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Abstract

Measurements of the velocity field created by a shallow bump on a wall revealed that an

energy peak in the spanwise spectrum associated with the driver decays and an initially small-

amplitude secondary mode rapidly grows with distance downstream of the bump. Linear

theories could not provide an explanation for this growing mode. The present Navier-Stokes

simulation replicates and confirms the experimental results. Insight into the structure of the

flow was obtained from a study of the results of the calculations and is presented.
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I. Introduction

In order to determine whether an eigenmode of the linearized boundary-layer equations

or an Orr-Sommerfeld approach was appropriate for studying the disturbance field created

by a localized boundary perturbation of boundary-layer flow, Gaster, Grosch, and Jackson 1

performed an experiment to find out what the solution should look like. Surprisingly, the

experimental results did not seem to be consistent with either model. A significant result of

the experiment was that a primary spanwise mode associated with the diaphragm dimension

decayed slightly with downstream distance and a small secondary mode rapidly grew with

downstream distance. To rule out any possible anomaly in the experiment, the present

computational study was initiated to duplicate the experimental results. Equally important,

the results of the computation permit a detailed study of the flow field structure and yield

insight into the physics of the flow. The computations involve solving the unsteady nonlinear

Navier-Stokes equations for a spatially-growing boundary-layer flow and should be equivalent

to an ideal experimental study.

II. Overview of Experimental Conditions

Although a detailed description of the experimental conditions was given by Gaster et

al. 1, a synopsis of the experimental parameters important for the computations is provided

here. In the experiment, the bump was located 400 mm from the leading edge of the

flat plate. At this location, the boundary and displacement thicknesses of the undisturbed

flow near the bump were 6 = 2.88 mm and 6" = 0.99 mm, respectively. The associated

boundary-layer Reynolds numbers near the bump were R_ = 3480 and R_. = 1196. A

silicon rubber diaphragm of 20 mm (- 206*) was used to force the disturbance. Most of

the diaphragm motion occurred over 10-15 mm of the center. The amplitude of the bump

motion was about 0.1 mm (100 #m), which is a typical height of the roughness element used

in receptivity experiments (see Saric _, section 3.1.1). A measure of the disturbance amplitude

near the bump was predicted to be about u = 4.9% of the freestream velocity. Although a

stationary bump would be preferable, a forcing frequency of 2 Hz was used to discriminate

the signal created by the bump from the background noise present to some degree in all

experiments. There are, of course, Tollmien-Schlichting modes with a 2 Hz frequency but

these are highly damped at the Reynolds numbers of the experiment. The 2 Hz frequency is

well below that of any growing Tollmien-Schlichting mode. The 4.9% disturbance amplitude

is too large to enable a comparison of the experimental disturbance with receptivity theory

which, to date, is based on the infinitesimal small-amplitude assumption. It is possible that

a sufficiently large disturbance at very low frequency or even a steady disturbance could



causea by-passtransition, but no evidenceof transition or turbulence wasobservedin the
experimentor in the computationsreportedhere. Measurementstationsweresetupabout 70
and 105boundary-layer thicknessesdownstreamof the bump, (-_ 200and 300displacement
thicknesses). Theseare station B, sectionb-b and station A, sectionc-c, respectively,as
shownin figure 1 of Gaster et al1. The Reynoldsnumbers at these measuringstations
were approximately R_. = 1466 and R_. = 1585. Detailed measurements of the streamwise

component profiles in both the normal and spanwise directions were made at these stations.

Less detailed measurements were made over a larger area.

III. Numerical Method of Solution

The numerical techniques required for the simulation and the disturbance forcing are

briefly discussed in this section. For a detailed description of the spatial DNS (Navier-Stokes)

approach used for this study, refer to Joslin, Streett and Chang. a'4 The instantaneous ve-

locities _ = (G v, t?) and the pressure 15 are decomposed into steady base and disturbance

components. The base flow is given by velocities U = (U, V, W) and the pressure P; the dis-

turbance is given by velocities u_ = (u, v, w) and the pressure p. The velocities correspond to

the coordinate system z__= (x, Y, z), where x is the streamwise direction, y is the wall-normal

direction, and z is the spanwise direction. The base flow for the flat plate can be reason-

ably approximated by the Blasius similarity solution U = (U, V, 0) and the disturbance flow

is found by solving the three-dimensional, incompressible Navier-Stokes equations. These

equations are the momentum equations

1 2
u_t + (u__.V)u__+ (_U- V)u_ + (u_u_.V)U_= -Vp+ _V u_u_ (1)

and the continuity equation

v. =o (2)

The boundary conditions in the far-field are

u_--+O as y-+oc (3a)

and the conditions at the wall are

u_=_ at y=O (3b)

where u c = 0, except for the portion of the wall which models the bump. The Reynolds

number R = U_2/z/is based on the boundary-layer displacement thickness at the inflow of

the computational domain, the freestream velocity U_ and the kinematic viscosity u.

