Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals with Three Partially Fluorinated Ethers

K.-J. Hsu* and W. B. DeMore*
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Received: February 78, 1995; In Final Form: May 10, 1995

Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF3HOCF3:H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298–393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm3 molecule-1 s-1. Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C–H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C–H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

Introduction

Partially fluorinated ethers are of some interest as possible replacements for chlorofluorocarbons (CFCs), since they have zero ozone depletion potential and can be removed from the atmosphere by OH attack, thus reducing their global warming potential. To estimate the atmospheric lifetimes of such species, accurate data for the rate constants and their temperature dependencies are needed. The rate constants for these compounds also give further information concerning substituent effects on the rates of OH abstraction reactions. Relatively few experimental data are available for OH reaction rates with this class of compounds. The only published measurements are those of Zhang et al.1 Garland et al.2 and Orkin et al.3 Some of these measurements are in substantial disagreement, possibly due to the effect of impurities. All of the published data are based on observations of the rate of OH loss in the presence of the compound, a method which has the advantage of producing absolute rate constants but the disadvantage of being susceptible to spurious OH loss due to impurities or secondary products.

In the present work we have employed a relative rate technique which is insensitive to reactions of impurities as well as secondary products and has been shown to yield accurate relative rate constants for several halogenated alkanes.4–8 When combined with absolute rate constants for reference compounds such as CH4, CH3CCl3, and CF3CF2H, absolute rate constants can be determined.

Experimental Section

The relative rate technique used in this work has been described in several recent publications.4–8 The method involves measurement of the fractional loss of the reactant compound compared to a reference compound, in the presence of OH. The OH radicals are produced by 254 nm photolysis of O3 ((5–10) × 1017 cm–3) in the presence of water vapor ((3–5) × 1017 cm–3) or by direct photolysis of H2O at 185 nm. The experiments are done in a temperature-controlled quartz cell, operated in either a slow-flow or stopped-flow mode. The

Table 1: Rate Constants of the Reference Compounds Used in This Work

<table>
<thead>
<tr>
<th>ref compound</th>
<th>Arrhenius rate constanta</th>
<th>k(298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH3F</td>
<td>2.3E–12 exp(–1275/T)</td>
<td>3.2E–14</td>
</tr>
<tr>
<td>CH2F2</td>
<td>1.8E–12 exp(–1552/T)</td>
<td>9.8E–15</td>
</tr>
<tr>
<td>CH3CCl2</td>
<td>1.8E–12 exp(–1550/T)</td>
<td>9.9E–15</td>
</tr>
<tr>
<td>CF3H</td>
<td>6.4E–13 exp(–2354/T)</td>
<td>2.4E–16</td>
</tr>
<tr>
<td>CF3Cl</td>
<td>2.6E–12 exp(–1800/T)</td>
<td>6.3E–15</td>
</tr>
<tr>
<td>CF3CCl3</td>
<td>5.6E–13 exp(–1700/T)</td>
<td>1.9E–15</td>
</tr>
</tbody>
</table>

a Rate constants for CH4, CH3CCl3, and HFC-125 from JPL Publication 94-26; all others from Hsu and DeMore. b A secondary reference standard. See Discussion. c A primary reference standard. See Discussion.

H atoms produced in the H2O photolysis are converted to the relatively unreactive HO2 in the presence of O2. The cylindrical cell is 10 cm in length and 5 cm in diameter and is either waterjacketed (for the O3 photolysis experiments) or wrapped with heating tape and insulating material for the H2O photolysis experiments. Residence times in the cell for the slow-flow mode are about 1 min. Concentrations are monitored with a Nicolet 20SX FTIR, operated at 0.5 cm–1 resolution in the absorbance mode using a White cell with a 3-m path length. Other details of the experimental procedure are described in the papers referenced above.

Several factors are involved in the choice of reference compounds: (1) the accuracy of the absolute rate constant; (2) the magnitude of the reference rate constant, which should be similar to that of the reactant in order to obtain measurable conversions of both compounds; (3) the IR spectral bands should be strong and well-defined and should not interfere with those of the reactant. In the present work we have used the reference compounds which are shown in Table 1.

