
Job Management Requirements for

NAS Parallel Systems and Clusters

William Saphir 1, Leigh Ann Tanner 1, Bernard Traversat 1

NAS Technical Report NA5-95-006 February 95

NAS Scientific Computing Branch
NASA Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035-1000

Abstract

A job management system is a critical component of a production supercomputing

environment, permitting oversubscribed resources to be shared fairly and effi-

ciently. Job management systems that were originally designed for traditional vec-

tor supercomputers are not appropriate for the distributed-memory parallel

supercomputers that are becoming increasingly important in the high performance

computing industry. Newer job management systems offer new functionality but

do not solve fundamental problems. We address some of the main issues in

resource allocation and job scheduling we have encountered on two parallel com-

puters -- a 160-node IBM SP2 and a cluster of 20 high performance workstations
located at the Numerical Aerodynamic Simulation facility. We describe the

requirements for resource allocation and job management that are necessary to

provide a production supercomputing environment on these machines, prioritizing

according to difficulty and importance, and advocating a return to fundamental
issues.

1.0 Introduction

Supercomputer centers have historically used batch queuing systems such as NQS

[Kin86] to manage oversubscribed resources and schedule computer time fairly.

1. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000



For distributed-memory parallel computers, which are becoming increasingly

important for supercomputing, resource scheduling is significantly more difficult

than it is on single processor or multiprocessor shared memory machines. This is

because parallel applications have more complex scheduling requirements --

resource requirements (e.g. varying the number and type of nodes, different

numbers of processors per node) are more complex; choice of timesharing

method directly affects scheduling strategy; system software, particularly on par-
allel computers formed from a network of workstations, is often oriented

towards scheduling single-node serial applications.

The Numerical Aerodynamic Simulation (NAS) supercomputer facility, located

at NASA Ames Research Center, is actively trying to bring parallel supercom-
puters into its mainstream production environment. Part of that effort involves

finding a robust job management system (JMS). Several job management sys-

tems claim to manage parallel jobs, but the experience so far at NAS is that these

are not suitable for the NAS workload environment. These packages include

NQS [Kin86], DQS [Duk94], DJM [DJM93], Condor [Lit88], LoadLeveler

[IBM94] and LSF [Zho93,Pla94]. Section 3.0 explains some of the fundamental

reasons why job management systems oriented towards serial jobs are not appro-

priate for parallel systems, and addresses important issues in resource manage-

ment and scheduling. Section 4.0 presents a list of requirements for a job

management system targeted towards the NAS parallel systems.

We avoid a discussion of what is arguably the most difficult issue in the real

world of networks of workstations -- politics. We leave it to management to

decide how resource availability is determined in the first place and limit JMS

requirements to what we believe is technically feasible in the relatively short

term. Our requirements also do not address issues such as how fast interactive

response must be, how much warning must be given before allowing a worksta-
tion to pull out of a pool, etc.

2.0 The NAS Environment

The Numerical Aerodynamic Simulation division is a pathfinder in high perfor-

mance computing for NASA. This paper focuses on job management require-
ments for two parallel systems at NAS -- a 160-node IBM SP2 and a cluster of

20 high performance workstations (SGI Power Challenge, HP9000 and IBM

RS6000/590). The SP2 and the cluster are each viewed as a single parallel com-

puter. The SP2 is a dedicated supercomputer in the traditional sense. The cluster

is intended to model an ad-hoc supercomputer formed from idle workstations sit-

ring on employees desks or dedicated workstations assembled as compute serv-
ers.

The machines are devoted primarily to computational aeroscience applications,

usually in the areas of Computational Fluid Dynamics (CFD) and Structural

Mechanics. These are almost always parallel applications, running on as few as 2



nodesto asmanyastheentiremachine.By parallelapplication,wemeanamul-
tiple-instruction-multiple-data(MIMD) programthat is designedto run on sev-
eral diswibuted-memoryprocessorssimultaneously.For conveniencewe will
include one-nodeserial jobs as a specialcase.A parallel job is a sequenceof
operationsrequestedby auser,of whichaparallelapplicationis themainpart.In
the following we use"job" and"application" interchangeably.Theapplications
maybewritten in amessagepassingstyle(suchasMPI or PVM) ora dataparal-
lel style(usingHPF).

Both computersmustbeableto supporta widerangeof job sizes,wheresizeis
determinedprimarily by amountof time, numberof nodes,but alsoby memory
anddisk I/O use.During normalworkinghours("prime time"), shortdebugging
jobs shouldhavefast turnaround,while allowing largerjobs to run, if possible.
During "non-prime time" hours, largejobs shouldhave priority over smaller
jobs. In addition, usersmay requestexclusiveaccess("dedicatedtime") to a
computerfor benchmarking,or for runningagrandchallengeproblem.

