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SUMMARY

This research program dealt with the application of high-performance computing methods to the

numerical simulation of complete jet engines. The program was initiated in January 1993 by

applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-

pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were

successfully tested. Attention was then focused on methodology for the partitioned analysis of

the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by

these structural displacements. The latter is treated by a ALE technique that models the fluid mesh

motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements.

New partitioned analysis procedures to treat this coupled three-component problem were developed

during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have

been successfully tested on several massively parallel computers, including the iPSC-860, Paragon

XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we

have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid

discretization in conjunction with circumferential averaging to include effects of blade forces, loss,

combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor

for parallel versions of EIqG10 was developed. During 1995 and 1996 we developed the capability

for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested

on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the

1196 Computational Aeroscience meeting.





1. OVERVIEW

The present program deals with the application of high-performance parallel computation for the

analysis of complete jet engines, considering the interaction of fluid, thermal and mechanical

components. The research is driven by the simulation of advanced aircraft propulsion systems,

which is a problem of primary interest to NASA Lewis.

The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat

transfer in aircraft engines. The methodology issues to be addressed include: consistent discrete

formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning

strategies, augmentation and temporal solution procedures; sensitivity of response to problem

parameters: and methods for interfacing multiscale discretizations. The computer implementation

issues to be addressed include: parallel treatment of coupled systems; domain decomposition and

mesh partitioning strategies: data representation in object-oriented form and mapping to hardware

driven representation, and tradeoff studies between partitioning schemes with differing degree of

coupling.

2. STAFF

The present grant began in January 1993 and concluded in July 1996. Two graduate students

were supported during that period. M. Ronaghi (a U.S. citizen) began his graduate studies at the

University of Colorado on January 1993. He completed a M.Sc. in Aerospace Engineering on May

1994 and left to join Analytics Inc. (Hampton, VA) on June 1994.

U. Gumaste (a permanent U.S. resident) began his graduate studies at Colorado in August 1993.

Mr. Gumaste received a B.Tech in Civil Engineering from the Indian Institute of Technology.

Bombay, India. He completed his Ph. D. course requirement in the Fall 1994 semester with the

transfer of graduate credit units from the University of Maryland. On November 1994 and December

1996 he passed the Preliminary Exam and Comprehensive Exam, respectively, for the Ph.D. degree.

and is scheduled to complete his Ph.D. by the end of 1997. He became familiar with our external

aeroelastic codes starting in the summer of 1994. He visited NASA Lewis lk_r five weeks during

July-Atlgust 1994, and for four weeks during June-July 1995.

One Post-Doctoral Research Associate, Paul Stern, was partly supported by this grant during 1994-

95 for running benchmarks on parallel computers. One graduate student, P.-S. Chen. supported by

a related grant from NASA Ames, assisted with model preparation tasks over the period 1995-96.

The development of FSI methodology for this project has benefited from the presence of several

Visiting Scholars whose work concentrated on the related problem of exterior aeroelasticity for a

complete aircraft. This project was part of a Grant Challenge Applications Award supported by

NSF, but most aspects of the solution methodology and parallel implementation are applicable to

FSI engine problems. Dr. S. Lanteri conducted extensive experimentation on several computational

algorithms for compressive viscous flow sit-nulation on the iPSC-860, CM-5 and KSR-I as reported

in the July 1994 Progress Report. Dr. N. Maman implemented "'mesh matching" techniques that

connect separately generated fluid and structural meshes. Dr. S. Piperno developed and evaluated



implicit and subcycledpartitionedanalysisproceduresfor the interactionof structure,fluid and
fluid-meshmotion. A newapproachto augmentationof thegoverningsemi-discreteequationsthat
improvesstability while keepingcommunicationsoverheadmodestwasinvestigated.Finally, Dr.
M. Lesoinne (who finished his Ph.D. under C. Farhat on August 1994 and is presently a Research

Faculty) made significant contributions to the modeling and computational treatment of the fluid

mesh motion, and to the development of global conservation laws that must be obeyed by those
motions.

Results from these studies are collected in a series of reports and papers. The major ones are

enclosed as Appendices to the present report.

3. DEVELOPMENT OF PARTITIONED ANALYSIS METHODS

The first parallel computations of a jet engine, presented in the first progress report of July 1993

and reporoduced here as Appendix I, dealt with the fluid flow within a jet engine structure that is

considered rigid and hence providcs only guiding boundary conditions for the gas flow. When the

structural flexibility is accounted for two complications occur:

I. The engine simulation algorithm must account tk)r the structural flexibility though periodic

transfer of interaction information, and

2. The fluid mesh must smoothly follow the relative structural motions through an ALE (Adaptive

Lagrangian Eulerian) scheme. The particular ALE scheme selected for the present work makes

use of Batina's proposed pseudo-mechanical model of springs and masses overlaid over the

fluid mesh.

Research work during the period July 1993 through July 1996 was dominated by the treatment of

two subjects: partitioned analysis of lluid-structure interaction (FSI) and accounting for flt|id mesh

motions. The partitioned analysis algorithm developed lk_r the FSI problem is always implicit in

the structure (because of its larger time scale of significant vibratory motions) and either explicit

or implicit for the ,gas flow modeled by the Navier-Stokes equations. Subcycling, in which the

integration stepsize for the fluid may be smaller than that used in the structure, was also studied.

3.1. General Requirements

The fundamental practical considerations in the development of these methods are: Ill nunleri-

cal stability, (2) fidelity to physics, (3) accuracy, and (4) MPP efficiency. Numerical stability is

fundamental in that an unstable method, no matter how efficient, is useless. There are additional

considerations:

I. Stability degradation with respect to that achievable for the uncoupled fields should be min-

imized. For example, if the treatment is implicit-implicit (I-I) we would like to maintain

unconditional stability. If the fluid is treated explicitly we would like to maintain the same

CFL stability limit.

2. Masking of physical instability should be avoided. This is important in that flutter or diver-

gencc phenomena should not he concealed by numerical dissipation. For this reasons all time

integration algorithms considered in this work must exclude the use of artificial damping.

:)



3.2. Stability vs. Communication-Overhead Tradeoff

The degradation of numerical stability degradation is primarily influenced by the nature of infor-

mation exchanged every time step among the coupled subsystems during the course of partitioned

integration. A methodology called augmentation that systematically exploits this idea was devel-

oped by Park and Felippa in the late 1970s. The idea is to modify the governing equations of one

st, bsystem with system information from connected subsystems. The idea proved highly successful

for the sequential computers of the time. A fresh look must be taken to augmentation, however, in

light of the communications ovei'head incurred in massively parallel processing. For the present

application three possibilities were considered:

No augmentation. The 3 subsystems (fluid, structure and ALE mesh) exchange only minimal

interaction state intbrmation such as pressures and surface-motion velocities, but no information

on system characteristics such as mass or stiffness. The resulting algorithm has minimal MPP

communication overhead but poor stability characteristics. In fact the stability of an implicit-implicit

scheme becomes conditional and not too different from that of a less expensive implicit-explicit

scheme. This degradation in turn can significantly limit the stepsize for both fluid and structure.

Full augmentation. This involves transmission of inverse-matrix-type data from one system to

another. Such data are typified by terms such as a a structure-to-fluid coupling-matrix times the

inverse of the structural mass. Stability degradation can be reduced or entirely eliminated; for

example implicit-implicit unconditional stability may be maintained. But because the transmitted

matrix combinations tend to be much less sparse than the original system matrices, the MPP com-

munications overhead can become overwhelming, thus negating the benefits of improved stability

characteristics.

Partial augmentation. This new approach involves the transmission of coupling matrix information

which does not involve inverses. [t is efficiently implemented as a delayed correction to the

integration algorithm by terms proportional to the squared stepsize. The MPP communication

requirements are modest in comparison to the fully-augmented case, whereas stability degradation "

can be again eliminated with some additional care.

The partial augmentation scheme was.jointly developed by S. Piperno and C. Farhat in early 1994.

Its derivation was reported in the July 1994 report and is enclosed here as Appendix II.

The use of these methods in three-dimensional aeroelasticity has been investigated from the summer

1994 to the present time. This investigation has resulted in the development of four specific

algorithms for explicit/implicit staggered time integration, which are labeled as A0 through A4.

The basic algorithm A0 is suitable for sequential computers when the time scale and computational

cost of fluid and structure components is comparable. Algorithm A I incorporates fluid subcycling.

Algorithms A2 and A3 aim to exploit inter-field parallelism by allowing the integration over fluid

trod structure to proceed concurrently, with A3 aimed at achieving better accuracy through a more

complex tield synchronization scheme. These algorithms are described in more detail in Appendix

I1 of this report.
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3.3. Effects of Moving Fluid Mesh

The first one-dimensional results on the effect of a dynamic fluid mesh on the stability and accuracy

of the staggered integration were obtained by C. Farhat and S. Piperno in late 1993 and early 1994,

and are discussed in Appendix II of the July 1994 report. A doctoral student, M. Lesoinne (presently

a post-doctoral Research Associate supported by a related NSF grant) extended those calculations to

the i-nultidimensional case. This work culminated in the development of a geometric conservation

law (GCL) that must be verified by the mesh motion in the three-dimensional case. This law applies

to unstrtictured meshes typical of finite element and finite-volume fluid discretizations, and extends

the GCL enunciated for regular finite-difference discretizations by Thomas and Lombard in 1977.

This new result is presented in more detail in Appendix II of this report.

3.4. Benchmarking on Parallel Computers

The new staggered solution algorithms for FSI, in conjunction with the improved treatment of fluid

mesh motion dictated by the GCL, have been tested on several massively-parallel computational

platforms using benchmark aerodynamic and FSI problems. These platforms include the Intel i860

Hypercube, lntel XP/S Paragon, Cray T3D, and IBM SP2. Performance results from these tests are

reported and discussed in Appendix I of this report.

4. MODELING OF COMPLETE ENGINE

Work on the global model of a complete engine proceeded through two phases during 1994.

4.1. Homogenized Modeling of Compressor and Combustion Areas

Initial work in this topic in the first six months of 1994 was carried out using "'energy injection"

ideas. This idea contemplated feeding (or removing) kinetic and thermal energy into fluid mesh

volume elements using the total-energy variables as "volume forcing" functions.

Although promising, energy injection in selected blocks of fluid volumes was found to cause

significant numerical stability difficulties in the transient gas-flow analysis, which used explicit

time integration. Consequently the development of these methods was put on hold because of the

decision to use the program ENG10 (which is briefly described in 4.2 below) for flow global analysis.

ENG10 makes use of similar ideas but the formulation of the governing equations and source terms

in a rotating coordinate system is different. In addition a semi-implicit multigrid method, rather

than explicit integration, is used to drive the gas flow solution to the steady state condition, resulting

in better stability characteristics.

4.2. Load Balancing l'reprocessor for Program ENGIO

As a result of Mr. Gumaste's visit to NASA Lewis durin_ Julv-Au,,ust of 1994, it was decided to

focus on the ENG10 code written by Dr. Mark Stewart of NYMA Research Corp. to carry out the

parallel analysis of a complete engine. This program was developed under contract with NASA

Lewis, the contract monitors of this project being Austin Evans and Russell Claus.
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ENGIO is a research program designed to carry out a "2 1/2" dimensional" flow analysis of a

complete turbofan engine taking into account -- through appropriate circumferential averaging --

blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. The engine

equations are derived from the three-dimensional fluid flow equations in a rotating cylindrical

coordinate system. The Euler fluid flow equations express conservation of mass, momentum

and rothalpy. These equations are discretized by structured finite-volume (FV) methods. The

resulting discrete model is treated by multiblock-multigrid solution techniques. A multiblock grid

divides the computational domain into topologically rectangular blocks in each of which the grid

is regular (structured). For bladed jet engine geometries, this division is achieved through a series

of supporting programs, namely TOPOS, TF and MS.

During the period September through December 1994, Mr. Gumaste devoted his time to the fol-

lowing tasks.

(a) Understanding the inner workings of ENC-10 and learning to prepare inputs to this program

(for which there is no user manual documentation) with the assistance from Dr. Stewart.

(b) Provide for links to the pre/postprocessor TOPS/DOMDEC developed by Charbel Farhat's group

to view the decomposed model and analysis results.

(c) Develop and test algorithms for load-balancing the aerodynamic analysis of ENG:!.O in anticipa-

tion of running that program on parallel computers. The algorithm involves iterative merging

and splitting of original blocks while respecting grid regularity constraints. This development

resulted in a Load-Balancing (LB) program that can be used to adjust the original multiblock-

grid discretization before starting ENC-10 analysis runs on remote parallel computers (or local

workstation networks).

Subtasks (hi and (c) were tested on a General Electric Energy Efficient Engine (GE-EEE) model

provided by Dr. Stewart. A report on the development of LB is provided in Appendix III of this

report.

5. 3D AEROELASTIC SIMULATIONS OF ENGINE ROWS

The final year of the grant were devoted to the aeroelastic simulation of multiple rows of the

compressor stage of the GE EEE engine. Progress in that activity is summarized here.

5.1 The Aeroelastic Program PARFSI

This program treats the coupled aeroelastic problem following the partitioned analysis outlined

previously. This strategy allows the development of tailored methods for each discipline component

independently of the others. Also, new physical or computational partitions can be added to existing

systems without substantial modifications to software modules that have attained stability. The main

software components of PARFSI are briefly outlined below.

Fluid Solver. An Eulerian, explicit 3D Navier-Stokes solver based on Van Leer's Monotic Upwind

System Conservation Laws (MUSCL) scheme [8]. May be reduced to an Euler solver for cases

where viscosity effects are secondary, with a substantial (over 10 fold) speed gain. The convective



flux is handledby a finite volumediscretizationwhile a Galerkin finite elementdiscretizationis
usedfor the diffusive flux. Non-overlappingdomaindecompositionis usedfor parailelization.
The MIMD implementationof thecodehasbeenextensivelytestedon the iPSC-860,KSR-I and
Paragon.Preliminaryresultson theIBM SP-2atNASA Ames were obtained during 1994 [4] with

initial production results on multiblade configurations described in Subsection 3.3. The fluid code

also runs efficiently on shared memory supercomputers such as the Cray C90 and YMP, and on

workstation networks.

Structure Solver: A Lagrangian, implicit structure integrator based on the FETI (Finite Element

Tearing and Interconnecting) mesh decomposition method. Mesh subdomains are condensed to the

boundary by a direct solver. The interface problem is solved for Lagrange multiplier interpolants

using projected/preconditioned conjugate gradients. In dynamic analysis, performance is further

enhanced by a convergence accelerator that "remembers" the set of conjugate directions at the

previous step. This solver has exhibited excellent MPP scalability [I-31.

Domain Decomposer: The pre- and post-processor program TOP-DOMDEC [2] has been developed

for domain decomposition and dynamic visualization. This program performs automatic domain

decomposition of fluid and structure discretizations and submits simulation runs to remote super-

computers. This program operates on SGI and IBM workstations using the GL graphics library and

has a state-of-the-art "'point and click" user-interface. In addition to TOP-DOMDEC a load balancing

program for multiblock grids was developed [4] for the ENG10 program described above.

Mesh Transfer. As noted previously the structure and fluid meshes are independently constructed

and thus generally do not conform on the fluid-structure interfaces. The MATCHER preprocessor

program [7] handles the initial process of information transfer between coupled but mismatched

discretizations. This program uses a consistent surface interpolation approach and prepares the

necessary decomposition so that interface data transfers can occur in parallel during the time-

integration simulation.

Near-Field Fhdd Mesh Motiott. The ALE-mesh partition is handled through a spring-mass-dashpot

network of fictitious mechanical elements placed over edges of the near-field fluid elements [5.61.

This network is implicitly time-integrated by the same techniques used in the structural solver.

5.2 Parallel Analysis of a Multi-Fan-Blade Configuration

The first three-dimensional aeroelastic analysis involving a multiple fan-blade conliguration wits

successfully performed during October 1995 using PARFSI on the NAS/IBM SP2 at NASA Ames.

This massively parallel supercomputer has 144 processing nodes (being expanded to 200+ as of this

writing). Its nominal aggregate peak speed is over 100 Gigaflops, which puts it among the class of

the most powerful MPP platforms worldwide.

Resources for this simulation were provided its part of a resource competition solicited bv the

CAS Office at NASA Ames in support of ongoing or new HPCC projects of relevance to NASA.

An 80OO-hour SP2 account for the Operational Year 95-96 wits awarded on Septcnlher t995 and

enabled by October Ist. This award was important in expediting these large simulations because

the latest version of PARFST simulation modules, which contain new capabilities relevant -to the
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engineproblem,wasdevelopedon theIBM SP2,andmakesextensiveuseof themessage-passing
protocolMPI just providedby IBM for thissystem.

The aeroelasticmodelusedfor thesimulationpresentedherecomprisesonehalf of a bladerow
that pertainsto the compressionstageof a GE EEE turbofanengine. This reducedbut realistic
configurationwasusedto testthefluid andstructuremeshgenerators,meshmatchersandanalysis
modules.This testmodelhasapproximately185,000degreesof freedom. This simulationis a
preludeto the treatmentof morecomplexconfigurationsinvolvingtwo to four full-circle blade
rows. Suchmodelsareexpectedto containup to 1.5million freedoms,which is closeto the
computationallimit on presentmassivelyparallelcomputingplatformssuchasthe IBM SP2and
theCrayT3E.

Theelasticstructurecontains17turbinebladesattachedto a fixedhub.The finiteelementmodel
wasdirectly generated,throughsteprotations,from asingleGEEEEfan-stagebladeNASTRAN
modelprovidedby ScottThorpeof NASA Lewis ResearchCenter. A very coarsemodelusing
triangularshellelementswith "drilling" rotationaldegreesof freedomEachbladehas50 nodes,
72 triangularelementsand270 degreesof freedom.Thestructuralmeshis half of that shownin
FigureIV.1of AppendixIV.Forparallelanalysisthestructuralmeshwaskeptasasinglesubdomain
becauseof its low numberof totaldegreesof freedom.

Thefluid meshwasconstructedin threesteps.Followingadvicefrom DavidMiller of NASALeRC,
S-interpolationbetweentwo adjacentbladessurfaceswasusedto generatea regularhexahedral
mesh.Eachhexahedronwasthendividedintosix tetrahedraasexpectedbythePARFSTfluid solver.
Thismeshunitwasstep-rotatedaroundthehubto fill the 16spacesbetweenthe 17blades.Thefull
meshwastranslatedforwardandbackwardto generatetwo inter-rowtransitionvolumes.Thefluid
meshishalfof thatshowninFigureIV.I of AppendixIV.Themeshcontainsapproximately185,000
defreesof freedom.For parallelprocessingadecompositioninto 16subdomainswasperformed
by theTOP/DOMDECpreprocessor.

A uniform longitudinal flow of 0.SM is appliedto the nodesof thefluid mesh. It is left to runs
throughthe rigid bladesuntil a steadystateis reached.Then the bladesare releasedexceptfor
theendoneswhicharemaintainedfixed. Thebladesaresetinto motionby the transverseforces
inducedby their skewangles,andvibrateapproximatelyin phase.The total physicalsimulation
time was20seconds,with 400timesstepsperformedin thestructureand8,000stepson thefluid.
Elapsedsimulationtime,using28processorsof theNASIBM SP2,wasapproximately20minutes.
A color videotapeof thedynamicresponsewaspreparedusingtheTOP/DOMDECvisualization
systemandprovidedto NASA Lewis.

5.3 Parallel Analysisof a Full Circle, Multiple-Row Configuration

Our final enginemodel involvesa full circle of compressorbladesaswell asone andtwo-row
configuration.This work is describedindetail in AppendicesIV andV.

6. FUTURE RESEARCH AREAS

In our opinion, the following research areas represents a natural continuation of the work funded

under the present grant. The tasks outlined below represent a balanced combination among analysis
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of morecomplex and demandingmultirow configurations,improvementsin the physicsof the
coupledmodel, ability to receiveENGIOinputsandcomparethree-dimensionalstageresultsto
thoseof theENGIOaxisymmetricidealization.

6.1 Multirow Fan Blade Simulations

It would be desirable to continue the aeroelastic simulations initiated with the model described

in Section 5 fan stage until achieving the practical limits of the IBM SP2 and Cray T3D. Euler

fluid models will be generally used to speed up the simulations, but Navier-Stokes models may be

occasionally run to check the formation of shocks especially in unsteady conditions.

These models may be used as focus problems to explore the advantages of the present approach as

well as to assess limits imposed by practical availability of computer resources such as processing

power, physical memory and archival storage and communication bandwidth to move data from

remote supercomputer sites to the visualization laboratory.

6.2 Unsteady Flow Analysis

While PARFSI is intrinsically designed to provide time-accurate unsteady analysis, its original

development for the exterior aeroelastic flutter problem constrained the ability to provide time-

dependent boundary conditions on the exterior fluid boundaries. This work would provide the

ability to step up or decrease the engine inlet flow from one operating condition to another (or to

an emergency condition) and conduct to drive the unsteady analysis.

6.3 Differential Rotation

Presently PARFSI assumed that the fluid mesh is Eulerian but inertial. This task provides the ability

to model correctly the engine rotation by letting the fluid mesh rotate as a rigid body at a given speed.

This speed may change during the course of the analysis if a time-accurate unsteady capability is

incorporated.

Provision of this capability requires two modeling enhancements in the fluid model: (1) rotation

induced source terms in the fluid, and (2) accounting for the gap between the rotating blades and

the inertially fixed case with an attached non-rotating fluid mesh. The latter is truly a leading-edge

research item that has not been previously considered to this level of modeling detail.

6.4 Geometric Stiffness Effects

Blade rotation produces a high tension stresses in the blades, which in turn affects their effective

stiffness through the geometric stiffness matrix of the shell elements used in the finite element

discretization. This capability would provide the necessary rotation-speed-to-stress feedback in the

structural analyzer.

6.5 Other Coupling Effects

Coupling of structural material properties with the thermal solution provided by ENGIO tnay be

considered during if interaction of thermal and aeroelastic effects are deemed important. Such

effects may be of interest for blades fabricated with advanced composite materials.
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Appendix I

Theoretical Background on Viscous Flow Computations

Summary

The following material, extracted from a recently published paper by Farhat, Fezoui and Lanteri [3 ],

summarizes the theoretical foundations of our parallel Navier-Stokes computations on unstructured

meshes. Although the article focuses on CM-2 computations carried out during 1990-1991, it also

presents implementation considerations applicable to the present project.

