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Abstract

A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating
aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates
are numerically calculated using direct differentiation of the respective discretized governing
equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes
equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are
calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained
compare well with those obtained using the finite difference approach and establish the
computational efficiency and accuracy of the semi-analytical procedures.

Multidisciplinary design optimization procedures have been developed for aerospace
applications namely, gas turbine blades and high speed wing-body configurations. In complex
applications, the coupled optimization problems are decomposed into sublevels using multilevel
decomposition techniques. In cases with multiple objective functions, formal multiobjective
formulation such as the Kreisselmeier-Steinhauser function approach and the modified global
criteria approach have been used. Nonlinear programming techniques for continuous design
variables and a hybrid optimization techngiue, based on a simulated annealing algorithm, for
discrete design variables have been used for solving the optimization problems.

The optimization procedure for gas turbine blades improves the aerodynamic and heat
transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is
performed using a panel code. The blade heat transfer analysis is performed using an in-house
developed finite element procedure. The optimization procedure yields blade shapes with
significantly improved velocity and temperature distributions.

The multidisciplinary design optimization procedures for high speed wing-body
configurations simultaneously improve the aerodynamic, the sonic boom and the structural
characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized
Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The
aircraft wing load carrying member is modeled as either an isotropic or a composite box beam.
The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed
using a finite element procedure. The developed optimization procedures yield significant
improvements in all the performance criteria and provide interesting design trade-offs. The semi-
analytical sensitivity analysis techniques offer significant computational savings and allow the use

of comprehensive analysis procedures within design optimization studies.



1. Introduction

Design of aerospace vehicles is associated with complex multidisciplinary couplings. The
design process inherently involves interactions between various disciplines of engineering such as
aerodynamics, structures, dynamics, aeroelasticity, heat transfer, controls and acoustics. Also, the
impact of the operation of aerospace vehicles on the environment is gaining attention and
importance at all stages of the design process. Examples of factors that have environmental impact
include the engine noise, sonic boom, emission effects etc. The final vehicle configuration has to
satisfy a number of design requirements associated with the various disciplines. Often, these
multidisciplinary requirements are conflicting in nature. Design requirements that enhance the
performance of the aerospace system in one discipline, may deteriorate its performance in other
disciplines. For example, in high speed aircraft, it is desirable to have slender wings and a slender
fuselage from aerodynamics point of view. From a structural view point, it is necessary to have a
sufficiently thick wing to carry the aerodynamic loading well within material limits. From a
payload point of view, the fuselage has to have a minimum volume to accomodate an economically
feasible amount of payload. These are examples of conflicting design requirements. Also, the
impact of individual design features on the overall system performance is often not apparent to the
designer. Therefore, the designer must be able to evaluate the various conflicting design
requirements and provide insight into the effect of each design feature on the overall performance
of the system. In a typical aircraft design procedure, these conflicting design requirements are
compromised through a trade-off study. With the advent of modern computer technology,
Multidisciplinary Design Optimization (MDO) techniques could be well suited for such design

trade-off studies.

1.1 Multidisciplinary Design Optimization (MDO)

Multidisciplinary design optimization involves the coupling of two or more disciplines,
associated with the design of a sytem, within a closed loop numerical optimization procedure. The
importance of multidisciplinary couplings in successful design optimization of aerospace systems
has been long recognized. Sobieszczanski and Loendorf [1] developed a MDO procedure for the
design of fuselage structures. Fulton et al. [2] performed design optimization of a complete aircraft
model that involved 700 design variables and 2500 constraints. Barthelemy et al. [3-5] developed
MDO procedures for supersonic transport aircraft which included structural, aerodynamic and
aeroelastic criteria. Celi and Friedmann [6] developed a MDO procedure that performed structural
optimization of rotor blades with constraints on their aeroelastic behavior. Chattopadhyay et al. [7-
12] and McCarthy et al. [13-14] have developed several MDO procedures that integrate structural,

aeroelastic and aerodynamic performance criteria for various rotary wing applications. In these



research efforts, optimization is performed by addressing all the design criteria in a single level.
Such an optimization approach, referred to as the “individual discipline feasible” formulation [15-
16], can be inefficient and may restrict design variable movement due to conflicting design

requirements.
1.1.1 MDO Using Multilevel Decomposition

A highly integrated and large design optimization problem can be decomposed into a
number of smaller subproblems using a process referred to as multilevel decomposition. The
subproblems are optimized separately and a procedure, which accounts for the interdisciplinary
coupling, is devised so that at convergence, the resulting optimum is that of the original non-
decomposed problem. Decomposition also helps decrease the size of the optimization problem
because each subproblem uses only a subset of the original design parameters as design variables.
For some problems, the process that accounts for interdisciplinary coupling may be non-iterative.
Multilevel decomposition techniques with a non-iterative interdisciplinary coupling process are
called hierarchical decomposition techniques [16]. For highly coupled systems, the process that
establishes interdisciplinary coupling is iterative in nature. Multilevel decomposition techniques
with such iterative coupling processes fall under non-hierarchical decomposition techniques [16].
Multilevel decomposition techniques have been widely applied to problems in structural
optimization. Schmit et al. {17-18] developed a hierarchical procedure for truss and wing box
models that included local and global constraints. Hughes [19] developed similar ideas for naval
structures. Sobieszczanski [20] developed a linear decomposition method for a large class of
nonlinear design problems. The effectiveness of this method has been demonstrated on two- and
three-level structural framework design problems [21-23]. Using the same method, Wrenn and
Dovi [24] optimized a complex transport wing model with 1200 variables and 2500 nonlinear
constraints. The method has been adapted to penalty function optimization techniques [25] where
improved efficiency is demonstrated by limiting the optimization to a single minimization step for
each subproblem within each cycle. Kirsch [26] used a multilevel formulation for the simultaneous
analysis and optimization of reinforced concrete beams. An obstacle to the use of multilevel
methods is that they can be computationally expensive because of the cycling necessary to account
for the coupling between the subproblems. Barthelemy and Riley [27] developed an improved
approach that increases the computational efficiency of multilevel optimization by adopting
constraint approximation and temporary constraint deletion. Barthelemy [28] reviewed various
engineering applications of heuristic decomposition methods. Bloebaum and Hajela [29] have

applied these methods for the decomposition of non-hierarchical systems.



Attempts have also been made to use multilevel decomposition techniques for MDO
problems. Rogan and Kolb [30] showed how a transport aircraft preliminary design problem can
be treated as a multilevel optimization problem. Adelman et al. [31] have reported a two-level
procedure for performing integrated aerodynamic, dynamic and structural optimization of rotor
blades, based on the multilevel optimization strategy described in Ref. 20. Chattopadhyay et al.
[32] developed a three-level, non-hierarchical procedure for optimization of helicopter rotor blades
with the integration of aerodynamics, dynamics, aeroelastic stability and structures. The blade
aerodynamic performance was improved in level 1, the dynamic performance and the aeroelastic
stability roots of the blade were improved in level 2 and the blade structural weight was reduced in
level 3 subject to stress constraints. Chattopadhyay et al. [33] also developed a two-level
decomposition procedure for improved high-speed cruise and hovering performance of tiltrotor
aircraft. These non-hierarchical multilevel optimization procedures cycle through the various levels
until global convergence is achieved. The interdisciplinary coupling between the various levels is
established through optimal sensitivity parameters [34-37]. At a given level, the optimal sensitivity
parameters are the derivatives of the objective functions and design variables of the other levels

with respect to design variables of the current level.
1.1.2 Accuracy of MDO Procedures

The validity of the designs obtained using MDO procedures depends strongly upon the
accuracy of the analysis techniques used. The reliability and practical implementation of the design
trends obtained from MDO procedures are critically dependent on the accuracy of the analysis
techniques used within them. It is essential to integrate accurate, efficient and comprehensive
analysis techniques within the MDO procedures so that the optimum designs obtained are
dependable. Such detailed analysis techniques are computationally intensive and therefore, can be
prohibitive within a design optimization environment. For example, in high speed aircraft design,
it is essential to use a comprehensive aerodynamic analysis procedure to solve the complex flow
field around the aircraft. Although accurate detailed analyses of many complex flow fields are now
possible using efficient Computational Fluid Dynamics (CFD) solvers and powerful
supercomputers, viscous-compressible flow calculations around supersonic aircraft can require
several Central Processing Unit (CPU) hours per steady-state solution. Therefore, the use of such
comprehensive analysis procedures within MDO can be computationally expensive, especially if
gradient-based techniques are used. Gradient-based optimization techniques require the calculation
of the derivatives of the objective functions and constraints of the optimization procedure with
respect to the design variables during each optimization cycle. The calculation of these derivatives

is termed sensitivity analysis. In a typical multidisciplinary optimization process, most of the



computational effort is spent towards sensitivity analysis. The computational time required for
performing sensitivity analysis directly increases with (1) the complexity of the analysis procedures
used and (2) the number of design variables involved. Since accurate MDO procedures typically
use comprehensive analysis procedures and a large number of design variables, it is important to

develop and use efficient sensitivity analysis techniques.
1.2 Design Sensitivity Analysis

Sensitivity analysis, in which the derivative of a system performance function (e.g., the
lift-to-drag ratio of an aircraft wing) with respect to design variables (e.g., wing root chord) is
calculated, is an essential component in gradient-based design optimization. A widely used
technique for performing sensitivity analysis is the method of finite differences. In this method,
the performance function, whose derivatives with respect to design variables are to be calculated, is
first evaluated at the given design point. Then, the design variables are perturbed, one at a time
and the function is evaluated at each one of these perturbed design points. The derivatives of the
performance function are then calculated by taking the differences between perturbed function
values and the original function value and dividing these differences by the corresponding
perturbations in the design variables. As a result, the use of this method requires several
applications of the appropriate analysis procedures. For example, if there are NDV design
variables, then the finite difference method requires the execution of the analysis procedures at least
(NDV+1) times. Thus the associated computational cost can be prohibitive when this method is
used in an optimization problem involving a large number of design variables and computationally
intensive analysis procedures (such as CFD codes for evaluating three-dimensional flow fields).
Therefore, it is necessary to develop alternative techniques to calculate design sensitivities, so that
complex analysis procedures may be more useful as practical design tools in multidisciplinary

design optimization environments.
1.2.1 Semi-Analytical Sensitivity Analysis

It has been recognized that analytical or semi-analytical techniques for sensitivity analysis
are preferable over the finite difference method due to their computational efficiency and accuracy
[38]. Two such techniques are the direct differentiation approach and the adjoint variable approach
[39-43]. These techniques have been widely used for sensitivity calculations in structural
optimization [39-43]. In the direct differentiation approach, the governing equations for the
response variables (e. g., flow variables in a CFD procedure) are differentiated with respect to the
design variables using chain rule. This yields a large linear system of equations for the sensitivities

of the system response variables. The derivatives of the system performance functions are readily



calculated from these response sensitivities. In the adjoint variable approach, adjoint variable
vectors are obtained as the solution to an adjoint problem. The adjoint variable vectors are then
used to calculate the sensitivities of the system performance functions. It is important to note that
in the adjoint variable approach, the design sensitivities of the system response variables are not
calculated. The two semi-analytical techniques are equivalent and yield identical results for the
sensitivities. There has been a widespread interest in using these techniques for calculating
aerodynamic sensitivities. Carlson and Elbanna [44-47] have used the direct differentiation
technique on the discretized transonic small perturbation and the full potential equations to obtain
aerodynamic sensitivities. Baysal et al. [48-51] have performed discrete sensitivity analysis by
directly differentiating the three-dimensional Euler equations. Korivi et al. [52] and Newman et al.
[53] have developed a semi-analytical sensitivity analysis procedure for the thin-layer Navier-
Stokes equations using an incremental strategy. In this approach, the aerodynamic sensitivities are
calculated in an incremental fashion similar to the flow solution.

Depending on the type of governing equations used, semi-analytical sensitivity analysis can
also be categorized either as a discrete approach [44-54] or a continuous approach [55-59]. The
discrete approach takes analytical derivatives of the discretized governing equations with respect to
design variables. The continuous approach, on the other hand, calculates the derivatives directly,
based on the continuous governing equations, by using the generalized calculus of variations [55-
56]. In other words, the governing equations are differentiated prior to their discretization. The
sensitivities are then calculated using a numerical algorithm similar to the one used for obtaining the
response solution. Jameson et al. [57-59] have developed such continuous sensitivity approaches
using the adjoint variable method to calculate aerodynamic sensitivities.

Bischof et al. [60-62] have developed a technique called automatic differentiation for
calculating sensitivities. Automatic differentiation techniques are based on the fact that every
function, no matter how complicated, is executed as a sequence of elementary operations such as
additions, multiplications and elementary functions such as Sine and Cosine in a computer. By
applying the chain rule repeatedly to the composition of these elementary operations and functions,
the derivatives of any complex function can be calculated exactly, even though this might be a

computationally intensive process.
1.2.2 Grid Sensitivity Analysis

Two main components of an aerodynamic sensitivity analysis procedure are: (1) the
calculation of the sensitivities of the flow variables and (2) the calculation of the sensitivities of the
computational grid with respect to the aerodynamic design variables. The sensitivities of the flow

variables are dependent upon the sensitivities of the computational grid coordinates [44-54]. In



most of the aforementioned work, finite difference techniques were used to calculate the grid
sensitivities. Very few formal investigations have been reported on the development of analytical
or semi-analytical techniques for computing grid sensitivities. Advanced elliptic and hyperbolic
grid generation codes are often used for generating grids for evaluating the flow fields of aircraft
configurations [63-64]. The use of the finite difference method for calculating grid sensitivities can
be computationally prohibitive in such cases. Taylor et al. [65-68] have developed a grid
sensitivity analysis procedure in which the Jacobian matrix of the entire grid with respect to the
grid points on the boundary of the domain is calculated. The sensitivities of the surface grid points
are calculated using an elastic membrane analogy to represent the computational domain and the
surface grid sensitivities are calculated from a structural analysis code using the finite element
method. Extension of this technique to complex three-dimensional flow fields can be complicated
and time consuming. Further, the use of an additional structural analysis code increases computing
time. Sadrehaghighi et al. [69-70] proposed an analytical approach for calculating grid sensitivities
in which algebraic grid generation is performed using transfinite interpolation and surface
parameterization in terms of design variables. The transfinite interpolation equations are
analytically differentiated to obtain the grid sensitivities. The most general parameterization of the
boundaries would require the specification of every grid point on the boundary which, however, is
impractical from a computational point of view. A quasi-analytical parameterization is used in
Refs. 69 and 70 that allows an aircraft component to be specified by a relatively small number of
parameters. However, the technique does not offer a great amount of generality because most
CFD codes use complex grids which are generated using methods based on partial differential
equations. Therefore, there is a need for developing efficient analytical or semi-analytical
techniques, for calculating the grid sensitivities, to be used within aerodynamic sensitivity analysis.

