
ASA-C-?03560

The Galley Parallel File System

Nils Nieuwejaar, David Kotz

{nils, dfk}@cs, dartmouth, edu

Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510

Most current multiprocessor file systems are designed to use multiple disks

in parallel, using the high aggregate bandwidth to meet the growing I/O

requirements of parallel scientific applications. Many multiprocessor file

systems provide applications with a conventional Unix-like interface, al-

lowing the application to access multiple disks transparently. This inter-

face conceals the parallelism within the file system, increasing the ease

of programmability, but making it difficult or impossible for sophisti-

cated programmers and libraries to use knowledge about their I/O needs

to exploit that parallelism. In addition to providing an insufficient inter-

face, mo_t current multiprocessor file systems are optimized for a different

workload than they are being asked to support. We introduce Galley, a

new parallel file system that is intended to efficiently support realistic

scientific multiprocessor workloads. We discuss Galley's file structure and

application interface, as well as the performance advantages offered by

that interface.

Key words: Parallel I/O. Multiprocessor file system. Performance evaluation. IBM

SP-2. Scientific Computing.

1 Introduction

While the speed of most components of massively parallel computers have been

steadily increasing for years, the I/O subsystem has not been keeping pace.

Hardware limitations are one reason for the difference in the rates of perfor-

mance increase, but the slow development of new multiprocessor file systems

is also to blame. One of the primary reasons that multiprocessor file-system

performance has not improved at the same rate as other aspects of multi-

processors is that, until recently, there has been limited information available

* This research was funded by NSF under grant number CCR-9404919 and by

NASA Ames under agreement numbers NCC 2-849 and NAG 2-936.

Preprint submitted to Elsevier Preprint
To appear in ParallelComputing, 1997.
Available at URLftp://ftp.cs.dartmouth.edu/kotz/papers/nieuwejaar:jgalley.ps.Z

28 August 1996

JI N2 4 1997

about how applications were using existing multiprocessor file systems and

how programmers would like to use future file systems.

Several recent analyses of production file-system workloads on multiprocessors

running primarily scientific applications show that many of the assumptions

that guided the development of most multiprocessor file systems were incor-

rect [12,18,25]. It was generally assumed that scientific applications designed

to run on a multiprocessor would behave in the same fashion as scientific ap-

plications designed to run on sequential and vector supercomputers: accessing

large files in large, consecutive chunks [23,24,15,16]. Studies of two different

multiprocessor file-system workloads, running a variety of applications in a

variety of scientific domains, on two architectures, under both data-parallel

and control-parallel programming models, show that many applications make

many small, regular, but non-consecutive requests to the file system [20]. These

studies suggest that the workload that most multiprocessor file systems were

optimized for is very different than the workloads they are actually being asked

to serve.

Using the results from these two workload characterizations and from perfor-

mance evaluations of existing multiprocessor file systems, we have developed

a new multiprocessor file system called Galley. Galley is designed to deliver

high performance to a variety of parallel, scientific applications running on

multiprocessors with realistic workloads. Rather than attempting to design a

file system that is intended to directly meet the specific needs of every user, we

have designed a simpler, more general system that lends itself to supporting a

wide variety of libraries, each of which should be designed to meet the needs

of a specific community of users.

The remainder of this paper is organized as follows. In Section 2 we describe

the specific goals Galley was designed to satisfy. In Section 3 we discuss a

new. three-dimensional way to structure files in a multiprocessor file system.

Section 4 describes the design and current implementation of Galley. Section 5

discusses the interface available to applications that intend to use Galley, and

Section 6 shows how Galley's interface can improve an application's perfor-

mance. In Section 7 we discuss several other multiprocessor file systems, and

finally in Section 8 we summarize and describe our future plans.

2 Design Goals

Most current multiprocessor file-system designs are based primarily on hy-

potheses about how parallel scientific applications would use a file system.

Galley's design is the result of examining how parallel scientific applications

actually use existing file systems. Accordingly, Galley is designed to satisfy

2

severalgoals:

- Allow applications and libraries to explicitly control parallelism in file ac-
cess.

- Efficiently handle a.varietyof accesssizes and patterns.

- Be flexible enough to support a wide variety of interfaces and policies, im-

plemented in libraries.

- Allow easy and efficient implementations of libraries.

- Be scalable enough to run well on multiprocessors with dozens or hundreds

of nodes.

- Minimize memory and performance overhead.

Galley is targeted at distributed memory, MIMD machines such as IBM's

SP-2 or Intel's Paragon.

3 File Structure

Most existing multiprocessor file systems use a Unix-like file model [3,23,15].

Under this model, a file is seen as an addressable, linear sequence of bytes. Ap-

plications can issue requests to read or write data contiguous subranges of that

sequence of bytes. A parallel file system typically declusters files (i.e., scat-

ters the blocks of each file across multiple disks), allowing parallel access to

the file. This parallel access reduces the effect of the bottleneck imposed by

the relatively slow disk speed. Although the file is actually scattered across

many disks, the underlying parallel structure of the file is hidden from the

application.

Galley uses a more complex file model that allows greater flexibility, which

should lead to higher performance.

3.1 Subfiles

The linear file model offered by most multiprocessor file systems can give good

performance when the request size generated by the application is larger than

the declustering unit size, as a single request will involve data from multiple

disks. Under these conditions, the file system can access multiple disks in

parallel, delivering higher bandwidth to the application, and possibly hiding

any latency caused by disk seeks. The drawback of this approach is that most

multiprocessor file systems use a declustering unit size measured in kilobytes

(e.g., 4 KB in Intel's CFS [23]), but our workload characterization studies

show that the typical request size in a parallel application is much smaller:

frequently under 200 bytes [20]. This disparity between the request size and

3

the declusteringunit sizemeansthat most of the individual requestsgenerated
by parallel applications arenot being executedin parallel. In the worst case,
the compute processorsin a parallel application may issuetheir requestsin
such a way that all of an application's processesmay first attempt to access
disk 0 simultaneously,then all attempt to accessdisk 1 simultaneously,and
SO on.

Another drawback of the linear tile model is that a dataset may have an

efficient, parallel mapping onto multiple disks that is not easily captured by

the standard declustering scheme. One such example is the two-dimensional,

cyclically-shifted block layout scheme for matrices, shown in Figure 1, which

was designed for SOLAR, a portable, out-of-core linear-algebra library [31].

This data layout is intended to efficiently support a wide variety of out-of-

core algorithms. In particular, it allows blocks of rows and columns to be

transferred efficiently, as well as square or nearly-square submatrices.

123456123456

456123456123

312645312645

6i45312645312

231564231564

564i231564231

Fig. 1. An example of a 2-dimensional, cyclically-shifted block layout, as

described in [31]. In this example there are 6 disks, logically arranged into a

2-by-3 grid, and a 6-by-12 block matrix. The number in each square indicates
the disk on which that block is stored.

To avoid the limitations of the linear tile model, Galley does not impose a

declustering strategy on an application's data. Instead, Galley provides appli-

cations with the ability to fully control this declustering according to their own

needs. This control is particularly important when implementing I/O-optimal

algorithms [8]. Applications are also able to explicitly indicate which disk they

wish to access in each request. To allow this behavior, files are composed of

one or more subfiles, which may be directly addressed by the application. Each

subtile resides entirely on a single disk, and no disk contains more than one

subtile from any file. The application may choose how many subtiles a file con-

tains when the file is created. The number of subfiles remains fixed throughout

the life of the file.

The use of subfiles gives applications the ability both to control how the data is

distributed across the disks, and to control the degree of parallelism exercised

on every subsequent access. Of course, many application programmers will

not want to handle the low-level details of data declustering, so we anticipate

that most end-users will use a user-level library that provides an appropriate

declusteringstrategy.

3.2 Forks

Each subtile in Galley is structured as a collection of one or more independent

forks. A fork is a named, addressable, linear sequence of bytes, similar to a
traditional Unix file. Unlike the number of subfiles in a file, the number of

forks in a subtile is not fixed; libraries and applications may add forks to,

or remove forks from, a subtile at any time. The final, three-dimensional file

structure is illustrated in Figure 2. There is no requirement that all subfiles

have the same number of forks, or that all forks have the same size.

File I

Subfile

Fork _-'-I Data
I

Fork F--__

Fork
Fork
Fork _--_l oata J

Subtile Subtile

IOP 0 IOP 1 IOP 2

Fig. 2. Three-dimensional structure of files in the Galley File System. The portion

of the file residing on disk 0 is shown in greater detail than the portions on the

other two disks.

