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ABSTRACT 

The roll-up of a wingtip vortex, at Reynolds number based on chord of 4.6 

million, was studied with an emphasis on suction side and near wake measurements. 

The research was conducted in a 32 in. x 48 in. low-speed wind tunnel. The half- 

wing model had a semi-span of 36 in., a chord of 48 in. and a rounded tip. 

Seven-hole pressure probe measurements of the velocity field surrounding 

the wingtip showed that a large axial velocity, of up to 1.77 U,, developed in the 

vortex core. This level of axial velocity has not been previously measured. Triple- 

wire probes have been used to measure all components of the Reynolds stress tensor. 

It was determined from correlation measurements that meandering of the vortex was 

small and did not appreciably contribute to the turbulence measurements. 

The flow was found to be turbulent in the near-field (as high as 24 per cent 

RMS w-velocity on the edge of the core) and the turbulence decayed quickly with 

streamwise distance because of the nearly solid body rotation of the vortex core 

mean flow. A streamwise variation of the location of peak levels of turbulence, 

relative to the core centerline, was also found. Close to the trailing edge of the 

wing, the peak shear stress levels were found at the edge of the vortex core, whereas 

in the most downstream wake planes they occurred at a radius roughly equal to 

one-third of the vortex core radius. The Reynolds shear stresses were not aligned 

with the mean strain rate, indicating that an isotropic-eddy-viscosity based predic- 

tion method cannot accurately model the turbulence in the vortex. In cylindrical 

coordinates, with the origin at the vortex centerline, the radial normal stress was 

found to be larger than the circumferential. 
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NOMENCLATURE 

Roman Symbols 

AR: 
b: 

b, : 

B: 

m constant angle calibration coefficients of wire i 

m constant angle calibration coefficients of wire i, including tern- 
perature dependent effects 
m constant angle calibration coefficients of wire i, including tern- 
perature dependent effects and skewness factor 

Aspect ratio = 2b2 /(half-wing surface area) 

wing semi-span 

wing semi-span of constant chord section of wing 
Coefficient in King's law equation 

chord 
Skin friction coefficient, Cf I r,/(f pY2) 
Hot-wire diameter 

Ei: Hot wire signal voltage for wire i 

E: : Hot wire signal voltage for wire i, modified for temperature depen- 
dent effects 

Eo : Hot wire signal voltage at zero velocity 

Ecorr : Temperature-corrected hot wire signal 

k : Turbulent kinetic energy 

kt : 
ki: 
K :  
I :  
OHR: 
m: . 

n: 

Thermal conductivity 

Calibration yaw factor for wire i 
Coefficient in inverse King's law equation, I< = 1 / ~ ' / "  

Hot-wire active length 

Overheat ratio = (hot-wire abs. temp. )/(tunnel abs. temp.) 

Exponent for constant-angle calibration polynomial 

Velocity exponent for constant-angle polynomial fit or for King's 
law equation 

Nusselt number based on the bracketed reference length, 
lVuL E U L / v  
Mean static pressure 

P: Instantaneous static pressure 
p': Fluctuating static pressure 

PT: Total pressure 

P,: Freestream pressure 
- 
q2:  Twice the turbulent kinetic energy 



u,: 

Ucf: 
u,: 
Vr7 Ve, Vz: 
Cr7 Ce, Cz: 
v;, v;, v;: 

Cylindrical coordinates for radial, tangential and streamwise direc- 
tions, respectively, with origin at t he vortex centerline 
Wire resistance 

Cold wire resistance 
Reynolds number based on the bracketed reference length, 
ReL G U L / v  
Time 
Current tunnel temperature 
Cold wire temperature 
Tunnel temperature at calibration 
Mean velocity in the x, y, z directions respectively 
RMS velocity components in the x, y, z directions respectively 
Fluctuating velocity components in the x, y, z directions respec- 
tively 
Instantaneous velocity in the x, y, z directions respectively, e.g. 
u=U+ul 

u, v ,  w ,  for j = 1, 2, 3 respectively 
Velocity magnitude = Ju2 + V2 + W2 
Effective velocity measured by hot-wire for wire i 
Effective velocity measured by hot-wire for wire i, including tem- 
perature dependent effects 
Effective velocity measured by hot-wire for wire i, including tem- 
perature dependent effects and skewness factor 
Friction velocity, u, G Ja 
Crossflow velocity = I/- 
Freestream velocity 
Mean velocity in the r, 8, x directions respectively 

RMS velocity components in the r, 8, x directions respectively 
Fluctuating velocity components in the r, 8, x directions respec- 
tively 
Instantaneous velocity in the r ,  8, x directions respectively, e.g. 
vr = vr + v; 
Tunnel fixed cartesian coordinates for streamwise, normal, and 
spanwise directions, respectively, with origin at root of trailing edge 
of wing 



Greek Symbols 

Angle of attack or temperature coefficient of resistivity 

Yaw angle 
Wire direction cosines for wire i 
Tip circumferential angle, zero at top of tip 
Angle between wire i and freestream velocity vector 
Circulation of streamwise vortex 
Coefficient of diffusivity 

Kinematic viscosity of air 
eddy viscosity of air 
Density of air 

Wall shear stress 
Tangential velocity 

- aw av Streamwise component of mean vorticity, Rx = - 

Q*: av au Spanwise component of mean vorticity, Q, - - 
a y  

8: Pitch angle 

Subscripts and Superscripts 
- 

(overbar) Time-averaged quantity 

( )talc: Calculated value 
( )cl: Value on center-line 
( )ma,: Maximum value over a given range 

( )meas: Measured value 

xvl 



1. INTRODUCTION 

1.1 BACKGROUND 

The wingtip vortex flow is one of great importance because of its effect on 

practical problems such as landing separation distances for aircraft, blade/vortex 

interactions on helicopter blades, and propeller cavitation on ships. It also continues 

to be a perplexing problem for the computational scientist because of the presence 

of turbulence and because of large gradients of velocity and pressure in all three 

directions, especially in the near field at high Reynolds number. In the case of a wing 

with nearly-constant loading, a discrete vortex forms at the tip (Figure 1.1), fed by 

vorticity from the boundary layer near the tip. As the vortex moves downstream, 

it rolls up more and more of the wing wake, until its circulation is nominally equal 

to that of the wing. The rollup distance is small compared to the separation of 

aircraft on the approach path, but not necessarily small compared to the distance 

between interacting lifting surfaces, such as the strake or foreplane and the main 

wing on a close-coupled fighter or consecutive blades on a helicopter rotor. The 

flow in the near-field rollup region is therefore important in its own right as well as 

in providing a possible means of control of the far-field vortex. Controlling a single 

vortex however only changes the virtual origin (by a few tens of chord lengths) 

leaving the only possibility of airplane vortex wake control as stimulation of the 

Crow instability (Crow, 1970). 

To be able to meet some of these practical considerations, designers need not 

only a better understanding of the flow physics in the near-field tip vortex rollup 

process, but also a better feel for the limitations in current computational abilities 

and in current turbulence models. 

A literature review indicates that the tip vortex has been the subject of hun- 

dreds of experimental studies, concentrating almost entirely on t he far-field. There 

seems to have been no study of the tip flow and near-field vortex rollup process 

detailed enough to be used in developing or testing a prediction method or for 

putting the design of tip modifications on a firm fundamental basis. The lack of 



experimental studies in this area is related to the difficulty in measuring a highly 

turbulent flow with large gradients in all three directions, near a curved solid body 

surface. 

1.2 PREVIOUS WORK 

1.2.1 Analytic Studies 

Analyses of a tip vortex have generally been more successful in the far-field 

than in the near-field. Assumptions that are often made in simplifying the far-field 

analysis may not hold in the near-field. The main assumption that has been made 

in all previous analytic studies is that of axisymmetric flow. In the early stages of 

roll-up, however, this is obviously not a good assumption. Other assumptions that 

are often made are that the axial velocity perturbation is small with respect to U, 

("light loading") and that the apparent eddy viscosity, defined in a given plane as 

(Reynolds stress)/(mean strain rate), is well-behaved, i.e. the same in all planes 

("isotropic"). Again, in the near field, both of these conditions are violated. In the 

present experiment, the axial velocity excess in the core can reach levels as high as 

77% of the freestream velocity while the Reynolds stress contours are not consistent 

with well-behaved eddy viscosity. 

These approximations have had some success in predicting the far-field behavior 

of the tip vortex. In particular, similarity solutions have given accurate estimates of 

the decay rate of a tip vortex far downstream of the trailing edge of a wing. These 

types of analysis are most useful in analyzing the wake vortex encounter problem, 

and better models, founded on reliable experimental data, are needed for the near 

field. 

1.2.1.1 Analysis of Laminar Vortices 

A few authors have analytically investigated the structure of laminar trailing 

vortices. although at the Reynolds numbers found in most practical applications 



trailing vortices are turbulent, many features of a laminar trailing vortex are still 

present in a turbulent tip vortex. 

The simplest analytic model for a 2-D line vortex assumes solid body rotation 

of a. viscous core surrounded by an irrotational (potential) field: 

where R is the angular velocity of the solid body rotation and a is the radius of the 

viscous core region, also defined here as the point of maximum tangential velocity. 

This is a simple approximation to the well known solution for the growth of a laminar 

2-D line vortex which can be found in Lamb (1932). The velocity distribution is 

given as follows: 

Batchelor (1964) did an analysis on axial flow in a laminar trailing vortex 

starting with the steady axisymmetric incompressible momentum equations (see 

Appendix B, Equations B3-B6). Assuming axial gradients are of smaller magnitude 

than radial gradients, boundary-layer type approximations can be made: 

which reduces equation (B.5) to the familiar Euler's n-equation: 

aP V; 
' P T  dr 

Bernoulli's equation including total pressure loss, AH, is written as: 



Neglecting radial velocities, the axial velocity can be derived from (1.2.5) and (1.2.6) 

as : 

Using the vortex model of Eqns. 1.2.1 and 1.2.2, the axial velocity is found to be: 

U: + 2fI2(a2 - r2) - ZAH (1.2.9) 

This equation shows that, as the roll-up of the vortex generates larger and larger 

tangential velocities, pressure forces produce a strong downstream flow in the core 

of a trailing vortex, provided only that total head losses are not large. Similarly, as 

the tangential velocities decay in the far-field part of the flow, pressure forces will 

act to decelerate the axial flow in the core. 

Moore and Saffman (1973) sought to improve upon Batchelor's analysis and 

studied the influence of viscosity on the axial flow in a laminar trailing vortex. They 

noted that although Batchelor's primarily inviscid arguments suggested a large axial 

velocity excess, "wind-tunnel tests and free-flight observations show that there is 

usually a deficit of axial velocity in the core, although some cases of a velocity 

increase have been reported". They solved 2-D unsteady versions of Eqns. B.4-B.6 

with boundary-layer type approximations using boundary conditions found from 

previous inviscid analysis with adjustments made for wing boundary layers. Using 

the light load approximation, their solution for a semi-infinite rectangular wing 

gives two different axial profiles for the vortex centerline and the outer edge of the 

viscous core respectively: 



VZ(~) - urn = [ 0 . 9 3 ~ 1 0 - ~ , ~  - 0.32~r; ' /~] (f) (1.2.11) 
urn 

where a is in degrees, and Re, is the Reynolds number based upon chord. Eqn. 

1.2.10 suggests an axial velocity deficit on the vortex centerline which increases with 

Re, and with angle of attack. Eqn. 1.2.11 can give an axial velocity excess or deficit 

at the outer edge of the viscous core. Comparisons with available experimental data 

are poor although the measurements of Logan (1971) showed a qualitatively similar 

axial flow, with a velocity deficit at the centerline and an axial velocity excess at 

the edge of the viscous core. The radius of the core (whose edge was defined as the 

point of maximum tangential velocity) for an elliptically loaded wing was found to 

be: 

Although their analysis is claimed to be valid for the near-field, the assumptions 

made in the analysis (axisymmetry, light loading, laminar boundary layers) make 

comparisons to near-field experimental data difficult. 

1.2.1.2 Analysis of Turbulent Vortices 

Quite apart from possible transition in the vortex itself, or boundary layer 

transition due to a strong adverse pressure gradient (which can occur at relatively 

low Reynolds number), surface roughness due to rivet heads, dirt or impact damage 

is likely to cause transition of the tip boundary layer upstream of the start of vortex 

formation. All past analytical studies done on a turbulent tip vortex have assumed 

an isotropic eddy viscosity to represent the behavior of the turbulence. We shall 

see that this sort of approximation fails badly, because for a vortex flow-field, the 

shear stress vector will not align itself with the mean strain rate. 

Squire's (1954) analysis of a turbulent line vortex augmented the laminar vis- 

cosity in Equation 1.2.3 by a turbulent eddy viscosity whose value was proportional 

to the total circulation: 



where vt = cr and c is a constant. 

The analysis by Hoffmann & Joubert (1963) on a turbulent line vortex pre- 

dicted a constant eddy viscosity and a logarithmic radial variation of circulation 

in regions where the inertial forces in the tangential momentum equation are small 

in comparison to the Reynolds stresses (near the point of maximum tangential ve- 

locity). By dimensional reasoning the functional form of this behavior was written 

as : 

Govindaraju and SafTman (1971) predicted an overshoot of circulation for a 

fully-rolled-up turbulent vortex under light loading conditions. Their model allows 

for Fa/F, = 1.2, where most investigators have found values ranging from 0.37 to 

0.6. Convincing experimental evidence of the existence of an overshoot of circulation 

is lacking, however. 

Lezius (1974) noticed that in towing tank tests between 100 and 1000 chords 

downstream of an airfoil set at  8 degrees, the vortex decayed at a rate proportional 

to t -7 /8 ,  not the usually predicted t-'I2. The towing tank tests had Re, ranging 

from 2.2 x 10"o 7.5 x lo5. It was reasoned that the increased decay rate was due 

to turbulence that had not yet reached equilibrium. The inferred eddy viscosity 

(estimated by decay rate of tangential velocity) increased with time (distance) im- 

plying that the initial turbulence levels in the boundary layers on his wing were low 

and increased with time (production>dissipation). An analytical model was made 

adding time dependence to the eddy viscosity in Squire's solution. 

Phillips (1981) analyzed the near-field roll-up of a turbulent vortex. With the 

exception that the boundary layers were considered to be initially turbulent, the 

analysis was similar to that of Moore and Saffman, with the same assumptions of 

light loading and axisymmetry of the vortex core. Phillips noted that the phe- 



nomenon of overcirculation hypothesized by Govindaraju and Saffman was most 

unlikely during the roll-up process. 

1.2.1.3 Other Related Analytic Studies 

Lezius (1991) studied the influence of spanwise lift-tailoring on the stability of 

vortex roll-up. He used Rayleigh's stability criterion for a two-dimensional vortex, 

which states that the flow is stable if: 

For a vortex modeled by Eqns. 1.2.1 and 1.2.2, the viscous core is stable and the 

inviscid region has 

and is marginally stable. For a spanwise lift distribution that continually increases 

the circulation in the radial direction, a stable roll-up ensues. Lezius reasoned that 

a lift distribution which created a radially decreasing circulation at some point 

would create an instability in the roll-up and hence increase the rate of decay 

of the velocities. Small scale experimental studies were done which qualitatively 

demonstrated the validity of the idea. 

Widnall and Wolf (1980) analytically studied the effect of the tip vortex struc- 

ture on helicopter noise due to blade-vortex interaction. Under certain flight con- 

ditions (usually descent), an impulsive noise called blade slap is generated at the 

blade passage frequency due to the passage of a blade through the preceding blade's 

tip vortex. The sources of this impulsive noise have been thought to be due to two 

sources: shock formation due to local transonic velocities induced upon the follow- 

ing blade; and unsteady lift fluctuations generated by the blade-vortex interaction. 

Their analysis was for incompressible flow, however, which ruled out consideration 

of noise generated by the unsteady transonic velocities. The inviscid roll-up model 

of Betz was used to calculate the velocity profile in the vortex and the unsteady 

lift on the blades due to the blade-vortex interaction was calculated using linear 



unsteady aerodynamic theory. They concluded that substantial reduction in blade 

slap intensity could be obtained through the use of a tapered blade tip. More gen- 

erally, varying the slope of the spanwise load distribution near the tip was found to 

greatly influence noise levels generated by the blade-vortex interaction. 



1.2.2 Experimental Studies 

Past experimental work on tip vortices have mainly concentrated on mean flow 

measurements in the far field. Wind tunnel measurements of the far-field vortex flow 

are complicated by low-frequency unsteadiness (also known as "meandering") in flow 

directions which can give large sources of measurement error especially in regions 

of large velocity gradients. The crux of the meander problem is that low frequency 

motion of a vortex will make any time-averaged Eulerian point measurement a 

weighted average in both time and space. Meander can also be misinterpreted as I 

true turbulence, e.g. u' m ItaU/dy, where I' is some y-wise displacement amplitude. 

Westphal and Mehta (1989) made turbulence measurements in a vortex forced to 
I 

oscillate laterally and compared them with results for a stationary vortex. They 

found that RMS v' increased by a factor of two and that contours of the Reynolds 
I 

shear stresses were altered considerably. The meander displacement amplitude is 
I 

small within a few chords downstream of the generating wing. Experimentalists have 

also used conditional sampling techniques (Corsiglia, Schwind and Chigier, 1973, 

McAlister and Takahashi, 1991) or instantaneous flowfield measurement techniques 

(Green, 1991) to obtain meaningful turbulence measurements in the presence of 

meander. 

To measure the flow a large number of chord lengths downstream of the wing 

model in a wind tunnel, low Reynolds numbers may have to be accepted in order 

to reduce chord size. However, the resulting increase in the ratio of probe diameter 

to chord, can also increase the effect of probe interference and of vortex bursting. 

Although these effects are less apparent in measuring a near-field vortex flow, this 

regime has its own difficulties. Generally, flow velocities, gradients, angles, and 

turbulence levels all attain their highest levels in the near-field and the limits of 

applicability of various measurement probes are often reached (regions of flow re- 

versal/separation can become a factor). Another difficulty in previous experiments 

has been the uncertainty about which trends were due to boundary layer transition 

and Reynolds number effects, and which were due to other flow variations (angle 



of attack, downstream distance, tip shape, etc.). Fully turbulent boundary layers 

(occurring in laboratory experiments with a transition trip, or in most real-life flight 

conditions) will separate farther downstream and will create higher levels of initial 

turbulence in a tip vortex than the laminar boundary layers found in small scale 

experiments. Hence, roll-up behavior will be strongly influenced by the condition 

of the wing boundary layers. 

The two following subsections describe previous experimental work relevant to 

the present study on the near-field roll-up of a tip vortex, which is summarized in 

Tables 1.1. A sketch of the most basic tip geometries studied is shown in Figure 1.2. 

The literature has been separated into sub-categories of studies without turbulence 

measurements and studies with turbulence measurements. 

1.2.2.1 Near-Field Experiments Without Turbulence Measurements 

Grow (1969) made near-field measurements of the mean flow in a tip vortex 

for various wing shape parameters, using a five-hole pressure probe and a vorticity 

meter. It was found that 90% of the measurable circulation enters the tip vortices 

within one chord of the trailing edge. McCormick, Tangler & Sherrieb (1968) re- 

duced Grow's data to get the following linear empirical formula for the maximum 

tangential velocity in the near-field at Re, = 3.5x105: 

The surface pressure measurements of Spivey and Morehouse (19'70) showed 

a characteristic suction peak on the tip, denoting the approximate location of the 

primary vortex as it rolls-up on the suction side of the wing. Occasionally, a second 

suction peak was measured outboard and downstream of the primary peak, which 

they hypothesized to be due to a secondary vortex. 



