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Background

This research grant topic addressed the capability of using blade-mounted

instrumentation, notably accelerometers, to reconstruct blade modal motion and forced

response from both wind tunnel and flight test data. Two documents produced as a

consequence of this investigation are attached as an Appendix: the first, "Reconstruction

of Helicopter Rotor Blade Modal Properties and Examination of Blade-Mounted Sensor

Data", comprised part of a visiting student's thesis for the degree of Diplom-Ingenieur

from the University of Stuttgart; the second, "Instrumented Blade Experiments Using a

Light Autogiro", is a conference paper from the 16 th European Rotorcraft Forum, held in

Glasgow, Scotland in September of 1990, and is a condensed version of a Master's Thesis

submitted to the Department of Mechanical and Aerospace Engineering at Princeton

University.

The first document explores, after some tutorial material, the possibility of

identifying the forced modal response of the rotorblade using only accelerometer

measurements. Through a collection of various filtering concepts, it is shown that some

success may be achieved in this regard, although the method involves considerable

"'tuning" on the part of the engineer and hence is not yet suitable for "production" work.

A finite element analysis is developed that provides some technical basis for design of the

various filtering methods.

The second document discusses the developmental work associated with

instrumenting a light autogiro's rotor blades with accelerometers for measurement of in-

plane and out-of-plane response. Issues related to data formatting, power conditioning,

and impact testing of the data system and sensors are discussed. The ultimate goal of the

project - the demonstration testing of the system on the autogiro in towed operation - has

yet to transpire, as the runway that was to serve as the test track was destroyed by the

University to support further development of the Forrestal Campus.

While these two works did not directly generate a solution to this complex

identification and measurement problem, they have aided the further development of this

concept. On-going Navy-sponsored work related to rotor instrumentation and data

processing has been able to utilize portions of each of these works to identify methods for

extracting both rotor motion and applied loads from similarly instrumented rotorcraft.

Results of this work have been recently reported at the American Helicopter Society's

Annual Forum.
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Introduction

Excessive vibration remains one one of the most difficult problems that

faces the helicopter industry today, affecting all production helicopters at some

phase of their development. Vibrations in rotating structures may arise from

external periodic dynamic airloads whose frequencies are are close to the natural

frequencies of the rotating system itself. The goal for the structures engineer

would thus be to design a structure as free from resonance effects as possible. In

the case of a helicopter rotor blade these dynamic loads are a consequence of

asymmetric airload distribution on the rotor blade in forward flight, leading to a

rich collection of higher harmonic airloads that force rotor and airframe

response. Accurate prediction of the dynamic characteristics of a helicopter rotor

blade will provide the opportunity to affect in a positive manner noise intensity,

vibration level, durability, reliability and operating costs by reducing

objectionable frequencies or moving them to a different frequency range and

thus providing us with a lower vibration rotor. In fact, the dynamic

characteristics tend to define the operating limits of a rotorcraft. As computing

power has increased greatly over the last decade, researchers and engineers have

turned to analyzing the vibrational characteristics of aerospace structures at the

design and development stage of the production of an aircraft. Modern rotor

blade construction methods lead to products with low mass and low inherent

damping so careful design and analysis is required to avoid resonance and an

undesirable dynamic performance. In addition, accurate modal analysis is

necessary for several current approaches in elastic system identification and

active control.

1. Analysis of Structural Vibration

The analysis procedure falls into the two categories: experimental

structural analysis which involves the testing and measurement of an actually

built structure, and analytical structural analysis, which consists of

mathematically modeling a structure on a computer and predicting its response

to excitations as well as inferring the inherent vibrational characteristics like

mode shape and natural frequency. Structural analysis based on a computational



method allows the freedom to either experiment with a new design or change an

existing design and then to make a statement about the magnitude of the

changes in dynamic properties resulting from some perturbation of the original

design. This relieves the designer from making costly physical changes to the

system itself until he is satisfied with the characteristics presented to him in the

simulation. One of the major problems to date is that none of the analytic

models developed for the simulation of rotor blade behavior are capable of an

accurate response prediction over the entire flight envelope of a helicopter. An

exact model would have to include detailed unsteady aerodynamic predictions

for the airloads as well as nonlinear geometric coupling effects due to the blade

rotation.

In response to this discrepancy between predicted and measured

vibrational behavior, the US Army in conjunction with NASA, has undertaken

a program of flight testing a highly instrumented UH-60A "Blackhawk"

helicopter. The purpose of these experiments is to provide the industry and the

university research community with a wealth of flight test data obtained under

specific flight conditions. This data would serve to be correlated and compared

with various parts of currently ongoing aeroelastic and vibrational helicopter

rotor and airframe simulations. It is hoped that finding and evaluating the

discrepancies between the database and simulation results will improve the

understanding into where the engineering approximations and assumptions in

the simulation programs are deficient. The database was further extended by

conducting a static, non-rotating shake test of the same UH-60A rotor blade. In

this shake test it was possible to determine the non-rotating dynamic properties

of the rotor blade by identifying its modes of vibration and natural frequencies.

As any vibrational state can be said to consist of a specific combination of its

vibrational modes, each having a particular natural frequency, we find the area

of coincidence of the analytical and experimental part of structure dynamics here.

It is always important to have one set of measurements to quantify the accuracy

of the mathematical model. The simulation model can then be adjusted or

altered to better conform to the real model. Having once learned that the

mathematical model does indeed correspond with the experimental data, the

engineer can change the structural and material properties of his mathematical

model with a high degree of confidence that his simulation calculations will

reflect the real performance of the structure he is designing.
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1.1 Introduction to Modal Theory

The dynamic properties of an elastic structure are most commonly

modeled using either a set of linear differential equations in the time domain, or

by a set of algebraic equations after a Fourier transform of these differential

equations of motion. The latter is commonly used during the actual testing

phase of a design. First we will examine the former.

1.1.1 Modal Theory

In the analysis of dynamic systems having one or more degrees of freedom and

their response to any sort of excitation, the theory of modal analysis can be

applied to the structure.

The modal theory simply states that any shape of the oscillating structure

can be expressed in terms of natural modes of the structure and the degree of the

participation of these modes. The natural modes are the physical shape that the

structure takes when excited at a natural frequency. An easy way of thinking of

these natural modes is to consider the following two degree of freedom system

(Fig 1.1) composed of two masses that are connected by two springs and two

damping devices. The number of natural modes that one can expect to find

always corresponds to the number of degrees of freedom. It follows that we can

expect to find 2 normal modes and their natural frequencies.

I !---L

I i---z-

//;/////
Fig 1.1 A dynamic System
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As this structure is excited with a force, F(t), of variable frequency, we can

envision two cases in which the masses vibrate in a stationary way. In one case,

the masses will vibrate in phase with each other, though with different

amplitudes. In the other case, they will vibrate 180 degrees out of phase with each

other. Both these cases are associated with a natural frequency of the system. The

system is a lumped parameter model, consisting of two discrete mass points. After

deriving all the necessary equations for the lumped parameter model, we will

expand the theory to encompass structures with distributed mass, i.e. beams.

When we set up the equations of motion for a linear system, we obtain the

familiar equation in matrix-form :

M k_"+II:} __+K x = F__(t) (1.1.1-1)

This equation represents the force balance between the inertial (M x_'), dissipative

(D _ and restoring forces(K x_) and all outside forces(F(t)). For any model of a

structure or system, with any number of degrees of freedom (DOF), as long as we

use only masses, springs and proportional dampers, we will obtain the above

form of the equations of motion. All linear properties of a structure can be

defined by the mass, damping and stiffness matrices. We now have a system of

second order coupled differential equations that are linear and time-invariant.

l_, D and IK are matrices of the dimension ( n x n), n being the number of DOF.

The equation is coupled because the D and g: matrices are not diagonal, only

symmetric. To uncouple these equations we must find a basis for this system, in

which all the matrices become diagonal, thus reducing the n coupled equations

to a system of n uncoupled equations. This can be thought of as reducing the

structure to a system of masses with one DOF each. The process is called modal

decomposition. Modal decomposition in the case of light damping or if the

damping matrix is proportional to either the mass or stiffness matrix, or

proportional to both leads to real modes, while any damping that does not fall

into the beforementioned categories will lead to complex modes.

To execute such a modal decomposition we will have to find the eigenvalues, X,

(or natural frequencies ¢.On=_.n 0"5 ) and the eigenvectors, _ of our structure. In the

4



interest of simplicity we will disregard damping in the following derivations and

solve the homogeneous form of (1.1.1-1). Assuming for x(t)

x(t) = u e _'t (1.1.1-2)

and thus

_= X2ueXt =K2x

Substituting into (1.1.1-1) and solving for X leads to

(_2 l_ + K) u = 0 (1.1.1-3)

This gives us the characteristic equation (CE) for the structure. A non-trivial

solution exists only when

det (X 2 M + _)= 0 (1.1.1-4)

This CE is a polynomial whose roots are the eigenvalues of the system.

Depending on the kind of polynomial that the CE represents, we can imagine the

roots to be of different character. If we assume zero damping in our example case

we would find 4 complex roots or a pair of conjugate complex roots. The roots

are purely imaginary, having no real part. Successively inserting these roots back

into equation (1.1.1-3), we receive the matrix equations for the eigenvectors u.

These eigenvectors are only defined in terms of their direction, not their

magnitude, since the matrix equations are linearly dependent. (Traditionally the

eigenvectors are scaled so that some DOF that is in some way predominant is

unity. In the case of vibrating beams we will always set that DOF to unity that

displays the maximum deflection). The vectors thus calculated are the

normalized eigenvectors, u n, associated with the natural frequency, con, or the n-

th eigenvalue, _-n • In our example, we would get two of these eigenvectors, and

could assemble them into the modal system matrix U = [ u 1 , u 2 ].1

1Let us consider the system matrix that was found for our example: First of all we must remember

that the eigenvectors were arbitrarily scaled, so that they represent only the amplitude

relations of the oscillations of the lumped parameter masses. Recognizing this, we find that for

ml=m2, dl=dl=0 and kl=k 2 that our eigenvectors are:

5



Another very helpful way of understanding the significance of eigenvectors can
be found in Ref 1.-1. The eigenvalue/eigenvector form gives an interesting

insight into the nature of the solution:

(_) U_.n= K-1 M un (1.1.1-4)

The right-hand side of this equation subjects the displacement vector at

each lumped mass (u n) to a matrix multiplication which should both extend and

rotate this vector. The same vector, on the left side of the equation, is simply

subjected to a multiplication with a scalar constant, resulting in only a expansion

of the vector but no change in its orientation. So, the vectors we are seeking, are

vectors that are not rotated by the matrix multiplication on the right-hand side.

Such solution vectors are the eigenvectors.

Using these eigenvectors, we are in the position to modaly decompose the

equations of motion. We have said that every form that the oscillating structure

takes can be expressed in terms of the eigenvectors :

x(t)=Ulql(t)+_q2(t)= [Ul u2] [_ = U _ (1.1.1-5)

note: _l(t) := __

1 and _l 2 give the amplitudes of the specific mode at a point in time and thus

are responsible for the time-dependency of the equation of motion. They are

unknown until some initial conditions are introduced to the problem.

Ul=(0"618) u__2=(-1"618)

We see, that for the first resonant, or natural frequency, the masses are oscillating in phase

(both components of the eigenvectors have the same sign). For the second resonant frequency the

masses are oscillating 180° out of phase.

6



It can be shown that a front and back multiplication with the modal matrix, U,

the mass and stiffness matrices are diagonalized (this uses the orthogonality

condition, explained later).

Sop

multiplying both sides by U we get:

or

Mdiag = LIT M LI

Kdiag = KJT K LI

taking our original equation (1.1.1-1) and inserting

with

U tMu ._ +U tKU__ = U t IF(t)

(1.1.1-6a)

(1.1.1-6b)

(1.1.1-2) and then

(1.1.1-7)

I_diag _ + Kdiag -q = _" (1.1.1-8)

_" := U t F(t)

Which are, essentially the uncoupled equations of motion for the structure we

are examining.

1.1.20rthogonality Conditions

By the transformation employed in eq. (1.1.1-6) , we have used the so-called

orthogonality conditions, that must be validated in order for the transformation

to work. These are

For the mass matrix :

uj t I_ u k = 0 for all j _ k (1.1.2-1)

uj t M uj = mgen,j for j=k (1.1.2-1a)

and for the stiffness matrix :

7



uj t K u k = 0 for all j _ k (1.1.2-2a)

uj t K uj = kgen,j
for j=k (1.1.2-2b)

For a mechanical explanation of this, we can consider that the mass-forces

-c0j2M u k of the k-th eigenfunction does not perform work on the

displacements uj of another (different) eigenfunction j. The work being done on

this eigenfunction is through the mass-forces of its own eigenfunction

-c0j2M u_j. The numerical value of mgen, that results from the front and back

multiplication of the mass matrix by the modal matrix, is called the generalized

mass.

In addition, inserting (1.1.2-1) and (1.1.2-2) into the equations for the eigenvalues

we get an additional n equations, for the natural frequencies:

-CO? mgen,j + kgen,j = 0
(1.1.2-3)

Or

(1.1.2-4)

c0j2 = mgen j

The uncoupled equations of motion take on the following form:

:': = Fj j=l n (1.1.2-5)mgen,j q j + kgen,j q j '""

These n equations of motion for one DOF systems can be solved one after the

other and after superimposing these solutions we get the total response of the

system :

x(t) = 2_, u_j _qj = u _q.
j=l

(1.1.2-6)

This equation also represents the transformation from the physical coordinate

system to the modal coordinate system with the orthogonal eigenvectors of the

structure as its basis.

8



A more intuitive and useful modal decomposition procedure is to choose the

magnitude if the eigenvectors u in such a manner that the front and back

multiplication of the mass matrix by the modal matrix results in a unity matrix

for the generalized mass matrix and a stiffness matrix that has only O)n2 =k n on its

diagonal. 2

@ M @ = I (1.1.2-7)

and

@ K @ =[_.nJ (1.1.2-8)

The uncoupled equations of motion in modal coordinates now read

lI __ + [kiJ _q = U T _ (1.1.2-9)

With

uT _ = _ (1.1.2-10)

as the generalized force and

x(t) = @ _q

as the transfer equation to modal coordinates.

(1.1.2-11)

1.1.3 Structures with Distributed Mass

2 Scaling the eigenvectors u to achieve this is termed orthonormalizing the eigenvectors. These

orthonormalized eigenvectors are denoted _ and found by

The orthonormai modal matrix is @.

9



In the case of a beam for instance, we cannot necessarily discretize the system as a

lumped parameter model if we want to achieve a fair amount of accuracy. So, we

take the mass distribution into account and set up a continuous system. The

eigenvectors of such a system turn into eigenfunctions as the discretization

becomes finer.

The differential equations of motion for a beam can be quickly derived by

applying the three kinds of equations used to solve any structural dynamics

problem: equilibrium condition, material law and the kinematic law. Consider

an element of the beam:

Q

"_dx

J
r

dx

Q shear force [N]

g. mass distr. [kg/m]

M bending moment [Nm]

P" outside forces [N/m]

Fig 1.1.3-1 Beam Element

Equilibrium Conditions

Moment (disregarding 2nd order terms

and the rotational inertia of the element)

M" = Q'

Shear

o.

Q'=it  ,-ff

°.

=:_ M"+I_-It _r =0

10



Material Law

M = EI _c (the linear relationship: bending moment- radius of curvature K)

Kinematics

_._._W j'

If the modulus of elasticity is constant, we can write

B(x) = E I(x)

and the differential equation of motion are

[B(x) ,,_"(x)l" + re(x) _(x)=

Or considering a uniform beam, the equation reduces to

B _".... +m w=_

(1.1.3-1)

(1.1.3-1a)

B(x),p(x)

z,w(x)

Fig 1.1.3-2 Cantilever Beam

As in the case of the lumped parameter model, we assume that it is also possible

to modally decompose this beam into decoupled, one-DOF oscillatory systems. In

addition we stated that the response of such a system could be expressed by a

superposition of its eigenvectors, u_U_j,and a participation factor, _j, that carried the

timevariation of the system. Now, in examining a continuous system, the

eigenvectors are replaced by eigenfunctions _j(x). So the equation for the

superposition of the eigenvectors now is

_,(x)= _E_iCx) TliCx) (1.1.3-2)

1

11



In the case of a uniform beam it is still possible to find an analytical solution for

the eigenfunctions. Using the boundary conditions for a cantilever beam, this

solution is

c°sh{_'ix} - c°s{kix} sinh{_'ix}-sin{_'ix} (1.1.3-3)

_i( x)= cosh{_,il } + cos{_,il} sinh{Kil}+sin{Kil}

First Eigenfunction
or Mode

Z_I=1.875

Second Eigenfunction
or Mode

K_I= 4.694

Third Eigenfunction
or Mode

=7.865

Fig 1.1.3-3 First Three Eigenmodes

Clearly, if the beam has a mass distribution and a changing geometry along its

axis, an analytical solution can no longer be found and one must revert to

numerics. A polynomial is used to approach the eigenfunction of the beam. The

beam is discretized into small parts in a consistent manner and eigenvectors of

the discrete system are calculated. The element of the eigenvector u n is

understood to be the deflections of the structure at that lumped mass mnn" The

polynomial is laid through these points of deflections in order to attain a

estimate of the shape- or eigenfunction.

