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Abstract

The results from an experimental and analytical study of a composite sandwich

fuselage side panel for a transport aircraft are presented. The panel has two window

cutouts and three frames, and has been evaluated with internal pressure loads that

generete biaxial tension loading conditions. Design limit load and design ultimate
load tests have been performed on the graphite-epoxy sandwich panel with the middle

frame removed to demonstrate the suitability of this two-frame design for supporting

the prescribed biaxial loading conditions with twice the initial frame spacing of 20
inches. The two-frame panel was damaged by cutting a notch that originates at the

edge of a cutout and extends in the panel hoop direction through the window-belt
area. This panel with a notch was tested in a combined-load condition to demonstrate

the structural damage tolerance at the design limit load condition. The two panel

configurations successfully satisfied all desired load requirements in the experimental

part of the study, and the three-frame and two-frame panel responses are fully
explained by the analysis results. The results of this study suggest that there is

potential for using sandwich structural concepts with greater than the usual 20-in.-wide

frame spacing to further reduce aircraft fuselage structural weight.

Introduction

The potential for cost and weight reduction offered by composite-facesheet

sandwich structures in aircraft fuselage side panels is currently being investigated in
the NASA Advanced Composite Technology Program. Structural trade studies for
sandwich concepts that use advanced material placement methods, such as tow

placement for skin and three-dimensional braiding for frames, have identified a 25

percent cost and weight reduction compared to conventional integrally-stiffened

metallic structures (Ref. 1). Sandwich structures offer additional potential for weight

reduction by decreasing the number of frames by increasing the fuselage frame
spacing. Sandwich structures are good candidates for implementing greater frame



spacing than the usual 20 to 22 in. frame spacing since skin panels for these
structures have much higher bending stiffnesses than the more conventional stringer-
frame stiffened skins with minimum gauge thicknesses. The sandwich panel
described in the present paper has been designed to generate preliminary
performance information for sandwich structures with twice the usual fuselage frame
spacing.

The design studies for the curved panel described in the present paper utilized
existing tension fracture data for flat sandwich panels which could result in
conservative structural designs. Understanding the response of undamaged and

damaged sandwich structures when they are subjected to combined loading

conditions that are representative of the actual operating flight environment is an

important aspect of designing aircraft structures. Very limited information currently
exists for curved composite sandwich panels with damage at critical locations and

subjected to combined loading conditions. To understand better the structural
behavior of a sandwich fuselage side panel with windows and with damage at a highly

stressed location, biaxial tension tests have been performed by subjecting the

damaged panel to internal-pressure loading conditions.

Finite element analyses have been performed on the sandwich panel in the test
machine and subjected to different test loading conditions. Inplane stress and strain

results for an infinite composite flat plate with an elliptical cutout are compared with

finite element analysis results to help explain the stress gradients along the cutout in

the panel. The finite element analysis results are compared with experimental results

for corresponding loading conditions. The present paper discusses the experimental
results and their correlation with the analysis results.

Test panel and test description

The sandwich fuselage panel considered in the present study has three frames
and has overall dimensions of a 122-in. radius, a 72-in. length, and a 63-in. arc width.

The panel has two window cutouts, one located midway between the center frame and
each of the outer frames. The elliptical window cutouts are 19.92-in.-Iong in the

fuselage circumferential direction and 15.30-in.-Iong in the fuselage longitudinal
direction. The sandwich panel facesheets were fabricated from Hercules, Inc.