Orloff (1974) used a two-dimensional laser velocimeter to measure the mean 

flow two chords downstream of a NACA 0015 wing with square tip at a variety of 

angles of attack and freestream velocities. For this model, a($)/aa = 0.05 /deg 

and Vz,cl/U, varied from a defect value of 0.88 to excess values of 1.05 and 1.18 at 

a = 8,10,12' respectively. Batchelor's arguments for increasing axial velocity with 

increasing tangential velocity are a possible explanation for these trends. 

Thompson (1983) used dye and hydrogen bubble flow visualization techniques 

in a water tunnel to study the effects of various tip shapes on the vortex formation 

process on a rectangular NACA 0012 wing. Round, square and bevelled tip shapes 

(in axial view) were studied at Re, = 2 . 2 ~  lo4 and at various angles of attack. The 

separation process of the tip boundary layers, and hence the location and number 

of vortices forming, was highly dependent upon tip shape. For the square and 

bevelled tip shapes, separation was fixed by their sharp-edged boundaries. The 

primary vortex due to a rounded wingtip was located on the rear portion of the 

suction side of the wing. Outboard of the primary vortex, a secondary vortex 

of the opposite sense was induced by the effect of the primary vortex on the tip 

boundary layer. Likewise, a tertiary vortex was seen outboard of the secondary 

vortex. As these secondary vortices became wrapped up into the primary vortex 

a rapid change of direction of the vortex core was seen in plan view. This "vortex 

kink" has been observed by other researchers but the reason why it is present is not 

well understood. The path of the vortex centerline undergoes a sudden spanwise 

crossflow acceleration at the beginning of the kink and then at the end of the kink, 

it resumes its original direction. Although the boundary layers in the experiment 

were laminar, turbulent boundary layers would probably not change the locations 

of separation at the sharp edges of the square and bevelled tip. The rounded- 

tip separation location, however, would definitely be affected by the presence of 

turbulent boundary layers. 

The work done by Higuchi, Quadrell and Farell (1986) and Ikohagi, Higuchi 

and Arndt (1986) addressed the inability of available analytic models to accurately 

predict the near-field roll-up, particularly for cavitation prediction. LDV was used 



to measure the mean flow up to 3.9 chords downstream of an elliptic wing. The 

vortex cross-section was far from circular. The maximum tangential velocity was 

found to be 10% larger on the suction side than the pressure side. It was found 

that vortex core size was highly dependent upon angle of attack although previous 

analytic studies had found no such dependence. A semi-empirical model for a 

near-field tip vortex was constructed by using their data to patch together Squire's 

analytic model of the core and potential region with Hoffman & Joubert7s analytic 

model for a logarithmic buffer region. Although this semi-empirical model fit the 

experimental data better (by definition), it still did not allow for asymmetries in 

the flow, and errors of up to 25% occurred because of this. 

Francis & Katz (1988) used a dye/laser sheet combination in a towing tank to 

visualize the formation of a tip vortex on a rectangular NACA-66 hydrofoil. The 

location of the vortex core was tracked along the chordline and empirical formulas 

were developed for 10' < Re, < 5 x lo6, 0' < a < 12", and -0.52 < x/c < 0.0. 

The formulas predicted the vortex to increase in core diameter with increasing 

x/c, while the path of the vortex centerline was found to move up and inboard. 

Opposite trends were predicted for increasing Re,. For increasing angle of attack, 

the core diameter decreased, while the vortex moved up and inboard. Note that 

their empirical formulas were derived for a square tipped rectangular wing and may 

be less accurate when applied to other wing shapes. 

McAlister & Takahashi (1991) used two-component LDV to measure the mean 

flow behind a NACA 0015 wing with square and rounded tips at various conditions 

(chord size, chord Reynolds number, circulation, and downstream distance were var- 

ied). A maximum core axial velocity of 1.5U, and a maximum tangential velocity 

of 0.84U, were measured at x/c = 0.1 and at 12 degrees angle of attack. A single 

parameter was varied and and all other parameters were held constant to find trends 

in flow structure. Increased chord size or circulation level increased tangential and 

axial velocities. Increased Reynolds number however decreased tangential and axial 

velocities. The round tipped wing showed smoother separation characteristics and 

greater velocities than the square tipped wing. 



Shekarriz, Fu and Katz (1993) used Particle Displacement Velocimetry to mea- 

sure the flow over a square-tipped rectangular wing at various chord Reynolds num- 

ber and angles of attack. They also noticed crossflow velocities on the suction side 

to be 40% higher than the velocities on the pressure side, a marked difference from 

Higuchi7s 10% difference. Contradicting the data analysis by McCormick et al. 

(1968), the increase of Ve,,,,/U, with lift coefficient was not linear at some of the 

Re, studied; this was attributed to transition effects. 

1.2.2.2 Near-Field Experiments With Turbulence Measurements 

Poppleton (1971) studied the effect of air injection into the core of trailing 

vortex. The jet/vortex system was generated by airfoils set at equal and opposite 

angles of attack separated by a jet-pipe. Pitot probes, normal wires, and inclined 

wires were used to measure far downstream of the vortex. As might be expected, 

the jet increased the levels of turbulence in the core and the rate of decay of the 

vortex was increased also. 

Chigier & Corsiglia (1971, 1972) used triple wires to measure up to 9 chords 

downstream of a square-tipped rectangular wing with NACA 0015 section. At 12 

degrees angle of attack and Re, = 9.5 x lo5, a maximum core axial velocity of 1.4U, 

was measured at x/c = -0.25. Afterwards, the core axial velocity decayed at the 

trailing edge, to a value of l.lU,, and then showed the disturbing trend of accel- 

erating slightly to a value of 1.2U, at x/c = 4.0. At x/c = -0.50, the maximum 

crossflow- velocity was measured to be 0.42U, and it decayed axially thereafter. 

The decay in crossflow velocity with axial direction should produce an adverse axial 

pressure gradient near the axis (Eq. 1.2.5). Instead, their measurements showed an 

acceleration of the fluid on the core centerline. The turbulence fluctuations were 

measured to be at their highest levels in the core. Maximum turbulence intensity 

was roughly found to increase linearly with angle of attack. At 12 degrees angle of 

attack, a maximum turbulence intensity of 12.2% was found on the core centerline. 

Similar to Thompson's study of a rectangular tipped wing, they found a secondary 

vortex, of the same sense of rotation as the primary vortex, on the tip face. 



Corsiglia, Schwind, and Chigier (1973) later repeated the previous tests using a 

rotating triple-wire traverse to eliminate the effects of meandering. Only traverses 

that passed through the vortex center were later analyzed. At x/c = 26.7, the 

maximum tangential velocity was measured to be 0.72Uw. This was almost 75% 

larger than the maximum tangential velocity measured using their old technique at 

x/c = -0.50. They at,tributed this major discrepancy to the effects of meandering, 

but it is highly doubtful that meandering could have this sort of effect so early in 

the development of the vortex. Clearly, some other sort of measurement error has 

impacted one or both of the measurement techniques used. 

Singh (19'74) used quad-wires and single-wires to measure the mean and tur- 

bulent flow quantities up to 85 chords downstream of a square-tipped rectangular 

wing with NACA 643-618 section. He found a large axial velocity excess immedi- 

ately downstream of the trailing edge for wings with large L/D ratios (>40), while 

at lower L/D ratios, the vortex had a small axial velocity defect. A vortex with an 

axial jet was shown theoretically to be unstable, and a wing with a LID ratio of 

60 also developed laminar instabilities at 40 > x/c > 13. The airfoil section was 

claimed to minimize the initial wake turbulence levels so that these laminar insta- 

bilities could be measured far downstream. The high L/D ratio wing measured a 

peak axial velocity of 1.6Uw at x/c = 0.8. Curiously, the axial velocity decelerated 

quickly to freestream level at x/c = 2.4, and then to an extreme velocity defect 

of 0.52U, at x/c = 5.0. The crossflow velocities and core size measured at these 

locations were subject to error because the large flow angles in the initial roll-up of 

the wing were outside the range of their calibration. Their core size as a fraction 

of chord, a/c, was roughly twice what had been measured previously in similar. 

flow conditions. Initially, the turbulence intensity was highest some distance from 

the vortex center (around 15% freestream velocity), but it was claimed that, far 

downstream the turbulence diffused into the vortex center and the profiles showed 

a broad peak at the center. The "instabilities" which developed downstream were 

analyzed by studying the axial velocity fluctuations and correlations. It was found 

at x/c = 30 that about 50% of the fluctuation energy was due to low frequency pe- 



riodic components. A wing with a low L/D ratio (equal to 20) was found to have a 

small axial velocity defect and a maximum crossflow velocity of about 0.5U, whose 

value showed a self-similar decay rate of x - ' /~  for x/c > 30. Turbulence levels 

also showed a self-similar decay rate. -4s the vortex became fully rolled-up, a small 

overshoot of circulation was found, although nowhere near the levels postulated by 

Govindaraju and. Saffman. 

Phillips and Graham (1984) used single normal and inclined hot-wires rotated 

to several orientations (7 are needed) to measure the full Reynolds stress tensor 

in the far-wake of a vortex generated by a differential airfoil (two joined wings at 

equal and opposite angles of attack) with trip (Re, = 7.4 x 104,a = 9'). Three 

crossflow planes were studied, at 45, 78, and 109 chords downstream of the wing. 

The effect on turbulence of an axial velocity excessldeficit in the vortex core was 

simulated by placing a round jet or wake-enhancing nacelle in the center of the 

vortex generator. The profiles of the Reynolds stresses are close to what might be 
- 

expected from mean flow considerations. The change of sign of v:vb at some rl 

is different from Singh's results. For the round jet in the vortex, 6, > Go > 6, 

for some r < rl and 6, > 6, > 60 for some r > rl . They attributed the larger 

C, to turbulence diffusion being larger than turbulence production. The jet had 

much faster turbulent decay than the wake, and they attributed this to the effect 

of the radial velocity, V,. The jet had positive radial velocity which meant that 

the vortex core was being compressed axially and widened. This, they claimed, 

had the effect of suppressing turbulence. The wake-enhanced vortex had negative 

radial velocity, which meant that the vortex core was being stretched (aV, /ax > 0) 

and turbulence production therefore enhanced. A momentum balance along radial 

lines was calculated for each of the momentum equations and it was found that in 
- 

the r-equation, the i3vbz/dr term cannot always be ignored, although Vr could be. 

In the 8-equation and the x-equation however, the radial velocity was found to be 

import ant. 

Lee & Schetz (1985) used a five-hole pressure probe and single normal wires 

to measure behind a slightly swept NACA 0012 wing (whose tip shape was not 



stated in the paper). They measured up to 6 chords downstream of the wing at 

up to 10 degrees angle of attack and found some confusing trends. ,4t 5 degrees 

angle of attack, normalized t angentid velocity increased with freestream velocity. 

Correspondingly, normalized axial velocity in the core also increased with freestream 

velocity. Surprisingly though, at 10 degrees angle of attack, the normalized axial 

velocity and axial turbulence intensity in the core decreased with freestream velocity. 

They did not display tangential velocities at this angle of attack, however. 

Mehta & Cantwell (1988) measured two of the three Reynolds shear stresses 

in a turbulent vortex generated by a half-delta wing, at relatively low Reynolds 

number. Distributions of Reynolds shear stresses were found to be consistent with 

the isotropic eddy viscosity concept, and the distributions of the anisotropy param- 
- - 

eter, vt2 - wr2, were aligned such that their contribution to vorticity production was 

negligible. 

Stinebring, Farrell, & Billet (1990) used three-component LDV to study the 

tip vortex structure of a swept wing hydrofoil with particular interest in cavitation 

inception. At an unspecified angle of attack and Re, = 8.5 x lo5, an axial velocity 

defect was found just downstream of the trailing edge. In the core center, v' > w' > 
u' and the maximum fluctuating velocity was 2.3% of freestream velocity. From the 

fluctuating velocities, they defined a dimensionless fluctuating pressure: 

2@ u"+vt2+w" -- (1.3.1) 
/3uw2 - uoo2 

where the constant k ranged from 0.39 to 3.6. The fluctuating pressure was found 

to be an important factor in cavitation inception. They also defined a roll-up 

parameter: 

where the indices 1 and 2 represent maximum tangential velocities separated by 180 

degrees. As the tangential velocities become independent of the tangential direction, 

roll-up is complete and K, approaches 1. They found in their experiment that: 



Bandyopadhyay, Stead, & Ash (1991) investigated the turbulence structure in 

a turbulent trailing vortex generated by a double-branch vortex generator (aerofoils 

at equal and opposite angles of attack). They used a seven-hole pressure probe and 

single wires to measure up to 40 chords downstream of the trailing edge at various 

freestream turbulence levels (generated by screens). They concluded that for their 

range of test conditions, the Rossby number (core centerline axial velocity defect or 

excess divided by maximum tangential velocity) was the controlling parameter for 

the turbulence structure, not the vortex Reynolds number (circulation/viscosity). A 

lower Rossby number was found to promote re-laminarization. They also concluded 

that the inner core is not, as suggested previously, a region in nearly solid-body 

rotation that does not interact significantly with the outer vortex region, but a re- 

laminarizing region where patches of turbulent fluid are intermittently brought in 

from the outer region. Their vortex was created by a differential airfoil, and their 

measurements were taken far downstream of the trailing edge, so that they may not 

be quantitatively representative of the near-field rollup region of a wingtip vortex. 

Green & Acosta (1991) and Green (1991) measured the instantaneous flowfield 

up to 10 chords downstream of a rounded-tip rectangular wing with NACA 66- 

209 section. Double-pulsed holography and the tailored-air-bubble technique were 

used to measure the instantaneous velocity and static pressure respectively. At 

x/c = 2 and 10 degrees angle of attack, the core axial velocity was measured to be 

1.6Uw, with a mean fluctuation of 0.2Uw (several runs were made to calculate a 

nominal mean). Green noticed a low frequency instability with peak-to-peak axial 

amplitudes up to 25% of the freestream velocity. Contrary to the results found 

by most other researchers, the vortex was found to be axisymmetric at x/c = 2. 

The tangential velocity was also highly unsteady with mean fluctuations of 0.15Um. 

At 5 degrees angle of attack, the low frequency instability disappeared, although 

the axial velocity was still highly unsteady. He hypothesized that in the near field 

the non-dimensionalization of the axial velocity with the wing lift coefficient, was 



constant. For all flow conditions, the axial velocity reached freest ream velocity for 

r / c  > 0.04. Qualitatively, it was noticed that the bubbles were highly deformed 

near the vortex centerline (although on the centerline they were spherical) implying 

that either large pressure forces or large shear forces were acting upon them. As was 

found in the study by Thompson, Green observed a vortex kink for small values 

of x / c .  The flow turned through about 25 degrees before being turned again to 

its freestream direction shortly thereafter. The similarity of this behavior to the 

vortex-soliton theory of Hasimoto (Hopfinger et al. 1982) was noted. The core 

static pressure was found to be adequately modeled by the steady axisymmetric 

radial momentum equation or the semitheoretical correlation of Dunham (1979): 

The core fluctuating pressure was found to be predicted rather well by the axial 

velocity unsteadiness : 

Cutler & Bradshaw (1993) used cross-wires and pressure probes to study the 

interaction of a longitudinal vortex pair, generated by a delta wing, with a turbulent 

flat plate boundary layer. They observed that lateral convergence of the boundary 

layer produced a drop in eddy viscosity, dissipation length scale, and skin-friction 

coefficient. They found high levels of turbulence in the vortex core with 6, > 6, > 
- 

Go. Contours of v'w' had the characteristic four lobed pattern (an attribute caused 

by the rectangular coordinate system), but the planes of symmetry at f 45' to the 

horizontal were not consistent with well-behaved eddy viscosity. 

1.2.2.4 Effects on Practical Problems 

There have been several experimental studies where devices have been used 

to alter or manipulate the tip vortex. The goal has always been to diffuse the 

vortex so that tangential velocities induced by the vortex are lower (and hence 



so are core axial velocities and core pressures). Carlin, Dadone & Spencer (1989) 

studied the effects of "umbrella" and "tabbed7' trailing edge devices on the roll-up 

of the vortex. It has generally been concluded that tip shape can substantially affect 

the way the vorticity in the tip vortex is concentrated. However, trade-offs with 

other performance concerns (weight, drag, lift, etc.) make more experimental work 

necessary before reliable tip modifications can be made. Heffernan (1985) gives an 

overview of vortex attenuation devices. 

1.2.3 Computational Studies 

Although there have been many computational studies of the roll-up of a vortex 

generated by a delta ming or of the process of vortex breakdown, few Navier-Stokes 

computational studies of the vortex roll-up process of a conventional wing exist. 

The computational work by Srinivasan et al. (1988), used ARCSD, a thin-layer 

Navier-Stokes solver, with the Baldwin-Lomax turbulence model to study the flow 

on a helicopter wingtip. It showed good qualitative agreement with the experimental 

work done by Spivey (1970)' but the resolution of the viscous wake and the surface 

pressure suction peak induced by the vortex was poor. 

De Jong, Govindan, Levy, and Shamroth (1988) used a forward-marching solver 

with eddy viscosity turbulence model to solve the flow around a NACA 0012 wing 

with rounded wingtip. 225,000 grid points were used at a Re, of 7.4 x lo5 and 

angles of attack of 6-18" and 11.4'. The location of the vortex roll-up over the 

suction surface of the wing was accurately depicted, but many key features of the 

flow were absent. The development of an axial velocity excess was not reproduced. 

The computational studies by Dacles-Mariani et al. (1993) and (1994), done in 

conjunction with the present experimental study, modeled the wind-tunnel walls and 

used experimentally measured inflow boundary conditions. The grid had 1.5 x lo6 

points and was more densely spaced in regions of the flow where the gradients were 

large (e-g. vortex core). An upwind-differencing scheme was used in conjunction 

with a modified Baldwin-Barth turbulence model. They predicted an excess of axial 

velocity and showed that it is possible to predict the mean flow of the tip-vortex 



near-field rather well using a Reynolds-Averaged Navier-Stokes code; however the 

turbulence modeling used was not as accurate as desired. 

Preliminary work by Zeman (1994) used a full Reynolds stress model to study 

the far-field nature of the turbulence in an isolated vortex. He predicted a rapid 
- 

decay of the initial turbulence in the vortex core and his contours of vkvh were 

qualitatively similar to those measured ii the present study. 

The state-of-the-art in computations still has a long way to go before being able 

to qualitatively describe the turbulence in the roll-up of a wingtip vortex. Accurate 

turbulence modeling remains the major stumbling block in computational studies. 

1.3 SUMMARY OF UNRESOLVED ISSUES 

The key questions that were raised by previous studies and that have been 

studied in the present experiment are the following: 

1) Assuming that the axial velocity excessldeficit exists due to some trade-off 

between the development of a favorable axial pressure gradient and the wrapping 

up of low-momentum boundary layer fluid into the vortex core, how can this be 

correlated by relevant flow parameters? In other words, when should we expect an 

excess to occur and when should we expect a deficit to occur? 

2) What influence does turbulence have on the roll-up of the vortex and what 

sort of modeling is needed to accurately depict the turbulence in this flow? 

3) Based upon answers to the previous questions, what sort of modifications 

could be made to solve some of the practical problems involved with the roll-up of 

a tip vortex? 

1.4 OBJECTIVES 

This experimental study focuses on the initial roll-up region of the turbulent 

vortex from a generic unswept wingtip at high Reynolds number. The approach 

is first to reach a basic understanding of the physics involved in the flow near 

the wingt ip, supported by detailed measurements of turbulence structure, before 



proceeding to development of prediction methods or tip modifications. 

Surface oil-flow visualization, laser-illuminated smoke visualization, surface 

pressure measurements, velocity-field measurements by use of a seven-hole pressure- 

probe, Zpoint single-wire correlation measurements, and turbulence measurements 

by use of a triple-wire probe have been completed for the flow over a rectangular 

wing with rounded tip as far as a half chord downstream of the the trailing edge. 

