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NAG 2-694: Identification of Rotorcraft Structural Dynamics Characteristics from
Flight and Wind Tunnel Data

Background

This research grant topic addressed the capability of using blade-mounted
instrumentation, notably accelerometers, to reconstruct blade modal motion and forced
response from both wind tunnel and flight test data. Two documents produced as a
consequence of this investigation are attached as an Appendix: the first, “Reconstruction
of Helicopter Rotor Blade Modal Properties and Examination of Blade-Mounted Sensor
Data”, comprised part of a visiting student’s thesis for the degree of Diplom-Ingenieur
from the University of Stuttgart; the second, “Instrumented Blade Experiments Using a
Light Autogiro”, is a conference paper from the 16" European Rotorcraft Forum, held in
Glasgow, Scotland in September of 1990, and is a condensed version of a Master's Thesis
submitted to the Department of Mechanical and Aerospace Engineering at Princeton
University.

The first document explores, after some tutorial material, the possibility of
identifying the forced modal response of the rotorblade using only accelerometer
measurements. Through a collection of various filtering concepts, it is shown that some
success may be achieved in this regard, although the method involves considerable
“tuning” on the part of the engineer and hence is not yet suitable for “production’ work.
A finite element analysis is developed that provides some technical basis for design of the
various filtering methods.

The second document discusses the developmental work associated with
instrumenting a light autogiro’s rotor blades with accelerometers for measurement of in-
plane and out-of-plane response. Issues related to data formatting, power conditioning,
and impact testing of the data system and sensors are discussed. The ultimate goal of the
project - the demonstration testing of the system on the autogiro in towed operation - has
yet to transpire, as the runway that was to serve as the test track was destroyed by the
University to support further development of the Forrestal Campus.

While these two works did not directly generate a solution to this complex
identification and measurement problem, they have aided the further development of this
concept. On-going Navy-sponsored work related to rotor instrumentation and data
processing has been able to utilize portions of each of these works to identify methods for
extracting both rotor motion and applied loads from similarly instrumented rotorcraft.
Results of this work have been recently reported at the American Helicopter Society’s
Annual Forum.
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List of Symbols
Unless otherwise given in the text, the following symbols are defined as they are
given below.

Notational Conventions

(1) Vectors are denoted by a line under the symbol (as in w

(2) Matrices are shown in the shadow typefont (as in U)

(3) (') denotes the first derivative with respect to time

(@) () denotes the second derivative with respect to time

(5) (Y denotes the first derivative with respect to an independent variable

6) ()’ denotes the second derivative with respect to an independent variable
(7) (7)) denotes a time dependency of a variable

(8) ()T denotes a transposed matrix

(9)  ( )yldenotes an inverse matrix

(10) | Jdenotes the diagonal of a matrix

(11) Il Il denotes the norm of a matrix

12)  E[x®] = X(s) Laplace transform of x(t)

List of Abbreviations

BLT Bilinear Transformation

BW Butterworth

CAMRAD Comprehensive Analytical Model of Rotorcraft Aerodynamics and
Dynamics

CE Characteristic Equation

cH Chebycheff

CT Continuous Time

DFT Discrete Fourier Transform

DOF Degrees of Freedom ()



DS Division Schemes

DT Discrete Time

FFT Fast Fourier Transform

FRF Frequency Response Function

MTR Modern Technology Rotor

NASA National Aeronautics and Space Administration
PSD Power Spectral Density

TRENDS  Tilt Rotor Engineering Data System

List of Symbols, Chapter 1

given in order of occurrence

E Modulus of elasticity

I Stiffness

B Ex*1I

M System mass matrix

m Element mass matrix

D System damping matrix

K System stiffness matrix

k Element stiffness matrix

E Outside forces on a System

t Time

Wp n-th Natural frequency

M n-th Eigenvalue (0,=1,0-5)

Up n-th normalized eigenvector

8] Modal system matrix

q1( Time dependency

qi Amplitudes of the specific mode at a point in time g(t) :=g
Mgen Generalized mass matrix

mgen,j j-th element of the generalized mass matrix
kgen Generalized stiffness matrix

kgen,j j-th element of the generalized stiffness matrix
® Modal matrix (as in @ M ® =1)

I Identity matrix

R Generalized force (UT F = R)



Shear force

Mass distribution
Bending moment
Radius of curvature
i-th eigenfunction

Length of a beam
Element of the coefficient matrix for the polynomial approach

Complex Laplace variable

Laplace Transform of the Excitation

Element of F(s)

Frequency response matrix, or transfer matrix
Element of H(s)

Conjugate complex roots

Residues
Residue matrix

List of Symbols, Chapter 2
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Vector of static forces and moments
Vector of linear and angular displacements
Linear displacement

Angular displacement
Stiffness matrix with rearranged rows and columns

Mass matrix with rearranged rows and columns
Transformation matrix for static condensation

Reduced mass matrix

Reduced stiffness matrix

Diagonal matrix of the eigenvalues

i-th element of the rotating mode shape vector

i-th element of the n-th non-rotating mode shape

Number of nights lain awake, hoping all this would work out
Time and amplitude dependency of the n-th non rotating mode
Potential energy

Kinetic energy
Shortening of the blade at the radial position x; along the beam

vi



Kstat

Eadj

Non rotating stiffness Matrix

Additional terms of the stiffness matrix brought on by rotation
Modal matrix of the rotating system

Rotational parameter

Rotational speed of the system

Rotational parameter
Deflection at the i-th point of the system

Diagonal matrix of the A’s r vectorial remainder,

Adjusted modulus of elasticity

List of Symbols, Chapter 3

given in order of occurrence

RXX
Sxx(®)
zZ = e(ST)

s= 0 + i

Correlation function
Power spectral density
The z-transform

Laplace variable
Nyquist frequency

Cutoff frequency

Stopband frequency

Sampling frequency

Continuous time filter frequency
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Introduction

Excessive vibration remains one one of the most difficult problems that
faces the helicopter industry today, affecting all production helicopters at some
phase of their development. Vibrations in rotating structures may arise from
external periodic dynamic airloads whose frequencies are are close to the natural
frequencies of the rotating system itself. The goal for the structures engineer
would thus be to design a structure as free from resonance effects as possible. In
the case of a helicopter rotor blade these dynamic loads are a consequence of
asymmetric airload distribution on the rotor blade in forward flight, leading to a
rich collection of higher harmonic airloads that force rotor and airframe
response. Accurate prediction of the dynamic characteristics of a helicopter rotor
blade will provide the opportunity to affect in a positive manner noise intensity,
vibration level, durability, reliability and operating costs by reducing
objectionable frequencies or moving them to a different frequency range and
thus providing us with a lower vibration rotor. In fact, the dynamic
characteristics tend to define the operating limits of a rotorcraft. As computing
power has increased greatly over the last decade, researchers and engineers have
turned to analyzing the vibrational characteristics of aerospace structures at the
design and development stage of the production of an aircraft. Modern rotor
blade construction methods lead to products with low mass and low inherent
damping so careful design and analysis is required to avoid resonance and an
undesirable dynamic performance. In addition, accurate modal analysis is
necessary for several current approaches in elastic system identification and
active control.

1. Analysis of Structural Vibration

The analysis procedure falls into the two categories: experimental
structural analysis which involves the testing and measurement of an actually
built structure, and analytical structural analysis, which consists of
mathematically modeling a structure on a computer and predicting its response
to excitations as well as inferring the inherent vibrational characteristics like
mode shape and natural frequency. Structural analysis based on a computational



method allows the freedom to either experiment with a new design or change an
existing design and then to make a statement about the magnitude of the
changes in dynamic properties resulting from some perturbation of the original
design. This relieves the designer from making costly physical changes to the
system itself until he is satisfied with the characteristics presented to him in the
simulation. One of the major problems to date is that none of the analytic
models developed for the simulation of rotor blade behavior are capable of an
accurate response prediction over the entire flight envelope of a helicopter. An
exact model would have to include detailed unsteady aerodynamic predictions
for the airloads as well as nonlinear geometric coupling effects due to the blade
rotation.

In response to this discrepancy between predicted and measured
vibrational behavior, the US Army in conjunction with NASA, has undertaken
a program of flight testing a highly instrumented UH-60A "Blackhawk"
helicopter. The purpose of these experiments is to provide the industry and the
university research community with a wealth of flight test data obtained under
specific flight conditions. This data would serve to be correlated and compared
with various parts of currently ongoing aeroelastic and vibrational helicopter
rotor and airframe simulations. It is hoped that finding and evaluating the
discrepancies between the database and simulation results will improve the
understanding into where the engineering approximations and assumptions in
the simulation programs are deficient. The database was further extended by
conducting a static, non-rotating shake test of the same UH-60A rotor blade. In
this shake test it was possible to determine the non-rotating dynamic properties
of the rotor blade by identifying its modes of vibration and natural frequencies.
As any vibrational state can be said to consist of a specific combination of its
vibrational modes, each having a particular natural frequency, we find the area
of coincidence of the analytical and experimental part of structure dynamics here.
It is always important to have one set of measurements to quantify the accuracy
of the mathematical model. The simulation model can then be adjusted or
altered to better conform to the real model. Having once learned that the
mathematical model does indeed correspond with the experimental data, the
engineer can change the structural and material properties of his mathematical
model with a high degree of confidence that his simulation calculations will
reflect the real performance of the structure he is designing.



1.1 Introduction to Modal Theory

The dynamic properties of an elastic structure are most commonly
modeled using either a set of linear differential equations in the time domain, or
by a set of algebraic equations after a Fourier transform of these differential
equations of motion. The latter is commonly used during the actual testing
phase of a design. First we will examine the former.

1.1.1 Modal Theory

In the analysis of dynamic systems having one or more degrees of freedom and
their response to any sort of excitation, the theory of modal analysis can be
applied to the structure.

The modal theory simply states that any shape of the oscillating structure
can be expressed in terms of natural modes of the structure and the degree of the
participation of these modes. The natural modes are the physical shape that the
structure takes when excited at a natural frequency. An easy way of thinking of
these natural modes is to consider the following two degree of freedom system
(Fig 1.1) composed of two masses that are connected by two springs and two
damping devices. The number of natural modes that one can expect to find
always corresponds to the number of degrees of freedom. It follows that we can
expect to find 2 normal modes and their natural frequencies.

*F(ﬁlb ;(g,)fz
m,

oF b
m

F b
sy

Fig 1.1 A dynamic System




As this structure is excited with a force, F(t), of variable frequency, we can
envision two cases in which the masses vibrate in a stationary way. In one case,
the masses will vibrate in phase with each other, though with different
amplitudes. In the other case, they will vibrate 180 degrees out of phase with each
other. Both these cases are associated with a natural frequency of the system. The
system is a lumped parameter model, consisting of two discrete mass points. After
deriving all the necessary equations for the lumped parameter model, we will
expand the theory to encompass structures with distributed mass, i.e. beams.

When we set up the equations of motion for a linear system, we obtain the
familiar equation in matrix-form :

M x +D x +K x =F(t) (1.1.1-1)

This equation represents the force balance between the inertial (M x) , dissipative

(D x) and restoring forces(K x) and all outside forces(F(t)). For any model of a
structure or system, with any number of degrees of freedom (DOF) , as long as we
use only masses, springs and proportional dampers, we will obtain the above
form of the equations of motion. All linear properties of a structure can be
defined by the mass, damping and stiffness matrices. We now have a system of

second order coupled differential equations that are linear and time-invariant.
M , D and K are matrices of the dimension ( n x n), n being the number of DOF.

The equation is coupled because the D and K matrices are not diagonal, only
symmetric. To uncouple these equations we must find a basis for this system, in
which all the matrices become diagonal, thus reducing the n coupled equations
to a system of n uncoupled equations. This can be thought of as reducing the
structure to a system of masses with one DOF each. The process is called modal
decomposition. Modal decomposition in the case of light damping or if the
damping matrix is proportional to either the mass or stiffness matrix, or
proportional to both leads to real modes, while any damping that does not fall
into the beforementioned categories will lead to complex modes.

To execute such a modal decomposition we will have to find the eigenvalues, A,
(or natural frequencies ©,=A,0-5 ) and the eigenvectors, u, of our structure. In the



interest of simplicity we will disregard damping in the following derivations and
solve the homogeneous form of (1.1.1-1). Assuming for x(t)

x(t) = u e (1.1.1-2)
and thus
x=A2uer=22x

Substituting into (1.1.1-1) and solving for X leads to

AZM+Ku=0 (1.1.1-3)

This gives us the characteristic equation (CE) for the structure. A non-trivial
solution exists only when

det W2M +K)=0 (1.1.1-4)

This CE is a polynomial whose roots are the eigenvalues of the system.
Depending on the kind of polynomial that the CE represents, we can imagine the
roots to be of different character. If we assume zero damping in our example case
we would find 4 complex roots or a pair of conjugate complex roots. The roots
are purely imaginary, having no real part. Successively inserting these roots back
into equation (1.1.1-3), we receive the matrix equations for the eigenvectors u.
These eigenvectors are only defined in terms of their direction, not their
magnitude, since the matrix equations are linearly dependent. (Traditionally the
eigenvectors are scaled so that some DOF that is in some way predominant is
unity. In the case of vibrating beams we will always set that DOF to unity that

displays the maximum deflection). The vectors thus calculated are the
normalized eigenvectors, u,, associated with the natural frequency, @y, or the n-

th eigenvalue, &, . In our example, we would get two of these eigenvectors, and
could assemble them into the modal system matrix U =[uy,u; 1.1

ILet us consider the system matrix that was found for our example: First of all we must remember
that the eigenvectors were arbitrarily scaled, so that they represent only the amplitude

relations of the oscillations of the lumped parameter masses. Recognizing this, we find that for
mj=my, dy=d=0 and kq=kj that our eigenvectors are:



Another very helpful way of understanding the significance of eigenvectors can
be found in Ref 1.-1. The eigenvalue/eigenvector form gives an interesting
insight into the nature of the solution:

(—O}—J u, = K1 M yu, (1.1.1-4)

The right-hand side of this equation subjects the displacement vector at
each lumped mass (up) to a matrix multiplication which should both extend and
rotate this vector. The same vector, on the left side of the equation, is simply
subjected to a multiplication with a scalar constant, resulting in only a expansion
of the vector but no change in its orientation. So, the vectors we are seeking, are
vectors that are not rotated by the matrix multiplication on the right-hand side.
Such solution vectors are the eigenvectors.

Using these eigenvectors, we are in the position to modaly decompose the
equations of motion. We have said that every form that the oscillating structure
takes can be expressed in terms of the eigenvectors :

x(t) =ug q1(t) + up qo®) = [ug uz] [3;] =U g (1.1.1-5)

note: q(t):=g

g1 and J, give the amplitudes of the specific mode at a point in time and thus

are responsible for the time-dependency of the equation of motion. They are
unknown until some initial conditions are introduced to the problem.

(0.618) (-1.618)
m=\ 1 2=\ 1

We see, that for the first resonant, or natural frequency, the masses are oscillating in phase
(both components of the eigenvectors have the same sign). For the second resonant frequency the

masses are oscillating 180° out of phase.



It can be shown that a front and back multiplication with the modal matrix, U,

the mass and stiffness matrices are diagonalized (this uses the orthogonality
condition, explained later).

Mgiag =UTM U (1.1.1-62)

Kdiag=UTK U (1.1.1-6b)

So, taking our original equation (1.1.1-1) and inserting (1.1.1-2) and then
multiplying both sides by U we get:

UtMU § +UtKUg = Ut F@ (1.1.1-7)
or

Mdiag g + Kdiag =T (1.1.1-8)
with

f = Ut F@®)

Which are, essentially the uncoupled equations of motion for the structure we
are examining.

1.1.2 Orthogonality Conditions

By the transformation employed in eq. (1.1.1-6) , we have used the so-called
orthogonality conditions, that must be validated in order for the transformation
to work. These are

For the mass matrix :
yt M ug=0 for all j £k (1.1.2-1)

uit M uj = mgen,j for j=k (1.1.2-1a)

and for the stiffness matrix :



ut K ug=10 for allj #k (1.1.2-2a)
gjt K Y = kgen,j for j=k (1.1.2-2b)

For a mechanical explanation of this, we can consider that the mass-forces
-0;2 M up of the k-th eigenfunction does not perform work on the
j k g P

displacements yj of another (different) eigenfunction j. The work being done on

this eigenfunction is through the mass-forces of its own eigenfunction
-0;2 M u;. The numerical value of mgen, that results from the front and back
) ) gen

multiplication of the mass matrix by the modal matrix, is called the generalized
mass .

In addition, inserting (1.1.2-1) and (1.1.2-2) into the equations for the eigenvalues
we get an additional n equations. for the natural frequencies:

-2 - .= -
@2 Mgenj + Kgenj =0 (1.1.2-3)
or

o? = Xgenj. (1.1.2-4)

Mgen j

The uncoupled equations of motion take on the following form:

Meenj dj + Kgenj dj= Tj j=1 o, (1.1.2-5)

These n equations of motion for one DOF systems can be solved one after the
other and after superimposing these solutions we get the total response of the
system : :

x(t) =Z y §;=U § (1.1.2-6)
]:

This equation also represents the transformation from the physical coordinate
system to the modal coordinate system with the orthogonal eigenvectors of the
structure as its basis.



A more intuitive and useful modal decomposition procedure is to choose the
magnitude if the eigenvectors u in such a manner that the front and back

multiplication of the mass matrix by the modal matrix results in a unity matrix
for the generalized mass matrix and a stiffness matrix that has only 0,2 =A, on its

diagonal.2

OM® =1 (1.1.2-7)
and

®@K® 1.l (1.1.2-8)

The uncoupled equations of motion in modal coordinates now read

~

14+ g=UTF (1.1.2-9)

UT F =R (1.1.2-10)
as the generalized force and
x(t) =® g (1.1.2-11)

as the transfer equation to modal coordinates.

1.1.3 Structures with Distributed Mass

2 Scaling the eigenvectors u to achieve this is termed orthonormalizing the eigenvectors. These

orthonormalized eigenvectors are denoted @ and found by

The orthonormal modal matrix is ®.