1.3 Practical Applications of MDO

The application of MDO to practical aerospace design problems is briefly discussed below.
The procedure integrates aerodynamics, structures and sonic boom in an effort to obtain an
optimum high speed aircraft configuration. In 1987, the US government identified the
development of long range, high speed transports as one of the three major goals in aeronautics
[71]. Since then, the National Aeronautics and Space Agency (NASA) and the aerospace industry
have conducted studies to determine the feasibility of developing an economically viable High
Speed Civil Transport (HSCT) and the required technology development [72-74]. These studies
have indicated that HSCT will have a potential market at the turn of the 215t century provided the
vehicle is environmentally compatible and can compete economically with advanced long-range
subsonic transports. The HSCT concept used in the studies [75] is a baseline vehicle designed to



carry 305 passengers with a range of 5000 nautical miles and a cruise Mach number of 2.4.
Advanced technologies that are required in the major discipline areas of aerodynamics, structures,
propulsion and flight deck systems for the development of the HSCT have since been identified
[75). NASA has developed the High Speed Research (HSR) Program which addresses these
requirements, primarily in the disciplines of aerodynamics and structures. In aerodynamics, one of
the goals of the HSR Program has been to achieve increased lift-to-drag ratios throughout the flight
regime which requires improved wing designs. High speed wing design efforts utilize state-of-
the-art CFD tools for flow analysis. Methods currently being developed for supersonic wing
design couple optimization schemes with CFD solvers (Full Potential, Euler, Thin Layer Navier
Stokes and Parabolized Navier Stokes) [76-79]. Reductions in airframe weight also contribute
towards better performance. Improvements in the areas of airframe structures and materials can
lead to significant weight reductions in the wing, fuselage and other structural components. These
improvements may be achieved through the development of new light weight high temperature
materials, innovative structural concepts, low-cost fabrication techniques and aeroelastic tailoring.
Optimization techniques are very useful in these efforts to develop improved designs.

Supersonic civil transport aircraft of the present day have unacceptable sonic boom
characteristics which prevent routine flights over population centers. The term sonic boom refers
to pressure variations away from the ambient pressure, at locations away from the aircraft (usually
at ground level). To make supersonic travel economically feasible for commercial operators, sonic
boom levels produced by future supersonic transport must be low enough to avoid severe
restrictions being placed on their flight paths. Hence sonic boom prediction and minimization
becomes an integral part of the high speed aircraft design process. Sonic boom studies conducted
in the past [80-87] indicate that low boom configurations typically exhibit a bluntness in the aircraft
nose region. However, extreme nose bluntness leads to degradation in the aerodynamic
performance which might affect the aircraft payload capacity. Such conflicting design
requirements between the various disciplines demand the use of formal multidisciplinary
optimization techniques to study the design trade-offs associated with the development of a vehicle
such as the HSCT.



2. Objectives

The primary goal of the present work has been to develop an efficient semi-analytical
sensitivity analysis technique to be integrated within advanced CFD codes for aerospace
applications. The CFD solver and the sensitivity analysis technique can then be used within formal
multidisciplinary design optimization procedures to investigate interdisciplinary couplings and
design trade-offs associated with applications such as high speed aircraft design. The secondary
goal of the present work has been to develop multidisciplinary design optimization procedures fora
practical aerospace application namely, the minimization of sonic boom associated with high speed
wing-body configurations.

In the present work, an efficient semi-analytical aerodynamic sensitivity analysis has been
developed inside a CFD solver and used within the multidisciplinary design optimization of high
speed wing-body configurations. The parabolized Navier-Stokes (PNS) equations have been used
extensively to compute complex, steady, supersonic, viscous flow fields [88-89]. A CFD
procedure, UPS3D, that is based on a finite volume approach [90-91] has been used to solve the
PNS equations for supersonic flows past high speed configurations in the present work. The
semi-analytical aecrodynamic sensitivity analysis procedure has been developed within the UPS3D
code using the discrete, direct differentiation approach. Here, the sensitivities of the flow variables
and the performance functions (e.g., drag and lift coefficients) are calculated by differentiating the
discretized governing equations [92-93]. The choice of the discrete approach has been due to the
fact that the finite volume algorithm of the PNS solver is readily amenable to such an approach.
The grid sensitivities, which are part of the semi-analytical aerodynamic sensitivity analysis, have
been efficiently calculated by differentiating the discretized, hyperbolic grid generation equations
[94-95] with respect to design variables. This results in a linear system of equations, which are
solved readily for the grid sensitivities. Aerodynamic design sensitivities have been calculated for
high speed configurations using the semi-analytical sensitivity analysis procedures. Representative
results have been compared with those obtained using the finite difference approach to establish the
computational accuracy and efficiency of the developed semi-analytical procedures.

To demonstrate the efficiency of the semi-analytical sensitivity analysis procedures within
an design optimization environment, a few MDO procedures have been developed for the
integrated aerodynamic, sonic boom and structural optimization of high speed configurations [92-
93,96-101]. In these optimization procedures, the aerodynamic design sensitivities are calculated
using the semi-analytical sensitivity procedures. The optimization procedures use a two-level
decomposition, where necessary. Appropriate aerodynamic and structural models have been
developed for the wing-body configurations. Design variables from these models have been used

within the optimization procedures.



3. Sensitivity Analysis

The calculation of the derivatives of all the objective functions and constraints with respect
to the design variables within an optimization procedure is referred to as sensitivity analysis. To
illustrate the different sensitivity analysis techniques, consider an aerodynamic performance
coefficient, C;. In the following sections, symbols in bold letters represent vectors. In general,
the coefficient Cj explicitly depends on the vector of flow variables, Q, the vector of computational
grid coordinates, X and the vector of design variables, . This can be represented mathematically
as follows.

C; = G(Q(®), X(®), D) 1)
The vector of flow variables, Q, and the vector of grid coordinates, X, are also functions of the
vector of design variables, ®. The derivative of C;j with respect to the ith design variable, ¢;, is of
interest here. As mentioned earlier, this derivative can be calculated using either the finite
difference method or the semi-analytical approach which are discussed in the following sections.

3.1 Finite Difference Sensitivity Analysis
In this approach, the coefficient Cj is evaluated at the current design point, @ and at a
perturbed design point, @ + A®;, where A®; is a vector whose elements, with the exception of the
ith element, are all equal to zero. The ith element of the A®; vector is equal to Ad; where Ad; is a
small, user-specified perturbation to the ith design variable, ¢;. Then, the derivative of Cj with
respect to ¢; is evaluated by,

dC; _ {C;(Q(P+ AD).X(P+ AD; ), P+ AD; ) - Cj(Q,X,(I))}

do; A;

(2)

Thus, if there are NDV design variables in the vector ®, then the coefficient C; has to be evaluated
(NDV+1) times, in order to calculate its derivatives with respect to all the design variables using
the one-sided finite difference method. This means that the acrodynamic analysis needs to be
executed (NDV+1) times which can be computationally expensive if a CFD-based analysis

procedure (e.g., 3-D PNS solver) is used.

3.2 Discrete Semi-Analytical Aerodynamic Sensitivity Analysis
In this research, the sensitivities of the aerodynamic performance coefficients of the aircraft
with respect to the relevant geometric parameters (design variables) are calculated using the direct
differentiation approach which is described in detail below.
The derivative of C;j with respect to the ith design variable, ¢;, can be obtained by using the

chain rule of differentiation on Eq. 1. This is expressed mathematically as,
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oc; [ fae), [ [ax]
do; —{SQ} {%i}+{ax} o0, +£i_ )

x . } {x ' }
Here, the terms {—2 b, {—2 > and — can be readily calculated since the explicit dependence of
(5o 3= 5

the aerodynamic coefficient C; on the vector of flow variables, Q, the vector of grid coordinates,

X, and the ith design variable ¢; are usually known. The term {9—9}, which represents the
i
sensitivities of the flow variables with respect to the ith design variable, cannot be calculated easily
TR - X :
because the dependence of Q on ¢; is implicit in nature. Similarly, the term {— , which
i
represents the sensitivities of the computational grid coordinates with respect to the ith design
variable, cannot be calculated readily because of the implicit dependence of X on ¢;. In this
research, these two terms are calculated using the direct differentiation approach. The calculation
of the sensitivities of the flow variables is discussed here and the calculation of the grid sensitivities
is discussed in the next section. In order to calculate {a—Q—} the discretized governing differential
i
equations for the flow variables need to be considered. The governing differential equations,

discretized over a computational domain, are expressed as follows.
{ RIQ(®),X(D),®) } = {0} 4)

Equation 4, when differentiated with respect to ¢, yields the following.
aR) [ar)"(aQ) [aR]"[3x]_ [oR
— b= d =l — b {— i — =10 5
{d¢i} {BQ} {34)1} {ax} {&Pi} {a‘bi} o

Equation 5 represents a set of linear algebraic equations in {99—} which need to be solved. Itisto
i
be noted that the terms {QB}, {@—} and {—85} in Eq. 5, can be calculated easily, since the
Q) (X 00;

explicit dependence of R on Q, X and ¢; is known from the numerical scheme used to obtain Eq.

.. X
4. Ttis also to be noted that the grid sensitivity vector, {—Q—}, must be calculated before Eq. 5 can
i

be solved for the flow variable sensitivities, {%}
i

11



3.3 Grid Sensitivity Technique
The term {%}, appearing in Eqs. 3 and 5, represents the grid sensitivity vector. One
1

way to calculate the grid sensitivity vector is to use the finite difference method, described in
Section 3.1, by perturbing each design variable individually and executing the grid generation
procedure (NDV+1) times. Over the past decade, grid generation techniques have advanced to a
very high level. Grid generation techniques, based on elliptic and hyperbolic differential
equations, are widely used in CFD instead of algebraic techniques due to their robustness [63].
With such advanced grid generation techniques, the finite difference method for calculating grid
sensitivities can be expensive. In this research, a direct differentiation approach has been
developed for calculating grid sensitivities. A hyperbolic grid generation scheme developed by
Steger et al. [102-104] has been used by the flow solver used in the present research. The
hyperbolic grid generation scheme in Ref. 104, formulated from grid orthogonality and cell volume
specification, can be used to generate three-dimensional grids for a wide variety of geometries.
Using this scheme, generalized computational coordinates §(x,y,z), N(x.y.z) and C(x,y,z) are
sought where the body surface is chosen to coincide with {(x,y,z) = 0 and the surface distribution
of € = constant and N = constant are user-specified. Here, the xyz coordinate system is a Cartesian
coordinate system representing the physical domain and &N coordinate system is the
computational domain used by the CFD procedure for aerodynamic analysis [Fig. 1].

The grid generation equations are derived from orthogonality relations between & and G,
between 1 and { and a cell volume or a finite Jacobian J constraint [101]:

X§XC+y§yC+Z§ZC =0 (6a)

XnXg+Ynyy +2nZg = 0 (6b)

Figure 1. Coordinate systems.
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x;’(ynzc —yczn)+xn(ycz¢ —y§z§)+xc(y§zn —ynz§) = AV (6¢)

or, with T defined as (x,y,z)T

7 =0 (7b)
a(X,¥,2)| _ (-1

— =] = AV 7
‘a(&,n,C) 7o

In Eq. 6¢, AV is a user-specified cell volume distribution. The cell volume at a given grid point is
set equal to the computed surface area element times a user specified arc length for marching in the
{ direction [104]. Equations 6 comprise a system of nonlinear partial differential equations which
can be solved for the grid coordinates, X, y and z, using a non-iterative implicit finite difference
scheme by marching in the { direction, starting with the initial (x, y, z) data specified at { = 0.
Linearization of Egs. 6 is performed about the previous marching step in { [104].

Let AE = An = A{ = 1 such that§ = j-1, = k-1 and L = 1-1. Central differencing of Egs.
6 in & and 1} with two-point backward implicit differencing in { leads to the following difference

equations.
A8g (41 = 1) +Bydn (G 1) +Cr (G4 — 1) = E1i ®)
where
g g Z
A= 0 0 0 (9a)
(Ynzt; - YZ;Zn) (ngn "xnzc) (anQ _XCYn)
0 0 0
B= X¢ ye z (9b)
(yezg—vezy) (xezg—xgzg) (Xgyp—Xeyy)
Xg Ye g3
C = Xn y'n Z‘n (9C)

(Y§Zn“YnZZ—,) (ang—xgln) (Xg)’n_xn)’§)
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0

gis=| O (9d)
AV
L Ty1—Tig w Tea1—T_
and 8 =-—"—, Snrk=———-—k+12k1 (%)

Here, only those indices that change are indicated, thus ry,; implies rjx 141 and rj,; implies rj41 k1

etc. Multiplying through Eq. 8 by Cl_l and approximately factoring gives
(1+C7 B3, )A+CT'Adg )it —1) = CT 'Bi (10)

where I is the identity matrix. Equation 10 is a sequence of two block tridiagonal systems which
can be solved readily to obtain the grid coordinates vector, Tj,j, which is part of the grid

coordinates vector, X.

The grid sensitivities {—ai} .are obtained by directly differentiation Eq. 10 with respect to

the ith design variable, ¢j. To illustrate the semi-analytical grid sensitivity technique, Eq. 10 is

rewritten based on the approximate factorization algorithm as:

(A+C7 "By )it = CT '8 (1D
where

A+CT' A )i —T) = i (12)

Thus, the grid generation is performed in two steps. First, Eq. 11 is solved for 1141, using a block
tridiagonal solver. The quantity, f,, is then used as the right hand side of Eq. 12. Next, Eq. 12
is solved using a block tridiagonal solver to obtain the new grid coordinates vector, fiy;. The grid

sensitivity calculations proceed in a similar two-step fashion. First, Eq. 11 is differentiated with
respect to ¢; resulting in,

I -1 -1
dyy _ d(G '8l dA+Ci Bidy) -

(I+C7'BS,) t (13)
LTS do; do; +
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Equation 13 is solved for the derivatives, itﬁ Next, Eq. 12 is differentiated with respect to ¢;

resulting in the following equation for {—aq—“} ,which are part of the grid sensitivity vector.

i

. -1
d(fy —5) _df,y dA+CrA®y) .
a0 do, TS (f41—1) (14)

Equations 13 and 14 represent linear systems of equations for the grid sensitivities. It 1s

(I+C7'A8¢)

important to note that the coefficient matrices on the left hand side of Egs. 11 and 13 are identical.
The coefficient matrices in Eqs. 12 and 14 are also identical. The block tridiagonal systems in Egs.
11 and 12 are solved within the grid generation procedure using a L-U decomposition scheme
which is also used for solving Eqs. 13 and 14, after the appropriate right hand side vectors of Egs.
13 and 14 are calculated for each design variable. The computational cost of calculating these right
hand side vectors is significantly lower than that of recomputing the L-U decompositions for NDV
design variables (as would be required by the finite difference approach during the execution of the
grid generation procedure an additional NDV times) resulting in significant CPU savings.