The Reynolds number based on chord was 4.6 million. Given the trade-off between 

taking extensive measurements at one flow condition or taking fewer measurements 

at several flow conditions, the former option was chosen because measurements at 

closely-spaced points are needed to resolve the large spatial gradients in the thin 

tip boundary layer and the rollup region, and because it would give the compu- 

tational scientist a solid test case for comparison. Wind- tunnel blockage will have 

some impact on some of the quantitative aspects of the study (if comparisons are 

to be made with free-flight data), but the measurements will be completely valid 

for computationalists so long as they include the same boundary conditions used 

in the experiment (i.e. include wind-tunnel walls). In addition, it is felt that the 

qualitative aspects of the flowfield are preserved. 



Table 1.1 Summary of Previous Experimental Work 

Author 
and 
Year 

Grow 
(1969) 
Logan 
(1971) 

Chigier and 
Corsiglia (1971) 

Chigier and 
Corsiglia (1972) 
Corsiglia, et al. 

(1973) 
Orloff 
(1974) 
Singh 
(1974) 

' Singh and 
Uberoi (1974) 

Thompson 
(1983) 

Lee and 
Schetz (1985) 
Higuchi et al. 

(1986) 
Francis and 
Katz (1988) 

McAlister and 
Takahashi 

(1991) 
Green 
(1991) 

Green and 
Acosta (1991) 

Stinebring et al. 
(1991) 

Shekarriz et al. 
(1993) 

Reynolds 
Number 
Range 

3.5 x lo5 

1.5 x lo5 to 
2.3 x lo5 
9.5 x lo5 

9.5 x lo5 

3.0 x lo5 

5.0 x lo5 to 
9.0 x lo5 

6.3 x lo4 to 
1.3 x lo5 
1.3 x lo5 

2.2 x lo4 

2.1 x 10' to 
1.5 x lo6 
4.7 x lo4 

2.6 x lo4 to 
1.3 x lo6 
1.5 x lo6 

7.9 x lo5 

4.1 x lo5 to 
6.8 x lo5 
8.5 x lo5 

3.6 x lo4 to 
2.2 x lo5 

Axial 
Measurement 

Range, x / c  

6.0 

10.0 to 26.0 

-0.75 to 4.0 

9.0 

0.0 to  165.0 

2.0 

0.8 to 80.0 

0.8 to 80.0 

-1.0 to 0.0 

3.0 to 6.0 

0.79 to 3.93 

-0.5 to 0.0 

0.1 to 6.0 

10.0 

2.0 to 10.0 

0.07 

0.0-6.7 

Tip 
Shape 

unknown 

1/12 Piper 
Cherokee 

square 

square 

square 

square 

square 

square 

square, bevel, 
round 

N/A 

square 

square, 
round 

round 

round 

square 

square 

Measurement 
Technique 

5- hole 
pressure probe 

5- hole 
pressure probe 

3- wire 
probe 
3-wire 
probe 

rotating 
3-wire 

2D LDV 

4-wire probe 
1-wire probe 
4-wire probe 
1-wire probe 

dye, 
hydrogen bubble 

5-hole 
pressure probe 

LDV . 

dye 

LDV 

Double-Pulsed 
Holography 

Double-Pulsed 
Holography 

LDV 

PDV 

Airfoil 
Type 

rectangular 
NACA 0015 
1/12 Piper 
Cherokee 

rectangular 
NACA 0015 
rectangular 
NACA 0015 
rectangular 
NACA 0015 
rectangular 
NACA 0015 
rectangular 

NACA 64-3-618 
rectangular 

NACA 64-3-618 
rectangular 
NACA 0012 

swept 
NACA 0012 

elliptic 
NACA 66-2-415 

rectangular 
NACA 66 series 

rectangular 
NACA 0015 

rectangular 
NACA 66-209 

rectangular 
NACA 66-209 

swept 

rectangular 
19% thick 
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Section 'AA' 
Square tip 

Section '8 8' 
Rounded tip 

Figure 1.2 Basic Wingtip Shapes 
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Section 'CC' 
Bevelled tip 



2. EXPERIMENTAL APPARATUS AND PROCEDURES 

Flow visualization studies and mean/turbulence flow measurements have been 

performed in the near-field of a helicopter blade tip at full-scale Reynolds number. 

Flow visualization studies used the surface oil-flow, naphthalene sublimation and 

laser-illuminated smoke techniques. Mean flow measurements were performed using 

surface pressure taps and a seven-hole pressure-probe. Correlation and turbulence 

measurements were performed using a single-wire and triple-wire probe respectively. 

The following chapter describes in detail the experimental facilities and tech- 

niques used to perform these measurements. 

2.1 EXPERIMENTAL FACILITIES 

2.1.1 Wind Tunnel Configuration 

The measurements were performed in the 32" x 48" low speed wind tunnel 

(Figure 2.1) at the Fluid Mechanics Laboratory (EML) of NASA Ames Research 

Center. This open-loop wind tunnel, which is powered by a 130,000 cubic feet per 

minute compressor, has a sonic throat to keep the test section free from the effects 

of downstream disturbances. The tunnel has a faired inlet, followed by honeycomb 

straighteners, which are then followed by five screens. The contraction ratio of the 

wind tunnel is 9 to 1, and the maximum x-component freestream turbulence level 

as measured by hot wire anemometer is 0.15%. The rectangular test section has a 

width of 48 inches, a height of 32 inches, and a length of 120 inches. The maximum 

speed of the wind tunnel is 200 feetlsecond although the experiment was conducted 

entirely at a freestream velocity of 170 feetlsecond. Tunnel speed was computer 

controlled through feedback of tunnel dynamic pressure measurements. A traversing 

mechanism is contained in a sealed enclosure lying above the test section (so that 

plenum is at tunnel static pressure), and removable slotted plexiglas ceiling sections 

allow freedom of movement for the traverse in the axial direction. Plexiglas side 

walls of 112 inch thickness allowed for visual inspection of ongoing tests. Further 



information concerning the design of the wind tunnel can be found in Zilliac (1988). 

2.1.2 Wing Model Configuration 

A half-wing model of 4 foot chord, 3 foot semi-span including rounded (half- 

body of revolution) wingtip, and NACA 0012 wing section was used, as shown in 

Figure 2.2. The constant chord section of the wing accounted for 33.12 inches of the 

span, while the maximum span extension of the tip near the quarter chord measured 

2.88 inches. The two coordinate systems used to describe the physical locations of 

the experiment are also shown in Figure 2.2. Note that the origin is at the wing 

root trailing edge. 

During the design phase of this study, the decision was made to use as large a 

model as possible while avoiding severe viscous tunnel interference due to excessive 

growth or separation of the tunnel wall boundary layers. "Inviscid" tunnel inter- 

ference is, of course, very large and computations have to take into account the 

presence of tunnel walls. 

The model was constructed out of aluminum with a skin thickness of 1/4 inch 

and precision machining of the surface contour (f 0.0005 inches). This skin covered 

a wing structure consisting of 3 aluminum ribs and a single-tube steel spar. A 

removable rounded-tip cap and detachable bottom surface allowed access to pressure 

tap tubing. A steel beam support structure with bearings held the wing structure 

in place as shown in Figure 2.3. The wing deflected a maximum of 0.005 inches with 

the tunnel running at the test speed of 170 feet/sec and the angle of attack set at 

10'. The angle of attack could be varied through f 16' by rotating the model about 

its quarter chord, although, the only test case of interest in the present study was 

at +lo0 angle of attack. The quarter chord point was located in the vertical center 

of the test section so that geometries at positive and negative angles of attack were 

identical. "Lower surface" measurements were made on the upper surface at -10'. 

The quarter chord point was located 19.0 inches downstream of the test section 

inlet. 

A trip was used to fix transition near the leading edge. Spherical roughness 



elements of 0.017 inch diameter were packed closely together to form a 1/8 inch 

wide strip. The strip was placed across the span of the wing at an arc distance 

of 2.0 inches from the leading edge. The location of the trip was at the nominal 

location of natural transition on the suction side of the wing which was determined 

by naphthalene flow visualization. The trip extended around the tip and along the 

bottom surface of the wing. Naphthalene sublimation and microphone techniques 

were used to confirm that the boundary layers on the suction side of the wing and 

the wingtip region were turbulent after the trip. 

2.1.3 Traverse Mechanisms 

Probe traversing for the seven-hole and triple hot-wire probe was done using 

NASA/FML built rails and slides driven by Compumotor LE-Series drive units and 

Model 372 indexers (25000 microsteps/rev). The five-degree-of-freedom traversing 

system had the capability of translation in three directions, and of pitching and 

yawing the probe. The traversing gear is shown in Figure 2.4. The pitch and yaw 

capability was not used with the seven-hole probe (except during calibration). When 

the triple-wire probe was traversed, pitching and yawing the probe also required 

translational movement to maintain the sensing portion of the wires at the data 

point location. By varying the position of the slotted plexiglas ceiling sections, 

various streamwise locations could be accessed by the traverse. Probe position 

and orientation was derived from optical encoders on all axes (not from motor 

step counts). Absolute positioning accuracy of a probe (relative to wing model 

surface) was within 0.02 inches. Incremental positioning accuracy was determined 

to be within 0.001 inches for translation, 0.2O for pitch, and O.1° for yaw. Absolute 

positions were displayed on RSF Electronics 2536 displays. 



2.2 DATA ACQUISITION AND REDUCTION 

2.2.1 Computer System 

Data were acquired using a 32-bit DEC pVAX I1 computer. The computer had 

5 megabytes of RAM, a hard disk with 360 megabytes capacity, and a 90 megabyte 

capacity tape back-up drive. Connected to the computer were the following: a 

15-bit, 10 channel simultaneous sample and hold Tustin X-2100 AID, a 12-bit, 8 

channel AID, 2 channel D/A AXV-11-C board, 5 Compumotor 372 indexer units, 2 

computer terminals, and an Ethernet port. The computer configuration and equip- 

ment schematic is shown in Figure 2.5. The core software used for data acquisition 

was the Fluid Mechanics Data Acquisition System (FMDAS) software which is de- 

scribed by Hooper & Saunders (1985). 

Analog signals from the MKS 223B and the FML Hot-Wire Bridges were sent 

to the Tustin unit. Measurement error due to A/D resolution over a 10 volt range for 

the Tustin A/D was about f 0.3 mV and was considered to be negligible compared 

to instrument error. Tunnel speed was controlled by a D/A channel from the AXV- 

11-C board with feedback from the Datametrics type 1015 transducer sent to one 

of the AXV-11-C7s AID channels. The Ethernet port allowed for quick transfer (10 

Mbits/second) of raw data using the DECNET protocol, to a separate computer 
I 

for near-real-time assessments of triple-wire data (see Figure 2.5). 

2.2.2 Flow Visualization Technique I 
To determine the approximate location of transition on the wing surface, the 

naphthalene sublimation technique was used. Naphthalene mixture was sprayed 

onto the wing surface and the wind tunnel was set to the reference velocity. Regions 

of high mixing rate sublime the mixture at a faster rate so that after a certain 

amount of time has elapsed, the naphthalene is visible only on portions of the 

surface where the flow is nominally laminar. 

To get a qualitative picture of the skin friction lines on the wing, surface-oil 



flow visualization was performed using (roughly) a mixture of titanium oxide (1.5 

parts), oleic acid (1 drop/tablespoon titanium oxide), kerosene (2 parts), 10 weight 

oil (1 part), and fluorescent powder (1 part) and photographed using a 2 x 2 inch 

large format still camera. An ultraviolet lamp was used to illuminate the mixture. 

This gave more contrast with the background surfaces than with normal lighting. 

The mixture was simply brushed onto the entire wing surface with the tunnel off, 

and then allowed to "run" with the tunnel on. Once the kerosene evaporated, the 

tunnel was turned off again to allow for a clear photographic path. 

Laser-illuminated smoke flow- visualization using a Rosco 1500 smoke generator, 

a smoke filament rake, and a 5 Watt Lexel argon-ion laser, was videotaped with 

a Sony DXC-M3A video camera and also a 35 mm camera. The rake was placed 

in front of the wind tunnel inlet and aligned so that smoke was wrapped into the 

vortex. A fan of laser light was generated by passing the laser beam through a 

cylindrical lens. The fan of light was oriented so that crossflow planes of the smoke 

filaments could be visualized. Several streamwise stations of the crossflow planes 

were observed by mounting the lens on the axial traverse. 

2.2.3 Pressure Transducer Instrumentat ion 

MKS 223B pressure transducers were used for surface pressure and seven-hole 

pressure measurements, while a single Datametric Type 1015 transducer was used 

for tunnel speed control. 

The Datametric Type 1015 pressure transducer was calibrated with a linear 

two point fit over the range of pressures encountered in wind tunnel operation. 

For surface pressure measurements, a single MKS 223B pressure transducer 

was calibrated with a cubic fit of 10 pressures ranging from 6.6 to -6.6 inches of 

water differential. The digitized pressure was averaged over a 4 second period. 

For seven-hole pressure probe measurements, all eight MKS 223B pressure 

transducers were calibrated at the beginning of every data run with a third-order fit 

of 12 pressures. The pressures ranged from 7.0 to -26.0 inches of water differential 

to account for the full range of pressures encountered in the wingtip flow. The 



transducers were kept in a temperature controlled box to reduce variation in the 

transducer calibrations. After allowing time for the pressures to settle, the digitized 

pressures were averaged, again over a 4 second period. 

All calibrations were done using a NASAIFML built automated micro- 

manometer with a range of up to f 30 inches of water pressure. 

2.2.4 Surface Pressure Measurement System 

On the upper half of the wing model surface, 222 static pressure taps were 

located in 12 chordwise rows at the spanwise locations of z/bo = 0.181, 0.362, 

0.725, 0.845, 0.906, 0.936, and 0.966 and at the tip spanwise locations of y = O.OO, 

22.507 45.0°, 67.5", and 80.0'. Each row had 19 taps at the chordwise locations of 

X/C = -1.0, -0.995, -0.9875, -0.975, -0.95, -0.925, -0.9, -0.085, -0.8, -0.75, 

-0.7, -0.6, -0.4, -0.2, -0.015, -0.125, -0.075, -0.05, and -0.025. The taps were 

connected to a six-cap Scanivalve (40 barrelslcap) which in turn was connected to a 

MKS 223B pressure transducer. Lower surface measurements were made by setting 

the wing model to negative angle of attack. 

2.2.5 Seven-Hole Pressure Probe 

A NASAIFML made conical shaped seven-hole pressure probe (Zilliac, 1989) 

of 0.1 inch diameter was used to measure static pressure and the velocity vector. 

The primary advantage of a seven-hole probe over a five-hole probe lies in its ability 

to measure in high flow angle environments. Pressure coefficients are formed, based 

upon probe holes where the flow remains attached, and large flow angles can be 

measured even though flow separation may occur on the leeside of the probe. The 

ability of the seven-hole probe to resolve flow angles up to 65' was an important 

attribute for measuring behind the wing where flow angles of up to 50' were present. 

Data rate of the probe measurement system was maximized by use of simultaneous 

sampling of the 8 required pressure measurements at each measurement location 

(seven for the probe and one for tunnel reference total) with 8 separate MKS 223B 



pressure transducers. The pressure transducers were placed in a thermally insulated 

box to minimize the effects of temperature drift on the calibration of the transducers. 

Flowfield data using the seven-hole probe were taken at the following cross-flow 

planes: x/c = -1.14? -0.59, -0.39, -0.30, -0.20, -0.11, -0.005, 0.005, 0.13, 0.26, 

0.46, and 0.69. Data planes taken in the wake and in front of the wing model had 

21 x 29 data points (23.0 inches vertical, 28.0 inches span). The boundaries of the 

data planes were at 2z/bo = 0.33, 2z/bo = 1.20, y/c = -0.11, and y/c = 0.47. Data 

planes taken above the surface of the wing also had 21 x 29 data points. These 

planes however, were, in essence, half-planes, since they extended exactly half way 

around the tip, but did not include any points below that line. For data points 

near the wing surface, an electronic touch sensor was used to find the surface of the 

model. The first vertical data point above the surface was taken 0.050 inches (about 

one-half probe diameter) above the location found by the touch sensor. The grids 

were stretched so that the densest experimental grid spacing was around the center 

of the core of the vortex. The center of the core was found by taking a small grid 

(usually 15-20 points) of preliminary measurement data points around an estimated 

location of the core and then interpolating to the point with the lowest crossflow 

velocity. 

2.2.5.1 Seven-Hole Probe Calibration Procedure 

Calibration of the probe was done in situ, prior to installation of the model. 

The probe was pitched and yawed over 5' increments for -30" < 8 < 80" and 

-80" < ,B < 80". A diagram of the probe stem apparatus during calibration 

and of the '7-hole pressure probe itself are shown in Figure 2.6. A separate probe 

stem apparatus was used during actual measurement taking such that y = 0'. 

The calibration involved forming 28 different non-dimensional pressure coefficients 

for every pitch and yaw angle combination. For any given measurement point 

only 4 coefficients are used, but the coefficients which are used are determined by 

separation criterion. The coefficients were quite insensitive to freestream velocity 

variations and so long as care was taken to keep the probe tip free of damage or 



debris, the probe did not need to be re-calibrated. A more complete description of 

the calibration procedure and the separation criterion is given by Zilliac (1989). 

2.2.5.2 Seven-Hole Probe Uncertainty and Error Analysis 

A complete analysis of measurement error of seven-hole probes is given by 

Zilliac (1989). For high flow angles (> 30°), flow angle measurement uncertainty 

for the seven-hole probe is within 1 ' while velocity magnitude uncertainty is within 

1 .l% of freestream velocity. For low flow angles (< 30°), flow angle uncertainty is 

within 0.5' while velocity magnitude uncertainty is within 0.8%. 

2.2.6 Hot-Wire Anemometry System 

A Dantec 55P91 triple-wire probe was used to measure turbulence quantities 

including triple products and all components of the Reynolds stress. The probe 

consists of three nominally orthogonal 5 micron diameter, 1.25 mm long, platinum- 

plated tungsten wires which all lie within a 3 mm sphere. The approximate angles 

and orientation of the wires are shown in Figure 2.7. The exact orientation of the 

wires was determined through calibration. The outputs of the three wires were 

connected to custom-built NASAIFML Hot-Wire bridges. 

The probe was roughly aligned with the mean flow vector (within 0.2' of flow 

angle interpolated from the seven-hole measurements) at each data point location 

and small samples of measurements were taken (around 500 samples). These sam- 

ples were processed on-line and the probe was re-aligned to a new approximation 

to the mean flow velocity vector. This process was repeated until the probe was 

aligned to within 1' of the latest approximation to the mean velocity vector. For 

measurement surveys near the surface of the wing, the geometry of the probe appa- 

ratus made alignment with the flow for some points impossible without crashing the 

apparatus into the wing. Custom software was written to align the probe with the 

flow as closely as possible, without crashing the probe apparatus (software available 

upon request from author). When the probe was determined to be aligned, a full 



sample buffer of data was taken. The number of eddies of wavelength of the order 

of 5 which are measured per unit time in an Eulerian sense can be estimated by 

LT,/S. For a freestream velocity of 170 feet/sec, and 5 - 0.5 inch, roughly 4000 

eddies pass by the probe per second. At each data point a total of 10000 samples 

was obtained at a sampling frequency of 500 Hz. This corresponded to a sample 

spacing of about 8 S/U, so the samples should be independent. This data was 

downloaded to another computer to allow for near-real time processing of the data 

while still having the raw data stored for further post-processing analysis. 

Crossflow planes were measured at axial stations identical to those measured 

by the seven-hole pressure probe. The stretched 20 x 20 grid focused mainly on 

the immediate region around the vortex, and hence was much smaller in size than 

planes measured with the seven-hole probe. The 8 x 8 inch square planes were 

centered at the nominal core center. The core center was determined by performing 

a preliminary survey of an area suspected of containing the center and interpolating 

to find the point of minimum crossflow velocity. 