I. I Introduction

Previously we have reported on our experience with performing two-dimensional structured com-

pressible flow computations on the Connection Machine CM-2 (Saati, Biringen and Farhat [I ],

Lanteri, Farhat and Fezoui [2]). We have found that this massively parallel processor is particularly

well suited for explicit computations on regular grids. For grids that result in a high virtual processor

ratio (VPR or VP ratio), using the NEWS fast communication mechanism, we have measured the

communication component of the simulation time to represent typically less than 10% of the total

CPU time. We have concluded that on a 64K machine (65536 processors), efficiency rates in the

neighborhood of 2 gigaflops are attainable. We have also found that for both inviscid (Euler equa-

tions) and viscous (Navier-Stokes equations) flow structured computations, a 16K CM-2 (I 6384

processors) can be 4 and 6 limes faster than one CRAY-2 processor, respectively.

We focus here on massively parallel viscous flow computations using fully unstructured grids. In

Section 2, we formulate the problem to be solved, and in Section 3, we derive first-order and

second-order spatial schemes that are characterized by an upwind integration of the convective

fluxes. Second-order accuracy is achieved through a Monotonic Upwind Scheme for Conservation

Laws (MUSCL) technique. An explicit, and therefore nicely parallelizable, Runge-Kutta method is

selected for time integration: it is summarized in Section 4. Because the mesh irregularities inhibit

the use of the NEWS mechanism, interprocessor communication is bound to be carried out via the

slower machine router. If a trivial processor mapping is used. tip to 60% of the total CPU time

is consumed in communication requirements. This bottleneck has been previously analyzed and

documented by Farhat, Sobh and Park [3] for massively parallel finite element computations in solid

mechanics problems. It has also been recently addressed by several other investigators for fluid

flow computations. In particular, Shapiro [4] has proposed the use of a graph coloring algorithm to

allow a particular implementation of the communication steps which reduces the communication

costs by a factor of two. Hammond and Barth [5] have developed a vertex-based partitioning

scheme tk)r inviscid flow computations which attempts to minimize both the computational and

communication costs associated with unstructured grids. Here. we present a strategy for mapping

thousands of processors onto an unstructured grid which leads to an efficient scheme for carryin._

()tit communications of an arbitrary, pattern. The key elements of this strate,,y_ are discussed in

Section 5. These include the selection of an appropriate parallel data structure, the partitioning of a

given unstructured grid into subgrids, and the mapping of each individual processor onto an entity
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of thesesubgrids.Combiningthis mappingstrategywith acommunicationcompilerreducesthe
communicationoverheadbyanorderof magnitudeandbringsit downto 15%of thetotalsimulation
time. In Section6, we applyourmassivelyparallelcodeandits highly vectorizedvariantto the
simulationof low Reynoldsnumberchaoticflows.Measuredperformanceresultsindicatethatfor
suchcomputationsonunstructuredgrids,an8KCM-2 withsingleprecisionfloatingpointhardware
is asfastasoneCRAY-2processor.

1.2.Mathematical modeling

First we recall the mathematical problem to be solved, and introduce the notation that is used in the

sequel.

1.2. I. Governing equations

Let _ C :}{2 be the tlow domain of interest and F be its boundary. The conservative law form of

the equations describing two-dimensional Navier-Stokes flows is given by :

where

W = (p, ptt, pv, E) r

iLr iJv

_ (W) = G(W)

7_(W) = S(W)

(2)

The functions F(W) and G(W), and R(W) and S(W), denote the convective and diffusive lluxcs,

respectively. They can be written as :
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pu 2 + P

F(W) = I

',u(E + p)

p u v
G(W) = °v 2

v(E + p)

(o)R(W) = rxx
rx v

yk ;h;

urea + vrxv + P7 i7-(

( ° /,5'(W ) = r_-,,
_'VV

gk ib

ltrvv + vrrv + _

(3)

where p is the density, U = (u, v) is the velocity vector, E is the total energy per unit of volume,

p is the pressure, and e is the specific internal energy. The variables p, E, p, U, e, and the

temperature T are related by the state equation for a perfect gas:

= (y - I)(E - _Pll u II2) (4P

and by:

E I
_: = C,,T -- (11U II'_ (5

p 2

where y denotes the ratio of specific heats.

Tile components of the Cauchy stress tensor r,.,, r,,, and r,,,, are given by:

where 11 and k are the normalized viscosity and thermal conductivity coeflicients. Two characteristic
po Uo L o

numbers appear in the above equations: the Reynolds number Re -- where Po, /_'_, L,
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Uo0

Fig. I.l. The computational domain

and I_0 denote respectively, the characteristic density, velocity, length and diffusivity of the flow

under consideration, and the Prandtl number Pr - /_0Cz,
k0

We consider the initial and boundary value problem (IBVP):

,)
1--,

W ,0 = W0(X) X _ f2

W ,t =Wr(X) X er=a_

E E_ x ,)t

_7

where W0 and Wr are specified functions, and focus on finding a weak solution of (7) that ts

amenable to massively parallel computations.

I. 2.2. Bottmhtrv conditions

Wc arc mostly interested in external llows around airfoils. Therefore, we consider the case where

the computational domain E2 is delimited by the boundary F = F/, U F,_. We denote bv _ the

outward unirnormal at a given point of F (Fig. I.I).
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In the far field, weassumethat theviscouseffectsarenegligiblesothat theflow is uniform. We
adopta formulationwherethephysicalvariablesarenon-dimensionalized.Thefree-streamvector
W_ is given by:

--> = (cosa) Ip-,_ = I U -,_, \ sin ot P"_ - 'vM_
(8)

where ot is the angle of attack and M,,_ is the free-stream Mach number. On the wall boundary F_,,

we impose the no-slip condition and specify the temperature:

-g = -6" r = r,, (9)

We do not impose any boundary condition on the density. Therefore, the total energy per unit of

volume and the pressure on the wall are given by •

E = pC,,T_, P = (V - liE (10)

!.3. Spatial discretization

1.3. I. Preliminary

The flow domain _ is assumed Io be a polygonal bounded region of _ll2. Let _, be a standard

triangulation of 2. and h the maximal length of the edges of'g,. A vertex of a triangle A is denoted

by S,, and the set of its neighboring vertices by K(i). At each vertex Si. a cell C, is constructed

as the union of the subtriangles resulting from the subdivision by means of the medians of each

triangle of _, that is connected to Si (Fig. A2). The boundary of C, is denoted by i_C,, and the unit

vector of the outward normal to aC, by v i = (v,_. v,,). The union of all of the constructed cells

forms a non-overlapping partition of the domain f2:

II 5

f2 = UC, (11)

For each cell C,. a characteristic function _i is defined as "

%(X)= I if X _ (',
0 otherwise

Also, the following discrete spaces are introduced:
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Fig. A2. Cell definition in an mlstructured grid

V_,= {vh I vh E C°(_), v,, la _ Pt, VA E _}

= L 2W'_, {t,/, I Vh E (_), Vh IC,= V_= constant, i = 1..... ns}
(13)

where Pi is the space of polynomials in two variables and of degree 1. Clearly, any function ./

belonging to V], is uniquely determined by its values f(Si) at each vertex Si, and can be expressed

as:

-+ Z -+f( X ) = f(S_)Ni( X ) :14_
i=l ,n_

where {Ni }'="' is a basis of Vh Finally, it is noted that a natural bijection between the spaces _'1,i=1

and 1/Vh can be constructed as:

--+ Zv./ E 14 , S(f( X )) = f(S_)q.'g( X ) /15}
i= I ,ns

3.2 Variatiomd formtdation aml,lirs't order spatial alWm.vimations

A variational formulation of the IBVP (7) goes as follows:

Find W/, E (Vt,) a, 'v'@, E 1/'/,
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f _)Wh , ,-_t _ohaxay + f -V"-'-fi (Wh)cphdxdy
fl

l f-+----+= -- V. _. ( Wt )_otdx d v
Re

_2

(16)

We construct a mixed finite volume/finite element (Galerkin) approximation for solving the above

problem by introducing appropriate schemes for computing the left and right-hand-side integrals

of (16). Chosing _0h as the shape function Ni associated with the node Si and applying the operator

S to the left hand side of (16) leads to a mass-lumped variational approach which transforms the

above equation into:

f _d.vdy f ._.+ --._
+ V. :F (W/, )dx d v

('r

I f --_---_= -- V. _ ( Wh )Ni dx d v
Re

S'up N,

(17)

SupN, = U A . Using Green's formula for the convective term and integrating by partwhere

_X. 5,, _.-.5

the diffusive one leads to:

f ;IWh dxdv + f '-f (Wh).-_,drr

(', 3 ( ",

Re
'_, A A

+ _,, 'Pv( Wh ). i_, N, de*

I'r, t51".,

(IS)

where N A is thc restriction of N, to triangle A. Finally, we drop the right hand side boundary

integral as we enforce the viscous boundary conditions in a strong form on I't, and neglect the

viscous effects on I'-.:, so that equation (18) simplifies to:
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f _dxdy

C_ ) K(i),lCu

+ 5f(Wh).--_ides < 2 >

a(',!_I "i,

f-t- Dv(Wh).--_ides < 3 >

aC, AI'._

Z < >_ ( Wh )._T NiA dxdv 4
Re J

A,Si_A A

(19)

where W/, is the specified value of Wh at the boundaries.

The reader should note that the above formulation leads to it locally one-dimensional computation

of each convective term. along the normal direction t, . For this purpose, the boundary iJCi of the

cell C, is split into bi-segments aC,j which join the middle point of the edge [Si S i] to the centroids

of the triangles having both of Si and SI as vertices (Fig. A3), and the integral < 1 > is evaluated

_.lS:

f71w,,). = re(O). -r,,d<-,
jEKti)

Jc K (i )OCu tic u

(20)

where '-_ (U) is some approximation of the convective flux computed at the interface between cells

C, and Ci.

Following Fezoui and Sioufltet [6], we choose .F(U) to be a numerical flux function <:bassociated

with a first-order accurate upwind scheme (Van Leer [7]). It is denoted here bv H <i> wl-lere the
- l/ "

superscript _ emphasizes the first order accuracy, and can be written as:

H 0 = 4::>f,,( W,, W i . -_, ,_) t21')

where W, = Wh(Si) and W; = W;,(Si). For example, the following numerical flux functions can
(I).

be used to construct Hij .

• Roe's Scheme [81

_(U. V. 57) = f(U'-F)
+ _(V,-7)

where d (U, V. --77) is a numerical diffusivity defined as:

- d(U. V,--¢') {--_""

(V - U)
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__.i' j

G1, ij

- Sjv

Fig. A3. Splitting of aC u

and I_ is some mean value of U et V.

• Steger and Warming's scheme [9]

•,;,'(uv.v)= _+(u.r)_ +_ (v.v),, (24_

whereA=A + +A andlAt =A +-A .

The viscous integral < 4 > is evaluated via a classical Galerkin finite element P I method which

results in a centered scheme. Since the approximations of the physical variables are taken in FI,.
--..).

the components of the stress tensor and those of VN,. "x are constant in each triangle. The velocity

vector in a triangle is computed as:

-+ I 3 k
Z _U,, = ._ U t25)

k=l./,_A

Consequently, the viscous lluxcs arc evaluated as:

f --_ ZZ "R--_.( Wh ). V N, _ d.vdy =
A. S, _ A A. S, c A

A

I-9
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where R_ and S_x are the constant values of R(W) and S(W) in the triangle A.

1.3.3. Higher onler extension

The numerical integration with an upwind scheme described above leads to a spatial approximation

that is only lirst-order accurate. Here, we focus on constructing a second-order accurate solution

without changing the space of approximations. We develop a second-order scheme that is an

extension of Van Leer's MUSCL method [7] to the case of unstructured meshes.

Usually, a second-order approximation requires the evaluation of the gradient of the solution at each

vertex. Clearly, the gradient of a function v/, of "Vh is constant in each element and discontinuous in

the flow domain. Following the MUSCL method, one way to achieve second-order spatial accuracy

is to evaluate the fluxes with extrapolated values Wij, Wji at the interface i)Ci N i)Cj. Basically,

this leads to substitutinm H _j+ in the previous scheme by H t2+ which is given by:
i / i./

H I> = _i))v,i(Wij Wji l_-_lij)
ij ' '

= + 41v vc) .s sj

wj,= ' Vw T

(27)

where the approximate nodal gradients ( V W)_/are obtained via a/3-combination of centered and

fully upwind gradients •

(V---W)_ = (I -/3)(Vl_---_')ci ''''' q--/3(VI_)5 r/'''' (28)

Here, a centered gradient (VW)_"'" = (VW)/=° can be chosen as any. vector satisfvino. _.

+%TH_',(+'nt t, 0vv _i .a, ai = W / - W, (29)

A nicely parallelizable scheme [or computing the upwind gradients (V--W)_/;'"' goes as follows.

---'+. U p w +_

First, we note that (VW) i = (VW) _=l, and from (28) we derive:

I

-+ ,s,,,,+= ely.>(:': -(v++--"t?"'(VW)i 30)

I
We compute the half-upwind gradients ([3 = _) via a linear interpolation of the Galerkin gradients

computed in each triangle of Ci, so that:
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f ..._.__>
VWlz_dxdy

I

f dxdv

Ct

I X-" area(T)

area C, ) /---" 3
At C,

3

Z
k=l.k_T

Finally, we evaluate the nodal gradients using the following third-order biased scheme:

I

= +

( :"_ ----_, ;s=l) I =_5

I

= j(vw); + -

(31)

(32)

1.3.4. Boundary conditions

The second term < 2 > and the third term < 3 > of the right-hand side of(19) contain the physical

boundary conditions. These are represented by the vector Wh which involves quantities that depend

on the interior values of W/,, and quantities that are determined by the physical boundary conditions.

Wall boundary • the no-slip condition is enforced in a strong form (9, 10) so that the corresponding

boundary integral < 2 > does not need to be evaluated.

h![hm' aml otttflow hotmeh;ries : at these boundaries, a precise set of compatible exterior data

which depend on the flow regime and the velocity direction must be specified. For that purpose, a

l_[tt,v-minus tlux splitting is applied between exterior data and interior values. More precisely, the

boundary integral < 3 > is evaluated using a non-reflective version of the ltux-splitting of Steger

and Warming [9]"

f fl'(-Wh).-f?,dcr = .A+(Wi, -'_i_).W, + .A-(W,, I--_',.._).W_

;)C,,'ql'-,

(33

!.4. Time discretization

The resulting semi-discrete lluid llow equations can be written as:

dW
-- + _/t(W) = 0
dt

I-II
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Becauseit lends itself to massive parallelism, the explicit Runge-Kutta method is selected for

integrating the above equations. A 3-step variant is used here. It is summarized as •

W 10) = W n

At

W_l= W<0__ 4_--7_p(W_k-it)

W "_-I = W _3_

k = 1,2,3 (35)

The above scheme is often referred to as the low-storage Runge-Kutta method as only the solution

at substep ot - 1 is used to compute the one at substep or. It is third-order accurate in the linear case,

but only second-order accurate in our case.

1.5. Parallel implementation on the Connection Machine CM-2

Clearly, expressions (19) and (27-35) reveal that both the spatial and temporal integrations are in

principle nicely parallelizable. In this section, our interest lies in investigating the most efficient

way to implement these computations on a Single Instruction Multiple Data (SIMD) massively

parallel compnter such as the Connection Machine CM-2. Special care is given to interprocessor

communication because mesh irregularities: (a) inhibit the exploitation of the NEWS grid. so

that the relatively slow router must be used, and (b) induce a different amount of communication

steps within each processor, which is not particularly desirable on a SIMD machine. Rather than

overviewing the CM-2, we refer the reader to the technical summary of Thinking Machines [I0]

for architectural details, and to Farhat, Sobh, and Park [3] for an in-depth analysis of interprocessor

communication on the CM-2 when computing over an irregular mesh.

1.5. I. Parallel data ,strttctttre

Behind the performance of any parallel algorithm lies the choice of the corresponding parallel

data structure. The latter is closely related to both the entity and the task to be assigned to each

processor. Therefl_re, all of the computational, communication and memory reqmrements should
be considered before the distributed data structure is determined. For the mixed finite volume/finite

element method presented here, we consider four candidates for a ftmdamental entity (Fig. A4):

• the vertex Si,

• the edge Eij joining the vertices Si and Sj,

• the element (here the triangle) Aij k connecting the vertices Si, Si and &,

• and the cell Ci defned in Section 3.1.

MfqllOt'V COllsid_'l'aliotlS

While regular grids are most often characterized (in terms of menloty requirements/by their number

of vertices Nv, irregular triangular grids can be also characterized by either their number of'elements

NA. or by their number of edges NI:. Here, we assume for simplicity that 'Th is characterized bv its

number of vertices. Euler's relations for a triangulation state that •
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Fig. A4. Fundanwntal entity ('and�dates

Nv +Nx-Ny:. = I

2Nt: - Nt_v = 3N _
(36 )

where Nnv denotes the nunlber of vertices tit the boundary of the triangulation. This implies that "

N_ _ 2Nv and Ny:, _ 3Nv (37)

Therefore, if_, is designed, for example, so that its number of vertices matches a given Connection

Machine size, the VP ratio associated with each data structure candidate varies as indicated betox_ :

Vertex Edge Element Cell

VPR I 3 2 1

The reader should note that for the edge case, the machine automatically selects a VP ratio of 4.

since it is the closest power of two to the theoretical VPR. Clearly, the vertex and cell entities arc

the best candidates on the sole basis of efficient memory usage.

Operation ('otmt

The numerical algorithms discussed in Section 2 and Section 3 can he olganizcd around three basic

computational steps

(Step a) evaluation of the Galerkin gradients (32),
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(Stepb) evaluationof thediffusivefluxes(26),
(Stepc) andevaluationof theconvectivefluxes(27).

While Step(e) is mostefficientlypertbrmedusingedge-wisecomputations,Step(a) andStep(b)
are inherentlyelement-levelcalculations.Therefore,whateverfundamentalentity is selected,it
mustcontainbothedgeandelementinformation,whichrulesout theedgeEii data structure.

On the other hand in an element-based partition, every triangle Aijk provides direct access to all of

the three edges E_j, Ejk and Eki. However in that case, two VP sets must be used; one containing

N,, processors which store triangle related data (geometrical data), and another one containing Nv

processors which store vertex related data (physical data). Otherwise, if only one set of virtual

processors is used and assigned to both triangle and vertex data, a nodal result would be duplicated

in as many processors as there are triangles connected to that vertex.

The vertex entity Si is an effective candidate only when augmented with the auxiliary data structures

that can handle the data associated with the elements and edges connected to a given vertex -- that

is, when transformed into a cell data structure.

Finally, we note that the cell entity stores both vertex and element data, and therefore provides access

to all of vertex, element and edge information. Consequently, only element and cell partitions are

retained for further discussions.

Next, we evaluate the operation count for each of Step (a), Step (b) and Step (c), assuming an

element- or cell-based data structure. We denote by C__ and Ca,,/,, the number of arithmetic operations

associated with one edge computation during Step (c), and with one triangle computation during

Step (a) and Step Ib), respectively. The computational complexities characterizing the two retained

candidates arc tabulated below.

Element Cell

Step (c) 2 x C( c 2 x C{:

Step ia) + Step (b) C ± 3 x C -_ab a[_

In both an element- and cell-based partition, an edge is shared by two virtual processors, so that the

flux H _2_,i across [Si Sj] is computed twice. Only an edge partition would eliminate these redundant

computations, but that choice has already been eliminated. In a cell-based partition, a triangle

Aijk is shared by three virtual processors, and therefore additional redundant computations are

generated.

CotllnHtnication cosLs"

The computational steps discussed above require |_)tir communication steps denoted here bv (el),

(c2), lc3), and (c4). These are discussed below for the elernent and cell parallel data structures.

First, we consider the case of an element-based partition. During the first communicaticm step

(el), each virtual processor assigned to a triangle Aiik gets the physical states at vertices Si, S_

1-14



andS_ from neighboring processors. Then, the computations in Step (a) and Step (b) are carried

out. During the second communication step (e2), the element-wise results are sent back to the

virtual processors holding vertex data. The latter virtual processors use these values to compute the

nodal gradients (32) and diffusive fluxes (26). In step (e3) the nodal gradients are communicated

to neighboring processors. Next, each virtual processor evaluates three second-order convective

lluxes (I 5) across the three edges connected by triangle A,jk. During the last communication step

(c4), the edge-wise fluxes arc sent to the virtual processors holding vertex data.

Communication with a cell-based partition is more complex, as each cell may have a different num-

ber of neighbors. However, fewer communication steps are needed because each virtual processor

stores within its local memory all of the element-wise values that are necessary for the evaluation

of the nodal gradients and the diffusive fluxes, as well as the elemental convective fluxes.

The communication count associated with the ['bur steps (el j to (c4) is tabulated below for each of

the two retained data structure candidates. N'""' denotes the maximum number of neighborin,,zm, i t, h

cells.

Element Cell

(c I ) 3 V'""'l th'it.'h

(c2) 3 0

t c3) 3 N'""'
tlett,,h

ic4) 6 0

Selected candi_htte

The operation and communication COLmtS are summarized below for both the element and cell data

structures. Equations 136) are used to express the results in terms of the number of vertices in the

mesh.

Element Cell

Operation count

Communication count

(6 x C/: + "_ x C _~ .I,) x N_'

30 x Nv

(6 x C/': + 6 x C -_,d,) x N_

12x Nv

Clearly, redundant arithmetic operations can be avoided only at the expense of additional commtmi-

cation characterized by an irregular pattern, which is usually not beneficial on a massively parallel

processor such as the CM-2. Therefore, we have chosen the cell-based parallel data structure and

have accepted the additional cost of redundant flux computations. Hammond and Barth [5] have

invoked a graph theory result due to Chrobak and Eppstein [ 17] to eliminate redundant edge-based

llux computations for Euler flows. This result states that for any planar graph, there exists an

orientation of the edges such that no vertex has more than three edges directed out frorn it. This

mcans that there exists a cell partition where no processor needs to compute the convective fluxes

across more than three edges of the computational cell. However. this graph theory result does not

apply for our viscous computations because these also include element-based operations.
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Fig. A5. Grid deconlposition with reduced wire-contention

1.5.2. Grid decomposition and processor mappinq

Efficiency in arbitrary communication on the CM-2 requires the minimization of both the "'ham-

mering" on the router -- that is, wire contention, and the distance that information has to travel --

that is, the number of hops between the sender and receiver processors. Here, this implies that : (al

adjacent cells must be assigned, as rnuch as possible, to directly connected processors or processors

that are lying in directly connected chips, and (b) contention for the wire connecting neighboring

chips must be reduced.

In a first step, the unstructured grid is decomposed into a series of subgrids each containing 16

adjacent numerical cells. Each subgrid is assigned to a certain CM-2 chip that is subsequently

identified, so that adjacent cells within a subgrid are assigned to directly connected processors lying

in the same chip. As a result, off-chip communication is needed only across the subgrid boundaries.