A job managementsystemis typically composedof threemain pans: a User

Server for submitting, deleting and inquiring about the status of jobs, a Job

Scheduler for scheduling and queueing jobs, and a Resource Manager for allo-

cating, monitoring and enforcing resource allocation and policies. In the NAS

environment,

The User Server should:

• provide one entry point (a virtual queue) to which all jobs are submit-
ted.

• provide information about all queued and running jobs.

The Job Scheduler should:

• schedule jobs according to a predetermined scheduling policy.

• be highly configurable, to accommodate arbitrarily complex and chang-

ing scheduling rules (including dynamic and preemptive resource allo-

cation).

• be able to sustain hardware or system failures - no jobs get lost (restart

or rerun jobs).

The Resource Manager should:

• operate in a heterogeneous multi-computer environment. A single

Resource Manager should span all the systems.

be able to enforce resource allocation and scheduling policies.

collect complete job's accounting information.

In the rest of this paper, we do not distinguish between the User Server, the Job

Scheduler, and the Resource Manager, but combine them all under the label Job

3



ManagementSystem.Werealizethatsomefunctionalitymayresidein theoper-
ating system(for instancecheckpointing)andsomein theJobManagementSys-
tem.Somepartsmaybeimplementedbythevendor.If so,partsthatinteractwith
otherpieceof software(OSandparallelprogrammingtools),shouldhaveapub-
lic API.

3.0 Serial vs. Parallel Jobs

All job management systems we have encountered were originally designed for

serial jobs, that is, jobs that run on a single processor. We have found two major

problems with these systems.

The first we call the scheduling problem. By scheduling we mean the assignment

of specific resources to a parallel application. Scheduling is done both by the

JMS (i.e., by starting a process on a particular CPU at a particular time) and the

operating system (i.e. timesharing several processes on one CPU). For serial

applications, JMS and OS scheduling are compatible. For parallel applications

they are in general not compatible because of load balance and synchronization

issues that may lead to serious performance degradation.

The second problem is the "parallel aware" problem. The most obvious distin-

guishing feature of a parallel application is that there are multiple processes, yet

most job management systems are aware of and keep track of only one process

(master process). We explain in section 3.2 why this leads to chaos.

3.1 Time sharing, space sharing, and scheduling

One of the great advances in the development of computers was the concept of

timesharing through preemptive multitasking. Several programs can run "simul-

taneously" by using the processor in alternating time slices. Timesharing makes

multi-user interactive use possible and increases processor utilization with only a

small performance penalty, as long as all programs fit in memory. Job manage-

ment systems targeted at serial jobs can make use of operating system-provided

timesharing to run more than one job "simultaneously" or can run jobs sequen-

tially when resource requirements are large (say, for memory).

Unfortunately, parallel jobs are significantly more complicated to schedule to

achieve efficient use of computational resources. One can argue that the most

efficient use of a parallel computer, in terms of raw computational power, is to

treat it as a collection of individual single-processor computers each running

serial jobs. At NAS, however, we are interested in running jobs that cannot be

run on a single node because of their large resource requirements. For instance, a

large memory job cannot fit on a single node, or a CPU intensive job will take

too long to run.

Today's most promising parallel computers, including the two previously

described, are essentially a collection of high performance workstations, each

4



running anindependentandfull versionof theUnix operatingsystem,andeach
with independenttimesharing.While at first glanceit appearsthat paralleljobs
canbetimesharedautomaticallyby theoperatingsystem(manyJMSsmakethis
assumption)in practicetimesharingdoesnot work for applicationsin theNAS
workload.Thetwo issuesareloadbalancingandsynchronization.

Currently mostapplicationsat NAS are statically load balanced, assuming that

each processor is equally fast so that the work should be divided evenly among

them. It is almost impossible, in a timesharing environment, to maintain exact

load balance among nodes. Statically balanced applications run only as fast as

the slowest node, so that even a slight imbalance reduces parallel efficiency dras-

tically. A single unbalanced node can completely ruin the performance of an

entire application. In the near future, we expect to see more dynamically bal-

anced applications, which we discuss in section 3.3.

An obvious "solution" to the load balance problem is to schedule parallel jobs on

top of one another so that all nodes are slowed down equally. From a practical

point of view the loads are never quite balanced, and for many applications this

scheme wouldn't work even if there were perfect load balance. The reason is that

uncoordinated timesharing causes synchronization and communication delays in

tightly coupled applications. A rare exception is the CM-5 system, which imple-

ments coordinated timesharing across the nodes in a partition and does it quite
well [Thi92].

Among the statically balanced applications are a very important class of tightly
synchronized communication-intensive codes. At NAS these are often CFD

solvers using implicit methods (which have global data dependencies) such as

POVERFLOW [Rya93]. These applications form a large part of the NAS work-

load, and tightly synchronized applications are common in other fields.