3.4 Adaptation of Sensitivity Analysis to Flow Solver

In this research, the semi-analytical aerodynamic sensitivity analysis technique described
above has been adapted to be used with the flow solver (PNS equations). The assumptions made
in deriving the PNS equations are outlined below [88-90]. The streamwise derivatives of the
viscous terms are neglected. This assumption is considered valid for high Reynolds number flows
[90]. The inviscid region of the flow field must be supersonic and the streamwise velocity
component must be positive everywhere. Thus streamwise flow separation is not allowed but
crossflow separation is allowed. Unlike the unsteady Navier-Stokes equations which require time
marching numerical schemes, the PNS equations are solved using space marching schemes
resulting in reductions in computational time and memory requirements. The PNS equations are
written in the computational domain (&ng system) as [90],

?_]_3_4_@_,_29_ =0 (15)
o an o

E= (%&]El +(§J1]Fi +(§J£JGi (16a)
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fr = (“T)az —E3)+("Tyj<Fi -F, )+[1;—)(Gi -Gy) (16b)

G= (%)(E —E‘;>+(§Ty]<Fi -F, >+(%£)(Gi -Gy) (16¢)

The inviscid flux vectors (subscript i) and viscous flux vectors (subscript v) are defined by

Ei:[pu pu2+p puv  puw (Et+p)u]T
T
Fi=[pv puv pvi+p pvw (Et+p)v] (17)

T
Gi=[pw puw pvw pw+p (E[+p)w]

T
E,= [O Tax  Txy Txz WixxHVTxytWTx—0x ]
F 0 T
v —[ Ty Tyy Tyz u’txy+v1:yy+w‘cyz—qy] (18)

T
G,= [O Tz Tyz Tz utxz+vtyz+wtzz—qz]
E = p[e+%(u2+v2+w2):| (19)

The superscript “*” on the viscous flux vectors in Egs. 16 indicates that derivatives with respect to
£ have been omitted. In these equations, p is the pressure, p is the density, u, v and w are the
velocity components in the x, y and z directions, respectively, e is the internal energy, 7 is the
viscous stress and q is the heat conduction rate. All physical quantities have been non-
dimensionalized appropriately [90]. The partial derivatives, &, &y, ..., Gy, Gz, are the metrics of
transformation between the En{ and the xyz system and J denotes the Jacobian of the
transformation. The flow solver is the UPS3D code [90] developed at NASA Ames Research
Center. The computational procedure used in this code integrates the PNS equations using an
implicit, approximately factored, finite-volume algorithm where the crossflow inviscid fluxes are
evaluated by Roe's flux-difference splitting scheme [91]. The UPS3D code also has the capability
of calculating the inviscid flow field, by solving the PNS equations without the viscous terms. In
the present research, this inviscid option has been used while evaluating the flow field. The
upwind algorithm is used to improve the resolution of the shock waves over that obtained with the
conventional central differencing schemes. The post-processor in the UPS3D solver evaluates the

non-dimensional force coefficients, such as lift coefficient (Cr) and drag coefficient (Cp), by
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integrating the pressure distributions over the surface of the body. Non-dimensionalization of
these force coefficients is performed using a user-specified characteristic area of the aircraft. The
numerical algorithm of the UPS3D solver calculates the flow solution by marching in the &
direction. The PNS equations given by Eq. 15 take on the following discrete form using the finite-

volume algorithm.

I 1
(B))) + (6-R) 7 +(Gi-63) 2 -
2 (20)
n+-—

where the subscript k represents a grid point in the 1y direction, the subscript 1 denotes a grid point
in the { direction, the superscript n denotes the grid point in the current £ location and the
superscript n+! denotes the next & step in the space marching scheme. To avoid departure
behavior of the flow solutions associated with Eq. 20, it is necessary to suppress the ellipticity that

is caused by the pressure gradient in the streamwise momentum equation. This is accomplished by

a technique developed by Vigneron et al. [105] in which the streamwise flux vector, (I:ZI );: ’ is

separated into two parts as follows.

A n A ~ —_
(&), = £"(dSk, URy)+ EP(as} ), URY') 1)
This splitting of the streamwise flux vector is unique to PNS solvers. However, even when the
inviscid option is used, the UPS3D solver [90] applies this splitting in its numerical algorithm.
This is one of the distinguishing features of the UPS3D solver. The forms of E" and EP of Eq.
21 are given by

pU 0
(2 Jop (5 Ju-a)p
E° = va+[—JZ—)0)p EP = (%l (1-o)p (22)
pwU+[%—)(op (%L (1-o)p
(B, + 0
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U = (‘;’—X)M Sy v+(§—z)w (23)
J J J
An eigenvalue analysis shows that Eq. 20 is hyperbolic-parabolic with respect to the new

dependent vector E, provided that o satisfies the relation

® = minl,——— Mg (24)
> 2
1+(y-1)Mg

where Mg is the Mach number in the & direction and ¢ is a factor used to account for nonlinearities

not otherwise included in the analysis. In Eq. 21, ﬁ*(dSﬂ,l,Uﬂ,l) means that E is evaluated

from Eq. 22 using the values of the metrics and the flow variables corresponding to station n.
Similarly, the term Ep(dSE,I,Uﬂjl) in Eq. 21 indicates that EP is evaluated from Eq. 22 using the

values of the metrics corresponding to station n and the flow variables (including ®) corresponding
to station (n-1). To avoid the difficulty of extracting the flow properties from the flux vector E
and to simplify the application of the implicit algorithm, a change is made in the dependent variable

from B to the vector of conserved variables, U, using the following linearization.

. n wn=1

E(dS",U“) = A un (25)
where

U = [p pupv pw E ]T (26)

t

and

el ok"(as",U"")

Ak,l = 27N

aUn—l

Using Roe’s flux vector splitting for the crossflow fluxes, the Vigneron technique [105] for
suppressing departure solution and an implicit algorithm, Eq. 20 is approximately factored into two
block-tridiagonal systems to yield the following discrete governing equations for calculating the
flow field [88].

18



Ak’l+ aUk1 n oU
- (282)
a(sg{(;,—Gv}) _ a{(‘;}-c‘;v} T p
Agl+ 50, 8 ——3g o| 8""Uy, = RHS"
where
A 0 A xn—1 ~ ~
RHS" = —(Ak’]—Ak,l )Uﬂ,l—ﬁn(F{I—Fv)
(28b)

- 5,(61-G,) - [EP(asti', U, )-8 (as, UF)

F! and G! are the first order cross flow fluxes in the 7 and the { direction, respectively. FII and
G are the second order cross flow fluxes in the 1| and the £ direction, respectively. The inviscid
option in the UPS3D solver ignores the viscous terms on both sides of Eq. 28a while solving for
the flow variables. The differencing operators in Eq. 28 are defined as follows.

SK(D = (D ]—(D 1
m+— m-—
2 2
M M (29)
— (oY% m+— m—-—
Sl loed0 = — 2B, - 2@,
"(auj Wy ™ U, ™

Using the discrete semi-analytical aerodynamic sensitivity analysis approach, the
discretized governing flow equations, Eq. 28, are directly differentiated with respect to the ith
design variable, ¢j. This yields a system of algebraic equations for the flow sensitivities which can

be approximately factored into two block tridiagonal systems as follows.
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LA"" T, ¢ ou &,
d(RHs")
do;
. o8, [FI-F i -k ) |1 .. o
Ay, + ( ngUkJ V}) o { T V} . [( k,l) 1] X
d
. o(8,{6! -6.}) _(o{6!-6.} " G0
T o0, 4~ v |
6n+lUk|
do; '

It is to be noted that the block tridiagonal coefficient matrices on the left hand sides of Eqs. 28 and
30 are identical. Hence, the L-U decompositions of the block tridiagonal matrices of Eq. 28 can
also be used for the calculation of the flow variable sensitivities from Eq. 30. Thus, it is only
required to calculate the appropriate right hand side vectors of Eq. 30 for all the design variables, in
order to calculate the flow variable sensitivities. In the finite difference approach, the flow solution
needs to be solved an additional NDV times which implies that the L-U decompositions of the
coefficient matrices of Eq. 28 are performed an additional NDV times. This makes the direct
differentiation approach computationally very efficient over the finite difference approach. The
following section describes the application of these procedures for the aerodynamic design

sensitivity analysis of a high speed wing-body configuration.

3.5 Design Sensitivity Calculations for Wing-Body Configurations
The semi-analytical sensitivity techniques for grid sensitivity and aerodynamic sensitivity
calculations, described above, are used to calculate the design sensitivities for a high speed
configuration. Numerical results for a delta wing-body configuration (Fig. 2) are presented here.
In this configuration, the center body is axisymmetric and is a combination of a nose region and an
extended cylindrical region. The forebody of the vehicle has a sharp nose with the radius, r,

varying quadratically with the axial coordinate, x, over the nose length, 1,. The radius of the
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cylindrical region is denoted ry,. The variation of the body radius of the body changes from the tip

to its maximum value, rm, over the nose length, ly, is given by

2
Iy — rm(l—f(—)
n

Here, x is the axial coordinate measured from the tip of the aircraft. The wing planform parameters

r =

(3D

include: leading edge sweep, A, root chord, ¢o, Wing span, ws and the wing starting location, Xw,
measured from the nose of the aircraft. The wing cross section is a diamond airfoil with the
thickness-to-chord ratio, tc. The total length of the body is denoted lp. The values of these
parameters used in the present case are: ¢, =7.08 m, A = 66.0 degrees, w, = 3.53 m, t, = 0.052,
rm=0.57m,l, =601 m xy=82Imandlp=1752m. A three-dimensional hyperbolic grid,
with 75 grid points in the circumferential (1) direction and 80 grid points in the normal ()
direction, is generated around the wing-body configuration for the flow analysis using the UPS3D
solver. The space marching scheme of the UPS3D solver uses a step size of 0.01 m. The
aerodynamic sensitivities are calculated for a cruise Mach number of 2.5 and an angle of attack of 5
degrees.

The grid sensitivities with respect to the leading edge sweep (A), root chord (co), wing
span (ws) and thickness-to-chord ratio (to) are presented in Table 1. Comparisons are made with
those obtained using the finite difference technique. The finite difference grid sensitivities are
calculated by perturbing each of the four variables by 0.1 percent. As shown, there is excellent
agreement between the results from the two techniques. The sensitivities at the first grid point are
zero because this point lies in the nose region of the aircraft and the four variables considered are

all wing design variables which do not affect the grid in the nose region.

Table 1. Grid sensitivity of the three-dimensional hyperbolic grid.

Grid point ﬁﬁesign variable Finite difference grid Direct differentiation
(X, Y, Z) sensitivity method grid sensitivity method
(0.38%,0%.)044, Sweep (1) (0.000, 0.000, 0.000)  (0.000, 0.000, 0.000)
Root chord (c,) (0.000, 0.000, 0.000)  (0.000, 0.000, 0.000)

Wing span (wy) (0.000, 0.000, 0.000)  (0.000, 0.000, 0.000)

Thickness/chord (t)) (0.000, 0.000, 0.000)  (0.000, 0.000, 0.000)

(13.19, (0.0, 0.0016, 0.0001) (0.0, 0.0016, 0.0001)

0561, 0104  SvePr®

Root chord (¢,)  (0.0,-0.0171,-0.0109) (0.0,-0.0170,-0.0108)
Wing span (w,)  (0.0,-0.0148,-0.0096) (0.0,-0.0149,-0.0097)
Thickness/chord (t,) (0.0,-1.0693,-0.7514) (0.0,-1.0695,-0.7517)
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A comparison of the CPU time on a CRAY-2 [Fig. 3] shows a 40 percent reduction achieved for
one complete grid sensitivity analysis using the direct differentiation approach over the finite
difference method. This clearly demonstrates the significant computational savings achievable by
using the direct differentiation approach. This is particularly important in a formal design

optimization procedure where several such design sensitivity analyses are necessary.
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Figure 2. Delta wing-body configuration (schematic).
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Figure 3. Comparison of CPU time (seconds) for the sensitivity of hyperbolic grid.

Results obtained from the aerodynamic sensitivity analysis procedure are presented nexlt.
The sensitivities of the inviscid drag coefficient (Cpy) and the lift coefficient (C;), calculated using
the direct differentiation technique as well as the finite difference approach, are presented in Tables
2 and 3 respectively. It must be noted that column 3 in Tables 2 and 3 presents the results of the
semi-analytical aerodynamic sensitivity approach with finite difference grid sensitivity while
column 4 presents the results of the semi-analytical acrodynamic sensitivity approach with semi-
analytical grid sensitivity. As shown, the results from both techniques are in excellent agreement.
For one complete sensitivity analysis, the direct differentiation technique with finite difference grid
sensitivity calculations results in a 30.5 percent reduction in computing time compared to the fully
finite difference sensitivity analysis [Fig. 4]. The semi-analytical sensitivity analysis technique
with semi-analytical grid sensitivity calculations yields a 39 percent reduction in computing time
compared to the finite difference approach [Fig. 4]. This further illustrates the efficiency of the

discrete semi-analytical technique for grid sensitivity calculations.
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Table 2. Sensitivity of the drag coefficient, (dCp/do;).

Design variable Finite difference Semi-analytical Semi-analytical
method (with finite  method (with semi-
difference grid analytical grid
sensitivity) sensitivity)
Sweep (L) -0.0097676 (1/deg.) -0.0096949 (1/deg.) -0.0097558 (1/deg.)

Rootchord (c,)  0.0382632 (I/m)  0.0356884 (1/m)  0.0377937 (1/m)
Wing span (w))  0.0241877 (I/m)  0.0240876 (1/m)  0.0241989 (1/m)
Thickness/chord (t,) 1.4164357 1.4218040 1.4233772

Table 3. Sensitivity of the lift coefficient, (dC; /d¢;).

Design variable Finite difference Semi-analytical Semi-analytical
method (with finite  method (with semi-
difference grid analytical gnd
sensitivity) sensitivity)
Sweep (L) -0.0943222 (1/deg.) -0.0944966 (1/deg.) -0.0955675 (1/deg.)

Root chord (c,) 0.0738337 (1/m) 0.0795423 (1/m) 0.0745353 (1/m)
Wing span (w) 0.0713310 (1/m) 0.0721375 (1/m) 0.0717341 (1/m)
Thickness/chord (t.) -1.9207192 -1.9154491 -1.9166282
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Figure 4. Comparison of CPU time for aerodynamic sensitivity analysis.
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4. Optimization Techniques

The multidisciplinary optimization procedure for the design of acrospace systems such as
high speed wing-body configurations requires the integration of several major disciplines. Since
an “all-at-once” approach in such cases is complex and inefficient, the problem is formulated using
a non-hierarchical, multilevel decomposition technique. In general, the optimization problem at
each level involves several objective functions, constraints and design variables. In the present
work, two different multiobjective formulation techniques have been used. These are the
Kreisselmeier-Steinhauser (K-S) function [106-107] approach and the modified global criteria [13]
technique. At levels where the K-S function approach is used, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [108] is used to solve the unconstrained nonlinear optimization
problem. At levels where a single objective function is involved, a nonlinear constrained
optimization algorithm based on the method of feasible directions [109-1 10} is used. At each level,
the optimization procedure is coupled with an approximate analysis technique based on a two-point
exponential expansion [111] thus making the overall procedure computationally efficient. The

following sections describe these procedures.

4.1 Multilevel Decomposition
The formulation of a MDO problem using a two-level procedure is illustrated in Fig. 5.
For example, in the case of an integrated aerodynamic and structural optimization of high speed
aircraft, level 1 may optimize aerodynamic criteria and level 2 may address structural criteria [92-
93, 100-101].
Each level is characterized by a multiobjective optimization problem with vectors of

objective functions, constraints and design variables. The formulation is outlined below.