To solve equations (1-3) computationally, the spatial discretization entails a Chebyshev

collocation grid in the wall-normal direction, fourth-order finite differences for the pressure
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equation, sixth-order compactdifferencesfor the momentum equations in the streamwise
direction, and a Fourier sine and cosineseriesin the spanwisedirection on a staggered
grid.4 For time marching, a time-splitting procedureis used with implicit Crank-Nicolson
differencingfor normal diffusiontermsandanexplicit three-stageRunge-Kutta method.5The
influence-matrix techniqueis employedto solvethe resulting pressureequation (Helmholtz-
Neumann problem).6'7At the inflow boundary, the mean baseflow is forced and, at the
outflow, the buffer-domain techniqueof Streett and Macaraeg8 is used.

The boundary conditions that haveto be imposedto representan oscillating bump are
a streamwisevelocity perturbation relatedto the meanshearand the bump height together
with the normal velocity of thebump asdescribedin Gasteret al.1Although the experiments
had to usea low-frequencyoscillating bump, the computationscanusea stationary bump.
Hence,the boundary conditionsreduceto

= eU
dy

(4)

The form h(x, z) = v_ sin(x) 3 sin(z) s is imposed for the bump shape, which yields a compu-

tationally smooth bump. The bump height is given by the amplitude v_ = 10%. Although

no attempt was made to exactly match the ingested disturbance amplitude of 4.9% in the

experiment, an amplitude of approximately 3.4% was observed in the computations. The

streamwise length of the bump was 15.952 and the spanwise half-length was 6.552. As will

be seen in the results section of this paper, the somewhat arbitrary selection of the ampli-

tude and shape of the computational bump did not have an adverse effect on the desired

comparison with experiments.

Figure 1 is a sketch of the computational domain. In the experiment the displacement

thickness at the bump, 52 was approximately 1 mm and the boundary layer Reynolds number

at that location, R = U_5o/U, was 1200. We choose 5 o as the length scale for the computation

and set the Reynolds number in equation (1) to be 1200. As shown in figure 1, the far-field

boundary was located 5052 from the wall, the streamwise extent of the domain was 50052

from the inflow, and the spanwise extent of the domain was 2552. This spanwise extent is

shown by the dotted line in figure 1. Along this surface a symmetry condition on the flow

field was applied. Thus the effective spanwise extent of the computational domain was 5052,

as shown in figure 1. The center of the bump was positioned on the symmetry boundary

at 40.952 from the inflow, again as shown in figure 1. With the computational scale chosen

to be 52 = 1 mm, all of the dimensions shown in figure 1 of Gaster et al. 1 can be directly

translated into 52 units. The lines labeled a - a, b - b and c - c in figure 1 are the similarly

labeled lines shown in figure 1 of Gaster et al. 1.

The choice of grid, computational domain size, and time-step size were based on pre-

vious experience described in Joslin, Streett and Chang 3,4 for unsteady disturbances and

in Joslin and Streett 9 for a stationary disturbance. The simulation used a coarse grid of

661 streamwise, 61 wall-normal, and 20 spanwise grid points (spanwise symmetric). For the

time marching, a time-step size of 0.2 is chosen for the three-stage Runge-Kutta method.

The coarse grid computation required 44 Cray 2 hrs with a single processor to converge to
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a time-independentsolution. In addition to the coarsegrid calculation, a grid refinement
simulation wasperformed to verify the quantitative accuracyof the results of the course
grid computations reported below. This secondsimulation was conductedwith a grid of
1321streamwise,81 wall-normal and 39spanwisegrid points: This translatesinto doubling
the grid in the streamwiseand spanwisedirections; in the wall-normaldirection Chebyshev
seriesareused,which have coefficientsthat convergeexponentially.

