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SUMMARY

A computational study has been undertaken to study the performance of advanced

phenomenological turbulence models coded in a modular form to describe incompressible turbulent

flow behavior in two dimensional/axisymmetric and three dimensional complex geometry. The

models include a variety of two equation models (single and multi-scale k -e models with different

near wall treatments) and second moment algebraic and full Reynolds stress closure models. These

models were systematically assessed to evaluate their performance in complex flows with rotation,

curvature and separation. The models are coded as self contained modules that can be interfaced

with a number of flow solvers. These modules are stand alone satellite programs that come with

their own formulation, finite-volume discretization scheme, solver and boundary condition

implementation. They will take as input (from any generic Navier-Stokes solver) the velocity field,

grid (structured H-type grid) and computational domain specification (boundary conditions), and

will deliver, depending on the model used, turbulent viscosity, or the components of the Reynolds

stress tensor uiu j . There are separate 2D/axisymmetric and/or 3D decks for each module

considered.

The modules are tested using Rocketdyn's proprietary code REACT. The code utilizes an efficient

solution procedure to solve Navier-Stokes equations in a non-orthogonal body-fitted coordinate

system. The differential equations are discretized over a finite-volume grid using a non-staggered

variable arrangement and an efficient solution procedure based on the SIMPLE algorithm for the

velocity-pressure coupling is used. The modules developed have been interfaced and tested using

finite-volume, pressure-correction CFD solvers which are widely used in the CFD community.

Other solvers can also be used to test these modules since they are independently structured with

their own discretization scheme and solver methodology. Many of these modules have been

independently tested by Professor C.P. Chen and his group at the University of Alabama at

Huntsville (UAH) by interfacing them with own flow solver (MAST).



CHAPTER 1

Introduction

1.1 Background

Computational Fluid Dynamics (CFD) has been used extensively for the last decade or so in

analyzing complex flow phenomenon for many industrial applications, such as combustion and

turbomachinery. Most flows of practical interest are turbulent and for many of them, relatively

simple prediction methods are sufficient to produce results of engineering accuracy. For others,

mainly flows in complex geometry with large body forces such as curvature, rotation and

separation, more complex prediction methods are required.

With advancing state-of-the-art of computer technology, the range, size and complexity of flow

models being applied have increased. Users have become more sophisticated and there is a

constant demand for improvement. CFD codes have adapted to this demand and many general-

purpose computer codes have been developed and used. As these general purpose codes become

larger, their code structure becomes sophisticated and in general this structure can be divided into

three main areas;

1) Numerical algorithms which include discretization methods and solution techniques.

2) Methods of dealing with complex geometry, such as grid generation, structured or

unstructured grids.

3) Physical models which include turbulence models, porosity, combustion kinetics,

multi-phase flows, etc.

It seems, therefore, that the practicing engineer must have the knowledge of all these elements of

the CFD program in order to successfully utilize the code. Modularization of the code structure

may then become necessary in order to obtain the maximum benefits from these general-purpose

CFD codes. This means developing individual modular routines for the solver and other physical

models. If such modules are successful they would allow users to concentrate their talents on

developing and improving physical hypothesis such as turbulence models that can be easily tested

using these modules.
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In general, the physics of turbulence can be captured by solving the full time-dependent Navier-

Stokes equations in what is termed as Direct Numerical Simulation (DNS). However, DNS is not

practical for engineering purposes mainly because it is restricted to flows at low Reynolds

numbers. Large Eddy Simulations (LES) are now competitive with DNS in accuracy at an order of

magnitude less cost, however, it is still expensive for routine engineering calculations. Therefore,

current engineering prediction methods are based on Reynolds-averaged equations, with models

for the unknown Reynolds stresses which appear as the result of time-averaging the nonlinear

Navier-Stokes equations. These models fall mainly into three categories; "eddy-viscosity" models,

where a relation between the Reynolds stresses and mean velocity gradients at the same point in

space is sought. Algebraic stress models, where the Reynolds stresses are expressed as an

algebraic relation of turbulence production and dissipation. Reynolds stress models where the exact

partial differential equations for the Reynolds stresses are solved after closing the higher order

terms. These transport equations account for the dependence of Reynolds stresses on the history of

the flow and should perform better than the eddy-viscosity models.

1.2 Outline of the Present Study

In the present work, phenomenological, single-point turbulence models coded in a modular format

are developed as self-contained code decks that can be interfaced with a niimber of flow solvers to

analyze turbulent flows in complex 2D/axisymmetric or 3D geometry. These modules are validated

using Rocketdyn's REACT code and are independently tested at UAH using own code MAST.

The models that are developed in a modular form include;

. 2D/axisymmetric single-scale k-e model with three options for near wall treatment that include;

- Standard Launder and Splading wall functions.

-Chen and Patel two-layer model.

- Lam and Brernhorst low-Reynolds number model.

2. 2D/axisymmetric multi-scale k-e model with the standard wall function and Chen& Patel two-

layer near wall treatment.

3. 2D/axisymmetric implicit algebraic stress model (ASM) based on the original work of Rodi.

4. 2D/axisymmetric full Reynolds stress turbulence model (RSM) based on the simplified linear
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secondmomentclosuremodelof Launder,ReeceandRodi (LRR) secondmomentclosure.

5. 3Dstandardk-e turbulence model with wall function and two-layer near wall treatments.

6. 3D algebraic stress model (ASM).

Each model is coded as a self contained, stand alone module deck that can be interfaced with a

number of CFD solvers to analyze turbulent flows in complex geometry. The user can use these

modules without concern as to how they are implemented and solved. The input to the modules are

the mean flow variables, boundary and geometric information which are to be provided by a mean

flow solver. The output of the module are the turbulent eddy-viscosity for the eddy-viscosity

models and the Reynolds stresses for the second moment closure models. Moreover, source terms

which are needed for the mean flow calculations are calculated and must be passed to the main

solver. The modules are tested using the finite-volume REACT code and the results compared with

available experimental data.

Full details of each module are given in the next chapters. Chapter 2 discusses the theory and

model equations for the two-equation k-e model used in the 2D/axisymmetric module deck. The

module is evaluated with a number of benchmark problems and detailed description of the module

variable names together with the input/output structure are given in apl_ndix A. The complete

listing of the module is provided at the end of the chapter. Similarly, chapter 3 discusses the theory

and model equations for the 2D/axisymmetric multi-time-scale k-e model. The 2D/axisymmetric

Algebraic stress module is presented in chapter 4 and chapter 5 discusses the 2D/axisymmetric

Reynolds stress module deck. Full description of the 3D k-e turbulence model is given in chapter

6 and chapter 7 presents a full description of the 3D algebraic stress model together with module

description and code listing in the appendix. Finally in chapter 8, copies of related turbulence work

that are presented or published elsewhere are attached.
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2.1 Introduction

In this section a description of the standard k-e turbulence model that is coded as a self contained

computer program to compute turbulent flow quantifies in two-dimensional planar or axisymmetric

geometry is given. Detailed description of the module structure, variables used and how to

interface the module with CFD flow solvers are given in Appendix A. The module has been tested

as a separate self-contained unit using the REACT code [1] and was independently tested at the

University of Alabama at Huntsville (UAH) using own code (MAST).

2.2 Theory and Model Equations

The k-e turbulence module is based on the widely used single-scale two equation k-e turbulence

model (k is the turbulent kinetic energy and e is the energy dissipation rate). The model developed

originally by Launder and Spalding [2] was successful in providing good predictions for a wide

range of turbulent flows. The k and e -equations can be derived from the transport equations for

the Reynolds stresses assuming fully turbulent flow.

For low-Reynolds number flows close to solid boundaries, adjustments to the model are needed to

bridge the viscous dominated sublayer region with the fully turbulent floW region. The success of

the wall function method depends on the universality of the turbulent flow structure near the wall.

In many complex flows, however, the flow field near the wall has to be determined accurately and

the traditional wall-function method is not satisfactory. This is because the specification of all

turbulence quantities in terms of the friction velocity fail at separation where the flow near the wall

is no longer controlled by the wall shear stress. Patel et al [3] assessed the relative performance of

various models which describe the near-wall flows and found that there are still areas of

improvements needed to accurately model flow behavior near the wall.

Jones and Launder [4] extended the original k-e model to the low-Reynolds number form which

allowed the calculation to be performed all the way to the wall. Numerical difficulties of accurately

resolving the large gradients close to the wall necessitates resolving the wall region with a very fine

grid structure. Chen and Patel [5] introduced a method to resolve the near-wall region which

combines the standard k-e model with the one-equation model of Wolfshtein [6] near the wall. In

this "two-layer" model an algebraically prescribed eddy-viscosity for the wall region is coupled to

the k-e model to describe the details of the flow in the vicinity of the wall.
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Momentum and continuity equationsaresolvedup to the wall and this reducesthe physical
uncertaintiesof near-wallturbulenceand thenumericaldifficulties of resolvingthe very large

gradientsof turbulenceparameters.

Foranincompressible,steadyandaxisymmetricturbulentflow, theReynoldsaveragedmomentum

andcontinuityequationscanbeexpressedin ageneralizedform as;

O(pucb)
Ox

1 03 03 03_
+ r-_ (pvr_) = -ff_ (r_x-_- _)

103 lq, 03_
+ r -_ (r q:_r--_-) + Sq, (1)

where • is the dependent variable, which stands for q_ = u, v, w for the axial, radial and

tangential velocities respectively, p is the fluid density, F_ x and FrI_r are exchange coefficients in

x and r -directions, respectively, and $4_ is the source term for the variable @.

The source terms for the dependent variable are:

• Axial direction, 4_ = u, F_ x = 21.te, FrI._r= Re

03P 103 03v
Su = __-_ + _ _ (l.ter-ff_ )

and

(2)

where #e is the eddy viscosity and P is the pressure

• Radial direction, _ = v, F_ x = #e, F_r = 2#e and

vS v = - -_ ]2e - 2 _e --_ + --7--
(3)

• Tangential direction, rI)= w, F_x= #e, Fq)r= lZe and

pvw w 03 (4)
Sw = ---7- - -_ _ (rile)

Equations 2, 3, and 4 above are the momentum equations that are solved by the CFD solvers.

However, in order to close the equations and determine the eddy viscosity different turbulence

models are used.
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The present module utilizes the k-e model. In this model two equations for the turbulent kinetic

energy k and its dissipation e which have the same general form as equation (1) are solved.

For the turbulent kinetic energy equation

]At
= k, FOx = FOr = ]A+ -- and S,I, = G - pe (5)

(7 k

For the energy dissipation equation

_ E
= e, FOx = FOr = Ia + ]At and Sq_ = £ (ClflG - C2f 2 pe) (6)

(re

where tyk and fie are turbulent Prandtl/Schmidt numbers for k and e respectively, and G denotes

the rate of production of the turbulent kinetic energy and is expressed as:

+ (__X) (____ W2+ + + + -_r) } (7)

where ]A is the dynamic viscosity, and ]At is the turbulent viscosity,

k 2
]At = C/fl u/9 -- (8)

and ]Ae = ]A + ]At

Cla, C 1, C 2, tTk and cre are constants whose values are 0.09, 1.44, 1.92, 1.0, 1.0,

respectively andfl, f2 and fro are damping functions.

Near a wall, turbulent flow can be divided into two regions, the inner viscous sublayer where low

turbulent Reynolds number effects are important and the velocities decrease rapidly to zero at the

wall, and the outer fully turbulent region. The successful application of the k-e turbulence model

for many complex flows depends to a large extent on how accurately the flow field near the wall is
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determined.In thepresentmodulethreedifferentmodelsareusedto treatthis thin sublayerregion,

theyinclude;

Wall functionmethod,where

u + =y+ at y+ < 11.6 (9)

u+ = 1 ln(Ey+) at y+> 11.6 (10)
I¢

u ury
where, u +- N_--, y+ = and ur = Zw/p

u, V

Zw is the wall shear stress which can be determined from

T,w taUP for y+ < 11.6 (11)
g

tr Cla 0"25 p Up k 05
12w = for y + > 11.6

In [E C1_0"25 p 6ko'5/I.t]

(12)

Here, Up denotes the velocity component parallel to the wall at the f'n'st grid point p from the wall.

(5 is the normal distance from the wall and t¢ is a constant = 0.42.

In this approach, k and t equations are solved withf/_ =fl =f2 = 1, only in the fully turbulent

region beyond some distance from the wall. Boundary conditions i.e., velocity components and

turbulent parameters at that distance are specified in terms of the friction velocity uz.

In the low-Reynolds number model, the flow is resolved all the way to the wall with a very fine

mesh. Many models have been proposed that are based on the k-t model and differ mainly in the

choice of the damping functionsf/_, fl and f2 to bridge the gap between the sublayer and the fully

turbulent region. The model due to Lain & Bremhorst [7] is used in this work, where;

fl_ = [ 1-exp(-O.O16Ry )1 1/2 (1+20.5,_____t)
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0.06) 3
fl = 1+ (--_ and f2= l-exp(-R_)

where,
_ k2

Ry - and R t -
v v_

are turbulent Reynolds number.

These damping functions tend to unity with increasing distance from the wall.

In the two-layer model due to Chen and Patel [5], a simple algebraically prescribed eddy-viscosity

model for the wall region is coupled to the k-e model for the outer flow to describe the flow

details. Unlike the low-Reynolds number model that requires the solution of transport equations

for both k and e all the way to the wall, the one-equation model requires the solution of only the

turbulent kinetic energy equation in the sublayer region while algebraically specifying the eddy

viscosity and energy dissipation.

Vt --

kl/2 k3/2

C_tL! t and _.- Le

The length scales L# and Le contain the necessary damping effects in-the near-wall region in

terms of the turbulence Reynolds number Ry.

Lit = C 1 y [1 - exp (-Ry/A_] (13)

Le = C1Y [1 - exp (-Ry/Ae)] (14)

Lit and Le become linear and approach ClY with increasing distance from the wall.

C1 = t¢ C -0"75 and A E = 2C1. Chen and Patel [5] used A/_ = 70.
¢1

The damping effects decay rapidly with distance from the wall independent of the magnitude of the

wall shear stress. The matching between the one-equation and the standard k-e models is carried

along prescribed grid lines where Ry ~200.

For flows in rotating ducts a modification was made by Chen and Guo [8] to reflect the effects of a

system rotation on the length scales L_ and Le, as;
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cgU
LI.t = LIIo [1.0 +1.3 ( 0.4 -_ - 0.8 0 ) 0 ( k ) 2 ] 1"5

E

0 4 tgU ( k_ 0.5
Le = Leo [1.0 + i.3 ( . t?y . O.81-2 ) ,Q )2]e

Moreover, the function f2 in the dissipation equation is modified to

f2 = f2 + Ri

where Ri is a Richardson number to reflect the effects of streamline curvature due to rotation and

is defined as

t_Ui

where ok= e ijk

R i = ( 0.4 o)k - 0.8 O k ) ,Qk(k) 2
E

is the local mean vorticity.

The above modification to account for streamline curvature and rotation seemed adequate in the

framework of two equation k-e modeling. Other modifications have also been considered but not

implemented in this module and can be referred to in Hadid and Sindir [9].

2.3 Module Evaluation

The single scale k-e turbulent module was evaluated by comparison with published experimental

data. One of the test problems considered is the two dimensional incompressible turbulent flow

over a backward facing step with and without rotation (see figure 1) to compare with the

experiment of Rothe and Johnston[ 10]. While the mean flow is in the x -y plane, the channel is

rotated with constant angular velocity 12 about the z -axis. The ratio of the channel width to the

step height is very large so that the secondary flow can be ignored, which made the flow remain

two dimensional. The channel height to step ratio was set to 2 and the inlet channel height (h)

equals to the step height (H). The Reynolds number based on the uniform inlet velocity was about

5500. The rotation number ( Ro = 12h/U ) was varied between +0.06 and -0.06.

The streamline patterns for the three different rotation numbers Ro = -0.06, 0.0, +0.06 by using

the three different wall treatments are shown in figures 2-4. In each figure, the upper (a) and lower

(c) parts correspond to Ro = +0.06 and Ro= - 0.06 respectively. While the middle part (b) is the

non-rotating case. It is observed that the streamline patterns are influenced by the system rotation.

Suction side step extends the recirculation zone and the pressure side step reduces the recirculation

zone. The reattachment length for Ro= - 0.06 using the wall functions is larger compared to the
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experimentalresults.This isdueto thefact thatnoCorioliseffectis accountedfor in the law of the
wall. The predicted variation of reattachmentlength with Ro (figure 5) shows reasonable

correlation with the experimental data of Rothe and Johnston [10].

The single scale k-e model using three different wall treatments with rotational stress generation

terms embodied seems to capture the main effects of system rotation on turbulence structure, i.e.

the suppression of turbulence level with clockwise rotation and enhancement of turbulence level

with counterclockwise rotation The effects are also noticeable in the corresponding increase in the

reattachment length with clockwise rotation and its decrease with counterclockwise rotation.

The other two test cases were those of Daily and Nece [ 11 ] where rotating disk cavity circulation

and secondary flows are induced by a rotating wall, and Roback and Johnson [ 12] for a confined

double concentric jets with a sudden expansion. Flow swirl in this case is induced by imposing a

tangential velocity component at the outer jet. Figure (6) shows the two-dimensional axisymmetric

rotating lid cavity of Daily and Nece. The flow is bounded by a disk (rotor) and a stationary end

wall (stator) of a chamber. The ratio of the axial clearance between the rotor and the stator (s) to

the radius of the disk (a) is 0.0255. The disk rotates with a rotational Reynolds number

R=4.4x106 defined as R = £2a2/v, where £2 is the disk rotational speed and v is the kinematic

viscosity.

Computations were performed on a 33x75 grid with different grid clustering near the walls for the

different near-wall models. Figure (7) shows the velocity vectors at the top region of the cavity

using the wall function model. Centrifugal forces move the fluid radially outward on the disk,

axially away from the disk on the wall casing, and radially inwards on the stationary end wall.

Figure 8, shows the axial variations of the radial velocity component at a radial position r/a=O. 765.

The agreement is fair with some discrepancy for all near-wall models close to the rotating disk.

Figure (9), shows the axial variation of the tangential velocity component at the radial position

r/a=O. 765. At the rotating disk (x=O), the tangential velocity approaches the value (a£2). The two-

layer near wall model seem to offer closer agreement with the data than the other two models. The

presence of corner regions presents a difficulty in defining the normal distances used in the

definition of turbulent Reynolds number. In the present analysis, values of the normal distance

were based on the normal distance to the nearest solid boundary.

Predictions of the experiments of Roback and Johnson [12] have been presented by several

workers, e.g. Sloan et al. [13] and Durst and Wennerberg [14]. Unfortunately, inlet flow profiles

were not provided in the experiment. Therefore, the present calculations were started at the
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expansionplaneusingthemeasuredvelocity profile at 5 mm downstream of the expansion after

some adjustments near the edges of the coaxial jets. Measurements of main turbulent intensities

were used to calculate inlet values of the turbulent kinetic energy. Energy dissipation rate was

estimated from e = CI_Id/2/L, where L is a length scale of turbulence at the inlet of the order of

10 -4 m.

Figure 10, shows an illustration of the test chamber geometry. The chamber diameter is about

twice the secondary tube diameter. The exit from the 8-bladed, 30 °, free vortex swirl generator is

located approximately 0.005 m upstream from the confluence plane.

A prominent phenomenon in axisymmetric swirling flows in such geometry is the "bubble" or

vortex breakdown which has been studied extensively [15-18]. In the present numerical simulation

of the experiment, a 150x100 grid nodes was used with different clustering on the walls for the

different near-wall models used. Figure 11, shows the velocity vectors indicating the presence of a

closed recirculation zone at the center with additional zones at the comer downstream and between

the inner jet and the outward diverted secondary jet. The figure also shows flow diversion

outwards with high gradients characterized by large turbulent shear and fluctuation levels.

Comparisons were made of the radial variations of flow variables at two axial locations, x=O.O25m

upstream of the vortex bubble and x=O.lO2m located inside the bubble. Figure (12), shows the

radial variation of the axial velocity profile at x=O.O25m using the wall fufiction, two-layer and the

low Reynolds number models. Fair agreement by the different models is shown. They also seem

to predict small negative velocities at a radial position r-O.O153m (the interface between the inner

and outer jets), slightly under predicted in strength and width. Figure (13) shows the radial

variation of the axial velocity profiles at x=O.lO2m. The two-layer model shows a better agreement

with the experimental data.

Radial variations of the tangential velocity at x=O.O25m is shown in figures 14. The figure shows

that the two-layer model offers better agreement with the experiment as compared with the wall

function or the low Reynolds number models.

In general, the calculations shown above indicate that the two layer model seem to offer a better

comparisons with the experimental results. The three near-wall models are built in the standard

two-dimensional/axisymmetric k-e turbulence module. The structure of the module will be

discussed next together with the details of interfacing with a flow solver and descriptions of

variables.
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APPENDIX A

2D/Axisymmetric k-t Turbulence Module Deck

A.1 Introduction

In an attempt to modularize the k-E turbulent physical model -a difficult task as many CFD users

may know. A self-contained, stand-alone turbulence module has been constructed that computes

turbulent flow quantities using the standard k-t turbulence model. The module is structured to be

flexible with options for three near-wall treatments. It can be easily accessed by the user and

interfaced with own CFD solvers to calculate turbulent flows.

It is hoped that the program is sufficiently "full proof" and user friendly. However, care must be

exercised to identify the limitations of the module to be compatible with the flow solver. Module

capabilities and input/output structure is described next in details followed by a FORTRAN listing

of the module.

A.2 Program KEMOD

This is basically the solver for the k and e - transport equations. It reads through its argument list

different variables from the calling flow solver. These variables are described below where, each

variable name ends with either an (I) for Integer variable, (R) for Real variable or (L) for Logical

variable.

The flow chart of the program is shown in Figure A. 1. It shows the main operations performed by

the code.

List of Argument Variable Names

NIMI Number of cell nodes in the I- or k-coordinate lines. (input from flow solver)

NJMI Number of cell nodes in the J- or rl-coordinate lines. (input from flow solver)
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XR Grid nodelocationsin thex or _-direction,dimensionedto XR (NX,NY) (input

from flow solver)

YR Grid nodelocationsin they or "q-direction, dimensioned to YR (NX,NY) (input

from flow solver)

UR Axial or x-direction velocity (u), dimensioned as UR (NX,NY) (input from

flow solver

VR Radial or y-direction velocity (v), also dimensional as VR (NX,NY) (input

from flow solver)

WR Azimuthal velocity (w), dimensional WR (NX,NY) (input from flow solver)

TER Turbulence kinetic energy k, dimensioned TER (NX,NY) (calculated in

KEMOD and returned to flow solver)

EDR Turbulent energy dissipation rate e, dimensioned EDR (NX,NY) (calculated in

KEMOD and returned to flow solver)

URFKR Under-relaxation factor for k -equation (input from flow solver)

URFER Under-relaxation factor for e -equation (input from flow solver)

PRTKR Prandtl/Schmidt number for turbulent energy-equation, assumed known (input

from flow solver)

PRTER Prandtl/Schmidt number for turbulent energy dissipation equation, assumed

known (input from flow solver)

GR = 1.0 if second order upwinding is desired

= 0.0 if first order upwinding is used

(input from flow solver. Usually calculation of k

to the order of upwinding used)

and e are not very sensitive
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F1R

F2R

Massflux variableatcell facesin x- or k-direction,dimensioned FIR (NX,NY)

(input from flow solver)

Mass flux variable at cell faces in y or rl-direction, dimensioned F2R (NX,NY)

(input from flow solver)

ITERI Iteration number (input from flow solver)

VISCOSR Dynamic viscosity (input from flow solver)

VISR Eddy viscosity, dimensioned VISR (NX,NY) (calculated in KEMOD and

returned to main solver)

AKSIL Logical variable for axisymmetric geometry (AKSIL=-TRUE.)or plain

geometry (AKSIL=.FALSE.) (input from flow solver)

LREL

LAY2L

Logical variable for Lam & Bremhorst's low-Reynolds number model

(LREL=-TRUE.) or others (LREL=-FALSE.) (input from flow solver)

Logical variable for Paters two-layer model if (LAY2L=-TRUE-) or others

(LAY2L = .FALSE.) (input from flow solver)

C1R Turbulence model constant, C1 (input from flow solver)

C2R Turbulence model constant, C2 (input from flow solver)

CMUR Turbulence model constant, Cg (input from flow solver)

I2LWI Grid line location from the west wall in the x-direction for the two-layer model

(input from flow solver)

I2LEI Grid line location from the east wall in the x-direction for the two-layer model

(input from flow solver)

J2LSI Grid line location from the south wall in the y-direction for the two-layer model

(input from flow solver)

-22-



J2LNI

JTBEI

Grid line locationfrom thenorthwall in they-directionfor thetwo-layermodel

(inputfrom flow solver)

Boundaryconditionflag alongeastboundarymusthaveone for each boundary

node set to: 1-inlet, 2-outlet, 3-symmetry and 4-wall e.g., for an outlet

boundary condition on the east boundary set JTBEI to N J*2, and similarly for

other boundaries, dimensioned JTBEI (NY) (input from flow solver)

JTBWI

ITBNI

ITBSI

Boundary condition flag along west boundary, dimensioned JTBWI (NY)

(input from flow solver)

Boundary condition flag along north boundary, dimensioned ITBNI (NX)

(input from flow solver)

Boundary condition flag along south boundary, dimensioned ITBSI (NY)

(input from flow solver)

Program KEMOD is interfaced with the main flow solver by a call to KEMOD with its arguments.