The reason these applications cannot be efficiently timeshared is the accumula-

tion of communication delays created by the uncoordinated scheduling of pro-

cesses across the nodes. In tightly synchronized applications, information flows

between nodes as the calculation progresses. Even when there is only nearest-

neighbor communication, information flows from neighbor to neighbor eventu-

ally reaching all nodes. Every time that information flow is disrupted the entire

application slows down. To take a concrete example, imagine that data flows

from node 0 to node 1 to node 2. In a timeshared environment, node 1 may be

running, ready to receive data from node 0, but node 0 may be running another

application, so node 1 waits. When node 1 receives the data, it processes it, at

half speed because of timesharing. When node 1 is ready to send data to node 2,

but node 2 may not be running, so node 1 will have to wait. So node 1 is delayed

by more than just the timesharing going on that node.

For a related but more familiar example, imagine a large household with as many

bathrooms as children. What usually happens when leaving on a vacation is that

a child delays departure by needing to use the restroom. When that child is done,

5



thenextchild decidesits time to go,andsoon, sothattheneteffect is thesame
asif therewere only onebathroom.Similarly, in the limit of a largenumberof
timesharedprocesses,eachoneis completelyserializedandN processorsareno
fasterthan 1.Of coursethewholeprocessis stochastic,anddependentonmany
factors,but the net effect is alwaysthat it is extremelyinefficient to indepen-
dentlytimesharetightly synchronizedparallelprocesses.

One solution to this problem is to coordinate timesharing across the nodes of a

parallel application, so that all processes of a given application run at the same

time. This is called gang-scheduling or co-scheduling. Gang-scheduling requires

operating system support, and a scheme for handling communication in progress

(i.e. no messages should be lost when processes are swapped). Although not nec-

essary, it is easier to implement gang scheduling if nodes are divided into fixed-

size partitions, though jobs then do not have flexibility in how many nodes they

run on. Since all nodes in a partition run the same number of processes, the

scheduler does not have to deal with unbalanced scheduling. Gang-scheduling in

fixed-size partitions is an effective way to deal with the timesharing problem and
has been successfully implemented on the CM-5 [Thi92]. It allows a scheduler to

use the same techniques used for scheduling serial jobs. It can be combined with

space sharing, discussed below, to provide very flexible resource allocation.

Unfortunately, gang-scheduling is available on neither the SP2 nor the NAS clus-
ter.

The alternative to time sharing is space sharing. With space sharing, a parallel

application gets exclusive access to the nodes on which it runs. There is no time

sharing, or if there is timesharing, the competing processes (such as Unix dae-

mons) are mostly inactive. The nodes of a parallel computer are then divided

among several parallel processes. Space sharing allows jobs of arbitrary size, is

compatible with running a full version of Unix, requires no special hardware

support and little software support, but makes scheduling more difficult for the

JMS. The two primary difficulties are the tiling problem, which has to do with

maximizing utilization, and the large job problem, which is that large jobs take

most or all of the computational resources of a machine, preventing any other
jobs from running.

3.2 Understanding "parallel"

Most job management systems were originally designed for serial jobs. While

they may be able to treat "number of nodes" as just another resource, they don't

really understand the concept of a parallel job. Typically the JMS launches a

starter process, or master process, that is responsible for starting the rest of the

parallel application (i.e. worker processes). With this approach, the JMS knows

nothing about the worker processes, except perhaps indirectly, through some-

thing like an indication of load average. Some of the problems with this
approach axe:

6



• If the masterprocessdies unexpectedly,workerprocessesmay not be
killed whena job finishes(normallyor abnormally).Such"orphaned
processes"causesevereperformanceproblemsat a minimum and in
somecases(e.g.theSP2)renderthemachineunusableto others.This is
a critical problemat NAS on both the SP2 and the cluster,and its
importancecannotbeoverstated.

• Thereis no way to enforcecertainresourcelimits (e.g. CPUtime) or
enforcerestrictionson foreign jobs (thosenot createdunder supervi-
sion of the JMS) sincethe JMS hasno way of knowing which pro-
cessesit is responsiblefor.

• Accountinginformationis recordedonly for themasterprocess.
• It is impossiblefor the job managerto kill a job directly. A parallel

applicationmustbekilled by or with thecooperationof themasterpro-
cess.When this fails (asit often does)the result is usuallyorphaned
jobs.

• Some systemsmay require specific per-processinitialization (e.g.
switchadaptermodeon theSP2).

In a parallel processingenvironment,the job managementsystemmust either
startor beawareof all processesin aparallelapplication.Theremustbea well-
defined interfacebetweenthe parallel programmingenvironmentand thejob
managementsystem.

3.3 Dynamic Resources and Scheduling

The parallel applications described so far are statically load balanced and request

a fixed amount of resources for the lifetime of the job. These restrictions can be

relaxed, introducing dynamicism into the picture.