In the case of a beam for instance, we cannot necessarily discretize the system as a
lumped parameter model if we want to achieve a fair amount of accuracy. So, we
take the mass distribution into account and set up a continuous system. The
eigenvectors of such a system turn into eigenfunctions as the discretization
becomes finer.

The differential equations of motion for a beam can be quickly derived by
applying the three kinds of equations used to solve any structural dynamics
problem: equilibrium condition, material law and the kinematic law. Consider
an element of the beam:

B W dx
9Q
Q +——dx M
M 9x M +%- dx
Q
Sdx Q shear force [N]
p  mass distr. [kg/m]
M bending moment [Nm]
< - > P outside forces [N/m]

Fig 1.1.3-1 Beam Element

Equilibrium Conditions
Moment (disregarding 2nd order terms Shear

and the rotational inertia of the element)
oM [
29)-0 gonii-p
Mu = Ql

= M’'+p -1 % =0

10



Material Law
M =EIk (the linear relationship: bending moment- radius of curvature K)
Kinematics
K=-w"’
If the modulus of elasticity is constant, we can write
B(x) = E1(x)

and the differential equation of motion are

[B6) w” ()1 + mbx) W)= (1.1.3-1)

Or considering a uniform beam, the equation reduces to

B & +m w=p (1.1.3-1a)
/)~
—

Y zw(x)

B(x),u(x)

ﬂ
T

X

Fig 1.1.3-2 Cantilever Beam

As in the case of the lumped parameter model, we assume that it is also possible
to modally decompose this beam into decoupled, one-DOF oscillatory systems. In
addition we stated that the response of such a system could be expressed by a
superposition of its eigenvectors, uy, and a participation factor, g j, that carried the

timevariation of the system. Now, in examining a continuous system, the
eigenvectors are replaced by eigenfunctions gj(x). So the equation for the

superposition of the eigenvectors now is

W)= 2E{00 Gix) (1.1.3-2)
1

11



In the case of a uniform beam it is still possible to find an analytical solution for

the eigenfunctions. Using the boundary conditions for a cantilever beam, this

solution is

cosh(A;x} - cos{Aix)  sinh{A;x]-sin{A;x}

gi(X)= COSh[XiI]""‘COS{)"il} B sinh{lil}+sin{7\.il}

(1.1.3-3)

N

e

/ J

_'—""-"'-’-‘-F’_’ /
w
First Eigenfunction Second Eigenfunction
or Mode or Mode
Al =1.875 A)=4.694

Third Eigenfunction

or Mode
AJ) =7.885

Fig 1.1.3-3 First Three Eigenmodes

Clearly, if the beam has a mass distribution and a changing geometry along its

axis, an analytical solution can no longer be found and one must revert to

numerics. A polynomial is used to approach the eigenfunction of the beam. The

beam is discretized into small parts in a consistent manner and eigenvectors of
the discrete system are calculated. The element of the eigenvector uy is

understood to be the deflections of the structure at that lumped mass mpp, The

polynomial is laid through these points of deflections in order to attain a

estimate of the shape- or eigenfunction.

The polynomial approach is written
£i()=2. Gjj Mj00
)
inserting this into eq. (1.1.3-2) gives us:

Wo0= X, X i M) Gk
1)

(1.1.34)

(1.1.3-5)

where cjj being the coefficient matrix for the polynomial approach. In closing,

note the similarities between the discrete formulation and the continous

formulation of the problem:

m; §; +dj qjtk qj=T1;

(1.1.3-5)
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Discrete System | Discrete System

i= 1..N j= 1...00
Eigenforms or . 60 - funct
mode shapes y; - vector &1 x) - function

eneralized mass m; ut My
g ) J ] J) u(x) (P)2(X) dx
o
generalized damping dj | km mi+k; s; km mjtkg s;

generalized stiffness  k; g_jt K yj .
B(x) &; 2(x) dx

o
generalized forces  pj| ufpf® J] £(x) pOd) dx
)
(8]

X =§4 by gj w=j§1§j(x) 9]

Response of System

Table 1.1.3-1 Continous and Discrete Systems
1.1.4 The Finite Element Theory

The Finite Element Theory is an approach that discretisises the system into
small, well defined pieces whose properties are known, and derives the vibration
characteristics by assembling these small parts back to the large system and
solving the equation of motion and decoupling them. The use of finite element
techniques for dynamic structure analysis introduces great flexibility to rotorcraft
design which is needed because of the often complex root geometry and
nonlinear stiffness and mass distribution of the blade. The application and
implementaion of Finite Elements will be discussed in detail later.

1.2 Experimental Modal Analysis
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Experimental measurements are usually made in the Laplace-Domain (also
known as the Frequency Domain) . This form of vibrational analysis became
popular as very fast algorithms for the Fast Fourier Transform (FFT) and the
Discrete Fourier Transform (DFT) were developed in the 1960’s. The ability of
these Digital Fourier Analyzers to quickly convert time histories and extract
modal characteristics in the frequency domain has made them an important tool
in measuring the modal characteristics of structures. The NASA shake test
identified the modal residues of the UH-60A rotor blade. To correctly interpret
this data we must look a little closer at the theory behind modal residues, the
FFT and the Laplace-domain.

Consider the second order differential equation of motion derived in a previous
chapter :

M x +D x +Kx =F() (1.1.1-1)
1.2.1 The Laplace Transform

Any function of time can be transformed into an analytical function of the
complex variable, s, in the Laplace domain by the Laplace transform. There it can
be algebraically altered and transformed back into the time domain. The greatest
advantage that this transformation gives is that the differential equation of
motion is changed into a simple polynomial that is much easier to solve. The
transformation equation to the Laplace-domain from the time-domain is

L [x®] =X6) = J.e'St[x(t)] dt (1.2.1-1)
(o]
and the back-transform is
L X®] =xt = je-st[X(s)] dt (1.2.1-2)
(o]

The complex Laplace variable s gives the relationship and magnitude of
frequency and damping parameters on a complex plane is shown in Fig 1.2.1-1.

14



Laplace Domain

pie
Laplace Variable

s=6+i0

;k'—'cosﬂ l B

q >0

@, - natural frequency

q, - modal damping coefficient
-, Q - resonant frequency
Conjugate Pole G - damping factor

Fig 1.2.1-1 The Laplace Domain

The transform of a variable x to the Laplace domain will be written as L 1x1.To

use this Laplace transform on our differential equation we need the

transformation of X

[ ] J s{'—] dt (1.2.1-3)

Integrating this by parts finally gives us
LT%’:—] =s L [x] -x© (1.2.14)

or

L [x]=5s X(s)-x(0) (1.2.1-5)

Similary we can find
2
L[d"] L [x] =2 Xs)- s x(0) - x(0) (1.2.1-5)

If we ignore the initial conditions (which can always be done for stable systems)
this transforms our equations of motion to



M s2X(s) + DsX(s) + KX(s) = F(s) (1.2.1-5)

an algebraic equation in the complex variables. It can be easily seen that the
mathematics do indeed take on a simpler form in this domain.
Solving for X(s)

F(s)

X(@s) = BG) (1.2.1-5)

where X(s) = Laplace Transform of the Responce
F(s) = Laplace Transform of the Excitation

B(s) =Ms2+ Ds+ K
This equation is used as the basis to define the Frequency Response Function
(FRF) such that:

L.-transform of the Output = FRF * L.transform of the Input
or X(s) = H(s) F(s)

with H)=[Ms2+ Ds+ K 17, the Frequency Response Matrix

Now all the outside forces, responses of the structure, velocities, accelerations
and coordinates are expressed in the frequency-domain. The transfer matrix H

contains transfer functions h(s) that give the transformed response X(s) for every

input f(s) at every DOF.
(x| [ e
Xo(s) hj1(s) hya(s) - . . hyp(s) £1(s)
X3(s) hoys) . .. . f(s)
. = . (1.2.1-5)
- | hpa(s) 1l .
@] | £ ]

The transfer functions, h(x), are also of a complex nature. The real part
corresponds to the magnitude and the imaginary part corresponds to the phase

16



shift of the response. For simplicity, let us once again consider a simple two-DOF
system, keeping in mind that the statements made can be transferred to
multiple-DOF systems as well.

In this case, the characteristic equation (CE) for the inverse of the frequency
response matrix B would be a polynomial of the degree 2n with n pairs of
conjugate complex roots, px and pg* - Expressing the CE in terms of its roots we
can write:

Det B =C (s-py) (s-p1*) (s-p2) (s-p2*) - (s-Pp) (5-Pn®) (1.2.1-6)

So, the components of the frequency response matrix can be written as

my; s2 + d;i s + k i
hijs) = — B (1.2.1-7)

A diagram representing the properties of the FRF and its connections to the
DOFs is shown in Fig. 1.2.1-2. The input f; as wll as the outputs xj ... Xn are
transformed (=) into the Laplace domain becoming F; and X1 ... Xn. The
magnitude and phase shift of the output in relationship to the input excitation is
given by the FRF.

xi(t) = X(s)

x{1) = XA{s)

xl(t) =X (S)

£, = F(s)

Fig 1.2.1-2 The Frequency Response Function
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If we assume that the poles of H, i.e. the roots of the CE of B, are of multiplicity

one for our physical system, we can expand the denominator® and write
n

T'k Tk
hii(s)= 2 [(S_pk) + (s_pk,.)] (1.2.1-8)

k=1

Pk=0k + 0k
oy = damping coefficient
oy = nat. freq of oscillation

Examining the responce matrix for one specific mode, k, the response functions

hj; all have the common denominator | 7= ) + (S'Il7k*) and differ only in the

numerator, 1 . These residues ry are the only parameters that vary along the
structure and are collected in the residue matrix Ry.

ri{ri2 ... Tn
Rp=| - - -+ - (1.2.1-9)
Tnl
N Ry
implying that H= st or Hy ~ Ry

The matrix of the system residues, just like the modal matrix, represent the
motion of a structure when excited at a resonant frequency, both giving the
amplitude and direction of the response at some DOF. Taking advantage of the
symmetry inherent in the response matrix H (hy; = h;) we can make the
connection to the modal matrix. This represents the experimental/analytical link
of the modal analysis procedure.

Ry = Q up ugrl (1.2.1-10)

3 A polynomial B(x) that is divided by a polynomial A(x) can always be written in the partial

fraction form

r r T
1;((:)) - _;1 + % P + gpo + K9, (s-pi) being the roots of B
3 n

18



where Qy is an arbitrary constant since the mode shapes are defined only in

direction not magnitude.

Arbitrarily choosing the i-th column of the residue matrix, we can write
(supressing the index k for the moment, since we are examining only the
transfer function for the k-th mode)

l']i T u1 ui T

I uj uj

I3j usz uj

r;; | =Qf uiyy |[=Quju (1.2.1-10)
| Tni ] | Un Ui |

We can calculate the residue for the driving point (structure excitation point), rj;

r;; = Quju; =Quy? (1.2.1-11)
or
N
u; = (—('5') (1.2.1-12)

which delivers the proportionality factor of the two matrices. Thus, as long as a
driving point measurement is made and this driving point does not correspond
to a node of the examined mode, the entire residue matrix can be constructed by
measuring only one row or column of the transfer matrix, i.e. knowledge of one
mode.
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2. Modeling the Beam by the Finite Element Method

2.1 Introduction

Since a wealth of data concerning the vibrations of a cantilever beam exists
(Ref. 2.-1,6,11,12), a finite element model for the boundary conditions clamped-
free was written. Once a sufficient accuracy was determined, this model could be
altered to encompass other boundary conditions of a vibrating system, i.e.
hinged-free or free-free.

Because the algorithm for predicting the rotating mode shapes (see section
2.3.1) relies heavily on the slopes or derivatives of the eigenform of the non-
rotating mode shape of the beam, these slopes were compared with those given
in Ref. 2.-1 and Ref. 2.-2. After verifying the accuracy of the non-rotating model,
an extension of the method of Ref. 2.-3 using the finite element method was
applied, and the results for the rotating model were compared to the exact
solution of Ref. 2.-2 - a 5 mode extension for a cantilevered Beam and a 6 mode
extension in the case of a hinged beam.

The beam is divided into n elements and a stiffness and mass matrix is
derived for each single element. These element matrices are then assembled into
a system matrix, taking into account the boundary conditions. In this case the
continuous mass distribution is replaced by a lumped parameter mass
distribution, which means that each end (or node) of the element is assigned half
the finite element mass.

2.1.1 The Element Stiffness Matrix

The element stiffness matrix, k, expresses the relationship between static

forces and moments, P, and linear and angular displacements, §:

P=k 9 (2.1.1-1)

A beam segment or element with the properties shown in Fig. 2.1.1-1 has four
degrees of freedom, a linear and an angular one at each node.
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1 i) A Nodes
9 “’A~ Degrees of Freedom

A E. 1 [ A u linear displacement

@ angular displacement
- — —

Fig. 2.1.1-1 BEAM Element

The element stiffness matrix is derived in detail in Ref. 2.-4 using the principle
of virtual deflection and found to be

12 -61 -12 -6l
K g1 | -6l 412 61 12 0112
=B | -126 12 61 21.1-2)
-6l 12 6l 412
(4x4)

2.1.2 The Element Mass Matrix

Following the lumped mass distribution assumption, the inertia
associated with each rotational degree of freedom is assumed to be zero while the

mass of each element is assigned evenly to the nodes. This distribution of the
mass is shown in Fig. 2.1.2-1.

m
2

Fig. 2.1.2-1 Lumped Mass Distribution

Thus, the element mass matrix can be written as

_m

5‘000—‘
0000

m = - (2.1.2-1)
0-2‘00
| 0000
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2.1.3 Assembly of the Structure Stiffness Matrix

The stiffness matrix of the structure, in our case a beam consisting of n
finite elements, is assembled by identifying the degrees of freedom at each
element node, numbering them in a consistent manner and simply adding those
contributing to the same system degree of freedom. This is what is known as the
direct method. For an homogeneous cantilever beam with a constant cross-section
(we will call this sort of beam simply “constant”), this assembly process is

demonstrated in Fig. 2.1.3-1. For a cantilever beam, the boundary conditions are
¢1=0anduj =0.

@ Lumped Masses

A Shared Nodes

A

Al
Fig. 2.1.3-1 Assembly of the Stiffness Matrix

The system stiffness matrix relates the forces and the displacements at the system
nodal coordinates in the same way as the element stiffness matrix relates them in
the element nodal coordinates. The rules governing the assembly process for the
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system matrix are geometric compatibility at the element nodes, i.e. the
displacement at the nodes shared by the elements must be the same for each such

element.

2.1.4 Assembly of the System Mass Matrix

The assembly of the mass matrix is a simple matter of adding the
contributions of the lumped masses at the nodal coordinates. Since no inertia is
assigned to the rotational degrees of freedom, no mass terms are found in the
rows and columns associated with these degrees of freedom. Following this, the
positions of the mass matrix referring to the rotational degrees of freedom are set
to zero. This assembly procedure is shown in Fig. 2.1.4-1 for a beam consisting of
10 finite elements and thus has 20 nodes.

and j1=0
are already taken into consideration

= =] w2
mo00o ¢
0000 u3
oomo ©
0000 i Note:
P The Boundary Conditions ul=0

_ 2
Fig. 2.1.4-1 Assembly of the Mass Matrix

2.1.5 Static Reduction of the System Matrices

Subdividing a structure into many finite elements leads to very large
matrices. In the case of a simple beam divided into n segments, the size is [ 2n x
2n ] . A way of reducing the size of the structure matrix is to identify the degrees
of freedom that are not needed or those that are not of interest and ascertain
their dependency upon the remaining degrees of freedom. This is called static
condensation. In the case of lumped masses, where no inertia is assigned to the
rotational degrees of freedom, the following condensation technique not only
leads to a reduced mass and stiffness matrix, but also leads to an equivalent
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eigenproblem. The reduction of massless or inertialess degrees of freedom
introduces no error.

The reduction of the stiffness matrix is somewhat involved, but can
nonetheless be easily accomplished. First, we permute the rows and columns in
the stiffness matrix such that the displacement and rotational degrees of freedom

are adjacent to each other. This leads us to a stiffness matrix with rearranged
rows and columns, K, that can be partitioned as follows:

! 4
Ko |- _:_]E“";_
Ko Koo (2.1.5-1)
So that now the equations of motion can be written as
m 0 i K, K, u P,
o |+ =
° ° JL° R ° (2.1.5-2)
The lower part of this matrix equation gives us
K ou u+K o Q =0 (2.1.5-3)

or

) -[

as the equation of constraint. Thus, the rotational and translational degrees of
freedom can be related to each other as

Q = -Ky1Ky U (2.15-5)

Setting 1
Tou=-Kgo " Kpu (2.1.5-6)

the transformation equation becomes
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RERN
1= u=Tu (2.1.5-7)
S& T(pu

Now, the rearranged K. and M, matrices can be reduced in dimension by the
transformation matrix T to

A
M =Tt M, T (2.1.5-82)
A
K =Tt K, T (2.1.5-8b)

The mass matrix is reduced, in the case of lumped masses, simply by
deleting those rows and columns that pertain to the rotating degrees of freedom.
or

A

M =M, (2.1.59a)

A

Kuu=Kuu - ]Kq)ut Kq)q)'l lK‘:pu (2.1.5-9b)

The rearranged mass matrix, M. , remains essentially unchanged by the
reduction, while the stiffness matrix is transformed to the reduced stiffness matrix

A
K, The eigenvalue problem

A
(Kyy - A\Mp) 9=0 (2.1.5-10)

can now be solved using the available algorithms.

