2 kWe Solar Dynamic Ground Test Demonstration Project
Volume I: Executive Summary

Dennis Alexander
AlliedSignal Aerospace
Tempe, Arizona

February 1997

Prepared for
Lewis Research Center
Under Contract NAS3–26605
Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.
Foreword

To the scientists, engineers, technicians, and all the supporting staff who have worked nearly 30 years in the development of the technologies, components, and subsystems which led to the successful test of a solar dynamic electrical power system. We are indebted to your many years of dedication and hard work. Thank you.
<table>
<thead>
<tr>
<th>Rev</th>
<th>By</th>
<th>Approved</th>
<th>Date</th>
<th>Revision Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>MAB</td>
<td>D. Alexander</td>
<td>October 26, 1995</td>
<td>Initial issue.</td>
</tr>
<tr>
<td>A</td>
<td>MAB</td>
<td>D. Alexander</td>
<td>December 14, 1995</td>
<td>Italicize Freedom in Space Station Freedom</td>
</tr>
</tbody>
</table>
Table of Contents

1. SUMMARY AND CONCLUSIONS.. 1

2. INTRODUCTION.. 1

3. OBJECTIVES AND ACCOMPLISHMENTS... 3

4. PROJECT TEAM... 4

5. DESIGN SUMMARY... 5
 5.1 System Integration... 5
 5.2 Solar Simulator.. 5
 5.3 Solar Concentrator... 7
 5.4 Solar Receiver.. 11
 5.5 Power Conversion System.. 11
 5.6 Waste Heat Radiator... 14
 5.7 Engine Control.. 19

6. TEST SUMMARY... 19

List of Figures

- Figure 1. SDGTD System in Tank 6... 6
- Figure 2. Advanced Solar Simulator... 8
- Figure 3. Concentrator, Receiver, and Power Conversion System in Tank... 9
- Figure 4. Facet Design... 10
- Figure 5. Receiver Section View.. 12
- Figure 6. Containment Canister Configuration... 13
- Figure 7. Turboalternator Compressor... 15
- Figure 8. Recuperator... 16
- Figure 9. Cooler Configuration.. 17
- Figure 10. Radiator Cross Section... 18
- Figure 11. Power and Temp vs. Time... 22
- Figure 12. SDGTD Test Data, Maximum Power Point, 2-17-95... 23
1. SUMMARY AND CONCLUSIONS

The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported:

- The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated.
- The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements.
- System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule.
- Power generation of 2 kWe.
- A NASA/industry team was developed that successfully worked together to accomplish project goals.

2. INTRODUCTION

Beginning in the early 1960s AlliedSignal Aerospace (then Garrett AiResearch), NASA Lewis Research Center, and the Department of Energy began development work on the components necessary for a closed Brayton cycle electrical generating system for space applications. Several projects were conducted during the 1960s and 1970s, such as the Brayton Rotating Unit (BRU), the Brayton Isotope Power System (BIPS), and the Mini-Brayton Recuperator. These projects produced the technology for the turbomachinery and heat recovery heat exchanger required in a closed Brayton cycle. The solar concentrator technology was advanced as part of the Space Station Freedom Program through the Solar Concentrator Advanced Development Project conducted by Harris Corp. and NASA LeRC. Radiator technology was developed by Loral Vought Inc. as part for the Space Station Freedom Program. A heat receiver with integral thermal energy storage design concepts was also developed by AlliedSignal Aerospace as part of the Space Station Freedom Program. Integration concepts were developed by Rocketdyne as part of the Space Station Freedom Program.

The projects which preceded this effort were conducted as component or subsystem efforts and required substantial support equipment. The scope of this effort was to combine all the required technologies of a solar dynamic power system into an integrated test unit and to conduct a system test in a relevant space environment except for microgravity. Fortunately, the Brayton cycle is an all-gas-phase cycle and is not effected by the presence or absence of gravity.

The specific purpose or objectives of this effort were to

- Investigate the optical, thermal, control and electrical integration aspects of solar dynamic power systems.
• Demonstrate a generation efficiency greater than 15 percent, fully accounting for all parasitic power losses. This efficiency would be demonstrated even though 1) many components were 20 years old and 2) new component designs compromised performance in order to demonstrate manufacturing technologies for larger sizes.
• Demonstrate design and manufacturing technologies necessary to produce optical facets and thermal energy storage canisters consistent with 25 kWe sized systems.
• Demonstrate that NASA and industry can successfully conduct projects cheaper, better, and faster.