Dynamic load balancing is easily implemented when there are a large number of

independent tasks. Typically, these "embarrassingly parallel" applications are

implemented with manager and worker processes using a producer-consumer

paradigm. If a node becomes slow, for instance due to interference from a time-

shared process, the application can shift work to other nodes, avoiding a

performance penalty. For dynamically load balanced jobs, gang-scheduling is

not necessary. Since these jobs can be easily timeshared, they offer more flexibil-

ity to the job management system. Debugging runs for tightly synchronized

applications have similar ability to be timeshared because performance is not

important. Scheduling for these applications can be performed using a scheme

based on load averages. Loadleveler, Condor, and LSF are oriented towards this

type of scheduling.

The possibility of being able to change resource allocation dynamically is

intriguing, especially in the arena of non-dedicated clusters made up of worksta-

tions sitting on user's desks. In a non-dedicated cluster, an allocated workstation

may be taken away by its owner, requiring a running application to migrate or



reduceits numberof processesif nootherworkstationis available.Reciprocally,
asworkstationsbecomeidle, it maybepossibleto addadditionalresourcesto a
running application.Anotherimportantuseof dynamicresourceallocationis for
fault-toleranceto allow aparalleljob to continueafteranodefailure.

Any dynamically load-balancedapplicationcan handle,in principle, dynamic
resourceallocation.Statically load-balancedapplicationscansometimesmake
useof dynamicresourceallocation,but oftenwith avery high costwhena load
is rebalanced.Effectively making use of dynamically changing resources
requirescooperationbetweenanapplicationandthe JMS, includingasynchro-
nousnotificationwhenresourcesbecomeavailableor unavailable.Theright way
to do this is currently an active areaof research.For example,there is work
underwayto definean interfacebetweenMPI and a JMS [Gro95] to support
dynamicprocessmanagement.ThePiranha[Car95]adaptiveparallelismmodel
definesafeederOandretreat() interface to grab and release new resources asyn-

chronously. At a minimum, we anticipate a need for the application to be able to:

• request specific resources, such as number of nodes, amount of time

they will be used for, amount of memory, type of architecture, type of

timesharing (co-scheduled or independent), what type of network is
needed, etc.

• acquire resources asynchronously, through a non-blocking request and
asynchronous notification when some/all resources are available.

• specify whether or not it can release resources, and provide a mecha-

nism for the JMS to take them preemptively or cooperatively.

The most recent version of PVM [PVM94] has internal support for interacting

with a job manager (requests for adding/deleting a host and spawning tasks).

While this is a step in the fight direction, it is not general enough to be of use for

NAS. For instance, there is no support for requesting specific resources or

acquiring or releasing them asynchronously. Furthermore, this functionality is

currently supported only by Condor [Lit88], which is tightly integrated with

PVM and therefore not appropriate for other JMSs.

4.0 Requirements

This section lists requirements for a job management system for the NAS paral-

lel systems. The primary purpose of the list is to organize and prioritize NAS

requirements. A secondary purpose is to provide a checklist for evaluating and

comparing existing job management systems. In some cases the requirements

will need operating system or application support. Our list of requirements
addresses the issues described in section 3 and tries to take into account three
main factors:

System environment: The system environment is an overriding con-

straint. Does the JMS have complete control over all processes on the

system? Are resources dedicated or shared? Do interactive users log

8



into the nodes?If interactiveusersareallowed,do they get priority?
We believethat the job managementproblemcanbemadearbitrarily
difficult by choosinga complicatedenvironment.Insteadof trying to
solveall problemsatonce,wechooseto addressfirst asimplerenviron-
ment for covering the basic needs.While severalcurrently available
packagestry to addresscomplicatedenvironments,they were found
inadequatebecausethey don't addresssimple problemssuchas the
"parallel aware"problem.A goalof this paperis to focusattentionon
basicrequirementsfor parallelsystems.
Usefulness:Next importantis the usefulnessof a given requirement.
Somerequirementsareabsolutelynecessary.Thelackof thosemakesa
systemdifficult to manage,andpotentiallyuseless.Lackof robustpro-
tection againstrunawayorphanprocesseson the SP2is an example.
Other requirementswe anticipatewill becomenecessaryto support
morecomplexparallelcomputingenvironments(e.g.networksof non-
dedicatedworkstations).Otherfeaturesareinteresting,but their useful-
nessis uncertain(job migrationbetweendifferentarchitectures).
Difficulty to implement: Thelast factorwe takeinto considerationis
whethera requirementis easyor difficult to implement.Thereis little
to gain by requiring somethingimmediatelythatis difficult to imple-
ment.Wewould ratherthat difficult features(for instancecheckpoint-
ing, job migration, gang scheduling) be carefully and correctly
implemented.

Wedecomposetherequirementsinto threephases,takinginto accountthethree
factorsjust described.PhaseI requirements are absolute requirements for a JMS

to be useful to NAS. All requirements included in Phase I exist or can be imple-

mented without any great advances. They assume dedicated, static resources

with space sharing but no timesharing, either co-scheduled or independent.