For iterative flow solvers KEMOD is called within the iteration sequence after the solution of the

momentum equations where the mean velocities are passed to KEMOD. There are different flow

solvers utilizing different schemes from staggered to nonstaggered grid arrangement and for

nonorthogonal coordinate system there are at least three alternatives to the choice of the velocity

components

i. Cartesian velocity components

ii. Contravariant velocity components

iii. Covariant velocity components

The Cartesian velocity components are the most widely used and have the advantage of simple

formulation of the governing equations. Whatever the arrangement used, mass fluxes at cell faces

are required and passed to KEMOD as FIR and F2R in both directions. The location of other

variables such as k and e are at the cell center or cell nodes.
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The module starts by reassigning variable names passed to it from flow solver to names that are

shared with the different subroutines of the module in a common statement file

"KEMOD.COMMON". Then a check is made if it is the first iteration in which case the grid file

"GRIDF" is called -after passing the grid node locations XR & YR in KEMOD- in order to

calculate grid related quantities which will be explained later. The need to call GRIDG can be

waived if all the grid data are passed to the module. That is all the information about the grid such

as interpolation factors FX and FY, cell areas (ARE) and volumes (VOL) and normal distances of

first grid point from grid boundaries (DNS from south boundary, DNN - from north boundary,

DNW - from west boundary and DNE - from east boundary).

After this a call to subroutine CALCE is made to calculate the turbulent kinetic energy k (with the

identifier IPHI= 1) followed by a check if the low-Reynolds number model or the two-layer model

are to be used in which case subroutine TWOLAY is called. The energy dissipation equation is

solved next by a call to subroutine CALCE again with the identifier IPHI=2. The turbulent

viscosity is updated next by calling subroutine MODVIS. A brief description of each subroutine is

given next.

A.3 Subroutines

GRIDG

Before calling this subroutine, the coordinates of all grid nodes, defined in reference to a fixed

Cartesian coordinate frame are read. Figure A.2 shows the position of cell and grid nodes.

This subroutine is called only once to calculate coordinates of grid nodes (intersection of grid lines)

and geometrical properties of the grid (cell areas and volumes, interpolation factors, normal

distances of near-boundary cell nodes from boundary). All variables including grid node

coordinates are converted to one-dimensional arrays. These are formed by scanning the grid in J-

direction (figure A.2) for I=l, and then repeating for all I's. The position of any node in one-

dimensional array is therefore defined as;

IJ = (I,J) = (I-1) * NJ + J

The actual number of grid nodes is one row and one column less than for all cell nodes. For I =

NI and J = NJ fictitious grid nodes are introduced which have the same coordinates as actual nodes

on NI-1 in I-direction and N J-1 in J-direction.
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The subroutine then calculates interpolation factors which are associated with cell nodes and are

used in the main program to calculate values of dependent variables at locations other than cell

nodes (cell centers). Definition of these are given in Figure A.3. Cell areas and volumes are

calculated next followed by calculations of normal distances of near-boundary nodes from all four

outer boundaries.

CALCE (PHI, IPHI)

This subroutine solves the linearized and discretized transport equations for the turbulent energy k

and the energy dissipation rate e. The two dummy parameters in the calling statement, PHI and

IPHI, represent arrays containing dependent variables for which the equation is to be solved, the

subroutine sets up the convective and diffusive coefficients over the entire field. Then it calculates

the source terms for either k or e transport equations. A call is made to entry MODPHI in order to

modify these sources and boundary coefficients to suit the particular problem. Moreover, a check

is made if the two-layer model is selected then the energy dissipation is set algebraically in the

sublayer region.

The discretized equations have the form

Ap @p = __,Ai @i + S_
i=EWNS

where the coefficients Ai (i=E,W,N,S see figure A.3 ) contain both the convective and diffusive

fluxes, these equations are assembled and solved by calling subroutine SOLSIP which is based on

Stone's Strongly Implicit Solver [ 19].

TWOLAY

This subroutine is called if the two-layer or low-Reynolds number models are used. It calculates

the different coefficients needed to describe the energy dissipation and eddy viscosity. In this
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subroutinethe normaldistancesusedin the definition of the turbulentReynoldsnumberRy at

comer regions are calculated based on the normal distance nearest to the solid boundary.

SOLSIP

This subroutine solves the system of linear algebraic equations for k and e using Stone's Implicit

Procedure [19]. The array RES (IJ) is used to store residuals. The sum of absolute residuals

"RESORP" calculated in the first pass through this part of the routine is used as a measure of

convergence of the solution process as a whole and this value is stored in RESOR (IPHI). This

variable RESOR (IPHI) is passed to the main solver and if desired can be normalized and

compared with the maximum error allowed there. If necessary, inner iterations counter L and the

sum of absolute residuals RESORP are printed out to monitor the rate of convergence of k and e

solution. If the ratio RSM is greater than the maximum allowed for the variable in question, SOR

(IPHI), and the number of inner iterations is smaller than a prescribed maximum, NSWP (IPHI),

then the routine repeats the sequence of calculating the residuals, increment vectors and updating

the dependent variable.

USERM

This subroutine has different ENTRY points or sections where variables are updated and boundary

conditions are set.

Section MODVIS

This section calculates effective viscosity (Eq. 8). It is called after calculating k and e. At locations

where e is close to zero (i.e., < 10 -30 ) viscosity is set to zero. A provision is made for under

relaxing changes in effective viscosity which may help to stabilize oscillations and improve

convergence rate.

Section MODPHI

This section is called from CALCE subroutine and sets the boundary conditions for k and e

depending on which variable being called (IDIR = 1 for k and IDIR = 2 for e). For the k -equation,

the south boundary is checked first if it is one of four options:
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(1) An inflow boundaryITBS(I) = 1,wherethesourcetermis setto acceptthe inlet valuesat

J = 1(southboundary)

(2) OutflowboundaryITBS(I) = 2, wherezerogradientin y orrl-directionis employed.

(3) Symmetryboundary,TBS(I) = 3,wheregradientsnormalto symmetryplanearezero.

(4) Wall boundary,ITBS(I) = 4, wherethe production term GENTS(I) calculatedform

subroutineWALLFN in program MODIFY is addedto the rest of the sourceterm

SU(IJ).

Boundaryconditionsfor the e -equation are similar to those of k except at the wall where they are

set to appropriate values for each near wall treatment.

A.4 Program MODIFY

This program is compiled separately and is called from the u and v solver routines. It basically

updates the flux source term of the discretized momentum equation due 1_6wall shear stresses. If

the u-momentum equation for example is discretized in the form

Ap Up = i=_l_ A i u i + S u

where P, E, W, N, S are cell nodes as shown in Figure A.3, and Ap and Ai's contain convective

and diffusive coefficients. S* is the source term containing pressure gradients and cross-derivative
U

diffusion terms and convective terms for second-order upwinding scheme. This source term is

usually linearized as S u - Su - Bpup. The term Bp is usually moved to the left hand side of the

equation and modifies the diagonal coefficient Ap = Ap + Bp, and the equation can be written as

Ap up = i=_.ffNAs i u i + Su
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ThenS u and Bp are passed to subroutine MODIFY where they are modified if a wall is present

(e.g., ITBS(I) = 4 for south boundary).

For an iterative flow solver using the finite-volume methodology. A typical interface and call to the

k-e module from the main flow solver can be represented by a flow chart as shown in figure A.4.
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READ GEOMETRY DATA
GRID NODES

T
CALL GRIDG CALCULATE

Fx, Fy, ARE, VOL

CALL CALCE (TE, 1)
(TURB KINETIC ENERGY K)

MODPHI 11FOR IDIR =

_'_ SOLSIP I

IF(LAY2 • OR -LRE)

NO
TWOLAY 1

CALL CALCE (ED, 2)
ENERGY DISSIPATION

EQUATION (_)

MODVIS I

__t MMDPH! 21FOR IDIR =

SOLSIPI

Figure A.1 2D/axisymmetric k-e module deck
flow chart
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ITERATION COUNTER
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ERROR OF EQUATIONS

t

IF ITER "GE " MAXIMUM ITERATION
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the 2D/axisymmetric k-_ module
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In this section a description of the multi-time-scale k-E turbulence model that is coded as a self

contained computer program to compute turbulent flow quantities in two-dimensional or

axisymmetric geometry is given. Detailed description of the module structure, variables used and

how to interface the module with CFD flow solvers are given in Appendix B. The module has been

tested as a separate self-contained unit using the REACT code [1] and was independently tested at

the University of Alabama at Huntsville (UAH) using own code (MAST).

3.1 Introduction

Turbulent flows comprise fluctuating motions with a spectrum of sizes and time scales and

different turbulent interactions are associated with different parts of the spectrum. In the single-

time-scale turbulence models such as the k-E turbulence model it is assumed that a single time scale

(proportional to k/c ) can be used to describe the turbulent flow. In many complex flows turbulence

is generally in spectral inequilibrium and a single time scale description is a simplification.

Figure 1, shows a sketch of a typical energy spectrum in a turbulent flow at high Reynolds number

in a simplified split spectrum method. Two regions can be identified, the production range (at wave

number to< K'I ) where the kinetic energy (kp) leaves this region at a rate (tp) and a high wave

number or dissipation region (x> tel ) with kinetic energy (kt) and energy dissipation rate (tt).

Hanjalic et al. [2] developed a simple multiple-time-scale turbulence model based on a rational

extension of the single scale equation ideas. In their model, a fixed ratio of the turbulent kinetic

energy of large eddies (kp) to that of the fine scale eddies (kt) is used to partition the spectrum.

Kim and Chen [3] improved on the simplified split spectrum by dynamically determining the

location of the partition (i.e kp/kt ) as part of the solution and is dependent on the turbulence

intensity, production rate, energy transfer and dissipation rate. The variable partitioning method

causes the effective eddy viscosity to decrease when production is high and to increase when

production vanishes -a behavior consistent with experimental observations.

3.2 Theory and Model Equations

The multi-time-scale turbulence module is based on the variable partitioning of the turbulent energy

spectrum proposed by Kim and Chen [3]. In this model the turbulent kinetic energy spectrum is

divided into two sets of wave number regions giving two evolution equations for each region.
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These equations represent the kinetic energy (kp) and the energy transfer rate (Ep) in the

production range of the spectrum and the kinetic energy (kt) and the energy dissipation rate (st) in

the dissipation range of the spectrum. This model allows the partition to move toward the high

wave number region when production is high and toward the low wave number region when

production vanishes.

The equations which describe the multi-time-scale turbulence model used are given below. The

turbulent kinetic energy and the energy transfer rate equations for the energy containing large

eddies are given as;

a I.tt )_k___l+G_pep
P Dt =-_ii [(]'t+ 03xi

Gkp

(1)

Dep 03 #t)03ep- 1 G 2 _
P Dt = 03x----i[ (#+ 03xi 1 + - Cp1 -_p + Cp2 kp - PCp3 kp

,% p
(2)

where G is the turbulence production rate, given as

03u )2 ___ )2 _)2] __ 03v 2__)+ (__)03w2G = l.te[2[(- __- +( +(- +( +

03w_+(&

where # is the viscosity

/.tt is the turbulent viscosity

kp is the turbulent kinetic energy in the production range

ep is the energy transfer rate

O'kp and aSp are constants

Cpl , Cp2 and Cp3 are turbulent model constants

The turbulent kinetic energy and the dissipation rate equations for the high wave number small

scale eddies region are given as;

Dkt 03 l-tt ) 03kt -
P -_- = -_ii [ (#+ Crkt _-_i ] + P eP "pet

(3)
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E 2 E 2

--P--- + p Ct2 - p Ct3OFt 0...__._[ #t ) cgEt Et Ep t
P _ = tgxi (#+ GEt -_i ] + p Ctl kt kt -_t

(4)

where k t is the turbulent kinetic energy in the dissipation range

et is the energy dissipation rate

akt and (YEt are constants

Ctl, Ct2 and Ct3 are turbulent model constants

The terms 1 G 2 E2_2 represent variable energy transfer functions. The first term
-- Cp1 -_p and p Ctl kt
P

increases the energy transfer rate when production is high and the second term increases the

dissipation rate when the energy transfer rate is high. The turbulent viscosity is given as

k 2 k 2
u, =p cu:-= p cu -

ep et

where k= kp+ kt is the total turbulent kinetic energy and C/4" is a constant.

The model constants used are similar to those used by Kim and Chen [3] --

Okp = 0.75, Crep = 1.15, O'kt = 0.75, txet = 1.15

Cp1 = 0.21, Cp2 = 1.24, Cp3 = 1.84, Ctl = 0.29

Ct2 = 1.28, Ct3 = 1.66 and C_f= 0.09

For turbulent flow analysis, equations (1)-(4) are solved by the module that is interfaced with a

Reynolds averaged flow solver to compute the turbulent flow field. For an incompressible, steady

and axisymmetric turbulent flow, a generalized equation that expresses the transport of turbulent

flow can be written as;

tg(pu_) 1 0 t9 (FOx £_-_) + 1 0 (ri.,q_ r,__)+ Sq_ (5)Ox + r -_ (p v r _) = -_ r -_
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where @ is the dependent variable, which stands for @ = u, v, w for the axial, radial and

tangential velocities respectively, p is the fluid density, FOx and FOr are exchange coefficients in

x and r -directions, respectively, and Sq_ is the source term for the variable @.

The source terms for the dependent variable are:

• Axial direction, _ = u, FOx = 2lie, FOr = lie

tgP 1 0 Ov
Su = --0-_ + -i _i: (lier-_ )

and

where lie is the eddy viscosity and P is the pressure

• Radial direction, • = v, FOx = lie, FOr - 2#e and

vSv = - _ lie - 2lie-_ + --7--- -_

• Tangential direction, • = w, FOx = lie, FOr = lie and

[I,_ W W t_

Sw = - ---7- - r2 Or (rite)

Equations (1)-(4) can also be written in a similar form as equation (5) where • stands for;

Turbulent kinetic energy in the production range of the energy spectrum

cI)= kp, FOx = li + lit = FOr and

%
Skp = G-pep

Energy transfer rate in the production range of the energy spectrum

cI)= ep, FOx = li + lit _ F_ and

%
2

1 G 2 Gep e._P__
= -- Cp1 V + CP2 ke -P CP3 kpSep P

• Turbulent kinetic energy in the dissipation range of the energy spectrum
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= kt, F_ x = !1+ lit = Ftl_r
Crkt

skt = p% - pet

and

Energy dissipation rate in the dissipation range of the energy spectrum

• = et, F_x= li+ lit = F, ar_r and
%

2 2
E E

set P Ctl .L_ + p Ct2 et% t= kt kt P Ct3 kt

Near a wall, the wall function boundary conditions used are similar to that of Kim and Chen [3].

A two layer model for the multi-time-scale k-e turbulence model similar to that of Chen and Patel

[4] for the single-time-scale k-e turbulence model is included in the present release.

3.3 Model Evaluation

The multi-time-scale k-e module was evaluated by comparisons with experimental studies. One of

the test problems considered was the backward facing step of Driver and Seegmiller [5] where the

multi scale k-e model predicted a recirculation length of 6.14 step heights (H) downstream of the

step which is closer to the experimental value (6.10 H) than the standard k-e model (5.35H).

The majority of the tests were conducted using Roback and Johnson's experimental data [6] for

swirling confined double concentric jets. Preliminary analysis indicated some sensitivity to the ratio

kp / kt at the inlet boundary, however, a value of 3 was found reasonable in the present analysis.

Figures 2 and 3 show the streamline patterns for wall functions and two-layer near wall treatments

respectively. The upper (a) and lower (b) parts correspond to the single-scale k-e and the multi-

scale k-e models respectively. It can be seen from these contours that there are two recirculation

zones in the chamber, one is near the expansion corner and another located in the central region and

accurate predictions of this central region is very important in combusting swirling flows. Figures

4a and 4b, show the axial velocity along the centerline. In terms of strength and size of the central

recirculation zone, the multi-scale k-e model yields better agreement than the single-scale k-e

model. In the central recirculation region the k-e model tends to connect the energy transfer rate to

the local mean strain rate too strongly while the multi-scale model suppresses this tendency.
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Figures 5 and 6 show the radial profiles of the mean axial velocity at different axial locations

downstream of the inlet using the wall function and the two-layer near-wall treatments respectively.

Similarly, figures 7 and 8 show the corresponding profiles for the tangential velocity, and figures 9

and 10 show the radial profiles of the axial normal turbulent intensity _ )1/2 using both the wall

function and the two-layer near-wall treatments. In general, the numerical results indicate that the

multi-scale model gives better agreement than the standard k-_ model.
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APPENDIX B

Multi-Scale k-E Module Deck

B.1 Introduction

This user's manual describes the multi-scale k-_ module deck. The module is a self contained

FORTRAN source code to compute turbulent kinetic energy, energy dissipation and turbulent eddy

viscosity using the multi-time-scale k-E turbulence model. It uses as input the mean flow

properties as computed by conventional CFD techniques. The module is constructed to be self-

contained, stand alone and compatible with a number of CFD solvers. A discussion of the multi-

time-scale k -6 module structure is given next together with flow charts to show how to interface

the module with a number of flow solvers. A list of variable names used is also given.

B.2 Program KEMOD

This is basically the solver for the k and E - transport equations in boththe production and the

dissipation regions of the energy spectrum. It reads through its argument list different variables

from the calling flow solver. These variables are described below where, each variable name ends

with either an (I) for Integer variable, (R) for Real variable or (L) for Logical variable.

The flow chart of the program is shown in Figure B. 1. It shows the main operations performed by

the code.

List of Argument Variable Names

XR Grid node locations in the x or k-direction, dimensioned to XR (NX,NY) (input

from flow solver)

YR Grid node locations in the y or rl-direction, dimensioned to YR (NX,NY) (input

from flow solver)
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UR

VR

WR

TER

EDR

TETR

EDTR

DENR

URFKER

PRTKER

Axial or x-direction velocity (u), dimensionedasUR (NX,NY) (input from

flow solver

Radial or y-direction velocity (v), alsodimensionalasVR (NX,NY) (input

from flow solver)

Azimuthalvelocity (w),dimensionalWR (NX,NY) (inputfrom flow solver)

Large scale turbulence kinetic energy kp, dimensioned TER (NX,NY)

(calculated in KEMOD and returned to flow solver)

Large scale turbulent energy dissipation rate Ep, dimensioned EDR (NX,NY)

(calculated in KEMOD and returned to flow solver)

Small scale turbulence kinetic energy kt, dimensioned TETR (NX,NY)

(calculated in KEMOD and returned to flow solver)

Small scale turbulent energy dissipation rate El, dimensioned EDTR (NX,NY)

(calculated in KEMOD and returned to flow solver)

Fluid density, dimensioned DENR (NX,NY)

Under-relaxation factors dimensioned as URFKER(4) and specified as follows:

URFKER(1) for large scale turbulent energy equation

URFKER(2) for small scale turbulent energy equation

URFKER(3) for large scale turbulent energy dissipation equation

URFKER(4) for small scale turbulent energy dissipation equation

Prandtl/Schmidt numbers dimensioned as PRTKER(4) and specified as

follows:

PRTKER(1) for large scale turbulent energy equation

PRTKER(2) for small scale turbulent energy equation

PRTKER(3) for large scale turbulent energy dissipation equation

PRTKER(4) for small scale turbulent energy dissipation equation

GR 1.0 if second order upwinding is desired
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F1R

F2R

= 0.0 if first orderupwindingisused(input from flow solver).

Massflux variableatcell facesin x- or _-direction, dimensioned F1R (NX,NY)

(input from flow solver)

Mass flux variable at cell faces in y or rl-direction, dimensioned F2R (NX,NY)

(input from flow solver)

ITERI Iteration number (input from flow solver), this number must be equal to 1 for a

restart case

VISCOSR Dynamic viscosity (input from flow solver)

VISR Eddy viscosity, dimensioned VISR (NX,NY) (calculated in KEMOD and

returned to main solver)

URFVISR Under-relaxation factor for total viscosity calculation

AKSIL Logical variable for axisymmetric geometry (AKSIL=-TRUE.) or plain

geometry (AKSIL=-FALSE-) (input from flow solveri

C1R Turbulence model constant, C1 (input from flow solver)

C2R Turbulence model constant, C2 (input from flow solver)

CMUR

NIMI

Turbulence model constant, Cg (input from flow solver)

Number of cell nodes in the I- or _-coordinate lines. (input from flow solver)

NJMI Number of cell nodes in the J- or rl-coordinate lines. (input from flow solver)

JTBEI Boundary condition flag along east boundary must have one for each boundary

node set to: 1-inlet, 2-outlet, 3-symmetry and 4-wall e.g., for an outlet

boundary condition on the east boundary set JTBEI to NJ*2, and similarly for

other boundaries, dimensioned JTBEI (NY) (input from flow solver)
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v
JTBWI

ITBNI

ITBSI

Boundary condition flag along west boundary, dimensioned JTBWI (NY)

(input from flow solver)

Boundary condition flag along north boundary, dimensioned ITBNI (NX)

(input from flow solver)

Boundary condition flag along south boundary, dimensioned ITBSI (NY)

(input from flow solver)

Program KEMOD is interfaced with the main flow solver by a call to KEMOD with its arguments.

For iterative flow solvers KEMOD is called within the iteration sequence after the solution of the

momentum equations where the mean velocities are passed to KEMOD. There are different flow

solvers utilizing different schemes from staggered to nonstaggered grid arrangement and for

nonorthogonal coordinate system there are at least three alternatives to the choice of the velocity

components

i. Cartesian velocity components

ii. Contravariant velocity components

iii. Covariant velocity components

The Cartesian velocity components are the most widely used and have the advantage of simple

formulation of the governing equations. Whatever the arrangement used, mass fluxes at cell faces

are required and passed to KEMOD as F1R and F2R in both directions. The location of other

variables such as k and e are at the cell center or cell nodes.

The module starts by reassigning variable names passed to it from flow solver to names that are

shared with the different subroutines of the module in an include file "mske.h". The user must set

the values for NX and NY in mske.h greater than or equal to the maximum grid dimensions. Then

a check is made if it is the first iteration in which case the grid file "GRIDG" is called -after passing

the grid node locations XR & YR in KEMOD- in order to calculate grid related quantities which

will be explained later. The need to call GRIDG can be waived if all the grid data are passed to the

module. That is all the information about the grid such as interpolation factors FX and FY, cell

areas (ARE) and volumes (VOL) and normal distances of first grid point from grid boundaries
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(DNS from southboundary,DNN - from northboundary,DNW - from westboundaryandDNE -

from eastboundary).

After this, two calls to subroutineCALCKE aremadeto calculatethe large and small scale

turbulentkineticenergieswith the identifierIPHI=I and2 respectively).Thelargeandsmallscale

energydissipationequationsaresolved next by calling subroutineCALCKE again with the
identifiers IPHI=3 and4 respectively. The effective viscosityis calculatednext. At locations
where e is close to zero (i.e., < 10 -30 ) viscosity is set to zero. A provision is made for under

relaxing changes in effective viscosity which may help to stabilize oscillations and improve

convergence rate.

B.3 Subroutines

GRIDG

Before calling this subroutine, the coordinates of all grid nodes, defined in reference to a fixed

Cartesian coordinate frame are read. Figure B.2 shows the position of cell and grid nodes.

This subroutine is called only once to calculate coordinates of grid nodes (i/itersection of grid lines)

and geometrical properties of the grid (cell areas and volumes, interpolation factors, normal

distances of near-boundary cell nodes from boundary). All variables including grid node

coordinates are converted to one-dimensional arrays. These are formed by scanning the grid in J-

direction (figure B.2) for I=1, and then repeating for all I's. The position of any node in one-

dimensional array is therefore defined as;

IJ = (L J) = (1-1) * NJ + J

the actual number of grid nodes is one row and one column less than for all cell nodes. For I = NI

and J = NJ fictitious grid nodes are introduced which have the same coordinates as actual nodes on

NI-1 in I-direction and N J-1 in J-direction.

The subroutine then calculates interpolation factors which are associated with cell nodes and are

used in the main program to calculate values of dependent variables at locations other than cell

nodes (cell centers). Definition of these are given in Figure B.3. Cell areas and volumes are
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calculatednextfollowedby calculationsof normaldistancesof near-boundarynodesfrom all four
outerboundaries.

CALCKE (PHI, IPHI)

This subroutine solves the linearized and discretized transport equations for the turbulent energies

(kp and kt ) and the energy dissipation (ep and et ). The two dummy parameters in the calling

statement, PHI and IPHI, represent arrays containing dependent variables for which the equation is

to be solved, the subroutine sets up the convective and diffusive coefficients over the entire field.

Then it calculates the source terms for either k or E transport equations. A call is made to entry

MODMSKE in order to modify these sources and boundary coefficients to suit the particular

problem.

The discretized equations have the form

Ap _p - __.g_i tibi + S_
i=EWNS

where the coefficients Ai (i=E, W,N,S see figure B.3) contain both the Convective and diffusive

fluxes, these equations are assembled and solved by calling subroutine SOLSIP which is based on

Stone's Strongly Implicit Solver [7].

SOLSIP

This subroutine solves the system of linear algebraic equations for k and e using Stone's Implicit

Procedure [7]. The array RES (IJ) is used to store residuals. The sum of absolute residuals

"RESORP" calculated in the first pass through this part of the routine is used as a measure of

convergence of the solution process as a whole and this value is stored in RESOR (IPHI). This

variable RESOR (IPHI) is passed to the main solver and if desired can be normalized and

compared with the maximum error allowed there. If necessary inner iterations counter L and the

sum of absolute residuals RESORP are printed out to monitor the rate of convergence of k and e

solution. If the ratio RSM is greater than the maximum allowed for the variable in question, SOR

(IPHI), and the number of inner iterations is smaller than a prescribed maximum, NSWP (IPHI),
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then the routine repeats the sequence of calculating the residuals, increment vectors and updating

the dependent variable.