The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.
3. OBJECTIVES AND ACCOMPLISHMENTS

The objectives of the project and the accomplishments relative to those objectives are as follows:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Accomplishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstrate solar dynamic closed Brayton cycle power system in relevant thermal environment</td>
<td>Completed. 48 hours of system test in thermal environment accomplished. Technical objectives achieved.</td>
</tr>
<tr>
<td>2. Demonstrate 15 percent orbital system efficiency = user power divided by sunlight intercepted</td>
<td>14 to 17.4 percent end-to-end orbital efficiency achieved.</td>
</tr>
<tr>
<td>3. Demonstrate 2.0 kWe</td>
<td>System generated 2.08 kWe.</td>
</tr>
<tr>
<td>4. Evaluate component codes</td>
<td>Component codes for receiver, concentrator, radiator and power conversion provided realistic predictions compared to test data.</td>
</tr>
<tr>
<td>5. Demonstrate orbital thermal control concept</td>
<td>Thermal control concept demonstrated which requires only voltage and current measurement. No direct measurement of stored thermal energy required.</td>
</tr>
<tr>
<td>6. Demonstrate “cheaper, better, faster” project capability</td>
<td>Project completed 4 months early, under budget and meeting technical requirements.</td>
</tr>
<tr>
<td>7. Complete development and manufacturing process of facets and thermal energy storage canisters</td>
<td>Facet and thermal energy storage canister manufacturing processes were successfully demonstrated for sizes appropriate for designs up to 25 kWe.</td>
</tr>
<tr>
<td>8. Develop NASA/industry team for dynamic power system</td>
<td>Working relationships developed between contracting team members and NASA.</td>
</tr>
</tbody>
</table>
4. PROJECT TEAM

A team of industry contractors and NASA LeRC was formed to accomplish the SDGTD technical and project objectives. The team members and their respective roles were as follows:

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Project Technical Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Lewis Research Center</td>
<td>Solar simulator and Tank 6 preparation</td>
</tr>
<tr>
<td>AlliedSignal Aerospace</td>
<td>System integration, power conversion subsystem, receiver, recuperator, cooler, engine controls, liquid loop components and data acquisition</td>
</tr>
<tr>
<td>Rockwell International Corp.,</td>
<td>Test integration</td>
</tr>
<tr>
<td>Rocketdyne Div.</td>
<td></td>
</tr>
<tr>
<td>Harris Corp., Government</td>
<td>Concentrator</td>
</tr>
<tr>
<td>Aerospace Systems Div.</td>
<td></td>
</tr>
<tr>
<td>Solar Kinetics Inc.</td>
<td>Concentrator facets</td>
</tr>
<tr>
<td>Loral Vought Systems Corp.</td>
<td>Radiator panels</td>
</tr>
<tr>
<td>Aerospace Design & Development, Inc.</td>
<td>Multilayer insulation</td>
</tr>
</tbody>
</table>

The typical hierarchical organization of contracting agency, prime contractor, and subcontractor was not used to conduct this project. The limitations of this vertical type of responsibility pyramid are well known and do not need further condemning here. A team of equal contributors was formed to conduct the SDGTD. At the project kickoff this team adopted the following rules of conduct to promote speed and cost containment:

- A prime contract and supporting subcontracts which provided a common incentive fee structure. The intent was that failure by one would be failure by all. This made it much easier to find quick and efficient solutions for technical issues since everyone had a stake in everyone else’s problems.
- Team building exercises early in the project to assist in the formulation of a working team. Specialists in team building concepts were brought in and helped in breaking down many barriers and establishing understanding.
- No restrictions on communications. A list of project contributors with phone numbers was generated and distributed. Individuals were encouraged to communicate with others outside their organization. Agreements and commitments were documented and distributed. Management worked on the back end of the process, not the front end. Everyone knew their roles, responsibilities, and scope of the work undertaken.
- All attendees considered equals during technical meetings. Each member, whether NASA or second-level subcontractor, was requested to speak up and question any position which they did not understand or agree with. Design reviews were very lively, entertaining and productive. The only dumb questions were those which were not asked!
- No attempts to find the best or optimum solution. "Best" and "optimum" are subjective terms. The requirement was to find a solution which adequately met the requirements and move forward.
• "If we don’t use it, we don’t need it." This motto applied to technical paperwork as well. This test eliminated a lot of “stuff” which is generated on a typical project and goes immediately into file cabinets, never to see the light of day again.
• Trust in each others’ abilities to do their jobs. Each organization, including NASA, took care of its own tasks and didn’t worry about what others were doing.
• No stigma was placed on any individual for making an error. Emphasis was placed on making decisions, conducting reviews, correcting approach and moving forward.