Results

The rate constant ratio measurements at different temperatures are shown in Table 2. Linear least-squares fits to these data in Arrhenius form are listed in Table 3. Using the reference rate constant expressions from Table 1, the ratio data from Table 2 were converted to rate constants, and the resulting data are plotted in Figures 1–3. The figures include data from other laboratories for comparison.
TABLE 2: Measured Rate Constant Ratios, \(k/k_{\text{ref}} \), as a Function of Temperature

<table>
<thead>
<tr>
<th>CF(_3)OFCH(_3) (HFOC-143a)</th>
<th>CF(_3)HOCF(_2)H (HFOC-134)</th>
<th>CF(_3)OCF(_2)H (HFOC-125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) (K)</td>
<td>(k/k_{\text{ref}})</td>
<td>(T) (K)</td>
</tr>
<tr>
<td>298</td>
<td>0.335</td>
<td>301</td>
</tr>
<tr>
<td>318</td>
<td>0.370</td>
<td>321</td>
</tr>
<tr>
<td>333</td>
<td>0.364</td>
<td>370</td>
</tr>
<tr>
<td>348</td>
<td>0.385</td>
<td>315</td>
</tr>
<tr>
<td>363</td>
<td>0.383</td>
<td>350</td>
</tr>
<tr>
<td>381</td>
<td>0.389</td>
<td>368</td>
</tr>
</tbody>
</table>

\(^{a}\) HFC-152a, CH\(_2\)F\(_2\), CH\(_3\)CCl\(_3\), CF\(_3\)H, CH\(_3\), and H/CH\(_2\)/CF\(_2\)/H were the reference compounds.

TABLE 3: Arrhenius Expressions for the Rate Constant Ratio Data

<table>
<thead>
<tr>
<th>reactant</th>
<th>reference</th>
<th>(k/k_{\text{ref}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF(_3)OFCH(_3) (HFOC-143a)</td>
<td>CH(_3)CF(_3)H (152a)</td>
<td>(0.65 ± 0.08) exp(−190 ± 43)/T</td>
</tr>
<tr>
<td>CF(_3)HOCF(_2)H (HFOC-134)</td>
<td>CH(_3)F(_2)</td>
<td>(1.55 ± 0.10) exp(−136 ± 43)/T</td>
</tr>
<tr>
<td>CF(_3)OCF(_2)H (HFOC-125)</td>
<td>CH(_3)CCl(_3)</td>
<td>(1.05 ± 0.20) exp(−456 ± 62)/T</td>
</tr>
<tr>
<td></td>
<td>CF(_3)H</td>
<td>(0.74 ± 0.10) exp(259 ± 48)/T</td>
</tr>
<tr>
<td></td>
<td>CH(_3)</td>
<td>(0.054 ± 0.02) exp(107 ± 120)/T</td>
</tr>
</tbody>
</table>

\(^{a}\) Errors shown are standard deviations.

Figure 1. Arrhenius plot of data for CF\(_3\)OCH\(_3\) (HFOC-143a).

HFOC-143a. Our data (Figure 1), based on the two reference gases HFC-152a and HFC-32, are in excellent agreement (about 2% or better). Normally only one reference gas would be used, but because of the somewhat anomalous behavior of the CF\(_3\)O group in this compound when compared to HFOC-125 (see Discussion), two separate sets of data were taken. The agreement between them is an indication of experimental consistency, i.e., freedom from unsuspected error sources such as product interference with the IR spectra. (Such interference is, in any case, usually detectible from the IR results at different wavelengths.) Since the reference rate constant used for HFC-32 is based on that of HFC-152a, the agreement does not confirm absolute accuracy. That depends on the validity of our rate constant for HFC-152a, which was determined from those of both CH\(_4\) and CH\(_3\)CCl\(_3\). The results from these two reference standards at 298 K for the 152a rate constant are in agreement to within 3%. The values we used for CH\(_4\) and CH\(_3\)CCl\(_3\) (the same as in Table 1) are well-established absolute rate constants which have been shown in our previous ratio experiments\(^{8}\) to be self-consistent to within better than 3%. It is probable, but of course not certain, that they are accurate to within about 5% on an absolute basis. Taking 5% as the absolute accuracy of both the standard rate constants and considering that the two ratio measurements are each accurate to at least 3%, the net uncertainty in \(k \) 152a is calculated to be 3%. (The combined error of a single measurement would be 6%, but since there are two independent measurements the net uncertainty is half that.) For HFOC-143a, the two sets of ratio measurements (from HFC-152a and HFC-32) agree on average to within 2%. Therefore, the ratio measurements add relatively little uncertainty, and the net uncertainty in \(k \) for HFOC-143a (in this temperature range) is about 7%. The uncertainty in the E/R value is about ±200
Reactions of Hydroxyl Radicals with Ethers

1.0E-14

Or)

i

6

O

2HOCF2H (HFOC-134)

k = 1.9E-12exp(-2006/T)
k(298 K) = 2.3E-15 cm3/molec.-s

Figure 2. Arrhenius plot of data for CF2HOFCF2H (HFOC-134).