The polynomial approach is written

_i(x)=__., cij tlj(x) (1.1.34)
J

inserting this into eq. (1.1.3-2) gives us:

_-(x)= _ _ cijtlj(x) iYli(X) (1.1.3-5)
i j

where cij being the coefficient matrix for the polynomial approach. In closing,

note the similarities between the discrete formulation and the continous

formulation of the problem:

,:, N

mj _j +dj qj+kj qj= r'j (1.1.3-5)
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Eigenforms or

mode shapes

generalized mass mj

genera!iTed damping d i

generalized stiffness kj

Discrete System

j= I...N

uj - vector

Discrete System

j= 1..._

u__]tM uj

km mj+ks s i

ujt K uj

_j(x) - function

I
_(x) q0j2(X) dx

6

km mi+ks s i

B(x) _j"2(x) dx

0

generalized forces pj

Response of System

uj t lZ f(t)
!

.I _j(x) p(x)dx
0

u_j__j W = jT-_l_J(X)=V:lJ

Table 1.1.3-1 Continous and Discrete Systems

1.1.4 The Finite Element Theory

The Finite Element Theory is an approach that discretisises the system into

small, well defined pieces whose properties are known, and derives the vibration

characteristics by assembling these small parts back to the large system and

solving the equation of motion and decoupling them. The use of finite element

techniques for dynamic structure analysis introduces great flexibility to rotorcraft

design which is needed because of the often complex root geometry and

nonlinear stiffness and mass distribution of the blade. The application and

implementaion of Finite Elements will be discussed in detail later.

1.2 Experimental Modal Analysis
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Experimental measurements are usually made in the Laplace-Domain (also

known as the Frequency Domain) . This form of vibrational analysis became

popular as very fast algorithms for the Fast Fourier Transform (FFT) and the

Discrete Fourier Transform (DFT) were developed in the 1960"s. The ability of

these Digital Fourier Analyzers to quickly convert time histories and extract

modal characteristics in the frequency domain has made them an important tool

in measuring the modal characteristics of structures. The NASA shake test

identified the modal residues of the UH-60A rotor blade. To correctly interpret

this data we must look a little closer at the theory behind modal residues, the

FFT and the Laplace-domain.

Consider the second order differential equation of motion derived in a previous

chapter :

I_ _ +D x_+K x = F(t) (1.1.1-1)

1.2.1 The Laplace Transform

Any function of time can be transformed into an analytical function of the

complex variable, s, in the Laplace domain by the Laplace transform. There it can

be algebraically altered and transformed back into the time domain. The greatest

advantage that this transformation gives is that the differential equation of

motion is changed into a simple polynomial that is much easier to solve. The

transformation equation to the Laplace-domain from the time-domain is

CO

L [x(0] = X(s) = e- t[x(t)ldt
O

(1.2.1-1)

and the back-transform is
oo

f_,l[X(s)] = ×(t) = J e-St[X(s)ldt
O

(1.2.1-2)

The complex Laplace variable s gives the relationship and magnitude

frequency and damping parameters on a complex plane is shown in Fig 1.2.1-1.

of

14



Laplace Domain

io)

Pole _ co. I

gk =_P I __

Conjugate Pol( I -<°°

Laplace Variable

s=o+io) [

r 0

- natural frequency
o. - modal damping eoeffieimt

- resonant fIeXlU_aey

_k - damping factor

Fig 1.2.1-1 The LaplaceDomain

The transform of a variable x to the Laplace domain will be written as L [x]. To

use this Laplace transform on our differential equation we need the

transformation of _ and x'.
oo

= e- _.-'_-J dt
0

(1.2.1-3)

Integrating this by parts finally gives us

Ltxlx,0,"-S
(1.2.1-4)

or

f__., [ x. ]= s X(s) - x(O) (1.2.1-5)

Similary we can find

r d 2x]
LL- j= L = s 2 X(s)- s x(0) - x(0) (1.2.1-5)

If we ignore the initial conditions (which can always be done for stable systems)

this transforms our equations of motion to
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lb_ s 2 X(s) + D s X(s) + K X(s) = IF(s) (1.2.1-5)

an algebraic equation in the complex variables. It can be easily seen that the

mathematics do indeed take on a simpler form in this domain.

Solving for X(s)

y(s) (1.2.1-5)
X(s) =

where X(s) = Laplace Transform of the Responce

lF(s) = Laplace Transform of the Excitation

_(s) =I_s 2+ Ds+ K

This equation is used as the basis to define the Frequency Response Function

(FRF) such that:

I L.-transform of the Output = FRF • L.-transform of the Inputor X(s) = H(s) Y(s)

with H(s) = [ M s 2 + D s + K ]-1 , the Frequency Response Matrix

Now all the outside forces, responses of the structure, velocities, accelerations

and coordinates are expressed in the frequency-domain. The transfer matrix H

contains transfer functions h(s) that give the transformed response X(s) for every

input f(s) at every DOF.

m

Xl(s)
X2(s)

X3(s)

_ Xn(s).

hll(S) hl2(S) • .. hln(S)

h21(s) • . .

_ hnl(S)

m

fl(s)

h(s)
f3(s)

_ fn(s)_

(1.2.1-5)

The transfer functions, h(x), are also of a complex nature. The real part

corresponds to the magnitude and the imaginary part corresponds to the phase

16



shift of the response. For simplicity, let us once again consider a simple two-DOF

system, keeping in mind that the statements made can be transferred to

multiple-DOF systems as well.

In this case, the characteristic equation (CE) for the inverse of the frequency

response matrix B would be a polynomial of the degree 2n with n pairs of

conjugate complex roots, Pk and Pk* • Expressing the CE in terms of its roots we

can write:

Det B = C (s-p1) (s-p1*) (s-p2) (s-p2*) .... (S-pn) (S-pn*) (1.2.1-6)

So, the components of the frequency response matrix can be written as

mii s 2 + dij s + k ii (1.2.1-7)
hij(s) = CE

A diagram representing the properties of the FRF and its connections to the

DOFs is shown in Fig. 1.2.1-2. The input fi as wll as the outputs Xl ... Xn are

transformed (=_) into the Laplace domain becoming Fi and Xl ... Xn. The

magnitude and phase shift of the output in relationship to the input excitation is

given by the FR.F.

x(0-, X,(s)

x_t)'X_(s) _ . "j

x_(t)

Fig 1.2.1-2 The Frequency Response Function
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If we assume that the poles of H, i.e. the roots of the CE of B, are of multiplicity

one for our physical system, we can expand the denominator a and write

n

E[ rk rkhii(s)= + (1.2.1-8)
k=l

pk=C_k + io k

_k = damping coefficient

cok = nat. freq of oscillation

Examining the responce matrix for one specific mode, k, the response functions

hij all have the common denominator + (s.pk,) and differ only in the

numerator, rk . These residues rk are the only parameters that vary along the

structure and are collected in the residue matrix R k.

i rll r12 " " " rlnl
Nk= .....

rnl .....

(1.2.1-9)

Rk
implying that H - const or Hk ~ Rk

The matrix of the system residues, just like the modal matrix, represent the

motion of a structure when excited at a resonant frequency, both giving the

amplitude and direction of the response at some DOF. Taking advantage of the

symmetry inherent in the response matrix H (hij = hji) we can make the

connection to the modal matrix. This represents the experimental/analytical link

of the modal analysis procedure.

IRk = Qk Uk Uk T (1.2.1-10)

3 A polynomial B(x) that is divided by a polynomial A(x) can always be written in the partial

fraction form

A(x) rl r2 rn+ __ + ..... + __ + k(x)
B(x)- _ s-p2 S-pn

• (s-pi) being the roots of B
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where Qk is an arbitrary constant since the mode shapes are defined only in

direction not magnitude.

Arbitrarily choosing the i-th column of the residue matrix, we can write

(supressing the index k for the moment, since we are examining only the

transfer function for the k-th mode)

=Q

D

rli

r2i

r3i

o

rii

_ rni.

m

u I ui

u2 ui

u 3 ui

ui ui =Qui u (1.2.1-10)

_ Un ui

We can calculate the residue for the driving point (structure excitation point), rii

ri i = Q ui ui = Q ui 2 (1.2.1-11)

or

ui = i! _! (1.2.1-12)

which delivers the proportionality factor of the two matrices. Thus, as long as a

driving point measurement is made and this driving point does not correspond

to a node of the examined mode, the entire residue matrix can be constructed by

measuring only one row or column of the transfer matrix, i.e. knowledge of one

mode.
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2. Modeling the Beam by the Finite Element Method

2.1 Introduction

Since a wealth of data concerning the vibrations of a cantilever beam exists

(Ref. 2.-1,6,11,12), a finite element model for the boundary conditions clamped-

free was written. Once a sufficient accuracy was determined, this model could be

altered to encompass other boundary conditions of a vibrating system, i.e.

hinged-free or free-free.

Because the algorithm for predicting the rotating mode shapes (see section

2.3.1) relies heavily on the slopes or derivatives of the eigenform of the non-

rotating mode shape of the beam, these slopes were compared with those given

in Ref. 2.-1 and Ref. 2.-2. After verifying the accuracy of the non-rotating model,

an extension of the method of Ref. 2.-3 using the finite element method was

applied, and the results for the rotating model were compared to the exact

solution of Ref. 2.-2 - a 5 mode extension for a cantilevered Beam and a 6 mode

extension in the case of a hinged beam.

The beam is divided into n elements and a stiffness and mass matrix is

derived for each single element. These element matrices are then assembled into

a system matrix, taking into account the boundary conditions. In this case the

continuous mass distribution is replaced by a lumped parameter mass

distribution, which means that each end (or node) of the element is assigned half

the finite element mass.

2.1.1 The Element Stiffness Matrix

The element stiffness matrix, k, expresses the relationship between static

forces and moments, _ and linear and angular displacements, Ii:

P= k _ (2.1.1-1)

A beam segment or element with the properties shown in Fig. 2.1.1-1 has four

degrees of freedom, a linear and an angular one at each node.

20



Dearees of Freedomu lineardisplacement

q_ angutardisplacement
th...=
v

1

Fig. 2.1.1-1 BEAM Element

The element stiffness matrix is derived in detail in Ref. 2.-4 using the principle

of virtual deflection and found to be

k E I -61 412 61 12 (2.1.1-2)
= 1-'3- -12 61 12 61

-61 12 61 412

(4x4)

2.1.2 The Element Mass Matrix

Following the lumped mass distribution assumption, the inertia

associated with each rotational degree of freedom is assumed to be zero while the

mass of each element is assigned evenly to the nodes. This distribution of the

mass is shown in Fig. 2.1.2-1.

m m

2 2

Fig. 2.1.2-1 Lumped Mass Distribution

Thus, the element mass matrix can be written as

m

wm

im

}-000

0 0 O0

m

0_-00

_0 0 00-

(2.1.2-1)
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2.1.3 Assembly of the Structure Stiffness Matrix

The stiffness matrix of the structure, in our case a beam consisting of n

finite elements, is assembled by identifying the degrees of freedom at each

element node, numbering them in a consistent manner and simply adding those

contributing to the same system degree of freedom. This is what is known as the

direct method. For an homogeneous cantilever beam with a constant cross-section

(we will call this sort of beam simply "constant"), this assembly process is

demonstrated in Fig. 2.1.3-1. For a cantilever beam, the boundary conditions are

(Pl = 0 and u I = 0.

/
/

/
A

L

/
/
/
!

I

L.. m I

Fig. 2.1.3-1 Assembly of the Stiffness

ui

qpl

u2

qi

u3

IO

u4

q_

U_

qn

¢Iatrix

0 Lumped Masses

,&. SharedNodes

The system stiffness matrix relates the forces and the displacements at the system

nodal coordinates in the same way as the element stiffness matrix relates them in

the element nodal coordinates. The rules governing the assembly process for the
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system matrix are geometric compatibility at the element nodes, i.e. the

displacement at the nodes shared by the elements must be the same for each such

element.

2.1.4 Assembly of the System Mass Matrix

The assembly of the mass matrix is a simple matter of adding the

contributions of the lumped masses at the nodal coordinates. Since no inertia is

assigned to the rotational degrees of freedom, no mass terms are found in the

rows and columns associated with these degrees of freedom. Following this, the

positions of the mass matrix referring to the rotational degrees of freedom are set

to zero. This assembly procedure is shown in Fig. 2.1.4-1 for a beam consisting of

10 finite elements and thus has 20 nodes.

O"-O O---O O--O O"O O"'O

m

m000 ....
0000

00rnO
0000

rn

02

u3
qa

o4
_a

rn

0
¢n

Fig. 2.1.4-1 Assembly of the Mass Matrix

Note:

The Boundary Conditions ul=O
and jl=0

are already taken into consideration

2.1.5 Static Reduction of the System Matrices

Subdividing a structure into many finite elements leads to very large

matrices. In the case of a simple beam divided into n segments, the size is [ 2n x

2n ]. A way of reducing the size of the structure matrix is to identify the degrees

of freedom that are not needed or those that are not of interest and ascertain

their dependency upon the remaining degrees of freedom. This is called static

condensation. In the case of lumped masses, where no inertia is assigned to the

rotational degrees of freedom, the following condensation technique not only

leads to a reduced mass and stiffness matrix, but also leads to an equivalent
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eigenproblem. The reduction of massless or inertialess degrees of freedom

introduces n__o_oerror.

The reduction of the stiffness matrix is somewhat involved, but can

nonetheless be easily accomplished. First, we permute the rows and columns in

the stiffness matrix such that the displacement and rotational degrees of freedom

are adjacent to each other. This leads us to a stiffness matrix with rearranged

rows and columns, Kre that can be partitioned as follows:

Ku u I K
I u_ •

Kre= I K
(2.1.5-1)

So that now the equations of motion can be written as

I". EKK.uuK.. =
(2.1.5-2)

The lower part of this matrix equation gives us

K q_u u +K q_q_• =0
(2.1.5-3)

or

as the equation of constraint. Thus, the rotational and translational degrees of

freedom can be related to each other as

= - Kqxp-1 Kcpu _u

Setting

Tq_u = - Kq)(p-1 Kq)u

the transformation equation becomes

(2.1.5-5)

(2.1.5-6)
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= u = "r u (2.1.5-7)
T m m

Now, the rearranged Kre and l_re matrices can be reduced in dimension by the

transformation matrix T to

A
l_ -----T t Mre T (2.1.5-8a)

A
K = T t Kre T (2.1.5-8b)

The mass matrix is reduced, in the case of lumped masses, simply by

deleting those rows and columns that pertain to the rotating degrees of freedom.

or
A

l_ = l_re (2.1.5-9a)

^ _-1 (2.1.5-9b)Kuu = KUU " _q_u t _u

The rearranged mass matrix, Mre, remains essentially unchanged by the

reduction, while the stiffness matrix is transformed to the reduced stiffness matrix
^

Kuu. The eigenvalue problem

^
( Kuu - _ l_re ) _ = 0 (2.1.5-10)

can now be solved using the available algorithms.

2.1.6 Treatment of Singular Matrices

A beam with one end free and the other end hinged represents a statically

undetermined system, and the system stiffness matrix assembled using the finite

element method is singular. A singular matrix cannot be inverted. In addition,

the numerical size of the elements of the mass and stiffness matrix differ by a

large factor that increases with the degree of discretisation. The above factors

contribute to the danger of numerical difficulties in solving the eigenproblem.

To circumvent these numerical problems, the mass and stiffness matrices were

divided by their norm, and the equivalent eigenproblem was solved to obtain

the eigenvectors and eigenvalues.
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The norm of a matrix A is defined as

RA II = (det ( A A t ))1/2 (2.1.6-1)

Dividing a matrix by its norm in this case yields a numerically well-conditioned

matrix. Applying this to the eigenproblem results in

det [ K" - Ti M" ] = 0 (2.1.6-2)

with

K M IIM II

K'= UKII M'=_ TI = X IIKII
(2.1.6-3)

After solving for X, we reinsert the eigenvalues (one of them being zero;

corresponding in this case to the rigid body mode of the hinged beam) into the

eigenproblem (2.1.5-10). The n-th eigenvector can now be found by inserting the

n-th eigenvalue into the eigenproblem:

Inserting X i = Xn into

(2.1.6-4)
(K-X i I M)_i=A(_i =0

where _i is the eigenvector corresponding to Ki, and decomposing A into the

matrices P and P -1 and the diagonal matrix D

A = IP D p-1 (2.1.6-5)

(2.1.6-6)

we can write

DP -1 (_=0

(2.1.6-7)

Defining

y_ := p-l_

(2.1.6-8)

it follows that

Dy_=0
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D is a diagonal matrix containing the eigenvalues of A. The matrix A is of

course singular, since an eigenvalue was inserted, so it follows that one or more

of the diagonal elements of D are zero. The elements of _ that are in the same

rows that in D contain zero can be arbitrarily selected in order to satisfy the above

equation. Correspondingly, all elements of _ in the same rows that in D are non-

zero must contain a zero in order to satisfy the equation.