The use of forks allows further application-defined structuring. For example,

if an application represents a physical space with two matrices, one containing

temperatures and other pressures, the matrices could be stored in the same

file (perhaps declustered across multiple subfiles) but in different forks. In

this way, related information is stored logically together but may be accessed

independently.

While typical application programmers may find forks helpful, they are most

likely to be useful when implementing libraries. In addition to storing data

in the traditional sense, many libraries also need to store persistent, library-

specific 'metadata' independently of the data proper. One example of such

a library would be a compression library similar to that described in [28],

which compresses a data file in multiple independent chunks. Such a library

5

could store the compressed data chunks in one fork and index information in

another.

Another instance where this type of file structure may be useful is in the

problem of genome-sequence comparison. This problem requires searching a

large database to find approximate matches between strings [1]. The raw data-

base used in [1] contained thousands of genetic sequences, each of which was

composed of hundreds or thousands of bases. To reduce the amount of time

required to identify potential matches, the authors constructed an index of

the database that was specific to their needs. Under Galley, this index could

be stored in one fork, while the database itself could be stored in a second

fork.

A final example of the use of forks is Stream*, a parallel file abstraction for the

data-parallel language C* [17]. Briefly, Stream* divides a file into three distinct

segments, each of which corresponds to a particular set of access semantics.

While the current implementation of Stream* stores all the segments in a

single file, one could use a different fork for each segment. In addition to the

raw data, Stream* maintains several kinds of metadata, which are currently

stored in three different files: .recta, .first, and .dir. In a Galley-based

implementation of Stream*, it would be natural to store this metadata in

separate forks rather than separate files.

Users of linear-file based file systems would generally use multiple files in

the cases described above. Although that is certainly an option in Galley,

forks provide two significant advantages. First, forks are lighter-weight entities

than files. Second, forks allow libraries to hide metadata information safely.

In a traditional file system, a library would either have to store its metadata

directly in the file itself or in separate files. Storing the metadata in the data

file has the side effect of making it difficult for other libraries and applications

to get at the raw data. Storing the metadata separately from the data makes

it easy for the data to become separated from the metadata, for example, if

one of the files is moved or deleted. This approach can also lead to namespace

collisions, as with two Stream* files each wanting to store their metadata in

the .meta, .first, and .dir files.

4 System Structure

The Galley parallel file system is structured as a set of clients and servers. This

model is based on the typical multiprocessor architecture that dedicates some

processors to computation and dedicates the rest to I/O. In this system, the

Compute Processors (CPs) function as clients and the I/0 Processors (IOPs)

act as servers.

6

4.1 Compute Processors

A client in Galley is simply any user application that has been linked with

the Galley run-time library, and which runs on a compute processor. The

run-time library receives file-system requests from the application, translates

them into lower-level requests, and passes them (as messages) directly to the

appropriate servers, running on I/O processors. The run-time library then

handles the transfer of data between the I/O processors and the compute

node's memory.

As far as Galley is concerned, every compute processor in an application is

completely independent of every other compute processor. Indeed, Galley does

not even assume that one compute processor is even aware of the existence

of other compute processors. This independence means that Galley does not

impose any communication requirements on a user's application. As a result,

applications may use whichever communication software (e.g., MPI, PVM,

P4) is most suitable to the given problem.

Like most multiprocessor file systems, Galley offers both blocking and non-

blocking I/O. To simplify the implementation, and to avoid binding Galley

too tightly to a single architecture, Galley originally used multithreading to

implement non-blocking I/O. Unfortunately, most of the major communica-

tions packages cannot function in a multithreaded environment. As a result,

Galley is currently forced to use signals to implement non-blocking I/O, us-

ing a TCP/IP communications substrate. If support for multithreaded en-

vironments ever becomes commonplace in message-passing packages, we will

reexamine this decision.

Although applications may interact directly with Galley's interface, we expect

that most applications will use a higher-level library or language layered on

top of the Galley run-time library. One such library implements a Unix-like

file model, which should reduce the effort required to port legacy applications

to Galley [21]. Other libraries that have been implemented on top of Galley

provide Panda [27,30] and Vesta [5] interfaces, as well as support for ViC*, a

variant of C* designed for out-of-core computations [6,7].

4.2 11/0 Processors

Galley's I/O servers 0_re composed of several functional units, which are de-

scribed in detail below. A high-level view of the internal structure of an IOP,

which shows the paths of communication between the units, is shown in Fig-

ure 3. Each functional unit is implemented as a separate thread. Furthermore,

each IOP also has one thread designated to handle incoming I/O requests

for each compute processor. This multithreading makes it easy for an IOP to

service requests from many clients simultaneously.

Network

Idle CP Threads

iO, ko agerCa heM agerI

Fig. 3. High-level view of the internal structure of a Galley I/O Processor,

showing the communication paths between the functional units. In this ex-

ample, there two active requests waiting for data from the buffer cache or

from disk, and three idle CP Threads waiting for new requests to arrive.

While one potential concern is that this thread-per-CP design may limit the

scalability of the system, we have not observed such a limitation in the per-

formance tests shown in Section 6. One may reasonably assume that a thread

that is idle (i.e., not actively handling a request) is not likely to noticeably

affect the performance of an IOP. By the time the number of active threads on

a single IOP becomes great enough to hinder performance, the IOP will most

likely be overloaded at the disk, the network interface, or the buffer cache,

and the effect of the number of threads will be minor relative to these other

factors. We intend to explore this issue further as we port Galley to different

architectures, which may offer different levels of thread support.

4.2.1 CP Threads

CP Threads remain idle until a request arrives from the corresponding CP.

After being awakened to service a new request, a CP Thread creates a list of

all the disk blocks that will be required to satisfy the request. The CP Thread

then passes the full list of blocks to the CacheManager, and waits on a queue

of buffers returned by the CacheManager and DiskManager. As a CP Thread

receives buffers on its queue, it handles the transfer of data between its CP

and those buffers. When a CP Thread completes the transfer of data to or

from a buffer, it decreases that buffer's reference count, and handles the next

buffer in the queue. When the whole request has been satisfied, or if it fails in

the middle, the thread passes a success or failure message back to its CP, and

idles until another request arrives.

The order in which a fork's blocks are placed on the CP Thread's buffer queue

is determined by which blocks are present in the buffer cache and the order in

which that fork's blocks are laid out on disk. As a result, it is not possible for

Galley's client-side run-time library to know in advance the order in which an

IOP will satisfy the individual pieces of a request. So, when reading, before

the IOP can send data to the CP, it must first send a message indicating what

data will be sent. Similarly, when writing, the IOP must send a message to the

CP indicating which portion of the data the IOP is ready to receive. When

writing, this approach is somewhat unusual in that the IOP is essentially

'pulling' the data from the CP, rather than the traditional model, where the

CP 'pushes' the data to the lOP.

There is a further complication in transferring data between CPs and IOPs:

packing. Rather than sending lots of small packets across the network, when

possible Galley packs multiple small chunks of data into a larger packet, and

sends the larger packet when it is full. This packing reduces the aggregate

latency, and increases the effective data-transfer bandwidth. In the current

implementation, the list of data chunks is precomputed on the CP, and the

whole list is sent to the IOP. On our testbed systems, the speed of the network

relative to the speed of the processors is high enough that sending the list

across the network makes more sense than computing the list on both the

CPs and the lOPs.

For simplicity, within a single packet the IOP will only pack chunks in the

order they appear in the chunk list. If an out-of-order block is placed on a CP

Thread's queue, the current packet is flushed, even if it is not full, and a new

packet is started. An early implementation of Galley supported out-of-order

packing within a packet, but that approach required that a fairly large packet

of 'control' data be sent to the CP with each flushed packet. The current

implementation is less flexible, but appears to have higher performance on

our testbeds. On a system with a higher-bandwidth, lower-latency network,

out-of-order packing might be more efficient, as the cost of the extra control

data would be reduced.

9

4.2.2 CacheManager

Each IOP has a buffer cache that is maintained by the CacheManager. In ad-

dition to deciding which blocks are kept in the buffer, the CacheManager does

all the work involved in locating blocks in the buffer cache for CP Threads.

To perform these lookups, the CacheManager maintains a separate list of disk

blocks requested by each CP Thread. When the CacheManager has outstand-

ing request lists from multiple threads, it services requests from each list in

round-robin order. This round-robin approach is an attempt to provide fair

service to each requesting CP.