AS4/8552 graphite-epoxy material and the core is made of a Hexcel Korex

honeycomb material. The facesheet utilizes tow-placed inner plies and fabric outer

layers. The fuselage frames and window frames were fabricated from fiber preforms

consisting of triaxially braided AS4 graphite fibers impregnated with 3M Company

PR500 epoxy resin and cured by using a Resin Transfer Molding (RTM) process. The
sandwich skin and the precured frames are cocured in a single stage. Typical material

properties for the tow placed, fabric, and triaxially braided AS4/8552 and AS4/PR500

graphite-epoxy material systems are presented in Table 1. Typical construction details
of the test panel are shown in Figure 1. The cross-sectional view illustrates details of

the panel in the window region. The sandwich core is contoured on both the concave
and convex sides of the panel to accommodate +45 ° plies added to the 8-ply-thick
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facesheet near the window region. When cured, the sandwich panel has a constant
inner and outer mold line radius resulting in a uniform total thickness throughout the
skin. Graphite-epoxy doublers fabricated from preimpregnated fabric were cocured
with the curved and flat edges of the panel to introduce the axial and hoop loads into
the panel skin. A photograph of the finished test panel is shown in Figure 2.

To evaluate the sandwich panel design, several tests were performed on the

undamaged panel prior to inflicting damage in the form of a notch and re-evaluating
the panel response using a pressure-box test machine described in Reference 1. In

the undamaged condition, the panel was subjected to an axial load of 2,450 Ib/in. with

no internal pressure; a pressure only condition of 18.2 psi; and a combined load
condition with 13.65 psi of internal pressure and 2,450 Ib/in. of axial tension. The

undamaged test conditions were also applied to the panel with its center frame

removed to gather preliminary structural performance information on a panel with

twice the initial frame spacing. A notch was then cut along the hoop direction starting

at the window and extending through the window frame and the skin, and the panel

was loaded to the design limit load condition of 8.85 psi of internal pressure and 1,630
Ib/in. of axial tension. The panel was instrumented with electrical resistance strain

gages to record strains and with displacement transducers to monitor panel
displacements.

Finite element model

The finite element model of the panel in the pressure-box test machine is shown

in Figure 3. The sandwich panel is modeled using the ABAQUS finite element

analysis program (Ref. 2) with 4-node isoparametric elements for the facesheets and

three 8-node solid elements through-the-thickness to represent the honeycomb core.

The ply drop-offs in the facesheets are discretely modeled to represent the thickness
changes appropriately. The circumferential frames and the window frames are also

modeled using the 4-node shell elements. The window glazing is also modeled using
shell elements. Only reaction forces along the edges perpendicular to the window

glazing are transmitted to the window frame. It is assumed that no inplane forces are
transmitted to the panel.

The hoop and axial load introduction plates of the test fixture are modeled with

shell elements. Since symmetry boundary conditions are assumed at the axial and

hoop centerlines, only a quarter of the structure is modeled and analyzed. Along the
sandwich panel hoop direction, the test fixture hoop-load-reaction turnbuckles for the

skin and frames are represented with the appropriate length and stiffnesses to model

the panel boundary conditions properly. Axial load is applied to the beams
representing the hydraulic actuators attached to the axial load introduction plate. The

quarter model of the test panel in the pressure box has a total of 5,343 elements and

approximately 26,650 degrees of freedom. Geometric nonlinear analyses have been

performed for all load cases considered in the present paper.



Results and Discussion

The sandwich panel was modeled with the pressure-box test machine and was

analyzed for critical loading conditions to determine the panel response both with and

without damage. Some of the analytical results are compared with the experimental
results in this section.

Undamaged panel results

2,450 Ib/in. axial loading condition

The test panel was first analyzed for the 2,450 Ib/in. ultimate loading condition

for the axial loading condition. The inner and outer surface hoop strain contours

obtained from the finite element analysis for this loading condition are presented in