2.1.6 Treatment of Singular Matrices

A beam with one end free and the other end hinged represents a statically
undetermined system, and the system stiffness matrix assembled using the finite
element method is singular. A singular matrix cannot be inverted. In addition,
the numerical size of the elements of the mass and stiffness matrix differ by a
large factor that increases with the degree of discretisation. The above factors
contribute to the danger of numerical difficulties in solving the eigenproblem.
To circumvent these numerical problems, the mass and stiffness matrices were
divided by their norm, and the equivalent eigenproblem was solved to obtain
the eigenvectors and eigenvalues .
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The norm of a matrix A is defined as
BAINl = (det (A At N1/2 (2.1.6-1)

Dividing a matrix by its norm in this case yields a numerically well-conditioned
matrix. Applying this to the eigenproblem results in

det{ K’ -nM’]=0 (2162)
with
Ko o M _ Ml 216
= TK =T™T m= AT 21.63)

After solving for A, we reinsert the eigenvalues (one of them being zero;
corresponding in this case to the rigid body mode of the hinged beam) into the
eigenproblem (2.1.5-10). The n-th eigenvector can now be found by inserting the
n-th eigenvalue into the eigenproblem:

Inserting Aj = Ap into
(K-, IM)oi=A¢i =0 (2.1.64)

where ¢; is the eigenvector corresponding to Aj, and decomposing A into the
matrices P and P -1 and the diagonal matrix D

A=PDP- (2.1.6-5)

we can write

DP-1¢=0 (2.1.6-6)
Defining
y = P1l¢ (2.1.6-7)

it follows that

Dy =0 (2.1.6-8)



D is a diagonal matrix containing the eigenvalues of A. The matrix A is of

course singular, since an eigenvalue was inserted, so it follows that one or more
of the diagonal elements of D are zero. The elements of Y that are in the same

rows that in D contain zero can be arbitrarily selected in order to satisfy the above
equation. Correspondingly, all elements of ¥ in the same rows that in D are non-

zero must contain a zero in order to satisfy the equation.

Thus, the following equation can be constructed:

0 16y

[, ryzl

0 :

0 :

D Y = ll ¥ -1 =
. 'm
] %
L J L N (2.1.6-9)

with y;..ypqq  arbitrary
and yp..y, =0

So the eigenvectors ¢;, corresponding to the eigenvalues A; , can be determined
by simply solving (2.1.6-7) in the form

0=P y (2.1.69)

27



2.2 Results of the Non-Rotating (Static) Analysis

Calculations were performed on cantilever and hinged beams, having
both constant and tapering stiffness and height distributions. Results are
presented for tapered and constant cantilevered and hinged beams in Figs. 2.2-1
to 2.24.

h = const
b = const
1= const
20 Finite Elements

o

Cantilever Beam o First Mode

Eigenforms O Second Mode

1 ¢ Third Mode
0.6
0.2
-0.2
-0.6
-1

0 01 02 03 04 05 06 07 08 09 1
Dimensionless Beam Coordinate {

Coord |First Second Third
Mode Mode Mode
0.0 0.00000 0.00000 0.00000
0.1 0.0167628 | -0.0928322 0.229821
0.2 0.0638290 | -0.301486 0.610493
0.3 0.136403 -0.527415 0.767384
04 0.229766 -0.685807 0.537735
0.5 0.339372 -0.717123 0.0292471
0.6 0.460966 -0.594037 -0.471250
0.7 0.590711 -0.322196 -0.666258
0.8 0.725340 0.0654301| -0.410146
09 0.862316 0.520821 0.216292
1.0 1.00000 1.00000 1.00000

Fig. 2.2-1 Mode shapes and Coordinates of the Cantilevered, Constant Beam



Cantilever Beam o First Mode (tapered)

( Tapered ) 0 Second Mode (tapered)
¢ Third Mode (tapered)

0 01 02 03 04 05 06 07 08 09 1
Dimensionless Beam Coordinate

Coor First Mode Second Mode | Third Mode
(tagered) (tapered) (tapered)
0.0 0.00154295 -0.0156330 0.00672200
0.1 0.0147688 -0.0360000 0.0565879
0.2 0.0577830 -0.125706 0.174609
0.3 0.126396 -0.220433 0.201682
0.4 0.216554 -0.272842 0.0921422
0.5 0.324336 -0.251821 -0.0906786
0.6 0.445950 -0.141774 -0.232354
0.7 0.577741 0.0581017 -0.218733
0.8 0.716185 0.334526 0.0192293
0.9 0.857889 0.660860 0.467178
1.0 1.00000 1.00000 1.00000

Fig. 2.2-2 Mode shapes and Coordinates of the Cantilevered,Tapered Beam



h = const

Hinged Beam

o st Bending Mode
O 2nd Bending Mode

Eigenforms ]
1 © 3rd Bending Mode
0.6
0.2
-0.2
-0.6
-1
0 0.2 0.4 0.6 0.8 1
Dimensionless Beam Coordinate C
Coordinate First Mode Second Mode | Third Mode |Fourth Mode
Rigid Bod ]
0.00000 0.00000 0.00000 0.00000 0.00000
0.0666667 0.0666667 -0.176168 0.312006 -0.427397
0.133333 0.133333 -0.342705 0.581464 -0.734409
0.200000 0.200000 -0.484881 0.717196 -0.664977
0.266667 0.266667 -0.590631 0.687227 -0.283391
0.333333 0.333333 -0.651757 0.507443 0.203671
0.400000 0.400000 -0.663542 0.224895 0.580202
0.466667 0.466667 -0.624366 -0.0968230 0.701849
0.533333 0.533333 -0.535326 -0.390120 0.532819
0.600000 0.600000 -0.399852 -0.593871 0.146648
0.666667 0.666667 -0.223324 -0.661815 -0.301164
0.733333 0.733333 -0.0129609 -0.568864 -0.620699
0.800000 0.800000 0.223915 -0.315344 -0.647359
0.866667 0.866667 0.477577 0.0708468 -0.305840
0.933333 0.933333 0.738882 0.534149 0.329654
1.00000 1.00000 0.998499 0.993338 0.986899

Fig. 2.2-3 Mode shapes and Coordinates of the Hinged, Constant Beam
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( Tapered )

Hinged Beam '

First Four Eigenforms
-0.6
-1
0 0.2 04 0.6 0.8 1
Dimensionless Beam Coordinate §
Coord First Mode Second Mode | Third Mode |Fourth Mode
rigid bod
0.00000 0.00000 0.00000 0.00000 0.00000
0.066666 0.0666667 -0.0567526 0.0582599 -0.0548090
0.133333 0.133333 -0.108299 0.102849 -0.0847653
0.200000 0.200000 -0.144760 0.103761 -0.0385510
0.266667 0.266667 -0.159416 0.0594524 0.0438681
0.333333 0.333333 -0.148481 -0.0140151 0.102800
0.400000 0.400000 -0.110661 -0.0921840 0.0993520
0.466667 0.466667 -0.0466947 -0.149522 0.0312482
0.533333 0.533333 0.0410851 -0.164856 -0.0696861
0.600000 0.600000 0.149206 -0.124921 -0.151979
0.666667 0.666667 0.273503 -0.0260174 -0.164524
0.733333 0.733333 0.409567 0.126213 -0.0757709
0.800000 0.800000 0.553193 0.318904 0.114303
0.866667 0.866667 0.700830 0.539640 0.375812
0.933333 0.933333 0.850027 0.763966 0.670562
1.00000 1.00000 1.00000 1.00000 1.00000

Fig. 2.2-4 Mode shapes and Coordinates of the Hinged, Tapered Beam
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2.3 Prediction of the Rotating Natural Frequencies

2.3.1 Predicting the Bending Frequencies of a Rotating Beam given
the Non-Rotating Bending Frequencies.

To verify the accuracy of the mathematical rotor blade model described in
section 2.2. , we will compare the results of that simulation to those obtained by a
different approach for beams with well known geometric properties and later for
the Blackhawk rotorblade itself. Since the non-rotating bending frequencies of
the Blackhawk rotor blade with free-free boundary conditions are known from
the shake test (Ref. 2.-7), we will use a Lagrangian method suggested by Ref. 2.-3
to predict the rotating frequencies and modes. This approach allows us to
determine the rotating bending frequencies for any rotational speed, given only
the structural properties of the rotor blade or beam that is to be analyzed. There is
no restriction as to the stiffness or mass distribution. Only the stiffness and mass
matrices must be assembled in order to determine the non-rotating mode shapes
or eigenvectors. Both Loewy (Ref. 2.-3) and Yntema (Ref. 2.-2) make the
simplifying assumption that a linear height distribution leads to both a linear
mass and a linear stiffness distribution. Using the finite element approach will
allow us to negate this simplification and calculate beams or systems with a truly
linear height distribution ( resulting in a cubic stiffness distribution ) and systems
with a fruly linear stiffness distribution (resulting in a third-root height
distribution). As we will see, the calculations using this more exact approach will
improve upon the accuracy of the previous results.

The bending deflections of the rotating mode will be expressed in terms of
the deflections of the non-rotating modes

wi(h= 2, U™ q(thn (2.3.1-1)
n

where

w;(t) = the i-th rotating mode shape vector

Y;™ = the n-th non-rotating mode shape
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q(t)n =the time and amplitude dependency of the n-th non-

rotating mode (and thus also the n-th generalized
coordinate in the Lagrangian approach )

Following (Ref. 2.-3) , the kinetic energy terms are expressed as

T=3 2(;T X mi) (23.1-2)

i

and after the differentiations demanded by Lagrange’s equation
d (0T dT dU
23 (L. ( % r) + ( . r) -0 (2.3.1-3)
aqr

these kinetic terms turn out to be

Mgen g (2.3.14)

where M gen is the generalized mass matrix obtained from the static (non-

rotating) analysis of the beam, and g; is the second derivative with respect to
time of the generalized coordinate.
The potential energy terms are divided into two parts. The first, Uy,

represents the potential energy stored in the beam due to deformation (elastic
properties) and the second, U, represents the work done by centrifugal forces on
the lumped masses, m;, acting through changes in the radial position, x;, of these
masses as the blade bends. This “shortening” A; of the blade at the radial position
x; along the beam coordinate x, can be expressed as

Xoi
l aWi

The expression for A; is derived and discussed at length in Ref. 2.-5. The

shortening can be approximated with the the following summation:
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i

1 aw; \?
A= 5 oy AXoj (2.3.1-6)

=1
where j = 1 is the position at the root of the beam.
Inserting the above expressions into the potential energy terms

1
Ui =52 Keen @ (23.1-7)
n

Uz = 2 m; Xoi Q2 4 (2.3.1-8)
i
and considering that
]ngn = 0)2 Mgen = 0)2 Z m; Wi(“)2 (2.3.1-9)1
i
we obtain the equation for the r-th generalized coordinate (the r-th row of the

rotating beam equation) as
i

2 2
. E ow'n ow®
Mgen(l') dr + QZZmixoi q.l'( axo l ( axo l Ax0] + ngnqr =0
1

i1

(2.3.1-10)
Substituting
i
2 2
owm ow®
‘an = zmi Xoi E ( o%g ) (axo ) AXOi (2.3.1-11)
i = 1 1
yields
Mgend + Q29q + Kgen g =0 (2.3.1-12)

The term Ky, = Kgen 15 the static or non-rotating part of the beams
stiffness matrix, and Kgyn = Q2 y is the dynamic part of the stiffness matrix
brought on by the centrifugal forces on the lumped masses.

Adding K, and Kgyn leads to the well-known problem

1 if the condition that M is diagonal holds
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M{G+Kg=20 (2.3.1-13)

that can be solved by the usual algorythms to obtain the rotating beam modes.

Taking into account the first 5 non-rotating beam modes of a beam subdivided
into 20 lumped masses, we obtain a Kyyn that is populated in the upper left hand

corner (5x5) with the elements
Vi (with ij=1...5)
2.3.2 Linear Height and Stiffness Distributions

Calculations to verify the algorithm prior to applying it to the UH-60 rotor
blade were done for the following examples in order to gain some insight into
the order of accuracy. These results were compared to the results of a 5-mode
extension performed in Ref. 2.-2 for cantilever and hinged beams of constant and
linear varying stiffness distributions. As stated earlier, the five and six mode
extensions were based upon the assumption that a linear height distribution
implied a linear mass and a linear stiffness distribution. This analysis introduces
results for truly linear distributions of the above parameters. For example, the
results obtained in Ref. 2.-3 are for a beam of linear varying height taken from the
book by Bisplinghoff Ref. 2.-6 whereas the results are compared to those of
Yntema (Ref. 2.-2), who only examines beams of a constant or linearly varying
stiffness distribution. The height function of the beam found in Ref. 2.-6 is

h(x)=2b(1-AX) (2.3.2-1)
with A=0.2 . Therefore the stiffness is :
I= L bhd= L b2 (1-1%)3 (2.3.2-2)
=12 =12 TAX el
where X = % is the dimensionless blade coordinate.

The stiffness will only be linear if the higher terms of x can be dropped.
This cannot be supported for a value of A = 0.2 . Thus, a height-variation
producing a truly linear stiffness distribution was used in our examples. Also, in
the hopes of obtaining a better estimate for the rotating modes, the first five non-



rotating mode shapes were included, instead of only the first two as in Ref. 2.-3.
Because the algorythm uses the slopes of the non-rotating mode shapes, the
possibility of using a polynomial to obtain the derivatives instead of numerically
calculating the slopes by a three-point and five-point differentiation rule was
addressed, since a sufficiently exact polynomial can easily be fitted to the first five
mode shape vectors. This did, in fact give a better approximation of the slope of
the beam at the lumped mass in question, but, as pointed out in Ref. 2.-3, the
number of mass stations makes a far greater contribution to the convergence of
the algorythm towards the correct solution than improving the accuracy of the
derivatives.

2.3.3 Determining the Rotating Mode Shapes

After having determined the rotating frequencies by the addition of the
dynamic stiffness matrix expressed in terms of the generalized system equations
it becomes necessary to do a back-transformation prior to obtaining the mode
shapes for the rotating system in the usual Cartesian system coordinates. We will
use lowercase to indicate the generalized coordinates and uppercase to indicate
the system (Cartesian) coordinates.

We can express the rotating system stiffness matrix, kgyg, in generalized
coordinates

Kqyst = Kgen + Kayn (2.3.3-1)

The diagonalizsed stiffness matrix,kgen, was found by transforming the static
stiffness matrix, K¢, by the system modal matrix, U, a matrix composed of the
eigenvectors? obtained while solving (2.3.1-13)

Kgen =U" Ky U (2.3.3-2)

Inserting (2.3.3-1) into (2.3.3-2) we get

2 since U is composed of the eigenvectors of our vibratory system arranged in columns, and
these eigenvectors have been normalized prior to placing them into U, we have an
orthonormal matrix. The transformation equation U-1 K U can be simplified to UT K U,
since U-1 = UT for orthonormal Matrices.



Koyt = U Kyt U + kgyn (2.3.3-3)

Transforming (2.3.3-3) into Cartesian coordinates with the system matrix, U,

gives us

U gyt U = Kot + UD " gy @) (2.3.34)
or

Ksyst = Kstat + Kdyn (2.3.3-5)

To find the rotating eigenvectors, we must solve the equation

Mg+ Kypg =0 (2.3.3-6)

that leads to a new system matrix, Uy , that is composed of the rotating

eigenvectors. This new system matrix diagonalizes the rotating stiffness matrix,
I(syst:

T
Urot Ksyst Ut = kgen,rot (2.3.3-7)

The rotating and non-rotating normalized deflection curves of a
cantilever constant beam for the 15t to 3rd natural frequencies are shown in Fig.
2.3.3-1. For the hinged constant beam these are shown in Fig. 2.3.3-2. The
rotational parameter

2
Q
Y=— 2.3.3-8
(mm] 2339)

was set at 4 for the cantilever beam and at 2 for the hinged beam. It is seen that
the discrepancies between the non-rotating and the rotating mode shapes are
small, and that the nodes are virtually coincident.
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2.3.4 Natural Frequency as a Function of Rotational Speed

Figs. 2.3.4-1 to 2.3.4-4 give an overview in how the natural frequencies
increase with increasing rotational speeds. The factor ¥ relates the square of the
first non-rotating frequency ®p to the square of the frequency that the system is
rotated at, Q . This parameter stays the same, regardless of which mode is being
examined.

2
Q
¥=|—— (2.3.3-7)
o)

The factor for the abscissa,®, shows the magnitude of the change in
rotating to non-rotating natural frequency. The denominator of this parameter

always holds the non-rotating natural frequency of the mode being examined,
Whi-

(D .
o = |—rot! (2.3.4-1)
On i

The parameters are squared in order to better asses the reliability of the obtained
results when comparing them to Ref. 2.-3. Notice that squaring the parameter
also squares the error. The diagram for the cantilever beam with non-constant
height distributions (Fig. 2.3.4-2), reaffirms the previously stated concerns. Only
when a beam is considered that has a linear height distribution and a linear
stiffness distribution are examined, does one receive the results stated by Yntema
(Ref. 2.-2). This form of beam, having both a linear mass distribution as well as a
linear stiffness distribution does not exist for isotropic structures.

The frequency graph for the “tapered” cantilever beam (Fig. 2.3.4-4) shows
the frequency increases for a beam of actual linearly decreasing height and
linearly decreasing stiffness at a constant width.
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2.3.5 Accuracy and Convergence Characteristics for this Finite
Element Application

It is of interest to us how exact our eigenvalues and eigenvectors are, and
how confident we can feel about our results. The solutions we have found for

the calculated (™) eigenvectors, ¢, and for the calculated () eigenvalues, A,
were calculated by the EISPACK matrix and eigensystem routines (Ref. 2.-8). Of
interest would be the convergence of the finite element program as a function of
the number of elements used in the discretisation of the beam.

Having made the rather bold assumption that the rotational degrees of
freedom were not assigned any rotary inertia, it is of even bigger importance to
know more about what effect this simplification has on the calculations in order
to be able to judge the effect on the projected rotating modes and frequencies.

Throughout literature ( e.g. Ref. 2.-1, Ref. 2.-4, ...) analytic results are found
for the mode shapes for constant beams with a constant stiffness along the beam
under the assumption of a variety of boundary conditions. We will compare our
solutions with the analytic solutions for the cantilever and hinged beams and
attempt to show the convergence characteristics for the first three non-rigid body
eigenvalues as a function number of elements used. A strategy for determining
the quality of a calculated eigenvalue even if the true eigenvalue is unknown is
also introduced.