Level 1
Minimize ~ F/(®') i = 1, , NOBII
subject to g}(((Dl)SO k =1, ,NC!
NDV! _ *
i |
—L Ao} < g j =1, ,NOBJ2
emd 00
i=1
o< ol < = L NV
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where F! and F2 are the objective function vectors at levels 1 and 2, respectively. The
corresponding constraint vectors are g! and g2 and the corresponding design variable vectors are
®! and ®2. The quantity 812 represents a tolerance on the changes to the jth objective function of

level 2, during level 1 optimization. Superscripts L and U refer to lower and upper bounds,
oF?

respectively and the superscript (*) represents optimum values. The quantities Jl are the
i

optimal sensitivity derivatives of the objective functions of level 2 with respect to the design

*
902
variables at level 1. The quantities Jl represent the optimal sensitivity derivatives of the design

i

variables at level with respect to the design variables at level 1.

Minimize Fi1 (<I)1 )

—>

subject to | Level 1 (Aerodynamics
gk(®)=0 and/or sonic boom)
BFJ?'* aq»}* (Optimal sensitivity
2* T — =" parameters)
i o o; 99
Minimize *
F2(@' %)
Level 2 (Structures)
subject to *
’ 2@ ,@*)<0

Figure 5. Two-level decomposition (schematic).
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subject to gﬁ((lll ,(I>2)S0 k =1, ,NC2
iZL < ¢i2 < iZU i=1,- ,NDV2

where ®!* is the optimum design variable vector from level 1. This vector is held fixed during
optimization at level 2. The optimization procedure cycles through the two-levels before global
convergence is achieved. A cycle is defined as one complete sweep through all the levels of
optimization. Optimization at an individual level also requires several iterations before local
convergence is achieved. The different levels are linked through the use of optimal sensitivity

parameters which are essential in maintaining proper interdisciplinary coupling.
4.2 Multiobjective Formulations

In general, a subproblem within a multilevel optimization procedure, as described above,
involves multiple objective functions and constraints. Since traditional optimization techniques
address problems with a single objective function, it is essential to use formal multiobjective
formulation techniques for such applications. In this research, two multiobjective formulation
techniques namely, the Kreisselmeier-Steinhauser (K-S) function approach and the modified global
criteria technique, have been used. The following sections describe these two formulations in
detail.

4.2.1 Kreisselmeier-Steinhauser (K-S) Function Approach

The Kreisselmeier-Steinhauser (K-S) function approach [106-107] has been successfully
used in various aircraft design applications [96-101]. In this approach, the original objective
functions are scaled into reduced objective functions. Depending on whether the individual
objective functions are to be minimized or maximized, these reduced objective functions assume
one of the two following forms

Fr(®
Fi(®) = Fi )10 - gman
0

IA
o

k=1, .., NOBJnin (32a)

Fr(®
Fu®) = 10- 52 gy
(o]

IA

O N k = 1, vee s NOBJmax (32b)
where Fy represents the original value of the kth objective function (Fg) calculated at the beginning

of each cycle and @ is the design variable vector. gmax represents the largest constraint in the

original constraint vector, gj(®), and is held constant during each cycle. The reduced objective
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functions are analogous to constraints. Therefore, a new constraint vector, fy(®) (m=1, 2, -,
M where M = NC + NOBJ), that includes the original constraints and the reduced objective
functions (Eqs. 32a or 32b), is introduced. The design variable vector remains unchanged. The

new objective function to be minimized is defined using the K-S function as follows

1 M _
Fis(®) = fmax + 61oge 3 P(m (®)~Tmax) (33)

m=1
where f,ax is the largest constraint in the new constraint vector f,(®) and in general, is not equal
to gmax. The composite function Fig(®), which represents an envelope function of the original
objective functions and constraints, can now be minimized using a suitable unconstrained
optimization technique.

An example of how the K-S function formulation works is illustrated in Figs. 6a and 6b for
an optimization problem with two objective functions to be minimized and one constraint. The
objective functions and the constraint are functions of single design variable, ¢. An initial design
point of ¢ = 0.5 is used in the example. At this point, the constraint is satisfied and, therefore,
gmax is negative. The original constraint and the two additional constraints from the two reduced
objective functions, calculated from Eq. 32a, are shown in Fig. 6b along with the K-S function
envelopes for two different values of p. Since gmax is negative, the constraints due to the two
reduced objective functions are positive and hence, violated, at the initial design point, ¢o. It is
seen in Fig. 6b that for p =1, the K-S function includes contributions from all the three constraints.
For a larger value of p = 3, the K-S function gets a stronger contribution from the largest
constraint and weaker contributions from the other two. Thus large values of p “draw down” the
K-S function closer to the value of the largest constraint. The value of p may change from cycle to
cycle. It is progressively increased so that, as the optimization proceeds, the K-S function more

closely represents only the largest constraint (or the most violated reduced objective function).
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Figure 6b. K-S function envelope.
4.2.2 Modified Global Criteria Approach

The modified global criteria approach [13] is an alternate way to formulate multiobjective
problems. In order to understand this approach, consider a problem with two objective functions,
f1(®) and fp(®). Let f; and f, be their corresponding individually optimized values or known
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target values. The two original objective functions are combined into the global criteria function,
F(®), as follows.

F(®) = (f) — 1) + (£, — F2)? (34)

The global criteria function, F(®), represents the new objective function which is to be minimized.
The minimization of F(®) forces the values of f; and f; towards their target values.

4.3 Approximate Analysis

The optimization techniques used in this research are gradient-based and they require
evaluations of the objective functions and constraints during every iteration of optimization. Since
it is computationally expensive to evaluate these functions through exact analysis all the time, an
approximate analysis technique is used within each iteration of the optimization. The two-point
exponential approximation technique developed by Fadel et al. [111], has been found to be well
suited for nonlinear optimization problems and has been used in the present research for
approximating the objective functions and the constraints within the optimizer. The technique is

formulated as follows.

NDV Pn
F(®) = F(dy) + gl [q‘l’—"] -1.0 %‘iaa; (@) (35)

ln
where lek(CI)) is the approximation to the objective function Fy at a neighbouring design point @,
based on its values and its gradients at the current design point ®; and the previous design point
®p. The approximate values for the constraints, §j(®), are calculated in a similar fashion. The

exponent py, in Eq. 35 is defined as:

loge{%(%)}—loge{%—(dﬂ )}

o Joo J-logfor ] G0

Pn

The exponent py, explicitly determines the trade-offs between traditional and reciprocal Taylor
series based expansions (also known as a hybrid approximation technique). In the limiting case
when pp, = 1, the expansion is identical to the first order Taylor series and when py = -1, the two-
point exponential approximation reduces to the reciprocal expansion form. In the present work,
the exponent is defined to lie within this interval, -1 < p, < 1. If the exponent p; is greater than 1,

it is set equal to one and if py, is less -1, it is set equal to -1. Equations 35 and 36 indicate that
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many singularity points may exist in the use of this method and hence, care must be taken to avoid
such points. In the present study, when singularity problems arise, the approximation technique is

reduced to the linear Taylor series expansion (p, = 1).

5. Applications of Multidisciplinary Design Optimization

A significant aspect of this research has been the development and application of MDO
procedures for aerospace designs. Several different MDO procedures have been developed. The
first example optimizes a theoretical, minimum drag body of revolution. This procedure is similar
to the optimization study conducted by Cheung et al. [78] and serves as a benchmark test for the
optimizer. The second example addresses the integrated aerodynamic/structural optimization of
high speed, delta wing-body configurations. The two-level decomposition technique described
earlier has been used in this application. The third MDO procedure has been used for the coupled
aerodynamic and sonic boom optimization of high speed wing-body configurations in a single
level. The K-S function multiobjective formulation technique is employed within this application.
The fourth MDO procedure has been developed using a two-level decomposition technique for
high speed wing-body design where aerodynamic and sonic boom criteria are improved in level 1
and structural criteria are optimized in level 2. These four MDO procedures use the
computationally intensive CFD solver, UPS3D [90], for aerodynamic analysis. Hence, the semi-
analytical sensitivity analysis techniques for calculating aerodynamic design sensitivities are used

for these four MDO procedures.
5.1 Aerodynamic Optimization of a Theoretical Minimum Drag Body

The first optimization procedure is applied to a body of revolution to minimize its wave
drag. The reference geometry used is the Haack-Adam (H-A) body [117-118]. This is a body of
revolution with a pointed nose and a base of finite area (Fig. 7). The H-A body has minimum drag
amongst all bodies in its class, according to slender-body theory for linearized, supersonic flows
[117-118]. In the present research, the minimization of the wave drag coefficient (inviscid, no lift
case) of the H-A body is carried out as a benchmark test. Results obtained are compared with
those obtained in Ref. 78.

5.1.1 Haack-Adam (H-A) Body
The H-A body (Fig. 7) is an axisymmetric body whose radius, r, varies with the axial

coordinate, x, as follows.
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In the above equations, Apage is the base area of the H-A body, Anax is the cross-sectional area at
the section of maximum thickness (Xmax) and lp denotes the length of the body. The wave drag is

non-dimensionalized by the product of the freestream dynamic pressure and the maximum cross-
sectional area (Amax). The resulting wave drag coefficient (Cp,), from slender body theory, is

given by
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Figure 7. Haack-Adam body.
2 ([ 4Ap,, ) 4A :
TC oo
Cp,, = —2 base | 4 3 (m+1)| —basey (45)
4Amax nlb m=] nlb

By definition, a H-A body satisfies the conditions that 1) the base area, Apase, is fixed and non-
zero, 2) the slope at the end, (dA/dx)|x=]b, is zero and 3) the location of the maximum thickness,

Xmax. 1 fixed. It can be verified that Eq. 43 satisfies the first two conditions automatically. The
third condition determines the value of y; to be,

1 I
_ _ 46
i 2c080max  2(2Xmax —1p) (46)
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The wave drag coefficient is independent of the freestream Mach number because the H-A body
satisfies the condition that the slope of the area at the end, (dA/dx)'x=1b, is zero. From Eq. 45, itis

clear that, for a body with minimum wave drag, Yy = 0 for m = 2.

5.1.2 Results and Discussion

In the present research, the optimization of the H-A body is initiated with identical
geometric parameters as reported in Ref. 78. The length of the H-A body (Ip) = 0.9 m and the
fineness ratio (In/2rmax) = 7. The location of the maximum thickness (xmax) = 0.525 m and the
corresponding value of theta (Bmax) = cos™1(1/6). The ratio of the base area to the maximum area
(Abase/Amax) = 0.532. Condition 3 requires the H-A body to satisfy (dA/dx)'X=Xmax = 0. Inthe
present research, this slope has been allowed to change in such a way that -1 < (dA/dx)|x=xmax <1

This condition is expressed as follows.

~2sin® Omax 471 sin? Omax €OSOmax +

oo <1 47)
3 ¥ m{cos(m)Bpax —cos(m +2)8pax }
m=2

Also, a constraint is imposed during the optimization to ensure that the radius of the optimal body

is greater than zero. This constraint is expressed as follows.

(n—6+%sin26)+ylgsin39+ Y Ym (48)

m=2

(sin(m)e _sin(m + 2)6) >0
m m+2 a

forallm=2020.

In the present research, five coefficients from Eq. 43, namely, ¥2, ¥3, ..., Y6 have been
used as design variables. The reference values of these five coefficients are zeroes, corresponding
to the theoretical minimum wave drag H-A body (Eq. 45). The wave drag coefficient (Cp,,) is
used as the objective function to be minimized subject to two constraints, given by Egs. 47 and 48.
The optimization is carried out at a free stream Mach number of 2.5 and angle of attack of zero
degrees. The flow analysis is performed using the UPS3D solver [90-91] and the inviscid option
has been used to obtain the wave drag coefficient. The computational grid uses 21 points in the
circumferential (1) direction, 70 points in the normal ({) direction and a maximum marching step
size of 0.0009 m. Table 4 presents the reference and optimum values of the design variables and
the wave drag coefficient. In Table 4, column 2 reproduces the optimum values obtained by
Cheung et al. [78] and column 3 gives the optimum values obtained from the present research.
The developed procedure yields a 6.6 percent reduction in the wave drag coefficient which is better
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than the 5 percent reduction achieved in Ref. 78. Figure 8 compares the drag coefficients of the
reference and the optimum configurations. Clearly, the current procedure yields a better optimum
than that obtained in Ref. 78. Figure 9 compares the reference and optimum configurations. The
optimum body has a reduced radius distribution in the nose region compared to the reference
geometry, in order to reduce the wave drag coefficient. However, the radius of the aft increases in
the optimum configuration in order to satisfy the two constraints imposed during the optimization
(Egs. 47 and 48). Similar trends are observed in the optimum geometry obtained in Ref. 78.

Table 4. Comparison of design variables and objective function.

Design variables and Reference (Haack- Optimum Optimum
performance function Adam body) (Cheung) (present)

Y2 0.00000 0.85300 0.73866

Y3 0.00000 0.67300 0.45117

Y4 0.00000 0.49500 0.27602

Y5 0.00000 0.42000 0.38728

Y6 0.00000 0.08460 0.15854
Drag coefficient, Cp 0.07599 0.07220 (-5.0 %)  0.07095 (-6.6 %)

[J reference (Haack-Adam)
optimum (Cheung)

0.08 ] B optimum (present)

0.076 -
S50%  -6.6%

0072 = RERRNRMNEnI00k

0.068 —

0.064

Wave drag coefficient

0.06
Figure 8. Comparison of wave drag coefficient (Cp,).
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Figure 9. Comparison of reference and optimum body configurations.

5.2 Multidisciplinary Optimization of High Speed Wing-Body Configurations

The second MDO procedure developed in this research uses a two-level decomposition
technique that addresses the simultaneous improvement of aerodynamic and structural performance
of high speed wing-body configurations [92-93]. From aerodynamics point of view, the drag
coefficient (Cp) must be minimized while maintaining the lift coefficient (Cr) above a desired
value. From a structural perspective, the aircraft weight (W) must be minimized while maintaining
the stresses in the load carrying members within allowable limits. These requirements are

formulated as a two-level optimization problem as follows.
5.2.1 Multilevel Optimization Formulation

In a typical aircraft design, the aerodynamic performance criteria dictate the planform
geometry of the aircraft wing. After designing the planform, the wing load carrying member is
designed to carry the loads arising from aerodynamics, inertia and gravity. Keeping this in mind,
the two-level optimization procedure improves the wing-body aerodynamic performance at level 1

and the structural performance at level 2. These optimization problems are stated as follows.
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Level 1 (Aerodynamics)
Minimize
Drag coefficient (Cp)

subject to the constraints

CL 2 Cryyp (Lift coefficient constraint)
W < W* (Optimal weight constraint)
L * NDV1 90, )
j2

0 S Oy + .§1 —=Ad; < O

1= aq)il j=1.NDV, (Side constraints)
L U
0 = & = 9 i=1.NDV; (Side constraints)

where ¢, denotes the vector of aerodynamic design variables, ¢, denotes the structural design
variable vector, NDV{ and NDV, denote the number of aerodynamic and structural design
variables respectively and the superscripts L and U denote lower and upper bounds on the design

variables respectively.