Wire contention is reduced if each of the defined subgrids is surrounded by the largest possible

number of neighboring subgrids. Indeed, wherever a subgrid boundary is shared with several other

subgrids, off-chip communication is split between distinct chips and is distributed across several

of the available inter-chip wires (Fig. A5). On the other hand, if for example a subgrid is adjacent

only to two other subgrids, a maximum of two wires can be used during off-chip communication,

which may create a severe wire contention that would serialize communication and signiticantly

increase its cost. Here, we use the mesh decomposer of Farhat [I I] which has proven to be very

effective at reducing wire contention on the CM-2 (Farhat, Sobh and Park [3]).

The next step is to reduce the distance that infl_rmation has to travel during off-chip comn-_unication,
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that is whendata is exchangedbetweencentersof cells thatareassignedto processorslying on
differentchips. This canbeachievedby assigningadjacentsubgridsasfar aspossibleto directly
connectedchips.A combinatorialoptimization-likeprocedureknownasSimulated Annealing (see,

for example, Flower, Otto and Salama J 12]) is probably the most popular technique for tackling

this mapping problem. However, it is a very expensive procedure'which has often proved to be

impractical. Alternative heuristic-based schemes have been developed by several authors including

Bokhari [ 13 ], Farhat [ 14], and recently Hammond and Schreiber [I 5 ]. In this work, we have adopted

the mapper of reference [141. It is based on a combined greedy/divide and conquer approach and

is tuned for hypercube topologies.

A detailed analysis of interprocessor communication on the CM-2 for unstructured grids can be

found in Farhat, Sobh and Park [3]. In that reference, it is shown that mesh irregularities induce an

MIMD (Multiple Instruction Multiple Data) style of programming for the communication phase

which dominates the cost of communication. It is also suggested that since the irregular pattern

of communication is fixed in time, a considerable improvement can be achieved if that pattern is

evaluated during the first time step, then compiled or stored in the CM-2 for re-use in subsequent time

steps. However, no software was available at that time for validating the proposed communication

strategy. Recently, a communication compiler prototype has become available (Dahl [16]) and can

be used for storing the routing pattern. In Section 6, we report on its performance.

!.6. Numerical Experiments

(This Section reports on numerical experiments on the CM-2 and Cray 2. Since airfoil problems

are of limited important for the present research, they are not presented here.)

1.7. Ch)sure

Mixed finite volume/finite element spatial schemes for fully unstructured grids are developed and

implemented on the CM-2, and applied to the simulation of two-dimensional viscous flows. Second-

order accuracy in the discretization of the convective fluxes is achieved through a Monotonic

Upwind Scheme lk)r Conservation Laws (MUS(L) technique. The diffusive fluxes are computed

using a classical Galerkin finite element method, and the resulting semi-discrete equations are time

integrated with an explicit Runge-Kutta algorithm.

A strategy for mapping thousands of processors onto an unstructured grid is presented. Its key

elements are given by the selection of an appropriate parallel data structure, the careful partitioning

of a given unstructured grid into specific subgrids, and the mapping of each individual processor

onto an entity of these subgrids. Whenever the communication patterns are compiled during the

first time step, the total time elapsed in interprocessor communication using the router is drastically

reduced to represent only 15_"_ of Ihe total CPU time of the simulation.
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Appendix II

Parallel Staggered Algorithms for the Solution

of Three-Dimensional Aeroelastic Problems

Summary

This Appendix outlines recent developnlents in the solution of large-scale three-dimensional (3D) nonlinear

aeroelastic problems on high perfommnce, massively-parallel computational platforms. Developments in-

clude a three-lield arbitrary [,agrangian-Eulerian (AI,E) finite volume/element formulation for the coupled

fluid/structure problem, a geometric conservation law lk_r 3D flow problems with moving boundaries and

unstructured deformable meshes, and the solution of the corresponding coupled semi-discrete equations with

partitioned heterogeneous procedures. We present a family of mixed explicit/implicit staggered solution algo-

rithms, and discuss them with particular reference to accuracy, stability, subcycling, and parallel processing.

We describe a general framework lot the solution of coupled aeroelastic problems on heterogeneous and/or

parallel computational platforms, and illustrate it with some preliminary numerical investigations of transonic

aerodynamics and aeroelastic responses on several massively parallel computers, including the iPSC-g60.

Paragon XP/S. Cray T3D, and IBM SP2. The work described here was carried out by P.-S. Chen. M. Lesoinnc

and E Stern under supervision from Professor C. Farhat.

I!.1. INTRODUCTION

In order to predict the aeroelastic behavior of flexible structures in fluid flows, the equations of

motion of the structure and the fluid must be solved simultaneously. Because the position of the

structure determines at least partially the boundaries of the fluid domain, it becomes necessary to

perform the integration of the fluid equations on a moving mesh. Several methods have been pro-

posed for this purpose. Among them we note the Arbitrary Lagrangian Eulerian (ALE) formulation

[7], dynamic meshes [3], the co-rotational approach [8,11,24], and the Space-Time finite element

rnethod [ 381.

Although the aeroelastic problem is usually viewed as a two-lield coupled problem (see tk_r example.

Guruswamy [22]), the moving mesh can be viewed as a pseudo-structural system with its own

dynamics, and therefore, the coupled aeroelastic system can be formulated as a three-field problem.

the components of which are the lluid, the structure, and the dynamic mesh [26]. The senti-discrete

equations that govern this three-way coupled problem can be written as lollows.
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-_-t(V(x. t) w(t)) + F"(w(t), x, x) = R(w(t))

i_2q 1""
M_ + (q) = ff"_(w(t), x)

n/_2 + i--)-+K,x = K,.q

(I)

where t denotes time, x is the position of a moving fluid grid point, w is the fluid state vector,

V results fronl the flux-split finite-element (FE) and finite-volume (FV) discretization of the fluid

equations, F _ is the vector of convective ALE fluxes, R is the vector of diffusives fluxes, q is the

structural displacement vector, f'"' denotes the vector of internal forces in the structure, fix, the
vector of external forces, M is the FE mass matrix of the structure, 1VI,D and K. are fictitious mass,

damping and stiffness matrices associated with the moving fluid grid, and K_ is a transfer matrix
that describes the action of the motion of the structural side of the fluid/structure interface on the

lluid dynarnic mesh.

For example, IV! = D = O, and K. = _R where K;¢ is a rotation matrix corresponds to a rigid

mesh motion of the fluid grid around an oscillating airfoil, and 1VI= D = 0 includes as particular

cases the spring-based mesh motion scheme introduced by Batina [3], and the continuum based

updating strategy described by Tezduyar [38]. in general, K' and I_ are designed to enforce

continuity between the motion of the fluid mesh and the structural displacement and/or velocity at

the Ituid/structure boundary F;_-/s(t)'

x(t)=qlt) on Fr/s(t)
(2)

.;_{t) = _/It) on Fr/s(t)

Each of the three components of the coupled problem described by Eqs. ( 1) has different mathe-

matical and numerical properties, and distinct software implementation requirements. For Euler

and Navier-Stokes flows, the fluid equations are nonlinear. The structural equations and the senti-

discrete equations governing the pseudo-structural fluid grid system may be linear or nonlinear.

The matrices resulting from a linearization procedure are in general symmetric for the structural

problem, but they are typically unsymmetric for the fluid problem. Moreover, the nature of the

coupling in Eqs. _I) is implicit rather than explicit, even when the fluid mesh motion is ignored. The

fluid and the structure interact only at their interface, via the pressure and the motion of the physical

interface. However, for Euler and Navier-Stokes compressible flows, the pressure variable cannot

be easily isolated neither from the fluid equations nor from the fluid state vector w. Consequently.

the numerical solution of Eqs. ( 1) via a fully coupled monolithic scheme is not only computationally

challenging, but unwieldy from the standpoint of software development management.

Alternatively, Eqs. ( I can be solved via partitioned procedures [4,9,32], the simplest realization of

which are the staggered procedures [31 ]. This approach offers several appealing features, includ-

ing the ability to use well established discretization and solution methods within each discipline,
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simplificationof software development efforts, and preservation of software modularity. Tradition-

ally, transient aeroelastic problems have been solved via the simplest possible staggered procedure

whose typical cycle can be described as follows: a) advance the structural system under a given

pressure load, b) update the fluid mesh accordingly, and c) advance the fluid system and compute a

new prcssurc load [5,6,35,36 ]. Some investigators have advocated the introduction of a few predic-

tor/correcter iterations within each cycle of this three-step staggered integrator in order to improve

accuracy [37], especially when the lluid equations are nonlinear and treated implicitly [34]. Here we

focus on the design of a broader family of partitioned procedures where the fluid flow is integrated

using an explicit scheme, and the structural response is advanced using ari implicit one. We address

issues pertaining to numerical stability, subcycling, accuracy v.s. speed trade-offs, implementation

on heterogeneot, s computing platforms, and inter-field as well as intra-field parallel processing.

We begin in Section !I.2 with the discussion of a geometric conservation law (GCL) for the finite-

volume approximation of three-dimensional fows with moving boundaries. In Section lI.3 we

introduce a partitioned solution procedure where the fluid flow is time-integrated using an explicit

scheme while the structural response is advanced using an implicit scheme. This particular choice of

mixed time-integration is motivated by the following facts: (a) the aeroelastic response of a structure

is often dominated by low frequency dynamics, and therefore is most efficiently predicted by an

implicit time-integration scheme, and (b) we have previously developed a massively parallel explicit

FE/FV Navier-Stokes solver that we wish to re-use for aeroelastic computations. Two-dimensional

versions of this solver have bccn described by Farhat and coworkers [I O, 12,25].

In practice, the stability limit of this partitioned procedure has proved to be governed only by the

critical time-step of the explicit lluid solver. In Section II.4, we describe a subcycling procedure that

does not limit the stability properties of a partitioned time-integrator. In Section II.5, we address

important issues related to inter-lield parallelism and design variants of the algorithm presented

in Section 11.3 that allow advancing simultancously the fluid and structural svstenls. Section

11.6 focuses on the implementation of staggered procedures on distributed and/or heterogeneous

computational platlorms. Finally, Section II.7 illustrates the work presented herein with some

preliminary numerical results on four parallel computers: Intcl iPSC-860, lntel Paragon XP/S.

Cray T3D, and IBM SP2. These results pertain to the response of an axisvmmetric engine model

and of a 3D wing in a transonic airstream.

il.2. A GLOBAL CONSERVATION LAW FOR ALE-BASED FV METHODS

II.2.1. Semi-discrete flow equations

Let _2 (t) C "R,_ bc the llow domain of interest, and F(t ) he its movino and deformin,, boundar\,. For

simplicity, we map the instantaneous deformed domain on the reference domain f2 (0) as follows:

x =x(_,t), t =r (3_
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Figure II.I. A three-dimensional unstructured FV cell

The ALE conserw_tive form of the equations describing Euler flows can be written as:

+ JV_.5'(W) = O,

S'(W) = 5(W)-kW

(4)

where J = det(dx/d_) is the Jacobian of the frame transformation _ _ _r, W is the fluid state

vector, 5c' denotes the convective ALE fluxes, and .i- = _'--[_ is the ALE £rid velocity, which
;Jr

may be different from the fluid velocity and from zero. The fluid volume method for unstructured

meshes relies on the discretization of the computational domain into control volumes or cells C,.

as illustrated in Figure II.I.

Because in an ALE formulation the cells move and deform in time. the integration of Eq. (4) is

lirst performed over the reference cell in the e space

f _}(.IW) _ dQ_ + f_ .IV,.IF'(W)dQ_ =0
",d)l i)t ,d}_

Note that in Eq. {5) above the time deriwltive is evaluated at a constant e; hence it can be moved

outside of the integral sign to obtain

d f WJdf2_, + f V,./F"(W).Id_2_ 0
(,/I ", (ol ",dh

Switching back to the time varying cells, we have

dt ",(r) ",qr
V_.Sr"(W) dr2, = 0 (7)

1
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Finally, integratingby partsthelast termyieldsthe integralequation

,if wJa, +f ff_(W)._da=O (8)
dt ,q,) c,(t)

A key component of a FV method is the following approximation of the flux through the cell

boundary ;#Ci (t )"

Fi(w, x, x) = E L (f_(W,,2)+f'_(Wj,.;c))_dcy (9)
j C,.s(X)

where W, denotes the average value of W over the cell Ci, w is the vector formed by the collection

of Wi, and x is the vector of time dependent nodal positions. The numerical flux functions .7.+ and

f'2 are designed to make the resulting system stable. An example of such functions may be found

in Ref. [I ]. For consistency, these numerical fluxes must verify

:F'+(W, .;:) + fL(W. 2) = Y<(W) 10)

Thus. the governin_ discrete equation is:

d

dt
--(V,. W,) + F,(w, x, x) = 0 11

where

12

is the volume of cell C,. Collecting till Kqs. ( I 1) into a single system yields:

d
-:--(Vw) + F(w, x, .,k) = 0
dt

13)

where V is the diagonal inatrix of the cell volumes, w is the vector containing all state variables

W,. and F is the collection of the ALE fluxes F_.

II.2.2. A Geometric Conservation Law

Let At and t" = nat denote the chosen time-step and the n-th time-station, respectively. Integrating

Eq. (I I) between t" and t ''+_ leads to

d f t"'

_t (E(x)W,)dt + t Fi(w. x. k)
J t"

= E(x"_I)W,!'* t _ V,(x")W,"

+ f, Fi(w,×.x) =0

(14)
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The mostimportantissuein thesolutionof thefirst of Eqs. (I) viaanALE methodis theproper
evaluationof .]i_,,''_' Fi(w, x, x) in Eq. (14). In particular, it is crucial to establish where the fluxes

must be integrated: on the mesh configuration at t = t" (x"), on the configuration at t = t"+l (xn+l),

or in between these two contigurations. The same questions also arise as to the choice of the mesh

velocity vector x.

Let W + denote a given unilbrm state of the flow. Clearly, a proposed solution method cannot be

acceptable unless it conserves the state of a uniform flow. Substituting W_' = W__+l = W* in Eq.

14) gives:

V '+l V/')W* f'"+'- + Fi(w*, x, x) dt = 0 (15)
i

In which w* is the vector of the state variables when Wk -- W* for all k. From Eq. (9) it follows

that:
/+

Fi(w*,x,x) = t (.Y'(W*)-.i:W*)da (16)
.I;jC, (X)

Given that the integral on a closed boundary of the flux of a constant function is identically zero

we must have

f f(W*)dc_ =0 (17)
C, (X)

it follows that

F,(w*,x,x)=-_ ++W*dci (18)
C, (X_

Hence, substituting Eq. (18) into Eq. (15) yields

IoJfl

(V,(x )- Vi , )) ( .v dci dt)W*=O
' (',(X)

(19)

which can be rewritten as

(Vi(Xn+I)--VI(X'))=f f .fdadt
' C, _X/

(20)

Eq. (20) must be verified by any proposed ALE mesh updating scheme. We refer to this equation

as the geometric conservation law (GCL) because: (a) it can be identified as integrating exactly the

w_lume swept by the boundary of a cell in a FV formulation, (b) its principle is similar to the GCL

condition that was first pointed out by Thomas and Lombard [39] for structured grids treated by

linitc difference schemes. More specilically, this law states that the change in volume of each cell

between t" and t"+ i must be equal to the volume swept by the cell boundary during the time-step

At = t "+ t -t". Therefore, the updating of x and X cannot be based on mesh distorsion issues :tlonc

when using ALE solution schemes.
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Figure II.2. Parametrization of a moving triangular facet.

II.2.3. Implications of the Geometric Conservation Law

From the analysis presented in the previous section, it follows that an appropriate scheme tk)r
I

evaluating .lit,,''" F', (w*, x, fOdt is a scheme that respects the GCL condition (20). Note that once a

mesh updating scheme is given, the left hand side of Eq. (20) can be always computed. Hence, a

proper method for evaluating f/,," ' Fi (w*, x, fc)dt is one that obeys the GCL and therefl)re computes
./J_, i

exactly the right hand side of Eq. (20) -- that is, ,It, .]'_c, lx_ -( dc_ dt.

In three-dimensional space each tetrahedral cell is bounded by. a collection of trian,_ulaze facets. Let

ll,,i,,i denote the mesh velocity flux crossing a fitter [abe]:

_21_

and let x,, x/, and .v, denote the instantaneous positions of the three connected vertices a. h and c.

The position of any point on the facet can be paranletrized as follows lsee Figure II.2)

.v = e_lX_,(t) + ot2xt,(t) + (I - c_1 - ev:)x, {t)

.(" = c_lx,,(t) + otz_k/,(t) + (I - o_1 - oQ)X< (t)

_ e[O. I1' c_2e[O. I-_1; t•[t", t "'_1

(22)

where

x, It) = ¢5(t).vl '_1 +(I-_(t)L_/ i=a. h. c

and _5(t) is a real function satisfying

,3(t") = O: ,_(t ''+l) = I _24]
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Substituting the above parametrization in Eq. (21 ) leads to

ll,a,,. I = -_(Ax,, + Axt, + Ax_.).(xac A X/,,.) d8
(25)

where

-Vtlc
.n+l n

_----'t'a --)"c: A't'c = "'t'h --?t'c: AXa = "_a --"ta

.n+l n. AXc = ..+1 __ ,fnA'Vh = -_h --Xh "_c " c"

(26)

and the mesh velocities ._-,,,-(l, and ._-,.are obtained from the differentiation of Eqs. (23):

._-, = 6 (t)" "+ i ,,tx a -x.) i=a, b, c (27)

Finally, noting that

[lo .tlSI tl _e .H+I , .t!
X,c A Xh, = [I.O._.,,. -'I- (t -- 3)__,, ) A t0.t/, c q- (I - 3)._1,,.)) (28)

is a quadratic function of ,5, it becomes clear that the integrand of ll,,I,,.I is quadratic in _. and

therefore can be exactly computed using a two-point integration rule, provided that Eqs. (27) hold.

That is.

.(- = _(t)(x ''+1 -x") = A3 ,,+l F,,
--_- (x -. ) (29)

which in view of Eq. (24) can also be written as:

.'Cu + I _ X n

At
(30)

Sumnlarizing, an appropriate method for evaluating .],,, Fi(w, x, x) dt that respects the GCL

condition (20)is

:"" At ,Fi(w, x, .x) dt = --{F/fw", x '''1, .x"'-7)
, 2

+ Fi(w", x '''2. x' +:))

I I

m

1 1
m2 = n +

2 2

w" '-,i = _?w" _-I + (I - _l)w"

x" +,i = ilxn+l q_ (I -- t})x"

X n , I _ X ni

"3

(31]
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!i.3. A STAGGERED EXPLICIT/IMPLICIT TIME INTEGRATOR

II.3.1. Background

When the structure undergoes small displacements, the fluid mesh can be frozen and "transpiration"

lluxes can be introduced at the fluid side of the Ituid/structure boundary to account for the motion of

the structure. In that case, the transient aeroelastic problem is simplified from a three- to a two-field

coupled problem.

Furthermore, if the structure ix assumed to remain in the linear regime and the fluid flow is linearized

around an equilibrium position W0 (note that most fluid/structure instability problems are analyzed

by investigating the response of the coupled system to a perturbation around a steady state), the

semi-discrete equations governing the coupled aeroelastic problem become (see [33] for details):

AB- Eli

=I7] ,
(32)

(q) ix the structure state matrix A results

\

where _Sw ix the perturbed ltuid state vector, s = q
vector,

/

from the spatial discretization of the flow equations, B ix the matrix induced by the transpiration

Iluxes at the fluid/structure boundary FF/s, C is the matrix that transh_rms the fluid pressure on

FF_int°prescribedstructuralf°rces:finallvE=[ O" -M-'K -MI] whereM'D'andKareD"

the structural mass, damping, and stiffness matrices.

A malhenlalical discussion of the time-integration of Eqs. {32) vm implicit/implicit and ex-

plicit/implicit partitioned procedures can be found in Ref. [33]. In the present work we focus

on the more general three-way coupled aeroetastic prohletn t l ). Based on the mathematical re-

suits established by Farhat, Fezoui and Lanteri [12] R)r solving Eqs. (32), we design a family of

explicit/implicit staggered procedures for time-integrating Eqs. (I), and address important issues

pertaining to accuracy, stability, distributed computing, subcycling, and parallel processing.

II.3.2. A0: An Explicit/hnplicit Algorithm

We consider 3D nonlinear Euler flows and linear structural vibrations. From the results estahlishcd in

Section II.2, it follows that the semi-discrete equations governing the three-way coupled aeroelastic

problem can be written as:
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V(x'+t)w "+l - V(x")w"

+ T(F"(w" x ml, '

+ F"(w", x ''2, x"+')) = 0

1 I

m1=,1+2 +2,/3

I I
m 2 = 11+

2 2,/-5

w ''+'_ = r/w ''+1 + ( 1 - r/)w"

x''+'_ =rlX ''_l + (I - rl)X"

x,,+4 _ x" +1 _x,,
At

M/j ''fl + Dq ''+l + Kq ''_t = f_'"(w"_l(x, t))

_!_/''+' + Dx"+' + _,x ''+_ = K,. q"+'

(33)

In many aeroelastic problems such as flutter analysis, a steady flow is first computed around a

structure in equilibrium. Next, the structure is perturbed via an initial displacement and/or velocity

and the aeroelastic response of the coupled fluid/structure system is analyzed. This suggests that a

natural sequencing for the staggered time-integration of Eqs. (33) is:

I. Perturb the structure via some initial conditions.

2. Update the tluid grid to confortn to the new structural boundary.

3. Adwmce the tlow with the new boundary conditions.

4. Advance the structure with the new pressure load.

5. Repeat trom step (2) until the goal of the simulation ( flutter detection or suppression) is rcachcd.

An important feature of partitioned solution procedures is that they allow the use of existing single

discipline software modules. In this effort, we are particularly interested m re-using a 3D version

of the massively parallel explicit flow solver described by Farhat, Lanteri and Fezoui [10, 12.14,25].

Therefore, we select to time-integrate the semi-discrete fluid equations with a 3-step variant of the

explicit Runge-Kt/tta algorithm. On the other hand, the aeroelastic response ot" a structure is often

dominated by low frequency dynarnics. Hence. the structural equations are most efticientlv solved

by an implicit time-integration scherne. Here, we select to time-integrate the structural motion with

the implicit midpoint rule (IMR) because it allows enforcing both continuity Eqs. (2) while still

respecting the GCL condition (see I261). Consequently, we propose the following explicit/implici{

solution algorithm tor solving the three-lield coupled problem (33):
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I. Update the fluid grid:

ff,lii ''+l + IIi_ ''+l + _,x ''+l

x ml, x '''2 from Eq. (33)

Xn ; I __ X/I

At

= K, q"

2. Advance the fluid system using RK3:

1 I At

Vi(xl'+l) 4 - k 2
I

+F,(w", x '''2. .x"_-_))

W/I+I I"l _ Wtn

_(X") ,,+1 ....