Thus, the following equation can be constructed:

"0
0

0

D_ =

with Yl-"Ym-1 arbitrary

and Ym--'Yn = 0

0

-.
.°

0

(2.1.6-9)

So the eigenvectors _i, corresponding to the eigenvalues _.i, can be determined

by simply solving (2.1.6-7) in the form

_=P_
(2.1.6-9)
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2.2 Results of the Non-Rotating (Static) Analysis

Calculations were performed on cantilever and hinged beams, having
both constant and tapering stiffness and height distributions. Results are

presented for tapered and constant cantilevered and hinged beams in Figs. 2.2-1

to 2.2-4.
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Fig. 2.2-1 Mode shapes and Coordinates of the Cantilevered, Constant Beam
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Fig. 2.2-2 Mode shapes and Coordinates of the Cantilevered,Tapered Beam
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Fig. 2.2-3 Mode shapes and Coordinates of the Hinged, Constant Beam
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2.3 Prediction of the Rotating Natural Frequencies

2.3.1 Predicting the Bending Frequencies of a Rotating Beam given

the Non-Rotating Bending Frequencies.

To verify the accuracy of the mathematical rotor blade model described in

section 2.2., we will compare the results of that simulation to those obtained by a

different approach for beams with well known geometric properties and later for

the Blackhawk rotorblade itself. Since the non-rotating bending frequencies of

the Blackhawk rotor blade with free-free boundary conditions are known from

the shake test (Ref. 2.-7), we will use a Lagrangian method suggested by Ref. 2.-3

to predict the rotating frequencies and modes. This approach allows us to

determine the rotating bending frequencies for any rotational speed, given only

the structural properties of the rotor blade or beam that is to be analyzed. There is

no restriction as to the stiffness or mass distribution. Only the stiffness and mass

matrices must be assembled in order to determine the non-rotating mode shapes

or eigenvectors. Both Loewy (Ref. 2.-3 ) and Yntema (Ref. 2.-2) make the

simplifying assumption that a linear height distribution leads to both a linear

mass and a linear stiffness distribution. Using the finite element approach will

allow us to negate this simplification and calculate beams or systems with a truly

linear height distribution ( resulting in a cubic stiffness distribution ) and systems

with a truly linear stiffness distribution (resulting in a third-root height

distribution). As we will see, the calculations using this more exact approach will

improve upon the accuracy of the previous results.

The bending deflections of the rotating mode will be expressed in terms of

the deflections of the non-rotating modes

wi(t)= _ ui(n) q(t) n (2.3.1-1)
n

where

w__i(t) = the i-th rotating mode shape vector

ui (n) = the n-th non-rotating mode shape
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q(t)n =the time and amplitude dependency of the n-th non-

rotating mode (and thus also the n-th generalized

coordinate in the Lagrangian approach )

Following (Ref. 2.-3), the kinetic energy terms are expressed as

, mi)T=_

and after the differentiations demanded by Lagrange's equation

(2.3.1-2)

+ = 0 (2.3.1-3)

these kinetic terms turn out to be

Mgen _ (2.3.1-4)

where l_Igen is the generalized mass matrix obtained from the static (non-

rotating) analysis of the beam, and _i is the second derivative with respect to

time of the generalized coordinate.

The potential energy terms are divided into two parts. The first, U1,

represents the potential energy stored in the beam due to deformation (elastic

properties) and the second, U2, represents the work done by centrifugal forces on

the lumped masses, mi, acting through changes in the radial position, xi, of these

masses as the blade bends. This "shortening" A i of the blade at the radial position

x i along the beam coordinate x o can be expressed as

Xoi

If wiT xo
o

(2.3.1-5)

The expression for A i is derived and discussed at length in Ref. 2.-5.

shortening can be approximated with the the following summation:

The
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A,= t,ox,,))
j=l

where j = 1 is the position at the root of the beam.

Inserting the above expressions into the potential energy terms

(2.3.1-6)

1

n

(2.3.1-7)

(2.3.1-8)
U2 = Z mi Xoi f22 Ai

i

and considering that

Kgen = 02 l_gen = 02 "_1 mi Wi(_)2 (2"3"1-9)1

we obtain the equation for the r-th generalized coordinate (the r-th row of the

rotating beam equation) as
i

f _(n) "_2/, Ow(r ) ,_2

Mgen (r) Cir + _2XmiXoi_,dqrL--_ _ L"--_--- _ _Xoj + Kgenqr =0
1

j=l

(2.3.1-10)

Substituting

yields

l_en _ + _2 ¥_ + Kgen q = 0 (2.3.1-12)

The term Kstat = Kgen is the static or non-rotating part of the beams

stiffness matrix, and Kdy n = _22¥ is the dynamic part of the stiffness matrix

brought on by the centrifugal forces on the lumped masses.

Adding ](stat and ](dyn leads to the well-known problem

1 if the condition that M is diagonal holds
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M _i + K _t = 0 (2.3.1-13)

that can be solved by the usual algorythms to obtain the rotating beam modes.

Taking into account the first 5 non-rotating beam modes of a beam subdivided

into 20 lumped masses, we obtain a Kdyn that is populated in the upper left hand

corner (5x5) with the elements

_i j (with i,j=1...5)

2.3.2 Linear Height and Stiffness Distributions

Calculations to verify the algorithm prior to applying it to the UH-60 rotor

blade were done for the following examples in order to gain some insight into

the order of accuracy. These results were compared to the results of a 5-mode

extension performed in Ref. 2.-2 for cantilever and hinged beams of constant and

linear varying stiffness distributions. As stated earlier, the five and six mode

extensions were based upon the assumption that a linear height distribution

implied a linear mass and a linear stiffness distribution. This analysis introduces

results for truly linear distributions of the above parameters. For example, the

results obtained in Ref. 2.-3 are for a beam of linear varying height taken from the

book by Bisplinghoff Ref. 2.-6 whereas the results are compared to those of

Yntema (Ref. 2.-2), who only examines beams of a constant or linearly varying

stiffness distribution. The height function of the beam found in Ref. 2.-6 is

h(x-)=2 b (1 - K x-)

with K=0.2. Therefore the stiffness is :

(2.3.2-1)

i= lbh3= lb2 (1__x--)3 (2.3.2-2)

where _ = x is the dimensionless blade coordinate.

The stiffness will only be linear if the higher terms of ,_ can be dropped.

This cannot be supported for a value of K = 0.2 . Thus, a height-variation

producing a truly linear stiffness distribution was used in our examples. Also, in

the hopes of obtaining a better estimate for the rotating modes, the first five non-
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rotating mode shapes were included, instead of only the first two as in Ref. 2.-3.

Because the algorythm uses the slopes of the non-rotating mode shapes, the

possibility of using a polynomial to obtain the derivatives instead of numerically

calculating the slopes by a three-point and five-point differentiation rule was

addressed, since a sufficiently exact polynomial can easily be fitted to the first five

mode shape vectors. This did, in fact give a better approximation of the slope of

the beam at the lumped mass in question, but, as pointed out in Ref. 2.-3, the

number of mass stations makes a far greater contribution to the convergence of

the algorythm towards the correct solution than improving the accuracy of the

derivatives.

2.3.3 Determining the Rotating Mode Shapes

After having determined the rotating frequencies by the addition of the

dynamic stiffness matrix expressed in terms of the generalized system equations

it becomes necessary to do a back-transformation prior to obtaining the mode

shapes for the rotating system in the usual Cartesian system coordinates. We will

use lowercase to indicate the generalized coordinates and uppercase to indicate

the system (Cartesian) coordinates.

We can express the rotating system stiffness matrix, ksyst, in generalized

coordinates

ksyst = kgen + kdy n (2.3.3-1)

The diagonalizsed stiffness matrix,kgen, was found by transforming the static

stiffness matrix, Kstat, by the system modal matrix, U, a matrix composed of the

eigenvectors 2 obtained while solving (2.3.1-13)

kgen =U T Kstat U (2.3.3-2)

Inserting (2.3.3-1) into (2.3.3-2) we get

2 since U is composed of the eigenvectors of our vibratory system arranged in columns, and

these eigenvectors have been normalized prior to placing them into U, we have an

orthonormal matrix. The transformation equation U -1 K U can be simplified to U T K U,

since U -1 = U T for orthonormal Matrices.
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U T (2.3.3-3)ksyst = Kstat U + kdy n

Transforming (2.3.3-3) into Cartesian coordinates with the system matrix, U,

gives us

(uT)"1l yst Oa)"1 Kstat + 0JT)"1= kdy n (U) -1 (2.3.3-4)

or

Ksyst = ]Kstat + _<dyn
(2.3.3-5)

To find the rotating eigenvectors, we must solve the equation

M _ + I<syst _t = 0 (2.3.3-6)

that leads to a new system matrix, Uro t , that is composed of the rotating

eigenvectors. This new system matrix diagonalizes the rotating stiffness matrix,

Ksyst:

UrTt Ksyst Urot = kgen, rot (2.3.3-7)

normalized deflection curves of aThe rotating and non-rotating

cantilever constant beam for the I st to 3 rd natural frequencies are shown in Fig.

2.3.3-1. For the hinged constant beam these are shown in Fig. 2.3.3-2. The

rotational parameter

(2.3.3-8)

was set at 4 for the cantilever beam and at 2 for the hinged beam. It is seen that

the discrepancies between the non-rotating and the rotating mode shapes are

small, and that the nodes are virtually coincident.
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2.3.4 Natural Frequency as a Function of Rotational Speed

Figs. 2.3.4-1 to 2.3.4-4 give an overview in how the natural frequencies

increase with increasing rotational speeds. The factor _P relates the square of the

first non-rotating frequency {0nl to the square of the frequency that the system is

rotated at, f2. This parameter stays the same, regardless of which mode is being

examined.

_p = (2.3.3-7)

The factor for the abscissa,D, shows the magnitude of the change in

rotating to non-rotating natural frequency. The denominator of this parameter

always holds the non-rotating natural frequency of the mode being examined,

Wni.

(2.3.4-1)

The parameters are squared in order to better asses the reliability of the obtained

results when comparing them to Ref. 2.-3. Notice that squaring the parameter

also squares the error. The diagram for the cantilever beam with non-constant

height distributions (Fig. 2.3.4-2), reaffirms the previously stated concerns. Only

when a beam is considered that has a linear height distribution and a linear

stiffness distribution are examined, does one receive the results stated by Yntema

(Ref. 2.-2). This form of beam, having both a linear mass distribution as well as a

linear stiffness distribution does not exist for isotropic structures.

The frequency graph for the "tapered" cantilever beam (Fig. 2.3.4-4) shows

the frequency increases for a beam of actual linearly decreasing height and

linearly decreasing stiffness at a constant width.
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2.3.5 Accuracy and Convergence Characteristics for this Finite

Element Application

It is of interest to us how exact our eigenvalues and eigenvectors are, and

how confident we can feel about our results. The solutions we have found for

the calculated ( ~ ) eigenvectors, _, and for the calculated (~) eigenvalues, _. ,

were calculated by the EISPACK matrix and eigensystem routines (Ref. 2.-8). Of

interest would be the convergence of the finite element program as a function of

the number of elements used in the discretisation of the beam.

Having made the rather bold assumption that the rotational degrees of

freedom were not assigned any rotary inertia, it is of even bigger importance to

know more about what effect this simplification has on the calculations in order

to be able to judge the effect on the projected rotating modes and frequencies.

Throughout literature ( e.g. Ref. 2.-1, Ref. 2.-4, ...) analytic results are found

for the mode shapes for constant beams with a constant stiffness along the beam

under the assumption of a variety of boundary conditions. We will compare our

solutions with the analytic solutions for the cantilever and hinged beams and

attempt to show the convergence characteristics for the first three non-rigid body

eigenvalues as a function number of elements used. A strategy for determining

the quality of a calculated eigenvalue even if the true eigenvalue is unknown is

also introduced.

Exact analytic solutions for the hinged-free, free-free and cantilevered beam

natural frequencies o k are shown in Table 2.3.5-1 using

O_k = (_.k 1)2 (-_'-_ "5
(2.3.5-1)

System Type

Cantilevered

Hinged-Free

Free-Free

Fable 2.3.5-1

Eigenvalue Equation

Exact Solutions for the Constant Beam

1+cos _.1 ch X1 = 0

(M) (th M-tan X1) = 0

(X1)4 (1-chX1 cosX1) = 0

Rigid Body

Modes

0

1

Values for Kk 1

1,8751 / 4,69409/... / (n-0.50)Tt

3,9266 / 7,06858/... / (n+0,25)x

4,73004 / 7.8532/... / (n+0,50)_
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The convergence characteristics of the implemented finite element algorithm

toward the exact analytical solution are shown in the following figures. Figs.

2.3.5-1a to 2.3.5-c show the convergence of the calculated solution divided by the

exact solution of the cantilever beam eigenvalues towards the normalized exact

solution (1.0) as a function of number of elements used, while Figs. 2.3.5-2a to

2.3.5-2d show the same for the hinged beam.
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The analytical equation for the mode shapes is

ch ki x - cos ki x sh Z,ix - sin Z.ix

wi(x) = ch _,il + cos _,i l sh _.il + sin _,i l

I ! i I I I I I I I I ! t I I, i

4 8 12 16 20

Number of Elements

4th Natural Frequency

(2.3.5-2)

for the cantilever beam and

sh _,i1 sin _.ix + sh _.i x sin _,i1

wi(x) - 2 sh _.i 1 sin _.i1
(2.3.5-3)

for the hinged beam

Figs 2.3.5-1a to -2d show that a good accuracy can be obtained by using 20

finite elements on a beam, resulting in having to solve only a 10x10 matrix after
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static condensation. Tables for the first few eigenvectors for the calculated beams

can be found in Appendix A.

2.4 Comparison of the Finite Element Calculation with the Full-

Scale UH-60A Rotor Blade Non-Rotating Modal Analysis Shake

Test

2.4.1 NASA Shake Test

A shake test of the UH-60A rotor blade was performed at the NASA Ames

Research Center during April 1986 as part of the Phase I Flight Test MTR

(Modem Technology Rotor) project. The rotor blade was outfitted with strain

gages along the span and a movable piezoelectric accelerometer was used to

measure the response at the node points. The data was analyzed to obtain the

frequency response function (FRF) of the blade excitation and response. The

linearity of the rotor blade system was established by varying that the FRF

remained constant for an increasing input force level. The minimal input force

level for a constant FRF was found to be 1 pound-force ( 4.44822 N ). An upper

boundary can be set at a force level that produces large, non-linear deflections.

The Maxwell-Betty theorem was also found to apply. This states that the FRF that

gives a response at point i of the structure resulting from a force input at point j
is the same one as for a response at point j resulting from an input at point i (Hij

= Hji) as shown in Fig. 2.4.1-1. This relationship was tested at frequencies of 12.55

Hz and 25.11 Hz and shown to hold.

Input Exitation : e
System Response : r

o e@

-/: .',,t/
/" °'/

H i.n-i H a-l.i

Fig. 2.4.1-1 Maxwell-Betty Theorem
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The rigid body modes for the rotor blade suspended in a pseudo free-free

manner by bungee chords was found to be 0.8 Hz for the I st flapping and 0.2 Hz

for the I st torsional modes.

Trailing Edge

35 33 7 5 3

37

38

36 34 8 6 4

LeadingEdge

Fig. 2.4.1-2 Accelerometer Measurement Positions

2

The FRF and the modal data were measured by placing the accelerometer

at coordinates 16 in (40.6 cm) apart along the leading and trailing edges and at the

node points of each identified mode. The accelerometer measurement positions

are shown in Fig. 2.4.1-2. The blade was also examined by CAMRAD

(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics)

in a hinged-free configuration and these results were transfered to the shake test

free-free boundary conditions by calculating the ratios between the exact free-free

and hinged-free solutions and applying them to the CAMRAD hinged-free

results (Ref. 2.-7). This may account for some of the large errors found with the

CAMRAD program, especially in the higher modes, because the ratios were

found by looking at the vibrating beam partial differential equation

_2 [Ei(x)O2y(x,t)]=_m(x) _)2y(x,t )

for the two boundary conditions and then calculating the ratios. Since the above

equation applies only to beams of a constant stiffness and mass distribution there

is some error introduced by using it to obtain the ratios of hinged-free to free-

free. The shake test identified 5 flapwise modes along with 2 chordwise and 2

torsional modes. The 5 flapwise modes that are examined and compared to our

finite element model are given in the form of modal residues at the leading and

trailing edge. The residues (given in Appendix B) represent the amplitude of the

mode at the point of measurement. The residues of the trailing edge differ from

those of the leading edge since the individual modes are not totally uncoupled.

To negate this effect we will calculate the residues at the quarter-chord,

47



supposing that the residues change in a linear fashion across the span of the

blade as demonstrated in Fig. 2.4.1-3. When these residues are normalized they

Residue at
Tip

/ Quarter-Chord
/ Line

SC1095-R8
Airfoil

Fig. 2.4.1-3 Residue Calculation
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2.4.2 Shake Test Results

2.4.2.1 Rotor Blade Data for Shake Test

The modulus of elasticity, E, for the Blackhawk rotor blade is

in Table 2.4.2.1-1 and in Figs. 2.4.2.1-1 and 2.4.2.1-2 and the natural frequencies

for out of plane flapping that were measured during the shake test as well as the

values calculated by CAMRAD are given in Table 2.4.2.1-2.