Level 2 (Structures)
Weight (W)

subject to the constraints

<o (Stress constraints)

all

L U
0 = 0 = Oy i=1.NDV, (Side constraints)

where G is the vector of stresses at aircraft wing root and Gy is the corresponding vector of

material limits. During the structural optimization at the second level, the aerodynamic design
* %
W 00;

and 12

ddy; 00y

the sensitivities of the optimum values of the second level (structural) objective function and the

variables of level 1 (¢1) are held fixed at their optimum values. The quantities, are

37



design variables with respect to first level (aerodynamic) design variables. These optimal

sensitivity derivatives provide the necessary coupling between the two disciplines.
5.2.2 Wing-Body Configuration

The two-level procedure and the semi-analytical sensitivity analysis techniques are applied
to the design optimization of the delta wing-body configuration illustrated in Fig. 2. The
description of the delta wing-body configuration has been presented earlier. The values of the
parameters describing the delta wing-body configuration are: wing root chord (c,) = 7.08 m,
leading edge sweep (A) = 66.0 degrees, wing span (w,) = 3.53 m, wing thickness-to-chord ratio
(t.) = 0.052, maximum radius (rm) = 0.57 m, nose length (1) = 6.01 m, wing starting location
(Xxw) = 8.21 m and body length (Ip) = 17.52 m. This reference design has been used in Ref. 120
for sonic boom prediction and comparison with wind-tunnel data. The wing leading edge sweep
(M), root chord (c,), wing span (ws) and thickness-to-chord ratio (t;) are used as design variables
in level 1 optimization and hence, change from their reference values during optimization. The rest

of the planform parameters of the delta wing-body are held fixed throughout the optimization.

5.2.3 Wing Structural Model

In this study, a simple structural model has been used. The wing is assumed to carry all
the aerodynamic loading. The load carrying structural member of the wing is modeled as a single
celled, isotropic, rectangular box beam with unequal wall thicknesses [Fig. 10]. In Fig. 10, the
quantity c is the local chord length of the wing section. The beam width-to-chord ratio (w¢),
horizontal wall thickness-to-chord ratio (ty) the vertical wall thickness-to-chord ratio (ty) are used
as design variables during the structural optimization at level 2.

The wing structural analysis is performed using a code developed in-house. The code is
capable of analyzing single celled isotropic box beams with rectangular cross-sections, unequal
horizontal and vertical wall thicknesses and linear sweep and taper distributions. The structural
analysis is initiated slightly inwards of the wing tip. This ensures that the sharp wing tip of the
delta wing-body does not give rise to a singular point. The wing weight (W) is calculated as the
sum of the weight of the box beam (Wpox) and the weight of the skin (Wgkin). The normal and
shear stresses (G) at the root section of the beam are calculated using thin wall theory [119]. The
isotropic box beam and the wing skin are made of 2014-T6 Aluminum alloy. The alloy has a
density of 2800 Kg/m3, tensile yield strength of 410 MPa and a shear yield strength of 220 MPa.
The reference values of structural design variables are: spar width-to-chord ratio (w¢) of 0.5, spar
horizontal wall thickness-to-chord ratio (ty) of 0.0015 and vertical wall thickness-to-chord ratio
(tn) of 0.0075.
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Figure 10. Wing cross-section and wing spar (box beam).
5.2.4 Results and Discussion

The optimization is performed for a cruise design Mach number of 2.5 and an angle of
attack of 5 degrees. The inviscid, supersonic flow field is calculated using the CFD solver,

UPS3D [90]. The inviscid drag and the lift forces are non-dimensionalized using the product of
the dynamic pressure and a unit reference area, to yield a drag coefficient, denoted Cp,, and a lift

coefficient, denoted Cr,,. Though the use of a unit reference area yields high values for these non-
dimensional coefficients, improvements in these coefficients directly reflect improvements in the
corresponding aerodynamic forces. A maximum step size of 0.01 m is used to march in the &
direction. The aerodynamic design sensitivities, required during the level 1 aerodynamic
optimization, are calculated using the semi-analytical sensitivity analysis procedures [94-95]
described before. A hyperbolic grid with 75 points in the circumferential (1)) direction and 80
points in the normal (§) direction is used for the flow analysis. Further refinement of the grid does
not alter the flow solution.

The iteration histories of the drag and the lift coefficients (Cp, and Cy) of the wing-body
configuration, during the level 1 aerodynamic optimization, are compared in Figs. 11 and 12,
respectively. Significant improvements are observed in both the quantities. The drag coefficient
decreases by 5.5 percent and the lift coefficient increases by 5.43 percent. All the increase in the
lift coefficient occurs in the first iteration of the optimization after which the lift coefficient is
maintained at its improved value through the rest of the optimization. The lift coefficient constraint
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is a violated constraint in the first cycle of optimization. The optimizer, based on the method of
feasible directions, establishes feasibility by increasing the lift coefficient to its desired value,
CL,,i in the first cycle. Increasing the lift coefficient any further results in an associated increase
in the induced drag. As a result, the optimizer maintains the lift coefficient constraint active. The

constraint imposed on the weight, is well satisfied during the level 1 optimization.
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Figure 11. Iteration history of drag coefficient, (Cp,).
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Figure 12. Iteration history of lift coefficient, (Cr).

Table 5. Aerodynamic design variables.

Design variable Reference Optimum
Sweep (A) 66.00 deg. 65.33 deg.
Root Chord (c,) 7.08 m 7.70 m
Wing Span (w,) 3.530 m 3.617 m
Thickness-to-chord (t.) 0.05200 0.03105

Table 5 compares the reference and the optimum values of the aerodynamic design variables used

in the aerodynamic optimization. The root chord is increased significantly from its reference value
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(8.76 percent), whereas the wing thickness-to-chord ratio is decreased significantly (40.29
percent). The wing span and the leading edge sweep are maintained close to their reference values
(2.94 percent and 1.01 percent respectively). The reduction in the wing thickness-to-chord ratio
decreases the form drag of the diamond airfoil section. The optimization is driven by this reduction
indrag. The increase in the wing planform area, caused by the increase in the root chord and the
wing span, helps improve the lift of the aircraft in spite of the decrease in the wing thickness-to-
chord ratio. Though the drag and the lift coefficients have been non-dimensionalized using a unit
reference area in this study, the optimization procedure allows a traditional non-dimensionalization
using the wing planform areas.

The iteration history of the weight of the wing body configuration is presented in Fig. 13.
Considerable reduction (18.13 percent) in the weight is observed. The shear and the normal
stresses at the blade root remain well within the allowable limits of the chosen Aluminum alloy.
Table 6 compares the reference and optimum values of the structural design variables. The spar
width to chord ratio, horizontal and vertical wall thickness to chord ratios decrease significantly
from their reference values (60 percent, 60 percent and 65.2 percent respectively). In spite of the
increased planform area, the weight is reduced through significant reductions to the wall

thicknesses and wing thickness-to-chord ratio.
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Figure 13. Iteration history of weight.
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Table 6. Structural design variables.

Design variable Reference Optimum
Spar width-to-chord ratio (w.) 0.5 0.2
Horizontal wall thickness-to-chord ratio (t,,) 0.0015 0.0006
Vertical wall thickness-to-chord ratio (t,) 0.0075 0.00261

5.3 Integrated Aerodynamic/Sonic Boom Optimization

One of the desired objectives of high speed (supersonic) aircraft designs is to arrive at low
sonic boom configurations. Such designs would have minimum environmental impact thus
making them viable for operation over population centers. At the same time, such designs should
also be able to produce optimum aerodynamic performance so that they are economically viable
too. These considerations give rise to an important multidisciplinary design optimization problem
requiring minimum sonic boom and maximum aerodynamic performance from the designs. In this
section, an optimization procedure that has been developed to reduce the sonic boom levels of high
speed wing-body configurations without deteriorating their aerodynamic performance, is
described. The sonic boom of an aircraft is measured in terms of the pressure disturbances it
produces at designated distances from the aircraft. The pressure disturbance at any point is given
by Ap = (p - p=)/pee, Where p is the pressure at the point of interest and p.. is the free stream
pressure. Figure 14 presents the overpressure signature (Ap) produced by the delta wing-body
configuration described in Section 3.5. The aircraft is flying at a Mach number of 2.5 and angle of
attack of 5 degrees at a cruise altitude of about 16,500 m. The pressure signature is captured at the
ground level (this corresponds to 941.2 times the length of the aircraft, vertically below the
aircraft). The pressure signature has two positive pressure peaks and a negative peak. The first
positive pressure peak (Ap1) corresponds to the pressure jump associated with the shock wave at
the nose of the aircraft. The second positive peak (Apy) is due to the shock wave created by the
aircraft wing. The negative pressure peak corresponds to expansion waves in the flow field past
the wing trailing edge. From a sonic boom perspective, it is desirable to minimize these positive
pressure peaks in the overpressure signal. From aerodynamics point of view, it is of interest to
minimize the aerodynamic drag to lift ratio (Cp/CL) while maintaining the lift coefficient (CL) at a
desired level. In the following sections, the sonic boom analysis procedure and the various
optimization formulations to reduce sonic boom levels of high speed wing-body configurations are
presented.
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Figure 14. Sonic boom pressure signature of a supersonic wing-body configuration.
5.3.1 Sonic Boom Analysis

For 1sentropic flow past smooth axisymmetric bodies, the pressure disturbances (sonic
boom) at large distances from the aircraft can be evaluated by using the Whitham F-function [121],
which is based on the Abel integral of the equivalent area distribution of the aircraft. Lighthill
[122] developed an alternate formulation of the F-function which was shown to be suitable for
sonic boom prediction for projectile geometries. Walkden [123] extended Whitham's theory for
application to wing-body configurations. The asymptotic forms of the equations used in
developing the sonic boom overpressure signature (Ap) are as follows.

1 o 2 y_t ] '
F(y) = — h dS,o (t
V= 3R\ O [BRVOl 0]
17 2 i y—t 1 .
— / h dSyif (t 49
* 2“(J) BRyn (1) [ BRyig (1) | iee (V) )
1 o 2 [ y—t ] [
+ — h dSin (t)
2n£\/BRim(t) BR, (] ™
Ap = YMZF(y)/+2Bd, (50)
B=Mu.2- 1% (51)
K = (7 + DM.Y[B*(2B)*] (52)
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x = y+PBd,—Kk.Jd,F(y) (53)

where 7 is the ratio of specific heats (1.4 for air) and Me is the freestream Mach number. The first

integral of Eq. 49 is associated with the volume of the flying object, the second integral is
associated with the lift and the third integral is associated with the interference lift for a winged
body [123]. Ryol, Riift and Rjp, are the equivalent radii of the flying object based on its volume,
lift and wing-body interference, S’ is the derivative of the area distribution of the flying object and
h is the Heaviside unit step function. The quantity, y(x, do) = constant is a characteristic curve
where x is the streamwise distance and d, is the distance normal to the flight axis. Since the above
models are based on linearized theory, they are inaccurate in predicting sonic boom in highly
nonlinear flows such as the flow at angle-of-attack at higher Mach numbers (Moo > 2). Reference
124 describes an F-function extrapolation method to evaluate the pressure signature at a distance d;
from known pressure at distance do (d; > dy). The pressure signature at distance d,, where the
flowfield is assumed to be locally axisymmetric, is evaluated either by measurements in a wind
tunnel or through computation and the value of the F-function is calculated from Eq. 50. Since the
pressure signal propagates at the local speed of sound and each point of the signal advances
according to its amplitude, the signal is distorted and the F-function becomes multivalued at a
farther distance d|. A new F-function at d; is then obtained by placing discontinuities (shocks) in
such a way that the discontinuities divide the multivalued regions with equal areas on either side of
them. This new F-function gives the overpressure signature at d using Eqs. 50 through 53.
Cheung et al. [120] have combined Whitham’s quasilinear theory with the three-
dimensional PNS code, UPS3D, to predict sonic boom. The flow field associated with wing-body
configurations is evaluated by UPS3D and the overpressure signal for the near field is evaluated.
The overpressure signals at specified far fields are then obtained using one of three different
approaches for various configurations such as a cone-cylinder, a low aspect-ratio rectangular wing
and a delta wing-body. In the first approach (for nonlifting cases), the UPS3D code is modified so
as to incorporate a sonic boom prediction capability including all nonlinear effects. The second
approach is applicable to both lifting and nonlifting cases. In this approach, the extrapolation
method described earlier [124] has been used for predicting sonic boom. In the third approach (for
lifting cases), the equivalent area distribution due to lift is generated by the surface pressure
coefficients calculated by the CFD solver. The equivalent area distribution due to volume is
calculated from the geometry of the aircraft. Summation of the two equivalent area distributions

yields the total equivalent area distribution that gives the F-function of the body.
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In the present research, the second approach, based on the extrapolation technique of Ref.
124, has been used to obtain the sonic boom signatures. This extrapolation procedure has been
validated by comparison with wind tunnel data in Ref. 120 by applying it to the delta wing-body

configuration described in Section 3.5.
5.3.2 Sonic Boom Sensitivities

The optimization procedures used for sonic boom minimization require the sensitivities of
the overpressure peaks (App and Ap). The near field pressure signature, at a distance do, is
directly calculated by the UPS3D code. The sensitivity of this near field pressure signature is part
of the aerodynamic flow sensitivities calculated using the semi-analytical procedure based on the
direct differentiation approach [94-95], described earlier. Using these sensitivities, perturbed near
field pressure signatures are generated for each design variable. These perturbed near field
signatures are then extrapolated using the sonic boom extrapolation procedure [124] to obtain
perturbed far field signatures corresponding to each design variable. These perturbed far field
signatures are then used to obtain the sensitivities of the pressure peaks using finite difference

techniques.
5.3.3 Optimization Formulation

The multidisciplinary optimization procedure must lead to minimum sonic boom while
maintaining or improving the aerodynamic performance of the aircraft. From a sonic boom
perspective, it is desirable to minimize the first and the second peaks (Apq and Ap2) in the

overpressure signal at a given distance, d;, away from the aircraft. From aerodynamics point of
view, the drag to lift ratio (Cp/Cr) must be minimized while maintaining the lift coefficient (Cy) at a

desired level. The optimization problem can be stated as follows.
Ap1, Apz2 and Cp/Cp
subject to the constraints

CLmin < CL < CLmax

S
£l
=

IA

where @ is the design variable vector and the subscripts “min” and “max” denote lower and upper

bounds, respectively. It must be noted that both upper and lower bounds have been imposed on
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the lift coefficient. While the lower bound ensures the prescribed minimum lifting capability, the
upper bound is designed to keep the sonic boom levels from increasing. This is because, the sonic
boom overpressure peaks increase in value as the lift increases [122]. Some of the optimization
studies presented in the following sections, do not include the second pressure peak (Ap;) as an

objective function and, in some cases, omit the lift coefficient constraints.
5.3.4 Wing-Body Configurations

The above multiobjective optimization procedure is applied to two high speed wing-body
configurations. The first configuration is the delta wing-body configuration, illustrated in Fig. 2
and described in Section 3.5. The second configuration addressed is a doubly swept wing-body
configuration (Fig. 15). The doubly swept configuration is characterized by two sweep angles, A
and A2, root chord, c,, tip chord, ¢, break length, xp, maximum body radius, ry,, nose length, 1,
wing starting location, xy and total body length, 1. The wing cross-section is a diamond airfoil
with thickness-to-chord ratio, tc. A combination of these geometric parameters forms the design
variable set.