Exact analytic solutions for the hinged-free, free-free and cantilevered beam
natural frequencies Wy are shown in Table 2.3.5-1 using
B Y5
= 2 | ——— -
o = QgD (ml“ T (2.3.5-1)

Table 2.3.5-1 Exact Solutions for the Constant Beam

“ System Type | Eigenvalue Equation Rigid Body Values for Ay 1
Modes
Cantilevered |1+cos Alch Al =0 0 1,8751 / 4,69409 /... / (n-0.50)%
Hinged-Free |(AD (th Al-tan Al) =0 1 3,9266 / 7,06858 /... / (n+0,25)n
Free-Free | (A4 (1-chAl cosA) = 0 2 4,73004 / 7.8532 /... / (n+0,50)n
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The convergence characteristics of the implemented finite element algorithm
toward the exact analytical solution are shown in the following figures. Figs.
2.3.5-1a to 2.3.5-c show the convergence of the calculated solution divided by the
exact solution of the cantilever beam eigenvalues towards the normalized exact
solution (1.0) as a function of number of elements used, while Figs. 2.3.5-2a to
2.3.5-2d show the same for the hinged beam.

Cantilevered Beam Hinged Beam
LOS et The 1st natural mode
- R for the hinged beam is
1.00L . the rigid body mode
L T -
- // :
0.95+ ]
N i 1 Natural Frequency B
0.901- Bt l
0.85]11 e )11t lllilll 111:
0 4 8 2 16 220
Number of Elements
Fig 2.3.5-1a  1st Natural Frequency Fig 2.3.5-2a 1st Natural Frequency
l‘OSIIIIII Trvr[rrovryviild 1'051llllllll rrtriuvTi
1.00+ . 1.00 - :
N I 5 R
- v . - /// .
095 e ] 0.955° :
0,90% ............ [ ....................................... 4 0.90L ]
0.85b1|11||11111| 11 1] 0_85_11/1||111 Ll pag]
0 4 8 2 16 2 0 4 8 2 1B 20
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Fig 2.3.5-1p 2nd Natural Frequency Fig 2.3.3-2b 2nd Natural Frequency
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The analytical equation for the mode shapes is

ch Ajx - cos Ajx  sh Ajx - sin A;x
Wi(X) = i1+ cos Al - sh Ayl + sin Aql (23.5-2)

for the cantilever beam and

sh A;] sin A;x + sh A;x sin Al
wik) = 2 sh A;] sin A4l (23.53)

for the hinged beam

Figs 2.3.5-1a to -2d show that a good accuracy can be obtained by using 20
finite elements on a beam, resulting in having to solve only a 10x10 matrix after



static condensation. Tables for the first few eigenvectors for the calculated beams
can be found in Appendix A.

2.4 Comparison of the Finite Element Calculation with the Full-
Scale UH-60A Rotor Blade Non-Rotating Modal Analysis Shake
Test

2.4.1 NASA Shake Test

A shake test of the UH-60A rotor blade was performed at the NASA Ames
Research Center during April 1986 as part of the Phase I Flight Test MTR
(Modern Technology Rotor) project. The rotor blade was outfitted with strain
gages along the span and a movable piezoelectric accelerometer was used to
measure the response at the node points. The data was analyzed to obtain the
frequency response function (FRF) of the blade excitation and response. The
linearity of the rotor blade system was established by varying that the FRF
remained constant for an increasing input force level. The minimal input force
level for a constant FRF was found to be 1 pound-force ( 4.44822 N ). An upper
boundary can be set at a force level that produces large, non-linear deflections.
The Maxwell-Betty theorem was also found to apply. This states that the FRF that

gives a response at point i of the structure resulting from a force input at point j
is the same one as for a response at point j resulting from an input at point i (Hj

= Hj) as shown in Fig. 2.4.1-1. This relationship was tested at frequencies of 12.55
Hz and 25.11 Hz and shown to hold .

Input Exitation :e
System Response : 1

Fig. 2.4.1-1 Maxwell-Betty Theorem
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The rigid body modes for the rotor blade suspended in a pseudo free-free
manner by bungee chords was found to be 0.8 Hz for the 15t flapping and 0.2 Hz
for the 15t torsional modes.

Trailing Edge
35 33 - 7 5 3

37 l
N 2
r3634 8 6 4

38 Leading Edge
Fig. 2.4.1-2 Accelerometer Measurement Positions

The FRF and the modal data were measured by placing the accelerometer
at coordinates 16 in (40.6 cm) apart along the leading and trailing edges and at the
node points of each identified mode. The accelerometer measurement positions
are shown in Fig. 2.4.1-2. The blade was also examined by CAMRAD
(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics)
in a hinged-free configuration and these results were transfered to the shake test
free-free boundary conditions by calculating the ratios between the exact free-free
and hinged-free solutions and applying them to the CAMRAD hinged-free
results (Ref. 2.-7). This may account for some of the large errors found with the
CAMRAD program, especially in the higher modes, because the ratios were
found by looking at the vibrating beam partial differential equation

2 2
d _ El(x)a y(J;,t) m( 320 d y(x )
ox ox at (2_4.1_1)

for the two boundary conditions and then calculating the ratios. Since the above
equation applies only to beams of a constant stiffness and mass distribution there
is some error introduced by using it to obtain the ratios of hinged-free to free-
free. The shake test identified 5 flapwise modes along with 2 chordwise and 2
torsional modes. The 5 flapwise modes that are examined and compared to our
finite element model are given in the form of modal residues at the leading and
trailing edge. The residues (given in Appendix B) represent the amplitude of the
mode at the point of measurement. The residues of the trailing edge differ from
those of the leading edge since the individual modes are not totally uncoupled.
To negate this effect we will calculate the residues at the quarter-chord,
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supposing that the residues change in a linear fashion across the span of the
blade as demonstrated in Fig. 2.4.1-3. When these residues are normalized they
display the expected modal shapes.

Residue at - - A
Quarter-Chord -—

—
- | Residue at
Root

7
7
Residue at
Tip L
7 Quarter-Chord
7 Line

Z

SC1095-R8
Airfoil
Fig. 2.4.1-3 Residue Calculation



2.4.2 Shake Test Results
2 4.2.1 Rotor Blade Data for Shake Test

The modulus of elasticity, E, for the Blackhawk rotor blade is
F= 106[ 1:) ] = 0.68 1010 [—E—] The stiffness and mass distribution are given

in Table 2.4.2.1-1 and in Figs. 2.4.2.1-1 and 2.4.2.1-2 and the natural frequencies
for out of plane flapping that were measured during the shake test as well as the
values calculated by CAMRAD are given in Table 2.4.2. 1-2.

ibutions of the Blackhawk Rotor Blade

Blade tiffness Mass Blade tiftness ) Mass
\ foo]rdinate (kg m2J4104 [kg/cm] Foo]rdinate (kg mi104 | [kg/cm]
cm cm
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030000 0575355 |[0010078 |

Table 2.4.2.1-1 Mass and Stiffness Distr.
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Table 2.4.2.2-1 Natural Frequencies, Out-of-Plane Flapping

Shake Test [Hz]
4.34
12.55
24.99
41.63

5th 63.71 57.75




2.4.3 Results of the Non-Rotating Finite Element Analysis

2.4.3.1 Discretization Technique

The Blade was divided into three large parts in accordance with the degree
that the mass and stiffness distributions varied. These parts were then in turn
subdivided into finite elements. Three different division schemes (DS) were
introduced to investigate the way the solutions converge as a function of the
number of elements. The DS are given in Table 2.4.3.1-1 and DS2 for the first
normalized cantilever mode is shown in Fig. 2.4.3.1-1.

Table 2.4.3.1-1 Division Schemes

[r Scheme 1 | Scheme 2 | Scheme 3
Number of Elements 20 25
Part1 (0..2m)
Number of Elements 15 20
Part 2 (2..6m)
Number of Elements 20 25
Part 3(6...7.29m)

1.2 i T 71 I T o1 1171 TV 1 3 T 1TV 1 ‘ TT1 TV} T 1 1 1 L LA DL l T ¢ 11 ]
. Partl Part 2 Part 3 i
1 - 0..2m 2..6m 6..7,29m -
LT ]
S - :
8os / 1
% - 20 Elements | _* "1 25Elements -
S06 :
© r - T
E . ]
204 -}
I 25 Eléments - ' ]
0.2 -— .. L JUUTOY U SRR .- —
0 )—ﬁl.l‘l {1 111 1 14 31 I | 1 1 11 1.1 4 1 1.1 1t
0 7 8

3 4 5 6
Blade Coordinate [m]
Fig. 24.3.1-1 DS2
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Results for the different DS and their deviations from the shake test results and
CAMRAD are given in Table 2.4.3.1-2 below.

Table 2.4.3.1-2 Results for Different DS

Nat. Nat. Nat. Nat. Change: Change:
Frequency | Frequency | Frequency Frequency

(Shake Test) (DS1) (DS2) (DS3) DS3(FEM)- | CAMRAD-
Mode [Hz] [Hz] [Hz] (Hz] Test Test
1st 1434 4.46337 4.51864 4.51473 + 4.02% + 6.68%
2nd |12.55 1291 12.9917 12.9731 + 3.37% + 1.59%
3rd |24.99 25.9137 26.249 26.2149 + 4.90% + 2.00%
4th |41.63 43.3187 43.9606 43.8759 + 5.39% + 1.65%

63.71 65.0184 65.7907 65.6459 + 3.04% -9.35%

It can easily be seen, that the CAMRAD-Program gives us a fairly good

estimate of the natural frequencies that can be expected. The error varies, and
CAMRAD fails to predict accurate natural frequencies for all higher modes.
Even though our Finite Element model accounts for only out-of-plane flapping
motion at this time, and disregards the coupling with the torsional and inplane
vibrational modes, the results are in very good agreement with the measured
data. Including these additional degrees of freedom (or allowing for coupling of
the modes) would tend to "soften" the rotor blade and bring down the natural
frequencies, and thus, the approach for the measured natural frequencies would
be even better.

Of especially great interest would be the inclusion of the torsional modes,
since they would be coupled most with the flapping mode due to the twist and
swept tip of the blade. In addition, the 15t chordwise natural frequency lies close
to the 3rd flapping natural frequency which would also tend to lead to some
coupling.

To judge how exact the program would calculate the natural frequencies
given an exact value for the first natural frequency, the modulus of elasticity was
adjusted to supply exactly the first measured natural frequency. Since ®y is

proportional to the square root of E, (2.3.5-1) we can simply set

®1cale ( E )05
= (2.4.3.1-1)
[mltest Eag )
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and we receive an adjusted E as

Eadj= 0.628383 1010 [—gz—] — 0.940693 106 [—m‘%] (24.3.1-2)

Using this adjusted value to simulate a blade less stiffened through modal
coupling we find the results of Table 2.4.3.1-3.

Table 2.4.3.1-3 Natural Frequencies Calculated with an Adjusted Modulus of

Elasticity
Mode DS3 Shake Test | Change:
(’_n_ge_rl) Hz | DS3(FEM)-

1<gen Test
Ist 4.34 434 |
2nd 12.47 12.55 -0.59%
3rd 25.23 24.99 + 0.989%
4th 42.39 41.63 + 1.84%
5th 63.80 63.71 + 0.146%

In Figs. 2.4.3.1-3a to 2.4.3.1-3g we introduce the calculated mode shapes of
the free-free UH-60A rotor blade along with the normalized modal residues of
the shake test. We have used the coordinate system from the shake test used in
the free-free analysis (i.e. going from tip to root of the blade, shown in Fig. 2.4.3.1-
2) to ease comparison with the test results, but in all other calculations
(cantilevered and hinged) we have used the more common coordinate system
going from the root of the blade outward. The measured mode shapes (residues)
of the shake test were normalized not as usual with the maximum deflection at
the beginning or end of the blade, but in such a manner that they coincided at
some point along the blade with the calculated mode shapes. This was done,
since the modal residues were assumed to vary linearly across the chord of the
blade and calculated at quarter chord. The tip of the blade is swept back, and the
shaker was attached to the root, and so the quarter-chord modal residues
calculated at these points that show the maximum deflection are not considered
to be very reliable. These points of coincidence were 4.165 m for the 1st, 3rd and
5th mode , 5.34 m for the 2nd mode and 6.125 m for the 5Sth mode.
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Third Mode Shape
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Fifth Mode Shape
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Seventh Mode Shape
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Fig. 2.4.3.1-3g Comparison of Calculated and Measured Flapwise Mode Shapes

The Calculated Data shows a high correlation with the measured mode shapes.

The same comparison is now done for the calculated and measured natural
frequencies for the first two inplane (chordwise) modes. Table 2.4.3.1-4 gives the
calculated results along with the deviations from the shake test and the
calculated mode shapes are shown versus the measured mode shapes in Figs.

2.4.3.1-4a and 2.4.3.1-4b.

Table 2.4.3.1-4 Results for the First Two Inplane Modes

Mode |Shake Test | FEM Change:
(Hz) (Hz) FEM-Test

1st 25.38 26.28 +35%

2nd 67.38 73.27 +87 %
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2.4.3.2 Results from other Boundary Conditions

Using DS3, the natural mode shapes and frequencies for other boundary
conditions in a non-rotating state were calculated and are introduced in Table
2.4.3.2-1 and Figs. 2.4.3.2-1 and 2.4.3.2-2

Table 2.4.3.2-1 Non-Rotating Results for DS3

Mode | Hinged-Free [Hz] Cantilevered [Hz]
1st rigid body 2.52586

2nd 10.889 17.2904

3rd 40.6414 48.07

4th 75.1265 93.7772

5th 128.8254 152.615

Cantileverd
UH-60 Blade

First four modes

1 LELALERI LELAR BR TrrT TTTT LIBLILR TTri1v71 TTrr1r T T

l Lt 1 | 1 1 1.1 a1 2 1411 I NN NS NN

Blade Coordinate (m)
Figs. 2.4.3.2-1 First Four Modes, Non-Rotating, Cantilevered Blade
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Figs. 2.4.3.2-2 First Four Modes, Non-Rotating, Hinged Blade
2.4.4 Rotating Results

2.4.4.1 Increase of the Natural Frequencies

Having ascertained a high level of accuracy and convergence of our finite
element model, we will now use this model to predict the rotating natural
frequencies for the UH-60A Blackhawk Rotor Blade for the cases of hinged-free
and cantilevered boundary conditions.

The relationship between the speed of rotation and the increase of the
natural frequencies will again be displayed in the familiar fashion using the
dimensionless parameters

2
Q
Y= |— 2.3.3-
((Dm) ( 7)

()]
o= —rot (2.3.4-1)
Onj

Figs. 2.4.4.1-1 and 2.4.4.1-2 show the increase of the first and second natural

frequency for the cantilevered and hinged rotor blade as the speed of rotation
increases.
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2.4.4.2 Comparison between Rotating and Non-Rotating Predicted
Mode Shapes

Having verified that our non rotating calculated mode shapes show high
correlation with the measured residues, we can calculate the rotating mode
shapes and examine the change between the non rotating and rotating mode
shapes. Figs. 2.4.4.2-1 to 2.4.4.2+4 show the change of the cantilevered natural
mode shape of the UH-60A Rotor Blade in a non-rotating and rotating state, and
Figs. 2.4.4.2-5 to 2.4.4.2-8 show the same for the hinged Blade. The rotational
parameters were set to ¥ =12 for the cantilever blade and to ¥ =1.6 for the
hinged blade. The abscissa shows the non-normalized blade coordinate in

meters.
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Fig. 2.4.4.2-1 Rotating vs. Non-Rotating Mode Shape
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3. Spectral Analysis of the UH 60A Flight Records

3.1 Introduction

After obtaining an estimate of the rotating natural frequencies and modes
of the Blackhawk helicopter rotor blade, a first attempt was made to detect these
natural frequencies in the flight test records. This flight test data was obtained by
computer down-link from the Tilt Rotor Engineering Data System (TRENDS), a
database of the NASA-Ames Research Center. The highly instrumented Flight
Test Phase 1 (Ref. 3.1) of the Blackhawk Program provided a multitude of
dynamic and vibrational data that was available for downloading. The data
pertaining to the vibrational and otor characteristics available at TRENDS is
listed in Table 3.1-2.

The steady-state response of the rotor system will be at frequencies
corresponding to the period of the aerodynamic driving forces. These non-linear

excitation functions have frequencies that are integer multiples of the rotational

speed of the rotor blade (riv , ri v rz v = 1P, 2P, ...). The resulting spectral

densities of the histories of the responses to this aerodynamic forcing function
will be composed mainly of frequency contributions having the periodicity of 1P,
2P, ..., leaving the relatively small contributions of the transient natural modes
“buried” in the data. During a control input of the pilot, it is hoped that these
transient responses are excited to a measurable degree. So what we would need
in order to uncover transients hidden in the histories is a flight test that
contained well documented control inputs along with the response of the rotor
blade to these input. It should be stressed at this point that this analysis does not
constitute an in-depth evaluation of the existing database, but it was hoped that
by a careful selection of available flights and vibrational parameters, those
datasets would be found that showed the greatest promise of disclosing the
desired information. The results from this first examination of the database may
also show future researchers how to better choose and find relevant datasets in
the database.

Scanning the project database (See Ref 3.-2) for descriptions of the different
flight tests performed, flight 31 was chosen for further evaluation since this flight
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was conducted to show effects of sinusoid control inputs. The flightlog is shown
in table 3.1-1 below.
Table 3.1-1 : Log, Flight 31

AIRCRAFT: 748 SINE SWEEP CONTROL INPUTS T/O GW: 18224
FLIGHT: 31 LOCATION: AEFA CG: 362.5

FLT DATE: 22 MAY 87 COUNTERS: 3101- 3130 HRS TO INSP: 0.0

DIRECTOR: BUCK PILOTS: CASON AND WEBRE  FLT TIME: 12

FLIGHT INFO: FLIGHT 31 WAS A SPECIAL FLIGHT THAT WAS NOT PART OF THE
NASA PHASE I TEST PLAN. THIS FLIGHT CONSISTED OF
SINUSOIDAL CONTROL INPUTS THROUGH ALL AXES (LONG., LAT,,
PEDAL, AND COLLECTIVE), AT TWO AIRSPEEDS: HOVER AND 120
KIASB.