Table 2.4.2.1-1 Mass and Stiffness Distributions of the Blackhawk Rotor Blade
Blade Stiffness Mass Blade Stiffness Mass

Coordinate [kg m21*10"4 [kg/cm] Coordinate [kg m2]'10 -4 [kg/cm]
[cm] [cm]

0.00000 448.270 0.979259 0.0108218
0.00000 448.300 0.979259 0.0106078

r38.1000 492.690 0.979259 0.0106078
38.1001 2.33351 492.700 0.982316 0.0107505
38.2943 2.33351 0.112691 537.110 0.982316 0.0107505
38.2950 2.33351 1.36373 _537.200 0.996582 0.0118713
38.5483 2.33351 1.36373 581.530 0.996582 0.0118713
38.5500 3.74992 0.0488335 581.600 0.99&_82 0.0134202
82.,5483 3.74992 0.0488335 621.920 0D%,582 O.O13a_fl?
82.6000 3.97410 0.0306311 a99 flO0 0.996582 0.0133489
126.998 3.97410 0.0306311 662.310 0.996582 0.0133489

127.000 1.17083 0.0105365 662.400 0962955 0.0132776
190.498 1.17083 0.0105365 702.700 0.962955 0.0132776
190...500 0.941556 0.0104651 702.800 0.946651 0.0165791
233.170 0.941556 0.0104651 735.640 0.946651 0.0165791
233.200 0.941556 0.0103938 735.700 0.841694 0.0181280
275.840 0.941556 0.0103938 768..580 0.841694 0.0181280
275.900 0.941556 0.0105365 768.600 0.625666 0.0170683

318.510 0.941556 0.0105365 788.140 0.625666 0.0170683
318.600 0.941556 0.0105365 788.200 0.377030 0.0127884
361.180 0.941556 0.0105365 807.700 0.377030 0.0127884
361.200 0.950727 0.0105365 807.800 0.313852 0.00406581
403.850 0.950727 0.0105365 817.860 0..313852 0.00406581
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2.4.2.1-2 Mass Distribution of the Blackhawk Rotor Blade

Table 2.4.2.2-1 Natural Frequencies, Out-of-Plane Flapl: ,ng

Mode Shake Test [Hz] CAMRAD [Hz]

1st

2nd

3rd

4th

5th

4.34

12.55

24.99

41.63

63.71

4.67

12.75

25.49

42.32

57.75
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2.4.3 Results of the Non-Rotating Finite Element Analysis

2.4.3.1 Discretization Technique

The Blade was divided into three large parts in accordance with the degree

that the mass and stiffness distributions varied. These parts were then in turn

subdivided into finite elements. Three different division schemes (DS) were

introduced to investigate the way the solutions converge as a function of the

number of elements. The DS are given in Table 2.4.3.1-1 and DS2 for the first

normalized cantilever mode is shown in Fig. 2.4.3.1-1.

Table 2.4.3.1-1 Division Schemes

Number of Elements

Part I (0...2m)

Number of Elements

Part 2 (2...6m)

Number of Elements

Part 3(6...7.29m)

Scheme 1

20

15

2O

Scheme 2

25

20

25

¢..

.(2_

O

a
"10

-_
O_

1.2

0.8

0.6

ii1111111

P_ 1
0..._

Scheme 3

35

30

35

.... I.... I.... I........ I....
Part 2 Part 3
2...6m 6...7.29m

20 Elements • 25 Elements

..........................................................::ii..............................................
O

z 0.4 -

f I m ue :

25 Elements • i

0.2 ............:T..................;":! ..............._............i ..........................i .....................i............
I

0 1 2 3 4 5 6 7
Blade Coordinate [m]

Fig. 2.4.3.1-1 DS2
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Results for the different DS and their deviations from the shake test results and

CAMRAD are given in Table 2.4.3.1-2 below.

Mode

1st

2nd

3rd

4th

5th

Table 2.4.3.1-2 Results for Different DS

Nat. Nat. Nat. Nat. Change: Change:

Frequency Frequency Frequency Frequency

(Shake Test) (DS1) (DS2) (DS3) DS3(FEM)- CAMRAD-

[Hz] [Hz] ['Hz] [Hz] Test Test

4.34 4.46337 4.51864 4.51473 + 4.02% + 6.68%

12.55 12.91 12.9917 12.9731 + 3.37% + 1.59%

24.99 25.9137 26.249 26.2149 + 4.90% + 2.00%

41.63 43.3187 43.9606 43.8759 + 5.39% + 1.65%

63.71 65.0184 65.7907 65.6459 + 3.04% - 9.35%

It can easily be seen, that the CAMRAD-Program gives us a fairly good

estimate of the natural frequencies that can be expected. The error varies, and

CAMRAD fails to predict accurate natural frequencies for all higher modes.

Even though our Finite Element model accounts for only out-of-plane flapping

motion at this time, and disregards the coupling with the torsional and inplane

vibrational modes, the results are in very good agreement with the measured

data. Including these additional degrees of freedom (or allowing for coupling of

the modes) would tend to "soften" the rotor blade and bring down the natural

frequencies, and thus, the approach for the measured natural frequencies would

be even better.

Of especially great interest would be the inclusion of the torsional modes,

since they would be coupled most with the flapping mode due to the twist and

swept tip of the blade. In addition, the I st chordwise natural frequency lies close

to the 3rd flapping natural frequency which would also tend to lead to some

coupling.

To judge how exact the program would calculate the natural frequencies

given an exact value for the first natural frequency, the modulus of elasticity was

adjusted to supply exactly the first measured natural frequency. Since o n is

proportional to the square root of E, (2.3.5-1) we can simply set

I fOlcal_c /=/E--_/ 0.5
031 test

(2.4.3.1-1)
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and we receive an adjusted E as

(2.4.3.1-2)

Using this adjusted value to simulate a blade less stiffened through modal

coupling we find the results of Table 2.4.3.1-3.

Table 2.4.3.1-3 Natural Frequencies Calculated with an Adjusted Modulus of

Elasticity

Mode

1st

2nd

3rd

4th

5th

DS3

kg en j

4.34

12.47

25.23

42.39

63.80

Shake Test Change:

[Hz] DS3(FEM)-

Test

4.34

12.55

24.99

41.63

63.71

- 0.59%

+ 0.989%

+ 1.84%

+ 0.146%

In Figs. 2.4.3.1-3a to 2.4.3.1-3g we introduce the calculated mode shapes of

the free-free UH-60A rotor blade along with the normalized modal residues of

the shake test. We have used the coordinate system from the shake test used in

the free-free analysis (i.e. going from tip to root of the blade, shown in Fig. 2.4.3.1-

2) to ease comparison with the test results, but in all other calculations

(cantilevered and hinged) we have used the more common coordinate system

going from the root of the blade outward. The measured mode shapes (residues)

of the shake test were normalized not as usual with the maximum deflection at

the beginning or end of the blade, but in such a manner that they coincided at

some point along the blade with the calculated mode shapes. This was done,

since the modal residues were assumed to vary linearly across the chord of the

blade and calculated at quarter chord. The tip of the blade is swept back, and the

shaker was attached to the root, and so the quarter-chord modal residues

calculated at these points that show the maximum deflection are not considered

to be very reliable. These points of coincidence were 4.165 m for the 1st, 3rd and

5th mode, 5.34 m for the 2nd mode and 6.125 m for the 5th mode.
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Third Mode Shape
UH-60A
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Fifth Mode Shape
UH-60A
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Seventh Mode Shape
UH-60A
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Fig. 2.4.3.1-3g Comparison of Calculated and Measured Flapwise Mode Shapes

The Calculated Data shows a high correlation with the measured mode shapes.

The same comparison is now done for the calculated and measured natural

frequencies for the first two inplane (chordwise) modes. Table 2.4.3.1-4 gives the

calculated results along with the deviations from the shake test and the

calculated mode shapes are shown versus the measured mode shapes in Figs.

2.4.3.1-4a and 2.4.3.1-4b.

Table 2.4.3.1-4 Results for

Mode Shake Test

(Hz)

1st 25.38

2nd 67.38

he First Two Inplane Modes

FEM

(Hz)

26.28

73.27

Change:

FEM-Test

+3.5%

+8.7%
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2.4.3.2 Results from other Boundary Conditions

Using DS3, the natural mode shapes and frequencies for other boundary

conditions in a non-rotating state were calculated and are introduced in Table

2.4.3.2-1 and Figs. 2.4.3.2-1 and 2.4.3.2-2

Mode

1st

2nd

3rd

4th

5th

Table 2.4.3.2-1 Non-Rotating Results

Hinged-Free [Hz]

rigid body

10.889

40.6414

75.1265

128.8254

for DS3

Cantilevered [Hz]

2.52586

1Z2904

48.07

93.7772

152.615

m

0.6

0.2

-0.2

-0.6

-1-

Cantileverd

UH-60 Blade

First four modes

m

0 1 2 3 4 5 6 7 8
Blade Coordinate (m)

Figs. 2.4.3.2-1 First Four Modes, Non-Rotating, Cantilevered Blade
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Figs. 2.4.3.2-2 First Four Modes, Non-Rotating, Hinged Blade

2.4.4 Rotating Results

2.4.4.1 Increase of the Natural Frequencies

Having ascertained a high level of accuracy and convergence of our finite

element model, we will now use this model to predict the rotating natural

frequencies for the UH-60A Blackhawk Rotor Blade for the cases of hinged-free

and cantilevered boundary conditions.

The relationship between the speed of rotation and the increase of the

natural frequencies will again be displayed in the familiar fashion using the

dimensionless parameters

Lp= (2.3.3-7)

(I)= (Orot_ (2.3.4-1)

k,C°niJ

Figs. 2.4.4.1-1 and 2.4.4.1-2 show the increase of the first and second natural

frequency for the cantilevered and hinged rotor blade as the speed of rotation

increases.
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2.4.4.2 Comparison between Rotating and Non-Rotating Predicted

Mode Shapes

Having verified that our non rotating calculated mode shapes show high

correlation with the measured residues, we can calculate the rotating mode

shapes and examine the change between the non rotating and rotating mode

shapes. Figs. 2.4.4.2-1 to 2.4.4.2-4 show the change of the cantilevered natural

mode shape of the UH-60A Rotor Blade in a non-rotating and rotating state, and

Figs. 2.4.4.2-5 to 2.4.4.2-8 show the same for the hinged Blade. The rotational

parameters were set to • = 12 for the cantilever blade and to _ =1.6 for the

hinged blade. The abscissa shows the non-normalized blade coordinate in

meters.
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Fig. 2.4.4.2-1 Rotating vs. Non-Rotating Mode Shape
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4th Mode

,,,I ........ I ........ I .... I.... I,/....
1 _ { i i _ i i i/

0._ , : ,.,. . , _iiiiii:
_ _, .; .........._............ _ ...........

............. ! ............... ÷ ............... , ° • ..... ,

: i f

.......... _............. ._......... _ ........ ._.......... _............ -- --

: sf ..... o'_o s .......... _- .............tP-

- u. _ ............, ...........T--:-- _

i........-i ! i i i !
-1 I I I I I I

0 1 2 3 4 5 6 7 8

Fig. 2.4.4.2--4 Rotating vs. Non-Rotating Mode Shape

Hinged
The first mode is the rigid-body mode,

2nd Mode

....'....'....'....'....'....- ....i...............i...............i...............i...............i...............i.............i.............
.......... i i i i i i /i _

i! ..... No.-Ro,.,,_g............._:...............!_i .........
o.s _{---,,o,.,,°, ! 1.7 1

i.................. ............._..............._.............._.............

0 i i ,_ ................

• _ ................. :............... :_,_............. :............... _..............

N i _ : : ! !
- :, : • : ...... :. ........ :.............

............. i ............... ":---"-- -_:---.-.:}-._----'- ...... !............... .i-............... ,............... ,..............

""1 .... i .... i,,,, 1.... '""I .... ' ....- 1 i I I I

0 1 2 3 4 5 6 7 8

Fig. 2.4.4.2-5 Rotating vs. Non-Rotating Mode Shape

65



3rd Mode
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3. Spectral Analysis of the UH 60A Flight Records

3.1 Introduction

After obtaining an estimate of the rotating natural frequencies and modes

of the Blackhawk helicopter rotor blade, a first attempt was made to detect these

natural frequencies in the flight test records. This flight test data was obtained by

computer down-link from the Tilt Rotor Engineering Data System (TRENDS), a

database of the NASA-Ames Research Center. The highly instrumented Flight

Test Phase 1 (Ref. 3.1) of the Blackhawk Program provided a multitude of

dynamic and vibrational data that was available for downloading. The data

pertaining to the vibrational and otor characteristics available at TRENDS is

listed in Table 3.1-2.

The steady-state response of the rotor system will be at frequencies

corresponding to the period of the aerodynamic driving forces. These non-linear

excitation functions have frequencies that are integer multiples of the rotational

2 3 = 1P, 2P, ...). The resulting spectralspeed of the rotor blade (rlv, rev ' rev' "'"

densities of the histories of the responses to this aerodynamic forcing function

will be composed mainly of frequency contributions having the periodicity of 1P,

2P, ..., leaving the relatively small contributions of the transient natural modes

"buried" in the data. During a control input of the pilot, it is hoped that these

transient responses are excited to a measurable degree. So what we would need

in order to uncover transients hidden in the histories is a flight test that

contained well documented control inputs along with the response of the rotor

blade to these input. It should be stressed at this point that this analysis does not

constitute an in-depth evaluation of the existing database, but it was hoped that

by a careful selection of available flights and vibrational parameters, those

datasets would be found that showed the greatest promise of disclosing the

desired information. The results from this first examination of the database may

also show future researchers how to better choose and find relevant datasets in

the database.

Scanning the project database (See Ref 3.-2) for descriptions of the different

flight tests performed, flight 31 was chosen for further evaluation since this flight
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was conducted to show effects of sinusoid control inputs. The flightlog is shown

in table 3.1-1 below.

Table 3.1-1 : Log, Flight 31

AIRCRAFT: 748 SINE SWEEP CONTROL INPUTS T/O GW: 18224
FLIGHT: 31 LOCATION: AEFA CG: 362.5

FLT DATE: 22 MAY 87 COUNTERS: 3101- 3130 HRS TO INSP: 0.0
DIRECTOR: BUCK PILOTS: CASON AND WEBRE FLT TIME: 1.2

FLIGHT INFO: FLIGHT 31 WAS A SPECIAL FLIGHT THAT WAS NOT PART OF THE
NASA PHASE I TEST PLAN. THIS FLIGHT CONSISTED OF
SINUSOIDAL CONTROL INPUTS THROUGH ALL AXES (LONG., LAT.,

PEDAL, AND COLLECTIVE), AT TWO AIRSPEEDS: HOVER AND 120
KIASB.

CONFIGURATION:
LASSIE AND BALLAST CART INSTALLED

FLIGHT NOTES: PARAMETERS KNOWN NOT TO BE WORKING:
ALL PARAMETERS WERE THOUGHT TO BE FUNCTIONING.

COUNTER TYPES: MULTI AXIS SINE SWEEP CONTROL INPUTS.

ANALOG TAPES: ITH748031.DAT

DIGITAL TAPES: ITH748031.01X THROUGH ITH748031.30X

VAX DATASETS: YES PLEASE.

The available vibrational and rotor parameters are shown in Table 3.1-2,

along with their units. AZMRT, AZMRR, MRBR5, MRBR6 and MRBR7 were

examined and finally AZMRT was chosen for the spectral analysis, since it

showed the greatest change in magnitude and intensity after a control input,

even though this parameter would be expected to show the greatest amount of

noise. An additional factor in the selection of AZMRT was that it showed more

intense and sharper peaks at multiples of the vibrational speed all the way up to

10P, whereas the other vibrational parameters only showed distinct peaks up to

5P. This is demonstrated in Fig. 3.1-1. by showing the spectral density function

available directly from TRENDS for the vibrational parameters.
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Item

AXMRT

AZMRR
AZMRT

MRALSS

MRBR5

MRBR6

MRBR7

MREB5
MREB7

MREBX1

MRFLAP

MRFLSS

MRLAG

MRLSS

MRNB5

MRNB6

MRNB7

MRNBX1

MRPITCH

MRPR

MRSEBL

Item

COLLSTK

LATSTK

LONGSTK

Table 3.1-2 Avalible Parameters

R.otor Parameters

Description

Tip accel, edgewise

Root acceleration flapping

Tip accel, flapping

MR link load aft

MR rear bending 50% radius

MRrearbending 60% radius

MRrearbending 70% radius

MR edgewise bending 50% rad.

MR edgewise bending 70% rad.