The inviscid flow field around the vehicle is evaluated using the CFD solver, UPS3D, over
a flow domain that extends from the tip of the body up to three times the body length in the
longitudinal direction. The pressure field at a distance do, = 0.5 I, measured from the axis (directly
beneath the aircraft) is evaluated from the flow field solution. The sonic boom at a far field
distance d; is then evaluated using the extrapolation procedure of Ref. 124. Two specified far field
distances have been considered during optimization. The first of the two corresponds to a distance
dj =3.61 Ip from the axis of the body and is denoted “near field” in the text. The second distance
considered is di = 941.7 1 from the axis of the body and is denoted “far field” in the text. This far
field distance corresponds to the ground level for an aircraft flying at an altitude of approximately
16,500 m. The optimization of both configurations is performed at a design cruise Mach number
of 2.5 and angle of attack of 5 degrees. A hyperbolic grid with 75 points in the circumferential (1)
direction and 80 points in the normal () direction is used for the flow analysis. The maximum
step size for marching in the § direction is set to 0.01 m. The semi-analytical sensitivity analysis
procedures, described before, are used to calculate the aerodynamic and sonic boom design

sensitivities.
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Figure 15. Doubly swept wing-body configuration (schematic).

The inviscid flow field around the vehicle is evaluated using the CFD solver, UPS3D, over
a flow domain that extends from the tip of the body up to three times the body length in the
longitudinal direction. The pressure field at a distance do = 0.5 1, measured from the axis (directly
beneath the aircraft) is evaluated from the flow field solution. The sonic boom at a far field

distance d; is then evaluated using the extrapolation procedure of Ref. 124. Two specified far field
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distances have been considered during optimization. The first of the two corresponds to a distance
dy = 3.61 1, from the axis of the body and is denoted “near field” in the text. The second distance
considered is d] =941.7 | from the axis of the body and is denoted “far field” in the text. This far
field distance corresponds to the ground level for an aircraft flying at an altitude of approximately
16,500 m. The optimization of both configurations is performed at a design cruise Mach number
of 2.5 and angle of attack of 5 degrees. A hyperbolic grid with 75 points in the circumferential (1)
direction and 80 points in the normal ({) direction is used for the flow analysis. The maximum
step size for marching in the § direction is set to 0.01 m. The semi-analytical sensitivity analysis
procedures, described before, are used to calculate the aerodynamic and sonic boom design

sensitivities.
5.3.5 Delta Wing-Body Optimization

For the delta wing-body configuration case, the leading edge sweep (A), the wing root
chord (c,), the wing span (wy), the airfoil thickness-to-chord ratio (tc), the maximum nose radius
(rm) and the nose length (1) are used as design variables. The reference values of the delta wing-
body parameters are: wing root chord (c,) = 7.08 m, leading edge sweep (A) = 66.0 degrees, wing
span (w,) = 2.96 m, wing thickness-to-chord ratio (t.) = 0.052, maximum radius (ry) = 0.57 m,
nose length (1) = 6.01 m, wing starting location (xy) = 8.21 m and body length (Iy) = 17.52 m.
The wing starting location (xy) and the body length (lp) are held constant during the optimization.

Near Field Sonic Boom Minimization (d; = 3.61 I}, )

The results from the optimization of the pressure signature at a distance of 3.61 1p (directly
below the aircraft) are presented first. Two sets of results are presented. In the first case, the
optimization is performed for minimum Cp/Cy, and minimum first sonic boom peak (Ap) with a
constraint on the lift coefficient (Cp;, < CL < CL_,,,). In the second case, the same objectives
are optimized without any lift constraint. Results from the first case are discussed first. The
bounds chosen for the lift coefficient are Cp ;= CLo¢ and Cp .= 1.02 Cp g, Where Cp ¢ is the
lift coefficient of the reference configuration. Table 7 compares the reference and the optimum
values of the six design variables and the performance functions used in the optimization.
Reductions are observed in the wing thickness-to-chord ratio and nose radius whereas nose length
and wing root chord have increased. Small changes in the leading edge sweep and wing half span
are observed. Figure 16 compares the geometries of the reference and optimum configurations.
Figure 17 compares the reference and optimum values of the objective functions. The objective
functions have been normalized with respect to their corresponding reference values in Fig. 17.

There is a significant drop in the sonic boom level (11.1 %) for the optimum configuration. The
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drag-to-lift ratio has also decreased by 4.3 percent. The drag coefficient has decreased by 2.6
percent and the lift coefficient has increased by 1.8 percent for the optimized configuration. The
drag force has decreased by 3.3 percent and the lift force has increased by 1.1 percent. Figure 18a
presents the reference and optimum pressure distributions at di = 3.61 1. The same signature
extrapolated to the ground level (d; = 941.7 I) is presented in Fig. 18b. Clearly, the first pressure
peak in these signatures (Ap;) are smaller for the optimum configuration. However, the second
pressure peak (Apz) has increased by 1.2 percent in the near field signature. This increase is due
to the increase in the lift. It is to be noted that this second pressure peak is not an objective

function in this optimization and hence, increases slightly due to the increase in the lift.

Table 7. Delta wing-body case; near field optimization with lift coefficient constraint.

Design variables and performance Reference Optimum
functions

Root chord, ¢y (m) 7.08 7.05
Leading edge sweep, A (degrees) 66.0 64.4
Thickness to chord ratio, t. 0.05200 0.04894
Wing half span, wg (m) 3.53 3.4873
Nose length, I, (m) 6.01 6.2528
Max. nose radius, ryy, (m) 0.570 0.5363
First pressure peak (Apy) 0.033195 0.029022
Second pressure peak (Ap2) 0.058374 0.060113
Drag-to-lift ratio, Cp/Cr. 0.11681 0.11178
Drag coefficient, Cp 0.02446 0.02383
Lift coefficient, Cp, 0.20940 0.21318
Drag force (N) 16539.6 16000.6
Lift force (N) 141594.1 143144.3
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Figure 16. Comparison of geometries; near field optimization with lift coefficient constraint.
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Figure 17. Comparison of objective functions; near field optimization with lift constraint.
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Figure 18a.  Comparison of pressure signatures; near field optimization with lift constraint; d; =
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Figure 18b.  Comparison of pressure signatures; near field optimization with lift constraint;
extrapolated to ground level (d; =941.7 Ip).

Table 8 summarizes the results for the second case where optimization is performed for
minimum Cp/Cy, and minimum sonic boom (Ap;) without any constraint on the lift coefficient.
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Similar to the previous case, the wing thickness-to-chord ratio and nose radius have decreased
whereas the nose length and wing root chord have increased. Small changes in the leading edge
sweep and wing half span are observed. Figure 19 compares the geometries for the reference and
the optimum configurations. Figure 20 present the reference and optimum values of the
normalized objective functions. The first peak in the pressure signature has decreased significantly
(21.5 %) for the optimum configuration. The drag-to-lift ratio has also decreased by 7.6 percent
and the drag coefficient has decreased by 12.8 percent. There is also a 5.6 percent decrease in the
lift coefficient of the optimized configuration. The drag force has decreased by 12.9 percent and
the lift has reduced by 5.8 percent.

Table 8. Delta wing-body case; near field optimization without lift coefficient constraint.

Design variables and performance Reference Optimum
functions

Root chord, ¢, (m) 7.08 7.63
Leading edge sweep, A (deg) 66.0 69.1
Thickness to chord ratio, t; 0.05200 0.04680
Wing half span, wg (m) 3.530 3.254
Nose length, 1, (m) 6.01 6.611
Max. nose radius, ry, (m) 0.570 0.513
First pressure peak (Ap)) 0.033195 0.026042
Second pressure peak (Ap») 0.058739 0.052679
Drag-to-lift ratio, Cp/CL, 0.11681 0.10790
Drag coefficient, Cp 0.02446 0.02133
Lift coefficient, Cy_ 0.20940 0.19771
Drag force (N) 16539.6 14395.8
Lift force (N) 141594.1 133413.1
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Figure 20. Comparison of objective functions; near field case without lift constraint.

Figure 21a presents the reference and optimum overpressure distributions at d| = 3.61 1,
and Fig. 21b presents the corresponding signatures extrapolated to ground level (d| = 941.7 lp).
The reductions in both the peaks of the pressure signature for the optimum confi guration are seen.
The changes to the geometric parameters, especially the aircraft nose parameters and the wing
thickness-to-chord ratio, cause the reductions in the sonic boom overpressure and the drag
coefficient. The reduction in the lift force is also due to the small decrease in the wing planform

area.
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Figure 21a.  Comparison of pressure signatures; near field case without lift coefficient
constraint; d; = 3.61 I,
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Figure 21b. Comparison of pressure signatures; near field case without lift coefficient
constraint; extrapolated to ground level (d) = 941.7 1,).
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One of the advantages of the design optimization procedure is its applicability to conduct
design trade-off studies. This is illustrated by the results shown above. The two design objectives
of minimum sonic boom and improved aerodynamic performance often impose conflicting
restrictions/variations on the geometric parameters of the aircraft. This is observed to be true while
comparing the two cases described above. In the first case where a constraint on the lift coefficient
is imposed, the optimum design has an improved lift coefficient. The sonic boom signature
associated with this design is also reduced. However, an increase in the second peak is observed.
In the second case where no constraint is imposed on the lift coefficient, the reduction in the first
peak is very significant (compared to the optimum from the previous case) and the second peak is
also reduced. However, the lift coefficient also has decreased. The optimum design shows
significant improvements in Cp and Cp/Cy, values compared to the optimum design from the first
case illustrating the trade-off between low sonic boom and high lift configurations. Both sonic
boom overpressures and induced drag increase with an increase in the lift and decrease with a
decrease in the lift. The optimization procedure, in the second case, exploits this important

physical relationship and yields significantly low boom configurations with reduced Cy..
Far Field Sonic Boom Minimization (d; = 941.7 Iy, )

The results from the optimization of the pressure signature at a distance of 941.7 Iy, are
presented next. As before, optimization has been performed for minimum sonic boom first peak
(Ap1) and minimum Cp/Cy, without any constraint on the lift coefficient. Table 9 compares the
reference and the optimum values of the design variables and the performance functions used in the
optimization. The significant changes to the design variables can be seen. The wing thickness-to-
chord ratio, wing span and nose radius have reduced whereas the wing root chord and nose length
have increased. Figure 22 compares the reference and optimum geometries. Figure 23 compares
the reference and the optimum values of the normalized objective functions. The first peak in the
pressure signature has decreased by 10.2 percent for the optimum configuration. The drag-to-lift
ratio has decreased by 6.0 percent and the drag coefficient has decreased by 9.7 percent. The lift
coefficient has also decreased (3.9 %). The drag force has decreased by 13.1 percent and the lift
force has reduced by 7.2 percent. Figure 24 presents the pressure signatures for the reference and
optimum configurations. The percentage reductions in the optimum far field pressure peaks are not
as significant as those in the near field optima because the far field signature is less sensitive to
changes in the design variables. This is due to the fact that the sonic boom extrapolation procedure
coalesces all the detailed shock information into an N-wave in the far field. This also results in a

higher reduction in the aircraft lift.
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Table 9. Delta wing-body case; far field optimization without lift coefficient constraint.

Design variables and performance Reference Optimum
functions
Root chord, ¢, (m) 7.08 7.73
Leading edge sweep, A (deg) 66.0 68.9
Thickness to chord ratio, t. 0.05200 0.04680
Wing half span, wg (m) 3.53 3.2055
Nose length, 1, (m) 6.01 6.611
Max. nose radius, ry, (m) 0.570 0.5415
First pressure peak (Apj) 0.0019479 0.0017499
Second pressure peak (Apz) 0.0033103 0.0031540
Drag-to-lift ratio, Cp/CL 0.11681 0.10985
Drag coefficient, Cp 0.024460 0.022099
Lift coefficient, Cy. 0.20940 0.20117
Drag force (N) 16539.6 14374.5
Lift force (N) 141594.1 131328.6
— — — Reference

— Optimum

Figure 22. Comparison of geometries; far field case without lift coefficient constraint.
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Figure 24. Comparison of pressure signatures; far field case without lift coefficient constraint.
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5.3.6 Doubly Swept Wing-Body Optimization

For the doubly swept wing-body configuration case, the two leading edge sweeps (A and
A2), the break length (xp), the wing root chord (c,), the wing tip chord (c;), the maximum nose
radius (rp), the nose length (Ip) and the wing starting location (xy) are used as design variables.
The reference values of the doubly swept wing-body parameters are: root chord (c,) = 8.12 m, tip
chord (c,) = 1.62 m, first leading edge sweep (A;) = 70.2 degrees, second leading edge sweep
(A,) = 54.9 degrees, maximum radius (ry) = 0.57 m, nose length (1) = 6.01 m, break length (xp)
= 12.28 m, wing starting location (xy) = 8.13 m, wing span (w,) = 3.53 m, wing thickness-to-
chord ratio (t.) = 0.05 and body length (lp) = 17.52 m. The wing half span (wy), the wing
thickness to chord ratio (t;) and the body length (Ip) are held constant during the optimization. The
optimization of the doubly swept wing-body configuration has been carried out in two steps. In
the first step, the body radius and nose length are used as design variables to minimize the first
peak in the sonic boom pressure signature. In the second step, the wing geometric parameters are
used as design variables to minimize the second peak in the sonic boom pressure signature, while
the nose dimensions are maintained at their optimum values obtained from the first step. In both
steps, optimization is performed for minimum Cp/Cy, and minimum sonic boom (Ap; and Apy) at
a near field distance of d| = 3.61 ;. The lift coefficient is constrained using CLnin= 0.95 Cr et
and Cp .= 1.05 Cr ¢ where CL,et is the lift coefficient of the reference configuration. Table 10

presents the reference and the optimum values of the design variables and the performance

functions used in the optimization.

Figure 25 compares the reference and the optimum geometries. Figure 26 compares the
reference and the optimum values of the normalized objective functions. The first peak in the sonic
boom signature (Ap;) has decreased by 23.6 percent in the optimum configuration. This is due to
decrease in the maximum radius (ry) and the increase in the nose length (I,) during optimization.
This slender nose has a smaller equivalent area distribution for the nose region yielding a reduced
first pressure peak. Significant increases are observed in the first leading edge sweep, the root
chord and the break length of the optimum wing. These increases coupled with the decreases in
the wing tip chord and starting location result in a smaller planform area for the optimum wing.
The smaller planform area has a smaller equivalent area and lift distribution yielding a significant
reduction (19.9 %) in the second pressure peak of the sonic boom signature. Also, the increase in
the first leading edge sweep of the wing corresponds to a weaker leading edge shock in the wing.
This factor also contributes to the decrease in the second peak (Ap;) of the sonic boom signature.
The Cp/Cy ratio has also decreased by 3.6 percent in the optimum configuration. This percentage
reduction is small because there are simultaneous reductions in both drag and lift in this case. The
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drag coefficient has decreased by 4.7 percent and the drag force has decreased by 9.2 percent.
There is also a decrease in the lift coefficient (1.1 %) and the lift force (4.9 %) of the aircraft. The
increase in the first leading edge sweep of the aircraft corresponds to a decreased value of the
effective Mach number. Also, the optimum configuration has a smaller planform area. Therefore,
the lift coefficient and the lift have decreased for the optimum configuration. Figures 27a and 27b
present the sonic boom pressure signatures for the reference and the optimum configurations at

near and far fields, respectively. The reductions in the two pressure peaks can be seen.