- K(x,,+l) W,

(E(w I', x '''1. x,,+_)

k = 1.2,3

wn+t I _ wtn+ l_'_'

3. Advance the structural system using IMR:

Mq,,, i +l)q ''_t +Kq ''_1 = t,'_r(w,,+

At ,, q"_q,, +t = q,, + ---T-(q +

_t ,, ii,, _q,, _ l = q,, + --4- (ti +

(34)

In the sequel the above explicit/implicit staggered procedure is referred to as AO. It is depicted in

Figure 11.3. Extensive experiments with this solution procedure have shown that its stability limit

is governed by the critical time-step of the explicit fluid solve, (and therefore is not worse than that

of the underlying fluid explicit time-integrator).

The 3-step Runge-Kutta algorithm is third-order accurate for linear problems and second-order

accurate lot nonlinear ones. Thc midpoint role is second-order accurate. A simple Taylor expansion

shows that the partitioned procedure AO is lit-st-order accurate when applied to the linearized Eqs.

(32). When applied to Eqs. t33). its accuracy dcpcnds on the solution scheme selected for solving

the lluid mesh equations of motion. As long as the time-integrator applied to these equations is

consistent. AO is guaranteed to be at least lirst-order accurate.

II-II



wn O Wn+l
A

OIq,,

w w w

qa qn+l

Figure II.3. The basic FSI staggered procedure A0.

!1.4. SUBCYCLING

The fluid and structure fields have often different physical time scales. For problems in aeroelasticity,

the fluid flow usually requires a smaller temporal resolution than the structural vibration. Therefore,

if A0 is used to solve Eqs. (33), the coupling time-step A6 will be typically dictated by the stability

time-step of the fluid system AtF and not the time-step Ats > AtF that meets the accuracy

requirements of the structural field.

Subcycling the fluid computations with a factor ns/r = Ats/AtF can offer substantial computa-

tional adwmtages, including

savings in the overall simulation CPU time, because in that case the structural field will be

advanced fewer times.

• savings in l/O transl+ers and/or comnmnicatiorl costs when cornputitlg on a heterogeneous

platform, because in that case the fluid and structure kernels will exchange information fewer
times.

However, these advantages are effectively realized only if subcycling does not restrict the stability

region of the staggered algorithm to values of the coupling time-step At, that are small enough to

offset these advantages. In Ref. [33] it is shown that for the linearized problem (32)_ the straight

fl)rward conventional subcycling procedure -- that is, the scheme where at the end of each n s,.+,_-

Iluid subcycles only the interface pressure computed during the last fluid subcycle is transmitted to

the structure -- lowers the stability limit of A0 to a wllue that is less than the critical time-step of

the Iluid explicit time-integrator.

On the other hand+ it is also shown in Rcf. [33] that when solving Eqs. (32). the stability limit of A0

can be preserved if: (a) the deformation of the lluid mesh between t" and t" +I is evenly distributed

among the n,,./t, subcycles+ and (b) at the end of each ns,'F fluid subcycles, the average of the
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Figure II.4. The fluid-subcycled staggered algorithm A I.

interface presstlre field _5i, _ computed during the subcycles between t" and t ''+i is transmitted

to the structure. Hence, it generalization of AO is the explicit/implicit fluid-subcycled partitioned

procedure depicted in Figure II.4 for solving Eqs. t33). This algorithm is denoted by A I.

Extensive numerical experiments have shown that for small values orris/F, the stability limit of A I

is governed by the critical time-step of the explicit fluid solver. However, experience has also shown

that there exists a maximum subcycling factor beyond which A I becomes numerically unstable.

From the theory developed in [12] for the linearized Eqs. (32), it follows that AI is first-order

accurate, and that as one would have expected, subcycling amplilies the fluid errors by the factor

tl ._" ; t""

!!.5. EXPI,OITING INTER-FIELD E&RALI_ELISM

Both algorithms AO and A I are inherently sequential. In both of these procedures, the lluid system

must be updated before the struclnral system can be advanced. Of course. A0 and A 1 allow intra-

field parallelism (parallel computations within each system), but they inhibit inter-field parallelism.

Advancing the fluid and structural systems simultaneously is appealing because it can reduce the

total simulation time.

A simple variant of A 1 (or A0 if subcycling is not desired) that allows inter-field parallel processing

is graphically shown in Figure [1.5. This variant in called A2.

Usin_ A2, the Iluid and structure kernels can run in parallel durin,, the time-interval Jr,, t,, ].

Inter-field communication c,r I/0 tIarmfer is needed only at the l_eginnirlg of each tinle-interval. Tile

theory developed in Ref. 1331shows that for the linearized Eqs. (32), A2 is first-order accurate, but

parallelism is achieved at the expense of amplilied errors in the fluid and structure responses.

In order to improve the accuracy of the basic parallel time-integrator A2, we hax,e investigated
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Figure I1.5. The inter-parallel, fluid-subcycled staggered algorithm A2.

exchanging information between the fluid and structure kernels at half-steps as illustrated in Figure

II.6. The resulting algorithm is called A3.

For algorithm A3, the first half of the computations is identical to that of A2. except that the ttuid
, t-, I"

system is subcycled only up to t''÷7-, while the structure is advanced in one step up to t" _"_ '

At the time t ''+ .---3-, the lluid and structure kernels exchange pressure, displacement and velocity

information. In the second-half of the computations, the fluid system is subcycled from t"+ --7---to

l" _"" using the new structural information, and the structural behavior is re-compttted in parallel

using the newly received pressure distribution. Note that the lirst evaluation of the structural state
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Figure 11.6. The midpoint-corrected, inter-parallel,

fluid-subcycled staggered algorithm A3.

vector can be interpreted as a predictor.

It can be shown that when applied to the linearized Eqs. (32), A3 is first-order accurate and reduces

the errors of A2 by the factor nS/F, at the expense of one additional communication step or I/O

transfer during each coupled cycle (see [12] for a detailed error analysis).

!1.6. COMPUTER IMPLEMENTATION ISSUES

II.6.1. Incompatible mesh interfaces

In general, the fluid and structure meshes have two independent representations of the physical

fluid/structure interface. When these representations are identical -- for example, when every fluid

grid point on FF/s is also a structural node and vice-versa -- the evaluation of the pressure forces

and the transfer of the structural motion to the fluid mesh are trivial operations. However, analysts

usually prefer to be free of such restrictions. In particular:

Be able to use a fluid mesh and a structural model that have been independently designed and

validated.

• Be able to reline each mesh independently from the other.

Hence, most realistic aeroelastic simulations will involve handling fluid and structural meshes

that are incompatible at their interface boundaries (Figure I1.7). In Ref. [29], we have addressed

this issue and proposed a preprocessing "'matching" procedure that does not introduce any other
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approximation than those intrinsic to the fluid and structure solution methods. This procedure can

be summarized as follows.

The nodal forces induced by the fluid pressure on the "wet" surface of a structural element e can

be written as:
[1

.[} = -- J._,,., N i pv do (35)

where _*) denotes the geometrical support of the wet surface of the structural element e, p is the

pressure field, v is the unit normal to _("), and N i is the shape function associated with node i.

Most if not all FE structural codes evaluate the integral in Eq. (35) via a quadrature rule:

"[) = -- Z wgNi(Xg)p(X¢)
t,,= I

(36)

where w v is the weight of the Gauss point X_,. Hence, a structural code needs to know the values of

the pressure field only at the Gauss points of its wet surface. This information can be easily made

available once every Gauss point of a wet structural element is paired with a fluid cell (Figure II.8).

It should be noted that in Eq. (36), X s, are not necessarily the same Gauss points as those used

for stiffness evaluation. For example, if a high pressure gradient is anticipated over a certain wet

area of the structure, a larger number of Gauss points can be used for the evaluation of the pressure

forces .[) on that area.

On the other hand, when the structure moves and/or detorms, the motion of the fluid grid points on

F_/s can be prescribed via the regular FE interpolation:

x(3)) = Z N_('YI")q_ '''_ (37).
k=l

where 5), wne, ,g i, and qk denote respectively a fluid grid point on Vr/x, the number of wet

nodes in its "'nearest" structural element e, the natural coordinates of Sj in _"_, and the structural

displacement at the k-th node of element e. From Eq. (37), it follows that each fluid grid point on

I'rs must be matched with one wet structural element (see Figure II.9).

Given a fluid grid and a structural model, constructed independently, the Matcher program described

in Ref. [29] generates all the data structures needed to evaluate the quantities in Eqs. (39,40) in a

single preprocessing step.

II.6.3. Intra-field parallel processing

Aeroelastic simulations are known to be computationally intensive and therefore can benefit from

the parallel processing technology. An important feature of a partitioned solution procedure is

preservation of software modularity. Hence, all of the solution procedures A0. AI. A2 and A3

can use existing computational ltuid dynamics and computational structural mechanics parallel

algorithms. The solution of the mesh motion equations can be easily incorporated into an existing

lluid code, and its parallelization is not more difficult than that of a FE structural algorithm.
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Figure 11.7. Mismatched fluid-structure discrete interfaces.

Figttrc II.8. P;tiring of structural Gauss pt)ints ;ind tluid cells.
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Figure II.9. Pairing of fluid point and wet structural element

Our approach to parallel processing is based on the mesh partitioning/message-passing paradigm,

which leads to a portable software design. Using an automatic mesh partitioning algorithm [ 13,17]

both fluid and structural meshes are decomposed into subdomains. The same "old'" serial code is ex-

ecuted within every subdomain. The "gluing" or assembly of the subdomain results is implemented

in a separate software module.

This approach enforces data locality [25] and is therefore suitable for all parallel hardware archi-

tectures. Note that in this context, message-passing refers to the assembly phase of the subdomain

results. It does not imply that messages have to be explicitly exchanged between the subdomains.

For example, message-passing can be implemented on a shared memory multiprocessor as a simple

access to a shared buffer, or as a duplication of one butter into another.

II.6.4. Inter-field parallel processing

Using the message-passing paradigm, inter-field parallel processing can be implemented in the

same manner as intra-field multiprocessing. The fluid and structure codes can run either on dif-

ferent sequential or parallel machines, or on a different partition of the same multiprocessor. Ally

software product such as PVM [21] can be used to implement message-passing between the two

computational kernels.

11.7. APPLICATIONS AND PRELIMINARY RESULTS

11.7.1. Transonic Wing Benchmark (3D)

Here we illustrate the aeroelastic computational methodology described in the previous sections
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Table II.1 Characteristics of the fluid meshes M1-M4 for 3D benchmark

Mesh N,,.,. NI,.t N /..,. N,,.r

M I 15460 80424 99891 77300

M2 31513 161830 201479 157565

M3 63917 337604 415266 319585

M4 115351 643392 774774 576755

with some preliminary numerical investigations on an iPSC-860, a Paragon XP/S, a Cray T3D, and

an IBM SP2 massively parallel systems, of the aerodynamics and aeroelastic transient response of

a 3D wing in a transonic airstream.

The wing is represented by an equivalent plate model discretized by 1071 triangular plate elements,

582 nodes, and 6426 degrees of freedom (Figure lI. 10). Four meshes identified as M I through

M4, are designed for the discretization of the 3D flow domain around the wing. The characteristics

of theses meshes are given in Table II. I where Nv. r, Nr,,t, N:.,,., and N,,,_,. denote respectively the

number of vertices, tetrahedra, facets (edges), and fluid variables, respectively. A partial view of

the discretization of the flow domain is shown in Figure II. I 1.

The sizes of the fluid meshes M I-M4 have been tailored for parallel computations on respectively

16 (M I), 32 (M2), 64 (M3), and 128 processors (M4) of a Paragon XP/S and a Cray T3D systems.

In particular, the sizes of these meshes are such that the processors of a Paragon XP/S machine with

32 Mbytes per node would not swap when solving the corresponding flow problems.

Because the fluid and structural meshes are not compatible at their interlace (Figure II. 12), the

Matcher software [29] is used to generate in a single preprocessing step the data structures required

for transferring the pressure load to the structure, and the structural deformations to the fluid.

II.7.2. The Flow Solver and its Parallelization

The Euler flow equations are solved with a second-order accurate FV Monotonic Upwinding Scheme

for Conservation Laws (MUSCL) [40,30] on fully unstructured grids, The resulting semi-discrete

equations are time-integrated using a second-order low-storage explicit Runge-Kutta method. Fur-

ther details regarding this explicit unstructured flow solver and its subdomain based parallelization

can be found in recent publications [10,12,14.25].

In this work, the unstructured dynamic fluid mesh is represented by the pseudo-structural model

of Batina 13] (M = D = t)). The grid points located on the upstream and downstream boundaries

are held lixed. The motion of those points located on VF/S is determined from the wing surface

motion and/or deformation. At each time-step t ''+_ , the new position of the interior grid points is

determined from the solution of the displacement driven pseudo-structural problem via the two-step
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Figure II. 10. The discrete structural model.

iterative procedure described in [14].

II.7.3. The Parallel Structure Solver

The structural equations of dynamic equilibrium are solved with the parallel implicit transient Finite

Element Tearing and Interconnecting (FETI) method [15]. Because it is based on a midpoint rule

formulation, this method allows enforcing both continuity Eqs. (2) while still respecting the GCL

condition. The resistance of the structure to displacements in the plane of the skin is assumed to be

small. Consequently, all structural computations are performed with a linearized structural theory.

Since the FETI solver is a domain decomposition based iterative solver, we also use the special

restarting procedure proposed in Ref. [16] for the efficient iterative solution of linear systems with

repeated right hand sides.

II.7.4. Computational Platforms

Computations were performed on the following massively parallel computers: Intel iPSC-860

hypercube, Intel Paragon XP/S, Cray T3D, and IBM SP2, using double precision ltoating-point

arithmetic throughout. Message passing is carried out via NX on the Paragon XP/S multiprocessor,

PVM T3D on the Cray T3D system, and MPI on the IBM SP2. On the hypercube, fluid and structure

solvers are implemented as separate programs that communicate via the intercube communication

procedures described by Barszcz [2].

II.7.5. Performance of the Parallel Flow Solver

The perlk)rmance of the parallel flow solver is assessed with the computation of the steady state

of a flow around the given wing at a Mach number M_ = 0.84 and an angle of attack fl = 3.0(_

degrees. The CFL number is set to 0.9. The lkmr meshes M l-M4 are decomposed in respectively

16, _2, 64, and 128 overlapping subdomains using the mesh partitioner described in [28]. The
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Figure II.1 I. The discrete flow domain (partial view)•

Figure II. 12. Fluid/structure interface mcompatibilities

motivation for employing overlapping subdomains and the impact of this computational strategy

on parallel perti_rmance are discussed in Ref. [14]. Measured times in seconds are reported in

Tables 11.2 through II.4 for the first I00 time steps on a Paragon XP/S machine { 128 processors).

a Cray T3D system (128 processors), and an IBM SP2 computer(128 processors), respectively.

In these tables. N:,. N,.,,,.. _(,':',,,,. _':,',',,,,, T,.,,,,,:,. 7),, and Mllops denote respectively' the number

of processors, the number of variables (unknowns) to be solved, the time elapsed in short range

interprocessor communication between neighboring subdomains, the time elapsed in long range

II-21



Table 11.2. Performance of the parallel flow solver on the Paragon XP/S system

for 16-128 processors (100 time steps -- CFL = 0.9)

T,,,,,,,,, ,,,ram T,.,,,,,;, Tr,,, MflopsMesh N l, N,,,r t,,,. Z,_'l,,

M 1 16 77,300 2.0 s. 40.0 s. 96.0 s. 138.0 s. 84

M2 32 157,565 4.5 s. 57.0 s. 98.5 s. 160.0 s. 145

M3 64 319,585 7.0 s. 90.0 s. 103.0 s. 200.0 s. 240

M4 128 576,755 6.0 s. 105.0 s. I 14.0 s. 225.0 s. 401

global interprocessor communication, the computational time, the total simulation time, and the

computational speed in millions of floating point operations per second. Communication and

computational times were not rneasured separately on the SP2.

Typically, short range communication is needed for assembling various subdomain results such as

fluxes at the subdomain interfaces, and long range interprocessor communication is required for

reduction operations such as those occurring in the the evaluation of the stability time-steps and the

norms of the nonlinear residuals. It should be noted that we use the same fluid code for steady state

and aeroelastic computations. Hence, even though we are benchmarking in Tables II.2-II.4 a steady

state computation with a local time stepping strategy, we are still timing the kernel that evaluates

the global time-step in order to reflect its impact on the unsteady computations that we perform

in aeroelastic simulations such as those that are discussed next. The megaflop rates reported in

Tables 11.2 through II.4 are computed in a conservative manner: they exclude all the redundant

computations associated with the overlapping subdomain regions.

Table II.3. Performance of the parallel flow solver on the Cray T3D system

for 16-128 processors t 100 time steps -- CFL = 0.9)

Mesh N I, N,.,,, 7"/''',,,,,,,,, T _1''.,,,,,,,,, 7],,,,,i, T,,_ Mllops

M I 16 77,300 1.6 s. 2.1 s. 87.3 s. 91.0 s. 127

M2 32 157,565 2.5 s. 4.1 s. I01.4 s. 108.0 s. 215

M3 64 319,585 3.5 s. 7.2 s. 100.3 s. II1.0 s. 433

M4 128 576,755 3.0 s. 7.2 s. 85.3 s. 95.5 s. 945

It may be readily veriticd that the number of processors assigned to each mesh is such that N,.,,/N,,

is almost constant. This means that larger numbers of processors are attributed to larger meshes

in order to keep each local problem within a processor at an almost constant size. For such a

benchmarking strategy, parallel scalabilitv of the flow solver on a target parallel processor implies

II-22



Table11.4.Performanceof theparallelflowsolverontheIBMSP2system
tk_r16-128processors(100timesteps-- CFL=0.9)

Mesh N I, N,,,,. T t''',.,,,,,,,, Tgl".,,,,,,n T_-,,,,,t, Tt,,, Mflops

M I 16 77,3(D 10.8 s. 1072

M2 32 157,565 12.0 s. 1930

M3 64 319,585 12.8 s. 3785

M4 128 576,755 11.9 s. 7430

X,

/

/

Figure II. 13. Mach number isosurfaces for the steady-state regime.

that the total solution CPU time should he constant for all meshes and their corresponding number

of processors.

This is clearly not the case lkw the Paragon XP/S system. On this machine, short range commtmica-

tion is shown to be inexpensive, but long range communication costs are observed to be important.

This is due to the latency of the Paragon XPIS parallel processor, which is an order of magni-

tude slower than that of the Cray T3D system. Another possible source of global communication

time increase is the load imbahmce between the processors since message passing is also used

for synchronization. However, this does not seem to be signilicant on the T3D and SP2 parallel

processors.

On the other hand, parallel scalability is well demonstrated for the Crav T3D and IBM SP2 svslcms.

The results reported in Tables II.3 and ll.4 show that all computations using meshes M I-M4 and

the corresponding number of processors consume almost the same total amount of CPU time. For
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128processors,theCrayT3D systemisshownto bemorethantwice fasterthantheParagonXP/S
machine.Thedifferenceappearsto bestrictly in longrangecommunicationasthecomputational
time is reportedto bealmostthesameonbothmachines.However,mostimpressiveis thefactthat
an IBM SP2with 32processorsonly isshowntobethreetimesfasterthana 128-processorParagon
XP/S,andfasterthana CrayT3D with 128processors.

FigureII.14. Initialperturbationof the displacement field of the wing.

11.7.6. Performance of the Parallel Structure Solver

For the pcrfl)rmance assessment of the parallel FETI structural solver, we refer the reader to the

recent publications [15, 16].

11.7.7. Performance of the Partitioned Procedures A0-A3

In order to illustrate the relative rnerits of the partitioned procedures A0, A I, A2 and A3. we

consider first two different series of transient aeroelastic simulations at Mach number M:_ = 0.84

that highlight

• the relative accuracy of these coupled solution algorithms for a fixed subcycling factor ns:t..

• the relative speed of these coupled solution algorithms for a fixed level of accuracy.

In all cases, mesh M2 is used for the flow computations, 32 processors of an iPSC-860 system are

allocated to the fluid solver, and 4 processors of the same machine are assigned to the structural

code. Initially, a steady-state tlow is computed around the wing at M_,: -- 0.84 iFigure II.13), a
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Figure II.16. Lift history for the first half cycle, p;.s,v = 30

Mach number at which the wing described above is not supposed 1o flutter. Then, the aeroehtstic

tespotlse of the coupled system is Iriggered by a displacemeIit perturbation of the wing along its

first [node (Figure II. 14).

First, the subcycling factor is fixed to ns/F = l0 then to H s,,/: ----30, and the lill is computed using

a time-step corresponding to the swbility limit of the explicit flow solver in the absence of coupling
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TableII.5. Performanceresultsfor coupled FSI problem on the lntel iPSC-860

Fluid: 32 processors, Structure: 4 processors

Elapsed time for 50 fluid time-steps

Alg. Fluid Fluid Struc. 1CWS ICWF Total

Solver Motion Solver CPU

A0 177.4 s. 71.2 s. 33.4 s. 219.0 s. 384. I s. 632.7 s.

A I 180.0 s. 71.2 s. 16.9 s. 216.9 s. 89.3 s. 340.5 s.

A2 184.8 s. 71.2 s. 16.6 s. 114.0 s. 0.4 s. 256.4 s.

A3 176.1 s. 71.2 s. 10.4 s. I 12.3 s. 0.4 s. 247.7 s.

with the structure. The obtained results are depicted in Figure 11.15 and Figure 11.16 for the first

half cycle.

The superiority of the parallel fluid-subcycled A3 solution procedure is clearly demonstrated in

Figure 11.15 and Figure II.16. For nS/F = I0, A3 is shown to be the closest to AO, which is

supposed to be the most accurate since it is sequential and non-subcycled. A I and A2 have

comparable accuracies. However, both of these algorithms exhibit a significantly more important

phase error than A3, especially for IlS/F = 30.

Next, the relative speed of the partitioned solution procedures is assessed by comparing their CPU

time for a certain level of accuracy dictated by AO. For this problem, it turned out that in order to

rneet the accuracy requirements of AO, the solution algorithms AI and A2 can subcvcle only up to

n_,//, = 5, while A3 can easily use a subcycling factor as large as ns/_- = I0. The performance

results measured on an iPSC-860 system are reported on Table II.5 for the first 50 coupled time-steps.

In this table, ICWF and ICWS denote the inter-code communication timings measured respectively

in the fluid and structural kernels; these timinos include idle and synchronization (wait/time when

the fluid and structural communications do not completely overlap. For programming reasons.