Becausethe disturbance excitation is steady and the resulting disturbance modes are
stationary, the fine-grid simulationhadinitial conditionswhich correspondto the coursegrid
final results. If the courseand fine grid results were time-independentand quantitatively
similar, then significant computationalsavings(approximately 300 Cray Y/MP hours) can
be realizedwith this choiceof initial conditions for the fine-grid simulation. The fine-grid
simulation wasmarchedin time andthe resultswerecomparedafter 180and 420time steps.
The resultswereidentical, indicating that the fine grid simulation had convergedafter only
180time steps. The cost of this simulation was19Cray Y/MP hrs. As will beshownbelow
in the Resultssection, the resultsof the coarseand fine grid computationswereessentially
identical.

IV. Results

The results shown in figure 2 are spanwise profiles of the Streamwise velocity component

in the spanwise direction at y __ 62, which is approximately the distance from the wall

used in the experiments. This top view would have the bump placed at the bottom of the

figure, and the flow direction is from bottom to top. As expected, there is a velocity deficit

directly downstream of the bump and lobes of enhanced velocity on both sides of the bump.

Note that the intensity of this deficit and lobes is decreasing with distance downstream of

the bump. This qualitative picture matches the experimental observation, except there was

some asymmetry in the experiments.

Figure 3a shows the variation with downstream distance of the total energy of the dis-

turbance generated by the bump, as obtained from the fine and course grid simulations.

Clearly, quantitative agreement is observed (note that the ordinate has a logarithmic scale).

Figure 3b shows the variation of the total energy and the square of the velocity components

with downstream distance. The total energy is decreasing with distance downstream and

the streamwise velocity component is clearly dominant compared with the insignificant wall-

normal and spanwise components. In the experiments, only the streamwise velocity compo-

nent was recorded and the discussion and conclusions of the flow were described based on

the streamwise velocity. The computations clearly show that it is unnecessary to consider

the wall-normal and spanwise velocities.

Figure 4 shows the low-wavenumber modal decomposition of the streamwise velocity

component in the spanwise direction. Confirming the experiments, the low-wavenumber



modesare growing with downstreamdistance;all other high-wavenumbermodes(_>4) are
decayingeverywhere.The low-wavenumbermodesare marked by a regionof rapid growth
followed by either an asymptoteor decayregionbeyondthe presentcomputational domain.
A growth in the/3 = 2 modeby afactor of 8 in magnitudewasnoted by Gasteret al.1 Here,
the dominant/3 = 2 modehasgrown by overa factor of 6 in magnitudeand hasnot reached
its maximum valuewithin the computational domain.

The /3 = 2 velocity profiles, obtained from both the coarseand fine grid simulations,
are shownwith distance from the wall in figure 5 at various downstreamdistances. The
results of both simulations are in excellent quantitative agreementand both simulations
show modal growth consistentwith the experiments. The profiles at R = 1576 and 1617
qualitatively match the experimentsin shapeand havetheir peak near y -_ 25", as do the

experimental results (see figure 3 in Gaster et al 1). The magnitudes are, however, different.

The results of the calculations shown in figure 5 have a peak value of about 5 x 10 -5, while

the measurements show a peak value of 2 x 10 -3.

The three dimensional structure of the flow field can be inferred from the results presented

in figures 6, 7 and 8. All of these results are on the y-z plane at x = 503 which is slightly

downstream of the section a-a as shown in figure 1 of Gaster et al I and of this paper. At this

location R_, _ 1388. The results of the calculation are obtained on a Chebyshev collocation

grid in the wall-normal (y) direction. In the spanwise direction the computational results

from z = 0 to z = 255* (with a symmetry boundary condition at z = 0) were "folded" about

z = 0 in order to obtain the flow field in -255* _< z _< 255*. Although the far-field boundary

is located at y = 505*, results are shown in 0 _< y <_ 55* because the disturbance field is

essentially confined to the boundary layer. Because it is more convenient in presenting the

data, the computational results were interpolated onto a uniform grid in the y direction. It

should be noted that figures 6, 7 and 8 are distorted by an, approximately, 10 to 1 stretching

in the y direction as compared to the z direction.