Phase II requirements relax these assumptions, assuming non-dedicated

resources over which the JMS has a large amount of control. Phase III require-

ments relax the assumptions further, fully integrating all types of parallel appli-

cations and traditional timesharing.

4.1 Phase I Requirements

4.1.1 System Model

In phase I, we target a dedicated parallel system where the job manager has com-

plete control. Individual nodes are dedicated to a single parallel application, so

that timesharing is not an issue. The job manager schedules jobs using space

sharing.

A user should be able to run a parallel job by specifying the number of nodes

(fixed throughout the life of the application), a maximum amount of time, and

possibly other resources (e.g., a certain amount of memory, access to a fast file

9



system,etc.). Jobswill bescheduledin a "fair" way determinedby the system
administrator.

4.1.2Definitions and assumptions

1. The principal resources are dedicated (cpu, memory, and possibly local disks).

If a user gets a node, he/she gets complete control of a node and can assume that

nothing else is competing for that node's resources (except possibly for a small

amount of OS activity). On most systems, access to the interconnect network and

remote file systems will remain available to other users. This is the only simple
way to make sure that the load is balanced and that communication-intensive

jobs can run efficiently without gang-scheduling. Furthermore, this makes it con-

siderably easier for the JMS to kill a job and clean up afterwards (e.g. every pro-

cess not owned by root may be fair game to kill).

The definition of a job is therefore node-based -- the JMS does not need to be

aware of individual processes. When there is gang-scheduling or timesharing

(see phases U and III), the job definition must be process based, which is more

difficult for a JMS to handle. A process-based definition is possible for phase I,

but not required.

2. Resources are static. The size of a parallel job remains fixed for the life of a

job. This avoids the complicated area of interaction between the resource man-

ager and the application.

3. The JMS has complete control over resource allocation. When dealing with a

large number of users, it becomes critical to be able to enforce a predetermined

scheduling policy (usually by preventing, killing or suspending foreign jobs), so

that each user can get a fair chance to run his or her jobs. A serious weakness of

current batch systems is their inability to enforce such a policy.

4. The job may be based on any standard parallel programming model. At NAS,

we support HPF, MPI and PVM. Certain restrictions below don't allow unre-

stricted use of all PVM features. Note that implementations of MPI, PVM, and

HPF must provide hooks for a JMS or this requirement will be impossible to ful-

fill. Some current implementations (e.g. MPI and HPF on workstation clusters)

do not provide enough information for a JMS to be able to clean up cleanly in a
process-based environment.

5. There is no system-supported fault tolerance, user level checkpointing, or job
migration. If a node dies, the application running on it dies and we assume there

is no way to recover except to kill the rest of the job cleanly. All of these are

extremely difficult issues, especially for parallel jobs, which is why we omit

them from phase I despite their importance. However, if requested by the user, a
job can be restarted from the beginning.

10



6. Computationalresourcesare essentiallyhomogeneous.A user application
shouldbeableto assumethatequallypartitioningwork will result in abalanced
load. Specialresourcesmay existon certainnodesif requestedby a user.This
appliesaswell to machinesthatappearto behomogeneous,butmaynot be,such
asanSP2(with different typesof nodes).

4.1.3 Scheduling policy

A JMS should be able to implement arbitrarily complex scheduling rules. Fair

and efficient scheduling (including site-specific policies and efficient tiling)

require sophisticated rules that can change frequently and can't be easily cap-

tured by a monolithic set of options. The tiling problem and large job problem

mentioned in section 3.2 are also difficult and have no unique solutions.

At a very minimum, we distinguish between three types of jobs -- interactive,

batch and foreign. The JMS should be able to distinguish between these types of

jobs and schedule them appropriately.

• Interactive Jobs

Interactive jobs are those that require fast turn-around (e.g. for debugging) with

their input/output connected to a terminal. Interactive jobs would usually have

small resource requirements, so they can run immediately or in a short period of

time.

• Batch Jobs

Batch jobs require a larger resource allocation. They will usually run overnight,

so that results can be retrieved the next day. Their output is sent to a file rather
than the terminal.

• Foreign Jobs

These jobs are created outside the JMS. The J-MS should be able to track, control

and possibly kill foreign jobs according to the current system administration pol-

icy. Since the definition of a job in phase I is node based rather than process

based. The JMS needs only to be able to distinguish between jobs belonging to
the "owner" of a node and all others.

Even these fairly simple categories can involve complicated rules for which a

built-in menu of options is unlikely to be sufficient. For instance, guaranteeing

interactive availability in a space-sharing environment while maintaining high

utilization is a complex task for which we do not have a perfect solution and for

which we would not want a JMS to impose a solution. However, we require the

JMS scheduler to be highly configurable, to accommodate arbitrarily complex

and changing scheduling policies.

This is not to say that the JMS should do nothing. Ideally we envision a script-

able scheduler interface, where the JMS should provide to the script information
such as:

• Requested resources and available resources (see section 4.1.5).