5. DESIGN SUMMARY

5.1 System Integration

The selected configuration of the SDGTD system installed in Tank 6 at NASA LeRC is shown in Figure 1. Key features of the overall system design approach are as follows:

• Except for equipment necessary to simulate the space environment and the data acquisition system, the SDGTD is self-sufficient and requires no laboratory support.
• The components are integrated optically, thermally and electrically.
• The light source provides up to 1.3 solar intensities with ray divergence of only 1 degree, whereas other existing solar light source designs have 4 or more degrees of optical divergence.

5.2 Solar Simulator

One of the most difficult parts of the SDGTD project was not in development of the test unit but in design and fabrication of the light source which simulates the sun. This task was accomplished successfully by NASA. The objective was to provide sunlight with high intensity (>1.6 kW/m²), uniform intensity (<±10 percent), and minimum optical ray divergence (<1 degree). The traditional designs of solar simulators use a light source and a collimating mirror to produce parallel light rays.
Figure 1. SDGTD System in Tank 6
These designs are expensive and did not meet the divergence requirement. NASA developed a system which used significantly fewer lamps and eliminated the collimating mirror. This system fully met technical, cost and schedule needs and required only a minor change in concentrator optical curvature. The features of this light system, shown in Figure 2, are as follows:

- Nine 30 kW Xenon arc lamps each individually controlled
- Turning mirror, water cooled, to direct light into the tank and onto the concentrator
- Water-cooled quartz window to allow light to pass into the tank
- Shutter to interrupt light during eclipse periods so that lamps will not have to be cycled on and off
- Each lamp fully illuminates the entire concentrator surface to minimize intensity variations.

5.3 Solar Concentrator

The solar concentrator consists of three elements:

- Seven hex shaped graphite structures to support mirrors (facets)
- Forty-two reflective facets
- Support structure

The completed concentrator installed in Tank 6 is shown in Figure 3. The concentrator structure was designed and fabricated by Harris Corp. The hex assemblies which support the optical facets are made of graphite box beams which have low thermal expansion and are therefore thermally stable. The box beams used in the SDGTD were originally used in a much larger concentrator. These beams were cut to desired length and installed into new corner fittings. The hex beams are much larger than would be required for a concentrator of this reflective area but they were free. The latches and strikers were also “borrowed” from the larger concentrator project and are significantly oversized for SDGTD. The result of using these devices is much larger gaps between hex assemblies than would otherwise be required.

The concentrator facets were designed and fabricated by Solar Kinetics, Inc. The facets are made of aluminum honeycomb with aluminum face sheets bonded to the front and rear. The bonding process is done over a curved surface to provide the appropriate radius of curvature. After the honeycomb structure is bonded the optical subsurface is leveled with an epoxy. The reflective surface used was aluminum and it was applied by vapor deposition. Aluminum oxide is then added to the optical surface for oxidation protection. The construction of the facet is shown in Figure 4. The SDGTD used relatively large facets to demonstrate the manufacturing technology required for larger systems. This resulted in fewer facets and slightly limited concentrator performance. Optical performance could also be improved by using silver reflective surfaces rather than aluminum. This would increase reflectivity from 86-87 percent to 94-95 percent.

The support structure for the seven linked hex panels is a tripod which attaches to the center hex panel and rests on the tank floor. This support structure is unique to the Tank 6 installation (see Figure 3).
Figure 2. Advanced Solar Simulator

Integral cooling water and power
Lamp housing
Work platform
Collector
Xenon lamp
Lens
Tank 6 port extension
Tank 6 window
Segmented reflector
Shutter
Shutter actuator
Tank 6 port