MODMSKE

This subroutine is called from CALCKE subroutine and sets the boundary conditions for kp, kt

and ep, et depending on which variable being called (IDIR = 1, 2, 3, and 4 for kp, kt, ep, and Et

respectively). Consider the south boundary for example, if it is one of four options:

(1) An inflow boundary ITBS(I) = 1, where the source term is set to accept the inlet values at

J = 1 (south boundary)

(2) Outflow boundary ITBS(I) = 2, where zero gradient in y or "q-direction is employed.

(3) Symmetry boundary, TBS(I) = 3, where gradients normal to symmetry plane are zero.

(4) Wall boundary, ITBS(I) = 4, where the production term GENTS(I) calculated form

subroutine WALLFN in program MODIFY is added to the rest of the source term

SU(IJ).

B.4 Program MODIFY

This subroutine is called from the u and v solver routines. It basically updates the flux source term

of the discretized momentum equation due to wall shear stresses. If the u-momentum equation for

example is discretized in the form

Apup = _,Ai ui + Si=EWNS U

where P, E, W, N, S are cell nodes as shown in Figure B.3, and Ap and Ai's contain convective

and diffusive coefficients. S* is the source term containing pressure gradients and cross-derivative
u

diffusion terms and convective terms for second-order upwinding scheme. This source term is
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usually linearized as S u = Su - Bpup The term Bp is usually moved to the left hand side of the

equation and modifies the diagonal coefficient Ap = Ap + Bp, and the equation can be written as

Ap Up = i=___wAi u i + Su

Then S u and Bp are passed to subroutine MODIFY where they are modified if a wall is present

(e.g., ITBS(I) = 4 for south boundary).

List of Argument Variable Names

CMU Turbulence model constant, Ci.t (input from flow solver)

VISCOS

XX

YY

Dynamic viscosity (input from flow solver)

Grid node locations in the x or _-direction, dimensioned to XX (NX*NY)

(input from flow solver)

Grid node locations in the y or _l-direction, dimensioned to YY (NX*NY)

(input from flow solver)

R Grid node radius equal to 1 for non-axisymmetric and YY for axisymmetric,

dimensioned to R (NX*NY) (input from flow solver)

DNS Normal distance to south, dimensioned to DNS (NX*NY) (input from flow

solver)

DNN Normal distance to north, dimensioned to DNN (NX*NY) (input from flow

solver)

DNW Normal distance to west, dimensioned to DNW (NX*NY) (input from flow

solver)

DNE Normal distance to east, dimensioned to DNE (NX*NY) (input from flow

solver)
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U Axial or x-directionvelocity (u), dimensionedasUR (NX*NY) (input from
flow solver

V Radial or y-direction velocity (v), also dimensionalasVR (NX*NY) (input

from flow solver)

W Azimuthal velocity (w), dimensional WR (NX*NY) (input from flow solver)

DEN Fluid density, dimensional DEN (NX*NY) (input from flow solver)

TE Large scale turbulence kinetic energy kp, dimensioned TE (NX*NY)

(calculated in KEMOD and returned to flow solver)

TEF Small scale turbulence kinetic energy kt, dimensioned TET (NX*NY)

(calculated in KEMOD and returned to flow solver)

SU

BP

Variable source term, dimensioned SU (NX*NY)

Constant source term, dimensioned BP (NX*NY)

AE Cell area, dimensioned to AE (NX*NY) (input from flow solver)

AW Cell area, dimensioned to AW (NX*NY) (input from flow solver)

AN Cell area, dimensioned to AN (NX*NY) (input from flow solver)

AS Cell area, dimensioned to AS (NX*NY) (input from flow solver)

SUVS,SPVS,SUWS,SPWS

Source terms at south boundary due to wall shear stress, all dimensioned to

S##S (NX*NY) (returned to flow solver)

SUVN,SPVN,SUWN,SPWN

Source terms at north boundary due to wall shear stress, all dimensioned to

S##N (NX*NY) (returned to flow solver)
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SUVW,SPVW,SUWW,SPWW
Sourceterms at westboundarydueto wall shearstress,all dimensionedto

S##W(NX*NY) (returnedto flow solver)

SUVE,SPVE,SUWE,SPWE
Sourcetermsateastboundarydueto wall shearstress,all dimensionedto S##E

(NX*NY) (returnedto flow solver)

GENTS,GENTN,GENTW,GENTEE
Generationtermsatsouth,north,west,andeastboundariesrespectivelydueto

moving walls, with GENTS(NX), GENTN(NX), GENTW(NY), and

GENTEE(NY)(returnedto flow solver)

NX Maximumnumberof cell nodesin theI- or k-coordinatelines.(inputfrom flow

solver)

NY Maximumnumberof cell nodesin theJ- orrl-coordinatelines.(inputfrom flow

solver)

NXNY NX*NY

NIM Numberof cell nodesin theI- or G-coordinatelines.(inputfrom flow solver)

NJM Numberof cell nodesin theJ- orrl-coordinatelines.(input from flow solver)

ITBS Boundary condition flag along south boundary must have one for each

boundarynodesetto: 1-inlet, 2-outlet, 3-symmetryand 4-wall e.g., for an
outletboundaryconditionon theeastboundarysetITBS to NI*2, andsimilarly
for otherboundaries,dimensionedITBS (NX) (inputfrom flow solver)

ITBN Boundaryconditionflagalongnorthboundary,dimensionedITBN (NX) (input

from flow solver)

JTBW Boundaryconditionflagalongwestboundary,dimensionedITBNI (NY) (input

from flow solver)
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JTBE Boundaryconditionflag alongeastboundary,dimensionedJTBE (NY) (input

from flow solver)

For an iterativeflow solverusingthefinite-volumemethodology.A typical interfaceandcall to
KEMOD from themainflow solvercanberepresentedby aflow chartasshownin figureB.4.
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READ GEOMETRY DATA
GRID NODES

CALL GRIDG CALCULATE

Fx, Fy, ARE, VOL

f
CALL CALCKE (TE, 1)

('rURB KINETIC ENERGY Kp)

I
I

CALL CALCKE(TET,2)O'URB KINETIC ENERGY Kt )

CALL CALCKE (ED, 3)

(ENERGY TRANSFER RATE Ep)

MODMSKE IFOR IDIR = 1

SOLSIP J

,_,OLSIP

_'-__. i MODMKDE I" IDIR=3

)

MODMSKE 1ll'311:l_-_

I

SOLSIP

(ENERGY DISSIPATION RATE £t ) IDIR=4
SOLSIP }

I .oow_I

Figure B.I Multi-scale k-_ module deck flow chart
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4.1 Introduction

In this section a description is given of the two-dimensional/Axisymmetric Algebraic Stress

turbulence Model (ASM) based on the work of Rodi [1]. The model is coded as a self contained

computer program to compute turbulent flow quantities when interfaced with a CFD solver.

Detailed description of the module structure, variables used and how to interface the module with

CFD flow solvers are given in Appendix C.

The module uses as input the mean flow properties, as computed by conventional CFD solvers,

and calculates the Reynolds stresses, turbulent kinetic energy and the energy dissipation. It is

structured to be self-contained and compatible with many CFD codes. It has been tested as a

separate unit at Rocketdyne using the finite-volume REACT code [2]. The module has also been

tested independently at the University of Alabama at Huntsville (UAH) using own code MAST.

The module computes turbulent flow quantities in two-dimensional planar or axisymmetric

geometry with or without swirl. The standard wall functions and the two-layer model of Chen and

Patel [3] are used for the near wall treatment.

4.2 Theory and Model Equations

The Algebraic Stress (ASM) module is based on the work of Rodi [ 1]. The idea is to simplify or

truncate the Reynolds stress equation by approximating the convective and diffusive transport of

the Reynolds stresses ui---_j in terms of the corresponding transport of turbulent energy. This

allows the transport equation for the stresses to be expressed as a set of algebraic formulae

containing the turbulence energy and its rate of dissipation as unknowns in the form:

k 2

uiuj = (P-e) [ Pij -ff _ij e + 49ijl

where Pij = Production and P =J Pkk and

q)ij = pressure-strain redistribution

_ij = _ij, 1 + dPij,2 4- _ij, lw 4- dPij,2w
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Rotta's linear return-to-isotropy concept for the non-linear part of

e 2

a, j,1= -cl - -5g 6ij)

is used and the "isotropization of production" concept for the linear "rapid" part of

q' ij,e -Ce (PiE 2= -_P6ij)

is used. Gibson and Launder [4] concept for the wall reflection terms is used as

e 3 3

• ij, lw = Clw p -_ ( UkUm nknrn6ij - -_ ffk-ffi nknj - _ U-kffj nkni ) f

3 3

dPij,2w = C2w ( Ckm,2 nknm6(i - 2 _ik,2 nknj - -ffqgjk,2 nkni )f

where (ni) is the wall-normal unit vector in the i -direction. The wall-distance function (f)

k3/2
represents the ratio of the turbulence length scale (Le = ) and the wall distance and is given

E

as

C:.75 kl " 5 1

f=( Ke )An

with An being the wall-normal distance.

The set of algebraic stress equations can be arranged in the form

A ij u 2 + Bij v 2 + Cij w 2 + Dij u v + Eij vw + Fij uw= Gij

where Aq, Bij, Cij, Dq, Eij, Fij, and Gij are functions of the mean and turbulent flow

variables.

The above equation can be solved iteratively in the main flow solver. However, the algebraic

system of equations is stiff and convergence difficulties are encountered when solved iteratively.

Therefore, the set of equations was cast in the general matrix form A T = _B, where
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_ au av aw w
3E 2 au av v 2 r2,%_+ _ " ay r ay 8x 8---y+-

_ av au aw Wau 3e 2 av v 2 - -( + 2
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au av 3_ V au av 2aw w
ax "a'-y _ + 2 r "( -_y + _-2 -_y + r

aV au s a U av

a---x ay o 2_ + ax + -ay

aw w aw
0 -- --

8y r ax

o

e av v

aw aw au
ax o o ay ay

aw
o

ax

8W
8x

aw
2 m

ax

w

r

av
ax

E au v
2L_+ -a-x + r

T .._ [puu,p vv,pww,p uv,pvw,puw ]
T

B

pe 3

X +2(1-C2) (@11,1w + @11,2w)

pe 3

X + 2(1-C2) (@22, lw + @22,2w)

ps 3

--Z + 2(1-C2) (@33, lw + @33,2w)

1

(1-C2) (@12,1w + @12,2w)

1

(1"C2) (@23, lw + @23,2w)

1

(1-C2) (@13,1w + @13,2w)

where
1 -C2

P
C1-1+ --

pe
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The matrix was inverted at each iteration step to obtain a converged solution. The wall function and

a two-layer model were built in the module to model the near-wall region.

4.3 Module Evaluation

The ASM module was evaluated by comparison with experimental data of Driver and Seegmiller

[5] for the backward facing step and the data of Roback and Johnson [6]. The effect of the wall

reflection term is also studied with both wall function and two-layer near wall models. Figures la

and lb show the stream-function contours for a backward facing step flow using the wall function

and the two-layer near wall models with reattachement length of 5.59H and 5.83H respectively (H

is the step height). Figures 2a and 2b show the stream-function contours for the Roback &

Johnson confined swirling jet flow using the wall function near wall model, where (a) includes the

wall-reflection term in the pressure-strain redistribution term and (b) without the wall reflection

term. Figure 3 shows a comparison of the axial velocity along the centerline with and without wall

reflection term. The comparisons of the predicted mean axial velocity, mean tangential velocity,

turbulent intensities -_1/2, --_1/2, _-_1/2, and the Reynolds stress _-_1/2 using the ASM model as

compared with the single and multi-scale k-e models are presented in figures 4 to 9 respectively.

The figures in general show that the ASM model used here when combined with the wall function

near wall treatment predicts better comparisons without using the wall reflection terms. This may

be explained by the fact that the wall reflection terms -whose purpose is to damp normal turbulent

intensity normal to the wall as the wall is reached- are not effective when using wall functions near

the wall. Similar conclusions were also obtained by the UAH group when testing the ASM module

using their code (MAST). Also, in the ASM model, a set of algebraic equations for the Reynolds

stresses are solved and there is no boundary conditions are needed for the stresses. This is not the

same in the full Reynolds stress model (RSM) where a set of nonlinear differential equations are

solved and boundary conditions for the stresses are required. More on this will be discussed in

detail in the next RSM module. Also, more details will be given on the tensorial incorporation of

the wall reflection terms since they are tied to the orientation of the wall through the unit normal

vectors.
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APPENDIX C

2D/Axisymmetric Algebraic Stress Turbulence Module Deck

This module is a FORTRAN source code to solve 2D/Axisymmetric turbulent flow quantities using

the algebraic stress model when interfaced with a main flow solver. The module consists of the

main routine ASMOD that calls a number of subroutines to perform different functions that will be

explained below.

3.1 Subroutine ASMOD

This is basically the main routine that reads through its argument list different variables from the

calling flow solver which are described below.

List of Argument Variable Names

X

Y

FX

FY

ARE

VOL

R

DNS

DNN

DNE

DNW

U

V

W

TE

ED

DEN

F1

F2

Grid node locations in the x or k-direction, dimensioned to X(NX*NY)

Grid node locations in the y or rl-direction, dimensioned to Y(NX*NY)

Interpolation factor in the x or _-direction. -.

Interpolation factor in the y or rl-direction.

Cell areas

Cell volumes.

Radial distance in the axisymmetric geometry or 1. for planar geometry.

Normal distance of a cell from the south-boundary dimensioned to NX.

Normal distance of a cell from the north-boundary dimensioned to NX.

Normal distance of a cell from the east-boundary dimensioned to NY.

Normal distance of a cell from the west-boundary dimensioned to NY.

Axial or x-direction velocity, dimensioned to NX*NY.

Radial or y-direction velocity, dimensioned to NX*NY.

Tangential or azimuthal velocity, dimensioned to NX*NY.

Turbulent kinetic energy, dimensioned to NX*NY.

Turbulent energy dissipation rate, dimensioned to NX*NY.

Density (assumed constant for incompressible flows).

Mass flux at cell faces in the x or _-direction, dimensioned to NX*NY.

Mass flux at cell faces in the y or rl-direction, dimensioned to NX*NY.
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VISCOUS

VIS
RESOR

ITBS

ITBN

JTBE
JTBW

ITER
FMUU

ICAL

AKSI

RESTART

Laminarviscosity.

Eddyviscosity,dimensionedto NX*NY.
Residualerrorfor the k and e -equations solver, dimensioned to 2.

Boundary condition flag along the south boundary dimensioned to NX and

must have one for each boundary node set to: 1-inlet, 2-outlet, 3-symmetry

and 4-wall, e.g., for a wall boundary condition along the south boundary

set ITBS to NX*4. Similarly for the other boundaries.

Boundary condition flag along the north boundary, dimensioned to NX.

Boundary condition flag along the east-boundary dimensioned to NY.

Boundary condition flag along the west-boundary dimensioned to NY.

Iteration number.

function used in the two-layer model.

= 1 for swirl velocity calculations, 0 otherwise.

= 1 for axisymmetric flow, 0 otherwise.

= 1 if calculations are restarted from a previous run, 0 otherwise.

ASMOD starts by reading the turbulent flow constants, under-relaxation factors and

Prandtl/Schmidt numbers for the k and e equations. These are;

CD1, CD2

CMU, ELOG,

and CAPPA

LAY2

GKE

ALFAKE

URFVIS

SORKE(1) and

SORKE (2)

URFKE(1) and

URFKE(2)

PRTKE(1) and

PRTKE(2)

C1, C2

constants in the k and e -equations and are usually get to 1.44 and 1.92

respectively.

constants in the k and e -equations and are usually set to 0.09, 9.8 and 0.42

respectively.

set to true (T) for two-layer model and false (F) for wall functions.

is set to 1 for second-order upwinding of the convective terms in the k and

e -equations.

is the iteration parameter used in the k and e -equation solver.

is the underrelaxation factor of the viscosity near the wall.

are the degree of accuracy for the k and e -equation solver respectively.

are the underrelaxation factors for the k and e -equations respectively.

are ratio of Prandtl to Schmidt numbers used in the k and e -equations in the

two-layer model near the wall.

are constants in the ASM model.
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CIW andC2W

CK andCE

WREFON

arethetwoconstantsin thewall-reflectiontermsof thepressure-strain

redistributionterm.
constantsin thediffusiontermof the k and _ -equations.

= 1 if the wall reflection terms of the pressure-strain term are to be

included, o otherwise.

All dimensions considered are one-dimensional. The position of any node is defined as/J = (l,J) =

(I-1)*NJ +J, where NI and NJ are the number of grid nodes in the X and Y-directions

respectively. It is assumed that grid related data such as cell areas, volumes and interpolation

factors be passed to the module from an external grid generator.

Subroutine WALREF

This subroutine calculates the wall reflection terms in the pressure-strain redistribution term. It

calculates the wall unit normal vectors and the normal distance away from the wall. This is needed

to resolve the wall tangential and normal velocity components that are needed to obtain the near-

wall values of the Reynolds stresses.

Subroutine CALPIJ

This subroutine calculates the production terms of the individual stress components.

Subroutine CALUIUJ

This subroutine calculates the individual stress component from its algebraic equation. It sets the

coefficients of the algebraic stress equations which are solved implicitly at each iteration step by

inverting a 6x6 matrix.

Subroutine ACALCKE

This subroutine solves the transport equations for the turbulent energy (IPHI= 1) and energy

dissipation.(IPHI=2). Daly and Harlow [7] gradient stress diffusion form is used in the module

instead of the simplified isotropic diffusivity form. The subroutine calls MODPHI subroutine that

sets the appropriate boundary conditions for k and 6. The set of algebraic difference equations are

then solved using Stone's strongly implicit solver ASOLSIP.
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Subroutine ATWOLAY

This subroutine calculates the near wall turbulence using Chen and Patel's [3] two layer model.

Subroutine MODPIJ

This subroutine modifies the production terms near the wall using the near wall region model.

Subroutine MODPHI

This subroutine calculates the near wall boundary conditions for the turbulence energy and the

energy dissipation.

Subroutine AMODVIS

This subroutine modifies the eddy viscosity close to a wall using the near wall model chosen.

Subroutine ASOLSIP

This subroutine solves the system of linear algebraic equations for k and e using Stone's Implicit

Procedure [8].

Subroutine AMODIFY

This subroutine is called from the momentum equations solver of the main routine. It updates the

flux source terms of the discretized momentum equations due to wall shear stresses and due to the

Reynolds stress gradients. The terms SUASM, SVASM and SWASM need to be added to the U,

V and W-momentum equations of the main solver. They represent the difference form of the

Reynold stress gradients in the momentum equations.
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5.1 Introduction

This report describes a self contained FORTRAN source code to compute turbulent quantities

using Launder, Reece and Rodi's [1] second order closure, Reynolds stress model The module

deck is designed to interface with a number of flow solvers to analyse incompressible turbulent

internal flows. Detailed description of the model used is given with a special emphasis on the

coupling of the mean velocity and Reynolds stresses in the discretization procedure of the

generalized coordinate system using a co-located finite volume method. The module was interfaced

with the REACT flow solver and tested with benchmark flows including the backward-facing step.

The module was also successfully interfaced with the MAST code at the University of Alabama at

Huntsville (UAH) and independently tested. The Reynolds stress model implemented produced

consistently more accurate simulations that the standard k-e model.

5.2 Theory and Model Equations

The flow is considered planar or axially symmetric, steady with constant fluid properties. Its mean

field may be described by a two-dimensional time averaged equations of continuity and

momentum, which can be written as; _.

¢gpU 1 o3prV
o3x + r o3r - 0 (1)

a(prU¢) a(prV¢) a a¢ a aci)ax + & - ax (rl ox) + ) + rSep (2)

stands for any of the dependent variables, namely, U and V (axial and radial velocities

respectively) and rW (radial distance r multiplied by the tangential velocity W ). p is the fluid

density,/.t is the laminar viscosity. SO is the source term for the variable • and is given by;

OP Op-_ 10pru---v
-Axialdirection,_ =U andS U = - _-_- 03x r oar

m __ --

o3P pW 2 2!aV 1 onrrv2 Oruv rw 2

- Radial direction, • = V and Sv = - _ + _ r2 r oar o3x + r

m m

- Tangential direction, • = rW and Sw = - 2 11o_rW ruw Orvwr_--- P-_-S - p o3"

m

m _ 2F32W.
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where u, v and w are the fluctuating velocity components in the axial, radial and azimuthal

directions respectively.

Turbulence wall effects in the module are represented by Gibson and Launder [2] version of the

high Reynolds number stress transport closure of Launder, Reece and Rodi [1]. The stress closure

consists essentially of modeled transport equations for the stresses uiu j and for axisymmetric

swirling flow it includes all the six stresses u 2, v 2 , w2, uv, uw and vw.

The set of differential equations governing the transport of Reynolds stresses (-uiu j ) is obtained

from Navier-Stokes equations by multiplying the equations for the fluctuating components (u i )

and (uj) by (uj) and (u i ) respectively, then summing these equations and time averaging the

results. The resulting Reynolds stress transport equations are then solved using the mean flow

equations to obtain the mean and turbulent flow quantities.

The full transport equations for the Reynolds stresses can be written in a compact form using

Cartesian tensor representation as;

103prUk uiui 1 03 k _ Dij +
r 03Xk - r -_k (rCkp UkUl - 03Xl ) = Pij + cl)ij- eij

E

(3)

Where Uk are the mean velocity components in x k -direction. The right hand side contains the

production term Pij given as

03Ui

Pij = - P ( ZiUk-_xk + ZjUk-_k )
(4)

Pq does not require approximations since it is fully represented by turbulent stresses and mean

flow gradients.

The dissipation correlation eij arise from the fine-scale of the turbulent motion. At high Reynolds

numbers these scales are many orders of magnitude smaller than the large energy containing eddies

and turbulence energy cascades down along the eddy-size range with little linkage occurring at

intermediate scales, to be ultimately dissipated by the smallest eddies which are unaware of the

nature of the mean flow and the large scale turbulence. Therefore, the structure of these fine scale

motions responsible for viscous dissipation is isotropic and the dissipation tensor eij reduces to
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2
2 v t?XkO3Xk= jetSij

(5)

An additional equations for the dissipation e is required.

Dij represents the Reynolds stress diffusion which does not in general contribute greatly to the

balance of transport of ui---ujexcept in regions of low stress production by mean strain. This term

include contributions of fluctuating pressure-velocity correlations (pu---/and puj ), triple correlations

Daly and Harlow [3] proposed a simple gradient diffusion
uiujuk and viscous diffusion v c?xk "

hypothesis to model the stress diffusion term in the form

Dij = Cs -_k p k [ UkUl C_Xl .]
E

(6)

with constant Cs is taken to be 0.22. Lien and Leschziner [4] simplified the treatment of the

diffusion term to allow an appropriate isotropic diffusivity in the form

Oij = -_k t _ o3x----£(_iuj)] (7)

where o'k is a dimensionless constant. Harlow's proposal for the diffusion term is adopted in the

present module since it is based on the fundamental conservation equations for the triple

correlations, while Lien & Leschziner's form has a weaker basis in this respect.

@ij represents the redistribution of turbulence energy among the normal stresses through the

interaction of pressure and strain fluctuations. Modeling the pressure-strain term is the most

elaborate and involves the solution of the Poisson equation for pressure fluctuations p. The explicit

appearance of the pressure in the correlation is eliminated by taking the divergence of the equation

for the fluctuating velocity ui, thus obtaining a Poisson equation for p. Following a volume

integration of the resulting equation subject to the assumption of local mean-flow homogeneity

results in three contributions to the pressure-strain correlation ,cI)ij. One involving just fluctuating

quantities @ij,1 another arising from the presence of the mean rate of strain @ij,2. and a third

arising from the surface integral representing wall effects _ij, w. Since the primary role of @ij is to

guide turbulence towards isotropy, Rotta [5] proposed for _g,1 ;

CI)ij,l = - 2 p C1 e bij (8)
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-- 2
where bij = ( uiuj - j _ij k)/2k is the dimensionless anisotropy parameter. C1 is a constant and k

and e are turbulent kinetic energy and energy dissipation respectively. More elaborate models have

been proposed such as Lumley [6] and Fu [7] using a nonlinear expression for _ij,1. The term

_ij,2 has been the subject of more extensive research. The traditional linear approach similar to

Rotta's work simplifies this correlation to:
2

CI_ij,2 =- C2 (Pij - "_ Sij P ) (9)

where P is the production of turbulent kinetic energy. Analogous to _ij,1 the correlation, _ij,2

represents the isotropization of turbulence production tensor with C2 as a constant. More elaborate

models such as that of Speziale, Sarkar and Gatski [8] is based on dynamical systems approach

and invariancy concepts. Nonlinear models for _ij,2 based on the realizability constraints have

been developed, e.g, Shih and Lumley [9] and Fu, Launder and Tselepidakis [10]. The simplified

correlations in equations (8) and (9) are used in the present module.

