Studies of the Codeposition of Cobalt Hydroxide and Nickel Hydroxide

C. H. Ho, M. Murthy, and J. W. Van Zee

Center for Electrochemical Engineering
Department of Chemical Engineering
University of South Carolina
Columbia, SC 29208

J. W. Van Zee, University of South Carolina
Presented at the NASA Battery Workshop
Dec. 4, 1996
Outline

- Chemistry
- Experimental Measurements
- Planar Film Model Development
- Impregnation Model Development
- Results & Conclusions
 - Effect of Ni$_4$(OH)$_4$$^{4+}$
 - Effect of Cobalt Concentration on Deposition / Loading
 - Effect of Current Density on Loading Distribution
- Acknowledgment
Electrode Reaction

\[
\frac{1}{8} \text{NO}_3^- + \frac{3}{4} \text{H}_2\text{O} + e^- \rightarrow \frac{1}{8} \text{NH}_3 + \frac{9}{8} \text{OH}^-
\]

Precipitation Reactions

\[
\text{Ni}^{2+} + 2\text{OH}^- \rightarrow \text{Ni(OH)}_2 \\
\text{Co}^{2+} + 2\text{OH}^- \rightarrow \text{Co(OH)}_2
\]
Nickel Chemistry

- Dilute Solutions \((\text{Ni}^{2+} < 0.1 \text{ M, pH } < 7)\)
 \[
 \text{Ni}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{NiOH}^+ + \text{H}^+
 \]

- Concentrated solutions \((\text{Ni}^{2+} > 0.1 \text{ M, } 5 < \text{pH } < 7)\)
 \[
 4\text{Ni}^{2+} + 4\text{H}_2\text{O} \rightleftharpoons \text{Ni}_4\text{OH}_4^{4+} + 4\text{H}^+
 \]

References: Baes & Mesmer (1976), Kawai et al. (1973), Burkov et al. (1965), Kolski et al. (1969)
Equilibrium Concentration of Ni$^{2+}$, Ni(OH)$_2$, and Ni$_4$(OH)$_4$$^{4+}$ Species

Percent of Total Nickel

pH

1996 NASA Aerospace Battery Workshop
Nickel-Hydrogen Session
Cobalt Chemistry

- Dilute solutions ($Co^{2+} < 0.1 \text{ M}, \text{pH} < 7$)

$$Co^{2+} + H_2O \Leftrightarrow CoOH^+ + H^+$$

- Concentrated solutions ($Co^{2+} > 0.1 \text{ M}, 5 < \text{pH} < 7$)

$$4Co^{2+} + 4H_2O \Leftrightarrow Co_4(OH)_4^{4+} + 4H^+$$

- Cobalt $K_{eq} \approx 0.1 \ K_{eq}$ of nickel species

Reference: Baes & Mesmer (1976)

- Ionic strength important
Equilibrium Chemical Reactions

- Two Step Deposition Mechanism (Streinz et al. 1995)
 \[\text{Ni}^{2+} + \text{OH}^- \leftrightharpoons \frac{1}{4} \text{Ni}_4(\text{OH})_4^{4+} \]

 \[\frac{1}{4} \text{Ni}_4(\text{OH})_4^{4+} + \text{OH}^- \leftrightharpoons \text{Ni(OH)}_2 \downarrow \]

- Cobalt Deposition Mechanism (Baes and Mesmer 1976)
 \[\text{Co}^{2+} + \text{OH}^- \leftrightharpoons \frac{1}{4} \text{Co}_4(\text{OH})_4^{4+} \]

 \[\frac{1}{4} \text{Co}_4(\text{OH})_4^{4+} + \text{OH}^- \leftrightharpoons \text{Co(OH)}_2 \downarrow \]
Equilibrium Chemical Reactions (Contd.)