MR root edgewise

MR flapping

MR link load forward

MR lead-lag

MR link load lateral

MR normal 50% radius

MR normal bend. 60% radius

MR normal bend. 70% radius

MR root normal bending

MR pitch

MR pushrod load

MR shaft bending

Units

G's

G's

G's

Lbs

PSI

PSI

PSI

IN-LB

IN-LB

IN-LB

Deg

Lbs

Degs

Lbs

IN-LB

IN-LB

IN-LB

[N-LB

Pegs
Lbs

In-lb

Aircraft Parameters

Description

Control position, collective

Control position, lateral

Control position, longitudinal

Units

Inches

Inches

Inches

Sampling

Freq. [Hz]

517/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

516/1

Freq

32/1

32/1

32/1
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Flight 31 is subdivided into 14 datasets of about 23 second each numbered

with counters 04-18. These counters were scanned and counters 08 and 10 were

chosen for further evaluation. Fig 3.1-2 and Fig 3.1-3 show excerpts of these

counters for the parameters AZMRT, the main control inputs (COLLSTK -

control position, collective and LONGSTK - Control position, longitudinal), as

well as the rotational speed of the rotor, RPMMR. The units for these parameters

can be found in Table 3.1-2.

UH-BOR R./C748 PIfSE I TE515
FLT _t.StNe SMEP+PC_TnflL _IPU_S

c_IR _1o8, tOVER,URIS'I]CK _INE SlIErJ_

.........I
V_,t"_'rl'r _"+'rrr rr,'r rll 1"r_[,. ....... I.................. 1

+-]

_ .p. i-

8_i+. ........

IJPI

_i_ m • • • • • • ° " • i .... • ..... " " ° "

"IIME IN SEC0_DS

Fig. 3.1-2 Counter 08, Flight 31 (3108)

B
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Fig. 3.1-2 Counter 10, Flight 31 (3110)
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3.2 Projected Natural Frequencies

Using the Finite Element Program outlined in the previous chapters we

calculate the first and Second rotating natural frequencies of the rotor blade at the

given rotational speed interval to be :

Table 3.2-1 Rotating Natural Frequencies of the Rotor Blade

Counter Rot. Speed C0nl t°n2
(RPM) (Hz) (Hz)

3108 258.0 - 261.0 15.95 - 16.05 40.79 - 40.89

3110 258.5 - 261.5 15.97 - 16.07 40.81 - 40.93

It would of course be impossible to measure the natural frequencies as exact as

they are given in Table 3.2-1, the main objective is to show that the natural

frequency does not perturb much as the rotational speed varies.

3.3 Analysis Procedure

3.3.1 Obtaining the Spectral Density Distribution

Power spectral densities (PSD's) of various intervals of the response histories and

their ratios were calculated (See also Ref 3.-3, 3.-4).

Power spectral density distributions or spectras are defined by the Fourier

Transforms of their correlation functions:
+oo

1
Sxx (c°) =2"-_ I Rxx(Z) e-it°t d'¢ (3.3.1-1)

--OO

However, utilizing the discrete fourier transform (DFT) it is not necessary to

calculate the explicit term for the correlation function, since the spectral density

can be expressed directly by multiplying the fourier transform by its complex

conjugate. This can be shown by considering the discrete formulation of the

spectral density function, where Sk is the DFT of the autocorrelation function

Rr.3

3 A discrete series can always be written as an addition of sine and cosine terms:

x(t)= ao+ Y.a k cos(-_) + b k sin( )
k=l
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N-1

1 {" .2_kt_

r=0

R r is an estimate of the correlation function defined by
N-1

1 (r=0,1,2,..., N-l)
Rr_ _ Xs Xs+r

$=O

(3.3.1-2)

(3.3.1-3)

Inserting (3.3.1-3) into (3.3.1-1) and rearranging terms leads to

N-I N-I (.2_ks'_

r=o s=o

( .2_k(s+r)'_

Xs+r exp L-1 -_ )
(3.3.1-4)

The terms with the variable integer r can be grouped together and we can rewrite

the expression as

N, {N1 }1 (.2_ks_ 1 tr .2_k(s+r)'_

Sk = _. _ Xs expLr--N-- ) _- _ Xs+ r expL.r _ j (3.3.1-5)
S=0 r=0

and introducing the new variable t=(s+r)

N-I ( .2=kt_1 (.2_ks'_ 1 (N-1)+s

- E xt (3.3.1-6)Sk=_ E xsexpL1_)" N t=s
S=O

If we assume x r to be periodic with period N (an assumption that has to be

made in order to apply the DFT) , then xN+s=Xs • Thus the second term of

(3.3.1-6) is simply the DFT of x(s), X(s). The first term is similar to X s, with the

exception of the sign of the exponent. This represents X*s, the complex conjugate

of X s. This shows that the PSD can be simply calculated from the DFT by

where

o

Transform, Xk=ak+i bk

1 _ exp(-i(_-_)) dtXk= _ x(t)
O

1 ff 2_ktak{bk}= _ x(O cos{sin}(_) dt

• it can be written as:

or using complex notation for the Fourier
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Sk=X Xs (3.3.1-7)

The DFT can easily be calculated by existing code for the Fast Fourier

Transformation (FFT).

3.3.2 Ideal Boxcar Filters in the Frequency Domain

Ideal Boxcar filters of varying frequency bands were applied to the spectra

obtained by the FFT, in order to supress the steady state excitation of 1P, 2P and

up. This approach did not lead to any practical results, because of the smearing of

the peaks and the noise level inherent in the data. This analysis technique was

found to be not applicable and quickly discarded.

3.3.3 Mapping to the Z-Plane

We are dealing with a discrete time series when we are evaluating the

measurement data from the flight test. The continuous time (CT) function s(t) is

now transformed into a discrete time (DT) function, s(nT) with values defined

only for t =n*T, where n is an integer and T is the sampling rate. CT signals can

be transformed to the (complex) frequency domain by the Fourier and Laplace

transforms The result of the transformation usually provides us with additional

insight into the operation of the system. For some systems that do not meet the

conditions required by the Fourier transform, the Laplace transform is used,

which involves the transformation into the s= _ + /ca plane. The Fourier

transform is a special case of the Laplace transform for _=0, that is, for input

systems that can be represented as a superposition of sinusoidal waveforms. DT

signals can also be represented by a Fourier transform, but instead of using the

Laplace transform, the z-transform is used.

We can introduce the z transform by setting up the relation between the

the complex s plane and the complex z plane

Z =- e (sT) (3.3.3-1)

This function is a mapping of points in the s plane to points in the z plane. In

circuit and control theory, values of s that cause a system transfer function to

become zero or infinity (poles) provide information about the systems response

to signals with a given frequency value. The mapping of the s plane into the z

plane is as follows. The /_ axis of the s plane (_=0) corresponds to z=exp(-/c0T).
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This is a circle of unit radius in the z plane. As coT varies from -_ to +_, this

generates a circular path in the z plane from z=-1(/-18_0 °) to z=-l(Z]__°). Thus the

z transform takes a strip in the s plane between (T) < co < (T) and maps it into

the unit circle of the z plane. The left-hand side of the s plane is mapped into the

unit circle (s<0, I zl<l). The right hand side of the s plane is mapped outside of

the unit circle (s>0, Izl >1). If an analog system has poles only in the left-hand s

plane, it is stable, and its poles will map inside the unit circle in the z plane as

well. This mapping is shown in Fig 3.3.3-1.

T=I

(_=0 =

Re z

S - Plane Z - Plane

Fig 3.3.3-1. Mapping from the S Plane to the Z Plane

3.3.4 Digital Filter Design

In the second part of the spectral analysis of the flight data, digital filters

are used to filter out the high energy spectras of the first few excitation

frequencies. The design of such a digital filter (Ref 3.-5) begins with the

specifications of an analog filter. The parameters for a filter are the cutoff

frequency fc, the stopband frequency fs and the characteristics of the stop and

passbands. These characteristics are used to generate the analog transfer function,

H(s), which is then converted to a digital filter transfer function, H(z). This
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conversion is done by a bilinear transformation, (BLT) . Once the analog filter

characteristics have been defined, the BLT is initiated by

1-zq (3.3.4-1)
s = K 1--4_z-1

where s =_ +/r_ . Depending on the manner in which the BLT is obtained, K
1 2 1

can assume the values of 1, _ or _. We will use _. Solving (3.3.4-1) for z leads to

I+_T (l+c_T) +/raT (3.3.4-2)
z - 1-c_T .... (1-c_T) -/_0T

The phase, (_, and magnitude, I zl, of z are

(I+GT)2 + (c0T)210.5
Izl L(1- T)2+

(3.3.4-3)

and

2c0T (3.3.4-4)
(_(z) = tan -1 l_((_T)2_(c0T)2

The infinite-length i axis is mapped (nonlinearly) onto the unit circle,

introducing a distortion of the frequency response. The distortion is in form of a

relocation of the relevant frequencies: cutoff and stopbands. The general shape of

the response is essentially unaffected, that is an analog lowpass filter will remain

a digital lowpass filter, but with different cutoff and stopband frequencies. This

shifting of the frequencies is shown in Fig. 3.3.4-1. The shifting of the frequencies

during the transformation can be corrected by designing the analog filter to

account for the warping due to the transformation. Then, when transformed, the

frequencies will be at their desired locations. This prewarping can be

accomplished by comparing the imaginary parts of the following equation that

shows the relationship of c0=2_ f in the s plane and the angle of z, 2_ f2 in the z

plane, by evaluating z on the unit circle ( z = exp(i 2 x f2) ) and inserting into

(3.3.4-1):
1 1-e "i2_fl 1 e/_fl -e -/_fl

S-T l+e-i2_f_ = T e/_f2 + e-/_fl

1 isin xf2 1
T cos xf2 = T /tan xf2 = _+_ (3.3.4-5)
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Comparing the imaginary parts gives us this nonlinear relation as

1
co = _ tan (_f2) (3.3.4-6a)

or solved for _ •

1
f_ = _ arctan (co T) (3.3.4-6b)

Thus to design a filter suitable for filtering DT data, the frequency component co

that you wish to filter must be expressed in the z domain variable f2.

Digital

[H(ei2rau)l

[H(co)]

cO

NNN _ Analog
I

% cos

Fig. 3.3.4-1 Frequency Warping during the Z-Transform

3.3.5 Power Spectral Ratios

A section of the history of AZMRT that had little or no control inputs

immediately before or during its interval was chosen to represent a steady state

response. A spectral density of this steady state response was calculated and
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related to an interval of the history that had a control input present or active,

and the ratio of these were calculated. The sampling frequency, fsamp ,of the data

was 516.669 Hz, and so the spectra that could be examined was limited by the

Nyquist frequency, fn fsamt_ _ 250 Hz. This limitation was of no great- 2

importance, since the frequency band of interest was the interval from 0 to 50 Hz,

containing the first two natural frequencies of the rotor system that we hoped

were excited through a control input.

The first counter evaluated was 3110 and the time interval spanning

0 to 3.32 seconds (1200 datapoints) was taken to be the steady-state response. The

history is shown in Fig.3.3.5-1a. Its spectral density is shown in Fig. 3.3.5-1b on a

linear scale and in Fig. 3.3.5-1c on a logarithmic scale. The units for a power

spectral density are [mean square/unit of frequency].

0.5

• --, 0

-0.5

Time History

0 0.5 1 1.5 2

Time in Seconds

Fig 3.3.5-1a. Steady State Response (Ctr.3110)
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4000

3000

2000

1000-
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0 10 5020 30 40 60

Frequency (Hz)

Fig 3.3.5-1a. Power Spectral Density of the Steady State Response (Ctr.3110)
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Fig 3.3.5-1b. Power Spectral Density of the Steady State Response (Ctr.3110)

Four different subsets (a) to d) ) of counter 3110 were selected that showed

promise of containing some transient response to the control inputs. The

datasets examined are depicted in Fig. 3.3.5-2. These datasets were spectrally

analyzed and the ratio of these to the steady-state response were calculated. Fig.

3.3.5-3 shows the PSD of dataset a) on a linear scale, while Fig. 3.3.5-4 shows the

same PSD on a logarithmic scale. Calculating the ratios of these datasets in a

linear representation to the steady-state response is of course equivalent to a

subtraction of these spectras on a logarithmic scale.

Fig. 3.3.5-5 to 3.3.5-9 show the ratios of the response spectras of the subsets a) to

d) of counter 3110, with the ordinate showing the magnitude of increase in

relation to the steady state response plotted against the frequency.
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Fig. 3.3.5-4. PSD of Dataset a) (3110)
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Fig. 3.3.5-5 Ratio of the PSD of a) to the Steady State Response (3110)
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Fig. 3.3.5-6 Ratio of the PSD of b) to the Steady State Response (3110)
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Fig. 3.3.5-7 Ratio of the PSD of c) to the Steady State Response (3110)
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Fig. 3.3.5-8 Ratio of the PSD of d) to the Steady State Response (3110)
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Figs. 3.3.5-5 to 3.3.5-7 all showed two peaks in the ratios of the PSD in a

frequency ranges of 17.2-17.4 Hz and 36.5-36.8 Hz that were on the order of 600 to

5000 greater than at steady state. Increases at 1P, 2P and higher were also found

due to an increase of energy at these intervals because of an increase in the

aerodynamic forcing functions. 17.3 Hz is an integer multiple of the rotational

speed (4P) but the increase in the PSD is far greater than the increases at 1P, 2P

and 3P. The first natural mode was predicted at about 16 Hz, and it can be

assumed that these peaks represent the transient responses of the excited first

natural mode superposed with the expected excitation at 4P. The fact that the 4P

excitation should be smaller in magnitude than the 1P, 2P and 3P excitation

supports this observation. Fig.3.3.5-8 is missing this characteristic peak and the

histories responsible for these PSD's are seen to be a steady state responses at a

new energy level with the transients damped out. Table 3.3.5-1 shows the

predicted first natural frequency of the rotor blade and the frequencies at which

the peaks in the ratio of the PSD's were located along with the deviation.

Table 3.3.5-1 Predicted and suspected Location of the First Natural Frec lency

Predicted Nat.

Freq. [Hz]

(1st/2 nd)

16 / 40.9

16 / 40.9

16 / 40.9

16 / 40.9

Dataset

a)

b)

c)

d)

Location of Peak

[Hz]

(1st/2 nd)

17.22 / 36.60

17.23 / 35.91

17.19 / 35.70

17.10 / 36.60

Deviation

[%1
(1 st / 2 nd)

7.60 / -10.51

7.70 / -13.19

7.44 /-12.71

8.87 / -10.51

The deviations remain at a more or less constant level which would point to a

constant error in the rotating mode predictions.

The next counter evaluated was number 3108. The analysis technique was

the same as for the previous counter. In an attempt to find and identify the

second natural mode predicted at 40.9 Hz in this counter and to better examine

the frequency band above 30 HZ, the frequency components at 1P, 2P... were

removed by applying digital filters to the data.

The filtering scheme involved a Butterworth lowpass filter at 3 Hz and a

highpass at 50 Hz, the other filters were designed as stopband filters of varying
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bandwidths and intensities of the Butterworth (BW) and Chebycheff (CH) types.

The combination of filters that showed the best results are shown in Table 3.3.5-2

and Fig 3.3.5-10.

Filter Type

Highp. BW

BW

BW

CH

BW

CH

CH

BW

Lowv. CH

Table 3.3.5-2 Filter Combination

Order

6

3

5

6

5

8

8

6

10

Bandwidth

[Hz]

0-3

2.04 - 4.04

6.83 - 10.83

12.12- 14.12

16.90 - 18.40

19.82- 23.82

24.11 - 28.11

37.1 - 41.1

50 -

Passband

Ripple

0.5

0.5

0.5

0.1

Times

Filterd

1

2

2

3

3

2

2

1

1

Gain

[dB]

-16.8

-32.9

-17.5

-9.3

-29.8

-29.1

-9.4

1

•
I

0d
0

Filters

10 20 30 40

Mapped Frequency

Fig. 3.3.5-10 Filter Combination

50 60

This time a larger time interval from 0 to 3.87 sec (2000 datapoints), was

chosen to represent the steady-state response, since the second natural mode

would tend to be damped out fairly quickly. Examining longer histories increases

the chances of having some transient response of the second mode present in the

data. The interval shown in Fig. 3.3.5-11a and Fig. 3.3.5-11b were filtered and then
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examined for transient responses. This steady-state response is shown in Fig.

3.3.5-12a. Its spectral density is shown in Fig. 3.3.5-12b on a linear scale and in Fig.

3.3.5-12c on a logarithmic scale.

Again, the ratio of the transient response to the steady-state was calculated

and plotted against the frequency. These ratios are shown in Figs. 3.3.5-13 to 3.3.5-

18.
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Fig 3.3.5-12a. Steady State Response (Ctr.3108)
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Fig 3.3.5-12b. PSD of the Filterd Steady State Response (Ctr.3108)
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Fig 3.3.5-12c. PSD of the Filterd Steady State Response (Ctr.3108)
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Fig. 3.3.5-13 Ratio of the PSD of a) to the Steady State Response (3108)
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Fig. 3.3.5-14 Ratio of the PSD of b) to the Steady State Response (3108)

80

60

40

20

0 ""

0 10 20 30 40 50 60

Frequency (Hz)

Fig. 3.3.5-15 Ratio of the PSD of c) to the Steady State Response (3108)

91



3O

20

0
0 10 20 30 40 _0

Frequency (Hz)

Fig. 3.3.5-16 Ratio of the PSD of d) to the Steady State Response (3108)
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Fig. 3.3.5-17 Ratio of the PSD of e) to the Steady State Response (3108)
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Fig. 3.3.5-18 Ratio of the PSD of f) to the Steady State Response (3108)
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Discussion of the Power Spectral Density Ratios

All examined spectra ratios show a peak at the frequency interval of 37.9 to

40.7 Hz, exept fot the data subset f) that had a peak at 43.9 Hz. The magnitude

increase is less than the increase for the previous dataset, since the filter at the

37-41 Hz band damped both the steady state and the transient responses with a

gain of -9.4 dB. The increase turned out to be on the order of 15 to 100 opposed to

the increase at counter 3110 of 600-5000. Again, the second natural frequency was

expected to be at 40.9 I-Iz, and it can be assumed that the peaks visible in Figs.