The correlation _ij, w represents the wall damping effects that counteracts the tendency of ql)/j, 1

and _ij,2 to isotropise the turbulent structure. Since close to a solid wall turbulence approach a

state of intense anisotropy associated with a tendency towards a 2D turbulence. Following Shir

[11 ] and Gibson and Launder [2], _/j,w is modeled as the combination of two separate terms;

E

cPij,lw Clw p -_ [ UkUm nk nm Sij- 3 3 I= _UkUinknj- _ukujnkni]f(_) (10)

3 3 l
cPij,2w = C2w [ _km,2 nk nm Sij - _ _ij,2 nk nj - _ _jk,2 nk ni ] f ( _ )

(11)

where In is the normal distance from the point in question to the wall and l ( = k3_) is the turbulent
E

length scale. The following relationship is used for the wall damping function

Cm75k3/4 1 (12)
f - <In>

ICE

where <ln> is the average distance of the point considered from the surrounding surfaces and n i is

a wall-normal unit vector in the i -direction. The constants Clw and C2w have values of 0.5 and

0.3 respectively.

It will be of some value to list the full Reynolds stress equations for axisymmetric swirling flows.

Although, the derivations have been carried out within the constraints of Cartesian coordinates,

considerations will be given next to the forms applicable to any general curved coordinate system.
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In generalthetransportequationfor theReynoldsstresses (ui---uj)carl be written as;

Cij = Dij +Pij +Fij- eij + Rij (14)

where Cij, Dij, Pij, Fij and e represent convection, diffusion, production, pressure-strain and

dissipation terms. The term Rij results from the transformation of the equation from plane to

axially symmetric conditions and swirl. In Cartesian coordinates, the above terms are summarized

below for each stress component;

• U2 - equation

la w la --
Cll- rOx (prUu 2)+ r-_ (prVu 2)

m

1 O --ko3u 2 Ou2
D l l - r c)x [ p r C k u2 -_ -_- + p r C k-_ k--_- ]e

Pll =

_11 =

m

+ rl [ p r Ck uv___ffZ + p r C ke ]

2r ( u--5 OU_ _-_+-_ )

e 2 2
- p Cl -_ (-_- 3 k)- C2 (Pll- 3 P)

Ell =

+ p Clw-#[- 2-uffx + V2fy --_fxy]

2 2
+ C2w [ 2 C2 (Pll- -_ P)fx - C2 (P22- j P)fy + C2 Pl2fxy ]

2
jpe

p

• V2 - equation;

Io_ -- I0
C22 - r o_x (p r Uv 2) + r-_ (p r V-v5)
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D22 -

P22 =

_2 =

1 [prckk(-_f_____+uv___)]+r [prckk(-__ffZ+-____)]
r E e

-- 3v 3V -- w
2 p ( uv-ff_ +-v-Y--_ - vw--;-)

e 2- Cl p-_ (-_- -_k)- C2 (P22- P)

+ pClwk(-_fx- 2-_fy --ff-_fxy )

+ C2w[ -C2(Pll "-_P)fx + 2 C2 (P22 - P )fy + C2 P12f©'

R22 = 2 Ckp
k (W2) 2

e r2

20 o3 v--ff
r Or ( p Ck k_ (-Cff)2)_ 2 -_ ( p Ck k_ --uw-- )

E E r

- 2 p Ck k-w2 v-T - 2 p Ck
er 2

k uw Ov-_ k vw O_ -- W

e r 3x -2pCk-e r Or +2pVW--r

w

°W2 - equation

C33 = 13 _ 1_ --r cgx (p r Uw 2) + 7 (p r Vw 2)

D33-
1 O --0_ 2 0_w2
r cgx [ p r Ck k- ( u2-ffZ + -_---_-) ]

E

m

1 a -- O_W2 0)w2
+ r -_[prckk-(uv--O-x-+--_ )1

E

-- 3w -- 3W --VP33 = - 2 p (uw _ + vw _ + w 2 )

F33 =
e 2 2

- p C I -_ (-_- -_ k) -C 2 (P33- 3 P)

E
+ P C1 w -#[-_fx +-_fy + 2-_fxy ]

-C2 C2w [ (Pll-_P )fx + (P22--_P)fy-2 C2 P12fxy ]

R33 =

m

V2 2 c_
2 p C k k -_ -;-f + 7 -_ ( p C k

_ 3 k--v---_
k (-_)2) + 2 -_ ( pCk - uw
E e r
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k (_--_)2
- 2 pCk - r2

E

k fi% 3-f_
+ 2 p Ck c3x + 2 p Ck --

E r

kl--_-& -- W
vw-- -2p vw--

er _ r

• uv- equation

C12- 1 0 -- 1_r c_x ( prU uv) + r (prV-ffv)

DI2 -
1 03 k cTff-v --c7ff-_, 1 0 k --u---v
r t?x [ prCk- ( -_ --_- + uv ---_ - ) ] + r -_ [ prCk - ( UV -_ + -_ or )]

E

P12 =- D( u2 3V -- V .I. --_ O_U -- _ )-j-_- uv r _ - uw r

(1)12 = - p C 1 -_ uv- C2 P12

3 e
pClw -_ [ -_(fx + fy) + (u2 + v2 ) fxy ]

3 4 P)fxy + P12 (fx +fy) ]+ _ C2 C2w [ (Pll + P22 " -_

u-"_ o3 k ('ff-_ )2 1 __ k -- --R12 = - p Ck k -____ _-x ( p Ck )- r ( p Ck -
e e r e

-- 3-ff-_ -- ,9-ff-_, w
_ p ck l k-e( uw--_- + vw--o-G- )+ p-ff-_--/-

UW VW )

° v--w- equation

C23- 13 13 --
r c)x ( p r U-v% ) + r-_ ( p r V vw )

D23 - r Ox[ p r Ckk-[ u ----_-_- + uv_) ]

t923 =

--3_% --3-_-_
1 o3 ckk(uv )1+ 7-_[pr _+v2_

E

--Ow -- Ov Ow 3v -- v -_ w
- p [ uv -sT + uw -g_ + 7-N- + -Y_ -_ + VWr - r ]
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q_23 =

R23 =

e__ 3 e
- p C1 -_ vw- C2 P23- _ P Clw -_ (-u-wfx3' + -vwfy)

3
+ _ C2 C2w (Pl3fxy + P2ffy)

w
-P (v2 - w2) r + p Ck - -

k I -- o3 03 (v2-w 2)
VW (1,2 _ W2) + (p Ck k -_ )

e r -_ _ e r

1 O3 k-- ckkl -- w e+r-_ (pCk-vw(v e -we))-4p rVW--+PCk--
E E r

lk--3

r e uw _ (V 2 - W 2)

o_-w-equation

C13- lo3 -- lo 3 --
r Ox (p r U uw) + r -_ (p r V uw)

D13 -
1 O3 k r-_o3-u-w --o3-u-w,
r Ox[ p r Ck-(U _ --j-Z+uv--_- ) ]

g

PI3 =

F13 =

1 O3 O3_ + -_ o3"u-&
+ 7-_ [ p r Ck k (-_-_ - --&-- ) ]

-P ( u--7 O3W -- O3W 8U--_- + uv--_-- +-V-_--_- - -ff_-- )

e__ 3 e_
-pC1 _ uw- C2 Pls- _ p Clw-_ uw fx

3 3
p Clw -k -v-Wfxy + _ C2w C2 P13fx + _ C2C2w P23 fxy

mW
RI3 = -puv r +pCk

k l --vw°w_ + O3 ck k_ -- u---v
e r if- -ffx(P e uW--)r

1 o3 k kuwcTff-v Ck k_ u--w
+ r-_ ( pck-evwuv)+pCke r Ox - p e_-2 r2

The turbulence energy dissipation rate e is determined from its own transport equation;

1 o3prUke

r o3Xk

& e e2
1 0 (r CeP k_ UkUl -_l ) + Cel -kPk- Ce2 P -_
r o3xk e

(14)

where the constants Cej and Cel have values of 1.44 and 1.92 respectively.
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The terms fx, fy andfxy appearing in the stress-equation are tied to the orientation of the wall

through the wall-damping function f and will be explained later in the wall reflection treatment

section.

5.3 Boundary Conditions

To solve the transport equations for the Reynolds stresses, boundary conditions for the stresses are

needed. In the present module the log-law based relations are used to bridge the gap between the

fully turbulent and viscous near-wall regions. Boundary values for the stresses can be derived by

applying the Reynolds stress equations to the near-wall equilibrium flow. It can be shown that the

stresses are related to the turbulent kinetic energy uiu j = Cij k, where Cij are constants to be

OU u--r-r, where ur
determined. Consider as an example, the log-layer turbulent flow, where S - tgy -

ry

is the friction velocity and I¢ is Von Karman constant. In the log-layer, the limiting form of the

stress equation is obtained by neglecting the convective terms and equating the production to

dissipation and setting the wall-distance function f= 1, hence the molecular and turbulent diffusion

terms can be neglected. Consequently, the normal stress equation for the wall-normal component
2

when simplified with t/r22 = p j e is ;

v2 2 (-1 + C} + C 2 - 2C2 C2w) = C22 " (15)
k - 3 (C1 + 2Clw)

From experimental data, Lien & Leschziner [4] reported a value of C22 - 0.249 for near wall

equilibrium turbulence. The most frequently used value of CI = 1.8 and C2 = 0.6, and from

Gibson and Launder [2] Clw = 0.5 and C2w = 0.3. Substituting these values into equation (13)

give a value C22 = 0.247 which is close to the experimental value. Similarly, these constants also

give C11 = 1.09, C33 = 0.654 and CI2 = -0.255.
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5.4 Numerical Procedure

The conservation equations for the Reynolds stresses and the energy dissipation are integrated over

control volumes after transformation of the Cartesian form to body-fitted no-orthogonal

coordinates. The equation governing the transport of a scalar property _, which stands for the

Reynolds stress components and the energy dissipation equation can be written as;

1 a

J a{e
- -- [ J (pUrn_- qm) flk ] = S_ (16)

where _k represents the curvilinear coordinate frame and J is the Jacobian of the coordinate

transformation, and timk represents its cofactors and qm represents the diffusion flux. Equation (16)

is then integrated over discrete control volumes where the dependent variables on the volume faces

are approximated by finite-difference representation.

In general the diffusion term is represented as

a_

qn = F_ _-_ # t (17)

where r'_ is the diffusion coefficient.

The tensorial form of the diffusivity due to Daly and Harlow [3] is adopted as;

F_ = p r Cs k UmUl (18)
E

instead of the isotropic diffusivity (F_ = lat/a_ ). Utilizing the equilibrium assumption and

experimental near-wall stress data, the constant Cs is taken to be 0.22 for the Reynolds stress

equations and 0.18 for the turbulent energy dissipation equation. The diffusion term is discretized

with a second-order central differencing scheme, while the convective terms are discretized using

first or second order upwind differencing scheme.

A special discretization practice for the Reynolds stress gradients is introduced into the finite

volume procedure with colocated storage arrangement. This is necessary to avoid the problem of

mean velocity-Reynolds stress decoupling that can lead to oscillatory solutions or even divergence

of the iterative solution algorithm. The procedure adopted in the present work differs from that of

Obi & Peric [12] and that of Lien and Leschziner [4] by accounting for all the driving forces of the

Reynolds stresses and not only those given by the gradient-diffusion type process. To illustrate the
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origin of the problem, consider the Reynolds stress gradient terms in the axial momentum equation

in 2D Cartesian uniform grid for simplicity

_2 o_

-ax- 
Now integrating over a control volume surrounding node P (cf. Figure 1 ) yields;

3u 2 c?_

- I I---ffZ dx de- I _ff_-ydxdy=-[ (U2e-U2w) Ayp + (-U-Vn--U-Vs)Zlxpl

Now if the cell face values of the U2e, U 2 w, -d-Vn and u----Vsare evaluated with linear interpolation, the

stress difference expression become

- [ ( U2E -U2W -U_N2
U"-_S

2 )Ayp+( )dxp]

and since no P -node shear stress appear in the resulting expression, a chequer-board oscillation,

similar to that played by the pressure field appear. Therefore, a non-linear interpolation scheme is

needed to avoid these odd-even oscillations in the same context of Rifle and Chow [13] for cell face

velocities. This means that any celt-face velocity is not merely sensitized to the pressure differences

centered on that face but also to the Reynolds stress differences.

Consider the descretized equation for the axial normal stress compon e.nt u 2 in general non-

orthogonal coordinates;

ap u 2 p = _=nAi u 2 i+ S_

where n stands for the cells E, W,N and S

(19)

neighboring P, Ai are the coefficients for the

neighboring cells and Su--2 is the source term that includes production, dissipation and pressure-

strain redistribution terms as;
2

Su e = Pll - _ P E + @ll

where alP11 combines Rotta's stress isotropization model and isotropization of production model

and related wall-correction terms due to Gibson and Launder [2].

e 2 2
¢1911= - p C1-_ (-_ - 3 k ) - C 2 (P11" "_ P )

+ p Clw k :- 2-_fx + V2----fy" U"'Vfxy )

2 2 p)fy + C2 C2w P12fxy (20)+ 2 C2 C2w ( P1] - j P )fx - C2 C2w (P22 - -_

Rearranging the production terms that contribute to the stress generation and noting that
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1
P = _ Pkk, then;

where

Su 2 = AP11 + BP22 + CP33 + DP12 + $11

2 1 4
A = 1 - -_ C2 + -_ C2 C2wfy + _ C2 C2wfx

4
2 1 C2 C2wfy + C2 C2wfxB= I-jC2+ 3 3

1 1
C = 3 C2 + 3 C2 C2w (fy- 2fx)

D = C2C2wfxy

(21)

and Sll contains the remaining terms.

Substituting for the production terms Pll, P22, P33 and P12, then equation (19) becomes;

m

U2p = Hp + 2pA [ u-_ (D1 AU _ + D2 AU 77)+ u--v(El AU 77+ E2 AU _) ]p

__ -- vw W

+ 2pB [ uv ( D1 BV _ + D2 AV rl) + v2 ( E1 AV _ + E2 AV _ ) + A---pT ]P

__ w 2 W.
+ 2pC [ uw ( D! AW _ + D2 AW 77) + _ ( E1 AW _ + E2 AW _ ) -- -_p T IP

a -- u---_V u---ffW,

+ pD[u 2 (DIAV_ + D2 AV rl) + v2 (EIAU rl + E2AU_) +-_pr+_e--ZIp

$11

+ Ap
(22)

where

here

and

B

ZIp = _-4=_4i u2 i / Ap

DI =-AyOp/Ap, 02 = Ay_p/Ap,

E1 =-A'C_p/ap and E2 = AXOp/ap

AY_p = ( Yn " Ys ), AY_p = (re- Yw ), etc

AU_ = (UE- Up), AV_ = (VE- Vp), etc
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m

Now, performing the interpolation practice to obtain east cell-face value of the normal stress (U2e)

we obtain;

u'--Te= < u--Yp> - < 2pAu--_D1 AU _ > - < 2pA-'ff-v E2 AU _ >

- < 2pBu--¥ DI AV _ > - < 2pB'-_E2 AV _ >

- < 2pCu--_Dl AW _ > - < 2pC-V'-wE2 AW _ >

- < pDu2--Dl AV _ > - < pD v---ffE2 AU _ >

+ < 2pAu--2D1 > AU _ + < 2pA-_E2 > AU

+ 2pB u--¥D1 > AV_ + < 2pV-_E2 > AV_

+ < 2pC-ff_D1 > AW _ + < 2pC-v-w E2 > AW

+ <2pDu--YD1 > AVE+ < pDTE2 > AU_ (23)

The brackets < and > denote linear interpolation. For instance, on the east face

dxp
<O>=(1-f_)Op+f_OE where, f_ -

z_cp+ Ax E

Similar expressions can be obtained for u2 w,, u e n, u2 s, -ff-_w, UVn, and -ff-Vswhich are then used to

calculate the Reynolds stress gradients in the discretized axial momentum equation. Similarly,

expressions for UVe, UVw,, u---_n, -U_s,, v2 e, v2 w, v2 s and v 2 n can be obtained for the stress

gradients in the radial momentum equation and u---We,u---Ww,u---wn, u---Ws,v--We, v---Ww, v--fin and v---ffs

expressions to evaluate stress gradients in the azimuthal momentum equation.

5.4.1 Wall Reflection Treatment

The wall reflection terms Oij, w appear in the pressure-strain term correlation as wall correction

terms (Oij, lw and Oij,2w ) to counteract the tendency of Oij,1 and Oij,2 to isotropise the

turbulence structure. Special consideration is given to the wall proximity effects on the

redistribution process Oij, w with relation to the local orthogonal coordinate system at the wall, cf.

figure 2.

At a wall, turbulence approach a state of strong anisotropy associated with the tendency towards a

2D turbulence. The wall-reflection terms ensure that normal stress normal to the wall is not too
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high. For body-fitted coordinates,there is a needto considerthe tensorial form of the wall

reflectiontermssincetheyaretied to theorientationof thewall throughthedampingfunctionterm
(eq.12).For acurvedsurface(figure2), thewall normalvectorn = nli I + n2i 2 , where i I and i2

are unit vectors in Cartesian coordinates. The Cartesian components of the wall-distance function f

are given as;

fx = n_ f, fy = n 2 f and fxy = nl n2f

2 C075where fx = n! ( " kl.5/_c e)/L n for example and L n is the normal distance from the wall.

The Reynolds stresses close to the wall are transformed from wall coordinates to Cartesian

coordinates by appropriate vector decompositioning to give;

u-_ u_-_2 _ n2 + 2 " t ln l= t1 + uv

-- -- 2 _ n_ + 2 m t2n2v e = -_ t2 + uv

W 2 = W 2

uv=u 2t It 2+ v2nln 2+ uv(t In 2+t 2n 1)

vw=uwt 2+ vwn 2

uw = uw t 1+ vw n I

where U 2, V 2 .... are the Reynolds stresses in Cartesian coordinates and U2, V 2 ..... are the Reynolds

stresses in wall-coordinate, n 1, n 2 are the Cartesian components of the normal vector component

and t 1, t2 are the Cartesian components of the tangential vector component.

5.5 Module Evaluation

The RSM module was tested at Rocketdyne after interfacing with the CFD solver REACT and at

the University of Alabama at Huntsville (UAH) using own solver (MAST). The first test was on

fully developed channel flow with length to height ratio of 50 and a Reynolds number of 2x 105

based on the channel height. A non-uniform mesh of 101x41 was used with clustering at the walls.

Figure 3 shows the fully developed mean velocity profile across the channel. Figure 4 shows the

normal Reynolds stress profiles across the channel and figure 5 shows the shear stress profile.

Similar results were obtained when the module was interfaced and tested independently at UAH

using the MAST code.
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The next test problem is that of the backward facing step of Driver and Seegmiller [14]. The

calculations were performed using a 101x41 grid points with clustering near the walls. The

computational domain had a length of 50H (H is the step height) and a width of 9H. The

experimental data were used to specify the inflow conditions for a channel flow calculation where

the fully developed profiles at the channel exit were used as the inlet conditions for the backward

facing step calculations. Fully developed flow conditions were imposed at the outflow boundary.

The boundary conditions for the Reynolds stress equations were arrived at by using the log-law of

the wall and assuming local equilibrium conditions close to the wall. It can be shown that the

Reynolds stresses are related to the turbulent kinetic energy by;

uiu j = Cij k (24)

were C(/ is constant. The Reynolds stresses at the vicinity of the wall used are

= 1.098 k, v--r = 0.247 k, u---v= - 0.255 k and w----e= 2k - u-_ - v-r = 0.654 k.

Figure 6 shows the stream lines using Launder, Reece and Rodi's model. The computed

reattachment length was about 5.8H which is closer to the experimental value of 6.1H than the

standard k-e model (5.35H). The figure also shows a small (turbulence driven) secondary flow

region at the base corner of the step which cannot be predicted using the isotropic eddy-viscosity

k-e model. Also, a smaller recirculation region is noted at the top lip of the step which is also

driven by turbulence anisotropy (more refined grid may be needed to isolate and study this region).

Figure 7, shows the mean velocity profile across the channel at four step heights downstream of

the step as compared with the standard k-e turbulence model predictions. The axial normal

turbulent intensity (u---J ) profile across the channel at x/H=4 is shown on figure 8 and the radial

normal turbulent intensity (v--r ) is shown on figure 9. The shear stress (ff-v) profile across the

channel at x/H=4 is also shown on figure 10. The results show that the module predicts improved

results using the RSM model as compared with the standard k-E model.
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Figure 2. Cartesian and wall-c0ordinate systems
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APPENDIX D

2D/Axisymmetric Reynolds Stress Module Deck

The 2D/axisymmetric Reynolds stress module is a FORTRAN source code to solve

2D/Axisymmetric turbulent flow using the full Reynolds stress model based on Launder, Reece

and Rodi[1] when interfaced with a main flow solver. The module consists of the main routine

RSMOD that calls a number of subroutines to perform different functions that will be explained

below.

3.1 Subroutine RSMOD

This is basically the main routine that reads through its argument list different variables from the

calling flow solver which are described below.

List of Argument Variable Names

X

Y

FX

FY

ARE

VOL

R

DNS

DNN

DNE

DNW

U

V

W

TE

ED

DEN

F1

F2

Grid node locations in the x or _-direction, dimensioned to X(NX*NY)

Grid node locations in the y or Tl-direction, dimensioned to Y(NX*NY)

Interpolation factor in the x or k-direction. _

Interpolation factor in the y or rl-direction.

Control cell areas

Control cell volumes.

Radial distance in the axisymmetric geometry or 1. for planar geometry.

Normal distance of a cell from the south-boundary dimensioned to NX.

Normal distance of a cell from the north-boundary dimensioned to NX.

Normal distance of a cell from the east-boundary dimensioned to NY.

Normal distance of a cell from the west-boundary dimensioned to NY.

Axial or G-direction velocity, dimensioned to NX*NY.

Radial or w-direction velocity, dimensioned to NX*NY.

Tangential or azimuthal velocity, dimensioned to NX*NY.

Turbulent kinetic energy, dimensioned to NX*NY.

Turbulent energy dissipation rate, dimensioned to NX*NY.

Density (assumed constant for incompressible flows).

Mass flux at cell faces in the x or _-direction, dimensioned to NX*NY.

Mass flux at cell faces in the y or q-direction, dimensioned to NX*NY.
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VISCOUS
VIS

RESOR

ITBS

ITBN

JTBE

JTBW

ITER

ICAL

AKSI
RESTART

Laminarviscosity.

Eddyviscosity,dimensionedto NX*NY.

Residualerrorfor theequationssolver,dimensionedto 8.

Boundaryconditionflagalongthesouthboundarydimensionedto NX andmust
haveonefor eachboundarynodesetto: 1-inlet,2-outlet,3-symmetryand4-wall

e.g.,for awall boundaryconditionalongthesouthboundarysetITBS to NX*4.

Similarly for theotherboundaries.
Boundaryconditionflag along the north boundary, dimensioned to NX.

Boundary condition flag along the east-boundary dimensioned to NY.

Boundary condition flag along the west-boundary dimensioned to NY.

Iteration number.

= 1 for swirl velocity calculations, 0 otherwise.

= 1 for axisymmetric flow, 0 otherwise.

= 1 if calculations are restarted from a previous run, 0 otherwise.

RSMOD starts by reading the turbulent flow constants, under-relaxation factors and

Prandtl/Schmidt numbers for the k and e equations. These are;

CD1, CD2

CMU, ELOG

and CAPPA

GKE

ALFAKE

URFVIS

SORKE(1-8)

URFKE(1-8)

PRTKE(1-8)

C1, C2

constants in the k and e -equations and are usually set to 1.44 and 1.92

respectively.

also constants in the k and e -equations and are usually set to 0.09, 9.8 and

0.42 respectively.

is set to 1 for second-order upwinding of the convective terms in the

transport equations.

is the iteration parameter used in the k and e -equation solver.

is the underrelaxation factor of the viscosity near the wall.

are the degree of accuracy for the k, e., u 2, v 2 , w 2, uv, vw, and uw-

equations solver respectively.

are the underrelaxation factors for the k, e., u 2 , v2 , w 2, uv, vw, and _'-_-

equations respectively.

are ratio of Prandtl to Schmidt numbers used in the k, e, u 2,

v2 , w 2, uv, vw, and u--% -equations respectively.

are constants in the RSM model.
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C1p and C2p

Ck and C E

CUU, CVV, CWW,

CUV, CVW, CUW

WREFON

are the two constants in the wall-reflection terms of the pressure-strain

redistribution term.

constants in the diffusion term of the k and e -equations.

are the constants multiplying the kinetic energy for the stress values near

the wall.

= 1 if the wall reflection terms of the pressure-strain term are to be included,

= 0 otherwise.

All variable dimensions considered are one-dimensional. The position of any node is defined as IJ

= (I,J) = (I-1)*NJ +J, where NI and NJ are the number of grid nodes in the X and Y-directions

respectively. It is assumed that grid related data such as cell areas, volumes and interpolation

factors be passed to the module from an external grid generator.

Subroutine CALPIJ

This subroutine calculates the production terms of the individual stress components.

Subroutine CALUIUJ

This subroutine solves the transport equations for the turbulent energy (IPHI=I), energy

dissipation.(IPHI=2) and Reunolds stresses (IPHI=3, 4, 5, 6, 7, 8 for

ue,v 2 ,w e, uv, vw, and u-w ). Daly and Harlow [3] gradient stress diffusion form is used in the

module instead of the simplified isotropic diffusivity form. This subroutine calls MODUIUJ

subroutine that sets the appropriate boundary conditions for the Reynolds stresses. The set of

algebraic difference equations are then solved using Stone's strongly implicit solver SOLSIP.

Subroutine MODPIJ

This subroutine modifies the production terms near the wall using the near wall region model.

Subroutine MODUIUJ

This subroutine calculates the near wall boundary conditions for all the variables.
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Subroutine SOLSIP

This subroutine solves the system of linear algebraic equations for all the variables using Stone's

Implicit Procedure.

Subroutine WALREF

This subroutine calculates the wall reflection terms in the pressure-strain redistribution correlation.