CONFIGURATION:
LASSIE AND BALLAST CART INSTALLED

FLIGHT NOTES: PARAMETERS KNOWN NOT TO BE WORKING:
ALL PARAMETERS WERE THOUGHT TO BE FUNCTIONING.

COUNTER TYPES: MULTI AXIS SINE SWEEP CONTROL INPUTS.
ANALOG TAPES: ITH748031.DAT
DIGITAL TAPES: ITH748031.01X THROUGH ITH748031.30X

VAX DATASETS: YES PLEASE.

The available vibrational and rotor parameters are shown in Table 3.1-2,
along with their units. AZMRT, AZMRR, MRBR5, MRBR6 and MRBR7 were
examined and finally AZMRT was chosen for the spectral analysis, since it
showed the greatest change in magnitude and intensity after a control input,
even though this parameter would be expected to show the greatest amount of
noise. An additional factor in the selection of AZMRT was that it showed more
intense and sharper peaks at multiples of the vibrational speed all the way up to
10P, whereas the other vibrational parameters only showed distinct peaks up to
5P. This is demonstrated in Fig. 3.1-1. by showing the spectral density function
available directly from TRENDS for the vibrational parameters.



Table 3.1-2 Avalible Parameters

Rotor Parameters

e

Units

Item Description Sampling
Freg. [Hz]
AXMRT | Tip accel. edgewise G's 517/1
AZMRR | Root acceleration flapping G's 516/1
AZMRT | Tip accel. flapping G's 516/1
MRALSS |MR link load aft Lbs
MRBR5 MR rear bending 50% radius PSI 516/1
MRBR6 MRrearbending 60% radius PSI 516/1
MRBR?7 MRrearbending 70% radius PSI 516/1
MREBS MR edgewise bending 50% rad. | IN-LB 516/1
MREB7 MR edgewise bending 70% rad. |IN-LB 516/1
MREBX1 | MR root edgewise IN-LB
MRFLAP | MR flapping Deg 516/1
MRFLSS |MR link load forward Lbs
MRLAG MR lead-lag Degs 516/1
MRLSS MR link load lateral Lbs
MRNB5 |MR normal 50% radius IN-LB  |516/1
MRNB6 MR normal bend. 60% radius IN-LB |516/1
MRNB?7 MR normal bend. 70% radius IN-LB |516/1
MRNBX1 |MR root normal bending IN-LB |516/1
MRPITCH |MR pitch Degs 516/1
MRPR MR pushrod load Lbs 516/1
MRSEBL | MR shaft bending In-1b 516/1
Aircraft Parameters
—
Item Description Units Freq
COLLSTK | Control position, collective Inches |32/1
LATSTK |Control position, lateral Inches |32/1
LONGSTK | Control position, longitudinal Inches |32/1
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Flight 31 is subdivided into 14 datasets of about 23 second each numbered
with counters 04-18. These counters were scanned and counters 08 and 10 were
chosen for further evaluation. Fig 3.1-2 and Fig 3.1-3 show excerpts of these
counters for the parameters AZMRT, the main control inputs (COLLSTK -
control position, collective and LONGSTK - Control position, longitudinal), as
well as the rotational speed of the rotor, RPMMR. The units for these parameters
can be found in Table 3.1-2.

UH-60R R/C 748 PHASE 1 TESIS
FLT  31:SINE SHEEF CONTROL INPUTS
CIR 13108« HOYER,LAT STICK SINE SHEEFS
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Fig. 3.1-2 Counter 08, Flight 31 (3108)
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3.2 Projected Natural Frequencies

Using the Finite Element Program outlined in the previous chapters we
calculate the first and Second rotating natural frequencies of the rotor blade at the
given rotational speed interval to be :

Table 3.2-1 Rotating Natural Frequencies of the Rotor Blade

Counter Rot. Speed ®On1 Wn2
(RPM) (Hz) (Hz)
3108 258.0-261.0 15.95 - 16.05 40.79 - 40.89
3110 258.5-261.5 15.97 - 16.07 40.81 - 40.93

It would of course be impossible to measure the natural frequencies as exact as
they are given in Table 3.2-1, the main objective is to show that the natural
frequency does not perturb much as the rotational speed varies.

3.3 Analysis Procedure

3.3.1 Obtaining the Spectral Density Distribution
Power spectral densities (PSD’s) of various intervals of the response histories and
their ratios were calculated (See also Ref 3.-3, 3.-4).

Power spectral density distributions or spectras are defined by the Fourier

Transforms of their correlation functions:
+ o0

Sex(® =5= | Re(0) et dr (33.1-1)
However, utilizing the discrete fourier transform (DFT) it is not necessary to
calculate the explicit term for the correlation function, since the spectral density
can be expressed directly by multiplying the fourier transform by its complex

conjugate. This can be shown by considering the discrete formulation of the
spectral density function, where Sy is the DFT of the autocorrelation function
R;.3

3 A discrete series can always be written as an addition of sine and cosine terms:

iy 2 2rkt
x(t) = ag + Y, ay cos( 1.;kt) + by sin(—T,Er—)

k=1
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N-1
Sk = 1—11- 2 R, exp(-i-z{—}(—t) (3.3.1-2)
r=0

R, is an estimate of the correlation function defined by
N-1

Ry =5 _N Z Xg Xsir (r=0,1,2,..., N-1) (3.3.1-3)

Inserting (3.3.1-3) into (3.3.1-1) and rearranging terms leads to

N-1 N-1
Sk=gz & X Xsexp( ) Xsir exp(-igﬂ%ﬂ—)) (33.14)

r=0 S$=0

The terms with the variable integer r can be grouped together and we can rewrite
the expression as

ZI*-'

N-1
2 Xg exp( ans) { 2 Xg+r exp(-lm)} (3.3.1-5)
5=0

and introducing the new variable t=(s+r)

N-1 (N-1)+s
1 2nks 1 2kt
Sk I_\I_ 2 Xg exp( ) N =Zs Xt exp( ) (3.3.1-6)

If we assume X, to be periodic with period N (an assumption that has to be
made in order to apply the DFT) , then xpn4+s=xg. Thus the second term of
(3.3.1-6) is simply the DFT of x(s), X(s). The first term is similar to Xg, with the
exception of the sign of the exponent. This represents Xg, the complex conjugate
of Xg. This shows that the PSD can be simply calculated from the DFT by

1 2kt
where aplbyl= T j:rx(t) cos(sin](l.r—) dt or using complex notation for the Fourier
(o]

Transform,  Xg=ag+i by , it can be written as:

2
Xk=}1: JTx(t) exp(-i(-ﬁ&)) dt
o



SE=X% X (3.3.1-7)

The DFT can easily be calculated by existing code for the Fast Fourier
Transformation (FFT).

3.3.2 Ideal Boxcar Filters in the Frequency Domain

Ideal Boxcar filters of varying frequency bands were applied to the spectra
obtained by the FFT, in order to supress the steady state excitation of 1P, 2P and
up. This approach did not lead to any practical results, because of the smearing of
the peaks and the noise level inherent in the data. This analysis technique was
found to be not applicable and quickly discarded.

3.3.3 Mapping to the Z-Plane

We are dealing with a discrete time series when we are evaluating the
measurement data from the flight test. The continuous time (CT) function s(t) is
now transformed into a discrete time (DT) function, s(nT) with values defined
only for t =n*T , where n is an integer and T is the sampling rate. CT signals can
be transformed to the (complex) frequency domain by the Fourier and Laplace
transforms The result of the transformation usually provides us with additional
insight into the operation of the system. For some systems that do not meet the
conditions required by the Fourier transform, the Laplace transform is used,
which involves the transformation into the s= ¢ + iw plane. The Fourier
transform is a special case of the Laplace transform for c=0, that is, for input
systems that can be represented as a superposition of sinusoidal waveforms. DT
signals can also be represented by a Fourier transform, but instead of using the
Laplace transform, the z-transform is used.

We can introduce the z transform by setting up the relation between the
the complex s plane and the complex z plane

= e(sT)

z (3.3.3-1)

This function is a mapping of points in the s plane to points in the z plane. In
circuit and control theory, values of s that cause a system transfer function to
become zero or infinity (poles) provide information about the systems response
to signals with a given frequency value. The mapping of the s plane into the z
plane is as follows. The i axis of the s plane (6=0) corresponds to z=exp(-iT).
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This is a circle of unit radius in the z plane. As oT varies from - to +%, this
generates a circular path in the z plane from z=-1(/-180°) to z=-1(/180°). Thus the

z transform takes a strip in the s plane between (-lT) <®< (%) and maps it into

the unit circle of the z plane. The left-hand side of the s plane is mapped into the
unit cirde (s<0,1z1<1) . The right hand side of the s plane is mapped outside of
the unit circdle (s>0,1z!>1). If an analog system has poles only in the left-hand s
plane, it is stable, and its poles will map inside the unit circle in the z plane as
well. This mapping is shown in Fig 3.3.3-1.

1zl<1

S - Plane Z - Plane
Fig 3.3.3-1. Mapping from the S Plane to the Z Plane

3.3.4 Digital Filter Design

In the second part of the spectral analysis of the flight data, digital filters
are used to filter out the high energy spectras of the first few excitation
frequencies. The design of such a digital filter (Ref 3.-5) begins with the
specifications of an analog filter. The parameters for a filter are the cutoff
frequency f., the stopband frequency fs and the characteristics of the stop and
passbands. These characteristics are used to generate the analog transfer function,
H(s), which is then converted to a digital filter transfer function, H(z). This
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conversion is done by a bilinear transformation, (BLT) . Once the analog filter
characteristics have been defined, the BLT is initiated by

(3.3.4-1)

where s =0 + iw . Depending on the manner in which the BLT is obtained , K

can assume the values of 1, %—- or% . We will use % . Solving (3.3.4-1) for z leads to

1+46T = _ (1+0T) + inwT

= =..= 3.4-2
2= 1-0T (1-0T) - ioT (3.34-2)

The phase, ¢, and magnitude, 1z1, of z are

12| [(1+<5T)2 + (mT)Z] 0.5
~ | (1-oM2 + (@T)?

(3.3.4-3)

and

} 20T
¢(z) = tan1 ToT2—(@T)?

The infinite-length i axis is mapped (nonlinearly) onto the unit circle,

(3.3.44)

introducing a distortion of the frequency response. The distortion is in form of a
relocation of the relevant frequencies: cutoff and stopbands. The general shape of
the response is essentially unaffected, that is an analog lowpass filter will remain
a digital lowpass filter, but with different cutoff and stopband frequencies. This
shifting of the frequencies is shown in Fig. 3.3.4-1. The shifting of the frequencies
during the transformation can be corrected by designing the analog filter to
account for the warping due to the transformation. Then, when transformed, the
frequencies will be at their desired locations. This prewarping can be
accomplished by comparing the imaginary parts of the following equation that
shows the relationship of w=2x f in the s plane and the angle of z, 2r Q in the z
plane, by evaluating z on the unit circle ( z = exp(i2 Q) ) and inserting into

1 1-e-i2nQ 1 eiﬂiQ - e-—thQ
8= T 14+e—i2nQ = T‘ etnQ e—ittQ
1 isin xQ 1. )
T lccis 0 = T! tan tQ2 = G +iw (3.3.4-5)
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Comparing the imaginary parts gives us this nonlinear relation as

o= % tan (tQ2) (3.3.4-6a)
or solved for Q :

Q= %[- arctan (o T) (3.3.4-6b)

Thus to design a filter suitable for filtering DT data, the frequency component ®
that you wish to filter must be expressed in the z domain variable Q.

Digital

|HEe ™))

[B ()|

Fig. 3.3.4-1 Frequency Warping during the Z-Transform

3.3.5 Power Spectral Ratios

A section of the history of AZMRT that had little or no control inputs
immediately before or during its interval was chosen to represent a steady state
response. A spectral density of this steady state response was calculated and
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related to an interval of the history that had a control input present or active,
and the ratio of these were calculated. The sampling frequency, fsamp ,of the data

was 516.669 Hz, and so the spectra that could be examined was limited by the
. fsamp o lieteatd
Nyquist frequency, fn= "5 = 250 Hz. This limitation was of no great

importance, since the frequency band of interest was the interval from 0 to 50 Hz,
containing the first two natural frequencies of the rotor system that we hoped
were excited through a control input.

The first counter evaluated was 3110 and the time interval spanning
0 to 3.32 seconds (1200 datapoints) was taken to be the steady-state response. The
history is shown in Fig.3.3.5-1a. Its spectral density is shown in Fig. 3.3.5-1b on a
linear scale and in Fig. 3.3.5-1c on a logarithmic scale. The units for a power
spectral density are [mean square/unit of frequency].

0.5 Time History
e 0 t .
b
0Sk i
0 0.5 1 1.5 2 2,
Time in Seconds

Fig 3.3.5-1a. Steady State Response (Ctr.3110)

5000 ' Power spectral density
4000 - .
3000} :
2000+ .
1000 - k l .
0 10 20 30 40 50 60
Frequency (Hz)

Fig 3.3.5-1a. Power Spectral Density of the Steady State Response (Ctr.3110)

S5
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104 ' Power speqtral density

103
102
101
100
10-1

102
0 10 20 30 40 50 60

Frequency (Hz)
Fig 3.3.5-1b. Power Spectral Density of the Steady State Response (Ctr.3110)

Four different subsets ( a) to d) ) of counter 3110 were selected that showed
promise of containing some transient response to the control inputs. The
datasets examined are depicted in Fig. 3.3.5-2. These datasets were spectrally
analyzed and the ratio of these to the steady-state response were calculated. Fig.
3.3.5-3 shows the PSD of dataset a) on a linear scale, while Fig. 3.3.5-4 shows the
same PSD on a logarithmic scale. Calculating the ratios of these datasets in a
linear representation to the steady-state response is of course equivalent to a
subtraction of these spectras on a logarithmic scale.

Fig. 3.3.5-5 to 3.3.5-9 show the ratios of the response spectras of the subsets a) to
d) of counter 3110, with the ordinate showing the magnitude of increase in
relation to the steady state response plotted against the frequency .
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3000 ' Power spectral density

2000+ .
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Frequency (Hz)

Fig. 3.3.5-3. PSD of Dataset a) (3110)

104 ' Power spectral density
103 |
102 |
101
]
10-1 ]

0 10 20 30 40 50 60

Frequency (Hz)
Fig. 3.3.5-4. PSD of Dataset a) (3110)
800
600+ 1
400} -
200+ .
0 N A A o oA -
0 10 20 30 40 50 60

Frequency (Hz)

Fig. 3.3.5-5 Ratio of the PSD of a) to the Steady State Response (3110)
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Frequency (Hz)
Fig. 3.3.5-6 Ratio of the PSD of b) to the Steady State Response (3110)

2000

1500 1

1000+ .

500+ _

0 I\ A aa

0 10 20 30 40 50 60

Frequency (Hz)
Fig. 3.3.5-7 Ratio of the PSD of ¢) to the Steady State Response (3110)
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4000+ 1
3000} :
2000+ .
1000} ﬁ
0 A oan 1R .
0 10 20 30 40 50 60

Frequency (Hz)
Fig. 3.3.5-8 Ratio of the PSD of d) to the Steady State Response (3110)
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Figs. 3.3.5-5 to 3.3.5-7 all showed two peaks in the ratios of the PSD in a
frequency ranges of 17.2-17.4 Hz and 36.5-36.8 Hz that were on the order of 600 to
5000 greater than at steady state. Increases at 1P, 2P and higher were also found
due to an increase of energy at these intervals because of an increase in the
aerodynamic forcing functions. 17.3 Hz is an integer multiple of the rotational
speed (4P) but the increase in the PSD is far greater than the increases at 1P, 2P
and 3P. The first natural mode was predicted at about 16 Hz, and it can be
assumed that these peaks represent the transient responses of the excited first
natural mode superposed with the expected excitation at 4P. The fact that the 4P
excitation should be smaller in magnitude than the 1P, 2P and 3P excitation
supports this observation. Fig.3.3.5-8 is missing this characteristic peak and the
histories responsible for these PSD’s are seen to be a steady state responses at a
new energy level with the transients damped out. Table 3.3.5-1 shows the
predicted first natural frequency of the rotor blade and the frequencies at which
the peaks in the ratio of the PSD’s were located along with the deviation.

Table 3.3.5-1 Predicted and suspected Location of the First Natural Frequency

Predicted Nat. Dataset Location of Peak] Deviation
Freq, [Hz] [tiz] (%]
(1st/2nd) (1st/2nd) (1st 7 2nd)
16 / 409 a) 17.22 / 36.60 7.60 / -10.51
16 / 409 b) 17.23 / 3591 7.70 / -13.19
16 / 409 o) 17.19 / 35.70 7.44 /-12.71
16 / 409 d) 17.10 / 36.60 8.87 / -10.51

The deviations remain at a more or less constant level which would point to a
constant error in the rotating mode predictions.

The next counter evaluated was number 3108. The analysis technique was
the same as for the previous counter. In an attempt to find and identify the
second natural mode predicted at 40.9 Hz in this counter and to better examine
the frequency band above 30 HZ, the frequency components at 1P, 2P... were
removed by applying digital filters to the data.

The filtering scheme involved a Butterworth lowpass filter at 3 Hz and a
highpass at 50 Hz, the other filters were designed as stopband filters of varying
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bandwidths and intensities of the Butterworth (BW) and Chebycheff (CH) types.
The combination of filters that showed the best results are shown in Table 3.3.5-2
and Fig 3.3.5-10.

Table 3.3.5-2 Filter Combination

Filter Type Order Bandwidth | Passband Times Gain
[Hz] Ripple Filterd [dB]
Highp. BW 6 0-3 - 1 -
BW 3 2.04 -4.04 - 2 -16.8
BW 5 6.83 -10.83 - 2 -32.9
CH 6 12.12-14.12 0.5 3 -17.5
BW 5 16.90 - 18.40 - 3 -9.3
CH 8 19.82 - 23.82 0.5 2 -29.8
CH 8 24.11-28.11 0.5 2 -29.1
BW 6 37.1-41.1 - 1 94
Lowp. CH 10 50 - o0 0.1 1
1 — _Filters
0.8} -
2 0.6} 1
&
o
s 04r .
0.2t ]
0
0 10 20 30 40 50 60
Mapped Frequency

Fig. 3.3.5-10 Filter Combination

This time a larger time interval from 0 to 3.87 sec (2000 datapoints), was
chosen to represent the steady-state response, since the second natural mode
would tend to be damped out fairly quickly. Examining longer histories increases
the chances of having some transient response of the second mode present in the
data. The interval shown in Fig. 3.3.5-11a and Fig. 3.3.5-11b were filtered and then
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examined for transient responses. This steady-state response is shown in Fig.
3.3.5-12a. Its spectral density is shown in Fig. 3.3.5-12b on a linear scale and in Fig.
3.3.5-12¢ on a logarithmic scale.