3.3.5-13 to 3.3.5-18 are a result of this natural mode being excited. Table 3.3.6-1

shows the found and expected second natural frequency.

Table 3.3.6-1

Predicted Nat.

40.9

4O .9

40.9

40.9

40.9

40.9

?redicted and Measured 2 nd Natu_

Dataset

a)

b)

c)

d)

e)

f)

L--oocation of Peak

(2nd)

40.56

37.97

38.24

37.97

39.65

43.92

Deviation [%]

(2 nd)

-0.83

-7.16

-6.50

-7.16

-3.06

7.38

Once again it is important to note that not all examined histories exhibited a

peak in the frequency band of 39 to 41 Hz, but showed increases only in the

frequency bands of 1P, 2P and up at varying intensitys and power levels. This

again would correspond to a new steady state response at a new energy level.

The results of the spectral energy analysis show great promise in being

used to identify the transients of the natural modes buried in the response

histories and warrant further examination. This analysis showed a definite

presence of the first natural mode at about 17.2 Hz. The second mode was placed

at 36.6 Hz for counter 3110 and at 37.9 Hz for counter 3108. Examining further

counters in future research would lead to even better results, especially if the

counters were cross-compared in some way. Another possibility would be to

construct a transfer function for the assumed steady state response and one for

the transient response and to draw conclusions from the different numerator
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polynominals, since the denominator polynominals would have to be the same

for the same system.

A reason that the predictions of the rotating natural modes are too high in

general could be explained by Fig. 3.3.6-2. As the damping increases, the natural

modes shift slightly to the lower end of the spectrum. Our analysis neglects

damping effects, but in the case of the flight test measurements, aerodynamic as

well as structural damping is present and may account for a phase shift.

Magnitude response

6

" es

! !05 15
O

Non-dimensional natural frequency c0"--_

I

2.5

Fig. 3.3.6-2 Magnitude of Frequency - Response as a Function of Damping
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Appendix A

Tables of the First Eigenvectors of Beams with Different Boundary

Conditions and Geometric Properties
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Cantilevered Constant Beam

Coord

0.0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

First iMode

0.00000

0.0167628

0.0638290
0.136403

0.229766

0.339372

0.460966

0.590711
0.725340

0.862316

1.00000

Second I ThirdMode Mode

0.00000

-0.0928322

-0.301486

-0.527415

-0.685807

-0.717123

-0.594037

-0.322196

0.0654301

0.520821
1.00000

0.00000

0.229821

0.610493

0.767384

0.537735

0.0292471

-0.471250

-0.666258

-0.410146

0.216292

1.00000

Coordinate

0.00000

0.0666667

0.133333

0.200000

0.266667

0.333333

0.400000

0.466667

0.533333

0.600000

0.666667

0.733333
0.800000

0.866667

0.933333
1.00000

Hinged Constant Beam

I First ModeRigid Body

0.00000

0.0666667

0.133333

0.200000

0.266667

0.333333
0.4000O0

0.466667

0.533333

0.600000

0.666667

0.733333

0.800000

0.866667
0.933333

1.00000

I Second Mode I

0.00000

-0.176168

-0.342705

-0.484881

-0.590631

-0.651757

-0.663542

-0.624366
-0.535326

-0.399852

-0.223324

-0.0129609

0.223915

0.477577

0.738882

0.998499

Third Mode ] Fourth Mocle

0.00000

0.312006

0.581464

0.717196

0.687227

0.507443

0.224895

-0.0968230
-0.390120

-0.593871

-0.661815

-0.568864

-0.315344

0.0708468

0.534149

0.993338

0.00000

-0.427397

-0.734409

-0.664977

-0.283391

0.203671

0.580202

0.701849
0.532819

0.146648

-0.301164

-0.620699

-0.647359
-0.305840

0.329654

0.986899
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Coor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8

0.9

1.0

Cantilevered Tapered Beam

First Mode

0.00154295

0.0147688

0.0577830

0.126396

0.216554

0.324336

0.445950

0.577741

0.716185
0.857889

1.00000

Second Mode

-0.0156330

-0.0360000

-0.125706
-0.220433

-0.272842
-0.251821

-0.141774

0.0581017
0.334526

0.660860

1.00000

Third Mode

0.00672200
0.0565879

0.174609

0.201682

0.0921422

-0.0906786

-0.232354

-0.218733

0.0192293

0.467178

1.00000

Coord

0.00000

0.066667

0.133333

0.200000

0.266667

0.333333

0.400000

0.466667

0.533333

0.600000

0.666667

0.733333
0.800000

0.866667

0.933333
1.00000

Hinged Tapered Beam

I First ModeRigid Body

0.00000

0.0666667

0.133333

0.200000

0.266667
0.333333

0.40000O

0.466667

0.533333

0.600000

0.666667

0.733333

0.800000

0.866667
0.933333

1.00000

I Second Mode I

0.00000

-0.0567526

-0.108299
-0.144760

-0.159416

-0.148481

-0.110661

-0.0466947

0.0410851

0.149206

0.273503

0.409567

0.553193

0.7O0830
0.850027

1.00000

Third Mode I Fourth Moae

0.00000

O.0582599

0.102849

0.103761

0.0594524

-0.0140151

-0.0921840

-0.149522

-0.164856

-0.124921

-0.0260174

0.126213

0.318904
0.539640

0.763966

1.00000

0.00000

-0.0548090

-0.0847653

-0.0385510

0.0438681

0.102800

0.0993520

0.0312482
-0.0696861

-0.151979

-0.164524

-0.0757709

0.1143O3

0.375812

0.670562

1.00000
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Appendix B

Measured Residuals of the NASA - Shake Test

(lSt 5 Flapping Modes)
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Acceloro-
meter

position
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1st

Residue

(m=milli)
2.443
1.520
1.605
1.046
870.050m
864.000m
340.000m
259.000m
-113.000m
-259.110m
-468.700m
-587.690m
-932.680m
-986.740m
-1.370
-1.164
-1.336
-1.407
-1.409
-1.361

Flap
Acceloro-

meter

position
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Residue

(m=milli)
-1.611
-1.349
-1.362
-1.291
-1.198
-1.024
-.843.000m
-776.000m
-480.300m
..484.000m
36.956m
-108.000m
358.937m
370.200m
932.668m
858.222m
1.319

Acceloro-
meter

position
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2O

2nd Flap
Residue Acceloro-

meter

(m=milli) position
-1310 21
-2.692 22
-610.000m 23
-1.413 24
440500m 25
-262.500m 26
1.339 27
661.246m 28
2.256 29
1.392 30
2.500 31
1.857 32
2.490 33
1.718 34
2.210 35
1.485 36
1.420 37
766.500m 38
600.000m
-115.430m

Residue

(m=milli)
ii

-265.000m
-955.800m
-1.015
-1.773
-1.441
-2.153
-1.722
-2.219
-1.454
-2.192
-852.000m
-1.595
32.00m
-721.930m
1.053
499.600m
1.068
-1.178
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meter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2O

(m=milli)

3.530
976.000m
726.000m
-710.700m
-802.000m
-1.864
-1.940
-2.240
-2.153
-1.736
-1.605
-705.000 m
-407.000 m
614.000 m
926.000 m
1.589
1.982
2.175

meter

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

(m=milli)

2.220
552.00 m
1.297
-856.000 m
76.000 m
-2.294
-1.029
-3.217
-1.772
-3389
-1.710
-2.245
-913.000 m
-895.000 m
572.000 m
741.7000 m
-2.132

Fla

meter

/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(m=milli)

3.140
2.356
1.660
527.000m
393.000m
-1.319
5.000m
-1.425
416.000m
724.000m
1.530
306.000m
1.602
1.132
1.408
1.351
425.000m
874.000m
-966.000m
35.500m

meter

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

(m=milli)

-2306
-700.O00m
-2.219
-936.000m
-2.763
-420.000m
-1.862
_34.000m

-1.013
1.521
-706.000m
1.960
-1250
1.642
-2.210
698.000m
414.000m
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Acceloro-
meter

position
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5th Flap
Residue Acceloro-

(m=milli)
-2.5OO
-2.983
1.250
-78.000m
3.040
1.042
2.880
681.000m
1.190
-718.000m
-408.000m
-1.870
-498.000m
-1.774
830.000m
-559.000m
2.349
888.000m
2.681
1.466

meter

position
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37
38

Residue

(m=milli)
1.243
783.000m
-1.081
..636.000m
-2.641
-1A97
-2.510
-1.074
-1.060
370.000m
419.000m
1.691
258.000m
1.829
-1.077
659.000m
709.000m
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Appendix C

Finite Element Program for Rotating Structures

Example for Hinged UH- 60A Rotor Blade
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The Finite Element Program was written on a NeXT computer using the

MATHEMATICA language (see Ref. C-6). The authors native language was

German, so some of the internal variables are mnemonics derived from

German. These are listed below to enhance understanding of the code.The

variables used in the code are consistent to those in the report, Greek symbols are

spelled out. All other variables are self-explanatory or are defined in the

comments. Three different fonts were used in the listing to help discern between

input, output and comments:

Code Text

Comment

Output Text

Variables:

anzahl

PSI

elementlaenge

elementlaengez

ort

mquerz, mquer

he, n

kele, kstr

mele, mstr

schleife

aktele

zwisch, zw

letztespalte

kuudach

mue

teiler

bild

nust

mnust

lges

parameter governing the amount of plots

rotational parameter _t'

length of the finite element

as above, in reference frame "z"

location along the blade or beam

mass distribution [ km_]

number of elements

part of the element (ele) and the structure (str) stiffness

matrix

see above, with mass matrix

loop variable

current element

an intermediate result

last column
A
Kuu , reduced stiffness matrix

divisor

picture

numerical derivative of u, the eigenvector

matrix of the above

total length

103



Structure of Example Program,]

Preprocessor

Input data of structure
- divide structure
- define element length
- siffness and mass distribution

- rearrange coordinates to run
from root to tip

Assembly of the System Matrices
- define element matrices
- assemble structure

- static condensation

Calculate Eigenvalues and Eigenvectors

- Eigenvalues
- for well conditioned matrices
- with normalized matrices

- Eigenvectors
- calculation
- normalize and calculate the system matrix

- plot eigenvectors

i  e ot tor1otating the Structure
- calculate the derivatives of the eigenvectors

- calculate the dynamic stiffness matrix

Output Section

Output
- calculate the eigenvalues of the rotating

structure
- find the rotating eigenvectors

- transform back to physical coordinate

system
- add dynamic stiffness
- find new system matrix

- plot non-rotating and rotating eigenvectors
- find polynomial approach to eigenvectors

- plot polynomials
- plot comparison of rotating and

non-rotating eigenvectors

Save Data to Optical Disc
J
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PREPROCESSOR BEGINNING
Th. Breitfeld 1990

DATA
Parameter

anzahl=5;
number of modes to be considerd : modes
modes=5

PSI=I.6;
Structuredata
The Blade is divided into 3 Parts
Part 1 " 0....2.0 m (nl Elements)
Part 2 : 2,0...6,0 m (n2 Elements)
Part 3 : 6,0 .... 7,29 m (n3 Elements)
Tip of Blade: xi=O
# of Elements : n
11 =1.29

12=4

13 =2

Print[ll+12+13]

n1=25
n2=20

n3 =25

n=nl+n2+n3

he=n,

Lengths of the Single Elements
Part 1 (tip...)

ii=0;
Do[

ii=ii+l;

elementlaenge[ii] =11 / nl;

,in1}]

Part 2

Do[
ii=ii+l;

elementlaenge[ii]=12/n2;

,{n2}]
Part 3 (...root)

Do[
ii=ii+l;

elementlaenge[ii]=13/n3;

,{n3}]
Coordinate Table xi (Tip .... Root)

ii=.

Table[xi[ii] =0,{ii,l,n}];

xi[1]=N[elementlaenge[1]];

ort=l;
Do[

ort=ort+l;
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xi[ort]=(xi[ort-1]+N[elementlaenge[ort]]) ;

,{n-l}]
Stiffness Tables [cm^4]

ii=l;
"TIP VALUE";

While[xi[ii] <= .1016 , {i[ii]=308 10^(-8), ii++}]

While[xi[ii] <= .2972 , {i[ii]=370 10^(-8), ii++}]

While[xi[ii] <= .4928 , {i[ii]=614 10^(-8), ii++}]

While[xi[ii] <= .8222 , {i[ii]=826 10a(-8), ii++}]

While[xi[ii] <= 1.1516, {i[ii]=929 10^(-8), ii++}]
While[xi[ii] <= 1.5555, {i[ii]=945 10a(-8), ii++}]

While[xi[ii] <= 1.9594, {i[ii]=978 10a(-8), ii++}]

While[xi[ii] <= 2.3633, {i[ii]=978 10^(-8), ii++}]

While[xi[ii] <= 2.8075, {i[ii]=978 10^(-8), ii++}]

While[xi[ii] <= 3.2517, {i[ii]=964 10^(-8), ii++}]

While[xi[ii] <= 3.6959, {i[ii]=961 10a(-8), ii++}]

While[xi[ii] <= 4.1401, {i[ii]=961 10^(-8), ii++}]

While[xi[ii] <= 4.5668, {i[ii]=933 10^(-8), ii++}]

While[xi[ii] <= 4.9935, {i[ii]=924 10^(-8), ii++}]
While[xi[ii] <= 5.4202, {i[ii]=924 10^(-8), ii++}]

While[xi[ii] <= 5.8469, {i[ii]=924 10a(-8), ii++}]

While[xi[ii] <= 6.2736, {i[ii]=924 10^(-8), ii++}]

While[xi[ii] <= 6.9086, {i[ii]=1149 10a(-8), ii++}]

While[xi[ii] <= 7.3531, {i[ii]=3900 10^(-8), ii++}]
"ROOT VALUE";

Mass Tables [kg/m]

ii=l;
"TIP VALUE';

While[xi[ii] <=

WhUe[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <=
While[xi[ii] <= 1.5555, {me

While[xi[ii] <= 1.9594, {me

While[xi[ii] <= 2.3633, {me

While[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <=

While[xi[ii] <= 4.9935

While[xi[ii] <= 5.4202

While[xi[ii] <= 5.8469
While[xi[ii] <= 6.2736

While[xi[ii] <= 6.9086
While[xi[ii] <= 7.3531
"ROOT VALUE";

.1016 , {mquer[ii]=3.99, ii++}]

.2972 , {mquer[ii]=12.55, ii++}]
.4928 , {me uer[ii]=16.75, ii++}]

.8222 , {mquer[ii]=17.79, ii++}]
1.1516, {me uer[ii]=16.27, ii++}]

uer[ii]=13.03 , ii++}]

uer[ii]=13.1 , ii++}]

uer[ii]=13.17, ii++}]

2.8075, {me .,er[ii]=11.65, ii++}]

3.2517, {mquer[ii]=10.55, ii++}]

3.6959, {mquer[ii]=10.41, ii++}]

4.1401, {mquer[ii]=10.62, ii++}]

4.5668, {mquer[ii]=10.34, ii++}]

, {mquer[ii]=10.34, ii++}]

, {mquer[ii]=10.34, ii++}]

, {mquer[ii]=10.20, ii++}]

• {mquer[ii]=10.27, ii++}]

, {mquer[ii]=10.34, ii++}]

• {mquer[ii]=30.06 , ii++}]
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Testdata

ro=7800

ii=0;
Do[

ii=ii+l;
e[ii]=0.68 10^11;

,(nil
The Coordinate Shuffler

xi - tip ..... root changes to xi - root...tip
x -root...tip
ii=.
Table[x[ii]=0,{ii, l,n}];

ii =0;

Do[
ii=ii+l;

x[ii] =(11 +12+13)-xi[ne-ii];

,in-l}]

x[ne]= 11+12+13;

ii=0;

Do[
ii=ii+l;

xi[ii]=x[ii];

,{n}]
Renumber the values for stiffness and mass and elementlength...

ii=0;

Do[
ii=ii+l;

iz[ii] =i[ne+l-ii];

mquerz[ii]=mquer[ne+l-ii];
elementlaengez[ii] =elementlaenge[ne+l-ii];

,In}]
Back to the org. names

ii=0;
Do[

ii=ii+l;

i[ii]=iz[ii];

mquer[ii]=mquerz[ii];
elementlaenge[ii] =elementlaengez[ii];

,{n}]

