The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.

7 Claims, 2 Drawing Sheets
ACCELERATION RECORDER AND
PLAYBACK MODULE

ORIGIN OF THE INVENTION

The invention described herein was made by an employee of the United States Government and may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

This is a division of application Ser. No. 07/940,420 U.S. Pat. No. 5,359,896, filed Sep. 3, 1992.

TECHNICAL FIELD

The present invention relates to apparatus and method for recording machine vibration. More specifically, the present invention is directed to a solid state analog acceleration recorder and playback module having significant advantages over conventional recorders.

BACKGROUND ART

Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shut down of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment.

One approach to monitoring the health of machinery involves scheduled recording and playback of vibration data over time to provide historical mapping of the machine using frequency and power spectral density analysis. By this process, degradation of machine internal components can be identified. Currently, to record machine vibration data, the output from an accelerometer is conveniently first connected to a signal conditioning module. The conditioned accelerometer signal is then recorded either on digital magnetic tape, analog magnetic tape, or a digital computer system with large random access memory. Alternatively, a spectrum analyzer may be periodically transported to the machine under observation for direct measurements.

The current method for obtaining machine vibration information thus requires the use of bulky and expensive instrumentation. It is difficult to transport such sophisticated equipment without increasing the already substantial cost of maintenance of such equipment. There is also a significant amount of lost labor time incurred due to the difficulties of transporting relatively fragile and bulky instrumentation.

U.S. Pat. No. 4,977,516 to J.E. Shepherd discloses a data acquisition device which has the capability to receive input simultaneously from a plurality of vibration sensors using a microprocessor which stores and processes the collected data. One problem with such data acquisition devices is the need to digitize the data prior to storing it. Digitized data requires a large amount of memory for storage and requires additional circuitry. Also problems exist where multiple analog inputs are needed because they are typically multiplexed prior to subsequent to digitizing. Since the machine is rotating, compensation must be made for the fact that measurement signals may not actually be taken simultaneously, and are generally taken at different points during the shaft rotation due to the multiplexing. Such a system requires additional software/hardware to compensate for the

time delay which otherwise may result in the loss of desired information. As an example of such compensation, U.S. Pat. No. 4,608,650 to N.S. Kapadia uses non-recursive tracking digital filtering to determine a peak velocity or displacement of the rotating engine for processing sampled accelerometer data. In a different operating phase, the Kapadia apparatus determines the rotational location of the peak relative to an index or reference point on the rotating engine.

U.S. Pat. No. 4,453,407 to Sato et al. discloses a sophisticated system which may be difficult and bulky to transport for on-site vibration analysis.

U.S. Pat. Nos. 4,313,178 to Stern et al., 4,989,179 to R.T. Simko, and 4,627,027 to Rai et al., disclose solid state analog memory elements but do not disclose circuitry for recording of accelerometer information. Although R.T. Simko suggests that his analog memory storage element may be used to record vibration, he does not disclose how this should be accomplished.

The presently available accelerometer recording and analysis systems provide valuable information, but they are bulky and expensive. Consequently, a need exists for improvements in accelerometer recording devices to decrease their high cost, as well as their complexity and difficulties of transportation logistics. Those skilled in the art have long sought and will appreciate the novel features of the present invention which solves these problems.

STATEMENT OF THE INVENTION

The present invention is directed to a solid state analog acceleration recorder and playback module that is relatively light weight and low in cost. In one preferred embodiment, the recorder is battery powered. In this embodiment, the battery may conveniently be used to supply power to the accelerometer(s). Conditioning circuitry is included within the module to condition the accelerometer signal prior to storage. This conditioning circuitry may include voltage dividers, amplifiers, and filters of various types. In a preferred embodiment, adjustable components are available in the conditioning circuitry to change degrees of signal filtering as required. The memory for the recorder is comprised of a solid state analog storage chip. This chip may be removable to thereby allow the recorder module to be built into other monitoring equipment with only the storage chip itself being removed for playback at another time and place.