Figure 4. The influence of boundary conditions on the induced strain state in the panel

can be seen in this figure. The abrupt variation in the strain state away from the edge

of the elliptical cutout along its major axis is representative of the reduced hoop
stiffness in the outer region of the panel. The maximum hoop strain corresponding to

this loading condition is 1,580 l_in./in, and occurs on the panel inner surface at two

locations along the edge of the window cutout at approximately 50 ° and 130 ° from the

longitudinal axis of symmetry for the panel. The axial strain contours on the inner and
outer surfaces of the panel are presented in Figure 5. A maximum axial strain of

approximately 3,840 _in./in. occurs at the 90 ° location along the window cutout on the

panel outer surface. The analytically determined hoop and axial strain profiles around

the elliptical cutout for an infinite flat plate made with the same ply stacking sequence

are presented in Figure 6. These results are from a closed-form analysis method that
utilizes a linear elastic solution and the method of superposition (Ref. 3) to determine

the stresses and strains around the cutout. The hoop and axial strain results from this

closed-from analysis are presented in Figure 6. These strain profiles compare very

well with the panel outer surface strains along the window cutout obtained from the

finite element analysis. The corresponding hoop and axial stress concentration

factors, which are ratios of the stress magnitude at a given location along the cutout

normalized by the far field stress, are plotted in Figure 6(b). The maximum value for the
axial stress concentration factor is 3.57. The strain results from the test are presented

in Figure 7(a) and 7(b). These strain values are measured at the locations along the

edge of the window cutout indicated in Figure 7(c). The maximum experimental hoop
and axial strains are 1,600 _in/in. and 4,000 I_in./in., respectively, and compare very

well with the finite element analysis results. Local bending of the inner facesheet at

the edge of the hole at the 90 ° location seems to have influenced the hoop and axial

strain distribution as indicated in both the analytical and experimental results. For this

reason, discussions of strain results for the other loading conditions are limited only to

the panel outer facesheet.
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Combined 18.2 psi internal pressure and 1,110 Ib/in. axial loading condition

This loading condition corresponds to twice the design limit pressure condition
of 9 psi of internal pressure and a 1,110 Ib/in. load in the panel axial direction. The

outer surface hoop and axial strain variations along the elliptical hole edge obtained

from the finite element analysis for this loading condition are presented in Figure 8.
These results are compared with the analysis results presented in Figure 9 for a flat

plate with an elliptical cutout. The hoop strain has a small negative value at the edge

of the elliptical cutout near the major axis and the largest positive value along a radial
line which is inclined at approximately 45 ° to the major axis. The axial strain results in

Figure 9(a) indicate a large positive strain value at the edge of the elliptical cutout at

the ellipse major axis and a small negative value at the boundary of the cutout at its
minor axis. The finite element analysis results in Figure 8(b) are consistent with these

results. The analytical stress concentration factor results presented in Figure 9(b) for
an infinite flat plate suggest that the axial stress concentration factor is 3.01 for this
loading condition.

The experimental strain results for this loading condition are presented in
Figure 10. For the outer surface, the measured axial strain values at the minor axis is

-1,000 tlin/in, and the value at the major axis is 2,200 _in./in. The finite element

analysis results at the corresponding locations are -662 _in./in. and 1,420 _in./in.,
respectively.

Combined 13.65 psi internal pressure and 2,450 Ib/in. axial loading condition

This test condition corresponds to the design ultimate loading condition with

13.65 psi of internal pressure and 2,450 Ib/in. of axial loading. The outer surface hoop

and axial strain results from the finite element analysis are presented in Figure 11.
The strain contours along the edge of the cutout agree well with the analytical results

presented in Figure 12(a). These analytical results suggest that the hoop strain has a

small negative value along the cutout boundary at the ellipse major axis and changes

to a positive value at the ellipse minor axis. The axial strains are positive at the major
axis and negative at the minor axis. The stress concentration factors from the infinite

flat plate analysis are presented in Figure 12(b). For this loading condition, which has
high tensile forces in both the panel axial and hoop directions, the stress concentration

factors are 2.88 and 2.05 for the hoop and axial stresses, respectively, at the edge of

the cutout. The hoop and axial strain distributions from the experiment are presented
in Figure 13. The trends of the experimental results agree extremely well with the finite