Reactions for Nickel Nitrate Complexes (Fedorov et al. 1976)

\[
\begin{align*}
Ni^{2+} + NO_3^- & \rightleftharpoons Ni(NO_3)_2^+ \\
Ni^{2+} + 2NO_3^- & \rightleftharpoons Ni(NO_3)_2^{aq}
\end{align*}
\]

Reactions for Cobalt Nitrate Complexes (Fedorov et al. 1976)

\[
\begin{align*}
Co^{2+} + NO_3^- & \rightleftharpoons Co(NO_3)_2^+ \\
Co^{2+} + 2NO_3^- & \rightleftharpoons Co(NO_3)_2^{aq}
\end{align*}
\]

J. W. Van Zee, University of South Carolina
Presented at the NASA Battery Workshop
Dec. 4, 1996

1996 NASA Aerospace Battery Workshop
-296- Nickel-Hydrogen Session
Equilibrium Concentration of Ni$^{2+}$, Ni(OH)$_2$, Ni$_4$(OH)$_4$$^{4+}$, NiNO$_3^+$ & Ni(NO$_3$)$_2$ Species

Percent of Total Nickel
Schematic Diagram for Nonaqueous pH Measurement

J. W. Van Zee, University of South Carolina
Presented at the NASA Battery Workshop
Dec. 4, 1996

Center of Electrochemical Engineering
Department of Chemical Engineering
University of South Carolina
Columbia, SC 29208
Experimental Measurement

- Hydrolytic reaction

\[qNi^{2+} + pH_2O = Ni_q(OH)_{(2q-p)^+} + pH^+ \]

\[Q_{p,q} = \frac{[Ni_q(OH)_{(2q-p)^+}][H^+]^p}{b^q} \]

- Material Balance

\[B^o = B^N + B + b \]

\[[(B + b)] Z = h - H + K Wh^{-1} \]

\[= (Q_{1,1}bh^{-1} + 4Q_{4,4}b^4h^{-4} + Q_{1,2}b^2h^{-1}) \]
\[(h - H + K_{\text{wh}}^{-1}) \text{ vs. } pH \text{ at Various Ni(NO}_3\text{)}_2 \text{ Conc.}
\]
(Temperature = 25°C)
(h−H+Kw h⁻¹) vs. pH at Various Temperatures

(1.0 M Ni(NO₃)₂ solution)
(h - H + K_w h^{-1}) v.s. pH in 1.0 M Ni(NO_3)_2 solutions

(Temperature = 25°C)
Effect of Ionic Strength

- Equilibrium reaction

\[4\text{Ni}^{2+} + 4\text{H}_2\text{O} = \text{Ni}_4(\text{OH})_{4}^{4+} + 4\text{H}^+ \]

\[Q_{eq} = \frac{[\text{Ni}_4(\text{OH})_{4}^{4+}]}{[\text{Ni}^{2+}]^4} \left[\frac{[\text{H}^+]}{4} \right]^4 \]

- Effect of ionic strength

\[\log Q_{eq} = \log K_{eq} + \frac{aI^{1/2}}{1 + I^{1/12}} + bm_x \]
Effect of Ionic Strength on the Equilibrium Quotient of Nickel Complex
\((-R \ln K_{p,q})\) vs. \(1/T\) for hydrolytic reactions of

\(\text{Ni}_4(\text{OH})_4^{4+}\) and \(\text{Ni}(\text{OH})^+\)

\[\Delta H^o = 46.7 \pm 2.9 \text{ kcal/mole (43, Arnek)}\]

\[\Delta H^o = 12.4 \text{ Kcal/mole (11.8, Arnek)}\]
Schematic of an Electrochemical Quartz Crystal Microbalance

EQCM

Potentiostat

SCE RE

Platinum CE

Nickel Nitrate Bath

Gold WE

Quartz Crystal

1996 NASA Aerospace Battery Workshop

-306-

Nickel-Hydrogen Session
Schematic of the Deposition Process on Planar Electrodes
Governing Equations for Planar Film Model

- Mass balances for species: \(\text{Ni}^{2+}, \text{Co}^{2+}, \text{NO}_3^-, \text{OH}^- \)

\[
\frac{\partial C_i}{\partial t} = -\nabla \cdot \text{Ni} + R_i
\]

- Equilibrium reactions for remaining species, \(\text{H}^+, \text{NiNO}_3^+, \text{Ni(NO}_3)_2, \text{CoNO}_3^+, \text{Co(NO}_3)_2, \text{Ni}_4(\text{OH})_4^{4+}, \) and \(\text{Co}_4(\text{OH})_4^{4+} \)

- Electroneutrality for solution potential, \(\phi \)

- Eleven concentrations and \(\phi \)
Boundary Conditions for Planar Film Model

- Diffusion layer-electrolyte interface
 \[C_i = C_{i,b} \]
 \[\phi = 0 \]