It calculates the wall unit normal vectors and the normal distance away from the wall. This is

needed to resolve the wall tangential and normal velocity components that are needed to obtain the

near-wall values of the Reynolds stresses.

SUBROUTINE WALPARA

This subroutine calculates the normal and tangential wall unit vectors.
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6.1 Introduction

In this section a description of the standard k-e turbulence model that is coded as a self contained

computer program to compute turbulent flow quantities in three-dimensional, body-fitted geometry

is given. Module structure and variables used are given in the Appendix. The module was

successfully tested as a self-contained unit using the REACT code[ 1].

6.2 Theory and Model Equations

The k-e turbulence model used is based on the standard two equation k-e model of Launder and

Splading [2]. For a steady, incompressible flow the transport equations for the turbulent kinetic

energy k and energy dissipation e can be written in generalized Cartesian coordinates as;

apUik ] a #t ak
Oxj - r _xj (_t + _k Oxj )+ G - p e (1)

Opus_ ] 0 _t Oe
axj - r Oxj(/_ +--_ )+ O- p e (:2)

(_E "

where G denotes the rate of production of turbulent kinetic energy and is expressed as;

t_U i 3U i

G= l_t -_j (-_j + c)xi )

The empirical constants, trk , tye , C1 and C2 have values 1.0, 1.0, 1.44 and 1.92 respectively.

The above equations are valid only in the fully turbulent region away from the wall. Therefore the

wall function method (similar to that described in Chapter 2 for the 2D k-e module) is used to

model the damping effects of the thin sublayer region close to the wall.
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6.3 Module Evaluation

The 3D k-e turbulent module was evaluated by interfacing the module with the REACT code as the

CFD solver and producing the same results that were generated previously with the full REACT

code for a centrifugal impeller calculations (Chen et. al [3]). Figure 1 shows the grid topology of

the impeller studied with the shroud removed and Figure 2, shows the reduced pressure plot. In

general Chen et al's calculations showed good comparisons with experimental data obtained from

laser velocimetry in a water test rig.
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Figure 1. Impeller grid topology



Figure 2. Reduced pressures



APPENDIX E

3D k-e Turbulence Module Deck

This module consists of two separate programs KEMOD3 and MODIFY, which have to be linked

to the main flow solver. A description of each file will be given next.

Program KEMOD3

This is basically the solver for the k and e - transport equations. It reads through its argument list

different variables from the calling flow solver. These variables are described below.

List of Argument Variable Names

NIM

NJM

NJM

X

Y

Y

U

V

W

TE

Number of cell nodes in the I- or k-coordinate lines. (input from the flow

solver)

Number of cell nodes in the J- or Wcoordinate lines. (input from the flow

solver)

Number of cell nodes in the k- or k-coordinate lines. (input from the flow

solver)

Grid node locations in the x or k-direction, dimensioned to X(JXYZ)

(JXYZ=NX*NY*NZ) (input from flow solver)

Grid node locations in the y or rl-direction, dimensioned to Y(JXYZ) (input

from flow solver)

Grid node locations in the z or k-direction, dimensioned to Y(JXYZ) (input

from flow solver)

x-direction velocity (u), dimensioned as U(JXYZ) (input from flow solver)

y-direction velocity (v), also dimensional as V(JXYZ) (input from flow solver)

z-direction velocity (w), dimensional W(JXYZ) (input from flow solver)

Turbulence kinetic energy k, dimensioned TE(JXYZ) (calculated in the module

and returned to the flow solver)
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ED

URFK
URFE

PRTK

PRTE

G

F1

F2

F3

1TER

VISCOS

VIS

C1

C2

CMU
BCFE

BCFW

BCFS

Turbulentenergydissipationratee, dimensioned ED(JXYZ) (calculated in the

module and returned to the flow solver)

Under-relaxation factor for k -equation (input from flow solver)

Under-relaxation factor for e-equation (input from flow solver)

Prandtl/Schmidt number for turbulent energy-equation, assumed known (input

from flow solver)

Prandtl/Schmidt number for turbulent energy dissipation equation, assumed

known (input from flow solver)

= 1.0 if second order upwinding is desired

= 0.0 if first order upwinding is used

(input from flow solver. Usually calculation of k and e are not very sensitive to

the order of upwinding used)

Mass flux variable at cell faces in x- or k-direction, dimensioned F I(JXYZ)

(input from flow solver)

Mass flux variable at cell faces in y or rl-direction, dimensioned F2(JXYZ)

(input from flow solver)

Mass flux variable at cell faces in z or k-direction, dimensioned F3(JXYZ)

(input from flow solver)

Iteration number (input from flow solver)

Dynamic viscosity (input from flow solver)

Eddy viscosity, dimensioned VIS(JXYZ) (calculated in the module and returned

to the main solver)

Turbulence model constant, C1 (input from flow solver)

Turbulence model constant, C2 (input from flow solver)

Turbulence model constant, C_t (input from flow solver)

Boundary condition flag along east boundary (or y-z plane). It must have one

for each boundary node set to: 1-inlet, 2-outlet, 3-symmetry and 4-wall e.g.,

for an outlet boundary condition on the east boundary set IBCE to (NY*NZ)*2,

and similarly for other boundaries, dimensioned BCFE(JYZ=NY*NZ) (input

from flow solver)

Boundary condition flag along west boundary, dimensioned BCFW(JYZ)

(input from flow solver)

Boundary condition flag along the south boundary, dimensioned

BCFS(JXZ=NX*NZ) (input from flow solver)
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BCFN

BCFB

BCFT

Boundarycondition flag along north boundary,dimensionedBCFN(JXZ)

(inputfrom flow solver)
Boundarycondition flag alongbottomboundary(or x-y plane),dimensioned

BCFB(JXY=NX*NY) (input from flow solver)

Boundary condition flag along top boundary (or x-y plane), dimensioned

BCFT(JXY=NX*NY) (input from flow solver)

Themoduleis interfacedwith themainflow solverby acall to KEMOD3 with its arguments.For
iterativeflow solversthemoduleis calledwithin the iteration sequenceafter thesolutionof the

momentumequationswherethemeanvelocitiesarepassedto themodule.Therearedifferentflow

solversutilizing different schemesfrom staggeredto nonstaggeredgrid arrangementand for

nonorthogonalcoordinatesystemthereareat leastthreealternativesto thechoiceof the velocity

components;

i. Cartesianvelocitycomponents
ii. Contravariantvelocitycomponents

iii. Covariantvelocitycomponents

The Cartesianvelocity componentsarethe mostwidely usedandhavethe advantageof simple

formulationof thegoverningequations.Whateverthearrangementused,massfluxesatcell faces

arerequiredandpassedto the moduleasF1,F2 andF3 in all directions.The locationof other
variablessuchask and e are at the cell center or cell nodes.

The module starts by reassigning variable names passed to it from flow solver to names that are

shared with the different subroutines of the module in a common statement file "kemod.h". Then a

check is made if it is the first iteration in which case the grid file "GRIDG" is called -after passing

the grid node locations X, Y and Z- in order to calculate grid related quantities which will be

explained later. The need to call GRIDG can be waived if all the grid data are passed to the

module. That is all the information about the grid such as interpolation factors FX, FY and FZ, cell

volumes (VOL) and normal distances of first grid point from grid boundaries (DNS from south

boundary, DNN - from north boundary, DNW - from west boundary, DNE - from east boundary,

DNB - from bottom boundary and DNT - from top boundary).

After this a call to subroutine CALCE is made to calculate the turbulent kinetic energy k (with the

identifier IPHI= 1). The energy dissipation equation is solved next by a call to subroutine CALCE
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againwith the identifier IPHI=2. Theturbulent viscosity is updatednextby calling subroutine

MODVIS.A brief descriptionof eachsubroutineis givennext.

Subroutine GRIDG

Before calling this subroutine, the coordinates of all grid nodes, defined in reference to a fixed

Cartesian coordinate frame are read. Figure 3 shows the position of cell and grid nodes. The west-

to-east, south-to-north and bottom-to-top directions correspond to the ascending indexing order of

i, j and k, respectively, forming a right-handed coordinate system.

This subroutine is called only once to calculate coordinates of grid nodes (intersection of grid lines)

and geometrical properties of the grid (cell volumes, interpolation factors, normal distances of

near-boundary cell nodes from boundary). All variables including grid node coordinates are

converted to one-dimensional arrays. The position of any node in one-dimensional array is

therefore defined as;

IJK = (I-1)*NJ + (K-1)*NI*NJ + J

where NI, NJ and NK are the maximum number of grid nodes in the i, j and k directions

respectively.

The actual number of grid nodes is one row and one column less than for all cell nodes. For I =

NI, J = NJ and K = NK fictitious grid nodes are introduced which have the same coordinates as

actual nodes on NI-1 in I-direction, N J-1 in the J-direction and NK-1 in K-direction.

The subroutine then calculates interpolation factors which are associated with cell nodes and are

used in the main program to calculate values of dependent variables at locations other than cell

nodes (cell centers). Cell volumes are calculated next followed by calculations of normal distances

of near-boundary nodes from all the six outer boundaries.
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Subroutine CALCE (PHI, IPHI)

This subroutine solves the linearized and discretized transport equations for the turbulent energy k

and the energy dissipation rate e. The two dummy parameters in the calling statement, PHI and

IPHI, represent arrays containing dependent variables for which the equation is to be solved. The

subroutine sets up the convective and diffusive coefficients over the entire field, then it calculates

the source terms for either k or e transport equations. A call is made to MODKE or MODED in

order to modify the sources for k and e equations respectively.

The discretized equations have the form

Ap _p : E Ai _i + S_
i=EWNSTB

where the coefficients Ai (i=E,W,N,S,T,B) contain both the convective and diffusive fluxes, these

equations are assembled and solved by calling subroutine SOLSIP which is based on Stone's

Strongly Implicit Solver [4].

Subroutine SOLSIP

This subroutine solves the system of linear algebraic equations for k and E using Stone's Implicit

Procedure [4]. The array RES (IJK) is used to store the residuals. The sum of absolute residuals

"RES 1" calculated in the first pass through this part of the routine is used as a measure of

convergence of the solution process as a whole and this value is stored in RESOR (IPHI). This

variable RESOR (IPHI) is passed to the main solver and if desired can be normalized and

compared with the maximum error allowed there. If necessary inner iterations counter L and the

sum of absolute residuals RES 1 are printed out to monitor the rate of convergence of k and

solution. If the ratio RSM is greater than the maximum allowed for the variable in question, SOR

(IPHI), and the number of inner iterations is smaller than a prescribed maximum, NSWP (IPHI),

then the routine repeats the sequence of calculating the residuals, increment vectors and updating

the dependent variable.
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Subroutine MODVIS

This section calculates the effective viscosity and is called after calculating k and E. At locations

where e is close to zero (i.e., <__10 -30) viscosity is set to zero. A provision is made for under

relaxing changes in effective viscosity which may help to stabilize oscillations and improve

convergence rate.

Subroutines MODK and MODED

These subroutines are called from subroutine CALCE and they set the boundary conditions for

k and e. For the kinetic energy equation for example, the bottom boundary is checked

first for one of the options below;

(1) An inflow boundary BCFB(IJ) = 1 (IJ = (I-1)*NJ+J), where the source term is set to

accept the inlet values at the x-y plane (bottom boundary K= 1).

(2) Outflow boundary BCFB(IJ) = 2, where zero gradient in the z-direction is employed.

(3) Symmetry boundary, BCFB(IJ) = 3, where gradients normal to symmetry x-y plane are

zero.

(4) Wall boundary, BCFB(IJ) = 4, where the turbulent kinetic energy production (per unit

volume) term GENTB(I) calculated form subroutine WALLFN in program MODIFY is

added to the rest of the source term SU(IJK).

Boundary conditions for the e -equation are similar to those of k except at the wall where they are

set to appropriate values for each near wall treatment.

Program MODIFY

This program is compiled separately and is called from the u, v and w momentum solver .It

basically updates the flux source term of the discretized momentum equation due to wall shear

stresses. If the u-momentum equation for example is discretized in the form

-88-



Apup = i=E_s_ Ui + S u

where P, E, W, N, S, T, B are cell nodes, and A and Ai's contain convective and diffusive
p

coefficients. S u is the source term containing pressure gradients and cross-derivative diffusion

terms and convective terms for second-order upwinding scheme. This source term is usually

linearized as S = Su - Bpup The term Bp is usually moved to the left hand side of the equation and

modifies the diagonal coefficient Ap = Ap + Bp, and the equation can be written as

Ap Up = i=E_[vA_ Ui + Su

Then S u and Bp are passed to subroutine MODIFY where they are modified if a wall is present

(e.g., BCFB(U) = 4 for bottom boundary).
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Figure 3. Cell volume and coordinate system
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7.1 Introduction

In this section a description is given of the three-dimensional Algebraic Stress turbulence Model

(ASM) based on the work of Rodi [1]. The model is coded as a self contained computer program

to compute turbulent flow quantities when interfaced with a CFD solver. Detailed description of the

module structure, variables used and how to interface the module with CFD flow solvers are given

in the Appendix.

The module uses as input the mean flow properties, as computed by conventional CFD solvers,

and calculates the Reynolds stresses, turbulent kinetic energy and the energy dissipation. It is

structured to be self-contained and compatible with many CFD codes. The module has not been

tested thoroughly due to the ending of the contract earlier than scheduled. Some testing of the

module has been done at UAH but that also has been put on hold. However, the module as

assembled is capable of interfacing with a number CFD solvers.

The module computes turbulent flow quantities in three-dimensional body-fitted geometry with or

without rotation about any one of the three axis. The standard wall functions is used for the near

wall treatment.

7.2 Theory and Model Equations

The Algebraic Stress (ASM) module discussed here is based on the work of Rodi [ 1]. The idea is

to simplify or truncate the Reynolds stress equation by approximating the convective and diffusive

transport of the Reynolds stresses uiuj in terms of the corresponding transport of turbulent

energy. This allows the transport equation for the stresses to be expressed as a set of algebraic

formulae containing the turbulence energy and its rate of dissipation as unknowns in the form:

where

k 2

U iUj = (P-t.) [ Pij - -5 Sij t. + Oij]

1

Pij = Production and P =_- Pk k

Oil = pressure-strain redistribution

_ij = _ij, 1 + #Pij,2 + dPij, lw + dPij,2w
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Rotta's linear retum-to-isotropy concept for the non-linear part

e 2

_ij, 1 = -C1 -_ (uiuj " _ k _ij)

is used and the "isotropization of production" concept for the linear "rapid" part
2

,t, ij,2 = -C2 ( PiE- -_ m ,_ij)

is used. Gibson and Launder [2] concept for the wall reflection terms is used as

e 3 3

q_ij, lw = Clw P-_ ( UkUm nknm&ij - -ff UkUi nknj - -ff UkUj nkni ) f

3 3

_q,2w = C2w ( _km,2 nknmSij - -ff _ik,2 nknj - -_jk,2 nkni ) f

where (ni) is the wall-normal unit vector in the i -direction. The wall-distance function (f)

k3/2
represents the ratio of the turbulence length scale (Le = ) and the wall distance and is given

E

as

cO.75 k l " 5 1

f=( Ks )An

with An being the wall-normal distance.

The resulting set of algebraic equations for the Reynolds stresses can be arranged in the form

Aij u2 + Bij v 2 + Cijw 2 + Dijuv + Eij vw + Fij uw= Gij

where Aij, Bij, Cij, Dij, Eij, Fij, and Gij are functions of the mean and turbulent flow

variables.

The above equation can be solved iteratively in the main flow solver. However, the algebraic

system of equations is stiff and convergence difficulties are encountered when solved iteratively.

Therefore, the set of equations was cast in the general matrix form A T = B, where
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A 3e Ou Y¢ o3,V 23u c_v+ -- _--
2Ak 2-_x "dy Oz o_y---_x -6C°ff2z

o_U 3e OV o_¢V 2o3V t?___UU
- O--x 22.k + 2-_y - Oz Ox " Oy + 6 C°'Qz

OU _ 3e d_' c]U d'V

- tg---x "02' 2Ak + 2-'_z "(-_Y +-_x)

Ov Ou 2 e__ 8u Ov
,9-x+ 2 C°s'-2z Oy " CoD'z 0 Zk + -_x +--_y

3¢ 3V cgW
0 -_y+2Col2 x o3--_-2Co.(2x -_x-2Col'2y

3w _zz a'wOx " 2 C°I2Y 0 + 2 C°I-2Y dy + 2 C°ff2x

+Ty)

3v 3w
2 Oz " Oy - 6 C o 1"-2x

" Oz + 6 C°'Qx

3U
_ + eCoay

e avow
_ +_y +_

Ou
Oy + e Co_

ow-'_x + 6 CoX"2y

Ou
- (_ +-U/x)

°3U _ 6 Co'Qy-Oz + -

OV
O---z- 2 Co.(2 x

Ov
if-;* 2 Co.(2z

e _ 9W
_+Tx + az

T= [puu,p vv,pww,p uv,pvw,puw ]
T

B
pe 3

_, +2(1-C2) (_11,1w + _11,2w)

p¢ 3

--_ + 2(1-C2) (_22, lw 4- _22,2w)

ps 3

--_ 4- 2(1-C2) (dPa3'1w 4- _33,2w)

1

(1-C2) (_12,1w 4- _12,2w)

1

(1-C2) (_23, lw + _23,2w)

1

(1-C2) (_13,1w + _13,2w)

where ,;t =
1 -C2

P
C1-1+ --

pe

The matrix was inverted at each iteration step to obtain a converged solution.
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APPENDIX F

3D Algebraic Stress Module Deck

ASMOD is a FORTRAN source code to solve 2D/Axisymmetric turbulent flow quantifies using the

algebraic stress model when interfaced with a main flow solver. The module consists of the main

routine ASMOD that calls a number of subroutines to perform different functions that will be

explained below.

Subroutine ASMMOD

This is basically the main routine that reads through its argument list different variables from the

calling flow solver which are described below.

List of Argument Variable Names

INITASM

NIM

NJM

NKM

LI

LK

FX

FY

FZ

X

Y

Z

VOL

U

Initialization parameter that writes and sets variables

Number of grid nodes in the i (or x) direction --

Number of grid nodes in the j (or y) direction

Number of grid nodes in the k (or z) direction

LI(I)=(I- 1)*N J, dimensioned to NX. Calculated as in subroutine GRIDG of the 3D

k-e module.

LK(K)=(K-1)*NI*NJ dimensioned to NZ. Calculated as in subroutine GRIDG of

the 3D k -e module.

grid interpolation factor in the x-direction

grid interpolation factor in the y-direction

grid interpolation factor in the z-direction

Grid node locations in the x or k-direction, dimensioned to

X(JXYZ=NX*NY*NZ)

Grid node locations in the y or ri-direction, dimensioned to Y(JXYZ)

Grid node locations in the z or k-direction, dimensioned to Z(JXYZ)

Control cell volume (similar to that calculated in GRIDG of k -e module)

mean velocity in x or k-direction, dimensioned to U(JXYZ)

(input from the flow solver)
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V

W

VIS

TE

ED

U2

V2

W2

UV

VW

UW

GEN

SUASM

SVASM

SWASM

BCFW

BCFE

BCFS

BCFN

BCFB

BCFT

GENTW

OMX

Mean velocity in the y or ll-direction, dimensioned yo V(JXYZ)

(input from the flow solver)

Mean velocity in the z or t-direction, dimensioned yo W(JXYZ)

(input from the flow solver)

Eddy viscosity

Turbulent kinetic energy, dimensioned to TE(JXYZ) calculated in the module.

Turbulent energy dissipation, dimensioned to ED(JXYZ)

Normal Reynolds stress component u2 , calculated in the module

Normal Reynolds stress component v2 , calculated in the module

Normal Reynolds stress component w2 , calculated in the module

Shear stress component uv, calculated in the module

Shear stress component vw ,calculated in the module

Shear stress component uw, calculated in the module

Turbulent energy generation term

Source term for the U-momentum equation due to Reynolds stress gradients.

Calculated in the module and passed to the main solver.

Source term for the V-momentum equation due to Reynolds stress gradients.

Calculated in the module and passed to the main solver.

Source term for the W-momentum equation due to Reynolds stress gradients.

Calculated in the module and passed to the main solver.

Boundary condition flag along the west boundary (or y-z plane). It must have one

for each boundary node set to; 1-inlet, 2-outlet, 3-symmetry and 4-wall. For

example for an outlet flow condition on the west boundary set BCFW to

(NY*NZ)*2, and similarly for the other boundaries, dimensioned to

BCFW(JYZ=NY*NZ) (input from flow solver)

Boundary condition flag for the east boundary dimensioned to BCFE(JYZ)

Boundary condition flag for the south boundary dimensioned to BCFS(JXZ)

Boundary condition flag for the north boundary dimensioned to BCFN(JYZ)

Boundary condition flag for the bottom boundary dimensioned to BCFB(JXY)

Boundary condition flag for the top boundary dimensioned to BCFT(JXY)

Turbulent generation terms calculated from the wall functions close to the wall in

the west direction. Similarly for the other GENTE, GENTS ....

Frame rotation term in the x-direction. Similarly OMY & OMZ in the

y and z-directions respectively
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DENSIT

VISCOS
Constantdensity

Kinematicviscosity

All dimensionsconsideredareone-dimensional.Thepositionof any node is defined as

IJK = (I,J,K) = (I-1)*NJ + (K-1)*NJ + J, where NI, NJ and NK are the number of grid nodes in

the X, Y and Z-directions respectively. It is assumed that grid related data such as control volumes

and interpolation factors be passed to the module from an external grid generator, similar to the one

listed in the 3D k-e module (Chapter 6).

Subroutine CALPIJ

This subroutine calculates the production terms of the individual stress components.

Subroutine CALUIUJ

This subroutine calculates the individual stress component from its algebraic equation. It sets the

coefficients of the algebraic stress equations which are solved implicitly at each iteration step by

inverting a 6x6 matrix.

Subroutine SORUVW

This subroutine calculates the source terms needed in the momentum equation of the main CFD

solver due to Reynolds stress gradients.

Subroutine SOLV

This subroutine is a Gaussian elimination solver to invert a 6x6 matrices.

Subroutine WALSTRS

This subroutine calculates the Reynolds stresses near the walls based on wall functions.

-97-



E
E
p

"0
I:J"

..O

"0

c-

m

0
E
w

T,-

0

ooo
oooooooooo,,.

.......... ooo
oooooooooo ii tl ii
Ii 11 ii iI ii ii II II ii ii _

_NN__ee_"_NNNNNgN
o_

-.o_ =_. _ _ _. :
_. _._ _ _ ."

_ _ _ _ _" _ " ,,- ::> E-, _

.

_>_ _ _ ?

_ _

• _

_ :

_>_

xxx

ss_

-.
x .... _

-_N N_>_ XI-3 N X X X X N

_-_ _

0 0 0 0 0 0 II In

__. ._ _oo

CO
I

0

E
m

c_

iX.. c_

(y

o U _ E,

r..) ,,,, _

_ooo_o

o

0

_ b_ :

._ _ :

_._ :

_._ .

m



E

E

g

O

r-
L._

Q.

q_
w

O
E
w

.e2.

(O

O'J

15
O

÷++ _++_

ittllt _ ooooQo

+÷++++ _

...... oooooo
++++÷+ _ +++÷+÷ ......

IIII1#

÷_oooooo +

o _ ...... =_ o _777_ _ _ _,,t,,, _ _ _ ,,;

0 _ ...... _ ...... _+_ ...... _l_ ......

_ 11 U II II II 11 II II II tl It II

....... ' .... _ ............ .-_-_ z_

MM

_ ° _

O_ _OO _OO

t

O

E
it)

ID

Q.

O
E

b.

O

tllllll

irlllllllllltl

oooooo oooooo oooooo

IiIiIIIIIIIt iiit11111111 IIiiiiil_ll



•-_ ai

E _.
E
o

O"

n

o
E
(/1
gO

I',-

o.

,it-.

61

x_

000_0

000_0

..._
+11

0 0 0 O0 0 _ ii_#Hll_+ _l_ll_*_Zl_l_iZll_lll_O_O_

HO_

t i i _ i

O3

"13
CO

I
"0
0

E

U_

m

I%

"0
iO
I

"0
0

E
iO

h.

iD

O_
O_

Oi

(J

o



._o_ m l

o-I
E

"D

N .
E

"E I

"01

7,,1
OI
El

I
i

I

0

E

n

0

E
&@

_D

(D

04

0

o



C_

E
E
.o

"0

t-"

l.._
n

0

ID

c_
m,

"o
o
E
m
0_

I".-.

m

Ol
',r-

It')

"0

0

E
(/)

O_

m

0.

co
I

'ID
0
E

(D

¢.0

0

o



E
E

"0

e-

n

n

"0

"0
0
E

m

.e2.
CO

"0

I

0

E
c_

n

I

0
E

.°

0

0



E
E
0

"0
O"

.C}

r

O.

n

0
E
@I
la

tO

0

r,,.

"o

t
•io
o

E
m

co

m
O.

"0

c_I
"0
0
E

C_

¢D

¢0
O_
O_

,ei.

c3

0



E

E
o
O_

"0
cr

c_

"0

e
e-.m

a.

cO

0_
I

0

E

_.I°_°
T-I

!!!!!!

x

I-t '_ _ ,--I

_ _" o _ °

_1 _oooooooooooooooooooooooooooooooooooooooo



CHAPTER 8

Related Publications and Presentations

During the course of this work, some related turbulence modeling work was published or

presented at different meetings. Copies of these papers are listed in this chapter, they include;

(1) A.H. Hadid ad M. M. Sindir "Comparative study of advanced turbulence models for

turbomachinery" NACA CP-3174, 1992.