The possibility of meandering of the vortex was investigated by using a pair 

of single-wire probes placed on opposite sides of the vortex core (0.07~ from the 

center at x / c  = 0.678), and evaluating measurements between the two. The wires 

were aligned so that they were primarily sensitive to velocity fluctuations in the 

y and z direction. Previous researchers have found the tip vortex to meander 

periodically in a spanwise direction with f c / U ,  on the order of 0.01 (McAlister 

& Takahashi16). Measurements of the velocity correlation u',ub between the two 

single wires, positioned on opposite sides of the vortex core, were compared with the 

correlation computed from an analytical model (to be described in next chapter). 

The correlation of uiub was measured by taking a total of 50000 samples at a 

sampling frequency of 2000 Hz, and a Krohn-Hite Model 3343 Filter was used to 

low-pass filter the data at a filter frequency setting of 50 Hz. 

2.2.6.1 Triple Hot-Wire Apparatus 

The complicated geometry of the various rotating and translating axes generally 



required simultaneous movement of 5 of the degrees of freedom to keep the sensing 

portion of the triple-wires at the location of the data point. The triple-wire probe 

holder also enabled the probe to be rolled manually to within 1' if needed (an initial 

guess in the wire orientations was needed during the calibration). 

During the investigation it was discovered that the temperature field in the 

vortex viscous region was spatially varying by up to 2'FIinch. Accurate spatial 

resolution of the temperature measurements was necessary because the triple-wire 

data was temperature corrected. A Omega Model TFD temperature sensor was 

flush-mounted on the body of the probe surface, approximately 1.25 inches down- 

stream of the center of the triple-wire sensors. With the probe aligned to 0' pitch 

and 0' yaw, the only temperature gradient that would give the sensor a different 

point-measurement from that of the 3 hot-wires would be the axial gradient. The 

axial gradient was deemed to be negligible and the crossflow gradients were deemed 

to be important only in the viscous region of the vortex. Hence, for measurement 

points within 1 inch of the core centerline (the approximate radius of the core viscous 

region), the probe was initially aligned to 0' pitch and 0' yaw, and the temperature 

was measured before the triple-wire probe aligning process was begun. 

2.2.6.2 Triple Hot-Wire Calibration 

Calibration was done following an adapted version of the method by LeBoeuf 

(1990). This method does not assume orthogonality of the wire sensors and avoids 

measuring the orientation of individual wires by visual procedures. The method is 

also simplified in that the procedure can be performed simultaneously for all three 

wires rather than doing a separate normal wire calibration for each wire. 

Calibration was completed in two phases; holding constant angle while varying 

velocity, and holding constant velocity while varying angle. A temperature cor- 

rection scheme based upon Nusselt-Reynolds number dependence was used. The 

constant-angle calibration was performed for all three wires simultaneously by align- 

ing the probe apparatus axis with the freestream velocity. Hence the wires were 

each skewed by approximately 54.7 degrees from the freestream. Angle sensitivity 



was modeled by a modified version of Jorgenson's (1974) equations: 

where i is the wire index, k is the yaw factor, y is the angle between wire i and the 

instantaneous velocity (y to be solved for later) and U, f,i is the effective normal 

velocity of wire i. The modified equations assume velocity-independent yaw sensi- 

tivity (ki )  and negligible pitch sensitivity for U,  > 5 meters per second (as in this 

experiment). In general, the velocity, temperature, and voltage for each wire were 

made to fit the Nusselt-Reynolds number polynomial: 

where Redli is the ambient temperature evaluated Reynolds number based upon the 

wire diameter, Nudli  is the Nusselt number based upon wire diameter and evaluated 

at the film temperature (average of ambient and wire operating temperature), and 

A1,i represent the calibration coefficients. Given R and R, (the wire operating 

resistance and the cold wire resistance respectively), the definition of the overheat 

ratio, O H R  I R i R c ,  and a first (linear) approximation to the dependence of wire 

resistance with absolute temperature, it can be shown that Equation 2.2.2 can be 

rewritten as: 

with the constants A',,; containing the wire dimensions and: 



where v is the kinematic viscosity at the ambient temperature, k is the thermal 

conductivity of the wire at the film temperature, cr is the temperature coefficient of 

resistivity of the wire, Ei is the voltage of wire i, T is the ambient air temperature, 

and To is the cold wire temperature. Since the wires were calibrated skew to the 

freestream, the actual constant angle fit was: 

- 
where Ue f,i represents the velocity magnitude at the angle which the freestream 

makes with the wire (say 7 during the constant-angle calibration) which would give 

the same voltage reading as the true velocity, and the constants A;,; include the 

effect of the initial skew angle. 

The varying-angle portion of the calibration fit 113 combinations of pitch and 

yaw angles over a cone half-angle range of 0" to 30' (using 5' increments of pitch 

and yaw) to the following equation: 

The non-linear least squares fit of these combinations was done using the IMSL 

(International Mathematics and Statistics Library) subroutine UNLSJ. For each 

wire, 5 constant angle coefficients, a yaw coefficient, and 3 wire direction cosines 

were solved for in the calibration. 

One difficulty that was encountered during calibrating the wires was that the 

maximum speed of the wind tunnel was not high enough to cover the entire range 

of velocities encountered in our flow (axial velocities reached as high as 300 feet per 

second in the core). This difficulty was remedied by taking a calibration point in 

the core of the vortex and then applying King's law to the high speed portion of 

the constant angle calibration. 

Although the triple-wires were temperature corrected, room temperature could 

change over a day by as much as 15' F. To remedy any sort of calibration drift, the 

probe was directed to check a known calibration point after every ten data points. 



If the calibration drifted by over I%, the constant-angle calibration process was 

repeated and the five constant angle coefficients were re-calculated, before returning 

to the data measurement process. 

Decoding the data involved solving for u j, for every sample taken, the three 

simultaneous non-linear modelled equations: 

where the yaw coefficients ki7 and wire direction cosines Pi, j7  were found previously 

by calibration and U, f , i ,  were determined from a algebraic combination of the wire 

voltage, ambient temperature, and the calibration coefficients. 

2.2.6.3 Triple Hot-Wire Uncertainty and Error Analysis 

There were several sources of error in the triple-wire measurements. Curve 

fit error and calibration drift error (usually temperature related), were minimized 

through the use of a fourth-order polynomial fit and through constant checking for 

re-calibration of the probe (every ten traverse points). A typical fit of the constant 

angle calibration data had a standard deviation of 0.1%. The velocity range of the 

fit was from 40 to 170 feet per second and errors due to extrapolation of the fit at 

higher velocities would be larger. A sample fit of typical varying-angle calibration 

data with RMS error of 0.96% and maximum error of 2.08% is shown in Figure 2.8. 

Measurement errors due to mean velocity gradients were corrected using the 

method described in Appendix A. Pompeo (1992) compared measurements of 

crossed, triple, and quadruple wires on two-dimensional and three-dimensional 

boundary layers and found that errors due to instantaneous velocity gradients could 

be substantial for any multi-sensor probe. Triple wires were found to have errors 

of up to 20% of maximum levels in measuring v'2, and w'2, 30% in measuring v'ul', 
and up to 10% in the other Reynolds stresses. However, Pompeo did not attempt 

to align the probe with the mean flow velocity vector. 

Paulsen (1982) showed that alignment of the triple-wire probe with the mean 



flow velocity vector can greatly influence the accuracy of mean and turbulence 

measurements. Misalignment of the probe axis to the mean flow vector of 15" was 

found to result in mean errors of up to 10% of maximum levels and Reynolds stress 

errors of up to 30%. 

Muller (1992) compared cross-wire and triple-wire measurements on a relaxing 
- 

flat plate boundary layer. Measurements of u'v' by the two methods agreed within 

5% and the triple correlation was within 10%. 

Gieseke and Guezennec (1993) compared cross-wire and triple-wire measure- 

ments on a turbulent flat plate boundary layer. In comparisons to data by Klebanoff 

(1954), errors were found of up to 5% maximum levels in .1L'2 and F, up to 10% in 
- - - - 
wt2, and up to 15% in u'v'. Negligible levels of u'w' and v'w' were measured which 

was expected for a two-dimensional boundary layer. 

As a result of the previous comparisons, it is estimated that the mean velocities 

are determined within 2.0% of freestream and 1.0" of the true velocity vector. The 
- 

following are the estimated errors of the turbulence measurements: ut2 and v'2 
-- 

within 5%, within lo%, shear stresses u'v', u'w', and within 15%, 15%, 

and 30% respectively. 

2.3 OFFLINE DATA PROCESSING 

Near-real time processing of the data was available by transferring sampled 

data over the Ethernet to another computer for immediate processing. The raw 

data files containing the AID counts and the hot-wire calibration data were saved 

on disk and available for re-processing at a later date. 

Offline data processing was done using a MicroVax I1 with roughly 4 times 

the processing power of the MicroVax computer used for instrument control. Color 

and grey-scale contour display of the various scalar quantities were displayed on 

a Silicon Graphics Iris Workstation using the NASA/Ames developed FAST soft- 

ware (Walatka, et al., 1992). Subsequent editing of saved images was done using 

PIXEDIT. 



2.3.1 Triple Hot-Wire Da t a  Reduction Software 

Offline processing of the raw triple-wire data was done using the FORTRAN 

program written by the author, RETAK3W. The offline processing capability al- 

lowed for calculation of all the mean and turbulence velocity statistics (including 

triple products) and allowed for the user option of including gradient correction (see 

Appendix A). All raw data files and the source code of RETAK3W are available on 

IBM floppy disk upon request sent to the author. 

2.3.2 Computation of Derived Quantities 

Several quantities had to be found by calculation from the triple-wire data. 

In particular, the vorticity, and all the quantities involved in the transport equa- 

tion balances, required spatial derivatives of the various basic mean and turbulent 

quantities. 

A script file was writ ten for the NASA/Ames developed FAST software, which 

calculated the various spatial derivatives and scalar products of the entire data 

flowfield, and totaled the contributions of the various rate mechanisms. Metric 

formulation of the grid was necessary because the data grids were not necessarily 

evenly spaced or rectangular (e.g. data planes over the surface of the wing). A 

second-order differencing scheme was used on metric derivatives. A central differ- 

ence was used on scalar quantity derivatives on the interior data points. Forward 

and backward differences were used on points on the edges of the dataset. 

The circulation of the tip-vortex system was found by numerically calculating 

the line integral of the velocity along a path following the edges of the seven-hole 

data planes. This plane extended near enough to the root wall to encompass most 

of the vorticity shed from the wing wake and far enough to the opposite tunnel wall 

to completely encompass the viscous region shed from the tip portion of the wing. 







Figure 2.3 Wing Model Support Stand 
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Figure 2.4 Traversing Gear 
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Figure 2.6 Seven-Hole Probe 

45 



3 sensors perpendicular 
to each other inside a 
sphere of 3 mm 
I- 

Probe 

-411 dinlensio~ls in mm. 

Probe z-axis 

4-Y- Probe y-axis 

1 wire 2 

Relative angular positions of wires. 
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WIRE #2, RMS ERR % = 0.83, MAX ERR % = 2.17 

Figure 2.8 Typical Triple-Wire Angle Calibration 



3. EXPERIMENTAL RESULTS AND PRELIMINARY DISCUSSION 

The following chapter presents the results of the present investigation in chrono- 

1ogica.l order. Flo1~7 visualization tests were completed initially to get a qualita.ti\-e 

feel for the nat.ure of the flow. The surface pressure and seven-hole measurements 

are presented next, followed by the turbulence and correlation data. as measured by 

hot-wire anemomet,ry. 

The location and size of the data planes for the seven-hole and t.riple-wire 

measurements are shown in Tables 3.2-3.3. This chapter presents line and contour 

plots of the resultant data. The free stream velocity, U,, and the wing chord length, 

c, are used to normalize the data where it is most useful. 

3.1 FLOW VISUALIZATION RESULTS 

3.1.1 Laser-Illuminated Smoke Flow 

Streamwise development of the tip 1-ortes is shown by sheets of laser- 

illuminated smoke flow photos in Figure 3.1. Each frame visualizes the crossflow 

plane perpendicular to the x axis. Still photographs of crossflow planes were taken 

at the following locations: x/c = -0.39: -0.26, -0.14, -0.01,0.12,0.25,0.37,0.50. 

The spanwise location of the vortex core is nearly constant at z /b ,  = 0.97. The 

perpendicular distance to the core from the wing surface increases with chord. At 

x/c = -0.39, the vortex core is located about 0.4 inches above the wing surface, 

while near the trailing edge (x/c = -0.01), the vortes core "sits" approximately 1.5 

inches above the wing surface. The first signs of the tip vortex can be seen in the 

first photo a,t x/c = -0.39. The radial growth in the size of the vortes with axial 

location is apparent. A small kink in a. smoke filament. can be seen in the wake 

photos taken a.t x / c  = 0.37 and x/c = 0.50. This feature corresponds to what has 

been observed and described by various authors a.s a. "vortex kink". Green (1991) 

attributed this effect to t,he 1-ortex-soliton of Ha.simoto (see Hopfinger 1982) theory 

while Thompson (1953) hypothesized that the "kink" wa.s caused by the merging of 



t,he primary and secondary vortices. The seven-hole probe measurements described 

later seem to confirm the latter hypothesis. 

3.1.2 Naphthalene Sublimation 

Photos of naphthalene sublimation on the suction side and pressure side at the 

experimental test conditions of V, = 170 feet per second and 10" angle of attack 

were used to determine the placement location of the roughness trip and the photos 

are shou-n in Figure 3.2a,b. Natural transition (regions of laminar flow can be seen 

a.s lighter shades of grey) occurs near the leading edge (a surface distance of 2.0 

inches) on the suction side, while it occurs at roughly half chord on the pressure 

side of the wing. Transition wedges can be seen on both suction and pressure sides. 

The suction side transition line was used as the chordwise placement location of 

the spanwise running roughness elements. Ideally, it would have been preferred to 

place the elements at different locations on the pressure and suction sides of the wing 

(at half chord on the pressure side and at the leading edge for the suction side), 

but since negative angles of attack were used for bottom surface measurements, 

the compromise location was chosen. Microphone listening tests confirmed that 

the wing boundary layers were laminar before and turbulent after the trip. The 

microphone was traversed around suspected re-laminarization areas on the wing 

but no evidence of re-larninarization was found. 

3.1.3 Surface Oil Flow 

Surface oil flow results on the pressure side of the model (Figure 3.3a7 freestream 

from top to bottom) show the highly three-dimensional nature of the flow near the 

tip region. Some "sag7' to the oil in the tip region of the trailing edge occurred 

because of the "tunnel-off" condition at the time of the photographs. In the tip 

region, the effect of the spanwise pressure gradient causes the skin friction lines to 

become skewed outboard. Figure 3.3b shows the tip region skin-friction patterns 

(freestream velocity flows from left to right,). -\gain, the general action of flow 



wrapping around the tip from the pressure side to the suction side is evident. The 

dominant feature, in Figure 3.3b, is a line where other skin-friction lines converge. 

starting at about 55% chord. The properties of this "convergence line" are hard t,o 

quantify. Vnlike cla.ssica1 two-dimensional separation, the skin friction magnitude 

is non-zero along this line (owing to the presence of a streamwise component). In 

the literature (Tobak and Peake, 1982), this line is often described as indicative 

of "local separation" or "open separation". The salient characteristic of this type 

of separation is that there are no singular points in the skin-friction line topology. 

Additionally, there is no zone of stagnant fluid or reversed x-wise flow which typ- 

ically occurs in flows which are "globa.lly separated" (for more detail, see Zilliac 

1989). The convergence line is indicative of the departure of the shear layer from 

the surface. This lifting off of vorticity occurs due to the adverse pressure gradient 

encountered by the crossflow velocities which wrap the flow around the tip. Figure 

3 . 3 ~  shows the suction side skin-friction patterns. The effect of the tip vortex is 

apparent near the trailing edge of the tip region. Directly beneath the tip vortex, 

the skin friction lines get swept outboard. Additional converging skin friction lines 

(two of them) can be seen adjacent to the main line of converging skin friction 

mentioned previously. These correspond to secondary and tertiary vortices formed 

by local separation of the crossflow induced by the primary and secondary vortices 

respectively. -4wa.y from the tip, the skin-friction lines are quite two-dimensional, 

until the root of the wing is reached, where the influence of a wing root horseshoe 

vortex causes the lines to move outboard slightly. 

3.2 MEAN FLOW MEASUREMENTS 

3.2.1 Surface Pressure 

The flow phenomena, described in the oil-flow results are also evident in the 

surface pressure measurements (Figure 3.4a,b). Here, surface pressure coefficient 

contours (C;, E (P - P,) / .5 p l T & )  a.re plotted on the suction and pressure sides 



of bhe wing. The pressure side wing surfa.ce contours show- the stagnation line. 

which is nearly straight across most of the wing, at an average arc distance from 

t*he leading edge of s = +0.01c. -4waj- from t.he tip of the wing, the flow approaches 

two-dimensional behavior, and the pressure gradient in the x-direction is favorable 

for 60% of the chord, only to become slightly adverse for the remaining part of 

the wing. Piear the t,ip of the wing, the flow and the pressure gradients become 

highly three-dimensional. The spanwise pressure gradients induce large cross flow 

velocities around the tip. The large aqua-colored region on the lower rear part of 

the tip in Figure 3.4b7 corresponds to very high velocity air whipping around the 

tip, only to encounter an adverse pressure gradient, after circumventing about half 

way around the tip. This region corresponds to the main converging-skin-friction 

line seen in the oil flow photo. In a two-dimensional sense, the flow in this region is 

similar to crossflow past a circular cylinder, where the shear layer detaches shortly 

after the onset of an adverse pressure gradient. 

The pressure-coefficient contours on the suction side of the wing are fairly 

two-dimensional on the inboard third of the wing. The leading edge suction peak is 

evident, and the minimum surface pressure coefficient found here was -2.64. Nearer 

the tip, in the pre-tip-vortex developing portion of the flow, the surface pressures 

taper off to gradually equalize themselves with the pressures on the pressure side 

of the wing. The suction peak, due to the main tip vortex, is also evident in the 

inset to Figure 3.4b7 and a minimum Cp of -1.30 was found in this region. The 

footprint of t.he main tip vortex lies at approsimately z /b ,  = 0.97, (assuming the 

core of the vortex lies directly above the surface of minimum pressure coefficient), 

and the crossflow pressure gradient becomes adverse as one traverses outboard of 

this core footprint,. This adverse-crossflow-pressure gradient occurs slightly inboard 

of the secondary converging-skin-friction line shown in Figure 3.3~.  It is believed 

bhat the vorticity sheet lifting off from this secondary converging-skin-friction line 

forms a secondary vortex of the opposite sense to the primary vortex. This belief is 

corrobora.t,ed by 7-hole pressure probe data. shown later. The surface pressure da.ta 

could not confirm the esistence of a, suction peak due to this secondary vortes or a. 



tertiary vortex because of resolution limit,a.tio~is. 

The surface pressure distribubion was numerically integrated to find the lift of 

the wing. A total lift coefficient of CL = 0.51 was measured which wa.s consistent 

with Prandt17s experimental results (1921) of CL = 0.55 for a rectangular wing with 

aspect ratio of about 1.4. Considering the wind tunnel interference in the present 

experiment, the comparison of CL with Prandt17s results should be viewed with 

caution. The inboard portion of the wing (where pressure taps are not present) was 

included in the computation by extrapolating the nearly two-dimensional behavior 

of the pressure distribution inboard. 

The actual values of C, used to map the countours in Figures 3.4a,b are tabu- 

lated in Table 3.1. 