element analysis results. The experimentally measured strains on the panel outer

surface in the hoop direction vary from 1,150 _in./in. to-900 I_in./in. compared to the

finite element analysis results which vary from 937 I_in./in. to -949 I_in./in. In the axial

direction, the measured strains vary from 4,000 _in./in. to -775 llin./in. The

corresponding results from the finite element analysis vary from 3,540 I_in./in. to -815
_in./in.
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Neither of the above loading conditions resulted in strain magnitudes that
exceed the strain allowables for the material systems used for manufacturing the test

panel. There were no other indications from the experiment that suggested test panel

failure. Further testing was conducted and it was assumed that the panel was in the

pristine condition at the end of all the previous tests.

Results for the panel with the center frame removed

The next set of loading conditions was imposed on the panel with the center

frame removed. The objective of these tests was to gather preliminary information on

the sandwich panel response with an increased frame spacing of 40.0 inches. The

frame was removed by severing the frame web above the frame attachment flange at
the skin. The finite element analysis and experimental results corresponding to two

load conditions for this panel configuration are presented below.

Combined 16.2 psi internal pressure and 1,110 Ib/in. axial loading condition

The finite element analysis results for this loading condition are presented in

Figure 14. The hoop and axial surface strains are presented in the figure for the outer
facesheet. The test was conducted by redistributing the loads in the severed frame to

the remaining two frames to ensure that the panel is evaluated for the same load ratio

of 80 and 20 percent of the load in the skin and the frames, respectively, for a given

loading condition. The frame load for the panel with two-frame configuration is greater
than that for the frame load for the panel with the three-frame configuration. This

increase in frame load is indicated by comparing of results for the two-frame panel

presented in Figure 14 with the results for the three-frame panel in Figure 4. The hoop
strain in the remaining two frames increases by approximately 25 percent and the

hoop strain in the skin between the two cutouts increases by approximately 12 percent
due to the severing of the center frame. This increase in skin hoop strain is due to

bending of the unsupported skin between the cutouts. The axial strain results from the
finite element analysis for the inner facesheet are presented in Figure 15(a). Bending
of the skin between the frames is also present for the inner and outer facesheet hoop

strain contours. The experimental axial strain results for this panel are presented in

Figure 15(b). The outer facesheet hoop strains from the experiment vary from

approximately -400 l_in./in, to 2,200 l_in./in, compared to the finite element results

which vary from -770 I_in./in. to 2,100 _in./in. Bending of the skin between the two
cutouts can be noticed in Figure 15(b) and is indicated by the differences in the

experimental hoop strains for the inner and outer panel surfaces at e =0. The axial

strain results for this panel configuration corresponding to this loading condition are

very similar to those for the panel with a three-frame configuration.

Combined 13.65 psi internal pressure and 2,450 Ib/in. axial loading condition

The panel outer surface hoop and axial strain results from finite element

analysis are presented in Figure 16 for this loading condition. The overall
observations for the axial and hoop strains for this loading condition are very similar to
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the previous loading condition for the two-frame panel. The experimental strain results
for the two-frame panel are compared with the three-frame panel results in Figure 17.
The maximum experimental axial strain along the cutout for the two-frame panel varies
from -850, in./in, to 4,000, in./in, compared to the analytical results which vary from
-540 , in./in, to 3,860 , in./in. These strain magnitudes are comparable to the axial

strains for the three-frame panel for the same load condition. Bending of the skin
between the frames is also observed for this loading condition and is similar to that

observed for the previous loading condition for the two-frame panel.

The panel with the two-frame configuration responds in a predictable manner
and the strain magnitudes for this loading condition are well within the strain
allowables for failure initiation.