This paper was presented at the advanced Earth-to-Orbit propulsion technology conference

held at NASA Marshall Space Flight Center in Huntsville, Alabama on May 19-21, 1992. The

work tests different correction to the standard k-e turbulence models that accounts for streamline

curvature and rotations using different near wall treatments.

(2) A. H. Hadid, M. E. DeCroix and M. M. Sindir "Advanced turbulence models for

turbomachinery" NASA CP-3221, 1993.

This paper was presented at the eleventh workshop for compuatational fluid dynamics

applications in rocket propulsion held at NASA Marshal Space Flight Center in Huntsville,

Alabama on April 20-22, 1993. The paper outlined the progress of the 2D/axisymmetric single and

multi-scale k-E turbulence module deck developments.

(3) A. Hadid, M. Sindir, C. Chen and H. Wei "Computations of confined swirling flows with

high order turbulence models in a modular form"

This paper was presented at the twelfth workshop for computational fluid dynamics

applications in rocket propulsion held at NASA Marshal Space Flight Center in Huntsville,

Alabama April-May 1994. The paper presented the status of the 2D/axisymmetric second order

closure models using the algebraic and the full Reynolds stress models.

(4) A. H. Hadid, M. M. Sindir and R. I. Issa "A numerical study of two-dimensional vortex

shedding from rectangular cylinders" published in the CFD Journal July, 1992.
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This paper presents a test for an anisotropic k-e turbulence model. This model is an

improvement on the standard k-e model since it can predicts Reynolds stress anisotropies without

the need to solve additional equations for the stresses.

(5) A. H. Hadid, N. N. Mansour and O. Zeman "Single point modeling of rotating turbulent

flows" Proceedings of the 1994 summer program, CTR, NASA Ames/Stanford

University.

This paper tests a new one-point closure model that incorporates the effects of rotation on the

power-law decay exponent of the turbulent kinetic energy. A modification to the E-equation

proposed by Zeman using large eddy simulation results was used. A new definition of the mean

rotation was proposed based on critical point theory to generalize the effects of rotation on

turbulence to arbitrary mean deformations.
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COMPARATIVE STUDY OF ADVANCED TURBULENCE MODELS FOR TURBOMACHINERY

A. H. Hadid and M. M. Sindir

CFD Technology Center

Rocketdyne Division. Rockwell International

Marl Code I]339, 6633 Canoga Avenue

Canoga Park, CA 91303

ABSTRACT

Development and asaessment of the standard k-E turbulence model for rotating flows with different near-wall

treatments is presented. These include the standard wall function (D, Patel's two-layer model (2), and Lam and Bremhorst (3)

low-Reynolds number model. Two test cases were chosen to validate these models for rotating flows. The first, from Daily

and Nece (4) , is for a rotating disk cavity in which recirculation and secondary flows are induced by the rotating element. The

second case is that of a confined double concentric jets with a sodden expansion by Roback and Johnson (5).

It is shown that near-wall effects are important close to rotating wails and that the two-layer model behaves better

than the other two near-wall models. For conf'med swirling flows with fixed walls, the near wall effects are of secondary

importance to the Reynold's stress anisotropy.

INTRODUCHON

Accurate predictions of turbulent flows are crucial to the design and analysis of many physical and engineering
applications. Increases in available computational capabilities have permitted the development and testing of
sophisticated models in the numerical simulation of turbulent flows. Direct numerical simulation, where all essential scales
of the turbulent flow are resolved by solving the unsteady Navier-Stokes equations, are possible only at low to moderate

Reynolds numbers. Turbulent flow analysis for engineering applications, therefore, can only be achieved by utilizing the

time-averaged Navier-Stokes equations coupled with some level of modelling.

The complex structure of swirling flowfields requires careful consideration of the turbulence model derivation and

development. The analysis of turbulent transport and modeling evolves from the Reynolds-averaged Navier-Stokes

equations and auxiliary equations for velocity and length scales for eddy viscosity specifications. Simple eddy viscosity
models based on the Boussinesq hypothesis of linear relationship between turbulent shear stress and rate of strain have

been quite successful in predicting a wide variety of turbulent flows.

One of the widely used models is the two-equation k-£ model. The model developed originally by Launder and

Spalding (t) was successful in providing good predictions for a large range of turbulent flows. The equations can be derived

from the full transport equations for the Reynolds stresses assuming fully turbulent flow. Effects such as that of rotation

which are included in the Reynolds stress equations are cancelled out mad the resulting scalar k-e equations are invariant to

system rotation.

For low-Reynolds number flows close to solid boundaries, adjustments to the model are needed to bridge the

viscous dominated sublayer region with the fully turbulant flow region. The success of the wall function method depends on

the universality of the turbulent structure near the wall. In many complex flows, however, the flowfield near the wall has to

be determined accurately and the traditional wall-function method is not satisfactory. This is because the specification of all

turbulence quantities in terms of the friction velocity fail at separation where the flow near the wall is no longer controlled

by the wall shear stress. Patel et al. (6) assessed the relative performance of various models which describe the near-wall

flows and found that there are still areas of improvements needed to accurately model flow behavior near the wall.

Jones and Launder O3 extended the original k-e model to the low-Reynolds number form which allowed the calculation to

be performed all the way to the wall. Numerical difficulties of accurately resolving the large gradients close to the wall

necessitates resolving the wall region with very t'me grid smacture. Chen and Patel (2) introduced a method to resolve the

near-wall region which combines the standard k-£ model with the one-equation model of Wolfshtein (8) near the wall. In this

"two-layer" model an algebraically prescribed eddy-viscosity for the wall region is coupled to the k-E model to describe the

details of the flow in the vicinity of the wall. Momentum and continuity equations are solved up to the wall and this reduces

the physical uncertainties of near-wall turbulence and the numerical difficulties of resolving the vary large gradients of
turbulence parameters.

The purpose of this paper is to discuss the application of the k-e turbulence model with various near-wall treatments in

the prediction of confined sw/rling flows. These models include, the standard wall function approach 0hrF), Chen and

Paters (2) two-layer model (2L), and Lain and Bremhorst (3) low-Reynolds number model (LB).



Evaluation of the various turbulence models was performed by comparison with two selected experimental studies. The

flint is that of Daily and Nece (4) where rotating(5)disk cavity" circulation and secondary flows are induced by a rotating wall.
The second is that of Roback and Johnson for a confined double concentric jets with a sudden expansion. How swirl in

this case is induced by imposing a tangential velocity component at the outer jet.

Numerical predictions for turbulent flows in two-dimensional axisymmea-ic geometries were obtained using a f'mite-
volume second order upwind differencing scheme on a non-staggered grid with a pressure correction method based on the

SIMPLE algorithm (9). The development and evaluation of the turbulence models for rotating flows is part of an ongoing
program to assess different models for rotating machinery applications. A discussion on the effects of swkl and streamline

curvature on the turbulence structure through the gradient Richardson number formulation is given. Key problem areas will

be identified and recommendations for the near-wall treaunent as they pertain to rotating flows will be proposed.

MODEL AND EQUATION FORMULATION

Consider an incompressible, statistically steady and axisymmetric turbulent flow, the Reynolds averaged momentum

and continuity equations can be expressed in a generalized form as;

_t +--Tf-=x +7 g - 0-_xr°xTf)+7_rr°T-_-_ )+so (I)

where • is the dependent variable

O= u, v, w for the axial, radial, and tangential velocities

p, g, and S O are the fluid density, viscosity and the source terms for the variable •

The source terms for the dependent variables are;

Axial direction, O=n" FOx = 2g-e, F_r = ge

Su = -_-'__
3v.

('2)

Radial direction" O=v, FOx=g e, F_-=2ge

0 _ v w2 _It

Tangential direction, _--w, FOx = la¢, FOr = ge

pvw _0.- _$w= r

('3)

O)

TURBULENCE MODELS In the two-equation k-8 model transport equations for the turbulent kinetic energy (k) and energy

dissipation (E) can be wriaen in the same general form as equation (1).

Turbulent Kinetic energy equation

• = k, FOx = l"_r = p. + }'t-At, and S O = G - p8 (5)
Ok

Energy dissipation equation

P-t E

• = E, FC,x = FOr = g + --, and SO = _" (Clfl G - C2f2Ps) (6)
0£

Ok and o8 are turbulent Schmidt numbers G denotes the rate of production of the turbulent kinetic energy and is express as;

(7)

k2

Pe = P + Pt, and the eddy viscosity is obtained from gt = Cl.t fp. P _-"

Cp., C 1, C 2, o k and o 8 are constants whose values are 0.09, 1.44, 1.92, 1.0, 1.0, respectively.



lqear-Wall Treatment A near-wall turbulent flow can be divided into two regions, the inner viscous sublayer where low

turbulence Reynolds number effects are important and the velocities decrease rapidly to zero at the wall, and an outer fully

turbulent region. The successful use of the k-E turbulence model for many complex flows depends on how accurately the
flowfield near the wall is determined. Different models are used to treat this thin sublayer region, they include:

Wall

where u +

Xw is the

xw= 8

0.25

KCu pUp k°-5

'r"w= 0.25

ln(ECg pSk°.Slit)

function methods, the following equations are assumed to hold

u+=y ÷ fory+ < 11.6

+ I
u =_ In(Ey+) for y+ > 11.6

U
Y+ = u.y u_ (Xw)l_= --. and = --

u, v p

wall shear stress which is estimated from

(8)

(9)

fory ÷ _<11.6 (10)

for y+ > 11.6 (11)

where up denotes the velocity component parallel to the wall and/5 is the normal distance from the wall

In thisapproach, k and _ equations are solved with fg = fl = f2= 1 only in the fullyturbulentregion beyond some

distance from the wall. Boundary conditions,i.e.,velocitycomponents and turbulence parameters at thatdistance are

specifiedin terms of the frictionvelocity(uO.

In the low-Reynolds number model, the flow is resolved all the way to the wall with a very Free mesh. Many models

have been proposed that are based on the k-_ model and differ mainly in the choice of the damping functions fit, fl and f2 to
bridge the gap between the sublayer and the fully turbulent regions. Lain and Bremhorst's model (3) is used in this work,
where

20.5 --

fit= [ 1 '-exp(-O.016Ry) ]I/2(I +'--_-t)

fl = I ÷ (-_)3 and f2= 1-exp(-Rt 2)
tit

R - kl_ and R t = k2 are turbulent Reynolds numbers
Y- v v£

These damping functions tend to unity with increasing distance from the wall. In order to resolve the very large gradients of
turbulence parameters a f'me mesh is required in the viscous sublayer which increases the computational time and numerical
difficulties may be encountered.

In order to alleviate some of theproblems encountered in the low-Reynolds number approach and yet accurately resolve

the near-wall region, Chert and Patellf2) pursued the two-layer concept. In this model a simple algebraically prescribed eddy-

viscosity model for the wall region is coupled to the k-E model for the outer flow to describe the details of the flow. Unlike

the low-Reynolds number model that requires the solution of _ransport equations of both k and 8 all the way to the wall, the

one-equation model requires the solution of only the turbulent kinetic energy equation in the sublayer region while

algebraically specifying the eddy-viscosity and energy dissipation.

Vt= Cp. kI/2Lit and 8 = k3/2/LE

The length scales Lit and L E contain the necessary damping effectsin the near-wall region in terms of the turbulence

Reynolds number Ry

L_ = C t y [ 1- exp(-Ry/Alx) ]

Le = C I y [ I- exp(-Ry/A£) ]

-0.75

The length scales Lit and L_ become linear and approach C l y with increasing distance form the wall. C 1 = 1,:C
g

2C I. Chen and Patel (2)

(12)

(13)

with A£ =

gave values for the constant Ag = 70. The damping effects decay rapidly with distance from the wall



independent of the magnitude of the wall shear stress. The matching between the one-equation and the standard k-e models is

carried out along prescribed grid lines where Ry -200.

STREAMLINE CURVATURE AND SWIRL CORRECTIONS Turbulent flows in many engineering applications such as

tuzbomachinery and combustion devices are frequentlysubjectedto complicatinginfluencessuch as mean strainand body

forcesdue to rotation.In such complex flows streamlinecurvatureand swirlcan exerta largeinfluenceon the structureof
turbulence. Bradshaw(I°) reviewed the effects of streamline curvature and discussed the large effect exerted on shear-flow

turbulence by curvature of streamlines in the plane of the main shear. So and Mellor (ll) suggested that the appropriate
u/R

parameter governing this effect is F = bu/by . where R is the radius of stream/ine curvature. Militzer et al.02) provided a

simple generalization of this parameter for a 2-D recirculating flow as

F (u2+v2)mJR
= (_u/_y+cqvlgx) (14)

They modified the turbulence production t_rm G in the turbulent energy equations to include curvature effects and obtained

improved predictions. Launder et al(13) proposed a simple modification to the constant C 2 in the e-equation to account for

streamline curvature due to swirl in the form

C 2 = 1.0 - 0.2 Ris

where Ris is a swirl Richardson number defined by

w/r 2 O(rw)/Or

Ris - (Ou/_r)2 + (r _(w/r)/_r) 2

(15)

(16)

Another expression of Ris can also be derived as

k2 w b(_)

Ris-_2 r 2 _r (17)

The basis of the above correction is that the effect of swirl on turbulence can be modelled through an increase in the length
scale of the energetic turbulence eddies.

Abujela and Lilley (14) used a modified C 2 form (Eq. 15) with both clef'tuitions of Ris from Equations (16) and (17) as

applied to turbulent swirling flows. They concluded that Eq. (16) Richardson number gave better comparisons with

experiment as compared to Eq. (17) Richardson's number. They also found the value ofC 2 obtained from Eq. (15) had to be

limited to 0.1 <(22 <2.4 with Cg and other constants assigned their conventional values.

Srinivasan and MongiaOS) further split the Richardson number imo two parts - the swirl Richardson number Ris and the

curvatureRichardson number Ric and correctedC 2 inthe£-equationsas:

C 2 = 1.92exp (2asRis + 2aeRie )

where Ris isgiven by equations(16)or (17) and

(u2+v2)I/2/R
Ric = 1 _ur B v

q- W + )

where R is the radius of curvature given by R =

0.1 and 2.4.

(18)

(19)

(u2+v2)3/2
.l_rv _ u ' and cts and ct c are constants with values ranging between

uvq-  -

Chang et al(16) investigated the streamline curvature effects in the k-e model. They managed to obtain satisfactory

results in their hybrid k-e model where modifications of curvature effects in C 2 is made only in regions where the streamline

curvature is large.

In the present study curvature and swirl modifications are made to C 2 similar to Eq. (18) of Srinivasan and Mongia

with Ris as in Eq. (16) and Ric as in Eq. (19). The exponential form ensures that C 2 will never become negative. Numerical

testing with several values of cts and ct c reveal that C 2 may become very large and therefore, had to be limited to 0.1 <C 2 <
2.4.



MODELEVALUATION

The various near-wall treatment models are analyzed by comparing model predictions with experimental clara. Two

cases of rotating flow experiments were selected for validation, they include; Dally and Nece(4) for rotating disk cavity
experiment and Roback and Johnson(s) for swirling flow in a confined double concentric jets with a sudden expansion. The
main criterion for selecting these cases is the different mechanisms used to generate swirling flows. In Dally and Nece
experiment flow rotation is induced by the rotating wall, while in Roback and Johnson's Experiment, swirl is imparted to

the flow by an outer swirling jet into a sudden expansion. Different rotation mechanisms affecting turbulence can highlight

the differences between various turbulence models and offer certain corrections that would prove useful in accurately
analyzing the effects of swirl.

CASE (1) - DAILY AND NECE (4) In their experimental and analytic study Dally and Nece('D analyzed the steady-state

turbulent flow in enclosed rotating disk cavities. They characterized the existence of four flow regimes depending on the
rotational Reynolds number and cavity aspect ratio. The two-dimensional axisyrmnetric flow considered is that of an

incompress_le flow bounded by a disk (rotor) and a stationary end waLl (stator) of a chamber as shown in Figure 1. The ratio
of the axial clearance between the rotor and the stator (s) to the radius of the disk (a) is 0.02.55. The disk rotates with a

rotational Reynolds number R--4.4x106 defined as R=g2a2/v, where f2 is the disk rotational speed in rad/sec and v is the

kinematic viscosity.

Numerical computations were performed on a 33x75 grid with different grid clustering near the walls for the different

near-wall models. Figure 2, shows the velocity vectors at the top region of the cavity using the WF model. Centrifugal
forces move the fluid radially outward on the disk, axially away from the disk on the wall casing, and radially inwards on the

stationary end wall. Figure 3, shows the axial variations of the radial velocity component (v) at a radial position r/a--0.765.

The agreement is fair with some discrepancy for all near-wall models close to the rotating disk. Figure 4, shows the axial

variation of the tangential velocity (w) component at the radial position. At the rotating disk (x--O), the tangential velocity

component approach the value (af2). The 2L near-wall model seem to offer closer agreement with the data than the other two
models.

The presence of comer regions presents a difficulty in defining the normal distances used in the def'mition of turbulent

Reynolds number (Ry). In the present analysis, values of the normal distance from a wall were based on the normal distance

to the nearest solid boundary. Sa'eamline curvature and swirl corrections have not been used in this case.

CASE (2) - ROBACK AND JOHNSON (s) Predictions of the experiments of Roback and Johnson(5) have been presented by

several workers, e.g. Sloan et al.(17) and Durst and Wermergerg(is). Unfortunately, inlet profiles were not provided in their

experiment. Therefore, calculations were started at the expansion plane using the measured vdocity profiles at 5ram

downstream of the expansion after some adjustments near the edges of the coaxial jets. Measurements of all three main

turbulent intensities were used to calculate inlet values of the turbulent kinetic energy. Energy dissipation rate was
estimated from

s _'-----_LK3n - " (20)

where L is a length scale of turbulence at the inlet of the order of L-=IO "4 rm

Figure 5, shows an illustration of the test chamber geometry. The confluence plane of the primary (inner) and

secondary (outer) jet streams coincides with the chamber expansion plane. The chamber diameter is about twice the

secondary tube diameter. The exit from the 8-bladed, 30 °, free vortex swirl generator is located approximately 0.05 m
upstream from the confluence plane.

A prevalent phenomenon in axisymmetrie swirling flows in such geometries is the "bubble" or vortex breakdown

which has been studied extensively(19,2°,21,22). The near axisymmetric breakdown can be partially understood from a

simplified analysis of the role of pressure and centrifugal forces. It is identified by a slowly varying vortex core which

undergoes an abrupt and rapid deceleration, forming a free stagnation point, followed by a region of flow reversal. It is

known that the structure of vortex breakdown is unstable and asymmetric in the azimuthal direction, and displays
unsteadiness in the axial direction(23,24). However, no periodic or nonaxisymmetrie behavior attributable to the vortex

breakdown was observed in Roback and Johnson's experirnenL

In the numerical simulation of the experiment, a 150x100 grid nodes was used with different clustering on the walls for

the different near-wall models used. Figure 6, shows the velocity vectors indicating the presence of a closed recirculation

zone at the center with additional zones at the comer downstream and between the inner jet and the outward diverted

secondary jet. The figure also shows flow diversion outwards with high gradients characterized by large turbulent shear and
fluctuation levels.

Comparisons were made of the radial variations of flow variables at two axial locations, x----0.025 m upstream of the

vortex bubble and x=0.102 m located inside the vortex bubble. Figure 7a, shows the radial variation of the axial velocity



profileat x--0.02.5 m using the WF method, 2L model and LB model. Fair agreement is predicted by the different models.

They also seem to predict small negative velocities at a radial position r--0.0153 m (the interface between the inner and

outer jets), slightly underpredicting its strength and width. Figure 7b, shows the radial variation of the axial velocity
prof'des at x--0.102 m. The 2L model shows a beaer agreement with the experimental data. These velocities are slightly

underpredicted above the outer jet diameter.

Radial variations of the tangential velocities are shown in Figure 8a and 8b at x=0.025 m and x=0.102 m respectively.
Figure 8a shows that the 2L model offers a better agreement with the experiment as compared with the WF and LB modeLs.

At x=0.102 m, Figure 8b shows that the swirl velocity is underpredicted. That is because the radial transfer of
circumferential velocity is higldy dependent on the turbulent diffusion mechanisms which are not accurately modelled in the

isotropic eddy-viscosity k-E model used here.

The turbulent intensity predictions for the k-_ model using the different near-wall treatments seem to follow similar

trends as shown in Figures 9(a,b), lO(a,b), and, 11(a,b). In general within the approximations of the isotropic k-e model,

the 2L model offer a marginal improvements over the WF and LB near wall models. The peaks in the axial, radial, and,

tangential turbulence intensities occur around the edges of the inner and outer jets. Figure 13a, shows the axial-azimuthal

Reynolds stress profile at x=0.025 m. Figure 12b and 12c, show the axial-radial and radial-azimuthal Reynolds stress

profiles at x--0.102 m.

The analysis of the main turbulent intensities and of the Reynolds stress components using the isotropic eddy-

viscosity k-e turbulent model do not reveal exclusively the advantage of one near-wall model over the other. Moreover,

Reynolds shear stress profiles are sensitive to the upslxeam inlet conditions and the developing mean fiowfield. Although

the mean flow quantities show a general trend of improved predictions using the 2L near-wall model, the main effects of
turbulence are due to anisotropy of Reynolds stresses especially around the highly sheared region of the outward diverted
outer jet and the vortex bubble.

Streamline curvature and swirl corrections have been attempted in the present analysis with Little success. Corrections

ofC 2 using equation (18) with equations (16) and (19) for the swift and curvature Richardson numbers. Figure 13(a,b) show

the radial distribution of the radial velocity at x--O.025m, and the axial velocity at x=O.102m. Small improvement is

detected with these corrections. The constants a s and ¢z_ used are those recommended by Srinivasan and Mongia (tS) in their

calculations (as=-0.75 and C_c=-2.0 ). These constants were not optimized in the present calculations.

CONCLUSIONS

Flow predictions were performed for the standard k-£ turbulence model with different near-wall treatments to assess

their performance when applied to rotating flows. Comparisons of predictions with the experimental data of Daily & Nece,

and Roback & Johnson show reasonable agreement for all near-wall models and in general, the two-layer model seem to
offer better comparisons compared to the wall function and Lain & Bremhorst low-Reynolds number models. From a

computational perspective, the two-layer model require less computer time and relatively few grid points in the wall region

than the low-Reynolds number model and is less sensitive to the location of the interface between the sublayer and the fully

turbulent regions. Streamline curvature and swirl corrections show small improvements. However, further study is needed to

optimize their constants.
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ADVANCED TURBULENCE MODELS FOR TURBOMACHINERY

/_,li H. Hadid, Michele E. DeCroix, and Munir M. Sindir

Rocketdyne Division, Rockwell International

ABSTRACT

Development and assessment of the single-time-scale k-s turbulence model
with different near-wall treatments and the multi-scale k-s turbulence model for
rotating flows are presented. These turbulence models are coded as self-
contained module decks that can be interfaced with a number of CFD main flow
solvers. For each model, a stand-alone module deck with its own formulation,
discretization scheme, solver and boundary condition implementations is
presented. These satellite decks will take as input (from a main flow solver) the
velocity field, grid, boundary condition specifications and will deliver turbulent
quantities as output. These modules were tested as a separate entities and
although many logical and programming problems were overcome only wider
use and further testing can render the modules sufficiently "fool proof':.
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KEMOD-1 MODULE DECK (CONT'D)

T

GRID NODES

LL GRIDG CALCULATE ]
Fx, Fy, ARE, VOL |

J

CALL CALCE (TE, 1} _FOR IDIR =

('TURB KINETIC ENERGY K)/__ _ _ SOLSIP 1

IF(LAY2• OR.LRE)

NO I"WOLAY

CALL CALCE (ED, 2)
ENERGY DISSIPATION

EQUATION (¢)

MODVIS

END

MMDPHi
FOR IDIR =

SOLSIP

_1_ Rockwell InternationalRocketdyne Division

KEMOD FLOW CHART

CFD 93 013012K)I/A_H
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KEMOD-1 MODULE DECK (CONT'D)

T

GEOMETRY _ND INITIALCCNDmONS

t

rr_=oITERATICN CCLINTER

ITER = ITER ,- 1

I U, V MAINFLCW SOLVER

CALL OTHER RCUTiNE_
FOR W-ECUATICN.

PRE_SURE-CORREC33, ON
OR OTHERS

CALL Y_EMCD TO
: CALGtJLATE

;.kAND ¢

CHECX MAXIMUM
RESIDUAL

ERROR OF EQUATIONS

__IF ITER "GE ° MAXIMUM ITERATION

OR RESIDUAL ERROR IS

SMALLER THAN PRESET VALUE

AFTER ASSEMBLINGCC EF.--3.C:ENTS ,AND
,'-'-_i BEFORE CALLING

i SOLVER FCR U AND V

[ CALL MCCIF. _

KEMOD-1 INTERFACE WITH A MAIN SOLVER

#_i_ Rockwell InternationalRocketdyne Divisicn C_ 93 013-013,'DI/A,HH
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KEMOD-2 MODULE DECK (CONT'D)

I READ GEOMETRY DATAGRID NODES

i
|

CALL GRIDG CALCULATE I

Fx_ Fy, ARE. VOL I

C._LLC.._.CXZ(TE.1)

(TURB_NE'nC SNER=V _)

+
CALLC,tLCX_EGL=T.2)

('rURB K]NETIC ENERGY I( t )

V

r UOnMS_E

FOR IDIR = 1

_LSIP

I
I _ I "=-_ f

C,,_LL _JL.CI_E _E_t 3) __" MO_MK_E 1
(ENERGY TRANSFER RATE _) q3rP--.3

' _'-i SOLSIP ]

T
C,U.LC_LCXZ(EOT.4) Ct)l - ...J rom-_ t

(ENERGY DISS;PATION RATE _ ,SOLSIP I

I MODVIS I

KEMOD-2 FLOW CHART

#d_ Rockwell InternationalRocketdyne Division
CFD 93 013-017/DI/ANH
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KEMOD-2 MODULE DECK (CONT'D)

T

[ GEOMETRY AND INITI.ALICONDITIONS

I ITER =0 IrTERATION COUNTER

I ITER = ITER + 1

u,vMA_N t _ t__ms_A_J

CALL OTHER ROUTINES
FOR W-ECUATION.