3.2.2 Mean Flow Measurements with 7-hole Pressure Probe 

Perspective views of the various mean flow quantities as measured by 7-hole 

pressure probe (the wing model is also shown) are displayed in Figures 3.5(a-e). 

Data planes at  x / c  = -0.591, -0.394, -0.197, -0.010,0.125,0.246, 0.452, and 0.678 

are shown. 

Figures 3.6-3.10 display scalar quantities at various crossflow planes as mea- 

sured by 7-hole pressure probe. Each figure set, 3.X(a-k) (consisting of 6380 data 

points), presents the data in order from the farthest upstream plane to  the farthest 

downstream plane. The x-axis is oriented coming out of the page. It should be 

noted that each plot contains its own separake 1egend.so that the maximum detail 

in each separate data plane can be observed. whereas Figures 3.5(a-e) are meant 

to show more general trends evident in the whole flow field. In addition, thin solid 

lines were used to help the reader contrast the contour gray-scale shading changes. 

In regions of slowly varying levels, the plotting package displayed the lines as thick 

solid lines (usually dark), which may cause confusion. and it should be emphasized 

that these solid lines are merely demarcation borders to aid the reader. Fortunately, 

because these solid lines appear in regions of slowly varying levels: it is generally 

obvious where this occurs. 



Figure 3.11 presents various flow quantities as a. function of s / c  along the 

center of the vortex (location of minimum core crossflow velocity). Plotted are 

asial velocity; static pressure and total pressure coefficient. and position of the core 

centerline. Also plotted as a function of x/c are the maximum crossflo\v velocity 

found on the viscous/inviscid boundary of the vortex and the core radius of the 

vortes. 

3.2.2.1 Crossflow Velocity 

Figure 3.6(a.-k) displays crossflow velocity magnitude normalized by freestream 

velocity at various crossflow planes as measured by 7-hole pressure probe. Cross- 

flow velocity-, b7cf7 is defined as the resultant of the V and W components of the 

velocity vector. At x/c = -0.591 (roughly 40% chord), high crossflow velocity fluid 

circumventing the tip can be seen, but no tip vortes is evident yet. A maximum 

normalized crossflow velocity of 0.602 is shown in this initial data plane. The first 

indication of a tip vortex can be seen in the second data plane at x lc  = -0.394. 

A simple comparison shows that the approximate location of the vortex centerline 

matches up with the suction peak on the surface of the wing. As the data planes 

progress down the chord of the wing, the region of high crossflow velocity increases 

(both in area and magnitude) as the tip vortex gains strength from the feeding sheet 

of boundary layer vorticity (this can be most easily seen in Figure 3.5a). The max- 

imum crossflow velocity measured at  x/c = -0.394 was 0.791 times the freestream 

velocity. This grew quickly to a level of 1.0 at x/c = -0.296 and then more slowly 

to a level of 1.072 at z/c = 0.125. The maximum crossflow velocity decayed slowly 

to a level of 0.963 at the farthest downstream wake pla.ne at x/c = 0.678. The 

vortex core diameter was estimated by calculaking the distance between the peak 

crossflow velocities on either sides of a vertical cut through the vortes centerline. 

This admittedly a.rbitrary definition succeeds in describing a consistent estimate of 

the gro\vt,h of t,he vortes viscous region. The radius of the viscous core of the main 

tip vortes a.t x / c  = -0.197 was found to be about 0.9 inches and it grew st,eadily 

to a size of 1.48 inches at s / c  = 0.005. The growth of the core radius of the vort,es 



was negligible in the vake planes. 

The plot of the vortex core position in Figure 3.11 shows the vortex centerline 

on separate y/c and 3/c paths. The y/c path initially goes downwards, following 

the surface of the wing, until the wing trailing edge is reached, where the vortex 

centerline moves slightly upwards and then levels off. In the spanwise direction. 

the centerline generally follou~s an inboard path except at the x/c = 0.125 location. 

Here, the centerline moves outboard for a moment and then resumes its inboard 

path at the x/c = 0.246 location. This corresponds to the location in the laser- 

illuminated smoke flow-visualization where a similar "kink" was observed. Both 

Green &T Acosta (1991) and Thompson (1983) have observed that this "kink" oc- 

curs slightly downstream of the trailing edge, as has occurred in this study. The 

secondary vortex lies outboard of the primary tip vortex and rotates with the op- 

posite sense. The disappearance in the wake of any trace of the secondary vortex is 

presumably due to it being absorbed by the main tip vortex and this may explain 

the outboard movement of the "kink". 

Small low velocity patches can be seen in between the feeding sheet and the 

main vortex, corresponding to the approximate location of the secondary line of 

converging skin friction. These patches of low-crossflow-velocity air are not readily 

observable in data planes taken in the wake (x/c > 0). Maximum crossflow velocity 

(on the order of the freestream velocity) is found on the nominal viscous/inviscid 

boundary of the vortex. A better demarcation of this boundary would be regions 

where Q, z 0. The axial development of the masimum normalized crossflow velocity 

is plotted in Figure 3.11. 

3.2.2.2 Static Pressure Coefficient 

Equation 1.2.5 (Euler's n-equation) gives a rough explanation for the decrease 

in static pressure in the core of the vortes as it rolls up, and this in turn causes the 

core centerline axial velocit,y to increase. -4s the ma.ximum crossflow velocity of the 

vortex increases with x/c: an axial pressure gra,dient. also develops and accelerates 

the core fluid in the a,xia.l direction. Figures 3.8(a.-k) illustrate the decrease in core 



pressure with chord. The core centerline static pressure coefficient, (P-  P, 

drops from a value of -0.64 at x/c = -0.394 to a d u e  of -3.43 at x / c  = -0.010. 

In the wake. the core pressure actually still decreases very slightly, due to the wind 

tunnel pressure gradient. It might be expected that further downstream, the core 

pressure would increase due to the decay of the peak crossflow velocities. 

The adverse pressure gradient encountered by the flow traveling around the tip 

from the suction side to the pressure side of the wing can also be seen in Figures 

3.8(a-c). The location and magnitude of these results matches well with the surface 

oil flow and the surface pressure measurements. 

3.2.2.3 Axial Velocity 

Figure 3.7a-k shows the axial velocity normalized by the freestream velocity. 

The axial development of the vortex centerline axial velocity is plotted in Figure 

3.11~. The axial velocity in the core of the vortex increases with x. A profile of the 

axial velocity across a cut through the vortex at x/c = 0.125 is plotted in Figure 

3.12. At the x/c = -0.394 data plane, the normalized axial velocity of the core 

centerline point is equal to 0.823, a slight freestream deficit. A maximum axial 

velocity of 1.7'1 U ,  was found at x / c  = 0.005 (slightly downstream of the trailing 

edge). Chigier and Corsiglia (1972) noted a maximum axial velocity in the core right 

before the trailing edge of about 1.4 U ,  (NACA 0015, a = 12.0°, Re, = 953,000). 

Shortly after the trailing edge they observed an axial core velocity reduction to 1.1 

U,. In the present, study, the axial velocity maximum decreases very slowly in the 

wake to a value of 1.69 LT, at x/c = 0.69, a marked difference from the results of 

Chigier and Corsiglia. 

In fact,, the level of axial velocity excess measured on the core centerline in 

the present experiment has not been observed previously. Certainly several factors 

influence the development of this velocity escess, including tip shape, angle of at- 

tack, wing section, a.nd Reynolds number. The present experiment, was performed 

at a relatively high angle of attack, at high Reynolds number. and with a, tip shape 

with forgiving sepa.rat,ion characteristics. As was discussed previously, a rounded 



tip shape has a single primary separation line which detaches from wingtip due to 

the adverse crossflow pressure gradient. By contrast, a square tip shape would have 

two primary separation lines; one for each sharp corner. It might be deduced that 

these two separation lines would serve to decrease the tangential velocity induced 

by the rollup. Past experiments have not approached the high Reynolds number 

(Re, = 4.6 million) of the present study. More importantly, because the model was 

large, the vortex core in the present experiment was much larger than in previous 

esperiments. The probe size relative to the core size was therefore smaller. This re- 

sulted in reduced probe gradient errors and in lessened likelihood of probe-induced 

vortex breakdown. Finally, the measurement of the data planes in the near wake al- 

lowed for minimization of the vortex meander problem which has contaminated the 

bulk of the previous experimental work. It is thought that near the trailing edge of 

the wing, the amplitude of the meander is reduced. Interestingly, the one study that 

nearly matched the velocity excess measured in the present study (mean levels of 

1.6 times the freestream velocity as opposed to 1.77), was the non-intrusive study 

by Green (1991). That study was performed at a much lower Reynolds number 

(based upon chord) which would suggest that higher Reynolds number may have 

the effect of increasing the axial velocity excess. Looking at it in another way, a low 

chord Reynolds number may cause an axial velocity deficit on the core centerline. 

A low Reynolds number would mean that viscosity would play a larger role in the 

flow than inertial forces. Hence, the low momentum boundary layer fluid which 

is wrapped into the vortex would have a larger effect, possibly resulting in large 

enough decelerating forces to counteract the favorable pressure gradient forces and 

give an axial velocity deficit. A higher angle of attack would work in favor of the de- 

velopment of an axial velocity excess because the added pressure differences on the 

suction/pressure sides of the wing would increase the acceleration of the crossflou- 

around the wingtip (provided no stalling of the wing occurred). -4 further analysis 

of the influence of various parameters on t.he core centerline axial velocity is left for 

the nest chapter. 

The growth of the boundary layer thickness (green-blue area in Figure 3.5b 



nearly spanning the wing) with chord, and its development int.0 the wake: are quite 

vivid. An interesting development is the apparent thinning of the boundary layer in 

bet.ween the main tip vortex and the nearly-two-dimensional section of the flow. -4s 

one progresses down the chord, t,he span of this boundary layer "dip" increases. The 

crossflow velocity in this region is dominated by v-velocity (a downward component 

towards the surface). It is believed that'the tip vortex induces a flow such that 

the low momentum fluid in the boundary layer is "pushed aside" and replaced by 

higher momentum fluid, thus thinning the boundary layer. 

3.2.2.4 Total Pressure Coefficient 

The gradual loss of total pressure in regions of the flow where viscosity plays 

an important role can be seen in Figures 3.9(a-k). Total pressure coefficient, 

Cp,tot - (Ptot,l - Pm)/apIi'L, is shown in the figures. It can be seen that at 

x/c = -0.394, where the tip vortex is first evident, the core centerline axial velocity 

is a deficit, at 0.82 Urn, and the static pressure is about 0.6 dynamic pressures below 

freestream static. Until the trailing edge plane is reached (data at x / c  = -0.005 and 

0.005 straddle the trailing edge), the general trend of Figure 3.11 shows that total 

and static pressure fall while the axial velocity increases as x / c  increases. The axial 

velocity increases because the rate at which the static pressure falls is much faster 

than the total pressure fall. Downstream of the trailing edge, the axial velocity 

decays slowly and the static pressure levels off. The low absolute level of the total 

pressure coefficient (Cp,tot is significantly less than one and decreasing) implies that 

the nature of the flon- in the vortex core is highly viscous which is not surprising 

considering that much of the vortex core fluid originates from the separated bound- 

ary layers. The largest loss in total pressure occurs in the recirculating region in 

between the detached tip boundary layer and the main tip vortex (CpqtOt = -0.413 

at X/C = -0.197). The highly viscous vortex core also shows a large loss of total 

pressure (Cp,tot = -0.069 at x/c = -0.197). The increase in the size of the vortex 

core can also be seen be comparing the area of the dark circular patches from plane 

to plane (since the white regions indicate approximately no loss of total pressure). 



A definition of the vortes core boundaries based upon a criteria of percentage of 

the freestream dynamic pressure (say 90%) may be Inore appropriate than the con- 

ventional definition of the vortex (based upon masimum tangential velocities) in 

some instances. however the latter definition mill be used in this study because of 

the popularity of this definition. 

3.2.2.5 Axial Vorticity 

The existence of secondary vortices, suggested by the surface oil flow and sur- 

face pressure measurements, was confirmed by the 7-hole pressure probe measure- 

ments and is most easily shown by looking at contours of axial vorticity. Displayed 

in Figures 3.10(a-k) are x-component of normalized vorticity (normalized by U,, 

resulting units are in-'). -4s expected, negative levels of vorticity increase rapidly 

with chord in data planes measured over the wing. The centerline vorticity contin- 

ues to increase, albeit at a much slower rate in the wake, implying that roll-up of the 

vortex has not been completed at the farthest wake data plane. A concentrated grid 

was measured at x l c  = -0.114 to investigate the existence of secondary vortices 

and is displayed in Figure 3.13. The x-\-orticity contours show an absolute maxi- 

mum of -8.8 in the feeding sheet and a local maximum value of about -3.2 in the 

core of the main vortex. The resolution of the concentrated grid allows the core of 

the secondary vortex to be easily visible and the the value of the x-vorticity, in this 

core, was about 3.5. The absolute accuracy of these numbers can be questioned due 

to insufficient grid resolution, but the general trends of positive and negative val- 

ues of vorticity (clockwise and counterclockwise vortices) are certainly adequately 

resolved. The superimposed velocity vectors confirm that the rotational sense of 

the secondarp vortex is opposite that of the main tip vortex and they suggest the 

location of a tertiary vortex further outboard of the secondary T-ortes with the same 

sense as the main vortex. 

The non-dimensiona.1 circula.tion of the vortex (I" r / [li', x c] )  was found by 

taking the line integral of the velocity vector over a closed path, in a. crossflow plane. 

The enclosed area. formed by this path included 75% of the span. so t.hat much of 



the >-orticity shed by the viscous wake of the wing is included in this calcula.t,ion. 

The value was found to be I?' = 0.33 at an x / c  = 0.005. 

3.2.3 Mean Flow Gradients 

The mean velocity and pressure gradients were calculated by 2nd order differ- 

encing of the 7-hole and 3-wire mean data. These quantities play a role in analyzing 

the I\iavier-Stokes equations and the Reynolds stress transport equations. -4 Sam- 

dU aU = pling of the contours of 4 of the 9 mean velocity gradients, x, x, , and g: is 

plotted in Figure 3.14a-d at x / c  = 0.125. Most of the contours can be understood 

with a thought-experiment based on the mean velocity profiles that have been de- 

av aw scribed in previous sections. 3 of the mean velocity gradients not plotted, z, =, 
aw au av and x, are roughly analogous to F ,  , and -, respectively with the appropri- 

a y  
av ate swapping of coordinate axes. The highest gradient levels were found in the 

and uantities. Contours of were initially confusing however. One might 
a y  q 

au expect circular contours of x, with positive levels in planes over the wing and 

reduced negative levels in the the wake. Instead, the contours were double-lobed 

and of opposite sign. ,Apparently: the skewness of the path of the vortex centerline 

had a large effect on this quantity. 

3.3 HOT-WIRE MEASUREMENTS 

Crossflow planes of turbulence quantities as measured by triple-wire probe 

are shown in Figures 3.16-23. -4s in the figures displaying the 7-hole mean mea- 

surements, Figure 3.15a-f show with respect to the wing, a perspective view of 

various flow quantities as measured by the 3-wire probe. Data planes at x l c  

= -0.394,-0.296, -0.197, -0.114, -0.010,0.125,0.246,0.452, and 0.678 are shown. 

All planes consisted of 400 data point,s measured on a stretched rectangular grid, 

centered upon the vortex centerline. The dimensions of these planes are described 

in Table 3.3. 

Figures 3.16-21 display the individual crossflow planes for the RMS velocities. 



-- - 
6, 6, 6, and the Reynolds shear stresses, u'z.', v'w', and u'tc' respectively. 

3.3.1 Correlation Measurements 

-Assuming a periodic meander of the vortex in a span~vise direction (McAlister 

&z Takahashi (1991)), measurement of the velocity correlation, U; 1 4 ,  of two single- 

wires positioned on opposite sides (spanwise) of the vortex core at positions 1 and 

2, will be enhanced. The correlation is generated primarily because of the spanwise 

gradients (a/az) of the v-velocity component which are found in a vortex flow-field. 

The experiment ally measured value of ui ub was -2 .8~10-~ .  Mean velocity profiles, 

measured by 7-hole probe, were used to define the steady functions ~ ( z ) ?  v(3), and 

w(z). These steady funct'ions were used in an analytical model which assumed 

a sinusoidal meander of the vortex in the lateral direction. The model was then 

used to assess the effects of meander. The z-location which the modeled single-wire 

"saw" was governed by the following equation: 

z = zo + asinwt (1) 

where zo is the actual location of the single-wire probe, a is the amplitude of the 

sinusoidal meander, and w is the frequency. 

Assuming an oscillation with a period of 0.4 second (f c/U,  = 0.01), a meander 

amplitude of 0.005 inches, (i.e. about 0.00010 c ) ,  gave a correlation equal to the 

experimentally measured correlation. -4 rough estimate of the effect of meander 

was then made by assuming a periodic motion in the lateral direction with an 

amplitude of 0.005 inches. Given that the velocity gradient in the core of the vortex 

is approximately 1.0 U ,  per inch, this level of meander could cause an apparent 

additiona.1 RMS velocity of 0.5% freestream. Using a similar analysis? the influence 

on apparent additional normalized Reynolds shear stress levels could reach levels 

on the order of 0.000025. These low levels were considered to be negligible. 

3.3.2 RMS Velocities 

The largest levels of 6,  C: and 2i7 RMS velocity norma,lized by the freestream 



velocity were measured to be 0.224, 0.223, and 0.246 respectively. The chara.cter of 

the turbulence structure was markedly different in planes measured over the wing 

and planes measured in the wake. In pla.nes measured over the wing, peak levels 

of turbulence were found where the shear layer departed from the wingtip surface. 

The levels of RMS velocity decrease as t,his highly turbulent fluid is mapped into 

the forming tip vortex. Near the vortex? peak levels of turbulence were measured 

near the loca,tion of m ~ ~ i m u m  tangential velocity. This behavior continued at x/c 

= 0.005 and x / c  = 0.125. Farther into t,he wake however, the peak levels of RMS 

velocity were measured in the center of the vortex. The peak ii, C, and G ,  RMS 

velocity decreased to a level of 0.100, 0.146, and 0.117 respectively at  the final x/c 

= 0.678 station. The stabilizing effects of the solid body rotation of the vortex seem 

to reduce the turbulence levels very rapidly. However, the peak levels measured at 

x / c  = 0.678 indicate that, at least at less than one chord downstream of the trailing 

edge, the vortex core is still a highly turbulent region. Modelers ignoring this fact 

will surely predict the roll-up incorrectly. 

Contours of .ii shown in Figure 3.16(a-k) are roughly circular in shape which 

might be expected for a vortical flow. However, contours of C and G? shown in 

Figures 3.17(a-k) and 3.18(a-k), respectively are not circular. Instead, contours of 6 

are roughly elliptical in shape, with the major axes running in the y-direction, while 

contours of 6 are roughly elliptical with major axes running in the z-direction. In 

cylindrical coordinates? this would represent levels of the fluctuating radial velocity, 

6,: to be greater than levels of the fluctuating tangential velocitj-, Ce. To further 

illuminate this behavior Figures 3.22a-k and 3.23a-k show the RMS radial and 

tangential velocities. The origin for ea.ch plane was chosen to be the vortex centerline 

(a plot of the vortex centerline path is shown in Figure 3.11). A further analysis 

of the possible reasons for this behavior is left for the next chapt.er. It. should 

be pointed out at this time, however, that this behavior can esplain various other 

interesting features of bhe turbulence in the tip vortes flow, including the orient.at.ion 
- 

of the v'u:' component of the Reynolds stress. 

The boundary layer, a.nd especially the separated regions were so highly turbu- 



lent tha,t only the outer edges of the boundary la.yer fluid were measurable because 

the limit of the triple-wire angle calibration was reached. 