- Electrode surface
 - flux balances
 - equilibrium reactions
 - electroneutrality
Effect of Ni(NO₃)₂ on EQCM Mass Gain
Ref: Streinz et al., JES, 147, 1084 (1995)

\[i = 2.5 \text{ mA/cm}^2 \]

- 0.1 M Ni(NO₃)₂
- 0.2 M Ni(NO₃)₂
- 1 M Ni(NO₃)₂
- 2 M Ni(NO₃)₂

Mass (μg) vs. Time (s)
Efficiency of Utilization vs Inverse Concentration
Comparison of Model and Experimental Data

Efficiency, ε_{OH} -

Deposition Rate (μg/min)

Inverse Concentration (1/mol)

Ni(OH)₂

Co(OH)₂

Efficiency = 1
Determination of K_{eq} and K_{sp} from Film Experiments

- Determine least square error between experimentally measured mass and model predictions.

$$E = \sum_{i=1}^{q} (m_{I_1}^{exp} - m_{I_1}^{pred.})^2 + \sum_{i=1}^{q} (m_{I_2}^{exp} - m_{I_2}^{pred.})^2$$

where $m = f(K_{eq}, K_{sp})$ and K_{eq}, K_{sp} correspond to zero ionic strength

$$E = E_1 + E_2$$

m: mass gain of Ni(OH)$_2$

I_1, I_2: Ionic strength of medium

q: number of experimental data
Percentage Co in Ni(OH)$_2$ Film with Time
1 M Ni(NO$_3$)$_2$ with Varying Co Concentrations

Time (min)

Percentage Co in Film

0 10 20 30 40 50 60 70 80 90 100

0.05 M Co
0.1 M Co
0.2 M Co
0.25 M Co

i = 0.5 mA
Electrochemical Impregnation System

Nickel Plaque

Anodes

Impregnation Cell

Pump

aqueous Ni(NO₃)₂ + Ethanol

J. W. Van Zee, University of South Carolina
Presented at the NASA Battery Workshop
Dec. 4, 1996

1996 NASA Aerospace Battery Workshop

Nickel-Hydrogen Session
CURRENT COLLECTOR & TAB

POROUS NICKEL PLAQUE

COUNTER ELECTRODE

COUNTER ELECTRODE

v, C_{i,b}

\(x = 0 \)

1996 NASA Aerospace Battery Workshop

Nickel-Hydrogen Session
Governing Equations for Impregnation Model

- Mass balances for species: $\text{Ni}^{2+}, \text{Co}^{2+}, \text{NO}_3^-, \text{OH}^-$

\[
\frac{\partial \epsilon C_i}{\partial t} = - \frac{s_i}{nF} \frac{\partial i_2}{\partial x} - \frac{\partial N_i}{\partial x} + R_i
\]

- Flux: Diffusion and migration only

- Equilibrium equations for: H^+, $\text{Ni}_4(\text{OH})_4^{4+}$, $\text{Co}_4(\text{OH})_4^{4+}$, $\text{Ni(NO}_3)^+$, $\text{Ni(NO}_3)_2$, $\text{Co(NO}_3)^+$, $\text{Co(NO}_3)_2$

- ϕ_2 is governed by electroneutrality
Governing Equations (Cont.)

◆ The rates of precipitation are related to Q_{sp} of the hydroxides. (r_{ppt1}, r_{ppt2})

◆ Solution current: \[\frac{\partial i_2}{\partial x} = a \ j_n \]

◆ Porosity:

\[\frac{\partial \varepsilon}{\partial t} = - r_{ppt1} \left(\frac{M}{\rho} \right)_{Ni(OH)_2} - r_{ppt2} \left(\frac{M}{\rho} \right)_{Co(OH)_2} \]
Concentration Profile of Ni$_4$(OH)$_4$ in Ni Plaque

$(a_{i_0} = 10^{-3} \text{A/cm}^2, \eta_{x_0} = -375 \text{mV}, \tau = 1.6, \varepsilon^0 = 0.8, L = 0.1 \text{cm})$
Effect of Alcohol Volume % on Loading Distribution in Ni Pla