The CacheManager maintains a global Least-Recently-Used list of all the

blocks resident in the cache. When a new block is to be brought into the

cache, this list is used to determine which block is to be replaced. Providing

applications with more control over cache policies is one area of ongoing work.

Rather than performing lookups by scanning through the entire LRU list, for

efficiency the CacheManager also maintains a hash table, containing a list of

all the blocks in the cache. For each disk block requested, the CacheManager

searches its hash table of resident blocks. If the block is found, its reference

count is increased, and a pointer to that buffer is added to the requesting

thread's ready queue. If the block is not resident in the cache, the CacheM-

anager finds the first block in the LRU list with a reference count of 0, and

schedules it to be replaced by the requested block. The buffer is then marked

'not ready', and a request is issued to the DiskManager to write out the old

block (if necessary), and to read the new block into the buffer.

4.2.3 DiskManager

The DiskManager is responsible for actually reading data from and writing

data to disk. To increase portability, Galley does not use a system-specific low-

level driver to directly access the disk. Instead, Galley relies on the underlying

system (presumably Unix) to provide such services. Galley's DiskManager

has been implemented to use raw devices, Unix files, or simulated devices as

"disks". Galley's disk-handling primitives are sufficiently simple that modi-

fying the DiskManager to access a device directly through a low-level device

driver is likely to be a trivial task.

The DiskManager maintains a list of blocks that the CacheManager has re-

quested to be read or written. As new requests arrive from the CacheManager,

they are placed into the list according to the disk scheduling algorithm. The

DiskManager currently uses a Cyclical Scan algorithm [29]. When using either

simulated disks or raw devices, this disk scheduling helps deliver high perfor-

mance. When the underlying storage medium is a Unix file, the layout of that

file on disk is unrelated to the layout of data within Galley's file system, so

10

the DiskManager's scheduling is less likely to help performance.

When a block has been read from disk, the DiskManager updates the cache

status of that block's buffer from 'not ready' to 'ready', increases its reference

count, and adds it to the requesting thread's ready queue.

Galley's DiskManager does not attempt to prefetch data for two reasons. First,

indiscriminate prefetching can cause thrashing in the buffer cache [22]. Second,

prefetching is based on the assumption that the system can intelligently guess

what an application is going to request next. Using the higher-level requests

described below, there is frequently no need for Galley to make guesses about

an application's behavior; the application is able to explicitly provide that
information to each IOP.

5 Data Access Interface

The standard Unix interface provides only simple primitives for accessing the

data in files. These primitives are limited to read()ing and wr±te()ing consec-

utive regions of a file. As discussed above, recent studies show that these primi-
tives are not sufficient to meet the needs of many parallel applications [18,20].

Specifically, parallel scientific applications frequently make many small re-

quests to a file, with strided access patterns.

We define two types of strided patterns. A simple-strided access pattern is one

in which all the requests are the same size, and there is a constant distance

between the beginning of one request and the beginning of the next. A group

of requests that form a strided access pattern is called a strided segment. A

nested-strided access pattern is similar to a simple-strided pattern, but rather

than repeating a single request at regular intervals, the application repeats

either a simple-strided or nested-strided segment at regular intervals. Studies

show that both simple-strided and nested-strided patterns are common in

parallel, scientific applications [18,20].

Galley provides three interfaces that allow applications to explicitly make

regular, structured requests such as those described above, as well as one

interface for unstructured requests. These interfaces allow the file system to

combine many small requests into a single, larger request, which can lead to

improved performance in two ways. First, reducing the number of requests

can lower the aggregate latency costs, particularly for those applications that

issue thousands or millions of tiny requests. Second, providing the file system

with this level of information allows it to make intelligent disk-scheduling

decisions, leading to fewer disk-head seeks, and to better utilization of the

disks' on-board caches.

11

The higher-level interfacesoffered by Galley are summarizedbelow. These
interfacesaredescribedin greaterdetail, andexamplesareprovided, in [18,21].
Note that eachrequestaccessesdata from a singlefork; Galley hasno notion
of a file-level read or write request.

5. I Simple-strided Requests

gfs_read_strided(int rid, void *bur, long offset, long rec_size,

long f_stride, long m_stride, int quant)

Beginning at offset in the open fork indicated by rid, the file system will read

quant records, of rec_size bytes each. The offset of each record is f_stride bytes

greater than that of the previous record. The records are stored in memory

beginning at buf, and the offset into the buffer is changed by m_stride bytes

after each record is transferred. Note that either the file stride (f_stride) or

the memory stride (m_stride) may be negative. The call returns the number

of bytes transferred.

When re_stride is equal to rec_size, data will be gathered from disk, and stored

contiguously in memory. When f_stride is equal to rec_size, data will be read

from a contiguous region of a file, and scattered in memory. It is also possi-

ble for both re_stride and f_stride to be different than rec_size, and possibly

different than each other.

Naturally, there is a corresponding gfs_write_strided() call.

5.2 Nested-strided Requests

gfs_read_nested(int rid, void *bur, long offset, long rec_size,

struct stride *vec, int levels)

The vec is a pointer to an array of (f_stride, re_stride, quantity) triples listed

from the innermost level of nesting to the outermost. The number of levels of

nesting is indicated by levels.

5.3 Nested-batched requests

gfs_read_batched(int rid, void *buf, struct gfs_batch *vec, int quant);

12

While wefound that mostof the small requestsin the observedworkloadswere
part of either simple-stridedor nested-stridedpatterns, theremay well beap-
plications that couldbenefit from someform of high-level,regular request,but
would find the nested-stridedinterfacetoo restrictive. Oneexampleof suchan
application isgivenin [21].For thoseapplications,weprovidea nested-batched

interface. A nested-batched request is composed of one or more batched re-

quests, each of which is described using the data structure shown in Figure 4.

struct gfs_batch {

int32 f_off;

int32 m_off;

char f_absolute;

char m_absolute;

char sub_vector;

int32 quant;

int32 f_stride;

int32 m_stride;

int32 subvec_len;

union {

int32 size;

struct gfs_batch *subvec;

} sub;
};

/_ File offset */

/* Memory offset */

/* Is the file offset absolute? */

/* Is the memory offset absolute? */

/* Is the sub-request a vector? */

/* Number of repetitions */

/_ File stride between repetitions */

/* Memory stride between repetitions */

/* Number of elements in subvec */

/* Size for simple request */

/* Vector of batch requests */

Fig. 4. Data structure involved in a nested-batched I/O request.

A single instance of this data structure essentially represents a single level

in a nested-strided request. That is, with one gfs_batch structure, you can

represent a "standard" request, a simple-strided request, or one level of nesting

in a nested-strided request. Galley's batched interface allows an application

to submit a vector of batched requests, which allows an application to submit

a list of strided requests, a list of standard requests, a list of nested-strided

requests, or arbitrarily complex combinations of those requests.

As with a nested-strided request, a batched request allows an application to

specify that a particular pattern will be repeated a number of times, with a reg-
ular stride between each instance of the pattern. However, a nested-strided re-

quest requires that the repeated pattern be either a simple- or a nested-strided

requests. The batched interface allows applications to repeat batched requests

with a regular stride between them. Hence the name "nested-hatched". This

capability allows applications to repeat arbitrary access patterns with a regu-

lar stride.

A full gfs_read_batched() or gfs_write_batched() request will typically com-

bine multiple gfs_batch structures into vectors, trees, vectors of trees, trees of

13

vectors, and so on. For example, a doubly-nested-strided request would be a

two-level tree. The root of the tree would describe the outer level of striding,

and that node's child would describe the inner level of striding. An applica-

tion with two such strided requests could combine them into a single batched

request. In that case, there would be a vector of two trees, and each tree would

have two levels.

The first two elements in the data structure contain the initial file and memory

offsets of the request. The second two elements of the data structure indicate

whether these offsets are specified absolutely (as is done with all other Galley

requests), or relatively. If the offsets are relative, and if the request is the first

element in a new vector, these offsets are specified relative to the offset of that

vector's parent. Otherwise, a relative offset is specified relative to the offset of

the previous element in the vector.

The fifth element in the structure (char sub_vector) indicates whether the pat-

tern to be repeated is a simple data request or another batch vector. The sixth

element (quant) indicates how many times the pattern should be repeated. The

next two elements contain the strides that should be applied to the file and

memory offsets between repetitions of the pattern. The ninth element in the

structure only applies when the pattern to be repeated is a batched request.

In that case, it indicates how many elements are in the sub-request.