ICWS is monitored together with the evaluation of the pressure load.

II.8. CONCLUSIONS

From the results reported in Table II.5, the following observations can be made.

The lluid computations dominate the simuhttion time. This is partly because the structural

model is simple in this case, and a linear elastic behavior is assumed. However. bv allocating

32 processors to the fluid kernel and 4 processors to the structure code. a reasonable load

bahmce is shown to be achieved for AO.
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During the first 50 fluid time-steps, the CPU time corresponding to the structural solver does

not decrease linearly with the subcycling factor ns/F because of the initial costs of the FETI

reorthogonalization procedure designed for the efficient iterative solution of implicit systems

with repeated right hand sides [I 6].

The effect of subcycling on intercube communication costs is clearly demonstrated. The

impact of this effect on the total CPU time is less important for A2 and A3 which feature

inter-lield parallelism in addition to intra-field multiprocessing, than for A1 which features

intra-field parallelism only (note that AI with nS/F = I is identical to A0), because the flow

solution time is dominating.

Algorithms A2 and A3 allow a certain amount of overlap between inter-field communications,

which reduces intercube communication and idle time on the fluid side to less than 0.001% o|

the amount corresponding to A0.

The superiority of A3 over A2 is not clearly demonstrated for this problem because of the

simplicity of the structural model and the consequent load unbalance between the fluid and

structure computations.

Most importantly, the performance results reported in Table II.5 demonstrate that subcycling and

inter-field parallelism are desirable for aeroelastic simulations even when the flow computations

dominate the structural ones, because these features can significantly reduce the total simulation

time by minimizing the amount of inter-field communications and overlapping them. For the simple

problem described herein, the parallel fluid-subcycled A2 and A3 algorithms are more than twice

faster than the conventional staggered procedure AO.
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Appendix III

LB: A Program for Load-Balancing Multiblock Grids

Summary

This Appendix describes recent research towards load-balancing the execution ofENGIO on parallel machines.

ENG:I.0 is a multiblock-multigrid code developed by Mark Stewart of NYMA Research Inc. to perform ax-

isymmetric aerodynamic analysis of complete turbofan engines taking into account combustion, compression

and mixing effects through appropriate circumferential averaging. The load-balancing process is based on

an iterative strategy tor subdividing and recombining the original grid-blocks that discretize distinct portions
of the computational domain. The research work reported here was performed by U. Gumaste under the

supervision of Prof. C. A. Felippa.

III.1. INTRODUCTION

III.l.1. Motivation

For efficient parallelization of multiblock-grid codes, the requirement of load balancing demands

that the grid be subdivided into subdomains of similar computational requirements, which are

assigned to individual processors. Load balancing is desirable in the sense that if the computational

load of one or more blocks substantially dominates that of others, processors given the latter must

wait until the former complete.

Such "computational bottlenecks" can negate the beneficial effect of parallelization. To give an

admittedly extreme example, suppose that the aerodynamic discretization uses up 32 blocks which

are assigned to 32 processors, and that one of them takes up 5 times longer to complete than the

average of the remaining blocks. Then 31 processo,s on the average will be idle 80% of the time.

Load balancing is not diflicult to achieve for unstructured meshes arising with finite-element or

linite-volume discretizations. This is because in such cases one deals with element-level granularity.

which can be efficiently treated with well studied domain-decomposition techniques for unstructured

meshes. In essence such subdomains are formed by groups of connected elements, and elements

may be moved from one domain to another with few "strings attached" other than connectivity.

On the other hand |'or multiblock-grid discretizations the problem is more difficult and has not. to

the writers" knowledge, been investigated in any degree of generality within the context of load

balancing. The main difficulty is that blocks cannot be arbitrarily partitioned, l.or example cell by

cell, because discretization constraints enforcing grid topological regularity must be respected.

The following is an outline of the program LB developed at the University of Colorado to perform

h)ad-balancing of the multiblock discretization used in the program ENG10. This is a multil_Iock-

multigrid code developed by Mark Stewart of NYMA Research Inc. to perform axisymmetric
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aerodynamicanalysiso1'completeturbofanenginestakingintoaccountcombustion,compression
andmixingeffectsthrot,ghappropriatecircumferentialaveraging[! ].

III.1.2. Requirements and Constraints

Multiblockgridsareusedtodiscretizecomplexgeometries.A multiblockgrid dividesthephysical
subdonmininto topoh)gicallyrectangularblocks. The grid pertainingto eachblock is regular
(structured).Forbladed.jetenginegeometries,this isachievedby aseriesof programsalsowritten
by Mark Slewart,namelyTOPOS,TFandMS[2,3],whichfunctionaspreprocessorsto ENG:I.O.

Efficientparallelizationrequiresthecomputationalloadto be(nearly)equalamongall processors.
Usually,dependinguponthegeometry,thecomputationalsizesof componentblocksof amultiblock
discretizationvary and mappingoneto eachprocessorwould not naturallyensureloadbalance.
TheLBprogramattemptsto loadbalanceagivenmultiblockgrid sothattheresultingsubdivisions
of thegrid areof similarcomputationalcost.

Forre-useof ENC,IOtobepossiblefor theparallelversion,it isrequiredthattheresultingsubdivisions
of theoriginalmultiblockgridbealsoregulargridsorarecollectionsof blocks,eachof whichcontain
regulargrids. This imposedtherestrictionthatthenumberof finalsubdivisionsdesiredbegreater
thanthenumberof blocksin theoriginalgrid. Thusfor mostcases,ideally,thenumberof blocks
in theoriginal grid shouldbe 10to 20, because 32 to 128 processors are normally used in present

generation MPPs. LB works better when the number of available processor substantially exceeds

the original number of blocks.

III.1.3. Multiblock Grid and MS

MS is a program that, given the domain discretization and blade forces, loss and combustor heating

data, etc., interpolates the data onto the grid. This program was used as a basis for LB as it possesses

the data structures most amenable to the task of h)ad balancing.

Blocks are arranged in a C programming language linked list. Each block possesses a set of

segments that are lines joining grid points. The number of segments in each direction (transverse

and lateral) determines the computational size of the block. Segments can be of differen! types

depending upon where they are located its follows •

I. False hotmdarv segme,ts. These are segments located at the interface between blocks. These

are called "false" bot, ndaries as they are not actual physical boundaries in the grid but merely

lines across which data has to be exchanged between two adjacent blocks. Knowledge about

the false boundaries is essential to determine block connectivity.

2. Internal and solid #oundarv segments. These are segments located at the interface of combus-

tors, blades, etc. Knowledge about the internal and solid boundary segments helps determine

the location of blades, combustors and other engine components.

3. Far-field hotmdarv ,_'et,,me,ts. These are segments located at the far-lietd boundaries of the

domain and are useful in imposing boundary conditions.
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Figure III. I. Block division prior to merger,

Figure III+2. Block after merger.

111.2. ALGORITHM

A very simple yet efficient algorithtn based purely on the geometry el the multiblock grid and block

connectivity was adopted for this program.

The input file containing the grid gives information only about the coordinates of the grid points.

block dimensions component segments and boundary data. Hence the first task is to determine

the block connectivity• This is done by analysing the false boundary information and determining

blocks across opposite sides of the same false boundary segment. Once the interconnectivitv

between blocks is established, the total number of cells in the grid is calculated and that divided

by the number of final subdivisions desired gives an estimate of the average number of cells per

subdivision.

Based on this average value, blocks are classified into "'small" blocks and "'large" blocks. Large

blocks are those whose size is greater than the average size determined above, whereas small blocks

have a size less than or equal to the average size.

Large blocks are then split into snlaller blocks, each of which has a size approximately equal to the

average size. Smaller blocks are collected into groups so that the total size of each group is equul

to the average size. This has been found to give excellent load balance for small grids, grids in

which block sizes are compatible, and grids for unbladed configurations. For rnore complex grids

satisfactory results have been obtained.
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111.3 IMPLEMENTATION

III.3.1 Maximum Block Merger

As first step, blocks from the original grid are merged as much as possible to generated larger

blocks. This is done so as to maximize processor usage.

Consider two blocks as illustrated in Figure ili. I. Assume that load-balancing conditions require

that each of the blocks be split into tbur blocks, vertically. Vertical splitting of blocks proceeds

l'rorn right to left since blocks are stored in that manner. It is seen that sub-blocks 1.4 and 2.4 are

clearly much smaller than the other sub-blocks and assigning an individual processor to each of

them would be wasteful. Also, if the number of sub-blocks of each of the blocks is reduced to

three from four. each of the processors will become overloaded. Therefore. the best soltttion to

this problem is to first merge both the blocks and then split their combination to _oct a better load

balance as shown in Figure III.2.

In this case it is seen that not only is the total number of sub-blocks reduced by one (implying that

one less processor will be required) but also the load balancing is more effective since sub-block

sizes are more compatible.

Blocks cannot be merged arbitrarily but only in those cases when the resultim,e lareer_ block will

have a regular grid. This is illustrated in Figure III.3. As can be seen in that figure, it is possible to

merge block I with block 2 as their merging will result in the formation of a larger block in _vhich

the grid is regular. However. block 3 cannot be merged with either of block I or 2 as the resulting

block would not have a top[ologically regular structure.
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III.3.2. Block Classification

Once blocks are merged to the maximum permissible extent, all of them are passed through a

classifying routine by which they are tagged as "small" or "large."

III.3.3. Splitting of "Large" Blocks

Those blocks classified as "'large" blocks are split into smaller sub-blocks, each having a size as

close as possible to the desired average size.

Blocks are split horizontally or vertically depending upon their dimensions. Wider blocks are split

vertically and narrower blocks are split horizontally. Splitting of a block involves generation of

a false boundary across the sub-blocks and checking for the presence of blades and other engine

components which cannot be "'cut". This is done to ensure continuity in these critical regions.

III.3.4 Re-merging and Grouping

Once all the "large" blocks are split, the second phase of the program begins in which the blocks are

re-mer,,ed_ or _rouped for maxinmrn processor efficiency., This is done mainly to take very, small

blocks into consideration, which can be explained with the help of the Figure III.4.

II1 this situation, there is a cluster of "small" blocks with no "'large" block nearby. The program

selects a number of such "small" blocks and groups them into a cluster. Grouping is different

fl'om merging. Blocks are not merged to produce a single larger block but they are only meant to

reside on the same processor. Grouping requires knowing block interconnectivity and proceeds in

a recursive fashion. First, all -small" blocks adjacent to the present block are considered. Then, if

the total number of cells of all the blocks is less than the average size, blocks adjacent to the block's

adjacent blocks are examined. This goes on until a sufficient number of cells are obtained.

There is another case which arises after a "'large" block has been split resulting in the generation of

smaller sub-blocks, each being approximately equal to the average in size. In this case, again, the

adjacent "small" blocks are merged into one of the children of the parent "large" block. Here. only

one such block grouping is permitted since it should be noted that the "'child" blocks are very close

to the desired average size and the processor on which they reside should not be further loaded.

This case is illustrated in Figure III.5.

III.3.5 Some Practical Considerations

It has been observed after going through several test cases that the process of load-balancing for

complex m.ultiblock grids is not always deterministic and hence user inputs may be required to

make the process more predictable. This input comprises the following parameters.

MAX_TOL This is the maximum tolerable value to which a processor can be loaded, expressed

in terms of the avcra-c size. Usually values between 0.05 and I _ _ivc sufficiently

good results.

MIN_TOL This is the minimum tolerable value to which a processor can be loaded, expressed

in terms of the average size. Usually values between 0.6 and 0.9 _ive sufficientl\

good results.
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it shouldbenotedthat in mostcases,the loadbalancingis independentof theaboveparameters.
Theseattainsignificanceonly incaseof verycomplicatedgeometries.

i!!.4 EXAMPLES

III.4.1 A Single Rectangular Block

This is the case of a single rectangular block having a regular grid. On this grid, a perfect load

balance was obtained for an unbladed block, and satisfactory balance for a bladed block.

III.4.2 Two Adjacent Rectangular Blocks

The next test case considered two adjacent blocks, each of which contains a regular grids. Again.

for this simple case, a perfect load balance was obtained fk)r two unbladed blocks.

III.4.3 Grid for General Electric Energy Efficient Engine (GE-EEE)

This test case pertains to the Energy Efficient Engine model developed by General Electric. This

model has been used extensively as computational-intensive tests for ENG10 [I]. The grid was

generated using ENGIO preprocessors [2,3]. It contains 19 original blocks with approximately

115,000 grid points.

The initial load balance is only 15%, as the computational load is heavily dominated by the light-blue

block of Figure lII.6. This block contains a very fine grid because of the presence of a multistage

compressor. A load balancing factor of approximately 80% was finally obtained. Stages of the

Ioad-bahmcing process carried out by LB for this fairly complex model are illustrated in color

Figures [II.6 through II1.9.
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!II.5 CONCLUSIONS

A simplebuteffectivealgorithmfor load-balancingdiscretizationsconsistingof multiple regular-
grid blockshasbeendeveloped.Preliminaryresultssuggestthatthealgorithmyieldssatisfactory
resultsin thetestcasesconsideredhere.Thesetestcaseshaveincludedaaxisymmetricaerodynamic
modelof the complete GE-EEE, which has over 105 grid points. A load balance of approximately

80% was achieved for this demanding case.

A worthwhile refinement of LB would be the inclusion of block weights that account for computa-

tional intensity due to the presence of effects such as compression or combustion in specific regions.

Such weights might be estimated from CPU measurements on sequential or vector machines, and

fed to LB to further improve the decomposition logic.
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Figure II.6 : Initial Grid for GE-EEE ENG 10 Model
(19 blocks, l.oad Balance • 0.1475}



Figure 11.7 : (;rid for GE-EEE model after Maximum Merging _
Adjacent Blocks

( Load Balance : 0. ! i 23)



Figure II.8 : Grid for GE-EEE Model after Cutting Large Blocks
t l.oad Balance • 0.65531



Figure 11.9 : Final Configuration of GE-EEE Grid produced by I_B
(Load Balance : 0.7943)



Appendix IV

Massively Parallel 3D Aeroelastic Analysis of Jet Engine

Udayan Gumaste, Carlos A. Felippa, and Charbel Farhat

Presented at the Computational Aerosciences Meeting

NASA Ames Research Center, Mountain View, CA, August 1996

This presentation reports progress in parallel computation methods for simulation of coupled

problems applied to aircraft propulsion systems. This application involves interaction of structures

with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues

addressed include: discrete formulation of coupled problems: treatment of new effects due to

interaction: staggered time stepping; scalable parallel solvers: and coarse three-dimensional versus

line two-dimensional models. The computer implementation issues addressed include: parallel

treatment of coupled systems; domain decomposition and mesh partitioning strategies: mapping of

decomposed models to hardware: and transfer of information between overall and regional models.

The work is supported by NASA Lewis Research Center and monitored by Dr. C. C. Chamis.

A key objective is to demonstrate the application of this technology to achieve the first realis-

tic unsteady aeroelastic analysis of a multirow-blade engine stage using three-dimensional models

without making geometric approximations in advance. The lirst three-dimensional aeroelastic anal-

ysis involving a multiple fan-blade configuration was successfully performed during October 1995

on the NAS/IBM SP2 at NASA Ames. The aeroelastic model used for the simulation presented

here comprises one half of a blade row that pertains to the compression stage of a GE EEE turbofan

engine. This reduced but realistic configuration was used to test the tluid and structure mesh gener-

ators, mesh matchers and analysis modules. This test model has approximately 185,000 degrees of

freedom. This simulation is a prelude to the treatment of more complex configurations involving

two to four full-circle blade rows. Such models are expected to contain up to 2 million freedoms,

which is close to the computational limit on present massively parallel computing platforms such

as the IBM SP2 and Cray T3E.

The structure and lluid models for the test run arc shown in the wireframes plots in Figures IV. I and

IV.2, respectively. The structure is treated by finite clet'ncnl shell model and processed bv implicit

integration with a FET1 parallel solver. The lluid is treated by tnlstructured-nlesh lluid volume

methods stepped in time by MUSCL explicit solver. Structure and lluids advance with different

time steps using a subcyclc staggered solution scheme. As initial condition, a uniform longitudinal

IV-I



FigureIV.[. Structuralmodelfortheaeroelasticsimulationof'the17-bladeconfiguration.

FigureIV.2. Fluidmodelfortheaeroclasticsimulationofthe17-bladeconfigt,rution.
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ltowof 0.8M isappliedto thenodesof thefluid mesh.It is left to runsthroughtherigid bladesuntil
asteadystateis reached.Thenthebladesarereleasedexceptfor theendoneswhicharemaintained

[ixed. Thebladesaresetinto motionby thetransverseforcesinducedby their skewangles,were
observeto vibrate approximatelyin phase.The total physicalsimulationtime was20 seconds,

with 400 timesstepsperformedin thestructureand8,000stepson thefluid. Elapsedsimulation
time, using28SP2processorswasapproximately20 minutes.A color videotapeof thedynamic
responsewaspreparedusingtheTOP/DOMDECvisualizationsystem.
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Abstract

Aeroelasticity, or the interaction between the structure and the surrounding fluid is of particular

importance in aerospace engineering. Catastrophic failures have been reported in which structures

undergo severe damage by extracting energy from the flow and getting into unstable vibrations. This

has been an active area of research for external flows for the past many decades and considerable

progress has been made in the development of methods for analysis. However, turbomachinery

aeroelasticity, though equally if not more important, has received attention since only recently on

account of the higher degree of difficulty involved in analysis.

The aim of this research is to apply modern computational, tools to simulate and analyze problems

in turbomachinery aeroelasticity of aircraft engines. This is seen as a first step in the effort to

perform a tully coupled multidisciplinary analysis of advanced propulsion systems. The central

task of current research is to develop a methodology for simultaneous computer analysis of rotating

lind non-rotating components in turbomachines.

This proposal is divided into seven chapters and a bibliography.

Chapter I introduces the concept of aeroelasticity and enumerates different types of fluid-structure

interactions. It also highlights differences between external and internal aeroelasticity.

Chapter 2 outlines the state-of-the-art in turbomachinery aeroelasticity with particular emphasis on

the assumptions made to simplify analysis.

Chapter 3 begins with a brief explanation of the partitioned analysis approach to solving multidisci-

plinary coupled problems in engineering and describes a set of parallel three-dimensional computer

programs currently available at the Center for Aerospace Structures to simulate such problems. A

brief sketch of early attempts in using these programs "as-is'" for turbomachinery simulations is

also given.

Chapter 4 starts with the signilicance of analysis of rotor-stator interaction and points out the need

to perform computations on discontinuous grids. It further gives a brief review of existing methods

developed to enable fluid computations to be carried out on such grids.

Chapter 5 describes an unstructured two-dimensional fluid solver currently in use at the Center for

Aerospace Structures with special emphasis on spatial discretization of the conservation equations.

it then gives a detailed description on recent attempts to extend the capabilities of this solver to

accept discontinuous grids and highlights features and draw-backs. A method to overcome current

shortcomings is suggested at the end.

Chapter 6 consists of results using the extension of the fluid code mentioned in Chapter 5 for the

shock tube problem. These are preliminary results covering different aspects of the newly developed
methodoloov

Chapter 7 concludes this proposal and outlines tasks lk_r the future for completion of the current

work towards a doctoral degree.
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V.1 Introduction

Engines are the power phmts of all aircraft systems. They are a marvel of man's advancement

in science and technology in which the forces of earth, wind and fire are harnessed to propel

gigantic llying machines through air in a small fraction of time as compared to other modes of

transport. Designing engines is a daunting task, as the designer has to take into consideration the

effects of changes in geometry and operational parameters on performance. Traditionally, design

engineers have relied upon experimental methods and rig tests for design evaluation. This approach

is not only time consuming but also very expensive as engines have to be rebuilt every time there

is any change in their geometry. With the development of advanced computer algorithms and

numerical methods and the availability of high-performance hardware, there is a growing trend

towards the application of computing tools to engine design. Analysis of engine behavior to predict

performance is challenging mainly on account of very complicated geometries, multiple moving

components and most importantly the interactions between earth, wind and fire -- the structure, the

tluid ttowing through the structure and thermal effects because of combustion. Amongst the three

fields mentioned above, interaction between the structure and fluid components is of significance in

the fan, compressor and turbine stages of an engine and is the focus of attention for current research.

V.1.1 Turbomachinery Aeroelasticity

Speed and economics'of air transportation have been greatly benefited by the introduction of high-

performance engines on aircraft systems. Increasing demands on performance have necessitated

higher rotational speeds, thinner airfoils, higher pressure ratios per stage and increased operating

temperatures. This has resulted in dynamic problems involving structural integrity, particularly

those for bladed components of the engine. Such vibrations, induced by unsteady aerodynamic

effects are generally classilied as problems of turbomachinery oeroelasticitv.

Aeroelas.tic vibrations in turbomachinery are usually of two types [4, 16], namely, forced vibrations

such as those from upstream flow distortions or self-excited vibrations which are sustained by

extraction of energy from the fluid.

V.I.I.1 Forced Vibrations

Forced vibrations in turbomachinery hlading occur when blades are subjected to periodic aerody-

namic forcing functions with frequency equal to a natural blade resonant frequency. One of the

main sources for such forcing functions are upstream vanes, downstream vanes, distortion, rotat-

ing stall, surge, bleeds, mechanical sources and otherwise unidentified and random sources. The

aerodynamic excitations are periodic mainly on account of spatially periodic variations in pressure.

velocity and flow direction in the exit field of an upstream element which appear as temporally

varying in a co-ordinate system fixed to the downstream blade row. As a result, individual blades

are subject to a time-dependent forcing function which can induce high vibratory stresses.

V.l.l.2 Flutter

Under some conditions, a blade row operating in a completely, uniform llow-ficld can e,,et into a

self-excited oscillation called.flutter. The motion is sustained by the extraction of energy from the

uniform [low during each vibratory cycle, with the llutter frequency correspcmding generally to one
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of the lower bladeor coupledblade-disknaturalfrequencies.Theoutstandingfeatureof flutter is
thatveryhighstressesaregeneratedwithin thebladesleadingto veryshort-term,high-cyclefatigue
failures.

As problemsof flutter and forcedoscillation greatly affectengineperformance,it is essential
that thesebepredictedbeforeenginesareemployedon aircraftsystems.Traditionally, muchof
researchconductedto thiseffectwasbasedonempiricalmethodsusingengineandrig tests.These
testsaretime-consuming,expensiveandat timesriskyascatastrophicenginefailuresarereported
leadingto accidents.With recentimprovementsin numericalalgorithmsandcomputerhardware,
thereis agrowingtrendtowardsusingcomputationaltoolsto analyzeproblemsin turbomachinery
aeroelasticity.