Results for the panel with a removed center frame and a notch at one
cutout

This test case is the final test case considered in the present study. A maximum

value for the undamaged test panel axial strain occurs at the edge of the elliptical
cutout at its major axis. The magnitude of the maximum strain is 3,860, in./in, for the

combined 13.65 psi internal pressure and 2,450 Ib/in. axial loading condition.
Damage in the form of a 1-in.-Iong saw-cut notch was inflicted at this critical location to

study the damage tolerance of this sandwich panel concept with a combined loading

condition with 8.85 psi of internal pressure and 1,630 Ib/in. of axial load. This loading
condition corresponds to 2/3 of the design ultimate load condition. The notch was

machined into the panel to extend in the panel hoop direction slightly beyond the
window frame edge. The panel outer surface hoop and axial strain results from the

finite element analysis are presented in Figure 18 for this combined loading condition.

The hoop strain for this loading condition varies from -1,100, in./in, at 0 =90° to 1,900

, in./in, at e=0o. The strain magnitudes are significantly higher for this loading

condition than for the hoop strain results presented in Figure 16 for the combined

loading condition with 13.65 psi of internal pressure and 2,450 Ib/in. of axial loading
which are 66 percent lower. This increased strain state in the panel for this test case is

due to the notch causing more panel bending in the skin between the two cutouts. The

axial strain results from the finite element analysis for the outer surface indicate that a

maximum strain of approximately 5,200, in./in, occurs at the tip of the machined notch.
The experimental strain results for this load case are presented in Figure 19. The axial

strain results vary from -500, in./in, to 5,800 , in./in, and compare very well with the

analysis results. No growth in the notch length was observed during the test.

The experimental hoop strain results along Line CC in Figure 1 for the three-

frame panel, for the two-frame panel, and for the two-frame panel with a notch at the

window cutout are compared in Figure 20. These results suggest that the far field

strains in the hoop direction are influenced more by the removal of the frame than by

the introduction of the notch. The increase in the panel strain state due to introducing
the notch is local and does not result in any significant load redistribution.

?



Concluding Remarks

The response of a sandwich fuselage side panel with two window cutouts has
been evaluated for internal pressure and axial tension. The panel has been tested in

a three-frame configuration with combined loading conditions that are representative

of the design limit load and design ultimate load conditions. The strain magnitudes
around the cutouts on the inner and outer surfaces of the test panel for these loading

conditions are within the design ultimate strain allowable value of 4,000, in./in, for the

material, suggesting that the structure satisfies the design requirements. The inner

facesheet exhibits more local bending in the cutout region than does the outer

facesheet. The strain states corresponding to the applied load conditions in an infinite

composite flat plate were used to identify the differences in strain distributions
between the inner and outer facesheets of the sandwich panel. The magnitude of the

axial stress concentration factor is higher (3.57) for the axial loading condition, and the

hoop stress concentration factor is higher (2.88) for the combined loading condition
with 13.65 psi of internal pressure and 2,450 Ib/in. of axial loading. Although the
absolute values for the stress concentration factors determined from the flat plate

analyses are not directl_y applicable to the curved panel studies in the present

investigation, the locations for the maxima and the relative magnitudes of stress

concentrations for different loading conditions are comparable. The finite element

analysis results compare very well with the experimental results.

The finite element analysis results correlate very well with the experimental

strain values for the panel with a two-frame configuration, and the strain results are
less than the ultimate strain allowables for the material. The damage tolerance of the

two-frame configuration is also demonstrated by testing the panel at design limit load
conditions with a notch at a window cutout region that is in the location of the highest

value of axial stress. For this case, the maximum value for the axial strain obtained

from the test and from the analysis is approximately 5,200, in./in, with no growth in the

notch length. This result suggests that the panel with twice the original frame spacing

is capable of sustaining the design ultimate load conditions without damage and of
sustaining the design limit load conditions with a 1-in.-Iong notch. This finding from

the experiments is significant considering that reducing the number of frames results in

a lighter weight structure.
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Table 1. Typical material properties for the graphite-epoxy materials used to
manufacture the sandwich panel.