With the present invention, there is no need for digitizing equipment since the analog storage chip stores analog signals directly into its memory cells rather than digitizing the signals prior to storing. Digitized signals require more memory cells per each digitized sample than analog signals. For instance, an eight bit sample will require eight memory cells per sample as compared to an analog memory circuit which requires only one memory cell per sample.

Multiple inputs can be accommodated with this device by adding additional memory chips and conditioning circuits without the need for multiplexing circuitry and software. This feature makes recording of simultaneous multiple analog signals no more complex and difficult than recording a single analog signal since no additional circuitry and software is needed for functions such as multiplexing, compensation for phase shifts caused by the multiplexing, etc. Additional analog memory chips may be configured in sequence to increase the time duration over which signals can be stored. A preferred embodiment analog memory chip includes digital addressing which allows for segmenting a recording duration. For example, a 16 second duration of recording may be broken into four 4 second segments.
A timing circuit is used for control of the analog memory chip(s). When activated, the timing circuit in turn activates the memory chip to begin recording or playing back. Manual switching may be used to activate the recording module and/or an automatic controller may be used. Data may be recorded at preselected times and/or at the occurrence of specific data level trip points. The timing circuit includes an adjustment to set the duration of the timing or playback operation to avoid overloading the analog memory storage chip. A timing circuit and/or the end of data control lines on individual analog memory chips may be used to provide a continuous loop playback.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and intended advantages of the present invention will be readily apparent by the references to the following detailed description in connection with the accompanying drawings, wherein:

FIG. 1 is a diagrammatic representation of an accelerometer recorder and playback module in accord with the present invention, and

FIG. 2 is a block diagrammatic representation of a multiple channel accelerometer recorder and playback module in accord with the present invention.

While the invention will be described in connection with the presently preferred embodiment, it will be understood that it is not intended to limit the invention to this embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included in the spirit of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a solid state analog acceleration recorder and playback module which, in a preferred embodiment, is battery powered and easily transportable for on-site recording of accelerometer data.

FIG. 1 discloses, in diagrammatic form, an accelerometer recorder module 10 in accord with the present invention. Although specific values or specific types of components are disclosed as preferred embodiment electronic components in FIG. 1, it is understood that other values/types of components may be used in many instances. It is also understood that while specific circuitry is disclosed, other circuitry may be substituted to produce a similar effect or for a similar function. Accelerometer 12 is shown connected to recorder module 10 and may include various associated circuitry, including amplifiers which may be used to increase the accelerometer output. Power for accelerometer 12 and any circuitry associated with accelerometer 12 is supplied by battery pack 14. In the present embodiment, battery pack 14 includes three nine volt transistor batteries. Additional batteries may be used as necessary to power supplementary circuitry which may include additional features or enhancements of recorder module 10 as described hereinafter. Batteries other than nine volt transistor batteries may be used although the use these batteries provide for a lightweight, easily transportable, recorder module 10. Switch 16 may be used to turn off and on circuit power from battery pack 14.

Switch 16 may be either a manual switch or electronic switch or relay depending on the application of recorder module 10. In this embodiment, 27 volts are applied to accelerometer 12 through current regulator diode 18 which regulates direct current to approximately two to four milliamperes in amplitude. Current regulator diode 18 as shown is a 1N5298 type diode. Capacitor 20, a 1 microfarad capacitor, is used to filter the 27 volt output of battery pack 14 prior to application to 5 volt regulator 22. A regulated 5 volt output from 5 volt regulator 22 is further filtered by capacitor 24 which is shown as a 22 microfarad capacitor. Circuit power also activates a green "power on" indicator in the form of light emitting diode 26. Resistor 28, shown as 470 ohms, limits current through LED 26. Regulated 5 volts is used to supply power to recorder module 10 circuitry which includes analog storage memory component 30, shown as an ISD 1016 integrated circuit, and timer component 32, shown as a 555 timer integrated circuit.

