1-xyz— x3y12

The forward path 1is Fy =xt y2 2% then, Ay = 1. The forward path 2 is Fp = x! y1 2 then, A, =1-xyz The
generating function is therefore

Fa
T(x.9)= 2w
e 4 1-xyz— x3yz

5 10,46

=x"yz? +x8y%z% + x9y3zs+x10yzz +x7y'z +2x'1y35

2

+rl1y577 435125477 4 212y5 58 4

with the following interpretation: The first term means that the code word with weight 7 has output sequence
with weight 1 (y exponent) and length of 3 branches (z exponent). The other terms have similar interpretations.
This completes the discussion of convolutional encoders.
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Chapter 7
Decoding of Convolutional Codes

The decoding of convolutional codes can be divided into three basic types: Viterbi, sequential, and threshold.
Viterbi and sequential are similar in that they search through the trellis or tree; whereas threshold can be used
for both block and convolutional codes. Threshold is also associated with the terms “majority logic,”
“feedback,” and “definite decoding.” Historically, sequential came first, but it is simpler to discuss Viterbi’s
algorithm first.

7.1 Viterbi’s Algorithm

The idea in Viterbi’s algorithm is to select a string of received bits and compare them with all possible
strings obtained by tracing all possible paths through the trellis. For a sufficiently long string and not many
€ITOrS, it seems reasonable to assume that one path through the trellis should agree rather closely with the
received string. In other words, the decoder has properly reproduced the sequence of states that the encoder
performed. The few bits of disagreement are the channel-induced errors. Experience has shown that the correct,
or most likely path, becomes evident after about five constraint lengths through the trellis. The scheme is
therefore to compare and store all possible paths for a set number of steps through the trellis and then select the
“survivor,” the most likely path. Some storage can be saved by closely studying the properties of paths through
the trellis. To study these effects, a metric is defined as follows: Let ¥ be the transmitted code word and F be
the received sequence. For the DMC with channel transition probability p(r,~ | v,~),

N-1
p(7 19)=]](n 1 v)
i=0

V=(V0,V],...,VN_]), F=(r0,rl,...,rN__1)

Then, taking the log (to reduce to sums) gives
N-1
log p(7 | ¥)= Y log p(7; | v;)
i=0

This is the log-likelihood function, and it is the “metric” associated with the path v. The notation of Lin and
Costello (1983) uses

M(F | 7)Alog p(F | ¥)
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whereas others use T'(7 | ¥) =log p(F | ¥). The metric for each segment along the path is

M(r; | v;)=log p(r; | vi)
and is called a “branch metric.” Thus, the path metric is the sum of all branches:

N-1
M(7 | 9)= 3 M(r; | v)

i=0
A partial path metric for the first j branches of a path is

Jj=1

M7 | a]}.):XM(r,- )

For the binary symmetric channel with transition probability p,
log p(F | 7)=log [p*(1-p)" ]
where z = d(F, v)is the Hamming distance between 7 and v. Thus,
M(7 | 7)=N log(1-p)-z log(l—;-—p] =-A-Bz

where A and B are positive constants (p < 0.5). Therefore, minimizing the Hamming distance maximizes the
metric.

The basis of Viterbi decoding is the following observation: If any two paths in the trellis merge to a single
state, one of them can always be eliminated in the search for the optimum path. The path with the smaller net
metric at this point can be dropped because of the Markov nature of the encoder states. That is, the present state
summarizes the encoder history in the sense that previous states cannot affect future states or future output
branches. If both paths have the same metric at the merging state, either one can be eliminated arbitrarily
without altering the outcome. Thus, “ties” cause no problems. In Lin and Costello (1983), the metric is chosen
as

N-1

metric = ZCZ[log p(r | vi)+ Cl]
i=0

to bias the metrics for ease of computation. The constants C; and C, are chosen appropriately.

The storage required at each step in the trellis is straightforward, although the notation is not. Essentially, one
of the two paths entering a node is stored as the “survivor.” The notation variation between authors is the
indexing from either zero or one in the counting. In Lin and Costello (1983), there are 2K states at a step in the
trellis; others use 25!, Thus, the number of survivors is either 2K or 251 per level, or step, within the trellis.
If Lis the constraint length, 2kL metrics are computed at each node, so that 2k-1) metrics and surviving
sequences must be stored. Each sequence is about SkL bits long before the “final survivor” is selected. Thus,
Viterbi requires L < 10. The complexity goes as 2K while the cost goes as 2, where v is the number of
modulo-2 adders in the encoder. The scheme is good for hard- or soft-decision demodulators. If one starts and
stops at the zero, or topmost, node of the trellis, the transient in getting into or out of the trellis proper is called
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the input transient and output flush. A truncated algorithm does not use the tail or flush bits. Tail-biting
preloads its trailing bits from the zero start node to enter the full trellis. It then starts decoding after the tail is
loaded.