1.0E-14

CF2OOCF2H (HFOC-125)

k = 4.7E-13exp(-2095/T)
k(298 K) = 4.2E-16 cm3/molec.-s

Figure 3. Arrhenius plot of data for CF2OOCF2H (HFOC-125).

K, most of which arises from possible error in the E/R value for HFC-152a, which we estimate to be about ±150 K.

HFOC-134 (Figure 2). Methyl chloroform was the reference gas in these experiments. Since that gas is one of our primary standards and the rate constant has been shown to be consistent within a very few percent with the other primary references, CH4 and HFC-125, the major uncertainty is from the ratio experiment itself, which is about 3–5%. Conservative uncertainties in k(298 K) and E/R are about 10% (since only one ratio was measured) and ±200 K, respectively.

HFOC-125 (Figure 3). The first experiments were with CH4 as the reference compound. These measurements were conducted to establish the magnitude of the HFOC-125 rate constant. It turned out to be slower than expected, and therefore CH4 was not an ideal reference gas because of the mismatch between the rate constants. Additional experiments were done with CF3H as the reference. A single point using HFC-125 was also taken, as a consistency check. The derived rate constant for HFOC-125 in Table 4 is based on the CF3H rate constant, which was determined with reference to HFC-125 in
TABLE 4: Derived Rate Constants

<table>
<thead>
<tr>
<th>Compound</th>
<th>Arrhenius Rate Constant</th>
<th>$k(298 \text{ K})^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF$_3$OCH$_3$ (HFOC-143a)</td>
<td>1.9E-12 exp(-1555/T)</td>
<td>1.0E-14</td>
</tr>
<tr>
<td>CF$_3$CHOF-H (HFOC-134)</td>
<td>1.9E-12 exp(-2066/T)</td>
<td>2.3E-15</td>
</tr>
<tr>
<td>CF$_3$OCF$_2$H (HFOC-125)</td>
<td>4.7E-13 exp(-2095/T)</td>
<td>4.2E-16</td>
</tr>
</tbody>
</table>

a Units are cm3/molecule s. b Fit to data from experiments with CH$_2$CF$_2$H and CH$_3$F$_2$H as reference compounds. c Methyl chloroform was the reference compound. d Fit to data from experiments with CF$_3$H as reference compound.

our previous study.8 Since the ratio measurements introduce relatively little additional error, typically 5% or less, the accuracy of the CF$_3$H rate constant is within about 5% of the accuracy of the HFC-125 rate constant, which in turn is about 5%. We expect that $k(298 \text{ K})$ for HFOC-125 from our derived Arrhenius expression is accurate to within 10%. As in the other cases, the uncertainty in E/R is about ± 200 K, again with most of the uncertainty arising from that in E/R for HFOC-125.

Table 4 summarizes the recommended rate constants from the present work. These are from a linear least-squares fit of all our derived rate constant data, except for the case of HFOC-125 where we used only the data obtained with CF$_3$H as the reference compound.

Discussion

Accuracy of the Method. Relative rate constants are by their nature intrinsically accurate, since they require only very simple ratio measurements and are not affected by factors such as the purity of the samples. As we discussed in the Results, the ratio measurements introduce only an additional 3–5% uncertainty in k at a given temperature, and in many cases even less. Relative Arrhenius A factors can be determined to within a factor of about 1.3 and relative E/R values within 50–75 K. The absolute accuracy of rate constants determined by this technique depends largely on the validity of the reference rate constants. We use CH$_4$, CH$_3$CCl$_3$, and CF$_3$CF$_2$H as the primary standards, and in previous work$^4-8$ we have shown that the rate constants of these three standards (determined from absolute measurements)9 are mutually consistent to within a few percent. The simplest interpretation of this consistency is that the absolute rate constants for these three standards are accurate.