Solar simulator characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam size</td>
<td>188.5-in. diam at 56-1/2 ft from apparent sun</td>
</tr>
<tr>
<td>Collimation</td>
<td>None - point source</td>
</tr>
<tr>
<td>Irradiance</td>
<td>1.8 kW/m² (1.27 sun) max</td>
</tr>
<tr>
<td>Uniformity</td>
<td>±10%</td>
</tr>
<tr>
<td>Subtense angle</td>
<td>About 1 deg</td>
</tr>
</tbody>
</table>
Figure 3. Concentrator, Receiver, and Power Conversion System in Tank
Figure 4. Facet Design

- PROTECTIVE COATING
- REFLECTIVE COATING (ALUMINUM)
- LEVELIZER
- FRONT FACESHEET (ALUMINUM)
- HONEYCOMB CORE (ALUMINUM)
- BACK FACESHEET (ALUMINUM)
5.4 Solar Receiver

The solar receiver, like the concentrator design, is a continuation of the design started for the Space Station Freedom Work Package 4, solar dynamic power unit. The design, development, and fabrication of the solar receiver and thermal energy storage canisters was accomplished by AlliedSignal Aerospace. A cross section of this receiver is shown in Figure 5. The unit consists of 23 tubes arranged in a cylindrical configuration. Each tube has 24 doughnut-shaped canisters brazed to the outer diameter of the tubes. These canisters are filled with a lithium fluoride-calcium difluoride eutectic salt. A cross section of a tube assembly is shown in Figure 6. The 23 tubes are connected to circular manifolds on both ends to provide inlet and outlet connection. The diameter of the tubes and the design of the canisters was taken directly from the previous Space Station design. The Space Station design was of significantly larger power class, and the gas flow rate through the tubes was much larger than the SDGTD. To maintain flow velocity and heat transfer characteristics, a center body and fins were added to the interior of the tubes. The outside of the receiver was covered with layers of nickel and aluminum MLI to reduce heat loss via radiation. The MLI was designed, fabricated, and installed by Aerospace Design & Development Inc. A segmented graphite aperture plate was incorporated to

- allow solar "walk on," which would occur in an actual flight system where acquisition of the sun would require the hot spot to be moved into the aperture (not required in Tank 6 because the "sun" and concentrator locations were fixed
- absorb the "spillage" of light from the concentrator which is not directed through the aperture (approximately 4-5 percent of reflected sunlight).

The receiver was then suspended from a structure attached to the tank floor.

The light energy is projected through the aperture by the concentrator during the sunlight portion of the orbit. This energy falls directly on the canister surfaces and is absorbed. The temperature of the canisters is raised and the salt heated and melted. Gas from the power conversion system flows through the tubes and absorbs heat from the inner surface of the canisters. During the eclipse portion of the orbit, heat stored in the canisters, both sensible and latent, continues to provide energy to the gas until the eclipse portion of the orbit ends. In rough terms, the eclipse period is one-third of the orbit. Therefore approximately two-thirds of the incoming light energy is transferred through the canisters to the gas during the sunlit portion of the orbit and the remaining one-third is stored in the canisters for the eclipse period.

5.5 Power Conversion System

The power conversion system for the SDGTD is a closed Brayton cycle. The unit selected for this task was designed and fabricated by AlliedSignal in the mid-1970s for NASA/DOE as part of the Brayton Isotope Power System (BIPS). This unit had been run at AlliedSignal and placed in long-term storage at NASA's Plumbrook facility. This equipment was disassembled, cleaned and inspected. The turboalternator compressor (TAC), recuperator, interconnecting structure, and various ducts were selected for use in the SDGTD project.

41-14056-1A

11
Figure 5. Receiver Section View

OUTLET MANIFOLD

TUBE ASSEMBLY

MULTILAYER INSULATION

APERTURE ASSEMBLY

CONE

INLET MANIFOLD

41-14056-1A

12
Figure 6. Containment Canister Configuration

CONTAINMENT CANISTER CONFIGURATION

CONTAINMENT CANISTER SIDEWALL

WELD JOINT

PHASE CHANGE MATERIAL

CERAMIC FIBER PAPER

BRAZE BETWEEN CANISTER AND TUBE

CONTAINMENT CANISTER OUTER WALL

WORKING FLUID TUBE
The TAC contains the cycle compressor, turbine and modified Lundell (Rice) alternator all mounted on a common shaft. The alternator is mounted inside the gas system, and no mechanical drives with attendant seals are required. A hermetic system is therefore achieved. A cross section of the TAC is shown as Figure 7. The rotor is supported on gas foil bearings which require no lubrication other than cycle gas. Foil bearing technology has advanced since this unit was originally designed and newer bearings were incorporated into the unit. Additionally, instrumentation was added to monitor motion of the rotating shaft in both radial and axial directions.