Again, the ratio of the transient response to the steady-state was calculated
and plotted against the frequency. These ratios are shown in Figs. 3.3.5-13 to 3.3.5-
18.
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3108

Time History
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Time in Seconds

Fig 3.3.5-12a. Steady State Response (Ctr.3108)
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Fig 3.3.5-12b. PSD of the Filterd Steady State Response (Ctr.3108)
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Fig 3.3.5-12c. PSD of the Filterd Steady State Response (Ctr.3108)
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Fig. 3.3.5-13 Ratio of the PSD of a) to the Steady State Response (3108)
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Fig. 3.3.5-14 Ratio of the PSD of b) to the Steady State Response (3108)
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Fig. 3.3.5-15 Ratio of the PSD of ¢) to the Steady State Response (3108)
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Fig. 3.3.5-16 Ratio of the PSD of d) to the Steady State Response (3108)
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Discussion of the Power Spectral Density Ratios

All examined spectra ratios show a peak at the frequency interval of 37.9 to
40.7 Hz, exept fot the data subset f) that had a peak at 43.9 Hz. The magnitude
increase is less than the increase for the previous dataset, since the filter at the
37-41 Hz band damped both the steady state and the transient responses with a
gain of -9.4 dB. The increase turned out to be on the order of 15 to 100 opposed to
the increase at counter 3110 of 600-5000. Again, the second natural frequency was
expected to be at 40.9 Hz, and it can be assumed that the peaks visible in Figs.
3.3.5-13 to 3.3.5-18 are a result of this natural mode being excited. Table 3.3.6-1
shows the found and expected second natural frequency.

Table 3.3.6-1 Predicted and Measured 2nd Natural Frequency

Predicted Nat. Dataset Location of Peak| Deviation [%]
Freq. (2nd) (2nd) (2nd)
409 a) 40.56 -0.83
409 b) 37.97 -7.16
409 o) 38.24 -6.50
409 d) 37.97 -7.16
409 e) 39.65 -3.06
409 f) 43.92 7.38

Once again it is important to note that not all examined histories exhibited a
peak in the frequency band of 39 to 41 Hz , but showed increases only in the
frequency bands of 1P, 2P and up at varying intensitys and power levels. This
again would correspond to a new steady state response at a new energy level.

The results of the spectral energy analysis show great promise in being
used to identify the transients of the natural modes buried in the response
histories and warrant further examination. This analysis showed a definite
presence of the first natural mode at about 17.2 Hz . The second mode was placed
at 36.6 Hz for counter 3110 and at 37.9 Hz for counter 3108. Examining further
counters in future research would lead to even better results, especially if the
counters were cross-compared in some way. Another possibility would be to
construct a transfer function for the assumed steady state response and one for
the transient response and to draw conclusions from the different numerator
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polynominals, since the denominator polynominals would have to be the same
for the same system.

A reason that the predictions of the rotating natural modes are too high in
general could be explained by Fig. 3.3.6-2. As the damping increases, the natural
modes shift slightly to the lower end of the spectrum. Our analysis neglects
damping effects, but in the case of the flight test measurements, aerodynamic as
well as structural damping is present and may account for a phase shift.

Magnitude response

Damping Increases

0 05 1 15 2 25 3
Non-dimensional natural frequency ?D('l_
n

Fig. 3.3.6-2 Magnitude of Frequency - Response as a Function of Damping
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Appendix A

Tables of the First Eigenvectors of Beams with Different Boundary
Conditions and Geometric Properties
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Cantilevered Constant Beam

2

Coord First Second Third
Mode Mode Mode
0.0 0.00000 0.00000 0.00000
0.1 0.0167628 | -0.0928322| 0.229821
0.2 0.0638290| -0.301486 0.610493
0.3 0.136403 -0.527415 0.767384
04 0.229766 -0.685807 0.537735
0.5 0.339372 -0.717123 0.0292471
0.6 0.460966 -0.594037 -0.471250
0.7 0.590711 -0.322196 -0.666258
0.8 0.725340 0.0654301| -0.410146
09 0.862316 0.520821 0.216292
1.0 1.00000 1.00000 1.00000

Hinged Constant Beam

Coordinate First Mode | Second Mode | Third Mode | Fourth Mode
Rigid Body

0.00000 0.00000 0.00000 0.00000 0.00000
0.0666667 0.0666667 -0.176168 0.312006 -0.427397
0.133333 0.133333 -0.342705 0.581464 -0.734409
0.200000 0.200000 -0.484881 0.717196 -0.664977
0.266667 0.266667 -0.590631 0.687227 -0.283391
0.333333 0.333333 -0.651757 0.507443 0.203671
0.400000 0.400000 -0.663542 0.224895 0.580202
0.466667 0.466667 -0.624366 -0.0968230 0.701849
0.533333 0.533333 -0.535326 -0.390120 0.532819
0.600000 0.600000 -0.399852 -0.593871 0.146648
0.666667 0.666667 -0.223324 -0.661815 -0.301164
0.733333 0.733333 -0.0129609 -0.568864 -0.620699
0.800000 0.800000 0.223915 -0.315344 -0.647359
0.866667 0.866667 0.477577 0.0708468 -0.305840
0.933333 0.933333 0.738882 0.534149 0.329654
1.00000 1.00000 0.998499 0.993338 0.986899
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Cantilevered Tapered Beam

Coor First Mode | Second Mode Third Mode
(tapered) (tapered) (tapered)

0.0 0.00154295 -0.0156330 0.00672200

0.1 0.0147688 -0.0360000 0.0565879

0.2 0.0577830 -0.125706 0.174609

0.3 0.126396 -0.220433 0.201682

0.4 0.216554 -0.272842 0.0921422

0.5 0.324336 -0.251821 -0.0906786

0.6 0.445950 -0.141774 -0.232354

0.7 0.577741 0.0581017 -0.218733

0.8 0.716185 0.334526 0.0192293

0.9 0.857889 0.660860 0.467178

1.0 1.00000 1.00000 1.00000

Hinged Tapered Beam
Coord First Mode | Second Mode Third Mode | Fourth Mode
Rigid Body

0.00000 0.00000 0.00000 0.00000 0.00000
0.066667 0.0666667 -0.0567526 0.0582599 -0.0548090
0.133333 0.133333 -0.108299 0.102849 -0.0847653
0.200000 0.200000 -0.144760 0.103761 -0.0385510
0.266667 0.266667 -0.159416 0.0594524 0.0438681
0.333333 0.333333 -0.148481 -0.0140151 0.102800
0.400000 0.400000 -0.110661 -0.0921840 0.0993520
0.466667 0.466667 -0.0466947 -0.149522 0.0312482
0.533333 0.533333 0.0410851 -0.164856 -0.0696861
0.600000 0.600000 0.149206 -0.124921 -0.151979
0.666667 0.666667 0.273503 -0.0260174 -0.164524
0.733333 0.733333 0.409567 0.126213 -0.0757709
0.800000 0.800000 0.553193 0.318904 0.114303
0.866667 0.866667 0.700830 0.539640 0.375812
0.933333 0.933333 0.850027 0.763966 0.670562
1.00000 1.00000 1.00000 1.00000 1.00000
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Appendix B

Measured Residuals of the NASA - Shake Test

(1st 5 Flapping Modes)
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1st Flap

Acceloro- Residue Acccloro- Residue
meter meter
position (m=milli) position (m=milli)
1 2.443 21 -1.611
2 1.520 22 -1.349
3 1.605 23 -1.362
4 1.046 24 -1.291
5 870.050m 25 -1.198
6 864.000m 26 -1.024
7 340.000m 27 -843.000m
8 259.000m 28 -776.000m
9 -113.000m 29 -480.300m
10 -259.110m 30 -484.000m
11 -468.700m 31 36.956m
12 -587.690m 32 -108.000m
13 -932.680m 33 358.937m
14 -986.740m 34 370.200m
15 -1.370 35 932.668m
16 -1.164 36 858.222m
17 -1.336 37 1.319
18 -1.407 38
19 -1.409
20 -1.361
2nd Flap
Acccloro- Residue Acccloro- Residue
meter meter
position (m=milli) position (m=milli)
1 -1.810 21 -265.000m
2 -2.692 22 -955.800m
3 -610.000m 23 -1.015
4 -1413 24 -1.773
5 440.500m 25 -1.441
6 -262.500m 26 -2.153
7 1.339 27 -1.722
8 661.246m 28 -2.219
9 2.256 29 -1454
10 1.392 30 -2.192
1 2.500 31 -852.000m
12 1.857 32 -1.595
13 2.490 33 32.00m
14 1.718 34 -721.930m
15 2.210 35 1.053
16 1.485 36 499.600m
17 1.420 37 1.068
18 766.500m 38 -1.178
19 600.000m
20 -115.430m
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3rd Flap

Acceloro- Residue Acceloro- Residue
meter meter

position (m=milli) position (m=milli)
1 4.040 21 1.715
2 3.530 22 2.220
3 976.000 m 23 552.00 m
4 726.000 m 24 1.297
5 -710.700 m 25 -856.000 m
6 -802.000 m 26 76.000 m
7 -1.864 27 -2.294
8 -1.940 28 -1.029
9 -2.240 29 -3217
10 -2.153 30 -1.772
11 -1.736 31 -3.389
12 -1.605 32 -1.710
13 -705.000 m 33 -2.245
14 -407.000 m 34 -913.000 m
15 614.000 m 35 -895.000 m
16 926.000 m 36 572.000 m
17 1.589 37 741.7000 m
18 1.982 38 -2.132
19 2175
20 2.525

4th Flap
Acccloro- Residue Acceloro- Residue
meter meter

position (m=milli) position (m=milli)
1 3.140 21 -2.306
2 2.356 22 -700.000m
3 1.660 23 -2.219
4 527.000m 24 -936.000m
5 393.000m 25 -2.763
6 -1.319 26 -420.000m
7 5.000m 27 -1.862
8 -1.425 28 534.000m
9 416.000m 29 -1.013
10 724.000m 30 1.521
11 1.530 31 -706.000m
12 306.000m 32 1.960
13 1.602 33 -1.250
14 1.132 34 1.642
15 1.408 35 -2.210
16 1.351 36 698.000m
17 425.000m 37 414.000m
18 874.000m 38
19 -966.000m
20 35.500m
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R 5th Flap
Acceloro- Residue Acceloro- Residue
meter meter
position (m=milli) position (m=milli)
1 -2.500 21 1.243
2 -2.983 22 783.000m
3 1.250 23 -1.081
4 -78.000m 24 -636.000m
5 3.040 25 -2.641
6 1.042 26 -1.497
7 2.880 27 2510
8 681.000m 28 -1.074
9 1.190 29 -1.060
10 -718.000m 30 370.000m
1 -408.000m 31 419.000m
12 -1.870 32 1.691
13 -498.000m 33 258.000m
14 -1.774 34 1.829
15 830.000m 35 -1.077
16 -559.000m 36 659.000m
17 2.349 37 709.000m
18 888.000m 38
19 2.681
20 1.466
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Appendix C

Finite Element Program for Rotating Structures
Example for Hinged UH- 60A Rotor Blade
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The Finite Element Progra
MATHEMATICA language (see Ref. C-6). The authors native language was
German, S
German. These are listed below to enh

variables used in the code are consistent to

o some of the internal variables are

m was written on a NeXT computer using the

mnemonics derived from
ance understanding of the code.The
those in the report, Greek symbols are

spelled out. All other variables are self-explanatory or are defined in the

comments. Three different fonts were use

input, output and comments:

Code Text

Comment

Output Text

Variables:

anzahl parameter governing the amount of plots
PSI1 rotational parameter ¥

elementlaenge length of the finite element
elementlaengez  as above, in reference frame “z”

ort location along the blade or beam

maquerz, mgquer

ne, n
kele, kstr

mele, mstr
schleife
aktele
zwisch, zw
letztespalte

kuudach

mue
teiler
bild
nust
mnust
lges

mass distribution [ %\g]

number of elements

part of the element (ele) and the structure (str) stiffness
matrix

see above, with mass matrix

loop variable

current element

an intermediate result

last column

]%uu , reduced stiffness matrix

11

divisor

picture

numerical derivative of u, the eigenvector
matrix of the above

total length

d in the listing to help discern between

103



Structure of Example Program

8 Preprocessor )

Input data of structure
- divide structure
- define element length
- siffness and mass distribution

- rearrange coordinates to run
k from root to tip )

Y

Assembly of the System Matrices
- define element matrices
- assemble structure
- static condensation

8 Calculate Eigenvalues and Eigenvectors
- Eigenvalues

Zfor well conditioned matrices

- with normalized matrices

- Eigenvectors
- calculation
- normalize and calculate the system matrix
L - plot eigenvectors
( The Rotator \

Rotating the Structure

- calculate the derivatives of the eigenvectors

- calculate the dynamic stiffness matrix

¢

(" Output Section

Output
- calculate the eigenvalues of the rotating
structure
- find the rotating eigenvectors

system
- add dynamic stiffness
- find new system matrix

- plot polynomials
- plot comparison of rotating and
non-rotating eigenvectors

L Save Data to Optical Disc

- transform back to physical coordinate

- plot non-rotating and rotating eigenvectors
- find polynomial approach to cigenvectors
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PREPROCESSOR BEGINNING

Th. Breitfeld 1990
DATA
Parameter
anzahl=5;
number of modes to be considerd : modes
modes=5
PSI=1.6;
Structuredata
The Blade is divided into 3 Parts
Part1 : 0..20m (n1 Elements)
Part2 :20...60m (n2 Elements)
Part3 :60...729m (n3 Elements)
Tip of Blade: xi=0
# of Elements : n
11=1.29
12=4
13=2
Print[11+12+413]
nl1=25
n2=20
n3=25
n=nl+n2+n3
ne=n;
Lengths of the Single Elements
Part 1 (tip...)
1i=0;
Dol
ii=ii+1;
elementlaengelii]=11/n1;

,(n1}]

Part 2

Dol
ii=ii+1;
elementlaengelii]=12/n2;

An2}}
Part 3 (...root)

Dol

ii=ii+1;

elementlaengelii]=13/n3;
/n3}]
Coordinate Table xi (Tip....Root)
ii=.
Table[xi[ii]=0,(ii,1,n}];
xi[1]=N[elementlaenge[1]];
ort=1;

Dol

ort=ort+1;
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xilort]=(xi[ort-1]+N[elementlaenge[ort]] ;

r{n'l}]
Stiffness Tables [cm~4]
ii=1;
“TIP VALUE";
While[xilii] <= .1016 , {i[ii]=308 107(-8) , ii++}]
While[xi[ii] <= .2972 , (ilii]=370 10/(-8) , ii++)]
While[xi[ii] <= 4928 , {ilii]=614 10°(-8) , ii++]]
While[xi[ii] <= .8222 , {i[ii]=826 107(-8) , ii++}]
While[xi[ii] <= 1.1516, {i[ii]=929 10°(-8) , ii++}]
While[xilii] <= 1.5555 , {ilii]=945 10°(-8) , ii++}]
While[xi[ii] <= 1.9594 , (i[ii]=978 10°(-8) , ii++]}]
While[xi[ii] <= 2.3633, {ilii]=978 10/(-8) , ii++]]
While[xilii] <= 2.8075, {ilii]=978 107(-8) , ii++}]
While[xi[ii] <= 3.2517 , (ilii]=964 10/(-8) , ii++}]
While[xi[ii] <= 3.6959 , (ilii]=961 10°(-8) , ii++]]
While[xilii] <= 4.1401 , {i[ii]=961 10°(-8) , ii++]]
While[xilii] <= 4.5668 , {ilii]=933 10°(-8) , ii++}]
While[xi[ii] <= 4.9935, {i[ii}=924 10°(-8) , ii++}]
While[xi[ii] <= 5.4202, {i[ii]=924 10/(-8) , ii++]}]
While[xi[ii] <= 5.8469 , {ilii]=924 10"(-8) , ii++]]
While[xi[ii] <= 6.2736 , {i[ii]=924 107(-8) , ii++}]
While[xi[ii] <= 6.9086 , {ilii}=1149 107(-8) , ii++}]
While[xi[ii] <= 7.3531, {i[ii]=3900 107(-8) , ii++}]
“ROOT VALUE";

Mass Tables [kg/m]

ii=1;

“TIP VALUE";

While[xi[ii] <= .1016 , {mquerlii}]=3.99 , ii++]]
While[xiii] <= .2972 , {mquerlii]=12.55, ii++}]
While[xi[ii] <= .4928 , {mquerlii]=16.75, ii++}]
While[xi[ii] <= .8222 , [mquer[ii]=17.79, ii++}]
While[xi[ii] <= 1.1516 , {mquer[ii]=16.27, ii++}]
While[xilii] <= 1.5555 , {mquerlii]=13.03 , ii++]]
While[xilii] <= 1.9594 , {mquerlii]=13.1 , ii++)]
While[xi[ii] <= 2.3633 , [mquer[ii]=13.l7 , ii++}]
While[xi[ii] <= 2.8075 , {mquerlii]=11.65, ii++}]
While[xi[ii] <= 3.2517, {mquer[ii]=10.55, ii++}]
While[xi[ii] <= 3.6959 , {mquer[ii]=10.41, ii++}]
While[xilii] <= 4.1401 , {mquer]ii]=10.62, ii++}]
While[xi[ii] <= 4.5668 , {mquer[ii]=10.34, ii++}]
While[xilii] <= 4.9935 , {mquer[ii]=10.34, ii++}]
While[xilii] <= 5.4202 , (mquer[ii]=10.34, ii++}]
While[xilii] <= 5.8469 , {mquer[ii]=10.20, ii++]}]
While[xi[ii] <= 6.2736 , {mquer[ii]=10.27, ii++}]
While[xi[ii] <= 6.9086 , {mquer[ii]=10.34 , ii++]]
While[xifii] <= 7.3531, {mquerlii]=30.06 , ii++}]
“ROOT VALUE";
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Testdata

ro=7800
1i=0;
Dol
ii=1i+1;
e[ii]=0.68 10°11;
,An}]