\(a_{i_0} = 10^{-3} \text{A/cm}^3, \eta|_{x=0} = -375 \text{mV}, \tau = 1.6, \text{time} = 30 \text{min}, L = 0.1 \text{cm} \)

\[H_2O, i = -48.1 \text{mA/cm}^2, W_{avg} = 0.872 \text{g/cm}^3 \]

\[50\% \text{ EtOH}, i = -43.9 \text{mA/cm}^2, W_{avg} = 0.929 \text{g/cm}^3 \]

\[100\% \text{ EtOH}, i = -43.1 \text{mA/cm}^2, W_{avg} = 0.989 \text{g/cm}^3 \]
Non-Uniformity vs. Current Density at Various Solutions

(Temp = 25°C, τ = 1.6, ε₀ = 0.8)

- 1M Ni(NO₃)₂
- 2M Ni(NO₃)₂
- 1M Ni(NO₃)₂ (without tetramer)

Percent Non-Uniformity (%)

Current Density (mA/cm²)

1996 NASA Aerospace Battery Workshop
Nickel-Hydrogen Session
Cobalt Content of the Active Material in Ni Plaque

\[(T=25^\circ C, i=-60mA/cm^2, \varepsilon=0.8, 1M \text{ Ni(NO}_3\text{)}_2)\]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\end{figure}

- 0.2M Co(NO\textsubscript{3})\textsubscript{2} \quad t=24\text{min} \quad W_{avg}=1.08 \text{ g/cm}^3
- 0.1M \quad W_{avg}=1.01 \text{ g/cm}^3
- 0.05M \quad W_{avg}=0.95 \text{ g/cm}^3
Loading Distributions of Co(OH)$_2$ in Porous Nickel Plaque

(1.0 M Ni(NO$_3$)$_2$, 0.1 M Co(NO$_3$)$_2$, i = -60 mA/cm2)

Local Loading Level (g/m2 void volume)

Dimensionless Distance ξ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2 min
4 min
10 min
20 min
Distributions of Ni(OH)$_2$ & Co(OH)$_2$ in Nickel Plaque

(1.0M Ni(NO$_3$)$_2$, i=-60mA/cm2, W$_{avg}$=0.85gm/cm3)

Local Loading Level (g/void volume) vs. Dimensionless Distance ξ
Effect of Co(NO₃)₂ Conc. on the Porosity Distribution

(ε⁰ = 0.8, 1.0M Ni(NO₃)₂, i = -60mA/cm², W_avg = 0.85 g/cm³)
Loading Distributions of Ni(OH)$_2$ & Co(OH)$_2$ in Nickel Plaque

(1.0M Ni(NO$_3$)$_2$, 0.1M Co(NO$_3$)$_2$, T=25°C, W$_{avg}$=0.75 g/cm3)
Summary

◆ Titration Experiments Determine Q_{sp}, and Q_{eq}
 ■ $f(T, \text{Alcohol}, [\text{Ni(NO}_3\text{)}_2])$
◆ Raman Spectra Identifies $\text{Ni}_4(\text{OH})_4^{4+}$
 ■ Absorbance is $f(\text{pH})$
◆ EQCN Experiments and Film Model
 ■ Confirm Values of K_{eq}, K_{sp}, and Ionic Strength Equations
◆ Porous Electrode Model
 ■ Agree with Ni(OH)_2 Distribution Measurements
◆ Porous Electrode Model Predicts Ni/Co Distributions
Conclusions

♦ For Uniform Total Deposit

■ Decrease Effect of Tetramer
 • Lower pH for deposition (decrease Q_{sp})
 • Decrease formation constant (Q_{eq})
 • Lower [Ni(NO$_3$)$_2$] for fixed Q_{sp} and Q_{eq}
 • Optimum current density (low)

■ Decrease Current Density

♦ Quantify the Amount of Change
Conclusions (Cont.)

- Factors Affecting Q_{sp} and Q_{eq}
 - Increase in T yields decrease in Q_{sp} and increase in Q_{eq}
 - Increase in Alcohol conc. yields same as T
 - Increase ionic strength yields same as T

- Co(OH)_2 and Ni(OH)_2 depends on $[\text{Co(NO}_3\text{)}_2]$, Ionic Strength, $[\text{Ni(NO}_3\text{)}_2]$, T, and Alcohol Concentration
Acknowledgment

- Office of Research & Development of U. S. Central Intelligence Agency.

- Department of Energy by Cooperative Agreement DE-FCO2-91ER75666.