PRESSURE-CORRECTICN
OR OTHERS

t
1.2C_:._"CAff.I.7K_-'_OD _rO -'_ , ..

i
CHECK MAXIMUM

RESIDUAL
ERROR OF EQUATIONS

__llF n'ER ,GE • MAXIMUM rI'F_RATIOh

I OR RESIDUAL ERROR IS

SMALLER THAN PRESET VALUE

KEMOD-2 INTERFACE WITH MAIN SOLVER

#i_ Rockwell InternationalRccketdyne Division CF_ g3 013-.01_Ot;AHH

J
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COMPUTATIONS OF CONFINED SWIRLING FLOWS WITH HIGH ORDER
TURBULENCE MODELS IN A MODULAR FORM

A. Hadid 1, _L Sindir 1, C. Chen 2, and H. Wei 2

1 CFD Technology Center

Rocketdyne DivisiortfRockweU International
Mail Code 13339, 6633 Canoga Avenue

Canoga Park, CA 91303

2 Department of Chemical Engineering
University. of Alabama at Huntsville

Huntsville, AL 35899

A_tract

A finite-volume procedure is used to
compare the performance of different high order
turbulence models for confined swirling turbulent
flows. Eddy-viscosity single and multi-scale k-e
turbulence models together with secondrmoment
algebraic and Reynolds stress closure models are
tested for a two-dimensional, axisymmetric swirling
flow case. The ability of second-moment closure
models to capture the interaction between swirl and
the turbulent stress field is crucial to the predictive
performance of the computational scheme.

To enhance the predictive capability of CFD
tools for engineering applications, advanced
turbulence models are coded as self-contained module
decks that can be interfaced with a number of CFD
solvers. Three of these modules, namely the single
and the multi-scale models and the Algebraic stress
model (ASM) have been successfully interfaced and
tested with the code MAST of the University of
Alabama at Huntsville in a relatively short time.
These modules are independently tested and evaluated
with the data of Roback and Johnson for swirling
turbulent flow in a confined double concentric jets
with a sudden expansion.

Modularization of a general purpose CFD
code smacture in terms of different aspects of physical
models is necessary for computational efficiency.
Further, individual modular routines are transportable
and can be easily modified to include extra physical
effects. This would allow many users using different
CFD codes to concentrate their talents on developing
and improving physical hypothesis for specific
engineering problems.

Introduction

Computational Huid Dynamics (CFD) has
been used extensively for the last decade or so in
analyzing complex flow phenomena for many
industrial applications, such as, turbomachinery and

combustion devices. Most flows of technological
interest are turbulent and for many of them, relatively
simple prediction methods are sufficient to produce
results of engineering accuracy. For others, mainly in
high technology applications, accurate predictions
using high order turbulence models are required.
Increases in available computational capabilities have
permitted the development and testing of sophisticated
models in the numerical simulation of turbulent
flows. Direct numerical simulation, where all
essential scales of the turbulent flow are resolved by
solving the unsteady Navier-Stokes equations, are
possible only at low to moderate Reynolds numbers.
Turbulent flow analysis for engineering applications,
therefore, can only be achieved by utilizing the time-
averaged Navier-Stokes equations coupled with some
level of modelling. The analysis of turbulent
transport and modelling evolves from the Reynolds-
averaged Navier-Stokes equations and auxiliary
equations for velocity and length scales for eddy
viscosity specifications towards a more sophisticated
modeling startegy - one offering greater width of
applicability, particularly in complex shear flows or
where external force fields modify the turbulence
slxuCture.

One of the widely used models is the two-
equation single-time-scale k-e model(1). In this model
transport equations for the turbulence energy (I<)and
the energy dissipation (e) are solved to determine the
turbulent eddy viscosity. An improvement to the
single scale k-e model is the multi-time-scale k-e
model where the energy spectrum of a turbulent flow
is split into a production range and a dissipation
range(2). Improved predictions using the multi-scale
over the single-scale k-e model have been
demonstratedf3,a).

Other complicated single-scale models
offering _eater width of applicability, particularly in
complex shear flows or where external force fields
modify the turbulence structure are based on secon-
moment closures. These take the exact equations for

the transport of the Reynolds stresses (uiu-/_ as their
starting point and devise approximations for the



unknownturbulentcorrelationsappearingin them.In
athree-dimensionalflow,oreveninanaxisymmetric
flow, all six componentsof theReynoldsstress
tensorarenonzero.With a full second-moment
closuremodel(RSM'),therefore,differentialtransport
equations need to be solved over the solution domain
for each of these components. This represents an
increase in the task of numerical solution compared
with the situation where the k-e eddy-viscosity model
is adopted. An intermediate level of modeling has
evolved(5,6) known as Algebraic second-moment
closure (ASM), with the aim of retaining the greater
physical realism of second-moment treatments while
achieving computational times closer to that of an
eddy-visocity model. The simplification is achieved
by approximating the convective and diffusive
transport of the Reynolds stresses in terms of the
corresponding transport of turbulent energy. This
allows the transport equations for the stresses to be
expressed as a set of algebraic formulae containing the
turbulence energy and its rate of dissipation as
unknowns. Second moment schemes have been
extensively and successfully applied to a wide range
of flows, as reviewed for example by Leschiziner(7).
Few applications, however, have considered
axisymmetric swirling flows (6,8) where the external
forces due to swirl exert damping effects on the
turbulent wansport.

Progress in turbulence modelling have been
paralleled by improvements in numerical techniques,
essentailly, combining second moment closure with
non-orthogonal, co-located grids using finite-volume
methods. However, the implementation of RSM into
non-orthogonal finite-volume codes poses difficulties:
the co-located variable arrangement can cause
decoupling of the mean velocity and Reynolds stress
fields leading to oscillating solutions or even
divergence. Using a special interpolation procedure in
the context of Rhie (9), Obi and Peric(10) calculated
the two-dimensional turbulent flow on a co-located
grid arrangement usin the Reynolds stress turbulence
model.

In the present paper, we pesent predictions of
two dimensional/axisymmetric swirling flow using
various models based on eddy-viscosity single and
multi-scale k-e and on second moment closure. These

models are cast in a modular form enabling them to
be used with a number of flow solvers based on the
finite-volume and finite-difference methods. A
discussion of the different models used and their
assessment is presented. The modular structure of the
different turbulence models will also be presented and
discussed.

Theory_ and Model Equations

The turbulent flow considered is two-

dimensional and steady which can be described by the

Reynolds averaged continuity and momentum
equations which may, respectively, be written as

30U+ _ = (1)I __.tY_ o
3x r 3r

aorU@+_rVO ,9. _. a --_)+rS@ax oh" - ax tr'ix_-x)+_ (rix (2)

Where q_ stands for any of the momentum
components U, V, and rW and the corresponding
sources S¢, are

Su--ax- 3x -7 &

3P rW 2 2ttV _la__ _
Sv=-"_-+ r - r2 "r _ - 3x + r

Srw- 2- arW _ rO(Ovw) 2p_w- r oh" -r ax " _r "

where p, Ix are the fluid density and visocosity
respectively.

The appearance of the Reynolds stresses u-[-fij
represents an unknown correlation and different
turbulence models provide the means of relating these
unknowns to known determinable quantifies.

Single-Scale Eddy-Viscosity Turbulence
Models

Here it is assumed that a single-time-scale
(proportional to k/e) can be used to describe the
turbulent flow. Turbulence is simulated through
transport equations for the turbulent kinetic energy.
0c), and its rate of dissipation (e). The stress tensor is
modelled using a gradient transport model of the form

-- aUi _ 2
-ui_ = Vt (_xj- + Oxi)" 3 k gij

(3)

The generalized form of the two-equation eddy-
viscosity turbulence model can be written as
Kinetic Energy (k) equation:

Ck = Dk + P - _ (4)
where

Convection of k
ck = _xj

Diffusion of k

-- 3Ui aUi aL_._,aUi

r-a-- iuj =-"t( +axi  oductio.ofk

2



vt = eddy viscosity = Cg _-

Energy Dissipation (e) equation:

E

Ce = De + _ (C¢IP - C£2e) (5)

where

Ce = _xl Convection of e
d

De = _ (v+V__!_t)____e_] Diffusion ore,Je 8xj

In the present study, the standard two-equation model
was used with the wall function( 1) and the two-layer
model(ll) to bridge the gap between the near-wall
log-layer region and the fully turbulent region away
from the wall. In the standard model the numerical

values of the constants are Crt=0.09, CEl=l.44,
CE2=1.92, Ck=l.0 and cE=1.3. Details of the

implementation of the wall function and the two-layer
models can be found in Hadid and Sindir(12).

Multi-Time-Scale k-e Turbulence Model

The Multi-time-scale turbulence model used
here is based on the variable energy partitioning of
the turbulent energy spectrum proposed by Kim and
Chert(3). In this model the turbulent kinetic energy
spectrum is divided into two sets of wave number
regions giving two evolution equations for each
region. These equations represent the kinetic energy
OCp)and the energy dissipation (_p) in the production
range of the spectum and the kinetic energy Oct)and

the energy dissipation (et) in the dissipation range of
the spectrum. This model allows the partition to
move toward the high wave number region when
production is high and toward the low wave number
region when production vanishes.

The equations for the turbulent kinetic energy (kp)
and the energy transfer rate (ep) for the production
range are

Ckp = Dkp + P - ep (6)

2

P 1 ep

C_p = D_p + p--'_p(_-Cp 1P + Cp2_p) - Cp3 _p
(7)

The equations for the turbulent kinetic energy OCt)and

the dissipation rate (e0 for the high wave number
transfer region are

Ckt = Dkt + ep - st (8)

g.

Ce t = De t + _kt (Ctlep + Ct2e0 - Ct.3_" (9)

where Ckp
=P axj

. I.tt . _.

Dkp = _x-_ 0"t+_p) 3xjJ

Dep _-_j[_ erep. OXj]

and

and

Cep : p Sxj

similarly for Ckt, Cet, Dkt, and DEt equations and
the model constants used are those of Kim and
ChenO)-

2
1 p2

The terms (p Cpl _pp) and (pCtl _t )

represent variable energy transfer functions. The
former increases the energy transfer rate when
production is high and the latter increases the
dissipation rate when the energy transfer rate is high.
The turbulent viscosity mt is given as I.tt =

PCl.tfk2/e p : pCi.tk2/_ t, where k=kp+k t is the total
turbulent kinetic energy.

Second Moment Closure Models

The exact form of the Reynolds stress
equations can be derived from the time-averaged form
of the Navier-Stokes equations and can be written as:

D m

Dt (PUiUj)= Pij +Oij + Dij +Peij

where

-- 8Ui
Pij : -P ( UjUk_-'_k+ U_'k_ )

(10)

Production

8 -- - 5jk -- ) DiffusionDij = _ ( -P uiujuk - _ik pui puj

Pressure-strain redistribution

2
eij : _ 5ij e Dissipation

Due to the introduction of correlations of higher
orders, modelling of these terms is required to close
the set of equations.
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Algebraic Stress Model (ASM)

The ASM model used is based on the work

of Rodi (5). The idea is to simplify the stress equation
(eq. 10) by approximating the convective and diffusve

wansport of the Reynolds stresses (uTuj) in terms of
the corresponding transport of turbulent energy. This
simplification allows the transport equation of the
stresses to be expressed as a set of algebraic formulae
containing the turbulent energy and its rate of
dissipation as unknowns. This set of algebraic
equations can be written as;

k 2
uiuj = _-e [ Pij- _Sije +_ij ] (II)

The pressure-strain term _ij is decomposed into a

fluctuating part (Oij,1), a part due to the mean rate of

strain (Oij,2), and a part due to reflected wail-

influence (_ij,w), i.e., Oij = Oij,1 + _ij,2 + Oij,w
Rotta's return to isotropy concept is used to

model the non-linear part (Oij,1) as

• ij,l =- Clk( u-_j--_kSij )

O ij,2 is modelled using the isotopization of
production concept as

_ij,2 =- C2 ( Pij - 3&PSij )

The wall reflection term _ii w is modelled
following Shir(13) and Gibson and LaUnder(14) as

_ij,w = Oij, 1w + Oij,2w
where

Oij, lw =
' E -- 3-- 3--

C 1 p _ ( UkUmnknmSij - _ ukui nkn j - _UkU j nkn i )f (12)

Oij,2w =

C; 3 3(_km.2 nknmSij-_ Oik,2 nknj- _jk,2 nkni) f (13)

where n i is the wall-normal unit vector in the i-

direction. The wall distance function (f) represents the
ratio of turbulence length scale and the wail distance

0.75 k1.5
Cm

f = ( ) 1__ where An is the wall-normal
):E An

distance. The above wall-correction terms are written

in a tensorialy invariant form and their effect is to
transfer energy from the wall-normal normal stress

component to the tangential stresses i.e it is
redistributive.

For axisymmetric swirling flows the set of

algebraic stress equations can be written in a general
matrix form as A T = B where

h =

3_ Ou O___v v bu Ov aw w 8w
_'_'+2_x "Oy "r _-y'y -ax -o_y + r -Ox--

au 3_ _ v _x 0u 0w w b'way

0U aV 3_ V ,OU OV ^0W W _ 8w
-- -- --+2-- -t_v +_x'x). z'_'-y + r .7"--"_x _Y 2kk r ox

0v _ E bU 2v w
ax ay o Xk+ gTx+_ o --

_v w _'¢ _ _v v 0",'
o ay 7 Ox +aTy+T

0w aw _ E 3u v
0--7 o o Oy ay _"_-x +7

T
T= [puu,pvv,pww,puv,pvw,puw ]

B
p..g.+ 3
X. 2(-_--_ (_ll'lw + _ll'2w)

p_g+ 3
X _ (_22,1w + _22,2w)

p&+ 3
k _ (033, lw + _33,2w

3

2(1-C2) (_12,Iw + _12,2w)

3

2(1-C2) (023,1 w + (I>23,2w)

3

2(1-C2) (_13,1w + _13,2w)

and % - 1-C2

CI.I+ P---
pc

Reynolds Stress Model (RSM)

In the RSM model the full transport equadon for the

Reynolds stresses (eq.10) are solved for each stress

component (u-i-fj) after modelling the diffusion and the

pressure strain terms similar to Launder et. ai(15).
The diffusion term is modelled as

3 -- k OUkUl

Dij =- _ [pCk UkUt _- _ ]

The pressure-strain redistribution term q_ij is

modelled in a similar way to that used in the ASM
model discussed earlier. Special consideration is given

to the problem of mean velocity-Reynolds stress



decoupling which appear when using a collocated grid
arrangement which is a source of numerical
instability. This is done by invoking a special
interpolation procedure for the cell-face stresses in the

context of Rhie(9). This practice results in the
addition of normal stresses to the pressuretermwhere
the cell-face velocity is sensitized to the pressure
differences as well as to normal stress diffrences at the

nodes surrounding the face.

Turbulence Model Decks (Modules)

As the state-of-the-art of computers has
advanced, so has the range, size and complexity of
flow models being applied. Users have become more
sophisticated and there is a constant demand for
improvement. CF'D codes have adapted to this
demand and many general-purpose computer codes

have been developed and used. As general-purpose
codes become larger, their code structure becomes
sophisticated. In general codes can be divided into
three main areas, they include; 1) Numerical
algorithms (which can be subdivided into

discretization methods and solution techniques). 2)
Methods of dealing with complex geometries. 3)
Physical models (which include turbulence models,
porosity, combustion kinetics, two-phase flow...). It
seems, therefore, that the practicing engineer must
have the knowledge of all these elements of the CFD
program in order to successfully utilize this code. To

obtain the maximum benefits from these general-
purpose CFD codes, modularization of the code

structure may be necessary. That is developing
individual modular routines for the solver and for

different physical models for example. If such
modules are successful it would allow users to

concentrate their talents on developing and improving
physical hypothesis such as turbulent models for
example that can easily be testedusing such modules.

In the present work, turbulent modules are
being developed to meet this need. Figure I, shows a
flowchart of a turbulence module interfaced with a

typical main flow solver. The module is called by the
flow solver passing to it the mean flow velocities,
mass fluxes at cell faces and grid information among

others. The turbulence differentail equations are
discretized and the matrix coefficients are setup and
solved using Stones strongly implicit method(16). In

the ASM module, the set of algebraic stress equations
are solved simultanously using Gauss-Seidel method

at each step or iteration. In the eddy-viscosity models
the values of k, e, and eddy viscosity (310 are passed
to the main flow solver, while, in the second moment

closure models the Reynolds stresses uTfj are passed
to the main solver. The solver then calls subroutine

MODIFY of the module where the momentum

sources are modified to account for the near-wall shear

stresses in the eddy-viscosity models or to calculate
Reynolds stress gradients in the second moment
models.

These modules are structured to be self-

contained and transportable to a number of genera]
purpose CFD solvers to maximize computational
efficiency. They have been tested independendy at the
University of Alabama at Huntsville using the
MAST code.

Resu/ts

The various turbulence models are analyzed
by comparing model predictions with the
experimental data of Roback and Johnson(17) for
swirling flow in confined double concentric jets with
a sudden expansion.

Figure 2, shows the decay of the mean axial
centerline velocity using both the single and multi-
scale k-e models. Figure 2a, shows the comparison
using the wall-function near wall approach and Figure
2b shows the results using the two-layer near wall
model. The single-scale k-e model seems to

underpredict the extent of the central recirculation
zone as compared with the multi-scale k-e model.
Moreover, improved comparisons with the data are
obtained using the two-layer near wall model. Figure
3, shows the radial profile of the mean axial velocity
at two distances downstream of the jet exit. Again,

the two-layer model predicts better comparisons with
tha data than the wall function approach. The radial

profiles of the mean tangential velocity are shown in
Figure 4.

Figure 5, shows the radial profile of the
mean axial velocity at three axial locations using the
algebraic stress model (ASM) with wall function and
two-layer near wall models. The radial profiles of the

rms axial turbulent intensity are shown in Figure 6.
Streamline contours are shown in Figure 7 using the
single-scale k-e and the ASM models with the two-
layer near wall approach. The extent of the central

vortex is better predicted using the ASM model.
Preliminary results were also obtained using the full
Reynolds stress model (RSM). Comparisons with the
backward facing step data of Driver and

Seegmiller(18) shows improved predictions over the
single scale k-e model as shown in Figure 8 where
the radial profiles of the axial normal stress and shear

stress are plotted at four step heights downstream.
Further testing of the RSM model for swirling flows

are planned.



Conclusions

Different turbulence models for industrial

applications have been formatted in a modular form
and successfully interfaced and tested independently
using two different main flow solvers. The turbulence
models include the single and multi-sclae k-e models

both with wall functions and two-layer near wall
models. Second moment models that include the

algebraic (ASM) and full Reynolds stress model
(RSM) have been tested. It was shown that the two-

layer near wall model improves predictions as
compared to the wall function approach. Convergence
of the stiff ASM model equations was obtained by
solving the 6x6 stress equations (for
axisymmetric/swirling flows) at each iteration. The
wall-reflection terms in the pressure-strain model
showed little or no improvements in the ASM model
predictions. Elaborate pressure-strain models that
require no wall-damping are needed e.g. Speziale

et.al(19). The full Reynolds stress model CRSM)
promises to be the next model to be used for

engineering applications.
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A NUMERICAL STUDY OF TWO-DIMENSIONAL VORTEX

SHEDDING FROM RECTANGULAR CYLINDERS

A. H. HADID _ M.M. SINDIR t R.I. ISSA t

Abstract

An efficient time-marching, noniterative calculation method is used to analyze time-

dependent flows around rectangular cylinders. The turbulent flow in the wake region

of a square section cylinder is analyzed using an anisotropic k-¢ model. Initiation

and subsequent development of the vortex shedding phenomenon is naturally cap-

tured once a perturbation is introduced in the flow. Transient calculations using

standard eddy-viscosity and anisotropic k-¢ models, averaged over an integral num-

ber of cycles to get the fluctuating energy (organized and turbulent), are compared

with experimental data. It is shown that the anisotropic k-E model resolves the

anisotropy of the Reynolds stresses and gives mean energy distribution closer to the

experiment than the standard k-_ model.

1. INTRODUCTION

Vortex shedding is a periodic unsteady flow phenomenon that occurs frequently behind bluff

bodies and is therefore of great practical importance. Many attempts to calculate the two-

dimensional (2-D) vortex shedding motion past square and_circular cylinders by solving the

unsteady Navier-Stokes equations were successful at low Reynolds numbers where the flow is

laminar and the fluctuations are periodic, e.g., [1] and [2]. At higher Reynolds numbers which

are more relevant in practice, turbulent fluctuations are superimposed on the periodic unsteady

motion. The problem then concerns the decomposition of the flow into organized motion that is

resolved in the calculation and a remaining turbulent motion to be represented by a turbulence

model. Previous analysis of vortex shedding calculations at high Reynolds numbers have not

been successful due to the inadequacy of the standard k-¢ model and the lack of affordable

higher order models that take into account the anisotropy of the turbulent intensities

Franke et al. [3] analyzed the unsteady turbulent flow for a square cylinder using the stan-

dard k-¢ model. They showed that the model tends to damp the periodic shedding motion

underpredicting the Strouhal number. They also analyzed the detailed experimental results of

Cantwell and Coles [4] for vortex shedding in the 2-D wake behind a circular cylinder. They

additionally point out the need for improved models that account for the history and transport

effects of the individual stresses. MacInnes et al. [5] used the standard k-¢ model to simu-

late the periodically forced turbulent mixing layer investigated experimentally by Weisbrot and

Wygnansld [6]. They managed to capture the main features of the mixing layer development

where there is a clear distinction between the organized and the random turbulent motion.
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Majumdar and Rodi [7] have shown that the separated turbulent flow past circular cylinders
cannot be predicted realistically without a time-accurate numerical procedure to account for

the periodic shedding of vortices.

Experimental investigations are needed to judge the different numerical and turbulent

schemes. Dur_o et al. [8] conducted an experimental study of transient turbulent flow be-

hind a square cylinder. They used spectral analysis and digital filtering of the LDV data in

order to separate and quantify the turbulent and periodic, nonturbulent motions. They show

for example that in the zone of highest velocity fluctuations the energy associated with the tur-

bulent fluctuations is about 40 % of the total energy. Therefore, for a successful simulation of

transient turbulent flows, a reliable time-accurate numerical procedure and a good turbulence
model are needed.

The purpose of the present paper is to model turbulent vortex shedding flows using an ef-

ficient time-accurate numerical procedure based on the PISO [9] methodology. Calculations of

the turbulent vortex shedding are performed using the two-equation k-e model with isotropic

eddy-viscosity and with a modified two-equation model using an anisotropic eddy-viscosity. In

the anisotropic model, nonlinear corrections are added to improve the eddy-viscosity represen-

tation of the Reynolds stresses as developed by Yoshizawa [10] with the aid of a two-scale direct
interaction approximation. A similar anisotropic eddy-viscosity model was also developed by

Speziale [11]. The adequacy of the models to simulate transient turbulent flows is assessed

with the aid of the experimental results of Durho et al. [8] for vortex shedding in the 2-D wake

behind a square cylinder at Re = 14, 000.

2. MODEL EQUATIONS

The basic equations of motion in transient periodic flows can be written after separating the

flow into an organized (phase averaged) component

1 _v
U,(z,,t) = _ y_ u,(z,, t + nT) (1)

n----O

where Ui(xi, t) is the resolvable portion of the instantaneous velocity u, and T is the period

of the oscillation, and a random turbulent component u',(zi,t). The instantaneous velocity

u,(zi, t) is then given by

u, = Ui + u', = _+ _+ u', (2)

where N is the time-mean component of the velocity, and _,, is the periodic fluctuating compo-

nent. Assuming an incompressible flow, the momentum equations can be written after applying

phase averaging as;

OUi OUt_ 10P+ 0 (u OU,
O"--_+U' ozj p Ozl _ --_zj + R'3) (3)

where R,_ = - < u'i u'j > is the phase-averaged Reynolds stress tensor and u is the kinematic
viscosity.

Standard Isotropic k-e Model

In the standard isotropic k-e model [12], Ri 3 is appro.,dmated by using the eddy-viscosity u_ as;

') _0 U, 0 U_ )
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where k is the phase-averaged turbulent kinetic energy and vt = C_,(k2/e), e is the phase-

averaged energy dissipation rate and C_ is a model constant. The spatial and temporal distri-
bution of k and e are determined from differential transport equations of these quantities

7f + u_ Ox, Oz, (" + ) + a - e (s)

o---i+ v, - + -£(c,a - c2 ) (G)

0 U,

where G = R,j _ is the turbulent generation term. The constants C,, C1, C2, ak, and a_

have values of 0.09, 1.44, 1.92, 1.0, and 1.3, respectively.