V.1.2 Turbomachinery vs. External Aeroelasticity

While considerable progress has been made in the computational analysis of aeroelastic phenomena

for flows around external bodies, such as wings, wing-bodies or complete aircraft, that for aircraft

engines and turbomachinery did not gather much momentum until the late 1970s and early 1980s [4].

One of the reasons for this delay was the complex nature of problems encountered in turbomachinery

aemelasticity which are summarized below [38] •

I. Large multiplicity of closely spaced mutually interfering blades, giving rise to both aerodynamic

and structm'al coupling.

2. Presence of centrifugal loading terms both in the fluid and structural components.

3. Flow in blade cascades is much more complex than that in external flow cases on as it may be

subsonic, sonic or supersonic depending upon the inlet Math number and stagger angle giving rise

to an intricate Mach reflection pattern.

4. Structural mistuning, which refers to slight differences in mode shapes or frequencies between the

blades and can cause localized mode vibrations, in which all the energy in the system is concentrated

on one or two blades leading to blade loss.

5. Aerodynamic mistuning, which refers to differences in blade-to-blade spacing and pitch angles

altering the unsteady llow characteristics in blade passages.

6. For turbine blades, thermal elfeels will also have It) be considered in addition to the interaction

between fluid and structures.

7. The treatment of boundary conditions for fluid solvers is more complicated for internal flows than

for external flows.

8. On account of moving components, structural analysis has to have geometric non-linearity capa-

bility.
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V.2 Review of Existing Methods for
Analysis of Aircraft Engines

Aeroelastic

This section gives an overview of computational methods used for aeroelastic analysis of turboma-

chinery. Stress is laid on the assumptions made to simplify the analysis and make it tractable for

computational methods. A brief summary of highlights of state-of-the-art methods will be given tit

the end.

.

2.

3.

4.

V.2.1 Fluid Solvers

Early computer applications for turbomachinery problems focussed primarily just on predicting the

flow pattern inside the system. This too presented major obstacles which could not be surmounted

mainly on account of the lack of computing power at that time, circaearly to mid 1970s. Researchers

therefore resorted to making simplifying assumptions regarding fluid behavior in order to make these

problems more amenable to computer solutions. These assumptions can be broadly classified into

the following types •

Those made with respect to the 3-dimensional nature of flow.

Assumptions nlade to reduce the total problem size.

Assumptions made in mathematical modeling of fluid, i.e. the governing fluid equations.

Steady-state assumptions.

Each of these assumptions are further clarified below :

V.2.1.1 Assumptions Made with respect to the 3-Dimensional Nature

of Flow

It should be noted that flow through turbine, compressor and fan rotors is inherently unsteady and

3-dimensional in nature. For example, large fan rotors have a velocity gradient from the hub, where

the flow is subsonic, to the tip, where flow is supersonic as a result of blade rotation [5]. This. in

addition to the variation of Coriolis forces in the radial direction gives rise to a very complex shock

structure from hub to tip. Thus, in order to capture the true nature of flow, a fully 3-dimensional

model is required.

However, on account of limitations in computing power, early researchers used simplified two-

dimensional cascade models for flow computations. These models yielded sufficiently good results.

in fact, to quote Bendiksen [4], "... it is surprising that [2-dimensional] cascade theories have been

successful in 'explaining' -- if not exactly predicting -- the occurrence of flutter in supersonic fans

While some purely 2-dimensional computations were carried out, more advanced flow solvers were

developed based on a theory proposed by Wu [49] in 1952. In Wu's model, the flow is assumed to

fol low an ax isymmctric strcamsurface. The radius and thickness of this streamsurface are assumed

to be known as a function of sireamwisc distance. These quantities tire usually obtained from an

axisymmetric throughflow or meridional analysis. Tim equations governing the flow along the

streamsurface combine the axial and radial components into one streamwisc component and are
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thus2-dimensional. The true 3-dimensionalcharacteristicsof flow can beextractedfrom this
2-dimensionalapproximationasthe shapeof the streamsurfaceis known. Specificationof the
streamsurfaceallows modelingof bladeswith variableheightsandthicknesses,unlike that for
thepurely 2-dimensionalsolverswhich hadproblemsmodelingbladesof arbitrary shapes.As
this approachuses2-dimensionalanalysisto capture3-dimensionalphenomena,it iscalled"quasi
3-dimensional"andiscommonto manyturbomachineryanalysisprograms.

V.2.1.2 Assumptions Made to Reduce the Total Problem Size

This assumptioniscommonto manyaeroelasticandfluid solversof all types.For non-aeroelastic
ltuid solvers,it is obviousthatflow throughall interbladepassageswill be identicalonaccountof
similarity in geometry.Basedonan interestingpropositionof Lane[23] in 1957,evenaeroelastic
analyses,in which thereis achangein geometryfor eachbladepassage,canalso beperformed
consideringonly oneor a few interbladepassages.This is highly beneficialasthe total problem
sizeis reducedby anorderof magnitude.

Laneobservedthatat flutter,adjacentbladesvibrateapproximately180degreesout of phasewith
respecttoeachother.Heconsideredthepossiblefluttermodeshapesof aperfectrotorwith identical
bladesandshowedthat theflutter modeshapesareremarkablysimple: eachbladevibrateswith
identicalmodalamplitudesbutwith aconstantphaseanglecr between adjacent blades. For a rotor

with N blades, the possible interblade phase angles are given by :

or,, = 2_H/N, n = 0+ 1,2 ..... N - I

Thus the flutter mode is a traveling wave with respect to the rotor. This simple structure of the

flutter mode is a direct consequence of the periodicity of cyclic symmetry in geometry which leads

to important cyclic properties for both the structure and fluid. From a computational standpoint,
Lane's Theorem, which assumes linear structnral behavior, allows a full blade row of N blades to

he modeled usin,, only a sin,.zle blade or a few blades.

V.2.1.a Simplified Flow Models

For aeroelastic analysis there is a general consensus that viscous effects can be neglected except

in stall and choke flutter [4]. Thus a 3-dimensional Euler solver would suffice. However. there is

no general agreement on the ability of w.lrions formulations to capture the important features alld

stability characteristics of a given problem. Again, some assumptions are made to simplify the
solution. These include:

I. Linearized Potential Flow " Two different classes of linearized unsteady cascade theories have been

developed •

(a) Theories that linearize about a uniform mean flow.

<b) Theories that linearize about a non-uniform, deflected mean flow.

Of course, all these theories make the ftmdamental assumption that the flow is inviscid and of a

perfect _as with no shocks. Bcndiksen [4] has reviewed a lar,,e number of such ltow solvers and

tt_ese will not he repeated t_cre.

2. Non-linear Flow Models " Some calculations of flow around cascades with non-linear potential

models were reported in tim early 1970s. However, these were rare and met with limited success.
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Nowadays,with greatadvancesbeingmadebothin thedevelopmentof numericalalgorithmsand
availabilityof powerfulcomputingplatforms,bothEulerandNavier-Stokessolvershavebecome
quitecommonandhavebeenreportedinsignificantnumbers,for example[6,7, 9, 17,22] to name
a few.

V.2.1.4 Time-Accuracy Assumptions

This is an assumption only when a fuid solver is used for aeroelastic analysis. Aeroelasticity is a

truly unsteady phenomenon, yet at times, some researchers employed steady-state flow solvers for

aeroelastic analysis. This is done by obtaining steady-state solutions from a flow solver and using

that to perform a 'static' aeroelastic analysis.

V.2.1.5 Development of Advanced Flow Solvers

This is to give a very brief overview of the state-of-the-art in CFD for turbomachinery applications.

Keeping in phase with the development of CFD tools for external flows, commendable progress has

been made in the development of advanced flow solvers for turbomachinery. Particular emphasis

has been laid to develop sophisticated analysis methods to deal with the complex geometries of

aircraft engines and difficulties arising out of that and the modeling of effects that other disciplines

have on fluid flow.

In order to obtain fast steady-stale flow solutions through complex aircraft engine geometries,

advanced solvers are developed to reduce the large diversity between the length and time scales of

flow. Prominent amongst these is the work of Adamczyk who uses advanced averaged models to

compute flow in multistage turbomachinery. Three averaging operators are developed. The first

averaging operator, namely the ensemble average, is introduced to eliminate the need to resolve the

detailed turbulent structure of fow. The second operator is used for time-averaging and allows fast

computation of steady flows. The last operator, namely the passage-to-passage averaging operator

allows simultaneous sinmlation of flows through blade-rows having variable number of blades

and/or rotating speeds. Details of these operators are lengthy and complex and will not be dealt

with in this report. The reader is referred to [1] for the full mathematical formulation.

With growing interest in treating aircraft engines on a more global basis, particular emphasis is laid

on modeling interdisciplinary interaction between fuid and other components. Stewart [44] hits

developed a program ENGIO which takes into account the effect of blade forces, loss, combustor, heat

addition, blockage, bleeds and convective mixing. This program, in the writer's opinion, represents

the true state-of-the-art in turbomachinery flow solvers and can be viewed as an efficient synthesis

of existing models for multidisciplinary interaction. An approach similar to that of Adamczvk is

used, in which the right-hand sides of Euler equations include averaged terms for blade forces,

combustor and other effects mentioned above.

Other notable works in this area are those of Koya and Kotake [22] and Gerolymos [ 17, 18]. Of these

Koya and Kotake are credited the first truly 3-dimensional time-dependent Euler calculation for

flow through a turbine stage. Gerolymos developed advanced methods for investigation of flutter

in vibrating cascades, employing assumptions made about linear structure behavior and spatial

periodicity.
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V.2.2 Structure Solvers

The development of structure solvers for aircraft engine applications has not been much different

from that for any other structural analyses. In fact, Reddy et al [38] mention that most of the

structural calculations at NASA LeRC have been performed using NASTRAN.

Some specific stand-alone programs, especially those which take into account thermal and other

effects such as bird and ice impacts and also the effects of composites used have also been used for

blade analysis though not directly coupled with a fluid solver for aeroelastic analyses [37].

V.2.3 Summary of Aeroelastic Analysis Programs

Some of the assumptions made for aeroelastic analysis of turbomachinery have been mentioned

above. The following is a brief summary of research in turbomachinery aeroelasticity till now [2,

38, 42] :

1. Use of potential or Euler solvers with simplifying assumptions.

2. Purely 2-dimensional, quasi 3-dimensional or axisymmetric fluid solvers.

3. Only one or a few blades are modeled.

4. To compute structural response, linear structural behavior is assumed. This makes it possible to

use quicker frequency domain analysis.

5. Very often, it is found that only static structure response is considered, neglecting inertia effects,

even when the method of analysis is for unsteady analysis.

6. For cases in which inertia effects are considered, a very simplified structural model is used, with as
few as 2 DOFs.

°

°

°

Even though aeroelasticity is an unsteady phenomenon, steady-state methods are used to compute

fluid flow and structure loads are computed at each time step from this steady state solution. As

time-accuracy of fluid solvers is sacrificed in order to obtain a fast steady-state solution, this may

not yield correct results.

Transfer of loads between fluid and structure is done through lift coefficients, thus losing spatial

accuracy in computing structural loads.

Some fluid solvers use moving meshes for analyzing vibrating blades. Exact details of algorithms

for mesh updating are not given and it is probable that these algorithms do not satisfy the geometric

conservation law, which will be discussed later.
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V.3 Partitioned Analysis Procedures for the
Aeroelastic Problem

This chapter deals with the formulation of coupled field problems for aeroelasticity and their

solution using the partitioned analysis approach. It begins by introducing the concept of partitioned

analysis and the motivation behind this methodology. Use of partitioned analysis for aeroelastic

applications will be mentioned and elaborated upon. The individual software components used for

solving the coupled field aeroelastic problem will be briefly overviewed. Lastly, a brief description

of initial attempts at using existent technology for external aeroelasticity for internal aeroelasticity

applications will be given.

V.3.1 Partitioned Analysis and Coupled Field Problems

Many current problems in engineering require the integrated treatment of multiple interacting

fields. These include, for example, fluid-structure interaction for submerged structures and in pres-

sure vessels and piping, soil-water-structure interaction in geotechnical and earthquake engineering,

thermal-structure-electromagnetic interaction in semi- and superconductors and fluid-structure in-

teraction (FSI) in aerospace structures and turbomachinery, the last of which is the focus of attention

for current research.

Nowadays, sophisticated and advanced analysis tools are available for individual field analysis. For

example, for FSI, advances in the last few decades have resulted in the development of powerful

and efficient flow analyzers, which is the realm of interest of computational fluid dynamics (CFD).

Equally robust structural analysis tools are available, which is a result of development of advanced

finite element methods (FEM). Computer analysis of coupled field problems is a relative newcomer

and no standard analysis methodology has been established. One natural alternative is to tailor an

existing single-field analysis program to take into account multidisciplinary effects. As an example,

fluid volume elements could be added to a FEM structure solver. Another approach would be to

unify the interacting fields at the level of governing equations and formulate analysis methods

thereupon, for example, as suggested by Sutjajho and Chamis [45].

Both these methods suffer from drawbacks. From a programming point-of-view, addition of mod-

ules of different fields leads to an uncontrolled growth in complexity of necessary software. It

becomes increasingly difficult to modify existing codes to incorporate improved formulations. For

users, a monolithic code can impose unnecessary restrictions in modeling and grid generation. For

example, in FSI, forcing equal grid refinement on the fluid-structure interface may either cause the

structure elements to be too small, making analysis more expensive, or cause fluid cells to be too

large, resulting in a loss of accuracy and/or stability.

Partitioned analysis [31] offers an attractive approach in which diverse interacting fields are pro-

cessed by separate field analyzers. The solution of the coupled system is obtained by executing

these field analyzers, either in sequential or parallel manner, periodically exchanging information at

synchronization times. This approach retains modularity of software and simplifies development.

It also allows to exploit well established discretization and solution methods in each discipline and

does not enforce any specific grid refinement requirements.
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V.3.2 Partitioned Analysis for Aeroelastic Applications

Aeroelasticity deals with the interaction of high-speed flows with flexible structures. Thus, in a

physical sense, it is a two-field phenomenon. However, on account of different formulation methods

used for the fluid and structure components, computationally, it becomes more convenient to treat

this as a three-field coupled problem.

V.3.2.1 Aeroelasticity as a Three-Field Coupled Problem

Traditionally, structural equations are formulated in Lagrangian co-ordinates, in which the mesh

is embedded in the material and moves with it; while the fluid equations are written in Eulerian

co-ordinates, in which the mesh is treated as a fixed reference through which the fluid moves.

Therefore, in order to apply the partitioned analysis approach, in which the fluid and the structure

components are treated separately, it becomes essential to move at each time step, at least the portions

of the fluid grid that are close to the moving structure. One of the approaches which obviates the

need for partial regridding of the fluid mesh is one where the moving fluid mesh is modeled as a

pseudo-structural system with its own dynamics. Thus, the physical two-field acroelastic problem

can be computationally formulated as three-field system, comprising of the fluid, the structure and

the dynamic mesh. This is the Adaptivc Lagrangian-Eulerian (ALE) [8, 27] formulation. The

semi-discrete equations governing this three-way coupled problem can be written as follows :

0

0t (A(x, t)w(t)) + F c (w(t), x, x) = R (w(t)) (3. la)

02q fext
M_- + f"'(q) = (w(t), x) (3.1b)

_ o2x box
M-_ + Ot + I_x = K_.q (3.1 c)

where t designates time, x is the position of a moving fluid grid point, w is the fluid state vector, A

results from the finite-element/finite-volume discretization of the fluid equations, F c is the vector

of convective ALE fluxes, R is the vector of diffusive fluxes, q is the structural displacement vector,

f,,,t denotes the vector of internal forces in the structure, ffxt the vector of external forces, M is the

finite element mass matrix of the structure, 1_I, D and I_ are fictitious mass, damping and stiffness

matrices associated with the moving fluid grid and K_. is a transfer matrix that describes the action

of the motion of the structural side of the fluid-structure interface on the dynamic fluid mesh. For

example, M = D = 0 and I_ = I_ R where I_ R is a rotation matrix corresponds to a rigid mesh

motion of the fluid grid around an oscillating structure, while _,i = D = 0 includes the spring-based

mesh updating scheme proposed by Batina [3] and Tezduyar et al[46].

It should be noted that the three components of the coupled field system described in (3.1) ex-

hibit different mathematical and numerical properties and hence require different computational

treatments. For Euler and Navier-Stokes flows, the fluid equations are non-linear. The structural

equations may be either linear or non-linear depending upon the type of application. The fluid

and structure interact only at their interface, via the pressure and motion of the structural interface.

However, the pressure variable cannot be easily isolated from the fluid equations or the fluid state

vector w, making the coupling in this three-field problem implicit rather than explicit.
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Figure V.3.1 : Interaction between Programs for FSI

The simplest possible partitioned analysis procedure for transient aeroelastic analysis is as follows •

(a) Advance the structural system under a given pressure load.

(b) Update the fluid mesh according to the movement of the fluid structure interface.

(c) Advance the fluid system and compute the new pressure load.

This procedure is carried out in cyclic order until the desired end of computations is reached, see

Figure V.3. I.

V.3.2.1.1 Geometric Conservation Law

An interesting feature that arises out of the use of the three-field ALE formulation is the need to
take into consideration the motion of fluid volume cells while computing fluxes in the fluid solver.

It is shown in [47] that in order to compute flows correctly on a dynamic mesh, it is essential that the

selected algorithm preserves the trivial solution of an uniform flow-field even when the underlying

mesh is undergoing arbitrary motions. The necessary condition for the flow solver to accomplish
this is referred to in literature as the Geometric Conservation Law (GCL). Failure to satisfy the

GCL results in spurious oscillations although the system for which solution is sought is physically
stable.

V.3.3 The PARFSI System for Unsteady Aeroelastic Compu-
tations

A system of locally developed programs for unsteady aeroelastic computations, PARFSI (Parallel
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Fluid-Structure Interaction) will be described next. This system consists of a fluid solver, a structure

solver, a dynamic ALE mesh solver and a few preprocessing programs for parallel computations.

V.3.3.1 Fluid Solver

For flow computations, a 3-dimensional fluid solver for unstructured dynamic meshes is used. This

discretizes the conservative form of the Navier-Stokes equations using a mixed finite-element/finite-

volume (FE/FV) method. Convective fluxes are computed using Roe's [39] upwind scheme and

a Galerkin centered approximation is used for viscous fluxes. Higher order accuracy is achieved

through the use of a piecewise linear interpolation method that follows the principle of MUSCL

(Monotonic Upwind Scheme for Scalar Conservation Law) proposed by Van Leer [26]. Time

integration can be performed either explicitly using a 3-step variant of the Runge-Kutta method, or

implicitly, using a linearized implicit formulation. An elaborate description of the 3-dimensional

fluid solver can be found in [24].

V.3.3.2 Structure Solver

A parallel structural analysis program, PARFF_2,Ihas been developed by Farhat and co-workers over

the last few years. This program has a wide range of one-dimensional to three-dimensional finite

elements for structural analysis. Time-integration is implicit based on Newmark's method. For par-

allelization, the FETI (Finite Element Tearing and Interconnecting) [10, 1 ! ] domain-decomposition
method is used.

V.3.3.3 ALE Mesh Solver

The fluid mesh is assumed to be a network of springs based on a method proposed by Batina [3].

The solver used to update the fluid mesh is integrated into the fluid code as a subroutine which

is called every time there is an exchange of information between the structure and fluid. At each

time step t n+l , displacements at the interior grid points are predicted by extrapolating the previous

displacements at time steps t n and t n-I . Grid points on the far-field boundaries are held fixed, while

the motion of grid points on the fluid-structure interface is obtained by interpolation of structural

displacements.

V.3.3.4 Preprocessing Programs

Two preprocessing programs have been developed to enable parallel aeroelastic computations. To

decompose the fluid and structure meshes, a mesh decomposition software TOP-DOMDEC [13] is

used. This is equipped with a range of mesh decomposition algorithms and can also be used as a
visualization tool.

As fluid and structure computations are performed by independent programs adhering to the parti-

tioned analysis methodology, the fluid and structure meshes need not coincide along their interfaces.

Hence an interpolation procedure is followed to transfer pressures from the fluid to the structure

and displacements from the structure to the fluid. Interpolation information (in terms of interpola-
tion coefficients within elements and association of fluid/structure nodes/elements across the fluid

structure interface) necessary for parallel execution of solvers is set up by a preprocessing program

MATCHER, described in [30].

V.3.3.5 Subeycling between Fluid and Structure Solvers

The fluid and structure meshes may have varied degrees of refinement and will hence have different
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Figure V.3.2 : Fluid & Structure Meshes for the GE-EEE Fan Stage

time steps. Subcycling [32] allows the fluid and structure solvers to run concurrently with different

time steps by periodic exchange of information at synchronization times. This also makes structural

computations more efficient as usually the implicit structure time step is an order of magnitude higher

than the explicit fluid time step.

V.3.4 Application of PARFSI for Turbomachinery Simulations

As a beginning, the existing programs for aeroelastic analysis were used to simulate the aeroelastic

response for the blades of the GE-EEE fan stage [20]. Disregarding modifications made to some pre-

and post-processing programs, no major modifications were required for any of the field analyzers

in computing the response to internal flow using codes primarily designed for external aeroelastic

computations. This highlights a major benefit of adopting the partitioned analysis methodology.

Two physical models have been used in the aeroelastic simulations.
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The first model is a single row of blades from the compression stage of the GE-EEE turbofan engine,

which serves as a testcase for most computational methods at NASA LeRC. This model consists

of 32 blades along the circumference. Details of blade geometry were obtained from a NASTRAN

FE model provided by Scott Thorpe of NASA LeRC. This model has approximately 60,000 fluid

nodes and 1,600 structure nodes. For parallel analysis, the fluid mesh was decomposed into 32
sub-domains and the structure mesh into 4 subdomains.

The second test model was a hypothetical two-row stage which was obtained by using the GE-EEE

model mentioned above, setback along the longitudinal axis of the engine and half-way shifting it in

the circumferential direction. In this case, the fluid mesh consisted of approximately 45,000 nodes

and the structure mesh has approximately 3,200 nodes. For parallel analysis, 16 sub-domains were
used for the fluid and 4 for the structure.

Meshes for both models were built by first constructing a mesh for a single cell block in which the

blade profile was swept around the circumference to obtain hexahedra which were further divided

into tetrahedra for the fluid volume. For the structure, blade profiles were rotated around the

circumference and divided into triangular shell elements. Wireframe plots of the fluid and structure

meshes generated for each of the above cases are shown in Figures V.3.2 and V.3.3.

V.3.4.1 Results

It was observed that the blades tend to vibrate in phase with similar amplitudes. A slight coupling

effect was observed between the bending and torsional modes of vibration for the blades.