A heat exchanger called a recuperator is used to recover waste heat from the turbine exhaust and transfer it to the discharge of the compressor before the cycle gas enters the receiver. This heat exchanger significantly improves cycle efficiency. The recuperator was also designed, fabricated and tested as part of the BIPS project. The recuperator is a counterflow plate fin design and the arrangement is shown in Figure 8. This particular heat exchanger was designed for a power system which used isotope as the heat source. Since isotope is very expensive and in very limited supply, system optimization results in very high component efficiencies. The recuperator has a tested thermal effectiveness in the 0.97 range, making it one of the most effective heat exchangers ever built. In addition to its high thermal effectiveness the mechanical design is very tolerant of thermal shock.

The cycle selected used a liquid loop radiator which would probably be selected for flight systems greater than 6 kWe. A heat exchanger is required to transfer waste heat from the gas to a liquid for transport to the radiator. This heat exchanger is referred to as a cooler. A cooler was not available from the BIPS project as it did not incorporate a radiator. A cooler designed for Phillips Lab for a cryocooler application which used helium-xenon and Freon was adequate for the SDGTD. Two of these cryocoolers were placed in series to provide the necessary heat transfer. This cooler was also of plate fin construction and is shown in Figure 9.

5.6 Waste Heat Radiator

The waste heat radiator design was also borrowed from Space Station Freedom concepts. It was designed and fabricated by Loral Vought. The radiator panel is a honeycomb structure with aluminum face sheets and special optical paint. Special tubes which conduct the liquid loop fluid (n-heptane) were embedded in the honeycomb and are bonded to the face sheets. These tubes are welded to manifolds on both ends of the panels. The design of the panel is shown in Figure 10. Radiator panel dimensions were selected to maximize use of production tooling being used to fabricate current Space Station radiators. This saved significant tooling resources and allowed quick fabrication. Two panels connected in series provided the required heat transfer area.
Figure 7. Turboalternator Compressor
Figure 8. Recuperator

- Recuperator cores are built from plate-fin sandwiches

- Stacked to form the heat exchanger core with integral manifolds
Figure 9. Cooler Configuration
0.020 THICK CLOSEOUT BONDED WITH HYSOL EA9205 PRIMER, EA9689 FILM ADHESIVE AND 3M AF3028 FOAM ADHESIVE

FLOW TUBES BONDED WITH HYSOL EA9205 PRIMER, EA9689 FILM ADHESIVE AND 3M AF3028 FOAM ADHESIVE

0.010 THICK SKINS BONDED WITH HYSOL EA9205 PRIMER AND EA9689 FILM ADHESIVE

CR-III-1/8-3 1-5052-0007N HEXCELL HONEYCOMB

Figure 10. Radiator Cross Section
5.7 Engine Control

The Power Conversion and Control Unit (PCCU) was designed and fabricated to perform the following electrical functions:

- Maintain output electrical voltage at 120 Vdc
- Maintain engine speed at the commanded value
- Operate the alternator as a brushless dc motor during starting
- Maintain constant electrical load on the alternator
- Provide fault monitoring and fault protection.

Three control loops were used to provide engine control. A voltage control circuit using proportional, integral algorithms monitors the output voltage. Field current to the Rice alternator is adjusted to maintain output voltage. Since a Rice alternator has no intrinsic magnetic field one must be created. The intensity of the field is proportional to the current applied to the field windings. This allows for constant electrical output voltage over a wide range of operating speeds. A second circuit monitors the rectifier output current and adds or subtracts resistive load at the Parasitic Load Radiator to maintain the commanded level. If the user adds load to the output, the PCCU immediately reduces the load at the PLR by an equivalent amount. A third loop monitors engine speed. If the speed is higher than the commanded value, the electrical load level is increased. Conversely, if the engine speed is lower than the commanded level, the electrical load is reduced. The frequency used for the PLR load control was 1 kHz. The frequency used for the voltage regulator and speed control loops was 20 Hz. Excellent power quality was demonstrated during the test even during very large (50 percent) load changes. A commercial full-wave rectifier was used to convert alternator 3 phase ac to dc.