The use of secondary standards such as CH$_3$CF$_2$H (HFC-152a) or CF$_3$H (HFC-23), for which we have determined the rate constants relative to the primary standards, is sometimes convenient in order to match rate constants or to avoid IR spectral overlaps. This procedure might be assumed to lead to an accumulation of error which would not be detected. That this is not the case can be seen by considering the self-checking nature of the measurements, as in the example of HFOC-143a. There we compared HFOC-143a with both HFC-152a and HFC-32 and have previously intercompared the latter two compounds.9 Thus there is a closed relationship among the three ratios between the three compounds. The good agreement between rate constants obtained for HFOC-143a from the two secondary standards (about 2% on average) shows that no significant error has accumulated in the sequence from HFC-152a to HFC-32 to HFOC-143a. The rate constant for HFC-152a was in turn referenced to both CH$_4$ and CH$_3$CCl$_3$, with excellent agreement.8 Both CH$_4$ and CH$_3$CCl$_3$ have been compared to other compounds, such as CF$_3$CH$_2$F (HFC-134a) and CFC$_3$CH$_3$ (HFC-141b), with better than 1% agreement among all three ratio measurements. The ratios so obtained agree within 2% with the ratio of recommended absolute measurements.8 HFC-152a has also been compared with many other compounds. Thus the interlocking and self-testing nature of the ratio measurements precludes the accumulation of undetected errors beyond the level of a few percent.

Comparisons with Previous Work. Our data for HFOC-143a (Figure 1) are in good agreement (factor of 1.3 at room temperature) with the earlier measurements of Orkin et al.3 who report $k = 1.13E-12 \exp(-1300/T)$. Both sets of data are about a factor of 2 lower than the single point of Zhang et al.1. As with their HFOC-125 data mentioned below, the Zhang et al. measurement may have been affected by impurities in the sample.

For HFOC-134 (Figure 2), the only previous data are those of Garland et al.2 Our rate constants are lower and correspond to significantly different Arrhenius parameters. The rate constant reported by Garland et al. was $k = 5.4E-13 \exp(-1560/T)$ cm3/molecule s. As shown in our previous work,8 compounds with two equivalent hydrogen atoms, such as HFOC-134, normally have an A factor for OH abstraction which is at least twice that value. A factors which fall significantly below the expected value are frequently indicative of impurity effects, particularly at low temperatures where the contributions to the rate of OH loss become increasingly important.

For HFOC-125 (Figure 3), there are no previous data except that of Zhang et al.1. The much higher point reported by Zhang et al. is probably also due to impurity effects.

Substituent Effects on the Rate Constants. To examine substituent effects systematically, it is useful to consider the compounds as substituted methanes and to normalize the rate constants to a per hydrogen basis. For example, the compound CH$_3$CH$_2$H$_2$ is viewed as methylmethane, with CH$_3$ being the substituent group. There are six equivalent reactive sites. Compounds such as CH$_3$CF$_2$H (HFC-152a) have two distinct reactive sites. The total reaction rate is the sum of two separate reactions, one on the CH$_3$ group and one on the CF$_3$H group.

Substituents affect rate constants in two ways. The most important is the effect on the C–H bond energy, which in turn alters the activation energy of the reaction. A second and less important effect is on the preexponential factor. In our previous work,8 we have shown that ratios of Arrhenius A factors are remarkably proportional to the number (equivalent) H atoms in the molecule, regardless of the nature of the substituents. Deviations from proportionality to the number of H atoms are usually less than a factor of 1.3. As discussed in later paragraphs, the present data are consistent with this generalization.

Substituent effects on OH reactions are of interest in connection with the development of empirical methods for the estimation of rate constants. Effects of several substituents, both single and multiple, are illustrated in Figure 4, which is a graph of log(k(298 K)/n(H)) for reactants in which all the C–H bonds are identical, with n(H) being the number of H atoms. In CH$_3$CCl$_3$, for example, the relevant group is CCl$_3$. From this graph the relative effects of different groups and combinations of groups can be readily seen. The rate constants are considered on a per hydrogen basis, as discussed above. The point of reference in Figure 4 is CH$_4$, since all the compounds are considered as substituted methanes.