Results for the two-row case were more interesting. The first row appeared to act as a screen and

absorbed most of the impact of the aerodynamic load. This caused it to vibrate with a much greater

frequency and amplitude than the second row. Again, some bending-torsion coupling was observed
in blade vibrations.

V.3.4.2 Shortcomings

Although PARFSI is designed mainly for external aeroelastic simulations, it can be tailored to

perform internal aeroelasticity computations without having to make any significant modifications

to the existing codes and/or methodologies.

To make it better applicable to turbomachinery problems, the following enhancements need to be

made:

1. Addition of rotational source terms in fluid and structure solvers.

2. Addition of geometric non-linear analysis capability to take into account large rotational rigid-body

displacements of blades.

3. Make the fluid solver cable of handling differential rotations between rotating and non-rotating

components.

4. Addition of thermal effects.
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Figure V.3.3 : Fluid & Structure Meshes for the Hypothetical 2-Row Stage
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V.4 Computational Analysis
teraction

of Rotor-Stator In-

A stage in an aircraft engine is usually made up of a rotating component, the rotor and a non-

rotating component, the stator. The function of the rotor is to add energy to the flow by mechanical

interaction of the fluid with the blades. In this process the fluid acquires angular momentum. The

stator removes this angular momentum and diffuses flow to raise pressure. This combined action

of the rotor and the stator is of fundamental importance to the performance and efficiency of the

engine and hence is a matter of key research interest.

An engine usually contains several such rotor-stator stages and hence the ability to analyze such

stages forms the first building block in an attempt to simulate a whole aircraft engine. From an

aeroelasticity or FSI point-of-view, mutual interactions between rotors and stators (rotor-stator

interaction or RSI) become important when the axial gap between these two components is made

smaller in order to reduce the overall engine length. Experimental results indicate that flows

become unsteady on account of the interaction of the downstream airfoils with the wakes and

passage vortices generated upstream, from the motion of rotors relative to the stators and from

vortex shedding at blunt airfoil trailing edges. This unsteady interaction affects the aerodynamic,

thermal and structural performance in each stage and hence ultimately the engine as a whole.

Another topic of interest would be interaction of flow and mechanical components between non-

rotating components such as inlets and diffusers with a rotating component such as a large fan.

In all these cases, the area of investigation is the nature of flow as it undergoes transition from a

non-rotating to a rotating flow regime and vice-versa. Following are the two main issues that must

be addressed for successful computational analysis of such phenomena :

1. As the flow passes from a non-rotating to a rotating flow regime it will experience a sudden change

in circumferential momentum. Care will have to be exercised in developing a numerical method

for such cases so that it does not create any artificial numerical shocks.

2. For aeroelastic computations with dynamic meshes as mentioned in Section V.3.3, mesh lines

will no longer be continuous between fluid meshes of rotating and non-rotating components, see

Figures V.4.1 and V.4.2. Hence some interpolation method will have to be developed to handle
such situations.

This section gives an overview of a few methods common for analyzing flows on discontinuous

grids and highlights their merits and demerits.

V.4.1 Flow Computations on Discontinuous Grids

Grid generation and subsequent treatment of moving grids was an area of difficulty which early

researchers faced in simulating rotor-stator flows. A single grid wrapping around both the rotor

and the stator has to distort considerably to accommodate the motion of the rotor and could result
in inaccurate calculations.

One suggested alternative to overcome this problem is the use of zonal grids in which the region of

interest is divided into several geometrically simpler subregions (or zones). This makes both mesh
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generation and treatment of large grids for complex geometries easier.

However, in case of simulations where there is relative motion between adjacent sub-grids, some

method has to be developed in which there is a smooth and accurate exchange of information

between grids whose lines are no longer continuous. Two such approaches exist. One is the used of

overlaid grids in which two zones overlap each other and the exchange of information takes place

in the region of overlap. Another approach is to use patched grids in which information transfer

occurs at the interface between connected zones. Examples of overlaid and patched grids for an

inner cylinder and outer square are seen in Figures V.4.3 and V.4.4.

While each of the patched and overlaid grid approaches has their own advantages and disadvaptages,

patched grids are preferred over overlaid grids for the following reasons :

Overlaid grids incur higher interpolation costs as a problem in n spatial dimensions requires an

interpolation in n dimensions whereas that for patched grids would require interpolation only in

(n - 1) dimensions as exchange of information takes place only at zonal interfaces.

Development of conservative zonal schemes for overlaid grids is more difficult than that for patched

grids. This makes use of overlaid grids less suitable for computations which contain sharp discon-

tinuities in flow.

The accuracy and convergence speed of the calculation seems to depend on the degree of overlap

of the zones and the relative size of each zone, thus introducing a certain amount of undesirable

empiricism in the formulation.

Numerical methods developed for treatment of zonal patched grids must satisfy several requirements
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Figure V.4.2 : Grid Generation and Discontinuity for Rotor-Stator Interaction

before they can be used effectively •

I. numerical stability

2. spatial and temporal accuracy
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Figure V.4.3 : Example of a Patched Grid for an Inner Cylinder and

Outer Square
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Figure V.4.4 : Example of a Overlaid Grid for an Inner Cylinder and

Outer Square

developed scheme should be conservative so that flow discontinuities can move from one grid to

another without distortion

In the past few years, several zonal boundary schemes that meet the above requirements have been

developed and tested for a wide variety of problems. Two such schemes, will be discussed next.
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V.4.1.1 Need for Flux Conservation

The most important requirement for the success of a patched grid scheme is that it be conservative

in terms of computed fluxes. Before explaining how flux conservation can be achieved numerically,

it is necessary to examine carefully why flux conservation is so important.

For this, consider the conservation of mass or continuity equation written in integral form :

_- pdV+ pV.dS=0 (4.1)

In words, the time rate of decrease of mass inside control volume V is equal to the net flow of mass

out of control volume through surface S. Hence, in order to prevent the creation or destruction of

the quantity p, it is essential that the quantity given by

(s pVdS

(called the flux) is conserved across the zonal boundary. Failure to conserve fluxes leads to incorrect

positioning of shocks and discontinuities as illustrated in Figures V.4.5 and V.4.6 (from [28]) for

the Burgers' equation (ur + uux = 0).

tD
c5

¢xl
c5

¢xl

O
i

0.0 02 0.4 0.6 0.8 1.0

Figure V.4.5 : True and Computed Solutions to the Burgers' Equation

using a Conservative Method

V.4.2 Giles' Approach for Patched Grid Calculations

To compute flows in a rotor-stator stage, Giles [ 19] uses a grid composed of two parts, one part fixed

to the stator blade rows and the other part moving with the rotor with some prescribed velocity.

The two parts are separated by a cell width at the interface with equal grid node spacing along
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Figure V.4.6 : True and Computed Solutions to the Burgers' Equation

using a Non-Conservative Method

the interface on either side. To span the gap between the two halves, a set of quadrilateral cells

is defined by connecting each stator grid point to the nearest rotor grid node. As computations

proceed in time, grid connectivity in amongst the quadrilateral cells changes dynamically as shown

in Figure V.4.7 undergoing transformation from stage 1 through stage 2. As flow computations are

for 2-dimensional cascades, assumptions are made regarding spatial periodicity of flow and hence

the quadrilateral cells switch back to stage 1 after stage 2 is reached.

[

Glue Calls

i .....

Initial (Unstaggered) Grid

stage1 st_je2

#

/ l

j I I ......

.... Staggered Grid

"_- Dynamically Changing Glue Call Interface

Figure V.4.7 : Giles' Approach for Euler Computations on Discontinuous Grids
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This methodpresentsthefollowing problemsfor adaptationsto 3-dimensionalrotor-statorinterac-
tion simulations:

1. The developedmethodis for flows with spatialperiodicity andhencecannotbe readilyusedfor
moregeneralsimulations.

2. It usesthe conceptof remeshingas computationsproceed. Suchan approachin parallel 3-
dimensionalcomputationswouldbeveryexpensiveif atall possible.

3. In order to allow successfulremeshingat intervalsof time, equalgrid nodespacingis prescribed
on eitherside of the interface. This may not bepossibleif unstructuredgrids areusedfor flow
computations.

4. Nodetailsabouttheconservativenatureof thenumericalschemehavebeenprovided.

Theabovedrawbacksmakesthis methodlesssuitablefor 3-dimensionalapplications.

V.4.3 A Conservative Treatment for Zonal Grids

Rai [29, 34, 35,36] developeda methodin themid 1980sfor accurateandefficient computation
of Euler flows usingpatchedgrids. The key featureof this approachwasthe emphasislaid on
conservativetreatmentof zonalboundaryconditions. Although this schemewasdevelopedfor
finite-difference(FD) computationson structuredgrids,theunderlyingideais not too difficult to
applyto unstructuredgrids.

Thesalientstepsof Rai'sapproachfor asimpletwo-zonecasecanbebrieflydescribedasfollows :

1. Selectoneof thezonesfor variableinterpolationandtheotherfor flux interpolation.

2. Extrapolategrid linesfromtheflux interpolationzoneintothevariableinterpolationzoneto generate
extrapolated"ghost"cells.

3. Estimatethevaluesof conservedvariablesat theverticesof theghostcells.

4. Computefluxesonthecellsof theflux interpolationzonebasedontheghostcellsvertices'conserved
variablevalues.

5. Obtain fluxeson thevariableinterpolationzoneby conservativeinterpolationof fluxes from the
flux interpolationzone.

This process will be explained with the help of the patched grid as shown in Figure V.4.8. For the

sake of illustration, without any loss of generality, let zone 1 be the zone for flux interpolation and

zone 2 be that for variable interpolation. To update the flow computation, it is essential to compute

the fluxes at points like O, L and M which lie on the interface of the two zones in addition to

computation of fluxes at all other points. Point O belongs to zone 1, while points L and M belong

to zone 2.

For the purpose of estimating fluxes around all grid points, computational cells are constructed

by joining the centers of all the quadrilaterals forming the grid. These cells are shown by dashed

lines in Figure V.4.8. At zone 1 interface points such as point O, cells cannot be completed as

the grid does not extend into the space beyond line AB. To enable cell generation, points R and

S are located in zone 2 by extrapolation of grid lines from zone 1 to zone 2. Values of dependent
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Figure V.4.8 : Grid Extrapolation for Rai's Conservative Zonal Scheme

variables at points R and S can be obtained by interpolation of dependent variables of zone 2. Once

this is done, flux at point O can be computed using standard procedures. After computing all the

fluxes at interface points like O on the side of zone 1, fluxes at points like L and M on the side of

zone 2 can be obtained by using a conservative interpolation of fluxes of zone 1 interface points.

Conservative interpolation means that the influx and efflux out of zone 1 should be balanced by the

efflux and influx out of zone 2. Several conservative interpolation methods are possible, and Rai

describes one such based on constant cell values for fluxes interpolation which can be found in [34]

or [35].

V.4.4 Summary

The following is a summary of this section and serves to highlight the topics discussed :

I. The motivation behind investigation of rotor-stator interaction phenomena was explained and key

issues for computational treatment pointed out.

2. A brief overview of existing methods for flow analysis was given with a particular emphasis on

patched grid calculations.

3. Rai's conservative treatment for patched grid computations was explained.

4. Finally, the process of conservative interpolation and transfer between two meshes was explained

in some detail.
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V.5 Flow Computations using Patched Unstruc-
tured Grids

To the best of the writer's knowledge, all attempts at using patched grids for flow computations

have been for finite-difference methods on structured (regular) grids. Patched unstructured grid

computations have not been hitherto attempted because grid generation for complex geometries is

relatively easier when unstructured grids are used. However, in case of relative motion between

sub-grids, as in the case of rotor-stator interaction, it becomes essential to develop a methodology

to enable flow computations to be performed on unstructured grids even when grid lines no longer

remain continuous on account of mesh motion, see Figure V.4.1. This is one of the key objectives
of current research.

This section begins with a description of an existing 2-dimensional CFD solver similar to the 3-

dimensional solver used for aeroelastic computations described earlier Section V.3.3.1. Special

attention will be given to the spatial discretization. Problems arising out of grid discontinuity

for this type of spatial discretization along with a possible method for solution will be presented

next. The chapter will conclude with some thoughts on conservative interpolation methods for such

2-dimensional computations.

V.5.1 A 2-Dimensional Unstructured Fluid Solver

A 2-dimensional Navier-Stokes [12, 25] solver using a mixed finite-volume formulation on un-

structured triangular meshes is described here. For the case under study, namely discontinuous

unstructured grids, the viscous terms have been neglected for the sake of simplicity and therefore

description of the finite-element discretization of viscous terms will be omitted for brevity.

V.5.1.1 Governing Equations

Let _2 C IR2 be the flow domain of interest and F be its boundary. The conservative law form of

the equations describing 2-dimensional Euler flows is given by :

O W(£, t) + V fi-(W(£, t)) = 0 (5.1)
Ot

where £ and t denote the spatial and temporal variables, and

W = (p, pu, pv, E) r ,
f7= Ox' .

and

G(W)

where F(W) and G(W) denote the convective fluxes given by •

F(W) = pu2 , G(W) =
pup

u(E + p)

puv

pv 2 + P

v(E + p)
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3.

In the above expressions, p is the density, U = (u, v) is the velocity vector, E is the total energy

per unit volume and p is the pressure. The velocity, energy and pressure are related by the equation

of state for a perfect gas •

(' )p=(y-l) E-_RIIUII 2

where y is the ratio of specific heats (y = 1.4) for air.

V.5.1.2 Boundary Conditions

Three types of boundary conditions can be specified •

Inflow boundary condition • This is specified at the inlet for internal flow calculations.

Outflow boundary condition • This is specified at the exit for internal flow calculations.

Slip boundary condition • This is a no through-flow boundary condition to be imposed weakly at

fixed walls.

V.5.1.3 Spatial Discretization

The flow domain f2 is assumed to be a polygonal bounded region of R 2. Let Th be a standard

triangulation of f2 and h the maximal length of the edges of Th. The vertices of any triangle T

are denoted by Si and the set of its neighboring vertices by K(i). A cell Ci for each vertex Si is

constructed as the union of the subtriangles resulting from the subdivision by means of the medians

of each triangle of Th that is connected to Si Figure V.5.1. The boundary of Ci is denoted by OCg

and the unit outward normal to OCi by _ = (Vix, "t)iy). The union of all these control volumes

constitutes a discretization of domain S2 •

gt,

_=UCi
i=1

where No denotes the total number of triangle vertices in the grid. Figure V.5.2 indicates the dual

finite-volume mesh associated with a typical unstructured triangulation.

Figure V.5.1 : Cell Definition in an Unstructured Grid
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Figure V.5.2 : Dual Mesh Associated with a Typical Unstructured Triangulation

Integrate (5.1) over Ci to get

27 W + _ . ._( W) d._ = 0 (5.2)

Integrate (5.2) by parts again to get

dt
Z f J'(W).t_jda < 1 >

j_K(i) C,)

+ I fi(W), vi da < 2 >
C, N r,,,

+ ] .'.T(W) • ffi da < 3 >

C, NFI/o

=0

(5.3)

In the above expression l-'b and Fx/o are parts of the boundary of _2 at which the no-slip and the

inlet/outlet boundary conditions are imposed such that F = Fh N F,/o and OCij = 3Ci N OCj

The above formulation leads to a locally one-dimensional computation for each convective term

along the normal direction 3. For this purpose, the boundary 0Ci of cell Ci is split into two bi-

segments OCij which join the mid-point of the edge SiSj to the centroids of the triangles having

both of Si and Sj as vertices and the integral < 1 > is evaluated as

Z f ._(W).vTjda= Z "F(_J)'f -vijda
j_K(i) C,i j_K(i) C,j

(5.4)
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where .U(U) is some approximation of the convective flux computed at the interface between cells

Ci and Cj.

f '._(W). vi) dcr is chosen to be a numerical flux function • associated with a first-order accurate
C_j

upwind scheme [15]. It is denoted by Hi_ l) where the superscript (1) is used to indicated first-order

accuracy. H_j _) can be written as •

= (w,.wj.

where Wi = W (Si ) and Wj = W ( Sj ) and

= f _)ij dcr7tij
J;) Co

As the Roe's [39] approximate flux function is used for computations, the expression for • becomes

:r(U, _) + _'(V, _)

O_ °e (U, V, 70 = 2 - d(U, V, 7t)

where

7(u,_) = _(u)._

d(U, V, Ft) is the numerical artificial viscosity defined as •

- U)
d(U,V,_)= .A(I,P',_) ((V 2

O,7

and ,,4 is Roe's mean value of the flux Jacobian matrix 0----W"

V.5.1.4 Higher Order Extension

The numerical integration with an upwind scheme, as mentioned above, is only first-order accurate.

A second order extension of Van Leer's MUSCL [26] method is developed for unstructured meshes

for enhanced accuracy.

Based on the spatial approximation used in this method, the gradient of any function is constant

over each cell of the mesh. Following the MUSCL method, one way to achieve second-order

accuracy is to extrapolate the values of Wi and Wj at the cell interfaces OCi N OCj to get Wij and

Wji respectively given by

wij = wi + -_
1
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Heretheapproximatenodalgradients(VW)_j areobtainedvia a fl-combination of centered and

fully upwind gradients •

(vw)_ = (1 - t_) (vw)_ __ + f (vw)y _w

The centered gradient (V W)_ ENT = (VW)_7 ° can be chosen as any vector satisfying

(vw)_EN_•_ = wj- wi

To compute the upwind gradient, note that (VW)_ pw = (VW)_71° Then it follows that

(VW)_ Pw = 2(VW)_ =½ _ (VW)_ eNT

The half upwind gradients (fl = I/2) are computed via a linear interpolation of the Galerkin

gradients computed in each triangle of Ci so that

(VW)_ =_/2 =
ffc, VWIA dxdy

f fc, dxdy

1 area(A)

area(C,) _ 3
AcCi

3

Z WkVN_
k=l,kCA

where Nff is the PI shape function associated with node k of triangle A. The final gradients are

evaluated using a third-order biased scheme

(vw)_ =_ = !3(V2 W)_i=o + -31(VW)/_= 1

2 I (2(VW)_= ½= _(vw)_ =° +_
2 =!

i w)_--°+ _(vw)__-= _(v

The flux in (5.4) is then taken to be Hi_ ) where the superscript (2) indicates second-order accuracy,

given by •

H(:_;j= ¢_, (Wij, Wj,, _,j) (5.5)
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V.5.1.5 Implementation of Boundary Conditions

The terms < 2 > and < 3 > in (5.3) contain the physical boundary conditions. At the wall

boundary, the slip condition (U • _ = 0) is imposed in the weak form and hence < 2 > does not

need to be evaluated. It can be verified that

5F(W, fJ)d_r = p (0)nir_ with

n_,

_lir = f _)ijdcr
C, N 0 V,,,

At the inflow and outflow boundaries, a precise set of compatible exterior data values that depend

on the flow regime and the velocity direction need to be specified. The integral < 3 > is evaluated

using a non-reflective version of the flux-splitting method of Steger and Warming [43] :

f "_(W) • pid_ = .A+(Wi,/_i/o) • Wi -4- .A-(Wi, ni/o) " Wt/o
CinFi/o

V.5.1.6 Time Discretization and Integration

The spatial discretizations explained above lead to the following semi-discrete fluid flow equations :

dW
-- + _(W) = 0 (5.6)
dt

I.

.

A 3-step variant of the Runge-Kutta method is used for integrating the above equations. This may

be summarized as •

W(0) _.. W n

At

= a

W (n+l) = W (3)

k= 1,2,3

This scheme can be shown to be third-order accurate for linear systems but only second-order

accurate for non-linear equations such as the Euler equations.

V.5.2 Adaptation for Patched Unstructured Grids

To modify the existing 2-dimensional fluid solver for patched grid calculations, it was decided to

extend Rai's approach outlined in Section V.4.3 to unstructured grids. Two methods need to be

devised :

A compatible method for grid extrapolation retaining the same order of accuracy as the original

unstructured code, and

A conservative interpolation method to transfer fluxes from one sub-mesh to another.
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Figure V.5.3 : Continuous and Discontinuous Unstructured Grids

V.5.2.1 Grid Extrapolation

As there is no regular structure for unstructured grids, there is no obvious method for grid extrapola-

tion for these unlike that for the case of structured meshes where grid lines are extended to generate

new cells for interpolation. The main goal of this procedure was to generate "complete" cells for

grid vertices on the sub-mesh interface at which fluxes are to be computed, see Figure V.5.3.
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ous Unstructured Grids

One way of doing this was to merely symmetrize the fluid grid triangles at the interface and generate

new triangles penetrating into the other sub-mesh. This would involve the following steps :

For each triangle having an edge on the sub-mesh interface, project the triangle vertex not lying

on the interface onto the other sub-mesh. This was a relatively simple operation as the interface

between the two meshes was assumed to be a straight line (x = constant). Hence the co-ordinate

of the new vertex can be easily obtained by retaining the v co-ordinate of the original vertex and

considering the distance of the original vertex from the interface along the x-axis.

Generate connectivity information for the new triangles constructed. This uses the vertex numbers

of the nodes of the original triangle lying on the interface and the newly assigned vertex number

for the projected node.

Generate segment information for the segments of the new triangle. This is done using the same

method as used in the original fluid code.

Once the projected triangles are generated, "complete" cell construction is straightforward as il-

lustrated in Figure V.5.4. In this figure, the primed letters denoted the projected vertices from the

original (unprimed) vertices of zone 1 into zone 2.

Another issue that needs to be handled is the determination of the triangles in which the newly created

nodes lie. This is the traditional point-location problem from computer science for which many

solutions have been proposed. Most of these solutions are based on a graphics and/or computational

geometry point-of-view and require sophisticated and expensive algorithms. For the case of patched

unstructured grids, the solution is greatly simplified on account of the fact that the region in which

the point is to be located is divided into triangles. Having noted this, an idea is borrowed from

triangular finite elements [ 14].
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For linear interpolation of co-ordinates over triangles, three shape functions

Ni.i=l,3 are defined such that

x = xIN1 -_x2N2 -q.-x3N3

y = YzNi + y2N2 + y3N3

It is usual to define the shape functions Ni in terms of the parametric co-ordinated rh. For triangles,

the shape functions Ni are exactly identical to 0i. The parametric co-ordinates are defined such that
3

_-"_ 0i 1. Hence the following relationship is obtained in •matrix form
i=1

X _- X 1 X2 X3 02

Y Yl Y2 Y3 03

I /E' ' ']/'l/72 -- Xl X 2 X 3 X

03 Yl Y2 Y3 Y

or (5.7a)

(5.7b)

Thus given any point with co-ordinates (xp, Ye) and any triangle with co-ordinates

(Xi, Yi )i= 1.3, one can find the parametric co-ordinates Oi.i= 1.3 using relation (5.7b). Then whether or

not the point lies inside the triangle can be easily determined by checking whether all the 0i values

lie between 0 and 1. If all the values are between 0 and !, then the point lies inside the triangles,

else it is outside. The matrix inversion in (5.7b) can be symbolically computed and hard-coded in

a program subroutine and hence points can be located efficiently.