Table 10. Doubly swept wing-body case; near field optimization with lift constraint.
Design variables and perform:nce functions B Reference Optimum

Maximum nose radius, ry, (m) 0.57 0.513
Nose length, 1, (m) 6.01 6.61
First leading edge sweep, A (degrees) 70.16 74.25
Root chord, ¢o (m) 8.12 8.60
Second leading edge sweep, A, (degrees) 54.93 52.51
Tip chord, c; (m) 1.62 1.39
Break length, xp, (m) 12.28 12.76
Wing starting location, Xy (m) 8.13 7.75
First pressure peak 0.03389 0.02590
Second pressure peak 0.05483 0.04394
Drag-to-lift ratio, Cp/C, 0.11510 0.11099
Drag coefficient 0.02238 0.02133
Lift coefficient 0.19441 0.19221
Drag force (N) 18558.2 16852.5
Lift force (N) 159666.9 151843.3
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Figure 27b.  Comparison of pressure signatures; near field case with lift coefficient constraint;

extrapolated to ground level (d1 = 941.7 ).
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The optimum designs from the aerodynamic/sonic boom optimization procedure for the two
configurations show a common trend. All these optimum designs are such that the nose region of
these configurations are more slender than their reference nose configurations. Correspondingly,
the first peaks in the pressure signatures of these optimum designs have decreased. This is
contrary to the trends observed by previous optimization studies [80-87] that the nose region
actually becomes more blunt for the sonic boom to decrease. The reasoning given in these studies
behind this trend is that, a blunt nosed configuration with special shaping gives rise to a strong
shock wave which avoids coalition with shocks from other aircraft components, thereby resulting
in a weak wave in the far field. However, the current MDO procedure that couples sonic boom
and aerodynamic criteria, does not compromise aerodynamic performance for sonic boom
improvement and yields slender bodies which have improved sonic boom as well as aerodynamic

characteristics.

5.4 Integrated Aerodynamic/Sonic Boom/Structural Optimization

The fourth MDO procedure developed in this research addresses the simultaneous
improvement in the aerodynamic, sonic boom and structural performance of high speed aircraft
configurations. The procedure uses two-levels of decomposition that are coupled with each other.
Since the sonic boom characteristics of an aircraft are strongly tied in with its aerodynamics, the
performance of the aircraft in these two disciplines is addressed in level 1 of the optimization
procedure. At level 2, the structural performance of the aircraft is optimized. The MDO problem is
formulated as follows.

5.4.1 Optimization Formulation
Level 1

The objectives at this level are reduced sonic boom pressure peaks and improved
aerodynamic performance. This can be stated as follows.

Ap1, Apz and Cp/Cy,
subject to the constraints
CLmin < CL = CLmax

62



q)lmin < ol < (D]max
(Dzmin < @2 < (Dzmax

where Ap) and Ap; are the overpressure peaks in the sonic boom signature at a distance d; from
the aircraft. The quantity W is the aircraft weight. ®! is the first level design variable vector, ®2
is the second level design variable vector and the subscripts “min” and “max” denote lower and
upper bounds respectively. To incorporate the structural coupling in the first level, constraints are

imposed on the second level objective function, namely the aircraft weight (W) and the second
* *

96"
level design variables (®2). The derivatives, aiand 0i2
adi; 99

of the second level objective function and design variables with respect to the first level design

, are the optimal sensitivity parameters

variables. These derivatives establish the coupling between the two-levels of optimization.

Level 2
In the second level, structural optimization of the wing-body configuration is performed
during which, the first level design variables (®!) are held fixed at their optimum values obtained

from level 1 optimization. The optimization problem is defined as follows.
Minimi

w

subject to the following constraints

g& < 0

M, < MyT o

Myr S M)’rmax

(Dzmin < P2 < (Dzmax

where & is the stress vector, g(G) is a stress-based failure criterion to determine material failure,
M" and My are the root bending moments along the x and the y directions [Fig. 28], respectively
and subscripts ‘min’ and ‘max’ denote lower and upper bounds, respectively. The upper bounds
on the root bending moments are imposed to reduce the loading that is eventually transmitted to the

aircraft. The wing structural parameters are used as design variables during the optimization. The
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multilevel optimization procedure iterates through the two-levels until global convergence is

achieved.
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Figure 28. Nodal force vectors due to aerodynamic loading at a given wing section.
5.4.2 Wing-Body Configuration

The two-level optimization is applied to the design optimization of the doubly swept wing-
body configuration (Fig. 15), described in Section 5.4.4. The reference values of the doube
sweep wing-body parameters are:c, = 8.12 m, ¢, = 1.62 m, A; = 70.2 degrees, A, = 54.9 degrees,
Im=0.57m,l, =601 m, xp = 12.28 m, Xy = 8.13 m, w, =3.53 m, t, =0.05 and lp = 17.52 m.
The wing half span (ws), the wing thickness to chord ratio (tc) and the body length (1) are held
constant during the optimization. The two leading edge sweeps (A| and A2), the break length (xp),
the wing root chord (c,), the wing tip chord (c), the maximum nose radius (ry), the nose length

(1) and the wing starting location (x) are used as design variables during optimization at level 1.
5.4.3 Structural Model and Analysis

The principal load carrying member in the wing is modeled as a single-celled composite
box beam, as illustrated in Fig. 29. The structural design variable vector (®2) includes the box
beam width to chord ratio (w¢) and the ply angles (8°s) of the laminates used to form the box beam
walls (Fig. 29). The box beam width to chord ratio (w,) is a continuous design variable whereas
the ply angles are discrete variables, taking on discrete values from the set (0°, £15°, +£30°, +45°,
+60°, +75° and +90°).

The analysis procedure for such composite beams is based on the formulation developed by
Smith and Chopra [125]. The analysis procedure allows the inclusion of pre-twist, taper and
spanwise sweep in the box beam. Using the analytical model, the deformation of the beam is

64



described through extension, bending, torsion, transverse shearing and torsion related warping. In
the present work, this quasi one dimensional model is used within a finite element analysis to
obtain nodal deflections and stresses in the load carrying member. The beam has been divided into
10 elements over the wing span. The ith finite element is bounded by the nodes i (z = zi) and i+1
(z = zi+1). Each finite element has 19 degrees of freedom, Ue, which are described as follows
[Fig. 30].

UCT = [ u],u2,u3,u4,Vb1,Vbl,,Vbz,Vbz,,Wb],Wb]’, wb2’Wb2,,¢1,¢2’¢3s
VSPVSZ’WS]’Wsz ] (54)
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Figure 29. Composite box beam model.

In Eq. 54, u is the spanwise wing displacement, v and w are the inplane vertical and horizontal
wing displacements and ¢ is the elastic twist. First partial derivatives with respect to the spanwise

coordinate (z) are denoted (). The inplane wing displacements are expressed as a sum of two
terms, one corresponding to pure bending and another corresponding to shear. In Eq. 54, the
subscript (b) refers to the displacements due to beam bending and the subscript (s) refers to the

displacements due to shear.

65



y —Ul-‘ .{—u4-

X V'b, v'b2
Vb, Vb,
Z
W W
1 2
Wp, u, ¢, u; Wh,
Vs Vs)
Wsi Wso
L &1 L 03 |

Figure 30. Finite element degrees of freedom.
The elemental equations of equilibrium can then be expressed as follows.

F k“ 0 k]3 ’ u
1Qyr=| 0 ko ki3 [{¥2y (55)
Qx) ki3 ko ka3|vz

[T kag O kygl| O
Myp=| 0 kss kse [iw v (56)
M, kge ks

P

661 V' =Yz

where F is the spanwise force, Qy and Qx denote the inplane forces in the vertical and the
horizontal directions, T is the torsional moment and My and My denote the bending moments in the
vertical and the horizontal directions [Fig. 28] , respectively. kij represents the element stiffness
matrix and ygn and Y(z)g are the inplane shear stresses in the vertical and the horizontal directions

of the composite box beam walls, respectively. Further details of the formulation can be found in
Ref. 125. The elemental equations are assembled into a global system of equations for the
unknown nodal wing displacements.

Fg =KgUc (57)

where Fg is the global force vector, Kg is the global stiffness matrix and Ug is the vector of nodal
wing displacements.
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5.4.4 Aerodynamic Load Calculations

The finite element method for the aircraft wing structural analysis requires the nodal load
vectors to be specified. Clearly, the loading on the wing structure comes from the aerodynamic
forces and moments that act on the surface of the wing. The pressure distribution on the wing,
which gives rise to these forces and moments, is obtained from the UPS3D flow solver. These

forces and moments are expressed as follows.

Q= [[=p(x.y.2)dsy (58)
si*
Q, = JJ -p(xy,2)ds, (59)
S§+1
F'= [[-p(x,y,2)ds, (60)
S;+l
Mi(: H —-p(x,y,z)(z—zicg)dsy (61)
M = | —p(x.y.2)(z-2t)dse (62)
S;H
Ti= ﬂl—p(x,y,z)[(x—xicg)dsy+(y—-yicg)dsx] (63)
sit

In Eqs. 58-63, p(x,y,z) is the local pressure, dsx, dsy and ds; are the projections of an elemental

wing surface area element (dS) in the x, y and z directions, respectively and S}H denotes the area
segment between the finite element nodes i (z = zi) and i+1 (z = zi*!). The quantities xicg, yf:g
and zég are the x, y and z coordinates of the centroid of the beam section at node i (z = zi) (Fig.

29). Since a symmetric composite box beam is used at every station throughout the span, the
centroid corresponds to the center of the box beam section (Fig. 29).
The Tsai-Wu failure criterion [126] has been used in the second level optimization to avoid

composite material failure. This criterion is expressed as follows.
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where ¢ and 0, represent normal stresses along the material axes and 1T, represents the shear
stress. The subscripts T, C and S represent ultimate stress in tension, compression and shear,
respectively. The Tsai-Wu criterion reduces the total number of constraints as individual
constraints on the stresses (01, 65 and T;;) at each ply are eliminated. Each of the four composite
plates used in the box beam modeling is assumed to be symmetric about the midplane of the plate
and the beam itself is assumed to be symmetric about the beam centerline. The above failure
criterion is imposed, on each lamina, at each of the four corners of the box beam to prevent failure

due to stresses.
5.4.5 Weight Calculations

The aircraft weight (W) is calculated as the sum of the fuselage skin weight (Wgs), the
wing skin weight (Wysk) and the wing spar weight (Wygp). The skin is assumed to be made of

2014-T6 Aluminum alloy. The composite box beam is assumed to be made of Carbon-Epoxy
IM6/Epoxy. This material has a density of 1600 Kg/m3 and its ultimate stresses are given by Oir

= 3500 MPa, 0 = 1540 MPa, 0, = 56 MPa, 6, = 150 MPa, 1,55 = 98 MPa. The box beam

vertical wall thickness (ty) is 0.0366 m and the horizontal wall thickness (ty) is 0.0366 m. These
two parameters are held fixed during the optimization. The expressions for Wy,g, Wysk, Wysp are

as follows.
W= Weys + Wwsk + Wygp (65)
lﬂ
Wius = | ITmUp—1p)+ [r(x)dx |mtkpskg (66)
0

Ws
Wk = ( Vl"'t(zt IC(Z)dZ]tskpskg 67)
T

m

Wy
Wasp = Psp * [ = 4tyty (We—t )+ 2[ Wty +t(1-wo)t, ] fe(z)dz ) (68)

Tm
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where tg is the skin thickness, ps is the density of the skin material, pgp is the density of the wing
spar material, c(z) is the local chord at any spanwise wing section z and g is the acceleration due to

gravity.
5.4.6 Optimization Algorithms

In level 1, all the design variables are continuous and a nonlinear quasi Newton technique
which uses the BFGS algorithm [108] for finding the search direction is used. The structural
optimization problem at the second level involves a design variable vector that includes both
continuos design variables @ (e.g., spar width-to-chord ratio) and discrete design variables ®q
(e.g., ply angles). Continuos design variables are not compatible with combinatorial optimization
methods such as branch and bound techniques which require discrete values to operate. Similarly,
discrete variables are not compatible with gradient-based optimization methods unless a continuous
relaxation of the discrete variables is allowed which may lead to sub-optimal solutions. Thus,
optimization problems with both continuous and discrete design variables require the development
of a technique which efficiently incorporates both types of design variables. Chattopadhyay and
Seeley [127] have recently developed a hybrid optimization technique which can efficiently include
both continuous and discrete design variables. This procedure uses both a gradient-based search
and a modified simulated annealing algorithm to obtain a more global optimum. The technique is
briefly outlined below.

1. START
2 Current value of objective function is F
3. Select either continuous or discrete design variables to perturb for Fpew
4 If continuous variables are selected,
D, = Do + 0S¢
5.  If discrete variable is selected
q)dnt:w = (Ddi
6. Compute Fpew
7.  If Fpew S F then
F = Fpew
Else if Pycc = P then

8.  Check for convergence
If no convergence, go to START else STOP
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Here, the quantity F is the current value of the K-S function. o is a random step size selected to be
within a prescribed percentage of the current value of the continuous variables and S is the search
direction vector which is determined from the gradients of the K-S function with respect to the
continuous design variables. The subscript i refers to the ith choice for a discrete design variable
out of a set of discrete values and the subscript ‘new’ stands for a new design point. The
continuous design variables are perturbed using o and S to improve the efficiency of the search
while the discrete variables are perturbed by randomly selecting values for ®g; within a given set.
Move limits and bounds are imposed on the continuous design variables to ensure a physically
meaningful design. The parameter P is a random number such that 0 < P < 1 and the acceptance

probability (Pacc) of retaining a worse design is computed as follows.
Pacc = exp(-AF/T) (69)

where AF represents the change in objective function and T is the “temperature” which is computed

at each iteration using the following relation.
T =Tog! (70)

where the temperature T is reduced from the initial temperature T, during successive iterations 1
using the cooling rate q (0 < q < 1). A high temperature allows the optimizer to occasionally accept
a design for which the objective function (Fpew) value is worse than the reference value. The
worse design is accepted based on the acceptance probability probability and allows the algorithm
to climb out of local minima. The acceptance probability is gradually reduced to zero during
optimization so that the optimizer converges smoothly to an improved design point.

The hybrid optimization procedure relies on a directed search for the continuous design
variables which increases efficiency. However, the probabilistic nature of the simulated annealing
algorithm allows the optimization procedure to climb out of local minima. Therefore, the
procedure exhibits the benefits of both gradient-based and discrete optimization techniques.