Finally, the sub-request is described. The sub-request can be a simple data

transfer (in the case of a standard or a simple-strided request), or it can be a

vector of gfs_batch structures (in the case of a nested-strided, or more complex

request).

An example of when this interface is useful is shown in [21].

5.4 List Requests

Finally, in addition to these structured operations, Galley provides a simple,

more general file interface, called the list interface, which has functionality

similar to the POSIX lio_listio 0 interface [11]. This interface allows an ap-

plication to simply specify an array of (file offset, memory offset, size) triples

that it would like transferred between memory and disk. This interface is useful

for applications with access patterns that do not have any inherently regular

structure. While this interface essentially functions as a series of simple reads

and writes, it provides the file system with enough information to make intel-

ligent disk-scheduling decisions, as well as the ability to coalesce many small

pieces of data into larger messages for transfer between CPs and lOPs.

14

6 Performance

Most studies of multiprocessor file systems have focused primarily on the sys-

tems' performance on large, sequential requests. Indeed, most do not even

examine the performance of requests of fewer than many kilobytes [22,2,14].

As discussed earlier, multiprocessor file-system workloads frequently include

many small requests. This disparity between the observed and benchmarked

workloads means that most performance studies actually fail to examine how

a file system can be expected to perform when running real applications in a

production environment.

6.1 Experimental Platform

The Galley Parallel File System was designed to be easily ported to a variety of

workstation clusters and massively parallel processors. The results presented

here were obtained on the IBM SP-2 at NASA Ames' Numerical Aerodynamic

Simulation facility. This system had 160 nodes, each running AIX 4.1.3, but

only 140 were available for general use. Each node had a 66.7 MhZ POWER2

processor and at least 128 megabytes of memory. Each node was connected

to both an Ethernet and IBM's high-performance switch. While the switch

allowed throughput of up to 34 MB/s using one of IBM's message-passing

libraries (PVMe, MPL, or MPI), those libraries cannot operate in a multi-

threaded environment. Furthermore, neither MPL nor MPI allow applications

to be implemented as persistent servers and transient clients. As a result of

these limitations, and to improve portability, Galley was implemented on top

of TCP/IP.

6.1.1 TCP/IP Performance

To determine what effect, if any, our use of TCP/IP would have on the overall

performance of our system, we benchmarked the SP-2's TCP/IP performance.

According to IBM, and verified by our own testing, the maximum TCP/IP

throughput between two nodes on the SP-2 is approximately 17 MB/s. Un-

fortunately, as the number of communicating nodes increases, they are unable

to maintain this throughput at each node, as shown in Figure 5.

For each test shown in that figure, we used 16 sinks, and varied the number

of sources from 4 to 64. For a given test, each source sent the same amount

of data to each sink, in a series of messages, using a fixed record size. For

each sink/source configuration, we measured the throughput for a variety of

message sizes. As the throughput ranged over several orders of magnitude, we

varied the total amount of data transferred as well, from 1.5 MB with 4 sources

15

TCPflP Peformance
250

t_

t-

200-

150-

100-

50-

4 Sources -*---
8 Sources -+--

16 Sources -o--
32 Sources -x-
64 Sources -A .

/

?
/

/

/

L
/

/ .×"

t_/X • ../

_.:.'..+ + +i

A

/ x -_ _" '"'_-:!

/[_-. _I._i_ _

I

/ . .+ +.

I .

0 I
I I I I

64 256 IK 4K 16K 64K
Record Size

Fig. 5. Measured TCP/IP throughout on the SP-2. For each test, there were

16 sinks (similar to CPs reading a file), and a variable number of sources

(similar to IOPs servicing read requests).

and a 64-byte record size, to over 800 MB with 64 sources and a 64-kilobyte

record size.

In each of these tests, we used select() to identify sockets with pending I/O, but

we did not attempt to use any flow-control beyond that provided by TCP/IP.

As the figure shows, the achieved maximum throughput increases with the

number of sources, until the number of sources exceeds 32. Even with many

sources, we are only able to achieve about 220 MB/s, or less than 14 MB/s at

each sink.

6.1.2 Simulated Disk

Each IOP in Galley controls a single disk, logically partitioned into 32 KB

blocks. For this study, each IOP had a buffer cache of 24 megabytes, large

enough to hold 750 blocks. Although each node on the SP-2 has a local disk,

that disk must be accessed through AIX's Journaling File System. While Gal-

ley was originally implemented to use these disks, our performance results ap-

peared to be inflated by the prefetching and caching provided by JFS. Specif-

ically, we frequently measured apparent throughputs of over 10 MB/s from a

single disk. To avoid these inflated results, we examined Galley's performance

using a simulation of an HP 97560 SCSI hard disk, which has an average seek

time of 13.5 ms and a maximum sustained throughput of 2.2 MB/s [9].

Our implementation of the disk model was based on earlier implementa-

tions [26,13] 1 Among the factors simulated by our model are head-switch

1 The source code for this disk simulator is available online at

http://www.cs.dartmouth.edu/'nils/disk.html, and is distributed with

16

time, track-switch time, SCSI-bus overhead, controller overhead, rotational

latency, and the disk cache. To validate our model, we used a trace-driven

simulation, using data provided by Hewlett-Packard and used by Ruemmler

and Wilkes in their study. 2 Comparing the results of this trace-driven simu-

lation with the measured results from the actual disk, we obtained a demerit

figure (see [26] for a discussion of this measure) of 5.0%, indicating that our

model was extremely accurate.

The simulated disk is integrated into Galley by creating a new thread on each

IOP to execute the simulation. When the thread receives a disk request, it

calculates the time required to complete the request, and then suspends itself

for that length of time. While, in most cases, the disk thread does not actually

load or store the requested data, metadata blocks must be preserved. To avoid

losing that data, the disk thread maintains a small pool of buffers, which is

used to store 'important' data. When the disk simulation thread copies data to

or from a buffer, the amount of time required to complete the copy (which we

calculate at system startup) is deducted from the amount of time the thread

is suspended. It should be noted that the remainder of the Galley code is

unaware that it is accessing a simulated disk.

6.2 Access Patterns

We examined the performance of Galley under several different access pat-

terns, shown in Figure 6, each of which is composed of a series of requests for

fixed-size pieces of data, or records. Although these patterns do not directly

correspond to a particular 'real world' application, they are representative of

the general patterns we observed to be most common in production multipro-

cessor systems, as described above. Our experiments used a file that contained

a subtile on each IOP, and a single fork within each subtile. To allow us to

better understand the system's performance, by removing one variable, each

fork was laid out contiguously on disk. The patterns shown in Figure 6 reflect

the patterns that we access from each fork, and hence, from each IOP. The

correspondence between the file-level patterns observed in actual applications,

and the IOP-level access patterns used in this study, is discussed below.

The simplest access pattern is called broadcast. With this access pattern every

compute node reads the whole file. In other words, the IOPs broadcast the

whole file to all the CPs. This access pattern mqdels the series of requests we

would expect to see when all the nodes in an application read a shared file,

such as the initial state for a simulation. Since, to read all the data in a file, an

the Galley source code.

2 Kindly provided to us by John Wilkes and HP. Contact John

wilkes@hplabs.hp.com for information about obtaining the traces.

Wilkes at

17

(a) Broadcast

tllllll IIIitlltl

(b) Partitioned

II I I m I I II I I II I I II I I II I I I I I I I I I I I IIIIII1

(c) Interleaved

Fig. 6. The three access patterns examined in this study. Two views of each pat-

tern are displayed: the pattern as applied to a linear file, and matrix distributions

that could give rise to the pattern. For these examples, we assume that the ma-
trices are stored on disk in row-major order. Each square corresponds to a single

record in the file, and the highlighted squares represent the records accessed by a

single compute node in a group of four.

application must read all the data in every subtile, a broadcast pattern at the

file level clearly corresponds to a broadcast pattern at each subtile. Although

it may seem counterintuitive for an application to access large, contiguous

regions of a file in small chunks, we observed such behavior in practice [20].

One likely reason that data would be accessed in this fashion is that records

stored contiguously on disk are to be stored non-contiguously in memory.

Another possible cause for such behavior is that the I/O was added to an

existing loop as an afterthought. Since it seems unlikely that an application

would want every node to rewrite the entire file, we did not measure the

performance of the broadcast-write case.