Anisotropic k-e Model

In the anisotropic model the Reynolds stresses can be expressed as;

&j = - kS,_ + v, \ Ozj + Oz, ] + 3 .,=1 ,_=_

k 3

T.,= cT,,,7 (s)

OU, OU_ (9)
SI_: = _gzk Ozk

1 (av, or, o (lO)$2_i=2 0zk azj + azk Oz,]

OUk #Uk
- -- (11)

S3,j 0 z_ _9z_

and C_'m (m = 1, 2, 3) are model constants. The first two terms on the right hand side of

(7) give the familiar isotropic eddy-viscosity representation, while the third and fourth terms

express the anisotropy of R,j. These additional nonlinear quadratic terms of the mean velocity

gradients seem to be a simple way to resolve the individual normal stresses with the k-¢ model.

The anisotropy is reflected especially in the k-e equation where both the diffusion and pro-

duction terms are quadratic forms of the mean velocity gradients and turbulent kinetic energy

gradients.

The anisotropic eddy-viscosity model has been successfiflly used by Nisizima and Yoshizawa [13]

and Myong and Kasagi [14] for fully developed turbulent channel flows. In their calculations

only CT1 and Cr2 were optimized to reproduce the anisotropy of the turbulent intensities since

C_-3 does not appear in their equations. In the present study the flow is shear dominated with

little departure from isotropy. Therefore, the model constants C*1, Cr2, and C_-3 were opti-

mized to 0.01, 0.01, and 0.001, respectively, to satisfy the realizability constraint. (Note: zero

constants reduce to the isotropic eddy-viscosity model.)

Applications of the k-¢ isotropic and anisotropic eddy-viscosity models were made using

wall functions to bridge the viscosity affected near the obstacle wall region. It is assumed that

inadequacies in near-wall modelling play a minor role to the inaccuracy of normal Reynolds
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Fig.l: Flow characteristics of the wake for Re = 14,000

stress differences arising from use of an isotropic eddy viscosity. Improvements can be made by

integrating all the way to the wall [15] or by using the two-layer model of Chen and Patel [16].

3. NUMERICAL METHOD

The PISO methodology [9], in conjunction with a finite-volume technique, is used to solve the

implicitly discretized, time-dependent flow equations. The method is essentially noniterative,

where the solution process is split into a series of steps whereby operations on pressure are

decoupled from those on velocity at each time-step. The avoidance of iterations substantially

reduces the computational effort compared with that required by iterative methods. This is

possible since the splitting error of PISO is negligibly small at the level of time-step required

to eliminate the temporal truncation error. A backward temporal difference scheme is used,

while the convective terms are discretized using a second-order upwind difference scheme. The

method can also be used for steady-state flows, e.g., Hadid et al. [17].

Calculations are performed for the turbulent flow around a square cylinder (step height,

H = 20 ram) in a domain extending about 16 H downstream and 2.5 H upstream of the obstacle.
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The calculations captured the vortex shedding phenomenon after perturbing the flow at the

inlet. A reference velocity of 0.68m/s and turbulence intensity of 6% (i.e., k =< u '2 >=

3.6x 10 -3 m2/s 2) were used as the inlet conditions. The length.scale L of turbulence at the inlet

was not measured in the experiment but an order of L ,-, 0.1 mm was assumed from which the

energy dissipation rate c = k312/L was estimated. It is expected that the calculated results are

not sensitive to the precise value of c used at the inlet. The upper and lower boundaries are

treated as symmetry planes, at the exit, a zero-gradient outflow boundary condition is applied

to each variable. The computational domain is resolved by 75x40 grid cells with clustering at

the obstacle walls. An optimized time step of 0.001 sec. was chosen for the calculations.

4. RESULTS AND DISCUSSION

Figure l(a) shows the normal velocity history at the centerline of the wake for Re = 14000 at five

step heights downstream. The power spectrum of the normal velocity fluctuations (Fig.l(b))

confirms the oscillatory nature of the flow with a single predominant frequency of about 4.7 Hz,

which is in agreement with experimental results [8]. Figure l(c) shows a marker particle trace

at time=3sec., which illustrates the shedding pattern. In order to calculate the time-mean

kinetic energy of the velocity fluctuations, the fluctuating velocity component (organized +

turbulent) is _ = u_ - U-'7. For the 2-D plane geometry considered, the kinetic energy of the
velocity fluctuations can be written as;

3 + (12)E=_

where ui" = u i - Ui , and the time-mean value of the kinetic energy of the velocity
fluctuations is

_= 3 (_2 + _2) (]3)
4



212 A. H. Hadid, M. M. Sindir and R. I. Issa

o
p.

1.0

0.9

08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

= Du_o etal. [8]

Anisotropic K-E Model

--- Anisotropic K-c Model with Zero
Production o_ K Upstream of Obstacle

• , 0.7

.j...., .....
0.6

0.5

_c_ 0.4

0.3

0.2

0.1

%s

t f I I I I I 1
-2 -1 0 1 2 3 4 5 6 0.0

-2
X/H

Fig.4: Centerline distribution of mean a_al

velocity

B_

i

$

- .,....

f....../ "'-'''"_'---... , .

-1 0 I 2 3 4 5 6 7

X/H

Fig.5: Time-mean kinetic energy of the ve-

locity fluctuations

where

+ = + 2(u,+ +
' Ui = O, we get,and from the definition of time averaging u i

_= _ --2 --u, - u, + = 1, 2) (14)

The first two terms on the right hand side of (14) represent the organized periodic energy

contribution, while the last term represents the turbulent energy contribution.

Figure 2 shows the distribution of the mean axial velocity at the centerline. The anisotropic

model gives better distribution downstream of the obstacle. Figure 3 compares the calculated

distribution of the time-mean kinetic energy of the fluctuating motion (periodic + turbulent)

along the centerline of the flow. The figure shows a better trend exhibited by the anisotropic

k-¢ model due to the improved resolution of the normal stresses. The standard k-¢ model acts

to damp the periodic fluctuations by producing too much eddy viscosity, which underestimates

the time-averaged momentum transfer. Hence, the length of the separation region behind the

obstacle is overpredicted. Also, the maximum of the kinetic energy at the centerline lies further

downstream. The length of the recirculation zone and the location of the maximum fluctuating

energy are improved by using the anisotropic model. The figure also shows some fluctuating

energy in front of the obstacle, whereas measurements indicated that the flow remained virtually

laminar there. This is because in the k-e model the large velocity gradients at the stagnation

region produce large turbulent kinetic energy. Results are also obtained from calculations in

which the production of k in front of the obstacle was suppressed. Figure 4 shows the mean

a.xSal velocity distribution indicating better comparison with the experinaent downstream of the

obstacle. Figure 5 shows the distribution of the mean kinetic energy along the centerline. It can

be seen that suppressing the production of the kinetic energy in front of the obstacle causes an
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increase in the fluctuating energy. Also, the peak of the energy fluctuations is shifted slightly

upstream closer to the experimental data. The figure also shows smaller residual fluctuating

energy in front of the obstacle. Figure 6(a) and (b) show the contour plots of the normal
turbulent stress term < v' v' > at an instant T = 3 sec. It can be seen that the anisotropic k-¢

model produces higher < v' v' > values, which act to increase the total fluctuating energy.

5. CONCLUSIONS

The turbulent vortex shedding flow behind a square cylinder was analyzed using an efficient

time-accurate numerical method based on the PISO methodology. Turbulence was modeled

using an anisotropic k-¢ model which resolves the anisotropy of the Reynolds stresses rea-

sonably well. Comparisons with the experimental data show the advantages of the model as

compared with the standard isotropic k-e model. Accurate predictions, however, can only be

made by accounting for the history and transport effects of the individual Reynolds stresses.

The anisotropic k-e model seems to offer a compromise between the computationally intensive
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Reynolds stress model and the standard isotropic k-e model.
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Single point modeling of rotating turbulent flows

By A. H. Hadid 1, N. N. Mansour 2 AND O. Zeman 3

A model for the effects of rotation on turbulence is proposed and tested. These

effects which influence mainly the rate of turbulence decay are modeled in a modified

turbulent energy dissipation rate equation that has explicit dependence on the mean
rotation rate. An appropriate definition of the rotation rate derived from critical

point theory and based on the invariants of the deformation tensor is proposed.
The modeled dissipation rate equation is numerically well behaved and can be

used in conjunction with any level of turbulence closure. The model is applied

to the two-equation k-e turbulence model and is used to compute separated flows

in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden

expansion. In general, the rotation modified dissipation rate model show some

improvements over the standard k-e model.

1. Motivation and objectives

The ability to accurately model the effects of rotation on turbulence has a wide

variety of important applications in rotating machinery and combustion devices.

Many turbulent flows of engineering importance involve combinations of rotational
and h-rotational strains. However, turbulence models of the eddy viscosity type

are oblivious to the presence of rotational strains since they depend only on the

mean velocity gradients through their symmetric part (i.e. the mean rate of strain

tensor). The rotation rate, for example, does not explicitly enter the equations for

the turbulent kinetic energy and its dissipation rate, yet evidence from experiments

(Wigeland and Nagib 1978, Jacquin et al. 1990) and from direct numerical simula-
tion (Bardina e$ al. 1985, Speziale et al. 1987, Mansour et al. 1991) show that the

decay rate of turbulence is reduced by the presence of rotation.
The effects of rotation on turbulence are "known to be subtle. They are manifested

through changes in the spectrum of the turbulence caused by nonlinear interactions.
For initially isotropic turbulence, rotation inhibits the cascade of energy from large

to small scales. Zeman (1994) proposed a modified energy spectrum that takes into

account the effects of rotation at high Reynolds number by introducing a rotation

wavenumber, kf_ = y/-_'/e, below which rotation effects on spectral transfer are

important. Much of the application work in simulating rotating flows have been
conducted using varieties of eddy viscosity models (k-e or k-l) and second order
closure models with modified dissipation rate transport equation to account for

1 Rocketdyne Division/Rockwell International

2 NASA/Ames Research Center

2 Center for Turbulence Research
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rotational effects. However, most of these models fail to predict the asymptotic

behavior of the turbulence decay rate in the limits of large rotation rate. The

objectives of this work are to model the effects of rotation using single-point two

equation models and to offer an appropriate definition of the mean rotation rate
that is consistent with the fact that spin is the main cause of reduction in the

dissipation rate.

2. Accomplishments

For incompressible viscous flow with constant properties, the modeled transport

equations for the turbulent kinetic energy, k, and its dissipation rate, e, that axe

widely used for engineering applications take the form;

k,t + Ujk,j = Dk + P_ - e (1)

e,: + Ujej = D, + P, - 0, (2)

where Di and Dc axe the diffusion terms for k and e respectively and are modeled

Dj, = v + k,j , D, = v + e,j ,
j ,J

where v is the laminar viscosity and vt is the eddy viscosity = C_,k2/e. at and a_

are the ratio of Prandtl to Schmidt numbers and axe taken as constants. Pk is the

production term for k given as P_ = -u_u--'--_Ui,j, where u_u--'-'-_is the Reynolds stress

term and Ui is the mean velocity in the/-direction.

Assuming that the production of the dissipation rate P_ is proportional to the

production of turbulent kinetic energy Pt, i.e P_ " P_,/T where T is the turbulent

time scale given by T = k/e. Similarly assume that the destruction rate of dis-

sipation rate 0_ is proportional to the turbulent energy dissipation rate term, i.e.

0_ ,., e/T. The modeled form of the dissipation rate equation becomes

_2

e,,+ Ujej = D, + C_-_ P_ - C2-_ (3)

,-"-7 the kinetic energy pro-
Due to the symmetry of the Reynolds stress tensor uiu j,

auction term can be written as Pk = -_Sij, where Sii = (Ui,i + Uj,_)/2 is

the mean rate of strain tensor. Therefor it can be seen that the standard dis-

sipation rate, eq. (3), has no explicit dependence on the mean rotation tensor

f_ij = (U_j - Uj,i)/2. It follows that the commonly used modeled dissipation rate

equation can only be affected indirectly by rotational strains through the changes

that they induce in the Reynolds stress tensor.
In order to sensitize the dissipation rate equation to rotational effects, consider

the simple case of isotropic turbulence in a rotating frame. In this case, an initially

decaying isotropic turbulence is described by;

k,, = -e (4)

9 ¸

[¢

7.

k_
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= -C2- (5)

Equations (4) and (5) do not distiguish the difference between isotropic turbulence
in a rotating frame and in an inertial frame. Models that have a non zero rotational

correction have been proposed by Bardina e_ al. (1985), for example, for rotating
isotropic turbulence where eq. (5) takes the form

(6)

with C2 = 1.83 and Cs = 0.15.

The above model is able only to accurately predict the reduction in the decay
rate of the turbulent kinetic energy in rotating isotropic turbulence for weak to

moderate rotation rates where the effects are small. However, for su_ciently high

rotation rates and long enough time, the model drastically underpredicts the decay
rate of the turbulent kinetic energy.

Hanjallic and Launder (1980) proposed a model for which the e-transport equation
in rotating isotropic turbulence takes the form

(7)

where C2 = 1.92 and Cs = 0.27.

This model predicts unphysical behavior of negative dissipation rate at high ro-
tation rates, thus violating the realizability constraint. Other modifications to the

dissipation rate transport equation have been proposed to account for rotational

strains, e.g Raj (1975) and Pope (1978). Again they fail in one way or another to

account accurately for the rotational effects.

3. Proposed model

In the present work a new model is proposed that accounts for rotational effects

and correctly predicts the asymptotic behavior at zero to inifinte rotation rates.

Consider the dissipation rate equation in rotating isotropic turbulence

et=_(1.7+ 5 a2 le26 ,_2 + 1 k (8)

with

a = 0.35Ro -1 (9)

where Ro is the Rossby number defined as Ro -1 = _k/e. For _ >> 1, C2 = 2.5,

which gives a power law exponent n = 0.6 (in k -,, t-") roaching the power law
proposed by Squires et al. (1993) for the asymptotic state of rotating homogeneous

turbulence at high Reynolds numbers.

The experminental data of Jacquin et al. (1990) are used to test the proposed

model. Their experiments consisted of measuring the velocity field and characteris-

tic quantities characterizing the fluctuating field downstream of a rotating cylinder
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containing a honycomb structure and a turbulence producing grid. The coupled

differential equations for k and e describing the effects of rotation on an initially

isotropic turbulence can be written as

k,,= -e (10)

¢_2 / f2,,, = - 05 + 03 -r- +1 ¥ (11)

These equations were solved numerically using a fourth-order Runge-Kutta inte-

gration scheme. The model predictions (with C2 = 1.7 and Cs = 5/6) are compared

with the experimental data of Jacquln et al. (1990) as shown in Fig. la. The model

predicts well the evolution of turbulent kinetic energy and its decay rate for a wide

range of rotation rates. We have also tested the model for the three Reynolds

numbers measured by Jacquin et al. (1990), and found similar agreement of the

model predictions with the data. We should point out at this point that the value

C2 = 1.7, proposed here for zero rotation rate, is lower than the value convention-

ally used in k-e modeling. We find that with the conventional value of C2 = 1.92

(and Cs = 3/5) the model fails to predict the experimental data (see Fig. lb)

.g
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° 1 10°

}
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"'*"'*'*"*"*....**....,
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(b) (t - to)eo/ko

FIGURE 1. Decay of turbulent kinetic energy. Symbols are the data of Jacquin

et al. (1990), lines are the model predictions, o & _ F/ = 62.8 (rad/s), v

= 31.4 (racl/s), _ & ........ ft = 15.7. (a) Model predictions with O5 = 1.7

and Cs = 5/6; (b) Model predictions with O5 = 1.92 and (73 = 3/5.

4. Rotation Rate For General Flows

In order to test the rotational correction proposed in eq. (8) to the dissipation

rate equation for general flows where the rotation rate is a function of position and
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in the presence of mean strains, the question arises as to what is the appropriate
definition of the rotation rate, _?

In most previous studies, the rotation rate or the mean vorticity _/was replaced

by _/_ij_ij/2, where _ij = (Ui,j -- Uj, i)/2 is the rotation rate tensor of the mean
flow. However, such definition does not distinguish between a vortex sheet and

a vortex. A definition of a vortex or a region of vorticity (with spin) was given

by Chong et aI. (1990) -using the arguments of the critical point theory and the
invariants of the deformation tensor- as a region in space where the vorticity is

sufficiently strong to cause the rate of strain tensor to be dominated by the rotation
tensor, i.e. the rate of deformation tensor has complex eigenvalues. This definition

satisfies the principle of frame invariance since it depends only on the properties
of the deformation tensor. We shall use it because the reduction in the dissipation

rate is due mainly to the spin that the mean imposes on the turbulence. Consider

the matrix Dij of the elements of the deformation tensor,

Dij = Ui,j (12)

which can be split to
D_j = S_1 + fl_j (13)

The complex eigenvalues of Dij are found by solving the characteristic equation

[Dii - A_ij[ = 0, where the _'s are the eigenvalues of Dij. For a 3 × 3 matrix, _ can
be found from the solution of

_3 + p_2 -F Q)L + R = 0

where P, Q and R are the matrix invariants and are given by

(14)

p = -u_,_ (15)

Q = _(p2 -- SijSji -- _'_ij_-_ji) (16)

1
R = -_ (_pS + 3PQ - SijSjkSJ,,- 3nijajkSki) (17)

For an incompressible flow P = 0 from continuity and the characteristic equation

becomes
+ Oh+ R = 0 (18)

Now if

and,

B= - -
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then the three roots of _ are;

[A + B, A + B2 +i_-vr_, A + B2 i-_-_ v_]

That is A can have:

(i) all real roots which are distinct when

[(Q/3) 3 + (R/2) 2] < 0,

( ii)

or

all real roots where at least two roots are equal when

[(0/3)3+(R/2) *]= 0,

or

(iii) one real root and a pair of complex conjugate roots when

[(Q/3) 3 + (R/2) z] > 0.

We shall follow Chong et al. (1990) and define the rotation rate

V_'A B), when[(Q/3) 3 +(R/2) 2] > 0,= _(_) = -5-t -
(19)

f/= 0 otherwise. It is important to note that for two dimensional Cartesian flows,
the rotation rate defined by Eq. (19) reduces to _ = _, when Q, the determinant

of the deformation tensor matrix, is negative. For pure shear the definition, eq. (19)

yields fl = 0. Conventional models that are calibrated for shear flows, need not be
recalibrated when corrections based on f/are added to the model.

5. Numerical Procedure

For a two-dimensional, incompressible and steady turbulent flow, the Reynolds

averaged momentum, continuity, turbulent kinetic energy and dissipation rate equa-

tions can be written in the generalized form;

( ) (°°)O@ 1 0 rr_,10 o ro.T_ +- +S, (20)

Where r = 1 for Cartesian two-dimensional flow, and y = r for two-dimensional ax-

isymmetric flow. Table 1 gives a summary of the terms in eq. (20) for the dependent
variables solved in the code.

i

i

s
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_J
1

U

V
JW

k

F4, _

O.

2pc

pe

+ t_tJak

Oo

P_
2#_

Oo

-oP/az + 1/,.a(_,e,.av/ax)/au
-oP/Ou + o(u,ov/0u)/oy
-pvw/,. - w/,-2 a(,.u, )/ or
Pj, - pe
C1Pk_/k - C2p_2/_

Table 1. Summary of the governing equations, p is the density, F¢, and F¢.

are the exchange coefficients in the axial and radial directions respectively, S¢ is
the source term for the variable ¢. In the table, p¢ is the effective viscosity given

as p_ = p + pt, where p is the laminar viscosity and pt is the turbulent viscosity,

_t = C_,pk2/e.

In the standard k-e turbulence model the constants Cu, Ca, C2, a_ and a_ have

the values 0.09, 1.44, 1.92, 1.0 and 1.0 respectively.
In the rotation modified k-e turbulence model, only C2 takes the form given by

eq. (11) i.e, C2 = 1.7+ (5/6)_/(_ 2 + 1).
The governing transport eq. (20) is solved using the primitive variables on a

nonstaggered mesh and converted into a system of algebraic equations by integrat-

ing over control volumes defined around each grid point. The SIMPLE pressure-

correction scheme (Patankar 1980) is used to couple the pressure and velocities

and the resulting algebraic equations are solved iteratively. The convective terms
are differenced using a second-order upwind scheme while the diffusion terms are

approximated by a central differencing scheme.The physical domain is discretized
using a non-uniform mesh where grid points are clustered close to the walls.

6. Model Application

The performance of the present model for complicated recirculating flows is
demonstrated through calculations and comparisons with the experimental data

of Driver & SeegmiUer (1985) for backward-facing step flows and with the experi-
ments of Roback & Johnson (1983) for a confined swirling coaxial jets into a sudden

expansion.
Figure 2, shows the streamlines for the backward-facing step using the rotation

modified k-e turbulence model. The calculations were performed on a 100x40 grid

points. The computational domain had a length of 50H (H is the step height) and

a width of 9H. The experimental data were used to specify the inflow conditions
for a channel flow calculation where the fully developed profiles at the channel exit
were used as the inlet conditions for the backward-facing step calculations. Fully

developed flow conditions were imposed at the outflow boundary. The standard

wall function approach (Launder & Spalding 1974) was used to bridge the viscous

sublayer near the wall.
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8H

(a)

50 H

D.X

2

o (b) 10

FIGURE 2. Backward-facing step geometry and stream-function contours. The

contour levels were set between (-0.1 and 0.1) with an increment level = 0.01.
.... negative values, _ positive values.

The computed reattachment lengths were 5.50H using the standard k-e turbu-
lence model and 6.22H for the rotation modified k-e turbulence model. The modified

k-e model prediction is closer to the experimental value of 6.10H. While these re-

sults axe encouraging, they axe mainly due to the fact that we have changed the

value of C2 for the non-rotating case. In general, a change in the value of C2 will
result in poor predictions of the mean profiles. The mean velocity profile at three

locations downstream axe shown on Fig. 3, while the turbulent stress profiles at

X/H = 4 are shown on Fig. 4. All the quaatities were normalized by the step
height (H) and the experimental reference free-stream velocity (Urel). It can be
seen that the overall performance of the rotation modified dissipation rate equation

is better than the standard k-e model especially in the recirculation region (Figs. 3a,
and 4). Some improvements are also obtained in the recovery region using the mod-
ified k-e model. Figure 5 shows the contours of the effective rotation rate used as

defined by Eq. (19).

For the 2D/axisymmetric swirling flow computations, the expressions for the

invariants Q and R (Eqs. (16) & (17) respectively) are expanded and Eq. (19) is
used to obtain the values of ft. The model was used to predict the mean profiles for a

confined double concentric jets with a swirling outer jet flow into a sudden expansioa
(Robaz.k & Johnson, 1983, see Fig. 6). Measurements are available for the mean
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FIGURE 3.

& Seegu_ller, 1985); _ modified k-e model; .... standard k-e model.

X/H = 4, (b) X/H = 8, (c) X/H = 12.

Mean axial velocity profiles at different axial locations, o data (Driver
(a)

% _ o o -, "-..o o

"iS" _ ss# 0 0
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FXGUttE 4. Turbulent stress profiles at X/H = 4. o data (Driver & Seegmiller,

1985); _ modified k-e model; .... standard k-e model. (a) U_lU'I/U]eI , (b)

2 _ 2u2u21V,.,s,(c) ux_,21V,_s.

velocity profiles and velocity fluctuations downstream of the expansion. Simulations

v_th a coarse nonuniform grid of 30×20 mesh points were made. However, there

is some uncertainty about the inlet conditions to be used since the first velocity

'1
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FIGURE 5. Contours of the effective rotation rate, ft.

between (0.1,1.0) with an increment level = .01. are
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Section

FIGURE 6.

duct.

Vane Swirler

Roback & Johnson's swirling coaxial jets discharging into an expanded

profiles measured were 5ram downstream of the expansion.

To predict this flow, the measured profiles at 5ram were adjusted near the edges
and were used as inlet conditions at the expansion plane. Preliminary results ob-
tained with the coarse mesh indicate similar trends as the experiment. Figure 7

shows the streamline contours using the standard and the modified k-e turbulence

models. The figure shows that a closed internal recirculation zone forms at the
center with an additional zone at the corners downstream of the step. This causes a

flow diversion outwards with high gradients between these regions. Figure 8 shows

the axial and tangential velocity profiles at 25 mm downstream of the expansion

using the standard and the modified k-e turbulence models. Results in this case

indicate little or no improvements offered using the modified k-e model over the
standard k-e model. Finer mesh may improve the results but the uncertainties in

the inlet boundary Conditions raise the question about the adequacy of using this

experiment for validation purposes.
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FIGURE 7. Swirling coaxial jets discharging into an expanded duct. Stream-

function contour. ---- levels were set between (-0.15,0.) with an increment level

= 0.01, -- levels were set between (0.,0.7) with an increment level = 0.05. (a)
Standard k-e model, (b) Modified k-e model.
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FIGURE 8. Velocity profiles at X = 25 ram. o data (Roback &: Johnson, 1983);

-- modified k-e model; .... standard k-e model. (a) Axial Velocity, (b) Tan-

gential velocity.

7. Conclusions

A new simple model for the turbulent energy dissipation rate equation has been

proposed to account for the rotational effects on turbulence. A frame invariant
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definition of the rotation rate proposed by Chong et al. (1990) based on the critical

point theory was used. The model can be used in conjunction with any level of

turbulence closure. It was applied to the two-equation k-e turbulence model and was

tested for separted flows in a backward-facing step and for axisymmetric swirling jet

into a sudden expansion. The model is numerically stable and showed improvements

over the standard k-e turbulence model. It is important to point out that the

present study was carried out to roughly evaluate the model, but that a systematic

recalibration of the constants in the k-e model is needed before going any further

with the proposed model.

The authors would like to acknowledge many discussions with Dr. K. Shariff

regarding proper definition of the rotation rate.
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