5.4.7 Results and Discussion

The optimization at level 1 has been carried out in two steps. In the first step, the body
radius and nose length are used as design variables to minimize the first peak in the sonic boom
pressure signature. In the second step, the wing geometric parameters are used as design variables
to minimize the second peak in the sonic boom pressure signature, while the nose dimensions are
maintained at their optimum values obtained from the first step. In both steps, optimization is
performed for minimum Cp/Cr, and minimum sonic boom (Apj and Ap;). The lift coefficient is
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constrained using Cr ... .= 0.95 C sand Cp .= 1.05 Cp o where Cp ¢ is the lift coefficient of

the reference configuration. The inviscid flow field around the vehicle is evaluated using the CFD
solver (UPS3D) over a streamwise distance that extends from the tip of the body up to three times
the body length in the longitudinal direction. The aerodynamic sensitivity analysis at level 1 is
performed using the semi-analytical sensitivity analysis techniques [94-95]. The sensitivity
analysis at level 2 is performed using the finite difference method. A three-dimensional hyperbolic
grid with 75 grid points in the circumferential direction and 80 grid points in the normal direction
has been used. The cruise Mach number is 2.5, the angle of attack is 5 degrees and the flight
altitude is approximately 16,500 m. The aircraft weight (W) is constrained during the level 1
optimization to be below Wiax = Wer Where Wer is the weight of the reference configuration.
The pressures at d, = 0.5 I, are directly obtained from the CFD solver. The sonic boom signatures
at two locations have been considered during the optimization. The first of the two corresponds to
a distance dj = 3.61 I, from the axis of the body and is denoted “near field” in the text. The
second distance considered is dj = 941.7 1, from the axis of the body and is denoted “far field.”
This far field distance corresponds to the ground level. Results from both cases of optimization are

discussed here.
Near Field Optimization (d; = 3.61 lp)

Figure 31 compares the reference and the optimum geometries. Figure 32 compares the
reference and the optimum values of the level 1 objective functions normalized with respect to their

corresponding reference values.

Reference

Near field optimum

Figure 31. Comparison of planforms; near field optimization.

The first peak in the sonic boom signature (Apy) decreases by 23.6 percent in the optimum
configuration. This is due to the decrease in the maximum radius (rm) and the increase in the nose
length (1,) during optimization. This slender nose has a smaller equivalent area distribution for the
nose region yielding a reduced first pressure peak. The smaller planform area of the optimum
configuration has a smaller equivalent area and lift distribution. The increase in leading edge
sweep (A1) of the optimum configuration also results in a weaker wing shock. These factors yield

a significant reduction (18.7 %) in the second pressure peak (Ap2) of the sonic boom signature.
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The Cp/Cy ratio has also decreased by a modest 3.5 percent in the optimum configuration. This
percentage reduction is small because there are simultaneous reductions in both drag and lift in this
case. Figure 33 presents the sonic boom pressure signatures for the reference and the optimum
configurations. The constraint imposed on the aircraft weight (W) during the level 1 optimization

is satisfied throughout the optimization.

Table 11 presents the reference and the optimum values of the design variables and the
performance functions used in the level 1 optimization. Significant increases are observed in the
first leading edge sweep, the root chord and the break length of the optimum wing. These
increases coupled with the decreases in the wing tip chord and starting location result in a smaller

planform area for the optimum wing.

Table 11. Comparison of level 1 design variables and objective functions.

Design Variables Reference Near field Far field
optimum optimum
Maximum nose radius, ry, (m) 0.570 0.513 0.513
Nose length, 1, (m) 6.010 6.610 6.610
Ist leading edge sweep, A1 (deg) 70.20 74.40 70.32
Root chord, ¢cq (m) 8.120 8.610 8.060
2nd Jeading edge sweep, A (deg) 54.93 52.45 59.75
Tip chord, ¢ (m) 1.620 1.355 1.240
Break length, xp (m) 12.28 12.44 11.27
Wing starting location, Xy, (m) 8.130 7.670 7.150
First pressure peak (Api) 0.03389 (Near) 0.02590 0.00120
0.00136 (Far) (-23.6 %) (-11.9 %)
Second pressure peak (Ap2) 0.05483 (Near) 0.04459 0.00258
0.00269 (Far) (-18.7 %) (-3.9 %)
Drag-to-lift ratio, Cp/CL, 0.11510 0.11112 0.10983
(-3.5 %) (-4.6 %)
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Figure 33. Comparison of pressure signatures; near field optimization.

Structural optimization is performed in level 2. As mentioned earlier, the walls of the

composite box beam have 24 plies which are symmetrically oriented about the midsection of the

-chord ratio (w) have been

to

wall. The corresponding 12 ply orientations and the beam width

used as design variables. Constraints on the stresses in the plies at all the spanwise finite element
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nodes are imposed through the Tsai-Wu criterion. The reference values are used as the upper
bounds for the wing root bending moment constraints, that is, Mx" . =My and Myf =

M, . The level 2 optimization is initiated with all the 12 ply angles set to the reference value of

90 degrees. Table 12 compares the reference and the optimum values of the design variables and
the aircraft weight obtained from the level 2 optimization. Considerable reduction (10 percent) in
the aircraft weight is observed from the reference to the optimum configuration.

Figure 34 compares the reference and the optimum values of the aircraft weight normalized
with respect to the reference weight and shows the corresponding reductions in the fuselage, wing
skin and wing spar weights. The aircraft weight reduction is due in part to the reductions in the
fuselage weight (11.2 percent) and the wing skin weight (2.1 percent), associated with the changes
in the level 1 design variables during the level 1 optimization. The reduction in the wing skin
weight is relatively small because the reduction in the wing planform area is relatively small.
Weight reduction is also obtained through a reduction in the wing spar weight (18.2 percent). The
optimum spar width-to-chord ratio (w¢) has reduced by 16.1 percent to effect this change. In the
reference configuration, the stress constraints are violated within several plies at various spanwise
locations. The optimization procedure is able to modify these stresses through significant changes
to the ply stacking sequence. The modified stress distribution in the optimum box beam
configuration satisfies the Tsai-Wu criteria at all the plies at all spanwise finite element nodes. The
optimum configuration also satisfies the root bending moment constraints well. Figure 35
compares the stresses and the root bending moments in the plies of the reference and the optimum
beam configurations for the root section. It is to be noted the stresses and the bending moments
have been normalized using their corresponding reference values. Significant reductions are

observed in both the root stresses and the root bending moments after the optimization.
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Table 12. Comparison of level 2 design variables and objective function(s).
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Far Field Optimization (d} = 941.7 Ip)

The far field optimization formulation is identical to that the near field optimization except
that the sonic boom pressure peaks (Apj and Apy) are evaluated at dy = 941.7 1. Table 11
presents the reference and the optimum values of the design variables and the performance
functions used in the level 1 optimization. Figure 36 compares the reference and the optimum
geometries. Figure 32 compares the reference and the optimum values of the level 1 objective
functions normalized with respect to their corresponding reference values. The first peak in the
sonic boom signature (Api) has decreased by 11.9 percent in the optimum configuration. Similar
to the near field optimization case, this is due to the decrease in the maximum radius (r,) and the
increase in the nose length (1) during optimization. In fact, it can be noticed that both the near
field and the far field optimizations yield the same optimum values for these two design variables.
However, the changes in the wing planform variables show different trends in the far field
optimization. Unlike the near field case, there is relatively small changes in the first leading edge
sweep (A1) and the wing root chord (c,). The tip chord (c¢) has decreased significantly (23.4
percent) and the second leading edge sweep (A7) has increased (8.1 percent). The wing starting
location (xyw) has moved forward by a significant 12.1 percent and the break length (xp) has
decreased by 8.2 percent. These factors yield only a modest reduction (3.9 %) in the second
pressure peak (Apz) of the sonic boom signature. These design trends indicate that the far field
sonic boom signature is relatively less sensitive to design variable changes than the near field
signature. This is due to the fact that the sonic boom extrapolation procedure [124] tries to fit an
approximate N-wave to the sonic boom signature at far field distances. The extrapolation
procedure coalesces all the detailed shock information into the N-wave in the far field and makes it
less sensitive to changes in the design variables. The Cp/Cp, ratio has decreased by 4.6 percent in

the optimum configuration.
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35. Comparison of normalized root stresses and bending moments.
Figure 37 presents the sonic boom pressure signatures for the reference and the optimum

configurations.

the relative separation between the first and the second sonic

’

optimum configuration [Fig. 36]

has also decreased for the optimum configuration. This can be clearly

boom overpressure peaks

seen in Fig.37 for the optimum pressure signature.
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Figure 36. Comparison of planforms; far field optimization.

77



Reference
0.003 -

Far field optimum
0.002 -

0.001 H

04

Overpressure

-0.001 -

-0.002 T T T T T 1
7200 7230 7260 7290 7320 7350 7380
X (m)

Figure 37. Comparison of pressure signatures; far field optimization.

The reference design for the level 2 (structural) optimization has the 12 ply angles set equal
to 90 degrees. Table 12 compares the reference and the optimum values of the design variables
and the aircraft weight obtained from the level 2 optimization. The optimization procedure reduces
the weight significantly (13 percent). Figure 34 compares the reference and the optimum values of
the aircraft weight normalized with respect to the reference weight and shows the significant
reduction in the total weight and its components. The fuselage weight, the wing skin weight and
the wing spar weight have decreased by 11.2 percent, 22.1 percent and 13.9 percent, respectively.
Unlike the near field case, the wing skin weight has reduced significantly in this case because the
planform area of the far field optimum configuration is considerably smaller than the planform area
of the reference configuration. The stress distribution in the optimum configuration satisfies the
Tsai-Wu criteria at all the plies and at all spanwise finite element nodes. The optimum
configuration also satisfies the root bending moment constraints. Figure 35 compares the stresses
and the root bending moments in the plies of the reference and the optimum beam configurations
for the root section. The optimization procedure successfully reduces the stresses and the root
bending moments in all the plies. However, the reduction in the root bending moments are mainly
due to the reductions in the aerodynamic loading corresponding to the decreases in the drag and the
lift forces of the wing-body. The values of the root bending moments are dictated by the
aerodynamic loading. If an “all-at-once” approach is used to perform the multidisciplinary
optimization instead of the present multilevel decomposition technique, these root bending moment

constraints would play an important role during optimization.
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From Table 12, it can be observed that in level 2, the near field optimum and the far field
optimum lead to similar design variable changes. One of the main reasons for this trend is that the
aerodynamic load distributions, obtained after level 1 optimization, are similar to each other in both
the near field and the far field cases. Therefore, the changes in the level 2 design variables show

similar trends in both cases.

6. Concluding Remarks

A semi-analytical sensitivity analysis procedure has been developed for calculating
aerodynamic design sensitivities to be used in design optimization problems involving
comprehensive CFD solvers. The grid sensitivities and the flow variable sensitivities are calculated
by directly differentiating the discretized governing differential equations. The procedure has been
developed for the three-dimensional PNS solver, UPS3D. The aerodynamic design sensitivities of
wing-body configurations have been calculated using the developed procedure. The computational
grid using within UPS3D includes 75 points in the circurmferential direction and 80 points in the
normal direction. Results obtained from the semi-analytical sensitivity techniques compare very
well with those obtained using a finite difference approach. When the semi-analytical sensitivity
analysis techniques are used instead of a finite difference approach within design optimization
procedures, these CPU savings become very significant. For a typical sensitivity analysis using
four design variables, the procedure yields a 39 percent reduction in CPU time over the finite
difference technique. Within the integrated aerodynamic/structural optimization of the delta wing-
body configuration where these four design variables are used, the semi-analytical sensitivity
analysis techniques decrease the CPU time by 780 seconds per design cycle on the CRAY 2 or
nearly 6.5 CPU hours for the entire optimization. During the integrated aerodynamic/sonic boom
optimization of the delta wing-body configuration where six design variables are used, the semi-
analytical sensitivity analysis techniques offer a savings of 2595 seconds per design cycle (35 %)
and approximately 7 CPU hours for the entire optimization. During the integrated
aerodynamic/sonic boom optimization of the doubly swept wing-body configuration where eight
eight design variables are used, the semi-analytical sensitivity analysis techniques offer a savings
of 3460 seconds per design cycle (36.2 %). The time required for the entire optimization decreases
by 11 CPU hours due to these CPU savings. Thus, there are two important observations to be

made of the semi-analytical sensitivity analysis technques.

1. Significant savings in CPU time are realized by using these techniques instead of the finite
difference approach, without any loss in accuracy.
2. The reduction in CPU time for each sensitivity analysis increases as the number of design

variables increases.
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The second observation is of important consequence in a practical design environment, where a
large of design parameters may be used to define the aircraft. In such a situation, the semi-
analytical sensitivity analysis procedure will be able to save a very significant amount of
computational time. The savings associated with the semi-analytical approach also allows the use
of comprehensive analysis procedures (three-dimensional Navier Stokes solvers) within design
optimization.

Several multidisciplinary design optimization procedures have been developed for
aerospace applications. The MDO procedures for high speed configurations simultaneously
improve the aerodynamic, sonic boom and structura] performance of the aircraft. The three-
dimensional, supersonic flow around the aircraft is calculated using the PNS solver, UPS3D. The
wing load carrying member is modeled as either an isotropic box beam or a composite box beam.
The isotropic box beam model is analyzed using thin wall theory and the composite box beam
model is analyzed using a finite element approach. The aerodynamic design sensitivities have been
calculated using the semi-analytical sensitivity analysis techniques. A two-level decomposition
procedure is used when structural criteria are included within the optimization formulation. The

following summarizes the results from the optimization procedures.

1. The integrated aerodynamic/structural optimization procedure for high speed wing-body
configurations yields significant reductions in the aircraft drag and weight while improving
the lift.

2. The reduction in the aircraft drag is predominantly due to the significant reduction in the
wing thickness-to-chord ratio. The improvement in the lift is due to the increased planform
area caused by the increases in the wing root chord and wing span. Reduction in the
aircraft weight is achieved through reductions in the wall thicknesses of the wing spar.

3. The multiobjective optimization procedures, for integrated aerodynamic/sonic boom
optimization and the two-level optimization procedure, for integrated aerodynamic/sonic
boom/structural optimization, are efficient and yield overall improvements in all the
performance criteria included in the formulations.

4. Contrary to prior investigations, the multidisciplinary procedures yield low boom
configurations that are more slender and hence, aerodynamically efficient. Reductions in
the first peak of the sonic boom pressure signature are achieved through significant changes
to the nose dimensions of the aircraft. Reduction in the second pressure peak is achieved
through changes to the wing planform geometry and thickness-to-chord ratio.

5. The procedure demonstrates the trade-offs between low boom and aerodynamically

efficient configurations. The low boom designs have decreased lift associated with them.
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6. The percentage reductions in the sonic boom overpressure peaks are smaller for
optimizations based on the far field signature than those based on the near field signature.

7. The aircraft weight is affected both by the planform variables as well the beam width-to-
chord ratio. The stresses in the plies and the root bending moments are significantly
reduced during the optimization through a redistribution of the ply stacking sequence.

The MDO procedures, coupled with the sensitivity analysis techniques, have been found to
be efficient and reliable tools for the design of aerospace systems. The procedures are capable of
optimizing complete configurations as well as individual components. They bring out the trade-
offs between the individual disciplines. They also help identify design parameters that are
ineffective during the optimization and hence, can be eliminated from the design variable set. They
can be extremely useful tools to the designer by providing insight into the influence of each design
variable on the overall performance of the system. The semi-analytical sensitivity analysis
techniques offer significant computational savings and allow comprehensive analysis procedures

(e.g., Navier Stokes solvers) to be coupled within design optimization.
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