3.3.3 Reynolds Shear Stresses 

Large levels of all three Reynolds shear stresses were measured in the vortex, 

whereas in a time-evolving line vortes with no streamwise gradients, t,he only corn- 
- 

ponent of shear stress that would exist. would be v'w'. Perspective views of contours 
-- - 

of u'v', utw'? and vlw' are plotted in Figure 3.15d-f respectively. Individual planes 

are plotted in Figures 3.19, 3.20; and 3.21 respectively. Overall peak absolute levels 
-- - 

of u'v', utwt, and v1w' normalized by t-he square of the freestream velocity were 

found to be 0.0139, 0.0234, and 0.0125 at x/c = 0.005, -0.010, and -0.197 respec- 

tively. These peak levels decayed with x/c t hereafter, with the farthest downstream 

plane at x/c = 0.678, showing peak absolute levels of 0.0029, 0.0004, and 0.0024 for 
-- - 
ulv', utwt, and v'w' respectively. 

- 
Qualitatit-ely, contours of the vtw' stress in the wake planes (xlc > 0.0) had 

a four-leaf clover pattern with alternately changing sign of the stress in between 

each adjacent pair of leaves. Each leaf was roughly aligned at f 45 degrees off the 

y and z axes, with positive levels of stress found in the first and third quadrants 

(+/+ and -/- values of t and y respectively) and negative levels of stress found 

in the second and fourth quadrants. In addition, in each leaf there seemed to 

be two radii at which peak levels of stress occurred. At x/c = 0.452, these two 
- 

peaks occurred roughly at r / r l  = 0.33 and 1.8. The four-leaf clover pattern of vtw' 
- - 

and the two-lobe pattern of the u'vl and utwt stresses described later is expected 

for a cartesian coordinate system and this is explained by the kinematic relations 
-- 

described in -Appendis C. It should be emphasized that the signs of u'v', u'w', 
- 

and vtwt in the alt.ernat>ing lobes are entirely dependent upon choice of coordinate 

system. Therefore, the orientation of the coordinate system in the present study 

should be kept in mind during any discussion about signs of any of the shear st,ress 

quantities. The orientation of the alternatively positive and negative regions does 

have physical implica,tions however and Appendix C shows how a +/- 45 degrees 



-- 
orientation of the stress implies that the > and that vk2, u: >> a. 
In confirmation of these kinematics, the normal stress contours for 6 and zij were 

found to be elliptical. In addition, Figure 4.2 displays contours of the Reynolds 

shear stresses and the negative of their corresponding mean strain rates at x / c  = 

0.452 (e.g. + for t,he stress), which for isotropic eddy viscosity methods 

would align themselves in the same orientation. Noticeably, for each stress, the 

strain rate is aligned almost exactly opposite to what would be expected for an 

isotropic eddy viscositj-. ;4n explanation for the multi-lobed pattern of the stresses 

and the non-alignment of the stress and strain rate vectors will be given in the 
- 

following chapter. The st.ructure of the contours of v'w' was not so clear in the 

planes measured over t,he wing ( x l c  < 0.0). Though the beginnings of the four-leaf 

clover pattern can be seen, the influence of the stress created by the shear layers 

heavily distorts it. The fluid departing from the primary line of local separation 

measured negative levels of stress with a maximum absolute level of stress of -0.012 

found at x / c  = -0.114. Considering the mean strain rate of the boundary layer 

fluid in this region, the negative levels of stress might be expected. As this fluid is 

wrapped into the vortex and passes into the first quadrant, the stress changes sign 
- 

to positive levels of v'w'. 
- 

Contours of u'v' in the wake planes had two lobes of opposite sign stress, with 

the positive lobe rotated about 30 degrees off the z-axis. The peak levels of stress 

at a x / c  = 0.452 occurred at a radii of about r / r l  = 0.33 which corresponds with 
- 

the first peak measured in the 2 ; ' ~ '  stress. In planes measured over the wing, the 
- 

boundary layer fluid separating from the tip region had nega.tive levels of u'v'. 
- 

Contours of u'w' in the wake planes had two lobes of opposite sign stress, with the 

positive lobe rotated about 20 degrees off the negative y-axis. -4gain peak levels of 

stress occurred at a radii of about r / r l  = 0.33 for a x / c  = 0.452 and the separating 
- 

boundary layer fluid from the tip region had negative levels of u'w'. Peak levels of 

all shear stresses a.t a x / c  = 0.125 however were measured at a radius of roughly 

r / r l  = 0.67. a. clearly marked difference in behavior to the peaks measured farther 

downstream. 



-411 the raw data used to create the contour plots of the mean and turbulent 

flow field have been ta.bulated and stored in ASCII format on a 3 l / Z 7 '  floppy disk, 

formatted for a. MS-DOS computer. 



Table 3.1 7-hole Measurement Plane Dimensions 

St reamwise 
Location 

(x/c) 
-1.135 
-0.591 
-0.394 
-0.296 
-0.197 
-0.114 
-0.010 
0.005 
0.125 
0.246 
0.452 
0.678 

Vertical 
Range 
(Y/c) 

-0.112 to 0.368 
0.105 to  0.368 
0.070 to  0.368 
0.053 to  0.368 
0.035 to  0.368 
0.020 to  0.368 
0.002 to  0.368 

-0.112 to  0.368 
-0.112 to  0.368 
-0.112 to  0.368 
-0.112 to  0.368 
-0.112 to  0.368 

Spanwise 
Range 
(z/c) 

0.224 to 0.829 
0.224 t.o 0.829 
0.224 to 0.829 
0.224 to  0.829 
0.224 to  0.829 
0.224 t , ~  0.829 
0.224 to  0.829 
0.224 to  0.829 
0.224 to  0.829 
0.224 to 0.829 
0.224 to  0.829 
0.224 to 0.829 

Y/C 
of core 

N / A  
N / A  
0.122 
0.103 
0.083 
0.06'7 
0.052 
0.051 
0.056 
0.064 
0.072 
0.074 

z/c 
of core 

N / A  
N / A  
0.699 
0.688 
0.678 
0.675 
0.671 
0.670 
0.672 
0.666 
0.664 
0.660 

Grid 
Size 

21 x 29 
21 x 29 
21 x 29 
21 x 29 
21 x 29 
21 x 29 
21 x 29 
21 x 29 
21 x 29 
2 1 x 2 9  
21 x 29 
21 x 29 



Table 3.2 3-Wire Measurement Plane Dimensions 

Streamwise 
Location 

(x/c> 

-0.394 
-0.296 
-0.19'7 
-0.114 
-0.010 
0.005 
0.125 
0.246 
0.452 
0.678 

Vertical 
Range 
(Y/C) 

0.0'74 to 0.206 
0.05'7 to  0.186 
0.039 to 0.166 
0.023 to  0.150 
0.006 to 0.134 

-0.039 to  0.132 
-0.029 to  0.138 
-0.023 to  0.144 
-0.013 t.o 0.154 
-0.011 to  0.156 

Spanwise 
Range 

(z/c> 

0.616 to  0.783 
0.605 to  0.771 
0.598 to  0.765 
0.592 to  0.759 
0.58'7 to 0.754 
0.587 to  0.753 
0.588 to  0.755 
0.583 to  0.750 
0.585 to  0.752 
0.583 to  0.749 

Grid 
Size 

20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 
20 x 20 



z / c  = -0.01 x/c = 0.50 

Figure 3.1 Laser-Illuminated Smoke Flow 



Figure 3.2a Estimated Transition Location through 
Naphthalene: Suction Side 



Figure 3.2b Estilnated Trailsitioll Location through 
Naphthalene: Pressure Side 



Figure 3.3a Surface Oil-Flow \'isualization: Pressure Side 

TO 





Figure 3 . 3 ~  Surface Oil-Flow Visualization: Suction Side 



Suction Side 

Figure 3.4a,b Surface Pressure Contours: a) Pressure Side (top) b) Suction Side 
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WE- 

Figure 3.5a,b Perspective Comparison of: a) Crossflow Velocity (top) , b) Axial Velocity 





Figure 3.5c,d Perspective Comparison of: c) Static. Pressure (top) , d) Total Pressure 

77 





Figure 3.5e Perspective Comparison of: e) Axial Vorticity 





Figure 3.6a,b,c Crossflow Velocity Contours: a) x / c  = -0.591, b)  s/c = -0.394, c )  x/c = -0.296 

8 1 



Figure 3.6d,e Crossflow Velocity Contours: d) r / c  = -0.197, e) x / c  = -0.114 
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Figure 3.6f,g Crossflow Velocity Contours: f )  x / c  = -0.010, g) x / c  = 0.005 
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Figure 3.6h,i Crossflow Velocity Contours: h) x l c  = 0.125, i) x / c  = 0.246 
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Figure 3.6j,k Crossflow Velocity Contours: j) x/c = 0.452, k) x/c = 0.678 
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Figure 3.7d,e Axial Velocity Contours: d) x l c  = -0.197, e) xlc  = -0.114 



Figure 3.7f,g Axial Velocity Contours: f) x / c  = -0.010, g )  x / c  = 0.005 
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Figure 3.7h,i Axial Velocity Contours: h) x/c = 0.125, i) x/c = 0.246 
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Figure 3.7j,k Axial Velocity Contours: j) x lc  = 0.452, k) x l c  = 0.678 
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Figure 3.8a,b,c Static Pressure Contours: a) x/c = -0.591, b) x/c = -0.394, c) x l c  = -0.296 

9 1 



Figure 3.8d,e Static Pressure Contours: d) x / c  = -0.197, e )  x l c  = -0.114 
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Figure 3.8f,g Static Pressure Contours: f)  x/c = -0.010, g) x/c = 0.005 



Figure 

94 

3.8h,i Static Pressure Contours: h) x/c = 0.125, i )  x/c = 0.246 
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Figure 3.8j,k Static Pressure Contours: j) x / c  = 0.452, k) x / c  = 0.678 



Figure 3.9a,b,c Total Pressure Contours: a) x/c = -0.591, b) x/c = -0.394, c) x/c = -0.296 
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Figure 3.9d,e Total Pressure Contours: d) x / c  = -0.197, e )  x / c  = -0.114 
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Figure 3.9f,g Total Pressure Contours: f)  x / c  = -0.010, g)  x / c  = 0.005 



Figure 3.9h,i Total Pressure Contours: h) x / c  = 0.125, i) x / c  = 0.246 



Figure 3.9j,k Total Pressure Contours: j) x/c = 0.452, k) x/c = 0.678 





Figure 3.10d,e Axial Vorticity Contours: d) r / c  = -0.197, e )  x / c  = -0.114 
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Figure 3.10f,g Axial Vorticity Contours: f) x / c  = -0.010, g )  x / c  = 0.005 



Figure 3.10h,i Axial Vorticity Contours: h) x/c = 0.125, i) x/c = 0.246 
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Figure 3.10j,k Axial Vorticity Coi?tours: j) x/c = 0.452, k) x/c = 0.6'78 



Figure 3.11 Axial Progression of Various Flow Quantities 
Along Vortex Centerline 



4 Y - Ycl 

Figure 3.12 Axial Velocity Profile vs y-Distance from Vortex Centerline 
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Figure 3.13 High Resolution Crossflow Plane at x / c  = -0.114 
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.e 3.14a,b Mean Velocity Gradients ( x / c  = 0.125): a) dU/dx, b) dU/dy 
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Figur -e 3.14c,d Mean Velocity Gradients ( x / c  = 0.125): a) dV/dy, b) d V / d z  
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Figure 3.16a,b Contours of 6:  a) xlc = -0.394, b) xlc = -0.296 
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Figure 3.16c,d Contours of 6: c) x/c = -0.197, d) x/c = -0.114 
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Figure 3.16e,f Contours of 6:  e) x / c  = -0.010, f )  x / c  = 0.005 
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Figure 3.16g,h Contours of ii: g )  x / c  = 0.125, h) z/c = 0.246 
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Fig ure 3.16ij Contours of 6:  i) x / c  = 0.452, j) x / c  = 0.678 
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Figure 3.17a,b Contours of 6: a) x l c  = -0.394, b) x l c  = -0.296 
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Figure 3.17c,d Contours of 6: c )  x / c  = -0.197, d) x / c  = -0.114 
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Figure 3.17e,f Contours of 6: e) x / c  = -0.010, f )  z/c  = 0.005 
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Figure 3.17g,h Contours of 6: g) x / c  = 0.125, h) x / c  = 0.246 



Fig ;ure 3.17i.j Contours of 5: i) x/c = 0.452, j) x/c = 0.6'78 
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Figure 3.18a,b Contours of G: a) x / c  = -0.394, b) x / c  = -0.296 
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Figure 3.18c,d Contours of w: c )  x l c  = -0.197, d) z /c  = -0.114 
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Figure 3.18e,f Contours of 6: e) x / c  = -0.010, f )  x / c  = 0.005 
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Figure 3.18g,h Contours of 6: g) x/c = 0.125, h) x/c = 0.246 
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ure 3.18ij Contours of 6: i) x / c  = 0.452, j) x / c  = 0.678 
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Figure 3.19a,b Contours of u'v': a) x / c  = -0.394, b) x / c  = -0.296 
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Figure 3.19c,d Contours of u'v': c )  x l c  = -0.197, d) x / c  = -0.114 
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Figure 3.19e,f Contours of u'v': e) x/c = -0.010, f) x/c = 0.005 
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Figure 3.19g,h Contours of ,1s'.u1: g )  x l c  = 0.125, h) x / c  = 0.246 
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Figure 3.19ij Contours of u'v': i) x / c  = 0.452, j) x / c  = 0.678 
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Figure 3.20a,b Contours of u'w': a) x / c  = -0.394, b) x / c  = -0.296 
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- 
Figure 3.20e,f Contours of u'w': e )  x / c  = -0.010, f )  x / c  = 0.005 
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Figure 3.20g,h Contours of u'w': g) z / c  = 0.125, h) x / c  = 0.246 
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Figure 3.20ij Contours of u'zL.': i) x / c  = 0.452, j) x / c  = 0.6'78 
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Figure 3.21a,b Contours of v'w': a) x / c  = -0.394, b) x / c  = -0.296 
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Figure 3.21c,d Contours of v'w': c) x/c = -0.197, d) x/c = -0.114 
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Figure 3.21e,f Contours of 2.'w': e) x / c  = -0.010, f )  x / c  = 0.005 
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Figure 3.21g,h Contours of V'ZL": g )  X/C = 0.125, h )  x/c = 0.246 
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Figure 3.21ij Contours of vtwt: i) X/C = 0.452, j) x/c = 0.678 
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Figure 3.22a,b Contours of 6,: a) x l c  = -0.394, b) x / c  = -0.296 
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Figure 3.22c,d Contours of 6,: c )  z /c  = -0.19'7, d) x l c  = -0.114 
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Figure 3.22e,f Contours of C,: e) x/c = -0.010, f )  x/c = 0.005 
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Figure 3.22g,h Contours of 6,: g) xlc = 0.125, h) x/c = 0.246 
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Figure 3.22ij Contours of 6,: i) x / c  = 0.452, j) x / c  = 0.678 

159 



Figure 3.23a,b Contours of Ce: a) x / c  = -0.394, b) x / c  = -0.296 
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Figure 3.23c,d Contours of G o :  c) x l c  = -0.197, d) x / c  = -0.114 
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Figure 3.23e,f Contours of G o :  e) x l c  = -0.010, f )  x / c  = 0.005 
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Figure 3.23g,h Contours of Go:  g )  x / c  = 0.125, h) x / c  = 0.246 
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Fig ure 3.23ij Contours of G o :  i) x/c = 0.452, j) x/c = 0.673 
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4. FURTHER ANALYSIS OF RESULTS 

Whereas the previous chapter gave an in-depth analysis of the mean flow and 

touched briefly upon the turbulence results, this chapter presents further analysis 

with particular attention bo the turbulence results. In the first section, the transport 

equations for mean r-component vorticity, Reynolds stress? and turbulent kinetic 

energy are derived and discussed, as are approximations and simplifications appro- 

priate to the present study. In the second section: key terms in the momentum, 

turbulent kinetic energy, and Reynolds stress transport equat,ions are discussed as 

well as the balances that were performed on these equations at selected locations 

of the flow. In the final section, an analysis is performed on key parameters which 

may influence the development of an axial velocity excess in the core, by compiling 

the present data with previous experiment a1 work by other researchers. 

It should be noted that the text refers several times to Reynolds stresses, but 

for brevity's sake only writes out the factors of the stress containing the velocity 
- - 

correlations instead of the full term (e.g. vlwl rather than -pvlwl). 

4.1 TRANSPORT EQUATIONS 

In the present state of the art, direct numerical simulations ( D M )  of the 

Navier-Stokes equations are still limited to a small number of flows. Because of 

the wide range of eddy wavelengths involved, order of magnitude improvements in 

computational technology are required before practical applications of DNS can be 

made. The whole range of flow scales is effectively lumped together in the Reynolds 

averaged Navier-Stokes equations, which reduces computational effort by a large 

margin: however? accuracy of the various modeling assumptions 11a.s been hotly de- 

bated. The Reynolds stress transport equations allow for closure of the Reynolds 

averaged Navier-Stokes equations though to use these equa.tions additional terms 

must be modeled instead of the Reynolds stresses. The transport equations can also 

give qualitative insight into the behavior of turbulence and its c~nt~ributing factors. 



4.1.1 Mean x-Component Vorticity Transport  Equat ion 

It is useful to look at the x-component vorticity transport equation in the 

present, tip vortex flow because it is the main component of vorticity which is 

generated in the roll-up process. It is derived by taking the y-derivative of the 

z-component momentum equation and subtracting from it the z-derivative of t'he 

y-component of the momentum equation, giving: 

A discussion on a balance of this equation at two locations is given in a following 

section. 

4.1.2 Reynolds Stress  Transpor t  Equations 

The Reynolds stress transport equations in cartesian coordinates may be de- 

rived by multiplying the instantaneous momentum equation in the xi direction by 

U S  and the xj equation by ui and adding the two results together. This result 

is then time-averaged to give the following relation written in tensor notation for 

rectangular coordinates: 

The transport equation for each individual Reynolds stress in rectangular and axi- 

symmetric cylindrical coordinates is written out in Appendix equations B.7-B.19. 



4.1.2.1 Discussion of Terms 

The Reynolds stress transport equations (Equation 4.1.2) can be broken down 

into the following contribut,ions (going from left to right of the equation): Mean flow 

transport, generation, dissipation, pressure-strain. and turbulent. (viscous transport 

included in this last group) transport. 

The mean flow transport term represents the rate of change of a scalar quantity 

(in this case a Reynolds stress) along a mean flow streamline. The production 

term represents the generation rate of Reynolds stress due to the interaction of 

the mean velocity gradients with the Reynolds stresses. The dissipation rate is the 

correlation of the product of various velocity fluctuation gradients. The name is a 

slight misnomer in that the term can actually be positive in rare instances (such as 

transitional flow), however, in the present case, the term should be negative. The 

pressure-strain term redistributes the turbulence such that the turbulence becomes 

more isotropic. It does not generate or destroy Reynolds stresses, however it tends 

to equalize the levels of normal stress while reducing the levels of shear stress. The 

diffusion rate term is actually a combination of three terms. They represent the 

transport of stress due to velocity fluctuations, pressure fluctuations, and viscous 

diffusion respectively. The pressure fluctuation transport term is usually small in 

comparison to the triple-product transport term while the viscous diffusion term is 

usually considered to be negligible, except in the wall region of viscous flows. 

4.1.3 Turbulent Kinetic Energy Transport Equation 

The turbulent kinetic energy relation can be derived by letting j = i in Equa- 

tion 4.1.2, summing over the repeated index, and then dividing by two. This relation 

may be written in indicia1 notation as: 



Written out in full, this becomes: 

Like the Reynolds stress transport equations, the turbulent kinetic energy 

transport equation can be broken down into the following sections: advection, pro- 

duction, dissipation, and turbulent transport. Note that the redistribution term 

(pressure-strain) drops out because au:/dxi = 0 by the continuity equation for 

incompressible flow. 