Figure 6 contains contours of u, the streamwise component of the velocity. In this plane,

-1.69 x 10 .3 < u < 0.48 x 10 .3 and the minimum occurs on the centerline at y = 0.73, with

the maxima being located at y = 0.73 and z = 4- 3.95. This is the same structure seen in the

profiles of u at y = 5* shown in figure 2. As seen from figure 6, the streamwise component

of the disturbance field is an upstream flowing "jet" on the centerline with downstream

counter-flowing jets on both sides. The entire field is essentially confined to the inner part

of the boundary layer (y < 2).

The (v,w) vectors in the same x plane are shown in figure 7. The maximum of x/_ + w 2

is 2.62 × 10 .5 and occurs at y = 0.35 and z = 4- 5.26. There is an inflow towards the region

of the upstream "jet" along the centerline and an outflow between the downstream "jets"
and the wall. Both the inflow and outflow are rather small compared to u; less than 1%

of the maximum of u but extend over a very large region in the y-z plane. There is even

a small, but appreciable, inflow at the top of the boundary layer. It should be noted that

the cross stream flow is rather weak and the crossflow Reynolds number (see Saric 2) is very

small. As can be seen from this figure, the boundary layer thickness of the cross flow (5c

is of the same size as the boundary layer thickness (5) of the streamwise flow. In contrast



the magnitude of the crossflowvelocity component(Uc) is very small comparedto that of
the mean flow (Uo). It is clearthat the crossflow Reynoldsnumber can be calculated by
Rc = (o_c/5)(U_/Uo)R. This gives a value O (0.1).

Contours of the streamwise (x) component of the vorticity, w_, are plotted in figure 8.

These were obtained by numerically differentiating v and w using a second order scheme.

No smoothing of the results was done. It might have been expected that the numerical

differentiation would induce substantial "noise", but none is apparent in the results shown

in figure 8. The maximum and minimum of aJx are 4- 1.64 x 10 .4 and lie at y = 0.70 and

z = :F 3.95. Positive w_ indicates clockwise rotation and negative counter-clockwise. It is

seen from the structures shown in this figure that the bump generates a pair of counter-

rotating vortices just above and on either side of it. These pump fluid down towards the

wall and into the upstream flowing "jet" of the disturbance field. Just above the main pair

of vortices and slightly towards the centerline there are a weaker pair of oppositely rotating

vortices. Between the main pair of vortices and the wall there is region of high vorticity due

to the relatively strong outflow in the + z directions.

This basic structure of the flow field persists further downstream but is considerably

weaker. This can be seen from the results shown in figures 9, 10 and 11. These results are on

the y-z plane at x = 709 which is slightly downstream of the section c-c as shown in figure

1 of Gaster et al 1 and of this paper. At this location R_, _ 1585. The contours of u are

shown in figure 9 with the same contour levels as in figure 6. The disturbance u has the same

general structure as at x = 503. However it is considerably weakened with the minimum

of the upstream flowing "jet" only -0.63 x 10 -3. The maxima of the downstream jets are,

however, slightly larger than at x = 503. The y position of the center of these "jets" is 1.06

at this location as compared to 0.73 at x = 503 and the "jets" have diffused in the wall

normal direction. The (v,w) vectors plotted in figure 10 also show uplift and spreading in y

as well as a general weakening. The maximum of v/v 2 + w 2 at this x location is 0.38 x 10 -5,

nearly seven times smaller than at x = 503. The z location of these maxima is exactly the

same as at x = .503 but the y location is 0.62 as compared to y = 0.35 ar x = 503. Finally,

figure 11 shows contours of wx at x = 709. The contour levels in this figure are one-tenth

of those in figure 8. The general decrease and diffusive spreading in the vorticity is readily

apparent. The main vortices have lifted further from the wall. Their centers are at the same

z position as at x = 503 but the y position is now 1.20 instead of 0.70 and are at the same

height as the secondary pair. The vorticity at the wall is also considerably weakened.

V. Concluding Remarks

The spatial evolution of the disturbance velocity field initiated from a shallow bump on

a wall in a laminar boundary layer was computed by direct numerical simulation of the



incompressibleNavier-Stokesequations. Comparisonof results from coarseand fine grid
simulations showedthat the coarsegrid simulation had converged. The evolution pattern
and modal growth and decay trends were shown to be consistent with the experimental
resultsof Gaster et al.1