The Coordinate Shuffler
xi - tip.....root  changes to xi - root...tip

x -root...tip
ii=.
Table[x[iil=0,{ii,1,n}];
1i=0;
Dol
ii=1i+1;
x[ii]=(11+12+13)-xi[ne-iil;
l{n-lll
x[nel= 11+12+13;
1i=0;
Dol
ii=ii+1;
xdlii]=x[ii];
An}]

Renumber the values for stiffness and mass and elementlength...
ii=0;

Dol
ii=ii+1;
iz[ii]=i[ne+1-ii};
mquerz[iil=mquer{ne+1-ii];
| elementlaengez[ii]=elementlaenge[ne+1-ii];
JAn
B[ac)k to the org. names
ii=0;
Dol
ii=ii+1;
ilii]=izliil;
mquerlii]=mquerz[iil;
all elementlaenge[iil=elementlaengezl[ii];
Ri
Hinged-Free
dof=n 2 +1
ne=n;

PREPROCESSOR END
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Assembly of the FEM-Stiffnessmatrix

Element stiffness matrix
ne= number of the element
" 4x4 matrix ;

kel=Arraylkele,{4,4)];

kele[1,1]=12a

kele[1,2]=6 elementlaenge[aktele]a
kele[1,3]=-12 a

kele[1,4)=6 elementlaenge[aktele]a

kele[2,2]=4 elementlaengelaktele] elementlaenge[aktele] a

kele[2,3]=-6 elementlaenge[aktele]a

kele[2,4]=2 elementlaengelaktele] elementlaengelaktele]a

kele[3,3]=12a
kele[3,4]=-6 elementlaenge[aktele]a

kele[4,4]=4 elementlaenge[aktele] elementlaengelaktele]a;

run=1;
Dol
run=run+1;
ll=run-1;
schleife=0;
Dol
schleife=schleife+1;
kel[run,schleife]]=kel[[schleife,run]];

AL
A3);
Assembly of the Structure
Set kstr to zero
kstr=Array[kst,{dof,dof}};
run=0;
schleife=0;
Dol
schleife=0;
run=run+1;
" Do
schleife=schleife+1;
kstr[[run,schleife]]=0;
Adof}]
Adof}];
first element (hinged boundary conditions)
aktele=1;

a—e[aktele] i[aktele]/ (elementlaengelaktele]*3);
kstr{[1,2])=kell[2,3]]
kstr{[1,3]]=kell[2,4]]
kstr{[2,2]]=kel[[3,3]]
kstr{[2,3]}=kel[[3,4]]
kstr([3 3]]=kel([4,4]];
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second until n-th element
run=1;
faktor=-2;
Dol
run=run+l;
aktele=run;
faktor=faktor+1;
index=aktele+faktor+1;
a=e[aktele] ilaktele]/ (elementlaenge[aktele]*3);
kstr[[index,index]]=kstr[[index,index]]+kel[[1,1]];
kstr[[index,index+1]]=kstr[[index,index+1]]+ke1[[1,2]];
kstr[[index,index+2]]=kstr[[index,index+2]]+kel[[1,3]];
kstr[[index,index+3]]=kstr[[index,index+3]]+kel[[l,4]];
kstr[[index+1,index+1]]=kstr[[index+l,index+1]]+ke1[[2,2]];
kstr[[index+1,index+2]]=kstr[[index+1,index+2]]+ke1[[2,3]];
kstr[[index+1,index+3]]=l<str[[index+1,index+3]]+kel[[2,4]];
kstr[[index+2,index+2]]=kstr[[index+2,index+2]]+kel[[3,3]];
kstr[[index+2,index+3]]=kstr[[index+2,index+3]]+ke1[[3,4]];
kstr[[index+3,index+3]]=kstr[[index+3,index+3]]+ke1[[4,4]];
Ane-1}]
Symmetry
matrix=kstr;
zwisch=Transpose[matrix];
matrix=matrix+zwisch;
ii=0;
Dol
ii=ii+1;
matrix[[ii,ii]]=matrix[[ii,ii]]-zwisch[[ii,ii]];
Adof});
kstr=matrix;
Assembly of the mass matrix
Set mel to zero
run=0;
schleife=0;
Dol
schleife=0;
run=run+1l;

Dol
schleife=schleife+1;
mel[[run,schleife]]=0;
A4]]
A4));
aktele=.;

mel([1,1]]=mquer(aktele] elementlaengelaktele] /2;

mel{[3,3]]=mquer{aktele] elementlaenge[aktele]}/2;
set mstr to zero

mstr=Array[mst,{dof,dof}];
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run=0;
schleife=0;

Dol
schleife=0;
run=run+1;
Dol
schleife=schleife+1;
mstr{[run,schleife]]=0;
Adof}]
[dof}];
first element (Cantilever boundary conditions)
aktele=1;

mstr{(1,1]]=mel{[2,2]]
mstr{[2,2]}=mel([3,3]};
second until n-th element
run=1;
faktor=-2;
Dol
run=run+1;
aktele=run;
faktor=faktor+1;
index=aktele+faktor+1;
mstr([index,index]]=mstr[[index,index]]+mel[[1,1]];
mstr[[index+1,index+1]}=mstr[[index+1,index+1]]+mel[[2,2]];
mstr{[index+2,index+2]]=mstr[[index+2,index+2]}+mel[[3,3]];
{ mstr{[index+3,index+3]}=mstr{[index+3,index+3]]+mel[[4,4]];
Ane-1}];
Static Condensation
Massmatrix
Rearrange the DOFs
(Rearrange Elements Naturally And Transform Equations
to Reduced Stiffness matrices)
m=Array[mm,{dof,dof}];

run=0;
schleife=0;
Do[
schleife=0;
run=run+l;
Dol
schleife=schleife+1;
m[[run,schleife]]=0;
J[dof}]
Adof});
colums
run=1;
index=1;
Do[

m[[index]]=mstr[[run+1]];
index=index+1;
run=run+2
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A(dof+1)/2-1}];
rows
run=0;
Do[
run=run+1;
m[[run,run]]=m[[run,(2 run)];
m[[run,(2 run)]]=0;
A((dof+1)/2)-1}]
Structurematrix
rearrange the DOFs
k=Array[kk,(dof,dof}];

run=0;
schleife=0;
Dol
schleife=0;
run=run+1;
Dol
schleife=schleife+1;
k[[run,schleife]]=0;
Adof}]
[dof}];

rows, colls
letztespalte=kstr[[dof]];

run=0;

Dol
run=run+];
k[[((dof+1)/2-1)+run])=kstr[[2 run -1]);
k[[run]]=kstr[[(2 run)]];

k{[dof]]=letztespalte;
kstr=Transpose[k];
letztespalte=kstr{[dof]];
run=0;
Dol
run=run+]l;
k[[((dof+1)/2-1)+run]]=kstr{[2 run -11);
k[[run]]=kstr[[(2 run)]];
A(dof-1)/2));
k{[dof]]=letztespalte;
k=Transpose[kE
Condensation

Massmatrix
remove zeros

ii=0;

Do[
ii=ii+1;
list=m[[ii]];
zw=Partition[list,(dof-1) /2];
m([[ii]]l=zw([1]];



ii=;
m=Table[m[[ii]],{ii,1,(dof-1)/2}];
Stiffness matrix
zw=Array[zz {dof dof)];
the following variables correspond to those in chapter 2.1.5 in their notation
kuu=Array[uu,{(dof-1)/2,(dof-1)/2}];
kuf=Array(uf,{(dof+1)/2,(dof-1)/2}];
kfu=Array[fu,{(dof-1)/2,(dof+1)/2}];
kff=Array[ff,{(dof+1)/2 (dof+1)/2}];
1i=0;
Do
ii=ii+1;
zwl[ii]]=Partition[k[[ii]],(dof-1) /2];
[dof}};
ii=0;
Dol
ii=ii+1;
kuufii]l=zwi[ii]][[1]};
A(dof-1)/2));

1i=0;
Do[

ii=ii+1;

kuf[[ii]]=zw][ii +(dof-1) /2]1[[1]]:
A(dof+1)/2}];

1i=0;
Dol
ii=ii+1;
rot[ii]=RotateLeft[k([[ii]] (dof-1) /2];
zwl[ii]]=Partition[rot{ii] (dof+1) /2];
Adof}]
ii=0;
Dol
ii=ii+1;
kfu[[ii]l=zwl[ii]][[1]];
1i=0;
Dol
ii=ii+1;
kff[[ii]]=zw([((dof-1)/2)+i]][[1]];
A(dof+1)/2}]
The reduced Stiffness matrix;
kuudach= kuu- Transpose[kuf] . Inverse[kff] . kuf:
k=kuudach;
dof=(dof-1)/2;




Search for the Eigenvalues

Normal Apprch (well conditioned matrix)
mm=Inverse[m];
eig=Eigenvalues[k . mm];
eigh.5;
With the normalized matrices
the letter "n" or the preposition “norm” depicts a normalized entity...
matrix=.
matrix=k
dmatrix= matrix Transpose[matrix]
lamdas=Eigenvalues[dmatrix]
gnorm=Max[lamdas]
knorm=gnorm”.5
nk=matrix 1/knorm
Min[Abs[Eigenvalues[nk]]]
if this value is << 1 ‘then the matrix is indeed singular
matrix=.
matrix=m
dmatrix= matrix Transpose[matrix]
lamdas=Eigenvalues[dmatrix]
qnorm=Max[lamdas]
mnorm=qnorm”.5
nm=matrix 1/mnorm;
nmm=Inverse[nm];
nk . nmm;
mue=Eigenvalues{%];
lamg=mue knorm/mnorm;
%”".5
lower eigenvalues (roots) belong to the lower eigenfunctions
roots=lamgq;
Reinsertion of the Eigenvalues into the matrices
lamg=.;
eigprob=k - lamq IdentityMatrix[dof] m;
ii=0;
Dol
ii=ii+1;
lamg=roots[[dof+1-ii]];
{d,p)=Eigensystem [eigprob];
=Table[0,{dof}];

“the lowest term of "d" must be found, sothe correct
position of y issetto 1"
_pos=0;
=L
tst=Abs[d];
Dol
{f[t.s.t[[jj]]==Min[tst],pos=jj,pos=pos];
=i+
Adof}];
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yllposll=1;
uliil=y . p;
Adof}]
“Normalizing the eigenvectors"
run=0
Dol
run=run+l;
If[Abs[Max[u[run]]]>Abs[Min[u[run]]],teiler=Max[u[run]],teiler=Min[u[run]]

u[run]=ulrun] 1/teiler;

An
p{ret}:Zde the eigenvectors with a zero (for better plotting):
ii=0;
Dol
ii=ii+1;
akt=ulii];
uplot[ii]:{O,akt];
uplotliil=Flatten[uplot[ii]};
Adof}];
Variables to this point;
u(i) - normalised eigenvektors
uplot(i) - normalised eigenvektors w/0 at beginning (for plotting)
polyu(i) - polynominal apprch for the above
m - kondensed mass matrix
k -kondensed stiffness matrix
roots - squares of the eigenfrequencies (==lamq)
dof -degrees of freedom
n -number of finite elements(==dof)
anzahl -plotting parameter

Generalised Stiffness and Mass Matrix
ii=.
evek=Table[ul[iil,{ii,1,dof}];
U=MatrixForm[evek];
UNORM-=Transposelevek];
mgen=Transpose{UNORM] . m . UNORM;
kgen=Transpose[UNORM] . k . UNORM;
omegaqu=Table[kgen[[nn,nn]] /mgen|[[nn,nn]],{nn,1 n};
% (.5)
draw the eigenvectors
run=0;
Dol
run=run+l;
"coordinate of the current element”;
xi[1]=elementlaenge[1];
ort=1;
Dol
ort=ort+1;
xi[ort]=xi[ort-1]+elementlaengelort];
An-1}};
datapairs=Tab1e[coords,{n}];



ii=0;
Dol
ii=ii+1;
ll datapairs([ii}l={xi[ii],ulrun]({ii}]}};
ANl
bild[run]=ListPlot[datapairs];
S{anzahi}]
14 /
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and so on ...

The ROTATOR

The Derivatives of the Eigenvektors
Procerdure for obtaining the numerical derivatives
ii=0;
Dol
ii=ii+1;
mnust=Array[nust,{dof,dof}];
deltax=1/n;

“first";

nlust[ii,1]=u[ii][[l]] /(xil1]/1ges);

"last”;

nust{ii, dofl=(uliil({dofl]-uliil{[dof-11}) / (xildof]/Iges-xildof-11/ 1ges);

“others"”;
run=1;
Dol
run=run+l;
nustlii,run)=(ulii][[run+1] ulii)[[run-1]] )/ (xilrun+1}/ lges-xi[run—l]/ 1ges);
Adof-2}];
ax[ii]='I‘able[nust[ii,kk],{kk,l,dof]]; '
[{modes}};
mnust=Array[ax,{modes}];

set gamma (n xn) =0
schleife=0;

run=0;

Dol
schleife=schleife+1;
run=0;
Dol

run=run+1l;
gamma([schleife,run]=0;

An}l;
An}]

deltax=.
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deltax[1]=xi[1]/1ges;
deltax[n]=xi[n]/lges-xi[n-1]/1ges;
ii=1;
Dol
ii=ii+1;
deltax[ii]=xi[ii+1]/1ges-xiliil /1ges;
,{I\'zn
check if sum of deltax=1
ii=.
Sum[deltaxliil,{ii,1,n}]

0.996104252400547

rr=rr+1;
Print{rr];
mm=0;
Dol
mm=mm+1;

gamma[rr,mm]=5um[m[[i,i]] xi[i]/1ges Sum[mnust[{rr,jjl]
mnust{{mm,jj]] deltax[jjl, (jj,1i}], {i,1.dof}};

J{modes}};
[{modes}];

- VS I

5
Grm=Array[gamma,{dof,dof}};
omega=.;

kdyn=omega”2 Grm;

Output section

omega=0;
kges=kgen+kdyn;
kges . Inverse[mgen];
Eigenvalues[%);
freq=%".5;
freq=Sort{%)
wnl=freq[[2]]

68.41862788567951
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run=_0;

Dol
omega=(run 4/10)*.5 wnl;
Print{N[run 4/10]];
kges=kgen+kdyn ;

=kges . Inverse[mgen];

tt=Eigenvalues[z];
xx=tt".5;
xx=Sort[xx];
PrintDod[2]]];
ox=0x[[2]]/wn1)"2;
Print{oc];
Print[""];
run=run+1l;

A6}]
0

68.4186
1.

0.4
135.412
3.91711

0.8
178.192
6.7831

1.2
212.264
9.6251

1.6
241.444
12.4533

2.
267.382
15.2727

omega=0;
kges=kgen+kdyn;
z=kges . Inverse[mgen];
Eigenvalues[z];

freq=%".5;
freq=Sort[%]
wn2=freq[[3]]

225.3581507539162
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run=0;
Do[
omega=(run 4/10)".5 wnl;
Print[N[run 4/10]};
kges=kgen+kdyn ;
z=kges . Inverse[mgen];
tt=Eigenvalues([z];
=tth.5;
xx=Sort[xx];
Print{od(3]]1

sooc=(x([3]]/wn2)*2;
Print[xxx];
Print["™];
run=run+l;
R(3]]

0.

225.358
1.

0.4
297.736
1.74549

0.8
354.318
2.47195

1.2
402.216
3.18545

1.6
444.465
3.88981

2.
482.682
4.58749

Find the Rotating Eigenforms
wnl
68.41862788567951

Rotational Speed

omega=PSI*.5 wnl

§6.5434794009031

ii=.

UNORM-=Transpose[Table[u[ii],{ii,1 ,dof}]l;



tbl=Inverse[Transpose[UNORM]] . kgen . Inverse[UNORMI;
tb2=Inverse[Transpose[UNORM]] . kdyn . InverselUNORM];
tbges=tb1+tb2;

tbmass=Inverse[Transpose]f UNORM]] . mgen . Inverse[UNORM];
c=Inverse[tbges];

d=c.tbmass;

{eval,evek}=Eigensystem[d];

Urot=Transpose[evek];
*Urot=strukturmatrix (not Normalized)”
=yurot[i]=Eigenvektorens (rotating) "

run=0

Dol

run=run+1;

urot{run]=evek{[run]};
MatrixForm[urot{run}};

An}]

"Normalizing"

run=0

Dol

run=run+1l;
If[Abs[Max[urot[run]]]>Abs[Min[urot[run]]],teiler=Max[urot[run]],teiler=Min[urot[
run]l};

urot{run]=urot{run]/teiler

,n}]

“formulate the rotating structure matrix"

run=0;

Dol

run=run+1;

zwisch=Table[urot[nn],{nn,1,n}];

An}]

UNORM=MatrixForm[Transpose[zwisch]];

mgenrot=Trans ose[Urot] . tbmass . Urot

mgenrot=Table Iﬂmgenrot[[kk,j]]<10"(-l0),0,mgenrot[[kk,j]]],{kk,n},{j,n}]
MatrixForm{mgenrot};

kgenrot=Transpose[Urot] . tbges . Urot
kgenrot=TableEf[kgenrot[[kk,j]]<10"(-6),O,kgenrot[[kk,j]]],[kk,n},[j,n}]

MatrixForm[kgenrot];

omegaqurot=Table[kgenrot[[nn,nn]]/ mgenrot[[nn,nn]],{nn,l,n]] ;
Sort[% ~(.5)]

(1/eva)™.5

120



Plot nonrotating eigenvectors
run=0;
Do{
run=run+1l;
“coordinate of the current element”;
xi[1]=elementlaenge([1];
ort=1;
Dol
ort=ort+1;
xi[ort]=xilort-1]+elementlaengelort};
l{n'l}];
datapairs=Table[coords,{n}];
1i=0;
Dol
ii=ii+1;
- datapairs[[ii]]=(xi[ii],u[run][[ii]]];
An});
bild[run]=ListPlot[datapairs];

dplrun]=datapairs;
J{anzahl}]

1 ’,////
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and so on..

rotating eigenvectors

run=0;

Dol

run=run+l;
“coordinate of the current element®;

xi[1]=elementlaenge([1];
ort=1;
Dol
ort=ort+1;
xi[ort]=xi[ort-1]+elementlaenge[ort];
l{n"l}];

datapairs=Table[coords,(n}];
ii=0;
Dol
ii=1i+1;
] datapairs|[ii]]=(xi[ii],urot{run]([ii}]l};
AN},

bildrot{run}=ListPlot[datapairs];
dprot[run]=datapairs;

J[anzahl}]
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0. 81

0.6

0. 4

0.21

0.75¢
0.5¢
0.25¢

-0.25¢t
-0.5¢

0.75¢
0.5¢
0.25% ¢

-0.25¢
-0.5¢

and so on...
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"polynominal approach non-rotating"

run=0

ii=.