Under a partitioned pattern, each compute node accesses a distinct, contigu-

ous region of each file. This pattern could represent either a one-dimensional

partitioning of data or the series of accesses we would expect to see if a two-

dimensional matrix were stored on disk in row-major order, and the applica-

tion distributed the rows of the matrix across the compute nodes in a BLOCK

fashion. There are two different ways a partitioned access pattern at the file

level can map onto access patterns at the lOP level. The simpler mapping,

which is not shown in the figure, occurs if the file is distributed across the

disks in a BLOCK fashion; that is the first 1/n of the file bytes in the file are

mapped onto the first of the n IOPs, and so forth. For each IOP, this map-

ping results in an access pattern similar to a broadcast pattern with only one

compute processor. The other mapping, shown in the figure above, distributes

18

blocksof data acrossthe disks in a CYCLIC fashion. This secondmappingis
more interesting and correspondsto the mapping usedby most implementa-
tions of a linear file model. This distribution results in accessesby eachCP
to eachIOP. In a systemwith 4 CPs, the first CP would accessthe first 1/4
of the data in eachsubtile, and so forth. Thus, using the secondmapping, a
partitioned pattern at the file level leadsto a partitioned pattern at eachIOP.
As with the broadcast pattern, applications may accessdata in this pattern
using a small record size if the the data is to be stored non-contiguouslyin
memory.

In an interleaved pattern, each compute node requests a series of noncontigu-

ous, but regularly spaced, records from a file. For the results presented here,

the interleaving was based on the record size. That is, if 16 compute nodes

were reading a fork with a record size of 512 bytes, each node would read

512 bytes and then skip ahead 8192 (16"512) bytes before reading the next

chunk of data. This pattern models the accesses generated by an application

that distributes the columns of a two-dimensional matrix across the proces-

sors in an application, in a CYCLIC fashion. To see how this file-level pattern

maps onto an IOP-level pattern, assume the linear file is distributed tradi-

tionally, with blocks distributed across the subfiles in a CYCLIC fashion. In

the simplest case, the block size might be evenly divisible by the product of

the record size and the number of CPs. In this case, every block in the file

is accessed with the same interleaved pattern, and any rearrangement of the

blocks (between or within disks) will result in the same subtile-access pattern.

Thus, the blocks can be declustered across the subfiles, but the access pattern

within each subtile will still be interleaved. There are, of course, more complex

mappings of an interleaved file-level pattern to an IOP-level pattern, but we

focus on the simplest case.

For this performance analysis, we held the number of compute processors

constant at 16, and varied the number of IOPs (each with one disk) from 4 to

64. Thus, the CP:IOP ratio varied from 1:4 to 4:1. Each test began with an

empty buffer cache on each IOP, and each write test included the time required

for all the data to actually be written to disk. While the size of each fork was

fixed, the amount of data accessed for each test was not. Since the system's

performance on the fastest tests was several orders of magnitude faster than

on the slowest tests, there was no fixed amount of data that would provide

useful results across all tests. Thus, the amount of data accessed for each test

varied from 4 megabytes (writing 64-byte records to 4 IOPs) to 2 gigabytes

(reading 64-KB records from 64 IOPs). We performed each test five times.

We disregarded the lowest and highest results, and present the average of the

remaining three.

19

6.3 Traditional Interface

We first examined the performance of Galley using the standard read/write

interface. This interface required each CP to issue separate requests for each

record from each fork. Each CP issued asynchronous requests to all the forks,

for a single record from each fork. When a request f!om one fork completed, a

request for the next record from that fork was issue_l. By issuing asynchronous

requests to all IOPs simultaneously, the CPs were generally able to keep all

the IOPs in the system busy. Since each CP accessed its portion of each

subtile sequentially, the IOPs were frequently able to schedule disk accesses

effectively, even with the small amount of information offered by the traditional

interface. Furthermore, the CPs were generally able to issue requests in phase.

That is, when an IOP completed a request for CP 1, it would handle requests

for CPs 2 through n. By the time the lOP had completed the request from

CP n, it had received the next request from CP 1. Thus, even without explicit

synchronization among the CPs, the IOPs were frequently able to service

requests from each node fairly, and were able to make good use of the disk.

Figure 7 shows the total throughput achieved when reading a file with various

record sizes for each access pattern. Figure 8 presents similar results for write

performance when overwriting an existing file, and Figure 9 shows Galley's

performance when writing to a new file. The performance curves have the same

general shape as throughput curves in most systems; that is, as the record size

increased, so did the performance. As in most systems, eventually a plateau

was reached, and further increases in the record size did not result in further

performance increases. The precise location of this plateau varied between

patterns and CP:IOP ratios. Not surprisingly, when accessing data in small

pieces, the total throughput was limited by a combination of software overhead

and by the high latency of transferring data across a network, regardless of

the access pattern.

The choice of access pattern had the greatest effect on performance when read-

ing data with large blocks. When reading an interleaved pattern, the system's

peak performance was limited by the sustainable throughput of the disks on

each IOP (about 2.2 MB/s). Interestingly, there was a small dip in perfor-

mance as the record size increased from 2 KB to 4 KB. With records of 2 KB

or smaller, every CP reads data from every block. So, regardless of the order

in which CPs' requests arrive at an IOP, that IOP reads all of the blocks in

its fork, in order. With a record size of 4 KB, each CP reads data only from

alternate blocks. As a result, it is possibIe for a request for block n + 1 to

arrive before a request for block n, possibly causing a miss in the disk cache

and an extra head seek, slightly degrading disk performance. Even more time

was spent seeking when accessing data in a partitioned pattern. Indeed, with

that pattern, the time spent seeking from one region of the file to another was

20

Partitioned Access Pattern
120

r-

e

en

-i

¢

100-

8O-

6O-

64

120

4 IOPs
8 IOPs -+--

16 IOPs -o- -
32 IOPs .x.
64 lOPs _ -

/

/

-- ,E"

i

/

/ X X" " "X" " ")¢'" t

i:.. 4" " " " " "

''-'---'---'--'--'''

o ,o ° ; = 1___-_, 4-....÷.....+....._.....+....
|

256 1K 4K 16K 64K
Record Size

Interleaved Access Pattern

100-

80-

60-

40-

20-

0 _
64

/

4 lOPs -o-- ."
8 lOPs "+'"

16 IOPs -o- - /
m*

32 IOPs .x-

64 lOPs _ - /

/

A/ .X"

/
X *

/
-X"

,14 • " X " "

"/ .L]- -ID"---_---B_

+..---
,.t ..+-..,_ 4- +

..-._...--7. .=-. "" ° -
I 1 I

256 1K 4K 16K 64K
Record Size

e_

£
¢

200

180-

160-

140-

120-

100-

Broadcast Access Pattern

4 lOPs -*-- "_--" TM

8 lOPs "+'" /
16 IOPs -o-- S" t3 - -
32 IOPs -x- / ."
64lOPs _" / tn"

)g ,s .'.1"
t

80" / • .÷.

4_ - "" ...-+J

64 256 1K 4K 16K 64K
Record Size

Fig. 7. Throughput for read requests using the traditional Unix-like interface.
There were 16 CPs in every case. Note the different scales on the y-axis.

the limiting factor in the system's performance.

When testing an earlier version of Galley we found that with large numbers of

IOPs, the network congestion at the CPs was so great that the CPs were un-

21

e-
a0

2
e-

[-

120

100-

80-

60-

Partitioned Access Pattern

40-

20-

0 I
64

4 lOPs _ ?. -,.
8 lOPs -+-- ,,

16 lOPs -o-- /
32 IOPs .x. /

64 lOPs -A . /

/ x- "
/

/ ,i3- - -
X K " • ,X- - - X i"

256 1K 4K 16K 64K
Record Size

-j
e_
c-

O

b-

120

100-

80-

60-

Interleaved Access Pattern

4(}-

20-

0-'
64

4 lOPs _ __ _
8 lOPs + /

16 lOPs -o--
32 lOPs -x. /
64 lOPs -_ " /

/

/ x..

/' -x. - -X -

/.' .13_ 4" J" __
- _A. J . --"0"--_" .-' "

256 1K 4K 16K 64K
Record Size

Fig. 8. Throughput for write requests using the traditional Unix-like interface

when overwriting an existing file. There were 16 CPs in every case.

able to receive data and issue new requests to the IOPs in a timely fashion [19].