4.1.4 Turbulence Parameters 

The total dissipation rate may- be defined as: 

A good approximation to the total dissipation rate is the homogeneous dissipation 

rate defined as: 

which is equal to one-half the trace of the viscous destruction term. It was assumed 

that the dissipation rate of turbulent kinetic energy was isotropic such that the 

viscous destruction term may be modeled as: 



4.2 IMPORTANT TERMS AND EQUATION BALANCES 

4.2.1 OZ, Axial Vorticity 

Along the vortex centerline, the vorticity increases rapidly in planes over the wing 

and continues to increase in planes in the wake albeit at a much slower rate. The 

continued increase of vorticity in the wake indicates that roll-up is not complete 

even at the farthest wake plane. -4 balance of equation 4.1.1 was done on the core 

centerline points at xlc  = -0.010 and 0.452 and the breakdown of the balances is 

displayed in Figure 4.1. Note that in this coordinate system, vorticity is negative, 

and that t-orticity was calculated by differencing the normalized velocity so that the 

units of the vorticity rate are llinch-sec. The dominant terms on the right-hand- 

side of the balance were the mean "stretching" (production) terms. Production 

at x/c = -0.010 was -0.21 and at x/c = 0.452 it was -0.0075. The marked 

difference in production levels at the 2 stations indicates that although roll-up is 

not complete in the near-wake, the bulk of the axial vorticity production occurs at 

stations over the wing. The viscous dissipation term was negligible in both cases 

while the turbulence terms were only slightly more significant. Clearly, in the far 

wake, these terms will become more dominant, but it seems that while the vortex 

is still developing, the production terms are of much larger magnitude. 

4.2.2 Reynolds Stress 

Balances of the individual Reynolds stresses were possible after the dissipation 

term in the transport of TKE equation was found by difference. Equation 4.1.6 

was used to approsima.te the viscous destruction term. It was noted in the previous 

chapter that none of the Reynolds shear stresses were aligned with the mean strain 



rate, wherea.s for an isotropic eddy viscosity turbulence model the shear stresses 
d U .  would align themselves with the mean strain rate (i.e. a + d). Figure 

4.2 shows contours of (negative) mean strain rate and the corresponding component 

of Reynolds shear stress and demonstrates quite vividly the 'lag' in the shear stress. 

It was shown in Chapter 3 and in Appendix C that the orientation of the extrema of 
- 

the v'IL" stress found in the present experiment (roughly a. f 45 degree orientation 

off the y and z axes) is decided kinematically by > $ and relatively small levels 
- 

of vbvk. In confirmation of these kinematics, the contours for 6 and 2i~ were found 

to be elliptical. The next questions and perhaps the real physical questions that 

arise are: Why is there an inequality of radial and tangential normal stresses and 
- 

why are there relatively small levels of vkvi? 

The answer to the second question, which has been proposed before by several 

authors, is that the approximately solid body rotation of the vortex core mean 
- 

flow minimizes production of vkvi. The production of stress is not equal to zero 
- 

however, and indeed it will be shown later that a small level of production of vkv; 

can help esplain the answer to the first question. The answer to the first question 
-- - 

prompts a further investigation into the transport equations of vk2, vf ,  and vkv;, 

shown in Equations B.17, B.18, and B.15 respectively. The production terms in the 
- 
vb2 transport equation (Equation B.17) are - 2 q g ,  -2m%, and +2-+. 

In the vortex core, the mean flow factor is orders of magnitude greater than 

the other mean flow factors, which makes the last term a significant term. The 

first term may also be significant because the turbulence stress factor is a normal 

stress (in the present experiment, normal stresses are much larger than the shear 

stresses). The mean flow factor in this first term however is small. The second term 

has a small mean flow factor and a small turbulence factor (a shea.r stress) and 

may be ignored. The important production terms in the the transport equation 

for and the other Reynolds stresses (with the exception of q) are shown in 
- 

Table 4.1. The production terms in the vf transport equation (Equation B.18) 
- 

are -2vg 12* ? - 2 s 3 ,  and - 2 G x .  avo The mean flow factor x, a ve which is 

approximately equal to in the vortex core region. is orders of magnitude greater 



r a v e  than the other mean flow factors. Hence: -2v:vQ7 is a significa.nt product,ion 
- 

term for vf.  The first production term is also significant because of the normal 

stress factor contained in it. In fact, this first term is nearly identical in form to 

the first production term in the transport equation. The second term may be 

ignored because of the small shear stress factor and the small mean flow gradient. 

The significant production terms in 5 of the 6 Reynolds stress transport equations 

(including the two just mentioned) are summa.rized in Table 4.1. The significant 
- - 

terms in the production of vk2 and vf are almost identical in the vortex core region 

with a couple of exceptions. First and most importantly, the last term is opposite 
- 

in sign (positive in the equation and negat'ive in the vf equation). Secondly, the 
- 

normal stress factor in the first term is different for each equation (q in the 2.2 
- - 

equation and v g  in the vb2 equation). Considering the relatively small differences 
- - 

in v;2 and vb2, the different sign of the last production term for each equation is the 

key to explaining the anisotropy in normal stress levels. 

The orientation of the present coordinate system and the sense of the vortex 

rotation resulted in negative vorticity in the vortex core, negative tangential velocity, 
avo - Ve, and approximately constant negative in the vortex core region. In analyzing 
- 

the last production term of the and v? transport equations, it is necessary 
- 

to find the sign of the vbvb factor. This may be determined by analyzing the 
- 
vkvb transport equation. Ignoring terms with small mean flow gradient factors 

- 
and shear stresses, the significant production terms in the v:vb transport equation 

- - - 
are: - +(v:~ - v? ) and -rvy E(+). Figure 4.3 shows a plot of the (not entirely 

a ve obvious) mean flow gradient, K(T). It can be seen that this quantity, which is 

initially zero on the vortex centerline, becomes increasingly negative towards the 

edge of the vortex core. This is due to the rolling off of the mean tangential velocity 

profile, initially Ve % Clr, as the edge of the vortex core is approached. Hence, 

the second production term is negative in sign. The first production term can be 

looked upon as a term which tends to return the normal stresses to an isotropic 

state. Isotropy of the normal st.resses will eliminate this term. Anisotropy of the 

normal stresses such that > will make this first production term positive 



(remember VB < 0). which will counter the effects of the second term. The reactive 

nature of this first production term means that the anisotropy of the normal stresses 

will be driven by the second production term. Imagine an initially isotropic state 

of the normal stresses such that the first production term is equal to zero. The 
- - 

production of ukvb will be governed almost entirely by the -rub2 ( +) term, which 
- 

will be negative. It may be expected then that negative levels of vbvk will develop. 

Negative levels of a mean that the third production term in the equation will 

be positive and that the third production term in the equation will be negative. 
- 

Hence production of is enhanced relative to production of v f  . This result should 

hold for a turbulent vortex in the far-wake also and indeed computational studies by 

Zeman (1994) have corroborated this belief. Zeman (1994) studied a time-evolving 

line vortex with initially isotropic turbulence levels using a full Reynolds stress 
- 

model. He found almost identical orientation of the v'w' stress compared with 

the present experiment, a low level of a stress, and > >. Contours of his 
- - 

computed v'wt are plotted along with the experimental contours of v'wt in Figure 

4.4. 
- 

Figure 4.5a shows levels of vkvk at x / c  = 0.125. -4s expected, the contours are 
- 

far from axisymmetric except in the vortex core. More importantly, the level of vlvh 

was positive in the vortex core region, with a maximum of 0.009 (normalized by Uk) 
- 

measured on the edge of the core. The level of vlvk was reduced as the centerline 
- 

was approached. Figure 4.5b shows contours of vkvb at x l c  = 0.125. again, the 

contours do not appear axisymmetric and positive levels of stress were measured. A 

maximum (normalized by U L )  of 0.008 was measured on the edge of the core and 

the levels of stress were reduced as the centerline was approached. A plot of these 

two shear stresses against vertical distance from the vortex centerline is shown in 

Figure 4.6. Keeping these shear stresses in cylindrical axes in mind, an explanation 

for the behavior of the shear stresses in rectangular coordinates (hereafter called 
- - 

"cylindrical'' or "rectangular" shear stresses), utv' and u'w', will now be offered. 
- 

As was shown in the previous chapter, contours of u'v' were aligned so that 
- 

positive peaks of utv' occurred at 6 = -30 to -60 degrees, depending upon axial 



station. Upstream stations had peaks at around 0 = -30 degrees and the 0 peaks 

became progressively smaller with axial station. Wega,tive peaks of stress were 

aligned +I80 degrees relative to the positive peak. -4t x/c = 0.125, the positive 
- 

peak of u'v' stress was aligned a,t approximately 6 = -45 degrees. Appendix C 
- 

includes a derivation of the relationship between u'v' and the cylindrical shear 
- - 

stresses, vLvk and vkvb. Using the maximum levels shown in Figures 4.5a and 4.5b, 
- 

a distribution of u'vl as a. function of 0 was calculated and is plotted in Figure 4.7a. 

IVote that the peaks shown in Figure 4.7a correspond roughly to the 8 at which the 

peaks are roughly displayed in Figure 3.19. All this really demonstrates is that the 
- 

kinematics correctly predict the orientation of the ulvl stress. The real question 
- - 

here is: why are vkvk and vLvi both positive in the vortex core region and why are 

they roughly of the same order of magnitude? Again, to answer these questions, 

the production terms of the respective transport equations are analyzed. 
- 

The production terms in the transport of vkvk equation (Equation B. 13) are: 

Vo rr - - 
V12 av, ' 2  av, a v ,  av, 

~ v ~ v ~ ,  - , -vr 7, and - V ~ V ~ ( ~  + F ) .  The last term can be ignored 

because the mean flow gradient factors are small and the shear stress factor is 

relatively small. The second production term can also be ignored even though 

the turbulence factor is a normal stress, because the mean flow gradient factor is 

particularly small. It is particularly small because the radial velocity is small and 

the axial gradient of this velocity is even smaller. This leaves the first and third 

terms as the dominant production terms in the transport equation. A comparison 

of these terms for a y -cut through the vortex centerline at x/c = 0.125 and x/c = 

0.452 is shown in Figures 4.8a and 4.8b. The -F% term clearly dominates and 

the sum of the two production terms is positive, which corresponds to the sign of 
- 
vkv; measured. An unsurprising result; physically this means that positive radial 

fluctuations of the fluid near the vortex centerline bring a positive x-momentum 

flux to the relatively lower x-moment.um fluid nearby. This result also demonstrates 
- 

that the presence of a velocity excess in the vortex core creates levels of V ~ V ;  that 

would not be apparent in a 2-D vortex. 
- 

The sign of the vivZ, can be explained using a similar order-of-magnitude anal- 



ysis on the production terms of its transport equation. The significant terms are: 
- -vF%: -m%, and --%. The magnitude of the first of these terms was 

difficult t,o ascertain because measurement of the axial gradient was fairly inac- 

curate. It may be fair to assume that in planes over the wing, 2 > 0 and in 
a v, planes in the wake, < 0. If so, the first production term can be assumed to 

be negative in planes over the wing and positive in plane in the wake. The relative 

magnitudes of the second and third production terms are shown in Figure 4.9a and 

4.9b. The second and third terms are generally both positive, and are of the same 

order of magnitude. Again, the presence of gradients of the axial velocity in the 
- 

vortex core is the cause of measurable levels of vkv;. At the very least, in the wake, 

the sum of all three production terms is positive, which corresponds to the sign of 
- 

stress measured in the experiment. The production of vkv: is greater than that of 
- 
vkv;. The fact that roughly equal levels of stress were measured may be due to the 

pressure-strain (redistribution) term. 

It is interesting that Figures 4.8a: b show that the peaks of the production of 
- 
vjvb occur at r / r l  a 0.40 and Figures 4.9a, b show that the peaks of the production 
- 

of vkv; occur at r / r l  x 0.33. These are approximately the locations at which the 

peak levels of the Reynolds shear stresses w-ere measured at x l c  = 0.452 and 0.678. 

As was discussed in Chapter 3, the peak levels of the shear stresses had shifted 

from near the outer edge of the vortes core ( r / r l  e 0.67) at x / c  = 0.125, to a 

radius of approximately r / r l  = 0.33 at x / c  = 0.452. In addition, in general, the 

peak turbulence levels had shifted from the viscous core edge towards the core 

center. The fact that the peak production rates w-ere found at r / r l  a 0.33 - 0.4 

at x / c  = 0.452, where the peak stresses were measured at r / r l  a 0.33 might be 

expected. However the fact that similar results were found at x / c  = 0.125, where the 

peak stresses were measured at r / r l  a 0.6'7, indicate that there really is something 

to this. Figures 4.10a;b show Ve and % vs. y-distance from t,he vortex centerline 

at x / c  = 0.125 and 0.452 respect,ively. Ve is plotted only to aid in figuring out where 

rl is. The peak levels of % also occur at r / r l  a 0.40. The radial gradient of the 

mean axial velocity in the ~ ~ o r t e s  core is the main cause of turbulent production in 



the near wake. 
- - 

The positive and roughly equal levels of vLz:; and vLvL are also kinematically 
- 

consistent, with the orientation of u'w'. Appendix C shows its relationship to the 
- 

cylindrical stresses. -4 plot, of u'w' as a function of 6' is shown in Figure 4.7b for the 

cylindrical stresses found at x/c = 0.125 and r FZ T I .  

4.2.3 Momentum 

Now tha,t the orientation of the Reynolds stresses can be explained, what is 

the significance of these orientations? 

The three Reynolds averaged momentum equations, which are written in tensor 

notation in appendix B, each contain three additional terms due to the turbulent 
- 

au12 a 7 7  stresses. The turbulence terms in the x-momentum equation are: -=, -- a~ ' 
au'ut' and -F. 
- 

A plot of u'v1 VS. y-distance to the vortex centerline is shown in Figure 4.11, 
- 

and a plot of u'w' vs z-distance to the vortex centerline is shown in Figure 4.12. 

The slopes of these plots represents the rate per unit mass at which the turbulence 

is transferring x-momentum. A positive slope indicates that the turbulence is 

slowing down the Auid element. As would be expected, these plots indicate that 

the turbulence is diffusing the peak of axial velocity in the vortex core. 

An x-momentum equation balance was done on the core centerline at x/c = 

0.125 and 0.452 to look at the relative effect of the turbulent diffusion, and the 

results are displayed in Figure 4.13. The x-momentum equation written out in full 

-4t x lc  = 0.125, the core centerline fluid is being decelerated rather slowly and 
- 

almost entirely by t,he core turbulence. The  gradient,^ of u'v' cont.ributed the most 

to the deceleration, followed by .L1'.w' and then by u.'2. Laminar dissipation was 

negligible and was not, plotted. The pressure force acted as a rather substantial 

accelerating force. The favorable pressure gradient map be due to the incomplete 



roll-up of the vortes. At x/c = 0.452, the core centerline fluid is still being deceler- 

ated but at a faster rate. Inspection of the terms indicate tha.t this was primarily 

due to a drop in the accelerating pressure forces. The shear stress gradients were 
- 

again the prime decelerating forces, with the u'w' gra.dient contributing relatively 

more to the total force than at the x/c = 0.125 station. The axial decay of the axial 

normal stress at x/c = 0.452 created a very slight a,ccelerating force to the balance. 

4.2.4 Influence of Parameters on Core Axial Velocity 

It had been mentioned in the previous chapter that the tip shape, angle of 

attack and Reynolds number might be expected to have an influence on the core 

axial velocity. The simplest possible formula describing the axial velocity on the 

vortex core centerline as a function of these parameters (excluding tip shape) could 

be written as: 

This formula includes dependence upon x/c and AR in addition to the param- 

eters described previously. -4 non-linear least squares fit was performed (using the 

IMSL routine, UNLSF) on Equation 4.2.1 with data compiled from the reference 

list shown in Table 1.1. Some data in Table 1.1 were not included because of the 

suspicion of probe intereference contaminating the data. Some of the peculiarities 

of the data from Chiger and Corsiglia (1971) were pointed out in Chapter 1, and 

only a single data point was used from that study. The data used in the fits are 

shown in Table 4.2. A plot of the fit is shown in Figure 4.14. Square-tipped wings 

and round-tipped wings were denoted with square and round symbols respectively. 

The constants found for Equation 4.2.1 were: a1 = 0.56, a2 = 0.041, a3 = 0.25, 

a4 = -0.13, a5 = -0.14. The standard deviation of the fit was determined to 

be 0.10 Tj-,. From the fit, it may be determined that the centerline axial velocity 

increases with Re, and a ,  but decreases with x/c and -4R. Using the determined 

constants and Equation 4.2.1, Figures 4.15 and 4.16 show centerline axial velocity 



vs. R e ,  and a respectively for t,he wing used in the present experiment. Figure 

4.16 demonstrates that angle of attack is the key parameter tha,t influences the cen- 

terline axial velocity. Upon general inspection of the data in Ta.ble 1.1 and Table 

4.2, the round-tipped wings showed slightly higher levels of axial velocitv compared 

to the square-tipped wings. Variation due to tip and airfoil shape may be buried 

within the standard deviation of the fit of Equation 4.2.1. The range of applicabil- 

ity of the fit was: 4.le5 < Re,  < 4.6e6, 4.0 < a < 12.0: 0.005 < x l c  < 15.0, and 

1.5 < A R  < 6.6. The variation with aspect ratio should be looked upon with some 

caution because there were a limited number of samples with different aspect ratios 

(see Table 4.2). 



Table 4.1 Important Production Terms 



Table 4.2 Experimental Data Used in Least-Squares Fit 

1 Experimental results in present study-. 
2 Green and Acosta(l991) 
3 Orloff (1974) 
4 Chiger and Corsiglia (1971) 
5 McAlister and Takahashi (1991) 

Study 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

u / U ,  

1.772 
1.770 
1.756 
1.725 
1.699 
1.492 
1.62 
1.33 
1.17 
1.12 
0.71 
1.04 
0.96 
0.880 
1.05 
1.18 
1.40 
1.53 
1.55 
1.49 
1.32 
1.29 
1.18 
1.16 
1.28 
1.08 
1.05 
1.00 
1.08 
1.18 
1.40 
1.00 
1.06 
1.16 

Re, 

4.6e6 
4.6e6 
4.6e6 
4.6e6 
4.6e6 
1.16e6 
6.8e5 
6.8e5 
4.le5 
6.8e5 
6.8e5 
4.le5 
4.le5 
7.6e5 
7.6e5 
7.6e5 
9.5e5 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
1.5e6 
3.0e6 
1.7e6 
l.le6 
3.0e6 
1.7e6 
1.7e6 

a 

(deg) 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
5.0 
6.2 
10.0 
5.0 
6.2 
6.2 
8.0 
10.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
8.0 
4.0 
8.0 
4.0 
4.0 
7.0 
10.0 
4.0 
7.0 
10.0 

z /c ,  

0.005 
0.125 
0.246 
0.452 
0.678 
0.678 
2.0 
2.0 
2.0 
10.0 
10.0 
6.0 
15.0 
2.0 
2.0 
2.0 

0.005 
0.1 
0.2 
0.5 
1.0 
2.0 
4.0 
6.0 
0.1 
0.1 
4.0 
4.0 
0.1 
0.1 
0.1 
4.0 
4.0 
4.0 

AR 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
2.3 
2.3 
3.7 
2.3 
2.3 
3.7 
3.7 
5.33 
5.33 
5.33 
5.33 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
6.6 
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Figure 4.la Balance of Axial Vorticity Eqn on Vortex Centerline 
x/c = -0.010 



Figure 4. lb Balance of Axial Vorticity Eqn on Vortex Centerline 
x/c = 0.452 

0.003 - 
0.002 
0.001 

-- 
-- - .  . 