X=.

Dof
run=run+l;

”QQQ".ltiQtlQlt‘ili“t‘ttliil’likﬁl&lil#".
’

"degreee of approach: Nr. of eigenform+3";
"ttt‘t'ttt'1‘*4#."‘}.#tt‘t’ﬁl"i'il'li&’".
’

polyu(run] =Fit[dp[run],Table[x"ii,(ii,o,run+3]],x] ;
,{anzahl}]
run=0
Dol
run=run+1;
fkt[run)=Plot{polyulrun],{x,0,1ges}};
,{anzahl}]
11

0. 81
0.6
0. 41

0.2

0.75%
0.5¢1
0.25¢%

-0.25¢
-0.5¢
-0.75¢
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" rotating”
run=0

ii=.

X=.

Dol
run=run+l;

"ﬁl'llﬁ'tiilG’Ql‘ﬁl’l!1‘!11‘*""*'1?*..1"‘"’.
" #eigenform+2 7;
"1*4“!"l‘"*il’lt#l’#l*ll‘l‘ﬁl‘ﬁi}4#’1"!‘}1' "'.
polyurot[run]=Fit[dprot[run],Table[x"ii,[ii,O,run+2}],x] ;
J[{anzahl}]}
Iges
7.29
run=0
Dol
run=run+l;
fktrot[run}=Plot[polyurot[run],{x,0,1ges});
,{anzahl}]
1 J

0. 81
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-0.25¢
-0.5¢

Compare the non-rotating and the rotating eigenforms
run=0
Do
run=run+1l;
Show[ﬂ<t[run],bildrot[run],fktrot[run]];
J{anzahl}]
14

0. 81
0.6
0. 41

0.2

126



1%
0.75¢
0.5¢
0.25%

-0.25%
-0.5¢%
-0.75¢%

0.75%
0.5t

-0.251
-0.5¢

0.75¢
0.5¢%
0.25¢

-0.25
-0.5¢%
-0.75
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0.25¢

-0.25¢
-0.5¢%
-0.75¢

End ROTATOR

Save data
Write["nrothil",u(1]]
Write["nrothi2",u[2]]
Write["nrothi3",u[3]]
Write["nrothi4",u[4]]
Write["nrothi5",u[5]]
Write["rothi1l",urot[1]]
Write["rothi2",urot[2]]
Write["rothi3",urot[3]]
Write["rothi4",urot[4]]
Write["rothi5",urot[5]]
ii=.
xi70=N[Table[xi[ii],(ii,1,n}]}
Write["xi hin (70)",xi70]
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Abstract

Results from a program to instrument the
rotor blades of a light autogiro are described.
The work was initiated to provide additional
data on rotor dynamic response as well as
investigate practical implementation issues on
the use of blade-mounted instrumentation for
rotor state feedback. A description of the
aircraft and rotor electronics hardware design
and installation is given, along with results to
date from the initial flight test program for
complete system check-out.

Introduction

Recent attempts to expand both the
fidelity of engineering models for rotorcraft
systems and the frequency bandwidth for
helicopter flight controllers have required
more accurate models of coupled rotor and
airframe dynamics. The complexity of the
engineering modeling problem, coupled with
the general lack of sufficiently detailed flight
test data, have made improvements in
complete rotorcraft aeroelastic predictions
difficult. Efforts to expand the available data
for correlation exercises are underway [1], but
such programs may experience funding and
operational delays along with regulatory
hurdles that preclude rapid turnaround for
timely enginecring research efforts.

As a means of addressing this data
deficiency, a program is underway at Princeton
University to instrument a Bensen B8-M
Gyroglider for towed-flight investigations
(Figure 1) [5]. This aircraft is an extremely
simple teetering rotor autogiro whose power is
supplied by towing the vehicle behind an auto
along a runway or suitably paved surface. The
University's inactive runway at the Forrestal
Campus has served as the vehicle's testing

ound. The use of a simple test aircraft
provides the ability to perform fundamental

Presented at the 16th European Rotorcraft
Forum, Glasgow, Scotland, September 18-20,
1990.

aeroelasticity experiments on 2 full size
vehicle without the additional burden of
maintenance manpower associated with a
production helicopter. The added capability
of an “in-house" test vehicle affords the
researcher the luxury of planning and executing
tests that are driven by the nature of the test
data and not the predetermined schedule of
the test program. .

The desire to conduct instrumented rotor
experiments on full size aircraft was inspired
by similar efforts being done on a model rotor at
the Rotorcraft Dynamics Laboratory
(Longtrack) at Princeton’s Forrestal campus (2]
and aided by results reported from an
instrumented AH-1G Cobra helicopter test by
the NASA [3). The design goals of the
instrumentation system, and the impact of
flight safety and testing procedure on the
realization of its mechanical and electrical
components is described below.

Basic Instrumentation Design Goals

Data Acquisi tion

In order to provide a basis for comparison
with model results, blade mounted
accelerometers and strain gauges were selected
for the autogiro rotor experiments described.
These sensors typically provide differential
outputs that require some form of amplification
prior to sampling for data storage. On the
model tests, both the sensor excitation voltages
and differential outputs are transferred from
the fixed to rotating frames using a slip ring
assembly. Such a technique requires from two
to four rings per sensor, plus the associated hub
attachment for the sliprings and sensor wires.
This type of installation was not possible, due

_to the inherent simplicity of the autogiro’'s

hub. Since no torque is provided to the rotor,
the primary aircraft control is performed
through direct shaft tilt of the rotor, which is
mounted in a pillow block attached to 2 sealed
bearing assembly. Such an arrangement makes
the main rotor shaft inaccessible for slipring
attachment or routing of wires through its
interior. Thus, the decision was made at an
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. early stage to telemeter the data from the
rotating to fixed frames without the direct use
of rotating brushes or slipring pick-ups. Use of
a rotor-mounted telemetering system thus
requires a co-located electronic power source,
since no direct wire transfer was then possible
from the aircraft fuselage. In order to reduce
battery size on the hub, all integrated circuits
used CMOS chips wherever possible, with
power supplied from two standard 9-volt
transistor batteries. A photograph of the
instrumentation assembly is shown in Figure 2.

An additional system requirement was
that the instrumentation system not adversely
affect the mechanical integrity or
aerodynamic performance of the rotor blades.
The blades on the autogiro are stock Bensen
factory-built blades constructed from aluminum
sheeting riveted to a solid spar. The airfoil is
a Bensen design, having a flat underside and
slight reflexed trailing edge, originally
developed for construction by the homebuilder
from plywood sheeting. Since access to the
blade's interior was not possible, multi-
conductor ribbon cable for sensor signal routing
was secured to the flat underside of the blade
using a combination of double-sided sticky tape
and epoxy, covered with one spanwise and
several chordwise segments of mylar adhesive
tape.

Aerodynamic performance considerations
dictated the scheme used to condition the
sensor signals. Unlike the system used in
Reference [3], cost considerations did not allow
development of custom millimeter-thick
integrated circuitry for sensor signal
conditioning and amplification. Since stock
integrated circuits (IC's) would be used, a
minimum number of chips could be tolerated at
each sensor station in order to reduce the
adverse drag penalty from surface
irregularities they introduce. Although sensor
noise would be lowest for co-located sensors,
amplifiers and analog to digital (A/D)
converters, the associated multiplexing
necessary would add at least an additional
chip, bringing the total to three ICs at each
sensor's spanwise location. Thus, only the
sensor's amplifier is located on the blade span,
with the A/D and multiplexing operations
performed by a single IC at the rotor hub. This
arrangement also required only four wires to
extend over the entire rotor radius. An
installed accelerometer and amplifier are
shown in Figure 3.

Sensor signal A/D sampling rate was
traded off against multiplexing capability for
the digitizing of the rotor data, with the final
choice using the TLC541 LinCMOS chip from
Texas Instruments as the primary workhorse
for conversion of the data to digital form. This
IC provides 11 channels of multiplexing
capability into an 8-bit A/D converter, with an
equivalent throughput rate of 1,024 samples
per second on each channel. Since the nominal
rotor speed of the autogiro is 375 rpm, the
system's Nyquist rate (maximum digital
bandwidth) is 82/rev, well beyond any

tential dynamic or aeroelastic phenomenon
one might expect to observe. For this reason,
there are no anti-aliasing filters used prior to
A/D conversion.

The multiplexer chip, originally designed
for interfacing with a microprocessor, allows
for direct control of both channel addressing
and serial bit output rate through reasonably
complex interfacing with timing and address
pins. In order to avoid the requirement of co-
locating a dedicated microprocessor, the
complex timing patterns and address lines were
stored ("burned”) into an EPROM, driven by a
counter and clock. The individual data bits for
each of the 11 channels are sequentially
loaded onto the serial digital data bus,
followed by a test channel for receiver
synchronization purposes. This "synch" word
is modified to produce a string of 9 bits that
cannot be duplicated by any combination of the
11 channel's data words, thus providing a
unique marker for each "frame” of data.

To save on the total number of chips at the
rotor hub, the counter that drives the EPROM
interface chip does not resetto a predetermined
value, and thus the first 1024 8-bit words are
cycled over for each frame. Since the timing
pulses only occupy the first two-thirds of this
address space, a blank sector is available in
the current frame of serial data for future
expansion. This might consist of either
additional rotating frame channels, or inter-
woven fuselage sensor data. This latter
method would require a serial decoder and

_ synchronizer in the non-rotating frame on the

aircraft, a method that was not used on the
current design concept. A diagram of the main
circuit functional blocks appears in Figure 4.

Data Transmission and Storage

In order to transmit the digital data from
the rotor to the fuselage frame of the autogiro,
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the serial bit stream was Manchester encoded
so as to provide a timing reference for
individual bit transitions. While this format
is particularly suited for direct radio frequency
modulation, the additional weight and power
requirements of a radio transmitter were
deemed unacceptable. Instead, the coded
signal is fed directly into the rotor blade’s
aluminum structure, with the pickup signal in
the fuselage frame merely consisting of a wire
secured to the metal airframe. Thus, the entire
aircraft is electronically isolated from the
sensor power signals, with the rotor data
transmitted directly through the main rotor
shaft bearing assembly. Alternate schemes
using infa-red diodes, while conceptually
feasible, were not nearly as simple as this
technique.

Due to the limited amount of both ground
support personnel and computational facilities,
direct re-broadcast of the data from the
autogiro to a ground station was not possible.
Instead, appropriate signal modifications were
made to the serial coded data so that it could
be directly recorded onto an 8mm format video
camera/recorder. The camera is a self-
contained unit running from its own battery
source, and is shock mounted to the autogiro
directly in from of the pilot's seat, to allow for
convenient access to both the record buttons and
tape eject mechanism. Despite the high
frequency of the Manchester encoded serial bit
stream (1.3 MHz), such signals are well within
the bandwidth of conventional NTSC video
standards.

Post-flight data processing consist of
playing back the recorded signals into a serial-
to-parallel digital data synchronizer. The
circuitry used to perform the data extraction,
shown in functional form in Figure 5, consists of
signal conditioning to standard logic levels, bit
synchronization using a phase-locked loop
(PLL), and data decoding with clocked flip-
flop circuits. In order to provide for
discrimination between channels, a
search/synchronizer scheme using another
EPROM and comparitor was employed. Since
the frame word consisted of a unique 9-bit

digital bit pattern, a shift register and bit -

comparitor were used to detect a "match” with
this word indicating the beginning of the serial
data frame. When the match was detected,
the EPROM clock/counters were reset, and each
channel was clocked through the shift register,
combined with the four bits representing the
channel count, and sent into a high-speed

parallel digital data port on an IBM-PC/AT.
This data was then stored onto floppy
diskettes for additional analysis and
processing. After the EPROM cycled through
its 11 channels of serial data timing, it entered
a "re-match” state in which it looked for
another frame start pattern. If this pattern
was not found, the synchronizer would enter a
»search” mode and warn the user (via light
and buzzer) that synchronization was lost and
data is invalid. If the pattern was matched,
indications of a "locked" state would be given,
and the process would cycle over each
additional frame of serial data.

Auxiliary Data System Components

In order to interpret the rotor structural
dynamic data, some measurement of the
operating state of the autogiro flight condition
was required. Of particular importance is the
rotor advance ratio, and the associated angle
of attack of the rotor blades. As the detailed
flow of the rotor is unavailable, several
fuselage-mounted sensors were used to infer
this information. These sensor data were
routed to a pulse-width modulator (PWM) box
having a capacity for 43 channels of analog
data sampled at 20Hz per channel. This data
acquisition system was previously used in
flying qualities experiments at Princeton on
variable-stability general aviation aircraft
and gliders [4]. The PWM signal was in tum
fed into the separate audio input channel of
the 8mm video camera, thus providing
separate but synchronous data recordings for
both rotor and fuselage sensor data.

The rotor speed was measured using a
magnet mounted on the rotor hub, and a Hall-
effect sensor on the rotor mast just below the
hub pillow block assembly. The pulses were
fed into a PLL circuit that output an analog
voltage proportional to pulse frequency, with
this information displayed to the pilot and
sent to the fixed-frame data commutator
system. Autogiro angle of attack and sideslip
were measured through two vanes mounted on
Jow friction potentiometers, and airspeed was
taken from a cup anemometer. Rotor shaft tilt
was measured from stick potentiometers, and
rudder pedals were instrumented as well. A
picture of the data system components is in
Figure 6.

Power for the PWM commutator was
provided from four 9-volt batteries tied in
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series, regulated to a nominal 28-volt DC level.
Although larger power rechargeable batteries
were available, their significant increase in
weight deemed them unacceptable for initial
flight tests and data system check-outs.
Additional instrumentation, such as use of
Princeton’s Inertial Measurement Unit [4], will
require upgrading the available power source
on the autogiro airframe.

Since monitoring of the video tape index
during flight could jeopardize safety through
increased pilot workload, the FM
communicators used between pilot and tow
vehicle personnel was coupled into the audio
input channel of both the on-board video
recorder and the tow car's video camera. Since
this same space on the tape is used by the
fixed-frame sensors, voice markers were stored
only during push-to-talk operations of the
pilot. Simultaneous voice recording allowed
for approximate synchronization between the
signals from both cameras during postflight
analysis.

As a means of both adjusting amplifier
offsets and confirming data transmission,
storage and retrieval/synchronizalion, an
impact test was made of the rotor blade. An
instrumented force hammer in conjunction with
the blade-mounted accelerometers were
recorded for a series of impacts at several
spanwise locations in order to identify the non-
rotating mode shapes of the autogiro rotor
blade. Such information is essential for
accurate post-processing of the accelerometer
data, as is pointed out in [2].

Since the spanwise accelerometers are
oriented to measure out-of-plane accelerations,
as the blade deflects out of the plane of
rotation, these sensors will measure both blade
vertical acceleration as well as a component of
rotational acceleration proportional to the
Jocal slope at the sensor's spanwise location
(see Figure 7). This information can then be
used in a processing scheme called a Kinematic
Observer [6] to reconstruct rotor blade state
variables. On the autogiro, however, the ratio
between the measurement of fundamental
teetering (flapping) acceleration and teetering
displacement is constant for any spanwise
station. For any accelerometer at spanwise
location 1, it will sense contributions from each

mode's acceleration (g(t)) and each mode's
displacement (g(t)) according to:

Bni(r)

accel(r,t) = X 0;(r) g;(t) + ro? gi(

i=1 r

where n;(r) represents a particular blade

natural mode shape. For the case of the rigid
teetering mode, 1;(r) = 1, giving contributions

from the teetering mode Bj(t) as:

rfi + ro? B1(0)

and for simple harmonic flapping at 1/rev,
these two terms cancel. For this reason, a
potentiometer was installed in the rotor hub to
measure rigid teetering motion, and the
accelerometers were positioned so as to
maximize their sensing of the various higher
blade vibratory modes.

Flight operations for testing the autogiro
instrumentation are currently underway at the
inactive runway at Princeton University's
Forrestal Campus. Since the autogiro has no
engine, it is towed by a nylon rope attached to
its nose from an automobile. While this results
in limited continuous flight time, the runway’s
3000 foot length allows flight experiments of
approximately 45 to 60 seconds duration,
depending on wind direction along the tow
path. Communications are kept with the tow
vehicle driver and observer using FM
transceivers, and a glider tow hitch with
release may be operated by the pilot in the
event of fouling of the tow line.

Rotor data power has been tested to
provide consistent data for over two hours of
operation, and fuselage batteries have a
roughly equivalent life. Battery life on the
video camera used for serial data storage is
slightly under an hour, resulting in
approximately fifteen flights during a
standard sequence of runs. Such a record
provides a wide range of test points for
analysis, the results of which will appear in a
forthcoming paper.
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Figure I: Instrumented Bensen autogiro (glider)
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Figure 3: Accelerometer and amplifier instatlation on blade undersid
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Figure 6: Fusclage mounted airdata sensors and camera attachment
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