As a result, the fortuitous synchronization discussed above broke down, so the

DiskManagers on the IOPs were unable to make intelligent disk scheduling de-

cisions, causing excess disk-head seeks and thrashing of the on-disk cache. The

combination of the network congestion and the poor disk scheduling led to dra-

matically reduced performance with large record sizes in the interleaved and

partitioned patterns. To avoid this problem, we added a simple flow-control

protocol to Galley's data-transfer mechanism. This flow control essentially re-

quires an IOP to obtain permission from a CP before sending each chunk of

data. By limiting the number of outstanding permissions, the CP can reduce

or avoid this network congestion. Simple experiments on the SP-2 showed that

choosing a limit between 2 and 8 led to the highest, and most consistent, per-

formance. While this limit is currently a compile-time option, it may be worth

exploring the possibility of allowing the CP to set it dynamically as well. All

the experiments shown here used a limit of 2 outstanding permissions.

Under the broadcast access pattern, data was read from the disk once, when

22

e'_
e-

¢-

b-

120

100-

80-

60-

Partitioned Access Pattern

40-

20-

0 _
64

4 lOPs -o-- _" /
8 lOPs "+'" /

16 lOPs -o-- ,_/
32 IOPs × J

64 IOPs -_ " P

/
-X • -

/ .x- "
• X °

,,a.
/.)¢ -[3- - -8- - -

,._..e¢_ " _ - - .+ - + +

° , ,
-'-- --'- " "_" _1 I I

256 1K 4K 16K 64K
Record Size

--i

e-
e.0

120

100-

80-

60-

Interleaved Access Pattern

40-

20-

0 ! _--"AIL"" " I I I I

64 256 1K 4K 16K
Record Size

4 lOPs -e-- /
8 lOPs +"

16 lOPs -a-- /
32 lOPs -x- _',1
64 lOPs "_ " _,

/
.X . .

/ -X" "
X " "

z
/ X"

/ .X -8--_[3---
_--

• 4-

64K

Fig. 9. Throughput for write requests using the traditional Unix-like interface

when writing a new file. There were 16 CPs in every case.

the first compute processor requested it, and stored in the IOP's cache. When

subsequent CPs requested the same data, it was retrieved from the cache

rather than from the disk. Since each piece of data was used many times, the

cost of accessing the disk was amortized over a number of requests, and the

limiting factors were software and network overhead. In this case, the total

throughput of the system was limited by the SP-2's TCP/IP performance, as

discussed above.

We now consider Figure 8. When overwriting an existing file, and using records

of less than 32 KB, the file system had to read each block off the disk before

the new data could be copied into it. Without this requirement, any data

that was stored in that block would be lost -- even data that was not being

modified by the write request. As a result, the system's performance was

significantly slower when writing small records than when reading them. As

when reading data, the interleaved pattern had the higher throughput because

the partitioned pattern forced the disk to spend time seeking between one

region of the file and another. The performance difference between the two

23

was smaller when writing since many of the disk accessesin the write case
occurred at the end of the test, when the benchmark forced each IOP to
write all dirty blocksto disk (with a gfs_sync() call). Sincemost of the disk
accessesoccurredat once,the DiskManagerwasableto schedulethoseaccesses
efficiently.

When the record size reached32KB, the write performanceof both patterns
increaseddramatically. With the recordsizeat leastaslargeasthefile system's
block size, Galley did not have to read each data block off the disk before
copying the new data in. Sincethe file system could simply write the new
data to disk (rather than read-modify-write), the numberof disk accessesin
eachpattern wascut in half.

Wefinally considerFigure 9. In thesetestswemeasuredthe time to write data
to a new file, rather than to overwrite an existing file. Note wedid not use
Galley's gfs_extend() call (which preallocatesdisk spacefor a fork) for these
tests; new blockswereassignedto the fork on the fly, as it grew.Not only was
writing to a new file generally fasterthan overwriting an existingfile, in many
casesit was faster than reading a file. For small requests,writing a new file
wasfaster than overwriting an existing file becausethere wasno needto read
the original data off of disk. There is someadditional overheadinvolvedwhen
writing a new file, as new blocks must be assignedto the file, but this cost
wassignificantly lessthan the cost of the read-modify-write cycle. In those
caseswhere writing a new file was faster than reading a file, the write tests
benefitedfrom the nearly perfectdisk scheduleduring the gfs_sync () call, as
discussedabove.

6.4 Strided Interface

When reading data with a traditional interface, in many cases we were able

to achieve nearly 100% of the disks' peak sustainable performance. This best-

case performance seems respectable, but as with most systems, Galley's per-

formance with small record sizes was certainly less than satisfactory. The goal

of Galley's new interfaces is to provide high performance for the whole range

of record sizes, with particular emphasis on providing high throughput for

small records.

The tests in this section were again performed by issuing asynchronous re-

quests to each fork. Rather than issuing a series of single-record requests to

each IOP, we used the strided interface to issue only a single request to each

IOP. That single request identified all the records that should be transferred

to or from that IOP for the entire test. All other experimental conditions were

identical to those in the previous section.

24

Figure 10showsthe total throughput achievedwhenreadingafile with various
record sizesfor eachaccesspattern using the new interface.Figure 11shows
correspondingresults for overwriting an existing file and Figure 12showsthe
results whenwriting to a new file.

Partitioned Access Pattern

lOPs -.m--

32,oPsx
_ 60_tl . 64 IOPs ._..-. x

" 50-
e-

"- 40-
O "-t3- --_ -_--- B---I

3_ - ---tr - - -o- -- _-- - B-- -B

20=+ + + +..... +..... + + + +

10_: e e e o o : ¢ : e

0 i
64 2;6 11(4K 16K 64K

Record Size

t-

-i

p
¢

140

120-

100-

80-

60j

40;,
20=

0
64

Interleaved Access Pattern

/
.A 4 lOPs

8 lOPs -+--
16 lOPs -o--
32 IOPs -x-
64 lOPs -_ "

X- - -X- - - X - -
• X - • -X- " - X " • X - - -X- - • X " "

__.__.__.___.__-.__.----------.---

.... .+ 4- 4- + + + + + +

I I

256 IK 4k 16K 64K
Record Size

r_

tm

.o

200

18_

160-

t

140-

Broadcast Access Pattern

120-_. "+'"

100.

80-
I O

60
64

._e-'--'_-"" x- - -x.- "x - - x. .x- " _" "

B __G- ___B - - M:_ - _ .{t. _ . 43- - - -El-- _ _ B. _

..4-...--+ 4- 4- + + + +...-'"

4 lOPs -¢--
8 IOPs "+--

16 lOPs -m--
32 IOPs .x.

: 6 lOPs --A-

I I I I

256 1K 4K 16K i4K
Record Size

Fig. 10. Throughput for read requests using the strided interface. There were
16 CPs in every case. Note the different scales on the y-axis.

25

e_

e_

¢x0

¢

120

100-

8O-

Partitioned Access Pattern

607

4O,

I

20"-

0

..--A_ /__. t, ---a 4 IOPs --o.--
a,-- -t,--- 8 IOPs "+'"

16 IOPs -o--
32 IOPs "×"

g..._ . .x- - -x- -6_IOPs. -A =:
X"

X" " -X" • -X

,__.__.--.---.---.--_.--.--.--.---

.... -¢- + 4- + + + + -4- -4-

256 I K 4K 16K
Record Size

64 64K

r_
_r

e_

Cm
-t

.o
¢

120

100-

80-

60-

Interleaved Access Pattern

40-

20"

o
64

4 IOPs -0- a,,
8 lOPs .+.- /

16 lOPs -o-- /
32 IOPs .x-
64 lOPs _ - /

/

• .)<- • -X" - -:)(- - X- • -X" • . _ - - X. - -X

.--.--.--.---.---.--.--.--.,.......

.... + ÷ + +..... +..... +..... +..... __

256 ! K 4K 16K 64K
Record Size

Fig. 11. Throughput for write requests using the strided interface when over-

writing an existing file. There were 16 CPs in every case.

Given the traditional interface, the disk scheduler had to handle each request in

the order they arrived from the CPs. This requirement led to excess disk-head

movement, primarily in the partitioned pattern, but also in the interleaved

pattern when the record size was larger than 2 KB (32 KB/16 CPs). Since

all the CPs accessed the same disk blocks in the broadcast case, and in an

interleaved pattern with small records, the disk schedule was optimal even

with the traditional interface. Since many of the disk accesses in the traditional

write cases occurred after a call to gfs_sync(), the disk scheduler was able

to make intelligent decisions then as well. Therefore, the tests on which the

new interface led to the greatest improvements in the disk schedule were the

interleaved and partitioned read tests, and these were the two tests where the

peak throughput to the CPs improved most dramatically.

Once again, network contention was a problem for large numbers of IOPs.