11



• job type (interactive,batch,shortdebugging,etc.).
• job, userandgrouppriority.
• Timeof day.
• Currentjobs running, currentjobs queued,recenthistory of resource

useby currentusers.
• Loadaverage(inphasesII andIII).

Wedon't want to rule out thepossibility of schedulingdoneentirelyby theJMS
(without ascriptableinterface),butwewouldbesurprisedif asufficientlyrobust
schedulercould bewritten thatcould handle all cases. Of course, even a script-
able interface should come with a default scheduler that can handle a lot of inter-

esting cases.

4.1.4 Resources

The JMS should be capable of allocating nodes based on requests for certain

resources. In addition to the absolutely essential resources of number of nodes
and wall clock time, these include:

• Number of nodes (currently available).

• Wall clock time.

• Node type (compute, I/O node, big memory, multiprocessor node).

• Disk Usage (local disk, system disk, swap space, etc.).

• Network connections (HiPPI, FDDI, ethernet, etc.).

• System specific resources (e.g. switch adapter mode on the SP2).

4.1.5 Resource Limits

The JMS must be able to enforce resource limits. In phase I, we require the JMS

to inform the user why a job is rejected or terminated. Before it kills a job for

exceeding resource limit, the JMS should send a predefined "warning" signal to

the application to give it a chance to abort cleanly. It is, however, the responsibil-

ity of the application to catch this signal and abort cleanly.

The JMS should be able to enforce (both at submission time and when a job is
running) limits on:

• Number of jobs running (user and group limits).

• Number of nodes.

• Type of nodes (I/O, HiPPI, or multiprocessor).

• Wall clock time (phase I) and CPU time per node or application (phases
II and III).

• Disk Usage.

• Dedicated access.

As part of its police duties, a JMS should maintain a clean system. In particular,

it should be able to detect orphaned tasks and foreign jobs and clean them up by

12



suspendingor killing them. In our experience so far, lack of ability to do this is

the single biggest problem we have encountered. In the phase I dedicated-node

environment, such detection and cleanup should be quite simple to implement

and requires no cooperation from an application.

When appropriate the JMS should support both hard limits and soft limits. A job

is always killed when it exceeds a hard limit. When a job exceeds a soft limit, it

may be killed, but the JMS can decide not to kill it if the resources it is using are

not requested by another process.

4.1.6 Accounting

The JMS should collect the following data about each job:

• User name, group and job name.

• Job submission time.

• Job starting and ending time.

• User and system time per node.

• All resources requested and allocated (e.g. number of nodes).

• Job return status (i.e. completed, killed, suspended).

4.1.7 Programming System Support

The JMS should support and interact with the following parallel programming

systems.

• MPI

• PVM

• HPF

In phase I, the JMS needs to be aware at least of a master process, but not neces-

sarily the entire application. For phases II and III, we require that all processes of

a parallel application be created by or registered with the JMS. The creation or

registration of process will be done via some well-defined interface between the

JMS and the application.

4.1.8 Administration

The administration of the JMS should be centralized. All configuration files and

log files should be maintained in one location. The administrator should be able

to dynamically reconfigure system resources with minimal impact on running

jobs. For instance, it should be possible to add a new system to a pool without

suspending or killing jobs. During a system shutdown, in Phase I and II running

jobs will be lost if they have not been checkpointed by the user. However, if

requested by the user, a job may be restarted from the beginning. For Phase III,

the JMS should be able to checkpoint jobs (relying on OS checkpointing) for
future restart.

13



Administrator's prologueandepiloguescriptsshouldbeableto run beforeand
after eachuser'sjob (e.g.for cleaning/tmp, creatingadditionalaccounting,or
performingsecurityfunctions).

4.1.9User Interface

It is important that the JMS provide to users sufficient and clear information

about the status of system resources and jobs.

• Status of all system resources (idle, reserved, available, down).

• Job status (queued, running, suspended, killed) - Detailed information

should be available to explain to users why a particular job is queued

(for example not enough nodes available), or was killed.

• Information about the consumed and remaining resource available to a

job.

Users should be able to reliably kill their own job.

Interactive jobs should run with standard input and output connected to a termi-

nal. We have also found it useful to be able to "detach" an interactive job after

verifying that it has started correctly [DJM93]. In this case, output must be

logged to a file as well. While we are not requiring this for Phase II, it should be
available for Phase II.

4.2 Phase lI requirements

4.2.1 System Model

Phase II targets a transitionary architecture, somewhere between the dedicated

parallel computer model of phase I and the network of workstations in phase III.

In phase II, we introduce new requirements that allow for more dynamicism and

fault tolerance, but not with the full range of features in phase III.

The main difference in Phase II is that resources are not necessarily dedicated, so

that the job manager must track individual processes. While this seems like a

small step, it introduces several new requirements and challenges. Some current

JMS systems already track jobs on an individual basis, but do not satisfy the
more important requirements of phase I.