The three dimensionalstructure of the flow field wasinferred by examiningthe velocity
componentand the streamwisecomponentof the vorticity on two y-z planesdownstream
of the bump. It was seenthat the bump generates,at least in the far field, a pair of
counter-rotating vorticesjust abovethe wall and on either sideof the bump location. These
pump fluid down towards the wall and into an upstream flowing "jet" of the disturbance
field. Outsideof this main "jet" there area pair of weakerdownstreamflowing "jets". Just
abovethe main pair of vorticesand slightly towardsthe centerlinetherearea weakerpair of
oppositely rotating vortices.Between the main pair of vortices and the wall there is region
of vorticity due to the outflow in the + z directions. As this flow evolves downstream, the

vortices lift from the wall, diffuse and weaken while maintaining their basic structure. The

"jets" also weaken, diffuse and lift, as must happen because they are, in a sense, both cause

and effect of the vortices.

A theoretical study should be conducted to complete the understanding of this proposed

linear transfer of energy between various spanwise modes. In addition, wind-tunnel and

computational experiments should be conducted in order to understand the interaction of

Tollmien-Schlichting waves with the bump-induced vorticity field.
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Figure 1" Sketch of the computational domain showing its size and the location of the bump.

The lines a - a, b - b and c - c show the location of the similarly labeled lines of Gaster et

at. 1, along which measurements were made. We present results of the simulation on planes

including lines a - a and c - c.
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Figure 2: Streamwise velocity profiles in the streamwise/spanwise plane downstream of the

bump. The profiles are at a height of y = 5o.
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Figure 4: The streamwise velocity component at three different downstream locations. The

solid curves are the result of the coarse grid simulation and the dashed curves are the result

of the fine grid simulation. These curves coincide almost everywhere in this figure.
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Figure 5: Contours of u, the streamwise component of the disturbance velocity, on the y-z

plane at x = 503. Contours with positive values of u are solid and those with negative values

are dashed. The contours values are -1.6 x 10 -3 to -0.2 x 10 -3 in steps of 0.2 x 10 -3 and

from -0.1 x 10 -3 to 0.5 × 10 -3 in steps of 0.1 x 10 -3, excluding 0.0. The minimum value of

u, -1.69 x 10 -3, occurs on the centerline at y = 0.73, with the maxima, 0.48 x 10 -3, being

located at y = 0.73 and z = 4- 3.95.
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Figure 6: Contours of u, the streamwise component of the disturbance velocity, on the y-z

plane at x = 503. Contours with positive values of u are solid and those with negative values
are dashed. The contours values are -1.6 × 10 -3 to -0.2 × 10 -3 in steps of 0.2 × 10 -3 and

from -0.1 × 10 -3 to 0.5 × 10 -3 in steps of 0.1 × 10 -3, excluding 0.0. The minimum value of

u, -1.69 × 10 -3, occurs on the centerline at y = 0.73, with the maxima, 0.48 × 10 -3, being

located at y = 0.73 and z = :t: 3.95.
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at y = 0.35 and z = 4- 5.26 and have the value 2.62 x 10-s.
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The contours values are -1.6 x 10 .4 to 1.6 x 10 .4 in steps of 0.2 x 10 -4, excluding 0.0.

The minimum value of wx, -1.64 × 10 -4, is at y = 0.70, and z = 3.95 and the maximum,

1.64 x 10 -4, is at y = 0.70 and z = -3.95.
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from -0ol × 10 -3 to 0.5 × 10 -3 in steps of 0.1 x 10 -3, excluding 0.0. The minimum value of

u, -0.63 x 10 -3, occurs on the centerline at y = 1.06, with the maxima, 0.51 x 10-3_ being

located at y = 1.06 and z = 4- 2.63.
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Figure 10: Vectors of (v,w) on the y-z plane at x = 709. The maxima of x/v 2 + w 2 are

located at y = 0.62 and z = + 5.26 and have the value 0.38 x 10 -_.
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Figure 11: Contours of wx, the streamwise component of the disturbance vorticity, on the y-z

plane at x = 709. Contours with positive values of u are solid and those with negative values

are dashed. Positive wx indicates clockwise rotation and negative counter-clockwise. The

contour values are -1.6 × 10 -5 to 1.6 × 10 -_ in steps of 0.2 × 10-51 excluding 0.0. Note that

these contour levels are one tenth those of the contour plot of o_x at x = 503. The minimum

value of w_, -1.87 x 10 -_, is at y = 1.20, and z = 3.95 and the maximum, 1.87 x 10 -5, is at

y = 1.20 and z = -3.95. 20
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