7.2 Error Performance Bounds

As for block codes, the probabilities of sequence (string or path) errors is first found for error performance
bounds. Then, the bit errors are bounded by terms involving the raw channel transition probability. Recall for
blocks that a syndrome indicated that a block was in error and then the bits were processed. Here, no flag
(syndrome) is found; but the sequence closest in Hamming distance consistent with the possible paths through
the trellis is chosen. Thus, the error counting is again not extremely crisp. If the generator function is computed
(impractical in many cases), then for hard decisions (binary symmetric channel),

Pblock = Pstring < T(x)

x=1/4p(1-p)
1 3T (x, y)

c K — ————
pbll - k 8y y=1

x=y4p(1-p)

For soft decisions,

Polock < T(x)'

x=\J4p(1-p)

1 JT(xy
Poit < _—(_)
2k oy
y:
—e~"Eb/No
In general, the coding gain is bounded by
7 dfree < gain < rdg,,

The Viterbi algorithm is used for raw bit error rates in the range 10~ to 1075 or better. The decision depth is
the number of steps into the trellis before a decision is made. When T(x,y) is not feasible, use

1 diee \diree /2
pbitzz dﬁeez free P free

where B, is the total number of ones on all paths of weight dfe,, that is, the number of dotted branches on
all these paths.

The Viterbi algorithm may be summarized as follows:

1. At time ¢, find the path metric for each path entering each state by adding the path metric of the survivor
at time ¢ — 1 to the most recent branch metric.
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2. For each state of time t, choose the path with the maximum metric as the survivor.
3. Store the state sequence and the path metric for the survivor at each state.
4. Increment the time 7 and repeat steps 1 to 3.

It is necessary to truncate the survivors to some reasonable length, called the decision depth . At time £, a
decision is forced at time ¢ — § by using some criterion, which may be found by trial and error in some cases.
As time progresses, it may be necessary to renormalize the metrics.

ExamrLE 7.1
Consider the trellis diagram for a particular (3,1,2) code (fig. 7.1). The bold line is a possible input path, and
the corresponding input and output sequences u and v to the encoder are

u=10011010
v=111101011111010110100101

Sy
32

s, 1[1] 001 001 001 001 001 001
Figure 7.1.—Trellis diagram and arbitrary path through it.

Suppose the received sequence is

R=111101111111000110101101
T T T

where the errors are denoted by arrows. The decoding steps can be summarized as follows: To simplify
matters, the Hamming distance between possible paths is used to select survivors. As stated earlier, real
decoders accumulate a metric, but using the closest path in Hamming distance is equivalent (and easier) for

example purposes.
Step 1: Figure 7.2 shows the paths that are needed to get past the transient and enter the complete trellis.

These four paths terminate at step 2 in the trellis, and their Hamming distances from the received path are
Path 1 input 00, output 000000, H=35
Path 2 input 01, output 000 111, H=4
Path 3 input 10, output 111 101, H=0

Path4 input 11, output 111010, H=3
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——() — [npm

S3 ED 001

Figure 7.2.—Set of paths required in input transient phase
(before complete trellis is available).

To01~ 001 001 o001 001

Step 2: Next, each path is extended from its node at step 2. For example, path 1 is extended to the
columnn 3 nodes with inputs 0 or 1 and with outputs 000 and 111, respectively. Call these paths 1a and 1b. Their

Hamming distances from the received sequence are

Path 1a

Path 1b

H=5+3=8

H=5+0=5

Since path 1b is closer in Hamming distance, it is the “survivor.” The extensions of the other paths are as
follows, where the “a” path is the uppermost one from a particular node:

Path 2a

Path 2b

Path 3a

Path 3b

Path 4a

Path 4b

H=4+1=5
H=4+4+2=6
H=0+1=1
H=0+2=2
H=3+1=4
H=3+2=5

Therefore, the survivors are paths 1b, 2a, 3a, and 4a (fig. 7.3). To simplify notation at this point, drop the letter
designation on the paths and call them just 1, 2, 3, and 4. Now, extending the paths to nodes in column 4,
where again the “a” and “b” extensions are used, gives

Path 1a

Path 1b

Path 2a

Path 2b

Path 3a

H=5+1=6
H=5+2=7
H=5+1=6
H=5+2=7
H=1+3=4
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Path3b H=1+0=1

Pathda H=4+1=5

Path4db H=4+2=6

so
S
52

s [1]1] 001 001 001 001 001 001
Figure 7.3.—Survivors at column 3 in trellis.

Then, the survivors are 1a, 2a, 3b, and 4a, with corresponding Hamming distances (fig. 7.4):
Pathla H=6
Path2a H=6

Path3b H=1

Path4a H=35

so
Sy
32

s; (1] 001 001 001 001 001 001
Figure 7.4.—Survivors at column 4.
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The next extension yields the survivors at column 5 (fig. 7.5):

Pathib H

it
=

Path2a H

Il
[}

Path3b H

]
()

Path4a H

Il
¥

SsEE] 001 001 001 001 001 001
Figure 7.5.~Survivors at column 5.

The next extension gives the survivors at column 6 (fig. 7.6):

Path1b H

]
-]

Path2b H

1
2

Path3a H

1
[\

Path4b H

]
[«

so [o]o]
2
s, [o]]
ss 1]

Figure 7.6.—Survivors at column 6.
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The next step gives the survivors at column 7 (fig. 7.7):

Pathlb H=9
Path 2a =7
Path3b H=3
Path4a H=6

001
Figure 7.7.—Survivors at column 7.

Note that path 3b differs from the received sequence by only three places and is the best choice for the
decoder to make. The next closest path has weight 6, which is much farther away. If the decoder were to make
the decision to now drop all contenders, correct decoding has occurred.

A

Michelson and Levesque (1985) gives some tables of good codes for use with Viterbi’s algorithm. Their
notation corresponds to that used earlier as

(n.k,m) & (v, b,k)

Their notation is (bk) stages, b bit