From a user's point of view, the additional functionality in phase II is the ability

to have time shared pools of nodes for debugging (where performance isn't

important) or applications that can do dynamic load balancing. In addition, phase

II includes limited support for user level checkpointing (with cooperation from

the user application), with automatic restart and support for dynamic resource
allocation.

14



4.2.2 Definitions and assumptions

1. In addition to the dedicated resources from phase I, portions of a parallel com-

puter may be set aside for timesharing (independent scheduling).

2. The definition of a parallel job must now be process based, rather than node

based, in order to manage multiple jobs on a node. The JMS should be aware of

all processes associated with parallel jobs (interactive or batch) as well as foreign

jobs. The JMS should be able to do accounting at the process level.

In any case, the JMS should be aware of any jobs created under its supervision,

so that it can kill an entire parallel application (not just a master process) if some-

thing goes wrong (such as a node dies), or if a job exceeds its allocated

resources. Alternatively, if an application declares that it is fault-tolerant, the

JMS needs to take special actions to automatically restart the job from the last

checkpoint or from the start.

4.2.3 Dynamic Resource Allocation

The JMS should support dynamic resource allocation (e.g. changes in the num-

ber of nodes of a parallel job). For instance, it should be possible for a job to

request additional resources asynchronously, to release some of its current

resources, and for the JMS to preemptively take resources from a job. Obviously

this requires application level support, and an interface between the parallel pro-

gramming system and the JMS (as described in section 3.3). While few applica-

tions are currently structured to be able to handle dynamicism, allowing it

introduces considerable flexibility in scheduling algorithms to maximize

resource utilization and throughput.

4.2.4 User Level Checkpointing

The JMS should provide support for checkpoint/restart at the user level. An

application will have the opportunity to checkpoint its state periodically. The

JMS should have a well-defined interface to facilitate checkpoint-restart.

4.2.5 Heterogeneous Environment

The JMS should be able to operate in a heterogeneous environment. In particular,

it should be able to allocate and schedule resources on machines from different

vendors using a single point of contact. Complex scheduling cost analysis and

trade-off between various systems are left for Phase III.

4.2.6 Job Inter-dependency

Users should be able to express dependencies between a set of jobs. The JMS

scheduler must be aware of these dependencies while scheduling the jobs. Types
of dependencies are:

• Job State (queued, running, etc.).

• Job Return Status (Success, Failure).

• Job Submission time.

15



4.2.7 Resource requests and limits, accounting

With timesharing, the following resources become important. The JMS should
be able to allocate and limit resources based on:

• CPU time (per node or total).

• Memory use.

• Swap space.

• Disk usage.

In phase I, only wall clock time was relevant on dedicated nodes. CPU time was

either redundant or misleading. An application waiting on communication would

not use any CPU time but would still prevent any other job from using the dedi-

cated resources. In a timesharing environment, wall clock rime has a lesser

meaning for the purposes of accounting, and CPU time is a better measure.

Also with the introduction of timesharing, memory use becomes more important.

It is crucial for most applications (unless performance and efficiency are of no

importance) to avoid swapping. Some applications may be able to use swapping
without performance hit. Avoiding swapping is more important when there is

timesharing because one large process can ruin performance for all the others. A

JMS should be able to schedule jobs so that they do not exceed available mem-

ory and should be able to kill off jobs that exceed their memory request.

In a timesharing environment, it is expected that the primary method of load bal-

ancing used by the JMS will be to schedule according to load average. The JMS

must therefore have some mechanism to determine load average. In certain envi-

ronments, it might be acceptable not to measure load average directly but only to
keep track of the number of processes on a node.

4.3 Phase III Requirements

4.3.1 System Model

Phase III targets a fully production system, allowing production parallel applica-

tions to run in an environment that includes workstations sitting on people's

desks. It requires the solution of difficult problems in computer science before it

can be implemented and certainly requires support at the operating system and

communication library level. Many of the operating system issues are being

addressed by the NOW project at Berkeley [Pat94].

The major developments required for phase III are gang-scheduling and auto-

marie checkpointing, restart, and migration.

4.3.2 Definitions and Assumptions

1. Gang scheduling is available. A fixed size partition may be setup to easily
implement gang scheduling.

16



Gang schedulingis necessaryto allow efficient executionof communication-
intensiveapplications,combinedwith reasonableresponseandthroughput.We
havein mind theCM-5 model.It mayturn out that gang-schedulingis possible
or efficientonly ondedicatedparallelcomputersunlessalargetime sliceis used.
Theuseof a smallertime slicewill requirea low latencynetwork. It is not yet
clearwhetherit canbeusefulon networksof non-dedicatedworkstations.

2.Thereis robustsupportfor checkpointing,restartfrom checkpoint,andmigra-
tion (probably implementedas checkpoint-restart).This is crucial to provide
fault toleranceandto returnresourcesbackto interactiveworkstationusers.