As seen in Figure 4, most groups enhance the C–H reactivity compared to CH$_4$. This is also the case for the CF$_3$O group, since CF$_3$OCH$_3$ has a higher reactivity per C–H bond than CH$_4$. The only known (single) groups which reduce $k/n(H)$ are CF$_3$ and CF$_3$Cl (as in HFC-143a and HCFC-142b; see Figure 4). The CFC$_3$ group (in CFC$_3$CH$_3$, HCFC-141b) has a slight enhancing effect, in keeping with the trend toward the fully chlorinated group CCl$_3$, which has a definite enhancing effect (as in CH$_3$CCl$_3$). Qualitatively, these and other effects discussed
Reactions of Hydroxyl Radicals with Ethers

Figure 4. Graphical representation of the 298 K rate constants for the OH reactions with several compounds, normalized to a per hydrogen basis. Rate constants are from refs 4-8 or from JPL 94-26.

Figure 5. Correlation of \(\log(k(298\, K)/n(H)) \) with C-H bond energies for several methane derivatives, used to derive the C-H bond energies in the fluoro ethers. Open squares are data using rate constants from refs 4-8 or JPL 94-26, and enthalpies as listed in JPL 94-26. Solid squares are the fits for the respective ethers.

below can be correlated with the density of valence electrons in the group.

It is known (and is evident in Figure 4) that the presence of multiple substituent groups on a carbon atom affects the C-H reactivity by an amount that is less than the effects of the substituents considered individually. For example, a second Cl atom (as in \(\text{CH}_2\text{Cl}_2 \)) has a smaller effect on the rate constant than does the first (as in \(\text{CH}_3\text{Cl} \)), and a third has still less effect (as in \(\text{CHCl}_3 \)). The respective increments in \(\log(k(298\, K)/n(H)) \) for the series \(\text{CH}_4 \) to \(\text{CH}_3\text{Cl} \), \(\text{CH}_3\text{Cl} \) to \(\text{CH}_2\text{Cl}_2 \), and \(\text{CH}_2\text{Cl}_2 \) to \(\text{CHCl}_3 \) are 0.80, 0.66, and 0.27. This lack of strict additivity poses a problem for rate constant estimation methods, which must account for it empirically.

The fluorine atom is a unique case with regard to the effect of multiple substitution by halogen atoms. The first F atom enhances the rate constant per H atom, the second one decreases it slightly, and the third one causes a very pronounced decrease. The rate constant for \(\text{CHF}_3 \) is thus among the slowest of those
The latter present work to occur for the somewhat similar CI-IF, group. Other substituents, with the exception that it appears from the hydrogen basis. This behavior has not been observed for any of the compounds. The rate constants are much lower than that of CF2H2 on a per hydrogen basis. Thus, CH3F and CF3OCH3 both react on a per hydrogen basis faster than CI-h. When two F atoms are already present on the carbon atom (in addition to F or CF3O), as in CF3CF2H or CF,OCF2H, the enhancing effects of the three substituents are not only reduced but are in fact replaced by a net suppressing effect. CF3H, the enhancing effects of the three substituents are not nearly equal values for k/n(H), as seen in Figure 4.

The presence of two F atoms not only offsets the enhancing effects of groups but also mitigates the suppressing effects which a very few single groups have. In the case of CF3, the presence of two F atoms on the carbon atom (as in CF3CF2H) reduces the suppressing effect, with the result that the compound CF3CF2H has a k/n(H) which is greater than that of CF3CF3, the compound to which it should be compared in this connection. It is therefore apparent that CF3O and CF3 behave quite dissimilarly in the rate constants are due to differences in E/R. It may be noted that the Arrhenius parameters for the pairs CH3F and CF3OCH3, as well as CF3H and CF3OCF2H, are rather similar, showing again that in this regard the CF3O group behaves much like an F atom.

Bond Energies. Figure 5 shows a correlation plot for log(k(298 K)/n(H)) vs the C–H bond dissociation energy for several methane derivatives. The values for the C–H bond energies in the fluoro ethers which fit this correlation are (in kcal/mol): 102 (CF3OCH3), 104 (CHF2OCF2), and 106 (CF3OCF2H). These values are shown on the plot. On the basis of the scatter in the correlation plot, there is an uncertainty of about 1 kcal/mol in the fit, aside from any uncertainty in the bond energies used to establish the correlation. A similar correlation (not shown here) using haloethanes gives the same result, as does a correlation of log(k/n) vs E/R for both the methanes and ethanes.

Acknowledgment. We have benefited greatly from frequent discussions with members of the JPL Kinetics and Photochemistry group. We are especially grateful to Dr. Robert Hampson for many comments during the course of this work. The DuPont Co. generously provided the HFC samples used in this work. This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References and Notes