The peak throughput on the broadcast pattern was limited to 13-14 MB/s to

each CP. The best disk schedule can also be the worst network schedule, as in

the partitioned pattern, where all IOPs first served CP 1, then CP 2, and so

26

e-
_D

.o

120

100-

80-

60-

40-

20-

0

Partitioned Access Pattern

.....4. m ..--i_ /

...._X S

4 lOPs -.0--
8 lOPs -+-"

16 IOPs -o- -
32 IOPs -x-
64 IOPs ..A .

.X. - -_ " " X- - -X- • -X - -

• . I,<" ' .X" " -X - - X" "

__.--.--.--,---,---.--.--.--.---

.- - -4- 4- 4- + + + + + +

i I t I

64 256 IK 4K 16K 64K
Record Size

t:k
,am
t:_

o

120

100-

80-

60-

Interleaved Access Pattern

40-

20-

0

4 lOPs -o-- /
8 IOPs .+-- /

16 lOPs -o--
32 IOPs .x. ./
64 lOPs -_" A -- -_

/

,)t • - X"

X"

• " 1<" " "X" " , X - - 1<- - -X"

--'--'------'---''.... + +
+

.... .¢. 4- 4- + +.- ¢ *

I I I t

64 256 IK 4K 16K 64K
Record Size

Fig. 12. Throughput for write requests using the strided interface when cre-

ating a new file. There were 16 CPs in every case.

forth. This disk schedule, combined with the limits of TCP/IP on the SP-2,

contributed to the interleaved-read pattern having higher performance than

the partitioned-read pattern using the strided interface.

While the increase in peak performance is interesting, the most striking dif-

ference between the two sets of tests is that, in most cases, Galley was able to

achieve peak performance with records as small as 64 bytes -- two or three

orders of magnitude smaller than the request sizes required to achieve peak

throughput using the traditional interface. Other than increased opportuni-

ties for intelligent disk scheduling, the primary performance benefit of our new

interface was a reduction in the number of messages, accomplished by pack-

ing small chunks of data into larger packets before transmitting them to the

receiving node.

The one case where Galley was not able to achieve maximum throughput with

a small record size was in writing a new file in an interleaved pattern. When

a CP Thread on an IOP receives the first request to write to a new fork, that

27

CP Thread locks the metadata for that fork. The CP Thread then examines

the list of requests for the fork, and asks the DiskManager to assign however

many blocks are necessary for the new file. Only after all the blocks have

been assigned does the CP Thread unlock the fork's metadata, allowing the

other CP Threads to start processing their requests. It appears that the delay

caused by this long-term locking noticeably affects the system's throughput.

This delay is less significant with the partitioned pattern because the number

of requests is smaller; each CP has at most one request per block in the

partitioned pattern, while they may have as many as 32 per block in the
interleaved case.

While it is clear that the strided interface allowed the file system to deliver

much better performance, the throughput plots shown in Figures 10 and 11

present only part of the picture. Figure 13 shows the speedup of the strided-

read interface over a traditional read interface, and Figures 14 and 15 show

similar results for the write interfaces, for both new files and overwriting preex-

isting files. When using an interleaved pattern with small records, the strided

interface led to speedups of up to 98 times when reading, 30 times when over-

writing an old file, and 23 times when writing a new file. There was a similar

increase in performance for small records in a partitioned pattern: up to 92

times when reading, 56 times when rewriting, and 35 when writing a new

file. The broadcast-read pattern had the largest speedups for small records,

ranging from 150 to over 350.

Although there was less room for improvement with large records, better disk

scheduling when reading interleaved and partitioned patterns occasionally led

to higher performance even for' large records. When reading, the minimum

speedups within the range of record sizes we examined, were between 1 and

2, and occurred with the largest record sizes. When writing, the minimum

speedups were mostly between .95 and 1.25. Again, the minimum speedups in

the write tests were smaller than the read tests because much of the writing

with the traditional interface was performed during the gfs_sync() call, so

the IOP was able to perform more efficient disk scheduling.

7 Related Work

A variety of multiprocessor file systems have been developed over the past ten

years or so. While many of these were similar to the traditional Unix-style file

system, there have been also several more ambitious attempts.

Intel's Concurrent File System (CFS) [23,22], and its successor, PFS, are ex-

amples of multiprocessor file systems that use a linear file model and provide

applications with a Unix-like interface. Both systems provide limited support

28

e_
-n

r_

Partitioned Access Pattern

50-

40-

30-

20-

10-

0
64

4 IOPs
8 lOPs -+--

16 IOPs -o--
32 IOPs -x-

\ 64 IOPs ..A .

\

'. _' ,

I I [I

256 1K 4K 16K 64K
Record Size

100

90-

80-

70-

60-

Interleaved Access Pattern

\

\

\

\

50- \

2 "'- \

64 256 IK
Record Size

4 IOPs
8 IOPs -+-

16 IOPs -o- -
32 lOPs -x-
64 lOPs -_ -

_'d5 _-,-- -,,i, __ __ _ _ _ :
I I

4K 16K 64K

ea
-I

8.

Broadcast Access Pattern

4 IOPs

300-

250-

20oq,

15o_

100-

50-

0
64

%1_t •,

256 1K 4K
Record Size

8 IOPs -+'-
16 IOPs -o- -
32 IOPs "×
64 IOPs -_ "

-- -7 z
16K 64K

Fig. 13. Increase in throughput for read requests using the strided interface.

Note the different scales on the y-axis.

to parallel applications in the form of file pointers that may be shared by all

the processes in the application. CFS and PFS provide several modes, each

of which provides the applications with a different set of semantics governing

how the file pointers are shared. Other multiprocessor file systems with this

29

Partitioned Access Pattern
60

50-

40j

30-

20-

10-

0

Ix 4 lOPs --o.--
8 lOPs -+--

\ t6 IOPs -o--

__ \ 32 IOllPS .x.

64 Ps -_-

-
64 256 IK 4K 't6K 64K

Record Size

t_

r..,O

35

30-"

25-

204

15-

Interleaved Access Pattern

4 IOPs -0--
8 IOPs .÷-.

\ 16 IOPs -o--
\ 32 lOPs .x.

\ 64 lOPs -_ -

\?\
_'. N

J k.y._..\

,1
I I I /

64 256 lK 4K 16K 64K
Record Size

Fig. 14. Increase in throughput for write requests using the strided interface

when overwriting an existing file.

style of interface are SUNMOS and its successor, PUMA [32], sfs [15], and

CMMD [3].

Like the systems mentioned above, PPFS provides the end user with a lin-

ear file that is accessed with primitives that are similar to the traditional

read()/write() interface [10]. In PPFS, however, the basic transfer unit is

an application-defined record rather than a byte. PPFS maps requests against

the logical, linear stream of records to an underlying two-dimensional model,

indexed with a (disk, record) pair. Several different mapping functions, cor-

responding to common data distributions, are built into PPFS. An application

is able to provide its own mapping function as well.

Ironically, the multiprocessor file system most removed from the traditional

Unix-like model also provides the most Unix-like interface. PIOFS, the file

system for IBM's SP-2, allows users and applications to interact with it exactly

as they would interact with any AIX file system. Administrators and advanced

users may also choose to interact with PIOFS's underlying parallel file system,

3O

r_

Partitioned Access Pattern

I I

64 256 IK 4K
Record Size

4 IOPs
8 lOPs -+-

16 lOPs -o--
32 lOPs .x.
64 lOPs -_ -

I

16K 64K

Interleaved Access Pattern

3 \

2 \

t \

20- £_ \

10-

\

• _',,. ,_._..,.
5- _,._ ----'-

0 t I I

64 256 1K 4K
Record Size

4 IOPs
8 IOPs -+..

16 IOPs -o--
32 lOPs -x-
64 lOPs -,t -

I

16K 64K

Fig. 15. Increase in throughput for write requests using the strided interface

when creating a new file.

which is based on the Vesta file system [4,5]. Files in Vesta are two-dimensional,

and are composed of multiple cells, each of which is a sequence of basic striping

units. BSUs are essentially records, or fixed-sized sequences of bytes. Like

Galley's subfiles, each cell resides on a single disk. While Galley only allows a

file to have a single subtile per disk, in Vesta a single disk may contain many

cells. Equivalent functionality could be achieved on Galley by mapping cells to

forks rather than subfiles. Vesta's interface includes logical views of the data.