0 - 
-.. .-.re& 

-0.001 -- 
-0.002 -- 
-0.003 - -  
-0.004 -- 
-0.005 -- 
-0.006 -- 
-0.007 -- 

I 

viscous turbulent 
diffusion shear 

stresses 
normal 

-0.008 - stresses 
advect ion production 









Y - Ycl (in) 

Figure 4.3 vs. y-Distance From Vortex Centerline 





- - 
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Figure 4.14 Non-Linear Least Squares Fit of Past Experimental Data 
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5. CONCLUSIONS A N D  RECOMMENDATIONS 

The following chapter summarizes the major findings of the present study and 

discusses some of their implications. In addition, recommendations are made for 

future research related to the wingtip vortex flow. 

5.1 CONCLUSIONS 

The complete mean flow field and the complete Reynolds stress tensor have 

been measured in the near-field of a turbulent wingtip vortex. The tip vortex was 

generated by a tripped, low aspect ratio NACA 0012 wing with rounded wingtip 

set at 10 degrees angle of attack and tested at a Reynolds number in full-scale 

range for a helicopter blade tip. The topology of the skin friction patterns has been 

observed by surface oil flow. The surface pressure on the entire wing surface has 

been measured. Measurements of the mean flow field and of extensive turbulence 

statistics were made at data planes extending from 0.591 chords upstream of the 

trailing edge to 0.678 chords downstream of the trailing edge. These measurements 

were performed using a 7-hole pressure probe and a triple-wire probe, which were 

both ideal for the high flow angle environment of the tip-vortex flowfield. A much 

better understanding of the initial roll-up has been gained as well as a better un- 

derstanding of the behavior of the turbulence in the vortex in the near-field and 

far-field. The following points are the major discoveries of the present study and a 

general discussion of some of their implications ensues. 

Surface oil flow visualization tests showed a primary converging skin-friction 

line slightly above the mean chord line of the wingtip. The local separation at 

this line was caused by an adverse pressure gradient encountered as fluid navigates 

from the suction side of the wing to the pressure side. Two other converging skin- 

friction lines were found on the pressure side of the wing, near the wingtip. These 

were caused by adverse crossflow pressure gradients induced by the formation of the 

primary and secondary vortices. 

Development of the crossflow velocities with chordwise distance induced a fa- 



vorable axial pressure gra.dient in the vortex core (located above the wing surface), 

resulting in acceleration of the the core centerline fluid to 1.77 times the freestream 

velocity. Such high levels of mean axial velocity excess have not been measured 

previously in unswept wing vortices. The reasons for this are many: 

1) Relatively high angle of attack: To first degree, lift is proportional to angle of 

attack. Larger amounts of lift induce larger crossflow velocities wrapping around 

the wing-tip, which produce greater axial pressure forces. 

2) High Reynolds number: Viscous forces played a smaller role in influencing the 

axial velocity of the core. whereas the axial pressure forces served to accelerate 

the axial flow, the low momentum fluid being wrapped into the vortex from the tip 

boundary layers served to decelerate the axial flow. In addition, the large model of 

the experiment generated a vortex with a core radius of 1-1.5 inches, which reduced 

the possibilities of probe-induced vortex breakdown, and reduced probe velocity 

gradient errors. 

3) Near-field nature of the study: Effects of vortex meander were minimized. Dis- 

sipation effects on the vortex were still at an early stage. 

4) The rounded wingtip provided relatively smooth separation characteristics. The 

roll-up of the primary vorticity was preceded by the formation of a single local 

separation line. The roll-up of the primary vorticity around a square tip will be 

preceded by at least two separation lines (one for each corner). It might be expected 

that this would effectively weaken the level of crossflow velocity induced and impede 

the development of the axial pressure forces. 

Previous researchers have conjectured that helicopter blade slap was caused by 

transonic flow being induced on blade tips 'running into7 the preceding blade-tip- 

vortex. It had been assumed however that the crossflow velocity of the tip vortex 

was the primary culprit in inducing this local transonic effect. It is entirely possible 

that instead, it mag- be the large axial velocity in the core of the blade-tip-vortex 

that creates the transonic conditions on the following blade. 

The axial velocity excess was responsible for some of the interesting behavior 

of the turbulence structure in the vortex also. Turbulence levels in and around 



the vortex core were initially very large. This was primarily due to the highly 

turbulent. tip-boundary layer fluid being wrapped into the roll-up of the vortex. 

Peak turbulence levels in data planes measured over the wing were near the edge 

of the viscous core of the vortes. In a short streamwise distance however, peak 

turbulence levels decayed rapidly. In addition the peak shear stress levels shifted 

from the edge of the viscous core, r / r l  % 1, to a much smaller radius, r / r l  % 0.33. 
- 

Whereas production of vkvb was inhibited by the solid body rotation of the vortex 
- - 

mean flow, production of vkvh and vkvh was governed by the mean flow gradient, 

a v, - 
ar - The gradient and the production peaked also at r / r l  z 0.33, indicating that 

the primary culprit to the shift in location of the peak levels of turbulence are 

caused by the radial gradients of the axial velocity in the vortes core. 

The conclusion by Bandyopadhyay et al. (1991) that low Rossby numbers pro- 

mote re-larninarization is not surprising. -4 vortex flow with either a large axial 

velocity excess or deficit (high Rossby number) would enhance turbulence produc- 

tion because of the additional velocity gradients. Although additional turbulence 

was generated by the axial velocity gradients, it does seem that the re-laminarizing 

influence of the solid body rotation has a much larger effect, resulting in the high 
- 

decay rate of the overall turbulence in the vortex. Small levels of vbvk were produced 
- - 

however and it was discovered that the anisotropy of the normal stresses, v: > v p  
was caused by this production. Computational studies by Zeman (1994) have come 

to a similar conclusion, even in the far-wake of the vortex flow-field. Kinematically, 
- 

the anisotropy of the normal stresses and the low levels of vhvk stress will result in 
- 

contours of v'w' stress shifted 45 degrees from the corresponding mean strain rate. 

The fact that the stress 'lags' the strain rate and will never 'catch up' even in the 

far-field bodes ill for isotropic eddy-viscosity methods. 

5.2 SUGGESTIONS FOR FUTURE WORK 

The present experiment was limited to a single test condition: Tests were 

performed only at one angle of attack and one freestream velocity. It. would be 

useful to perform parametric studies for a range of angles of attack and a range of 



frees tream velocities and to measure their influence. In addition: tests performed 

on the influence of different of tip shapes would be desira.ble. 

Measurements in data planes over the wing were limit,ed by the proximity to 

the wing surface at which the triple-wire probe could safely operate without phys- 

ical harm and without overstepping the limits of the hot-wire angle calibration. 

More detailed boundary layer measurements would be invaluable in better under- 

standing the initial turbulence that is generated in the roll-up. A 3-D laser doppler 

anemomeber system could possibly perform these measurements in the tip boundary 

layers, whereas the triple-wire probe may still be necessary to measure the flow in 

the vortes core because of seeding problems. 

Some work is presently being done at the Fluid Mechanics Laboratory of NASA 

Ames Research Center on a laser-interferometry technique which will allow surface 

skin-friction measurements over the entire wing to be made. 



APPENDIX A 

Correction to Triple Hot-Wire Data for Mean Velocity Gradients 

Correction to the triple-wire reduction from probe gradient errors was done 

using a first-order expansion on the triple-wire equations. In indicia1 notation, this 

is written simply as: 

(A.  1) 

where the a x k  terms are the physical distances in cartesian coordinates from the 

probe center to the i-th wire. In the present study, gradients in the x-direction 

were ignored, so that in the previous equation, the summed indices would only 

include the k =2 and 3 terms. From Equation 2.23, the gradient of the square of 

the effective velocities can be written as: 

In use, the true velocities are decoded from the original effective hot-wire ve- 

locities. Equation A.2 is used to determine the effective velocity gradients and the 

corrective effective velocities are recomputed using equation A.l ,  whereupon the 

corrected true velocities are decoded again. Care must be taken upon using equa- 

tion A.2, however. The decoding equation is written in probe-aligned coordinates 

(not tunnel aligned), and so, before the velocity gradients are computed, the ve- 

locity field must be transformed to the probe-aligned coordinate system for that 

particular point (each data point will have a different probe-aligned coordinate sys- 

tem). The scheme corrects for mean velocity and maximum correction was 0.5 % 

of freestream velocity. 





APPENDIX B 

Governing Equations 

Effects due to compressibility, heat transfer, body forces, and variations in 

fluid properties are negligible in the present study, and thus the corresponding 

terms in the Navier-Stokes equations can be neglected. Because the present study 

is concerned primarily with time-averaged measurements, the Reynolds-averaged 

form of the Navier-Stokes equations is considered here. This form is obtained by 

separating the flow variables into their mean and fluctuating components and then 

time-averaging the equations. 

The resulting form of the Navier-Stokes equations in rectangular coordinates, 

using summation indices is: 

Continuity: 

Moment urn: 
aui - 1 a P  --- 

8% 
u j q  - P axi +vv2ui - -, a x j  

The use of cylindrical coordinates in vortical flows can be useful, especially 

if axisymmetry can be assumed. The resulting form of the axisymmetric Navier- 

Stokes equations in cylindrical coordinates is: 

Continuity: 
1 ~ ( T v , )  av, -- +-=O 
r 8~ ax 

avr av, v2 -+v, - -a--  - I 8~ 
vr ar 

-- ax T' P ar 
- 

l a -  a ?  v: 
- - - ( r ~ ; ~ )  - -(v,v,) + - 

T ar ax T 



x-Moment urn: 

Presented below are the Reynolds Stress Transport Equations written out in 
- 

full for each u:u> in cartesian coordinates: 

aul avt + -  -+-  
P [a!! ax I 
[L - a -  - -(u'~v') + -(u1v'2) + -(utv'w') 

ay  a2 " I  



avl au+ + -  -+-  
P [ a ,  a, I 
[a: - d -  - -(ulv'w') + -(vt3 w') + -(vlw") 

3~ dz " I  



Presented below are the Reynolds Stress Transport Equations written out for 

each stress in axisymmetric cylindrical coordinates (from Rodi, 1970): 



(B. 14) 





APPENDIX C 

Coordinate Systems 

-4lthough the flow in the present study cannot be considered to be strictly 

axisymmetric, it is useful to observe trends in some scalar quantities to see if they 

are tending towards axisymmetry. 

Display of the various fluid scalar quantities of a rotating flow in cartesian 

coordinates and cylindrical coordinates can be related by the use of the following 

equations: 

Position: 

Velocity: 

u = v, 
V = V,cos6 - VesinO 

W = l ~ s i n 6 + V s c o s 6  

Separating instantaneous velocities into mean and fluctuating parts and taking the 

time average, the various Reynolds Stresses may be converted between coordinate 

systems by the following equations: 

Reynolds Stresses: 

- - 
vlZ = v: sinZ 6 + 3 cosZ 6 - 2 s  sin 6 cos 6 
- - 
wr2 - - 11: cos2 6 + $ sin2 6 + 2 s  sin 0 cos 6 
- - 

u'z,' = -v:vb sin 6 + vkvb cos 6 
- - - 
u,'w' = vk vb cos 6 + V ~ V ;  sin 6 

- - 
= (a;? - vf ) sin 6 cos 6 + a ( c o s 2  6 - sin2 6) 

-- - 
Figures C. l ,  (2.2, and C.3 plot u'vr, ufwf, and vfwr as a function of 0 at some r ,  given 



an axisymmetric distribution of the Reynolds stresses in cylindrical coordinates. 
- - 

Figures C.l and C.2 plots u'v' and u'w' for four cases: 
- 

1) The limiting case of vLvi = 0. 
- 

2) The limiting case of v;vb = 0. 
- - 

3) v;v; = v;v; 

4) Cylindrical stress distribution from Phillips and Graham (1981). 
- 

For Case 1, u'v' has peaks at 0 and 180 degrees and zeroes at 90 and 270 degrees, 
- 

while u'w' has peaks at 90 and 2170 degrees and zeroes at 0 and 180 degrees. These 
- 

trends are reversed for Case 2. For Case 3; u'v' has peaks at 135 and 315 degrees 
- 

and zeroes at 45 and 225 degrees, while u'w' has peaks at 45 and 225 degrees and 

zeroes at 135 and 315 degrees. 
- 

Figure C.3 plots v'w' for three cases: 

1) The limiting case of vk = vb. 
- 

2) The limiting case of v: > vb, and v:vL 0. 

3) Cylindrical stress distribution from Phillips and Graham (1981). 
- 

It can be seen for all cases that the four-leaf clover pattern of v'w' stress is merely 

a result of the four quadrant cartesian coordinate system. The orientation of the 
-- 

positive and negative regions of stress depends however upon the levels of vi2, vb2, 

and vivb. For case 1, the peak absolute stresses occur at 0 = 0, 90, 180, and 270 I 
I 

degrees. For case 2, the peak absolute stresses occur at 6' = 45, 135, 225, and 315 ~ 
degrees. The cylindrical stress distribution from Phillips and Graham give peaks at 1 
locations similar to case 2. I 
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Appendix Table D.l  Surface Pressure Coefficient Quantities 

;/bo or UpperlLower / Cp 1 1 1 7 (deg) 1 Surface 

1 Lower 

I Lower 1 Lower 
I Low-er 
I Lower 

Low-er 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 

Upper 
Upper 
Upper 
Upper 
Upper 



Appendix Table D.l  (Continued) 

Upper/Lower 
Surface 

1 Lower 
I 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 

Upper 
Upper 

Upper 
Upper 
Upper 



Appendix Table D.l  (Continued) 

z lb ,  or Upper/Lower 
I c  1 7 (deg) 1 Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

Upper 
Upper 
Upper 

Upper 



Appendix Table D.l  (Continued) 

x / c  

-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 
-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.6'75 
0.700 
0.725 

z /b ,  or 
r (deg) 

0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 
0.845 

Upper/Lower 
Surface 

Lower 
Lower 

- Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

Cp 

-0.142 
1.014 
0.927 
0.721 
0.442 
0.300 
0.207 
0.094 
0.025 

-0.019 
-0.052 
-0.098 
-0.131 
-0.100 
-0.076 
-0.063 
-0.030 
-0.003 
0.032 

-0.109 
-1.534 
-1.690 
-1.465 
- 1.226 
-1.071 
-0.966 
-0.812 
-0.705 
-0.617 
-0.543 
-0.427 
-0.251 
-0.180 
-0.171 
-0.166 
-0.143 
-0.101 
-0.036 



Appendix Table D . l  (Continued) 

x / c  

-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 
-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 

C p  

0.004 
1.013 
0.886 
0.664 
0.385 
0.247 
0.155 
0.051 

-0.014 
-0.057 
-0.090 
-0.137 
-0.176 
-0.154 
-0.131 
-0.120 
-0.083 
-0.060 
-0.050 
0.061 

-1.337 
- 1.506 
-1.312 
-1.103 
-0.972 
-0.885 
-0.748 
-0.654 
-0.581 
-0.520 
-0.417 
-0.260 
-0.257 
-0.300 
-0.337 
-0.389 
-0.365 
-0.291 

z / b o  or 
3' (ded  

0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 
0.906 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 



Appendix Table D.l  (Continued) 

z /c  

-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 
-0.250 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 

z lb ,  or 
Y P e g )  

0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 
0.936 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

Cp 

0.123 
1.006 
0.853 
0.626 
0.348 
0.213 
0.127 
0.027 

-0.034 
-0.080 
-0.116 
-0.162 
-0.209 
-0.198 
-0.180 
-0.168 
-0.123 
-0.103 
-0.103 
0.157 

-1.206 
-1.399 
-1.211 
-1.036 
-0.911 
-0.831 
-0.708 
-0.626 
-0.564 
-0.510 
-0.415 
-0.247 
-0.443 
-0.626 
-0.723 
-0.816 
-0.775 
-0.629 



Appendix Table D . l  (Continued) 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 



Appendix Table D.l  (Continued) 

x lc  

-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.625 
0.675 
0.700 
0.725 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.625 
0.675 
0.700 
0.725 

z/bo or 
Y @%I 

10.0" 
10.0" 
10.0' 
10.OO 
10.0' 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.0" 
10.OO 
10.0" 
10.0" 
10.0" 
10.0" 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 



Appendix Table D.1 (Continued) 

I 0.700 1 22.5' 1 Upper 1 -0.804 1 

xlc  

-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 

zlb, or 
Y Wed 

22.5' 
22.5" 
22.5' 
22.5' 
22.5" 
22.5' 
22.5' 
22.5' 
22.5" 
22.5' 
22.5" 
22.5' 
22.5' 
22.5' 
22.5' 
22.5" 
22.5" 
22.5' 
22.5' 
22.5' 
22.5' 
22.5" 
22.5" 
22.5' 
22.5" 
22.5" 
22.5' 
22.5" 
22.5" 
22.5' 
22.5' 
22.5' 
22.5' 

Upper/Lower 
Surface 

Lower 
Lower 

- Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

C, 

0.570 
0.342 
0.179 

-0.038 
-0.127 
-0.191 
-0.269 
-0.338 
-0.388 
-0.436 
-0.533 
-0.757 
-1.187 
-1.382 
-1.508 
-1.701 
-1.391 
-0.621 
-0.830 
-0.715 
-0.730 
-0.696 
-0.686 
-0.656 
-0.648 
-0.637 
-0.626 
-0.609 
-0.668 
-0.844 
-0.859 
-0.843 
-0.838 
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C, 

0.314 
0.091 

-0.048 
-0.234 
-0.309 
-0.361 
-0.438 
-0.500 
-0.554 
-0.600 
-0.720 
-0.998 
-1.541 
-1.719 
- 1.840 
-1.897 
-1.367 
-0.559 
-0.489 
-0.707 
-0.644 
-0.688 
-0.681 
-0.681 
-0.688 
-0.700 
-0.710 
-0.727 
-0.750 
-0.742 
-0.846 
-0.856 
-0.845 
-0.861 
-0.817 
-0.516 

x / c  

-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.050 
0.150 
0.350 
0.550 
0.600 
0.625 
0.6'75 
0.700 
0.725 

z / b o  or 

r (deg) 

45.0" 
45.0" 
45.0' 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0' 
45.0" 
45.0" 
45.0' 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0' 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 
45.0" 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
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x / c  

-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 
-0.245 
-0.237 
-0.225 
-0.200 
-0.175 
-0.150 
-0.100 
-0.050 
0.000 
0.150 
0.350 
0.550 
0.600 
0.625 
0.675 
0.700 
0.725 

z /bo  or 
Y (deg) 

67.5' 
67.5" 
67.5" 
67.5" 
67.5' 
67.5' 
67.5' 
67.5" 
67.5" 
67.5" 
67.5' 
67.5" 
67.5' 
67.5" 
67.5" 
67.5" 
67.5" 
67.5" 
67.5" 
67.5" 
67.5' 
67.5' 
67.5" 
67.5" 
67.5" 
67.5" 
67.5' 
67.5' 
67.5" 
67.5' 
67.5' 
67.5" 
67.5' 
67.5" 

Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 
Upper 

Cp 

0.074 
-0.166 
-0.231 
-0.412 
-0.477 
-0.517 
-0.581 
-0.638 
-0.688 
-0.857 
-1.155 
-1.658 
-1.783 
-1.793 
-1.590 
-0.964 
-0.550 
-0.353 
-0.579 
-0.549 
-0.639 
-0.655 
-0.671 
-0.702 
-0.730 
-0.762 
-0.862 
-1.024 
-0.879 
-0.865 
-0.858 
-0.870 
-0.822 
-0.516 
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Upper/Lower 
Surface 

Lower 
Lower 
Lower 
Lotver 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 
Lower 

Upper 
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