Property Tow Fabric Triaxial

braid

AS4/8552 AS4/8552 AS4/P R500

Korex

core

Longitudinal modulus, E 1 (Msi)

Transverse modulus, E 2 (Msi)

Lateral modulus, E 3 (Msi)

In-plane shear modulus, G12 (Msi)

Transverse shear modulus, G23 (Msi)

Transverse shear modulus, G13 (Msi)

Major Poisson's ratio, v 12

18.30 9.20 7.50

1.36 9.20 7.50

1.36 1.30 ....

0.76 0.72 0.57

0.52 0.50 0.40

0.76 0.50 0.57

0.32 0.04 0.29

0.00001

0.00001

0.0340

0.00001

0.0136

0.0326

0.30

9



Arc width
=63 in.

1

i i i i i i

,=, ,,=_
it___-i i--_-:--__-,_,::--__-_:--,_:_N

II II t I II | I II II

tt" ----- -
II il II

Length .._

I_ =72 in, v

Plies added

Panel radius
=122 inches

900

45 o

0 o

a. Plan view of the panel.

[(0/90)f,+45,0,+45,90,+45,0,90,-T45,90,-T-45,0,T 45, (0/90)f]

[(0/90)f,+45,0,90,:F45,(0/90)f]

f - fabric

X yOuter facesheet--.._..i._.l.l.rJ_,,.=.,._
._._-m- Core__.

IIIIII!!111111 ,,,"( ""....'[iiiiiiilfiili![lili!iiio. n. ........liillilli!!
T i D_ _._,_.__,_- _

Inner facesheet

b. Cross-sectional view "AA" c. Cross-sectional view "BB"

Figure l. Construction details for the sandwich panel.
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Figure 3. Finite element model of the sandwich panel.
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Hoop strain from the finite element analysis results for 2,450 lb/in, axial loading con-

dition.
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Figure 5. Axial strain results from the finite element analysis for the 2,450 lb/in, axial loading

condition.
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Analytical results for a flat plate with an elliptical hole and subjected to 2,450 lb/in, of
axial load.
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Figure 8.
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Finite element analysis results for strains on the panel outer surface for a combined

18.2 psi internal pressure and 1,110 lb/in, axial loading condition.
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Figure 9.

a. Strain profiles along hole b. Stress profiles along hole

boundary boundary

Analytical results for a fiat plate with an elliptical hole and subjected to combined 18.2

psi internal pressure and 1,110 lb/in, axial loading codition.
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Finite element analysis results for strain contours on the panel outer surface for a com-

bined 13.65 psi internal pressure and 2,450 lb/in, axial loading condition.
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Figure 12. Analytical results for a flat plate with an elliptical hole and subjected to a combined

13.65 psi internal pressure and 2,450 lb/in, axial loading condition.
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Figure 14. Finte element analysis results for strains on the two-frame panel outer surface for a

combined 18.2 psi internal pressure and 1,110 lb/in, axial loading condition.
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Figure 15. Experimental strain results on the two-frame panel outer surface for a combined 18.2

psi and 1,110 lb/in, axial loading condition.
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a. Hoop strain b. Axial strain

Figure 16. Finite element analysis results for strains on the two-frame panel outer surface for a

combined 13.65 psi internal pressure and 2,450 lb/in, axial loading condition.
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Figure 17. Experimental strain results on the two-frame panel outer surface for a combined 13.65

psi internal pressure and 2,450 lb/in, axial loading condition.
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Figure 18. Finite element analysis results for strains on the notched two-frame panel outer surface

for a combined 8.85 psi internal pressure and 1,630 lb/in, axial loading condition.
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Figure 19. Experimental axial strain results on the notched two-frame panel outer surface for a

combined 8.85 internal pressure and 1,630 lb/in, axial loading condition.
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Figure 20. Comparision of experimental far-field outer service hoop strain results for the three-

frame, two-frame, and notched two-frame panels.
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