Hinged-Free
dof=n 2 +1

he=n;
PREPROCESSOR END
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Assembly of the FEM-Stiffnessmatrix
Element stiffness matrix
ne= number of the element
" 4x4 matrix ";

kel=Array[kele,{4,4} ];

kele[1,1]=12 a
kele[1,2]=6 elemenflaenge[aktele] a

kele[1,3]=-12 a
kele[1,4]=6 elementlaenge[aktele] a
kele[2,2]--4 elemenflaenge[aktele] elementlaenge[aktele] a

kele[2,3]=-6 elemenflaenge[aktele]a

kele[2,4]=2 elemenflaenge[aktele] elementlaenge[aktele]a

kele[3,3]=12 a
kele[3,4]=-6 elementlaenge[aktele]a

kele[4,4]=4 elementlaenge[aktele] elementlaenge[aktele]a;

run=l;

Do[
run--run+l;

U=run-1;

schleife=0;

Do[
schleife=schleife+l;

kel[[run,schleife]] =kel[[schleife,run]];

,{11}];

,{3}];
Assembly of the Structure
Set kstr to zero

kstr=Array[kst,{dof,dof}];
run=0;

schleife=0;

Do[
schleife=0;

run=run+l;
Do[

schleife=schleife+l;

kstr[[run,schleife]] =0;

,{doff]
,{dofll;
first element (hinged boundary conditions)

aktele=l;
a=e[aktele] i[aktele] / (elementlaenge[ aktele]^3);

kstr[[1,1]]=kel[[2,2]]
kstr[[1,2]]=kel[[2,3]]

kstr[[1,3]]=kel[[2,4]]

kstr[[2,2]]=kel[[3,3]]

kstr[[2,3]]=kel[[3,4]]

kstr[[3,3]] =kel[[4,4]];
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second until

run=l;
faktor=-2;

Do[

n-th element

run=run+l;

aktele=run;
faktor=faktor+l;

index=aktele+ faktor+l;

a=e[aktele] i[aktele] / (elementlaeng e[aktele]^3);
kstr[[index, index] ]=kstr[[index,index]] +kel[[1,1] ];

kstr[[index,index+l]] =kstr[ [index,index+l] ]+kel[[1,2]];
kstr[[index,index+2]] =kstr[[index,index+2]] +kel[[1,3]];

kstr[[index,index+3]] =kstr[ [index,index+3]]+kel[[1,4]];

kstr[[index+l,inclex+l]]=kstr [[index+l,index+l]] +kel[[2,2]];

kstr[[index+l,index+2]]=kstr[[index+l,index+2]]+kel[[2'3]];

kstr[[index+l,index+3]]=kstr[[index+l,index+3]]+kel[[2,4]];

kstr[[index+2,index+2] ]=kstr[[index+2,index+2]] +kel[[3,3]];

kstr[ [index+2,index+3]]=kstr[[index+2,index+3]] +kel[[3,4]];

kstr[[index+3,index+3]]=kstr[[index+3,index+3]] +kel[[4,4]];

,{ne-1}l

Symmetry
matrix=kstr;

zwisch=Transpose[matrix];
matrix=matrix+zwisch;

ii=0;

Do[
ii=ii+l;
matrix[[ii,ii]] =matrix[ [ii,ii] ]-zwisch[[ii,ii]];

,{dofl];
kstr=matrix;

Assembly of the mass matrix
Set reel to zero

run=0;

schleife=0;

Do[
schleife=0;
run=run+l;

Do[
schleife=schleife+l;

mel[[run,schleife]] =0;

,{4}1

,{411,
aktele=.;
mel[[1,1]] =mquer[aktele] elementlaenge[aktele] / 2;

mel[[3,3]] =mquer[aktele] elementlaenge[aktele] / 2;
set mstr to zero

mstr=Array[mst,{dof, dof}];
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run=0;
schleife=0;

Do[
schleife=0;
run=run+l;

Do[
schleife=schleife+l;

mstr[ [run, schleife]] =0;

,{doff]

,{dofl];
first element (Cantilever boundary conditions)
aktele=l;

mstr[[1,1]]=mel[[2,2]]

mstr[[2,2]]=mel[[3,3]];
second until n-th element

run=l;
faktor=-2;

Do[
run=run+l;

aktele=run;

faktor=faktor+l;

index=aktele+faktor+l;

mstr[[index,index]]=mstr[[index,index]]+mel[[l,1]];

mstr[[index+1,index+1]] =mstr[[index+l,index+l ]]+me][[2,2]];

mstr[[index+2,index+2]]=mstr[[index+2,index+2]]+mel[[3,3]];

mstr[[index+3,index+3]]=mstr[[index+3,index+3]]+mel[[4,4]];

,{ne-1}];
Static Condensation

Massmatrlx

Rearrange the DOFs

(Rearrange Elements Naturally And Transform Equations
to Reduced Stiffness matrices)

m=Array[mm,{dof, dof}];
run=0;

schleife=0;

Do[

schleife=0;

run=run+l;

Do[

,{doff]

schleife=schleife+l;

m[[run,schleife]]=0;

m[[index]l=mstr[[run+l]];

index=index+l;
run=run+2

,{dot'}l;
colums

run=l;

index=l;

Do[
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,{(dof+1)/2-1}];
rOWS

run=0;

Do[
run=run+l;

m[[run,run]]=m[[run,(2 run)]];

m[[run,(2 run)]]=0;
,{((dof+_)/2)-l}]
Structurematrix

rearrange the DOFs
k=Array[kk,{dof, dof}];

schleife=0;

run=run+l;
Do[

run=0;

schleife=0;
Do[

schleife=schleife+l;

k[[run,schleife]]=0;

,{dof}]
,{doff];
rows, coils

letztespalte=kstr[[doff ];
run=0;

Do[
run=run+l;

k[[((dof+l)/2-1)+run]]=kstr[[2 run -1]];
k[[run]]=kstr[[(2 run)]];

,{(dof-1)/2}];

k[[dof]]=letztespalte;

kstr=Transpose[k];
letztespal te=kstr[ [doff ];
run=0;

DO[
run=run+l;

k[[ ((dof+ 1)/2-1) +run]] =kstr[ [2 run -1 ]];
k[[runll=kstr[[(2 run)]];

,{(dof-1)/2}];

k[[dof]]=letztespalte;

k=Transpose[k];
Condensation

Massmatrix
remove zeros

ii=0;

Do[

ii=ii+l;

list=m[[ii]];

zw=Par tition[list,(dof-1)/2];
m[[ii]]=zw[[1]];

111



,{(dof-1)/2}];

ii=.;

m=Table[m[[ii]],{ii, l,(dof-I)/2}];
Stiffness matrix

zw=Array[zz,{dof, dof} ];

the following variables correspond to those in chapter 2.I.5 in their notation
kuu=Array[uu,{ (dof-1) / 2,( dof-1) / 2} ];

kuf =Arra y[uf ,{ (dof + l ) / 2,( dof-1) / 2}];

kfu=Array[fu,{(dof-1) /2,(dof +l ) /2}];
kff=Array[ff,{(dof+l)/2,(do f+1)/2}];
ii=0;

Do[

,{doff];
ii=0;

Do[

ii=ii+l;

kuu[[iill=zw[[ii]][[1]];
,{(dof-1)/2}];

ii=ii+l;

zw[[ii]]=Partition[k[[ii]],(dof_l)/2];

ii=0;

Do[

,{(dof+l)/2}];

ii =0;
Do[

,[doff]

ii =0;

Do[

,{(dof-1)/2}]

ii=0;
Do[

ii=ii+l;

kuf[[ii]]=zw[[ii+(dof-1)/2]][[1]];

ii=ii+l;

rot[ii] =Rota teLeft[k[[ii] ],(dof-1) / 2];
zw[[ii]] =Partition[rot[ii],(dof+l)/2];

ii--ii+l;

kfu[[iill=zw[[iil][[ill,

ii=ii+l;

kff[[ii]]=zw[[((dof-1)/2) +ii]][[ll];
,{(dof+l)/2}]

The reduced Stiffness matrix;

kuudach= kuu- Transpose[kufl. Inverse[kffl. kuf;
k=kuudach;

dof=(dof-1)/2;
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Search for the Eigenvalues
Normal Apprch (well conditioned matrix)
mm=Inverse[m];

eig=Eigenvalues[k, mm];

eig ^.5;
With the normalized matrices

the letter "n" or the preposition "norm" depicts a normalized entity...

matrix=.

matrix=k

dmatrix= matrix Transpose[matrix]

lamdas=Eigenvalues[ dmatrix]

qnorm=Max[lamdas]
knorm=qnorm^.5
nk=matrix 1/knorm

Min[Abs[Eigenvalues[nk]] ]
if this value is << 1 ,then the matrix is indeed singular
matrix=.

matrix=m

dmatrix= matrix Transpose[matrix]

lamdas=Eigenvalues[dmatrix]

qnorm=Max[lamdas]
mnorm=qnorm^.5
nm=matrix 1/mnorm;

nmm=Inverse[nm];

nk. nmm;

mue=Eigenvalues[%];

lamq=mue knorm/mnorm;
%^.5
lower eigenvalues (roots) belong to the lower eigenfunctions

roots=lamq;
Reinsertion of the Eigenvalues into the matrices

lamq=.;

eigprob=k - lamq IdentityMatrix[dof] m;
ii=0;

Do[

ii=ii+l;

lamq=roots[[dof+l-ii]];
{d,p}=Eigensystem [eigprob];

y=Table[0,{dof}];

"the lowest term of "d" must be found, sothe correct

position of y is set to 1 ";

pos=0;

jj=l;
tst=Abs[d];

Do[
If[tst[[jjl] ==Min[tstl,pos =jj,pos=pos];

jj=jj+l;
,{dof}];
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y[[posll=l;
uIiil=y, p;

,{dof}l
"Normalizing the eigenvectors"
run=O

Dot
run=run+l_
if[Abs[Max[u[run]l]>Abs[Min[u[run]ll,teiler=Max[u[run]],teiler=Min[u[run]]

1;
u[run]=u[run] 1 / teller;

,{n}]
precede the eigenvectors with a zero (for better plotting):

ii=0;

Do[
ii=ii+l;

akt=u[ii];

uplot[ii] ={0,akt};

uplot[ii] =Flatten[uplot[ii]];
,{dofl];

Variables to this point;
u(i) - normalised eigenvektors

uplot(i) - normalised eigenvektors w/O at beginning (for plotting)

polyu(i) - polynominal apprch for the above
m - kondensed mass matrix
k -kondensed stiffness matrix

roots - squares of the eigenfrequencies (==lamq)

dof -degrees of freedom
n -number of finite elements(==dof)

anzahl -plotting parameter
Generalised Stiffness and Mass Matrix

ii=.

evek=Table[u[ii],{ii,l,dof} ];
U=MatrixForm[evek];

UNORM=Transpose[evek];

mgen=Transpose[UNORM] • m. UNORM;

kgen=Transpose[UNORM], k. UNORM;
omegaqu=Table[kgen[ [nn,nn] ]/mgen[[nn,nn]],{nn, l,n}];
% ^(.5)
draw the eigenvectors

run=0;

Do[
run=run+l;
"coordinate of the current element";

xi[1] =elemenflaenge[1];

ort=l;
Do[

ort=ort+l;
xi[ort]=xi[ort-1]+elementlaenge[ort];

,{n-1}];

datapairs=Table[coords,{n}];
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Dot
ii=0;

ii=ii+l;

datapairs[[iil] ={xi[iil,u[run] [[ii]]};

,{n}],
bild[run]=ListPlot[datapairs];

,{anzahl}]
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The ROTATOR
The Derivatives of the Eigenvektors
Procerdure for obtaining the numerical derivatives

ii=0;

Do[
ii=ii+l;

mnust=Array[nust,{dof, dof}];
deltax=l/n;

"first';
nust[ii,1]=u[ii][[1]]/( xi[1]/lges);
"las t ";
nust[ii,dof]=(u[ii][[dof]]-u[ii][[dof-1]]) / ( xi[dof]/lges-xi[dof-1]/lges);

"others';
run=l;

Do[
run:run+l;

nust[ii,run]=(u[ii][[run+l]]-u[ii][[run-1]] ) / ( xi[run+l]/]ges-xi[run-l]/lges);

,{dof-2}];

ax[ii] =Table[nust[ii,kk],{kk, l,dof} ]; "

,{modes}];

mnust=Array[ax,{modes}];

set gamma (n x n) = 0
schleife=0;

run=O;

Do[
schleife=schleife+l;

run=0;

Do[

,{nil;
,{n}]

deltax=.

run=run+l,

gamma[schleife,run]=0;
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deltax[1]=xi[1]/lges;

deltax[n]=xi[n]/lges-xi[n-1]/lges;

ii=l;
Do[

ii=ii+l;
deltax[ii]=xi[ii+l]/lges-xi[ii]/lges;

,{n-2i]
check if sum of deltax=l
ii=.

Sum[deltax[ii],{ii,l,n}]

0.996104252400547

jj=.
mm=.;
mm=0;

rr=0;

Do[
rr=rr+l;
Print[rr];

mm=0;
Do[

mm=mm+l;

gamma[rr,mm]=Sum[m[[i,i]] xi[i]/lges Sum[mnust[[rr,jj]]
mnust[[mm,jj]] deltax[jj], {jj,l,i}], {i,l,dof}];

,{modes}];

,{modes}l;
1
2
3
4
5

Grm=Array[gamma,{dof, dof}];

omega=.;
kdyn=omega^2 Grm;

Output section
omega=0;

kges=kgen+kdyn;
kges. Inverse[mgen];

Eigenvalues[%];

freq=%a.5;

freq=Sort[%]
wnl=freq[[2]]

68.41862788567951
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run=0;

Do[
omega=(run 4/10)^.5 wnl;
Print[N[run 4/10]];

kges=kgen+kdyn ;

z=kges. Inverse[mgen];

tt=Eigenvalues[z];
xx=tt^.5;
xx=Sort[xx];

Print[xx[[2]]];

xxx=(xx[[2]]/wnl)^2;

Print[xxx];

Print[""];
run=run+l;

,{6}]

O.
68.4186

I.

0.4
135.412

3.91711

0.8

178.192

6.7831

1.2
212.264

9.6251

1.6

241.444

12.4533

.

267.382

15.2727

omega=0;

kges=kgen+kdyn;

z=kges. Inverse[mgen];

Eigenvalues[z];

freq=%^.5;

freq=Sort[%]

wn2=freq[[31]

225.3581507539162
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run=0;

Do[

omega=(run 4/10)^.5 wnl;
Print[N[run 4/10]];

kges=kgen+kdyn ;

z=kges. Inverse[mgen];

tt=Eigenvalues[z];
xx=ttA.5;

xx=Sort[xx];

Print[xx[[3]]];

xxx=(xx[[3]]/wn2)^2;
Print[xxx];

Print[""];

run=run+l;

,{6}]

0.
225.358

1.

0.4

297.736

1.74549

0.8
354.318

2.47195

1.2

402.216

3.18545

1.6

444.465

3.88981

Q

482.682

4.58749

Find the Rotating Eigenforms

wnl

68. 41862788567951

Rotational Speed

omega=PSI^.5 wnl
86.5434794009031

ii=.

UNORM=Transpose[Table[u[ii],{ii,l,dot'}]];
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tbl=Inverse[Transpose[UNORM]] • kgen. Inverse[UNORM];

tb2=Inverse[Transpose[UNORM]] kdyn Inverse[UNORM];

tbges=tbl+tb2;
tbmass=Inverse[Transpose[UNORM]] • mgen. Inverse[UNORM];

c=Inverse[tbges];

d=c.tbmass;
[eval, evek} =Eigensystem[d];

Urot=Transpose[evek];
"Urot=strukturmatrix (not Normalized)"

"urot[i]=Eigenvektorens (rotating) "

run=O

Do[
run=run+l;

urot[run]=evek[[run]];

MatrixForm[urot[run] ];

,{n}]

"Normalizing"
run=0

13o[
run=run+l;
If[Abs[Max[urot[run] ]] >Abs [Min[urot[run] ]],teiler=Max[urot[run] ],teiler=Min[urot[

run]]];
urot[run]=urot[run] / teiler

,{n}]

"formulate the rotating structure matrix"

run=0;

Do[
run=run+l;
zwisch=Table[urot[nn],{nn,l,n}];

,{n}l
UNORM=MatrixForm[Transpose[zwisch] ];

mgenrot=Transpose[Urot] • tbmass. Urot
mgenrot=Table[If[mgenrot[[kk,j]]<10^('l 0),0,mg enr°t[[kk'j]]]'{kk'n}'{j'n} ]

MatrixForm[mgenrot];

kgenrot=Transpose[Urot] • tbges. Urot
kgem-ot=Table[If[kgenrot[[kk,j]]<10^ (-6),0,kgenr°t[ [kk'j ]]]'{kk'n}'{j'n}l

MatrixForm[kgenrot];

omegaqurot=Table[kgenrot[[nn,nn]]/mgenrot[[nn,nn]],{nn'l'n}];

Sort[% A(-5)]

(1/eval)^.5
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I'lot nonrotating eigenvectors

run=O;

Do[
run=run+l;
"coordinate of the current element';

xi[1]=elementlaenge[1];

ort=l;
Do[

ort=ort+l;

xi[ort] =xi[ort-1] +elemenflaenge[ort];

,{n-1}];
datapairs=Table[coords,{n}];

ii=0;
Do[

ii=ii+l;

datapairs[[iil]={xi[ii],u[run][[ii]]};

,{n}];

bild[run] =ListPlot[datapairs];

dp[run] =datapairs;

,{anzahl}]
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rotating eigenvectors

run=O;

Do[
run=run+l;

"coordinate of the current element';
xi[1]=elementlaenge[1];

ort=l;
Do[

ort=ort+l;
xi[ort]=xi[ort-1]+elementlaenge[ort];

,{n-l}];

datapairs=Table[coords,{n}];
ii=O;
Do[

ii=ii+l;

datapairs[[ii]]={xi[ii],urot[run] [[ii!]};

,{n}];

bildrot[run]=ListPlot[datapairs];

dprot[run] =datapairs;
,{anzahI}]
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"polynominal approach non-rotating"

run=0

ii=.