4.3.3 Scheduling

The JMS may need to understand and interact with the gang-scheduler to be able

to schedule jobs appropriately. For example, gang-scheduling is not necessary

for dynamically balanced jobs.

To make effective use of checkpoint-restart, a JMS will have to reschedule or

migrate an application when a node or other resource becomes unavailable.

4.3.40S Level Checkpointing

OS level checkpointing of serial jobs is a difficult task. To our knowledge, very

few systems support robust OS checkpointing. Checkpointing of parallel jobs is

even more complicated both because there is always network activity (what

should be done with messages in transit?) and because it can be quite difficult to

capture a well-defined "state" in a loosely synchronous parallel application. OS

level checkpointing clearly involves cooperation between the operating system,

the communication library, and probably the application itself. While OS level

checkpointing is quite difficult, we have found it to be an important element of a

production supercomputing environment of the type found on a "traditional"

supercomputer such as the Cray C90.

Checkpointing is essential for implementing fault tolerance and for migrating

jobs from machines that must be used for some other purpose (e.g., a workstation

owner reclaims her/his workstation or there is a higher priority job).

4.3.5 Job Migration

In a non-dedicated cluster environment, it should be possible to migrate a job

from a workstation which has to be returned to its owner. To do this robustly

requires OS level checkpointing, support from the communication layer, and

may require moving data files used by the job. In an heterogeneous environment,

it should be possible to migrate a job through a combination of user-level check-

pointing and restart. Of course this will make sense only for certain types of

applications.

17



In order to maximizethroughput,the JMS schedulershouldbe ableto migrate
jobs asnew resourcebecomeavailable.For instance,removinga largememory
job from abusysystemintoanemptyone.

5.0 Conclusions

A robust job management system is an essential component of a production par-

allel supercomputer. Current job management systems, designed originally for

serial jobs or without awareness of the special requirements for parallel applica-

tions, do not work well in the NAS environment. By providing a detailed list of

requirements for a job management systems, we hope to focus attention on the

basic issues and make sure that these are covered before more adventurous

projects are attempted. We can wait for some time until difficult problems are

solved, but we have immediate needs for a JMS that will solve the simple ones.

Phase I requirements are a minimum to have a usable dedicated system, and

Phase II will be necessary to start supporting a production workload. Phase III

requirements are important for a full production system, comparable to the pro-
duction environment found on traditional vector supercomputers at NAS.

We are working with the designers of the Portable Batch System [PBS95] devel-

oped at NAS and Livermore National Lab to make sure our requirements are
addressed in their design.

6.0 References

[Car95] "Adaptive Parallelism and Piranha", N. Carriero, E. Freeman, D.

Gelernter and D. Kaminsky, IEEE Computer, January 1995.

[DJM93] "Distributed Job Manager Administration Guide" AHPCRC, Minne-

sota Supercomputer Center, 1993.

[Duk94] "Research Toward a Heterogeneous Networked Computing Cluster:

The Distributed Queuing System Version 3.0," D. Duke, T. Green, J. Pasko,

Supercomputer Computations Research Institute, Florida State University,
March, 1994.

[Gro95] "Dynamic Process Management in an MPI Setting", W. Gropp and E.
Lusk, draft report, ANL, 1995.

[IBM94] "IBM Loadleveler Administration and Installation Guide", Document

Number SH26-7220-02, IBM Kingston Research Center, January 1994.

[Kin86] "The Network Queuing System," B.A. Kinsbury, Cosmic Software,
NASA Ames Research Center, 1986.

18



[Lit88] "Condor: A Hunterof IdleWorkstations",M. Litzkow, M. Livny andM.
Mutka,Proceedings of the 8th International Conference on Distributed Comput-

ing Systems, San Jose, June 1988.

[Pat94] "GLUnix: A New Approach to Operating Systems for Networks of

Workstations." D. Patterson and T. Anderson, Proceedings of the First Workshop

on Networks of Workstations, San Jose, October 1994.

[Pla94] "LSF: Load Sharing Facility Administrator's Guide", Pla(orm Comput-

ing Corporation, December 1994.

[PBS95] "Portable Batch System: External Reference Specification", Revision

1.4, NAS, NASA Ames Research Center, January 1995.

[PVM94] "PVM3 Users Guide and Reference Manual," A1 Geist, Adam Begue-

lin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam, Oak

Ridge National Lab TM-12187, September, 1994.

[Rya93] "Parallel Computation of 3-D Navier-Stokes Flowfields for Supersonic

Vehicles", J.S. Ryan and S.K. Weeratunga, AIAA 93-0064, Jan. 1993.

[Thi92] "Connection Machine CM-5 Technical Summary", Thinking Machines

Corporation, November 1992.

[Zho93] "Utopia: a Load Sharing Facility for Large, Heterogeneous Distributed

Computer Systems," S. Zhou, X. Zheng, J. Wang, and P. Delisle, Software- Prac-

tice and Experience, Vol. 23, December 1993.

19