These views are essentially rectangular partitionings of the two-dimensional

file, and can provide the application with much of the functionality of Galley's

strided interfaces. Vesta provides users with a different and powerful way of

thinking about data storage. Its largest drawback is that it is ill-suited to

datasets that cannot be partitioned into rectangular, non-overlapping sub-

blocks of a single size. In addition to the functionality of Vesta, PIOFS provides

applications with a Unix-like interface. We have built a library that provides

a Vesta-like interface for Galley.

31

8 Summary and Future Work

Based on the results of severalworkload characterization studies, we have
designedGalley, a new parallel file system that attempts to rectify someof
the shortcomings of existing file systems.Galley is basedon a new three-
dimensionalstructuring of files,whichprovidestremendousflexibility and con-
trol to applicationsand libraries.WehaveshownhowGalley's higher-levelI/O
requestsprovide the file systemwith the information necessaryto deliverhigh
performance,particularly on thoseaccesspatterns that areknown to becom-
mon in scientific applications, and which are known perform poorly on most
current multiprocessorfile systems.This high performancewas achievedby
combining multiple small recordsinto larger buffersbefore transferring them
acrossthe network, reducing the aggregatelatency, and by allowing the file
systemto perform effectivedisk scheduling,reducingthe amountof disk-head
movementand making better useof the disks' on-board cache.

Future Work. Weareexploringseveralareasfor further work. First, Galley
currently supports only a single disk per IOP. Since our maximum throughput

is frequently limited by the disk's maximum throughput, adding support for

multiple disks at the IOP is a high priority. Second, we intend to examine how

Galley performs when asked to service requests from multiple applications to

multiple files at once. Finally, we intend to explore the issue of moving some of

an application's I/O related code from the CP to the IOP. This functionality

would allow applications to perform data-dependent filtering and distribution

at the IOP, reducing the amount of data transferred over the network.

Availability. The source for the Galley parallel file system and the disk

simulator used in this paper are all available at

http ://www. as. dartmouth, edu/'nils/galley, html.

References

[1] James W. Arendt. Parallel genome sequence comparison using a concurrent
file system. Technical Report UIUCDCS-R-91-1674, University of Illinois at

Urbana-Champaign, 1991.

[2] Sandra Johnson Baylor, Caroline B. Benveniste, and Yarson Hsu. Performance

evaluation of a parallel I/O architecture. In Proceedings of the 9th ACM

International Conference on Supercomputing, pages 404-413, Barcelona, July

1995.

32

[3]MichaelL. Best,AdamGreenberg,CraigStanfill,andLewisW. Tucker.CMMD
I/O: A parallelUnix I/O. In Proceedings of the Seventh International Parallel

Processing Symposium, pages 489-495, 1993.

[4] Peter F. Corbett and Dror G. Feitelson. Design and implementation of the

Vesta parallel file system. In Proceedings of the Scalable High-Performance

Computing Conference, pages 63-70, 1994.

[5] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Almasi,

Sandra Johnson Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian Satran,

Marc Snir, Robert Colao, Brian Herr, Joseph Kavaky, Thomas R. Morgan, and

Anthony Zlotek. Parallel file systems for the IBM SP computers. IBM Systems

Journal, 34(2):222-2,18, January 1995.

[6] Thomas H. Cormen and Alex Colvin. ViC*: A preprocessor for virtual-memory
C*. Technical Report PCS-TR94-243, Dept. of Computer Science, Dartmouth

College, November 1994.

[7] Thomas H. Cormen and Melissa Hirschl. Early experiences in evaluating the
Parallel Disk Model with the ViC* implementation. Technical Report PCS-

TR96-293, Dartmouth College Department of Computer Science, August 1996.

To appear in Parallel Computing.

[8] Thomas H. Cormen and David Kotz. Integrating theory and practice in parallel

file systems. In Proceedings of the 1993 DAGS/PC Symposium, pages 64-74,

Hanover, NH, June 1993. Dartmouth Institute for Advanced Graduate Studies.

Revised as Dartmouth PCS-TR93-188 on 9/20/94.

[9] Hewlett Packard. tlP97556/58/60 5.25-inch SCSI Disk Drives Technical

Reference Manual, second edition. June 1991. HP Part number 5960-0115.

[10] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and
David S. Blumenthal. PPFS: A high performance portable parallel file system.

In Proceedings of the 9th ACM International Conference on Supercomputing,

pages 385-394, Barcelona, July 1995.

[11] IBM. AIX Version 3.2 General Programming Concepts, twelfth edition,
October 1994.

[12] David Kotz and Nils Nieuwejaar. Dynamic file-access characteristics of a

production parallel scientific workload. In Proceedings of Supercomputing '94,

pages 640-649, November 1994.

[13] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation
model of the HP 97560 disk drive. Technical Report PCS-TR94-220, Dept. of

Computer Science, Dartmouth College, July 1994.

[14] Thomas T. Kwan and Daniel A. Reed. Performance of the CM-5 scalable

file system. In Proceedings of the 8th A CM International Conference on

Supercomputing, pages 156-165, July 1994.

33

[15]SusanJ. LoVerso,Marshall Isman, Andy Nanopoulos, William Nesheim,
Ewan D. Milne, and Richard Wheeler. sfs: A parallel file system for the CM-5.

In Proceedings of the 1993 Summer USENIX Conference, pages 291-305, 1993.

[16] Ethan L. Miller and Randy H. Katz. Input/output behavior of supercomputer

applications. In Proceedings of Supercomputing '91, pages 567-576, November
1991.

[17] Jason A. Moore, Phil Hatcher, and Michael J. Quinn. Efficient data-parallel
files via automatic mode detection. In Fourth Workshop on Input/Output in

Parallel and Distributed Systems, pages 1-14, Philadelphia, May 1996.

[18] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level parallel

I/O. In Ravi Jain, John Werth, and James C. Browne, editors, Input/Output in
Parallel and Distributed Computer Systems, chapter 9, pages 205-223. Kluwer

Academic Publishers, 1996.

[19] Nils Nieuwejaar and David Kotz. Performance of the Galley parallel file system.
In Fourth Workshop on Input/Output in Parallel and Distributed Systems, pages

83-94, May 1996.

[20] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and
Michael Best. File-access characteristics of parallel scientific workloads. IEEE

Transactions on Parallel and Distributed Systems, 1996. To appear.

[21] Nils A. Nieuwejaar. Galley: A New Parallel File System For Scientic
Applications. PhD thesis, Dartmouth College, 1996.

[22] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical

Report RND-92-020, NAS Systems Division, NASA Ames, December 1992.

[23] Paul Pierce. A concurrent file system for a highly parallel mass storage system.
In Fourth Conference on Hypercube Concurrent Computers and Applications,

pages 155-160, 1989.

[24] Terrence W. Pratt, James C. French, Phillip M. Dickens, and Stanley A.

Janet, Jr. A comparison of the architecture and performance of two parallel

file systems. In Fourth Conference on Hypercube Concurrent Computers and

Applications, pages 161-166, 1989.

[25] Apratim Purakayastha, Carla Schlatter Ellis, David Kotz, Nils Nieuwejaar,
and Michael Best. Characterizing parallel file-access patterns on a large-scale

multiprocessor. In Proceedings of the Ninth International Parallel Processing

Symposium, pages 165-172, April 1995.

[26] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.

IEEE Computer, 27(3):17-28, March 1994.

[27] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed

collective I/O in Panda. In Proceedings of Supercomputing '95, December 1995.

34

[28]K. E. Seamonsand M. Winslett. A datamanagementapproachfor handling
largecompressedarraysin highperformancecomputing.In Proceedings of the

Seventh Symposium on the Frontiers of Massively Parallel Computation, pages

119-128, February 1995.

[29] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited.

In Proceedings of the 1990 Winter USENIX Conference, pages 313-324, 1990.

[30] Joel T. Thomas. The Panda array I/O library on the Galley parallel file system.
Technical Report PCS-TR96-288, Dept. of Computer Science, Dartmouth

College, June 1996. Senior Honors Thesis.

[31] Sivan Toledo and Fred G. Gustavson. The design and implementation of
SOLAR, a portable library for scalable out-of-core linear algebra computations.

In Fourth Workshop on Input�Output in Parallel and Distributed Systems, pages

28-40, Philadelphia, May 1996.

[32] Stephen R. Wheat, Arthur B. Maccabe, Roll Riesen, David W. van Dresser, and
T. Mack Stallcup. PUMA: An operating system for massively parallel systems.

In Proceedings of the Twenty-Seventh Annual Hawaii International Conference

on System Sciences, pages 56-65, 1994.

35