X _ .

Do[
run=run+l;

"degreee of approach: Nr. of eigenform+3";

polyu[run] =Fit[dp[run],Table[x^ii,{ii,O, run+3}],x];

,{anzahl}]
ruN=O

Do[
run=run+l;

fkt[run]=Plot[polyu[run],{x,0,1ges}];

,{anzahl}]
1

0.8

0.6

0.4

0.2

•i Z 3 4 5 6 7

1

0.75

0.5

0.25

-0.25

-0.5

-0.75

I I I I I

124



i

O. 75

0.5

O. 25

" rotating"
run=0

ii=.

X---_.

Do[
run=run+l;

" #eigenform+2 "',

polyurot[run]=Fit[dprot[run],Table[x ^ii,{ii,0,run+2}],x];

,{anzahl}]

lges
7.29
run=O

Do[
run=run+l;

fktrot[run] =Plot[polyurot[run],{x,0,1ges} ];

,{anzahl}]
1
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Compare the non-rotating and the rotating eigenforms
run=O

Do[
run=run+l,
Show[ fkt[run],bildrot[run],fktrot[run]];

,{anzahl}]
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0.5

O. 25

-0.25

-0"5 l-0.75 ..

End ROTATOR

Save data

Write["nrothil",u[1]]
Write["nrothi2",u[2]]

Write["nrothi3 ",u[3]]

Wri te["nrothi4",u[4] ]

Write["nrothi5",u[5]]

Write["rothil ",urot[1]]

Write["rothi2",urot[2]]

Write["rothi3",urot[3] ]

Write["rothi4",urot[4]]

Write["rothi5",urot[5]]
ii=.

xi70 =N[Table[xi[ii],{ii, l,n}] ]

Write["xi hin (70)",xi70]
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INSTR_ BLADE EXPERIMENTS USING A LIGHT AUTOGIRO
Robert M. McKillip, Jr., Assistant Professor
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Results from a program to instrument the
rotor blades of a light autogiro are described.
The work was initiated to provide additional
data on rotor dynamic response as well as

investigate practical implementation issues on
the use of blade-mounted instrumentation for
rotor state feedback. A description of the
aircraft and rotor electronics hardware design
and installation is given, along with results to
date from the initial flight test program for

complete system check-out.

Recent attempts to expand both the

fidelity of engineering models for rotorcraft
systems and the frequency bandwidth for
helicopter flight controllers have required
more accurate models of coupled rotor and

airframe dynamics. The complexity of the

engineering modeling problem, coupled with
the general lack of sufficiently detailed flight
test data, have made improvements in

complete rotorcraft aeroelastic predictions
difficult. Efforts to expand the available data
for correlation exercises are underway [1], but

such programs may experience funding and

operational delays along with regulatory
hurdles that preclude rapid turnaround for

timely engineering research efforts.

As a means of addressing this data

deficiency, a program is underway at Princeton
University to instrument a Bensen BS-M

Gyroglider for towed-flight investigations
(Figure 1) [5]. This aircraft is an extremely

simple teetering rotor autogiro whose power is
supplied by towing the vehicle behind an auto
along a runway or suitably paved surface. The
University's inactive runway at the Forrestal

Campus has served as the vehicle's testing
ground. The use of a simple test aircraft
provides the ability to perform fundamental

Presented at the 16th European Rotorcraft

Forum, Glasgow, Scotland, September 18-20,

1990.

aeroelasticity experiments on a full size
vehicle without the additional burden of
maintenance manpower associated with a

production helicopter. The added capability
of an "in-house" test vehicle affords the
researcher the luxury of planning and executing
tests that are driven by the nature of the test
data and not the predetermined schedule of

the test program.

The desire to conduct instrumented rotor

experiments on full size aircraft was inspired
by similar efforts being done on a model rotor at
the Rotorcraft Dynamics Laboratory

(Longtrack) at Princeton's Forrestal campus [2]
and aided by results reported from an
instrumented AH-1G Cobra helicopter test by

the NASA [3]. The design goals of the
instrumentation system, and the impact of

flight safety and testing procedure on the
realization of its mechanical and electrical

components is described below.

Basic InstrumentatiQn D_ign Goals

In order to provide a basis for comparison
with model results, blade mounted
accelerometers and strain gauges were selected

for the autogiro rotor experiments desc ribc/d-
These sensors typically provide differential

outputs that require some form of amplification
prior to sampling for data storage. On the
model tests, both the sensor excitation voltages
and differential outputs are transferred from
the fixed to rotating frames using a slip ring

assembly. Such a technique requires from two
to four rings per sensor, plus the associated hub
attachment for the sliprings and sensor wires.

This type of installation was not possible, due
to the inherent simplicity of the autogiro's
hub. Since no torque is provided to the rotor,

the primary aircraft control is performed
through direct shaft tilt of the rotor, which is
mounted in a pillow block attached to a sealed

bearing assembly. Such an arrangement makes
the main rotor shaft inaccessible for slipring
attachment or routing of wires through its

interior. Thus, the decision was made at an
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early stage to telemeter the data from the
rotating to'fixed frames without the direct use
of rotating brushes or slipring pick-ups. Use of
a rotor-mounted telemetering system thus

requires a co-located electronic power source,
since no direct wire transfer was then possible

from the aircraft fuselage. In order to reduce

battery size on the hub, all integrated circuits
used CMOS chips wherever possible, with

power supplied from two standard 9-volt
transistor batteries. A photograph of the
instrumentation assembly is shown in Figure 2.

An additional system requirement was
that the instrumentation system not adversely

affect the mechanical integrity or

aerodynamic performance of the rotor blades.
'The blades on the autogiro are stock Bensen

factory-built blades constructed from aluminum
sheeting riveted to a solid spar. The airfoil is
a Bensen design, having a fiat underside and

slight reflexed trailing edge, originally
developed for construction by the homebuilder
from plywood sheeting. Since access to the
blade's interior was not possible, multi-
conductor ribbon cable for sensor signal routing
was secured to the fiat underside of the blade

using a combination of double-sided sticky tal_e
and epoxy, covered with one spanwise and
several chordwise segments of mylar adhesive

tape.

Aerodynamic performance considerations
dictated the scheme used to condition the

.sensor signals. Unlike the system used in
Reference [3], cost considerations did not allow

development of custom millimeter-thick

integrated circuitry for sensor signal
conditioning and amplification. Since stock

integrated circuits tiC's) would be used, a
minimum number of chips could be tolerated at
each sensor station in order to reduce the

adverse drag penalty from surface

irregularities they introduce. Although sensor
noise would be lowest for co-located sensors,

amplifiers and analog to digital (A/D)
converters, the associated multiplexing

necessary would add at least an additional

chip, bringing the total to three ICs at each
sensor's spanwise location. Thus, only the
_nsor's amplifier is located on the blade span,
with the A/D and multiplexing operations

performed by a single IC at the rotor hub. This
arrangement also required only four wires to
extend over the entire rotor radius. An
installed accelerometer and amplifier are

shown in Figure 3.

Sensor signal A/D sampling rate was
traded off against multiplexing capability for

the digitizing of the rotor data, with the final
choice using the TLC_1 LinCMOS chip from
Texas Instruments as the primary workhorse
for conversion of the data to digital form. This

IC provides 11 channels of multiplexing
capability into an 8-bit A/D converter, with an
equivalent throughput rate of 1,024 samples
per second on each channel. Since the nominal
rotor speed of the autogiro is 375 rpm, the
system's Nyquist rate (maximum digital
bandwidth) is 82/rev, well beyond any

potential dynamic or aeroelastic phenomenon
one might expect to observe. For this reason,
there are no anti-aliasing filters used prior to

A/D conversion.

The multiplexer chip, originally designed
for interfacing with a microprocessor, allows
for direct control of both channel addressing
and serial bit output rate through reasonably

complex interfacing with timing and address
pins. In order to avoid the requirement of co-
locating a dedicated microprocessor, the

complex timing patterns and address lines were
stored ("burned") into an EPROM, driven by a
counter and clock. The individual data bits for
each of the 11 channels are sequentially
loaded onto the serial digital data bus,

followed by a test channel for receiver

synchronization purposes. This "synch" word
is modified to produce a string of 9 bits that
cannot be duplicated by any combination of the
11 channel's data words, thus providing a

unique marker for each "frame" of data.

To save on the total number of chips at the
rotor hub, the counter that drives the EPROM

interface chip does not reset to a predetermined
value, and thus the first 1024 8-bit words are

cycled over for each frame. Since the timing
pulses only occupy the first two-thirds of this
address space, a blank sector is available in
the current frame of serial data for future

expansion. This might consist of either
additional rotating frame channels, or inter-

woven fuselage sensor data. This latter
method would require a serial decoder and

synchronizer in the non-rotating frame on the
aircraft, a method that was not used on the

current design concept. A diagram of the main
circuit functional blocks appears in Figure 4.

Data Transmission and Storage

In order to transmit the digital data from

the rotor to the fuselage frame of the autogiro,
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the serial bit stream was Manchester encoded

so as to provide a timing reference for
individual bit transitions. While this format

is particularly suited for direct radio frequency
modulation, the additional weight and power

requirements of a radio transmitter were
deemed unacceptable. Instead, the coded

signal is fed directly into the rotor blade's
aluminum structure, with the pickup signal in

the fuselage frame merely consisting of a wire
secured to the metal airframe. Thus, the entire
aircraft is electronically isolated from the

sensor power signals, with the rotor data
"transmitted directly through the main rotor
shaft bearing assembly. Alternate schemes

using infa-red diodes, while conceptually
feasible, were not nearly as simple as this

technique.

Due to the limited amount of both ground

support personnel and computational facilities,
direct re-broadcast of the data from the

autogiro to a ground station was not possible.
Instead, appropriate signal modifications were
made to the serial coded data so that it could

be directly recorded onto an 8mm format video
camera/recorder. The camera is a self-
contained unit running from its own battery

source, and is shock mounted to the autogiro

directly in from of the pilot's seat, to allow for
convenient access to both the record buttons and

tape eject mechanism. Despite the high
frequency of the Manchester encoded serial bit
stream (1.3 MHz), such signals are well within
the bandwidth of conventional NTSC video

standards.

Post-flight data processing consist of

playing back the recorded signals into a serial-

to-parallel digital data synchronizer. The
circuitry used to perform the data extraction,
shown in functional form in Figure 5, consists of

signal conditioning to standard logic levels, bit
synchronization using a phase-locked loop
(PLL), and data decoding with clocked flip-

flop circuits. In order to provide for
discrimination between channels, a

search/synchronizer scheme using another
EPROM and comparitor was employed. Since
the frame word consisted of a unique 9-bit

digital bit pattern, a shift register and bit
comparitor were used to detect a "match" with
this word indicating the beginning of the serial
data frame. When the match was detected,

the EPROM clock/counters were reset, and each
channel was clocked through the shift register,
combined with the four bits representing the
channel count, and sent into a high-speed

parallel digital data port on an IBM-PC/AT.
This data was then stored onto floppy
diskettes for additional analysis and

processing. After the EPROM cycled through
its 11 channels of serial data timing, it entered
a "re-match" state in which it looked for
another frame start pattern. If this pattern
was not found, the synchronizer would enter a
"search" mode and warn the user (via light
and buzzer) that synchronization was lost and
data is invalid. If the pattern was matched,
indications of a "locked" state would be given,

and the process would cycle over each
additional frame of serial data.

Auxiliary. Data _ystem Components

In order to interpret the rotor structural

dynamic data, some measurement of the
operating state of the autogiro flight condition
was required. Of particular importance is the
rotor advance ratio, and the associated angle
of attack of the rotor blades. As the detailed
flow of the rotor is unavailable, several

fuselage-mounted sensors were used to infer
this information. These sensor data were

routed to a pulse-width modulator (PWM) box
having a capacity for 43 channels of analog

data sampled at 20Hz per channel. This data
acquisition system was previously used in
flying qualities experiments at Princeton on
variable-stability general aviation aircraft

and gliders [4]. The PWM signal was in turn
fed into the separate audio input channel of
the 8ram video camera, thus providing

separate but synchronous data recordings for
both rotor and fuselage sensor data.

The rotor speed was measured using a

magnet mounted on the rotor hub, and a Hall-
effect sensor on the rotor mast just below the

hub pillow block assembly. The pulses were
fed into a PLL circuit that output an analog

voltage proportional to pulse frequency, with
this information displayed to the pilot and
sent to the fixed-frame data commutator

system. Autogiro angle of attack and sideslip
were measured through two vanes mounted on

low friction potentiometers, and airspeed was
taken from a cup anemometer. Rotor shaft tilt
was measured from stick potentiometers, and

rudder pedals were instrumented as well. A

picture of the data system components is in

Figure 6.

Power for the PWM commutator was

provided from four 9-volt batteries tied in
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reties,regulatedto anominal28-voltDClevel.
Although larger power rechargeable batteries
were available, their significant increase in

weight deemed them unacceptable for initial

flight tests and data system check-outs.
Additional instrumentation, such as use of
princeton's Inertial Measurement Unit [4], will

require upgrading the available power source
on the autogiro airframe.

Since monitoring of the video tape index

during flight could jeopardize safety through
increased pilot workload, the FM
communicators used between pilot and tow

vehicle personnel was coupled into the audio

input channel of both the on-board video
recorder and the tow car's video camera. Since
this same space on the tape is used by the
fixed-frame sensors, voice markers were stored

only during push-to-talk operations of the

pilot. Simultaneous voice recording allowed
for approximate synchronization between the
signals from both cameras during postflight

analysis.

_Pr¢liminary T¢_ting

As a means of both adjusting amplifier

offsets and confirming data transmission,

storage ancl retrieval/synchronization, an
impact test was made of the rotor blade. An
instrumented force hammer in conjunction with

the blade-mounted accelerometers were
recorded for a series of impacts at several

spanwise locations in order to identify the non-
rotating mode shapes of the autogiro rotor
blade. Such information is essential for

accurate post-processing of the accelerometer
data, as is pointed out in [2].

Since the spanwise accelerometers are
oriented to measure out-of-plane accelerations,
as the blade deflects out of the plane of
rotation, these sensors will measure both blade
vertical acceleration as well as a component of
rotational acceleration proportional to the

local slope at the sensor's spanwise location
(see Figure 7). This information can then be
used in a processing scheme called a Kinematic
Observer [6] to reconstruct rotor blade state
variables. On the autogiro, however, the ratio

between the measurement of fundamental

teetering (flapping) acceleration and teetering

displacement is constant for any spanwise
station. For any accelerometer at spanwise

location r, it will sense contributions from each

mode's acceleration (g(t)) and each mode's

displacement (g(t)) according to:

_qi(r)
accel(r,t) = _. _Ii(r) gi(t) + --"_"r r _'12gi(t)

i=l

where _i(r) represents a particular blade

natural mode shape. For the case of the rigid

teetering mode, 131(r) = r, giving contributions

from the teetering mode [_l(t) as:

r _'l(t) + r fl 2 _l(t)

and for simple harmonic flapping at 1/rev,
these two terms cancel. For this reason, a

potentiometer was installed in the rotor hub to
measure rigid teetering motion, and the
accelerometers were positioned so as to
maximize their sensing of the various higher

blade vibratory modes.

Flight operations for testing the autogiro
instrumentation are currently underway at the

inactive runway at Princeton University's

Forrestal Campus. Since the autogiro has no

engine, it is towed by a nylon rope attached to
its nose from an automobile. While this results
in limited continuous flight time, the runway's

3000 foot length allows flight experiments of

approximately 45 to 60 seconds duration,
depending on wind direction along the tow

path. Communications are kept with the tow
vehicle driver and observer using FM
transceivers, and a glider tow hitch with

release may be operated by the pilot in the

event of fouling of the tow line.

Rotor data power has been tested to

provide consistent data for over two hours of
operation, and fuselage batteries have a
roughly equivalent life. Battery life on the
video camera used for serial data storage is

slightly under an hour, resulting in
approximately fifteen flights during a
standard sequence of runs. Such a record

provides a wide range of test points for
analysis, the results of which will appear in a
forthcoming paper.
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Figure I: Instrumented Bensen autogiro (glider)
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Figure2: Di_'tal data acquisition and lelemeI_' circuitry

Figure 3: Accelerometer and amplifier installation on blade underside
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