Although the above-described process is computationally efficient, it should be noted that points

need to be located at frequent intervals in a 3-dimensional aeroelastic computation when the grid

associated with the rotating component will undergo rigid body rotations. Hence, in order to reduce

computational costs further, the following strategy is adopted :

1. Only triangles (or tetrahedra) close to the mesh interface need be searched in.

2. To further restrict the search, it is performed only in the band of triangles lying a region such that

their minimum and maximum x co-ordinates are not less than or greater than the minimum and

maximum x co-ordinates of the newly created points.

3. Triangles are sorted based on their maximum x co-ordinates and a search is made only in the

triangles whose maximum x co-ordinate is not greater than the x co-ordinate of the point being
located.

4. Finally a binary search is employed to cut down the number of triangles searched by considering

only those triangles such that the minimum and maximum x co-ordinates of the triangle bracket

the x co-ordinate of the point.

Efficiency in sorting and searching is achieved by using fast algorithms [33, 40]. For sorting,

Quicksort an O(N log e N) algorithm, is used. The binary search algorithm is an 0(loge(N + 1))

operation.
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V.5.2.2 Flux and Variable Interpolation

Exchange of information between different sub-meshes is the crucial component of the patched

grid approach for fluid computations. In order to allow free and undisturbed transition of shocks

and discontinuities, it is essential that fluxes are interpolated conservatively. Several methods for

flux interpolation were tried during the recent few months, details of which are explained below.

V.5.2.2.1 Conservative Interpolation of Fluxes based on Rai's Method

This is a straightforward extension of Rai's method to the case of unstructured grids and consists

of the following steps :

"Complete" fluid-volume cells are constructed by symmetrization of triangles lying on the zonal
interface.

Values of independent variables are obtained at the vertices of the newly created nodes by perform-

ing linear interpolation of variables at the vertices of the triangles in which they lie as shown in

Figure V.5.4.

Once this is done, fluxes can be computed at the zonal interface points P, Q, R, S and T just as

they would be for the case of continuous grids.

Fluxes computed at the above points are then interpolated conservatively to obtain fluxes at points

X, Yand Z.

Independent variables at these points are updated using the fluxes obtained by interpolation.

Values of independent variables at points P, Q, R, S and T are obtained by interpolation from

values at points X, Y and Z.

This process is repeated until the desired end of computations.

The major drawback with this method is that the areas for cells associated with points P, Q, R, S

and T and those with points X, Y and Z are different. Since the term _(W) in (5.6) incorporates

the area of each cell, using the same fluxes on both sides of the interface leads to a loss of accuracy

in space.

V.5.2.2.2 Independent Flux Computations on Either Side of the Zonal Interface

To overcome the problems with the interpolation of fluxes as outlined above, another approach was

experimented with. In this case, symmetrization was carried out on each side of the zonal interface

and fluxes were computed independently, obviating the need for interpolation, see Figure V.5.5.

Such an interpolation scheme is expected to satisfy all the necessary pre-requisites for correct

patched grid computations as fluxes are fully conserved locally within each cell on either side of

the zonal interface and hence along the interface as a whole. However, problems arise when two

points coincide on the zonal interface on either side. In such a case, there is a chance that cells for

each of the coincident points will be different and hence the fluxes and consequently the values of

the independent variables. This would again lead to losses in accuracy.
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Figure V.5.5 : Double Symmetrization on the Zonal Interface

V.5.2.3 Consistent Flux Interpolation

The fundamental mason behind the losses of accuracy in the interpolation schemes mentioned above

is the inconsistent manner in which fluxes are interpolated and transferred from one sub-mesh to

another. In order to seek a remedy for these inconsistencies, one must first examine in detail the

spatial discmtization in the current scheme.

As outlined in Section V.5. l, fluxes at the vertices of each triangle are computed by solving the

Riemann problem along each segment by which a vertex is connected to the other vertices of the

mesh. The flux at the vertex is thus the sum of all fluxes thus obtained by solving the individual

Riemann problems and is assumed to be constant throughout the finite volume cell as shown in

Figure V.5. I. In the process of updating the flow solution as in (5.6), both the area and the computed

flux for each am needed. Hence, for correct transfer of information, it is essential that both the

correct areas and fluxes are used.

Currently, fluxes are interpolated across the zonal inmfface considering only one dimensional

variation in the fluxes, that is, along the line of the zonal interface. Also, interpolation is carried

out considering only the lengths of the segments at the zonal interface and no care is being taken

to ensure that the proper areas are used for computation. The following interpolation scheme is

suggested for consistent interpolation :

V.5.3 Suggested Interpolation Scheme

To develop a consistent interpolation scheme, the following points need first to be noted •

1. Fluxes are assumed constant throughout the entire finite-volume cell.
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, Flux interpolation has to be performed in two dimensions and not in one dimension.

Assume that the sub-mesh from which fluxes are interpolated is extended into the other sub-mesh
to a sufficient distance so that all cells for the vertices of that sub-mesh for which fluxes are to be

interpolated are contained by the cells generated from the extension of the first sub-mesh.

Consider a cell C belonging to the sub-mesh to which fluxes are to be interpolated as shown in

Figure V.5.6. The boundary of C is shown in solid lines while those for cells belonging to the

extended sub-mesh are shown in dotted lines. For the present, assume that the cell C overlaps the

cells of the extended mesh so that it creates 4 areas of intersection, namely Ail, Ai2, Ai3 and Ai4.

Figure V.5.6 : Intersection of Cells of Different Sub-Meshes for Flux In-

terpolation

Let the fluxes corresponding to these cells be FI, F2, F3 and F4 respectively and the whole areas

of these cells be A I, A2, A3 and A4. Then, the flux contribution of the cell with area A i to cell C

will be (All�A1) × F1 and likewise for the other cells. Thus, the flux for cell C will be given by,

Ai2 F_ Ai3 = Ai4 = (5.8)
A i l F l q- _2 . q- --_3 r 3 -b AW r4Fc-- Al

Clearly, this will be conservative as the sum of all areas of intersection is equal to the area of cell

C.
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The interpolation method will thus comprise of the following steps :

Extend the grid to which fluxes are to be interpolated into the grid from which fluxes are to be

interpolated to generate "complete" cells.

Determine the extent of the cells generated as mentioned above.

Extrapolate the grid from which fluxes are used for interpolation so that the cells of the extended

grid "cover" the cells of the other sub-mesh lying on the interface generated in step 1.

Determine the extent of overlap of each cells of the extended mesh with cells generated in step 1.

At each time step, (a) compute fluxes on the sub-mesh from which fluxes are used for interpolation,

(b) interpolate the fluxes to the other sub-mesh conservatively as in (5.8), (c) update the independent

variables on this sub-mesh, and, (d) interpolate the independent variables back to the other sub-mesh.

The resulting scheme will be fully conservative. Also, as the only assumptions made are consistent

with the assumptions made in the original Euler solver, namely, that variables vary linearly over

the triangles and that fluxes are constant over each finite-volume cell, it is expected to create no

additional errors on account of interpolation.
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V.6 Results

This section describes the results obtained for discontinuous unstructured grids using the methods

outlined in Section V.5.2.3 and mentions the salient points for the completion of proposed research.

V.6.1 Numerical Results

The shock tube problem proposed by Sod [41 ], provides a good test for the ability of a fluid solver

to treat shocks and other discontinuities, is used often in analysis of methods in computational

fluid dynamics. As the main focus of attention in developing a methodology to perform patched

grid computations on unstructured grids revolves around allowing free and undisturbed passage of

shocks and discontinuities, the shock problem has been used to test the method(s) for preliminary

analysis. This section gives a brief overview of the physics of the shock-tube problem.

V.6.1.1 The Physical Shock Tube Problem

The shock tube is designed to trace the development of shocks and other discontinuities from a

contact discontinuity in the initial state for the Euler equations given by (5. l).

The shock tube is a l × 1 (in physical dimensions), tube closed at both ends with a diaphragm

separating a region of high-pressure (P4) gas on the left from a region of low-pressure (Pl) gas on

the right. This setup and initial state is illustrated in Figure V.6.1.

When the diaphragm is broken, a shock wave propagates into section 1 and an expansion wave

propagates into section 4. This is illustrated in Figure V.6.2. As the normal shock wave propagates

to the right, it increases the pressure behind it in region 2 and induces a mass motion in that region.

The contact surface (interface between the region of high and low pressure) moves to the right with

the same velocity as that of the mass motion in region 2. The expansion wave propagates to the

left, smoothly and continuously decreasing the pressure in region 4 to the lower value P3 behind

the expansion wave.
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Figure V.6.1 : Initial State for the Shock Tube Problem
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Figure V.6.2 : Flow in the Shock Tube after the Diaphragm is broken

For current simulations, the following initial conditions are used for the shock tube problem :

U4_b/I :0

P4 = 1.0 Pl = 0. l

P4 : l.O Pl = 0.125

V.6.1.2 Computational Setup for the Shock Tube Problem
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Results for the current simulations are presented on 3 grids for the shock tube problems •

i. Grid 1 : This is a patched grid made of two 3 x 51 grids which are reflections of each other. This

grid has the special advantage that extrapolated "complete" cells are exactly identical and overlap

each other completely as required by the suggested interpolation scheme presented in Section V.5.3.

When first-order accuracy is used, interpolation of fluxes will be fully conservative and this will

serve to illustrate the validity of the proposed method, see Figure V.6.3.

2. Grid 2 : This is a more general patched grid and is used to illustrate the current status of the patched

grid methodology and to highlight its features and drawbacks. It consists of two patched grids of

3 x 51 and 5 x 51, see Figure V.6.4.

3. Grid 3 : Grids 1 and 2 mentioned above do not fully test the capabilities of the patched grid solver

as the extent of required interpolation is limited. Grid 3 is therefore used to examine what happens

when fluxes have to be interpolated over a larger zonal interface. This is a patched grid made

of a 3 x 101 grid and 3 x 1 I0 grid with the zonal interface being perpendicular to the contact

discontinuity of the shock tube problem, see Figure V.6.5.
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Figure V.6.3 : Grid 1 for Shock Tube Problem Computation
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Figure V.6.5 : Grid 3 for Shock Tube Problem Computation

V.6.1.3 Results for the Shock Tube Problem

Typically, results for the shock tube presented at the physical time of t = 0.16 seconds. Two types

of results are given, each with first- and second-order accuracy for both the grids mentioned above :

1. Flux interpolation at the interface based on Rai's method.

2. Independent flux computations by double symmetrization.

Each plot shown below is the variation of density with distance.

V.6.2 Conelusions

From the above experiments it can be see that :

1. Results for single and patched grid computations match fairly overall.

2. There is a loss in spatial accuracy near shocks and discontinuities when second-order accuracy is

used which can be attributed inconsistent flux interpolation as mentioned in Section V.5.2.2.

3. For the case of first-order accuracy simulations for Grid 1, results from single and patched grids

match exactly indicating the validity of the proposed solution method.
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V.7 Conclusions and Proposed Future Work

The main aim of research performed in the recent past was to develop a methodology for patched

(discontinuous) unstructured grids. Emphasis was laid on the ability to transfer fluxes correctly so

as to allow smooth and uninterrupted passage of shocks and other discontinuities.

A method was developed following the method of Rai [34] in which the grid of one zone is

extrapolated into another and fluxes are computed by interpolating the independent variables at the

extrapolated grid points. These fluxes are then interpolated conservatively to the other grid at which

the solution is updated. The independent variables are then interpolated back to the extrapolated

grid.

This method has been fairly successful in capturing shocks and discontinuities as has been illustrated

by numerical experiments on the shock tube problem. This is especially true in the case when first-

order accuracy is used in computation and the results obtained for a single grid and a patched

grid match almost exactly, see Figures V.6.6, V.6.7 and V.6.10, V.6.11. For second-order spatial

accuracy, however, a slight loss in spatial accuracy is observed near shocks although results in other

regions of flow are in good agreement with those for a single grid, see Figures V.6.8, V.6.9 and

V.6.12, V.6.13.

In terms of computational costs, the additional computations do not impose a severe burden on the

efficiency of the fluid solver and it is expected that this cost would not be much compared to the

time required for a fluid iteration.

A new method has been proposed which would attempt to alleviate the problems associated with

losses in spatial accuracy and this has been confirmed with the results obtained for first-order

accuracy in space for Grid 1 in Section V.6.1.3 (Figures V.6.6, V.6.7. To implement this method, an

efficient algorithm to compute the intersection of two arbitrary simple polygons in 2-dimensions

and two arbitrary polyhedra in 3-dimensions will be needed. A brief literature review of the area

of computational geometry revealed the existence of many such algorithms and only the selection

of an appropriate algorithm and its integration into the fluid code remain.

At present, only preliminary results on the shock tube problem have been given. In order to

investigate the methods further, experiments will have to be carried out for more complicated

situations. An important area of investigation would be the effect of moving meshes on the flux

interpolation process. Considerable attention will have to be devoted to this in order to avoid

the creation of any unnatural numerical shocks. First, it is expected that these investigations

will be carried out in 2-dimensions and then extended to 3-dimensions after which truly unsteady

simulations of rotor-stator interaction phenomena can be carried out.

V-47



Bibliography

[1] J. J. Adamczyk. Model Equation for Simulating Flows in Multistage Turbomachinery.

ASME Paper 85-GT-226, 1985.

[2] M. A. Bakhle, T. S. R. Reddy, and T. G. K. Jr. Time Domain Flutter Analysis of

Cascades Using a Full-Potential Solver. AIAA Journal, 30(1):163-170, January 1992.

[3] J. T. Batina. Unsteady Euler Airfoil Solutions using Unstructured Dynamic Meshes.

AIAA Paper 89-0115.

[4] O. O. Bendiksen. Aeroelastic Problems in Turbomachines. AIAA Paper AIAA-90-
1157-CP.

[5] O. O. Bendiksen. Role of Shocks in Transonic/Supersonic Compressor Rotor Flutter.

AIAA Journal, 24:1179-1186, July 1986.

[6] R. V. Chima. Development of an Explicit Multigrid Algorithm for Quasi Three-

Dimensional Flows in Turbomachinery. NASA TM-87128, January 1986.

[7] R. V. Chima and J. W. Yokota. Numerical Analysis of Three-Dirnensional Viscous

Internal Flows. AIAA Journal, 28(5):798-806, May 1990.

[8] J. Donea. Arbitrary Lagrangian-Eulerian Finite Element Methods. In T. Belytschko

and T. J. R. Hughes, editors, Computational Methods for Transient Analysis, volume 1 of

Computational Methods in Mechanics, chapter 10, pages 473-516. North-Holland, 1983.

[9] J. I. Erdos, E. Alzner, and W. McNally. Numerical Solution of Periodic Transonic

Flow through a Fan Stage. AIAA Journal, 15(11):1559-1568, November 1977.

[10] C. Farhat, L. Crivelli, and F. X. Romx. A Transient FETI Methodology for Large-

Scale Parallel Implicit Computations in Structural Mechanics. International Journal of

Numerical Methods in Engineering, 37:1945-1975, 1994.

[11] C. Farhat, L. Crivelli, and F. X. Roux. Extending Substructure Based Iterative Solvers

to Multiple Load and Repeated Analyses. Computer Methods in Applied Mechanics and

Engineering, 1994:195-209, 1994.

[12] C. Farhat and S. Lanteri. Simulation of Compressible Viscous Flows on a variety

of MPPs : Computational Algorithms for Unstructured Dynamic Meshes and Per-

formance Results. Computer Methods in Applied Mechanics and Engineering, 119:35-60.

1994.

[13] C. Farhat, S. Lanteri, and H. D. Simon. TOP/DOMDEC -- a Software Tool for

Mesh Partitioning and Parallel Processing. Computing Systems in Engineering, 6(1): 13

26, February 1995.

[14] C. A. Felippa. Lecture Notes in Introduction to Linear Finite Element Methods, volume II.

University of Colorado, Boulder, 1989.

[15] L. Fezoui and B. Stoutttet. A Class of Implicit Upwind Schemes for Euler Simulations

with Unstructured Meshes. Journal of Computational Physics, 84:174-206, 1989.

V-48



[16] S. Fleeter. Aeroelasticity Researchfor TurbomachineApplications. Journal of Aircraft,

16(5):320-326, May 1979.

[17] G. A. Gerolymos. Numerical Integration of the Blade-to-Blade Surface Euler Equa-

tions in Vibrating Cascades. AIAA Journal, 26(12):1483-1492, December 1988.

[18] G. A. Gerolymos. Advances in the Numerical Integration of Three-Dimensional Euler

Equations in Vibrating Cascades. Journal of Turbomachinery, 115:781-790, October

1993.

[19] M. B. Giles. Stator/Rotor Interaction in a Transonic Turbine. Journal of Propulsion

and Power, 6:621-627, Sept.-Oct. 1990.

[20] U. A. Gumaste, C. A. Felippa, and C. Farhat. Massively Parallel 3D Aeroelastic

Analysis of Jet Engines. In ComputationaI Aerosciences Meeting. NASA, 1996.

[21] J. L. Kerrebrock. Aicraft Engines and Gas Turbines. The MIT Press, 1992.

[22] M. Koya and S. Kotake. Numerical Analysis of Fully Three-Dimensional Periodic

Flows through a Turbine Stage. Journal of Engineering for Gas Turbines and Power,

107:945-952, October 1985.

[23] F. Lane. Supersonic Flow Past an Oscillating Cascade with Supersonic Leading-Edge

Locus. Journal of the Aeronautical Sciences, 24:65-66, January 1957.

[24] S. Lanteri. Parallel Solutions of Three-Dimensional Compressible Flows. Rapport de

Recherche 2594, INRIA Sophia-Antipolis, June 1995.

[25] S. Lanteri and C. Farhat. Viscous Flow Computations on MPP systems : Implenmn-
tational Issues and Performance Results for Unstructured Grids. In R. F. S. et al.

editor, Parallel Processing for Scientific Computing, pages 65-70. SIAM, 1993.

[26] B. V. Leer. Towards the Ultimate Conservative Difference Scheme V : a Second-Order

Sequel to Godunov's Method. Journal of Computational Physics, 32:361-370, 1979.

[27] M. Lesoinne. Mathematical Analysis of Three-Field Numerical Methods for Aeroelastic

Problems. PhD thesis, University of Colorado, Boulder, 1994.

[28] R. J. LeVeque. Numerical Methods for Conservation Laws. Lectures in Mathematics -

ETH Ziirich. Birkh£user Verlag, second edition, 1992.

[29] N. K. Madavan and M. M. Rai. Computational Analysis of Rotor-Stator Interaction

in Turbomachinery Using Zonal Techniques. In P. A. Henne, editor, Applied Computa-

tional Aerodynamics, volume 125 of Progress in Astronautics and Aeronautics, chapter 13,

pages 481-532. American Institute of Aeronautics and Astronautics. 1990.

[30] N. Maman and C. Farhat. Matching Fluid and Structure Meshes for Aeroelastic

Computations : A Parallel Approach. Computers and Structures, 1994.

[31] K. C. Park and C. A. Felippa. Partitioned Analysis of Coupled Systems. In T. Be-

lytschko and T. J. R. Hughes, editors, Computational Methods for Transient Analysis,

V-49



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

[41]

[42]

[43]

[44]

[45]

volume 1 of Computational Methods in Mechanics, chapter 10, pages 157-219. North-

Holland, 1983.

S. Piperno, C. Farhat, and B. Larrouturou. Partitioned procedures for the tran-

sient solution of coupled aeroelastic problems Part I : Model problem, theory and

two-dimensional application. Computer Methods in Applied Mechanics and Engineering,

124:79-112, 1995.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in FORTRAN -- The Art of Scientific Computing. Cambridge University Press, second

edition, 1992.

M. M. Rai. A Conservative Treatment of Zonal Boundaries for Euler Equation Cal-

culations. Journal of ComputationaI Physics, 62:472-503, Feb. 1986.

M. M. Raft Navier-Stokes Simulations in Rotor/Stator Interaction using Patched and

Overlaid Grids. Journal of Propulsion and Power, 3(5):387-396, Sept.-Oct. 1987.

M. M. Rai and N. K. Madavan. Multi-Airfoil Navier-Stokes Simulations of Turbine

Rotor-Stator Interaction. Journal of Turbomachineu, 112:377-384, July 1989.

E. S. Reddy and C. C. Chamis. BLASIM : A Computational Tool to Assess Ice Impact

on Engine Blades. AIAA Paper 93-1638.

T. S. R. Reddy, M. A. Bakhle, R. Srivastava, O. Mehmed, and G. L. Stefko. A Re-

view of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research

Center. NASA TP-3406, December 1993.

P. L. Roe. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes.

Journal of Computational Physics, 43:357-371, 1981.

R. Sedgewick. Algorithms in C. Addison-Wesley, 1990.

G. A. Sod. A Survey of Finite Difference Methods for Systems of Nonlinear Hyperbolic

Conservation Laws. Journal of Computational Physics, 1978.

R. Sriv_tava, L. N. Sankar, T. S. R. Reddy, and D. L. Huff. Application of an Efficient

Hybrid Scheme for Aeroelastic Analysis of Advanced Propellers. Journal of Propulsion,

7(5):767-775, Sept-Oct t991.

J. L. Steger and R. F. Warming. Flux Vector Splitting of the Inviscid Gasdynamic

Equations with Application to Finite-Difference Methods. Journal of Computational

Physics, 40:263-293, 1981.

M. Stewart. Axisymmetric Aerodynamic Numerical Analysis of a Turbofan Engine.

ASME Paper 95-GT-338, 1!)95.

E. Sutjahjo and C. C. Chanfis. Three-Dimensional Multidisciplinary Finite Elements

for Coupled Analysis involving Fluid Mechanics, Heat Transfer and Solid Mechanics.

AIAA Paper 96-1372.

V-50



[46] T. Tezduyar, M. Behr, and J. Liou. A New Strategy for Finite Element Computations

involving Moving Boundaries and Interfaces -- The Deforming Spatial Domain/Space-

Time Procedure : I. The Concept and the Preliminary Numerical Tests. Computer

Methods in Applied Mechanics and Engineering, 94:339-351, 1992.

[47] P. D. Thomas and C. K. Lombard. Geometric Conservation Law and Its Application

to Flow Computations on Moving Grids. AIAA Journal, 17(10):1030-1037, October

1979.

[48] M. H. Vavra. Aero-Thermodynamics and Flow in Turbomachines. John Wiley L: Sons,

1960.

[49] C.-H. Wu. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic

Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN-2604, 1952.

V-51