6. TEST SUMMARY

The following component and subsystem tests were performed prior to delivering the equipment to NASA LeRC:

Concentrator
- Structural tests on hex panel assemblies
- Optical tests on facets
- Environmental tests on facets and facet coupons
- Function tests on alignment and flux testing fixtures and procedures.

Radiator/Liquid Loop Components
- Leak test of radiator panels
- Ambient air test of radiator panels using hot working fluid to verify pressure drop and panel thermal uniformity. Liquid loop components planned for the system test were used to condition the working fluid.
Receiver
- Thermal performance test of single-tube assembly
- Leakage and flow test of the completed unit.

Solar Simulator
- Performance test on single lamp to verify optics design
- Optical performance mapping of optical interface plane.

Multilayer Insulation (MLI)
- Thermal performance test on candidate MLI specimens.

Power Conversion System, Engine Control, and Data Acquisition Subsystems
- Motoring test of TAC to verify bearing and electrical integrity
- Leak test of recuperator
- Leakage and flow test of gas coolers
- Functional test of Engine Control using air turbine driven alternator test rig (ATR)
- Operating test of Power Conversion Subsystem using laboratory heaters and heat removal.
 Deliverable engine control and data acquisition subsystems used to conduct test.

Following the component and subsystem tests, hardware was delivered to NASA and the following test sequence conducted:

1. The radiator panels and the liquid loop components were installed in the tank. A series of tests was conducted to characterize the performance of the radiator panels in the Tank 6 thermal environment.
2. The concentrator was installed, aligned to the solar simulator and a flux test was conducted using a special target fixture to characterize the intensity distribution of the light at the receiver canister interface. The data acquisition system was used to collect the data from this test.
3. The receiver, power conversion system, and engine control were installed in the tank. A complete checkout of all instrumentation and control functions was conducted without heating the receiver. After all functions were verified, the solar simulator was turned on and system testing began. The highlights of this testing were as follows:

- System testing begun 12-12-94
- Self sustaining operation achieved 12-13-94
- 1.4 kW orbital operation achieved 2-1-95
- 2.08 kW maximum electrical power achieved 2-17-95
- 1.96 kW orbital operation achieved 2-17-95
- NASA turnkey operation 3-6-95.

The engine was operated for 48 hours by the contracting team prior to being turned over to NASA. A maximum of 2080 watts of ac power was produced during the test operation. An efficiency in the range of 14 to 17 percent was demonstrated during the test. This efficiency is available user dc energy divided by solar energy projected at concentrator averaged for an entire orbit, including the eclipse portion. The
range in efficiency is due to the uncertainty in various test measurements. A graph of the major system parameters for the 2-17-95 test appears as Figure 11. A cycle schematic with test data for the maximum power point on the 2-17-95 test is shown in Figure 12. NASA LeRC continues to operate the SDGTD in support of the joint US-Russian Solar Dynamic Flight Test Project, which will place a comparable system on the Russian Mir in 1997.
Figure 11. Power and Temp vs. Time

17 FEB 95 POWER & TEMP vs TIME

DC Power - Watts

Temperature - Deg R

Clock Time

- DC Power
- Receiver Out
Gas Temp
Figure 12. SDGTD Test Data, Maximum Power Point, 2-17-95
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
February 1997

3. REPORT TYPE AND DATES COVERED
Final Contractor Report

4. TITLE AND SUBTITLE
2 kWe Solar Dynamic Ground Test Demonstration Project
Volume I: Executive Summary

5. FUNDING NUMBERS
WU–233–03–OB
C–NAS3–26605

6. AUTHOR(S)
Dennis Alexander

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AlliedSignal Aerospace
Tempe, Arizona

8. PERFORMING ORGANIZATION REPORT NUMBER
E–10005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135–3191

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Project Manager, Richard K. Shaltens, Power Technology Division, NASA Lewis Research Center, organization code 5490, (216) 433–6138.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 20
This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

12b. DISTRIBUTION CODE
A03

13. ABSTRACT (Maximum 200 words)
The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported:
1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated.
2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements.
3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule.
4. Power generation of 2 kWe.
5. A NASA/industry team was developed that successfully worked together to accomplish project goals.
The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

14. SUBJECT TERMS
Space power; Solar dynamic; Brayton cycle; System testing

15. NUMBER OF PAGES
29

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
288-102