Timer component 32, as well as other associated timing circuitry, is used to control the period of operation of memory component 32 during which analog signals from accelerometer 12 are either stored or played back. Switch 34 is used to initiate operation of timer component 32. Switch 34 may be either a manual switch and/or some type of electronic switch which may allow for automatic recording such as might occur if a trip point is activated in circuitry associated with accelerometer 12. Switch 34, which is normally open, may be closed to produce zero volts or a "logic low" condition at pins 2 and 4 of timer component 32. Resistor 36, shown with a value of 10 kilo-ohms, limits current which flows through switch 34. A logic low condition at pins 2 and 4 causes pin 3, shown connected to resistor 44, to go from a logic low condition to a logic high condition for a predetermined amount of time dependent upon the values of capacitor 38 and variable resistor 40. In a preferred embodiment, capacitor 38 has a value of 30 micro-farads and variable resistor 40 is a ten turn 1 mega-ohm potentiometer. Due to the fact that different analog storage memory components have different storage capacities, the time duration of the pulse, or pulse width, produced at pin 3 of timer component 32 should be adjusted to match the operation of analog memory component 30. A visual indication of recording or playback operation is provided by red light emitting diode (LED) 42 which is activated so long as a logic high condition occurs at pin 3. Resistor 44, shown with a value of 270 ohms, limits current through LED 42. A high logic condition at pin 3 of timer component 32 also turns on NPN transistor 46 to produce a logic low at the collector of transistor 46. This causes a logic low condition at the collector of transistor 46 and also a logic low condition at the chip enable (CE) and the power down (PD) pins of analog storage memory component 30. Resistor 48 limits current flow through transistor 46.

Although an ISD 1016 integrated circuit (i.e.) is disclosed for use as analog memory component 30, other analog memory integrated circuits (i.e.’s) may also be used depending on the desired duration of the analog signal to be recorded and the frequencies of the signal anticipated. The ISD 1016i.e., has enough memory to record for a duration of 16 seconds with a bandpass of 3.4 KHz. An ISD 1020 may be used for a duration of 20 seconds and has a bandpass of 2.7 KHz. An ISD 1012 is also available to record for 12 seconds with a bandpass of 4.5 KHz. Other analog memory devices may also be used as available. Memory components may be also be cascaded to increase the available recording duration. Variable resistor 40 is used to set the period of operation of memory component 30 to be less than the total time during which memory component 30 can record or playback to avoid memory overflow. By using the ISD 1016 i.e. which has a total memory capacity to allow 16 seconds of data to be recorded, the time period is preferably set at 15 seconds by use of variable resistor 40. The record and playback time period are both determined by the setting of

5,576,491
resistor 40 and are, therefore, of the same duration in a
preferred embodiment of the present invention. If recording
time periods are segmented, for instance, into four 2 second
periods, it may, in some cases, be desirable to have an
approximate 16 second playback to show trends or for other
purposes. Digital counting circuitry and indicating means
may also be used with segmented recording periods so as to
indicate which segments are being used and to coordinate
operation thereof. While address lines from pins 1-10 of
memory component 30 are shown grounded, it is possible to
use memory component as an addressable component if, for
instance, the circuit is under micro-computer control.

Switch 50 determines whether analog memory compo-
nent 30 is in a record mode or a playback mode and may be
either a manual switch as shown or an electronic switch.
Capacitors 52 and 54 are power filters and each have a value
of 0.1 micro-farads in a preferred embodiment. When
memory component 30 is in a playback mode as determined
by switch 50 and timer component 32, then analog data is
played back between terminal 14 of memory component 30
and ground. An end of data signal ('EOD') which is available
at the EOD terminal goes from logic high to logic low as an
end of data mark for external devices such as a spectrum
analyzer. The EOD data line may also be used to transfer
data to additional cascaded chips to extend recording/play-
back time. Memory component 30 may be socket mounted
so as to be removable from the circuit shown in FIG. 1
without the need for desoldering by applying heat at a
temperature high enough to melt solder at the individual pins
of memory component 30. The advantage of this feature is
that only memory component 30 would have to be carried to
a playback device located at a more convenient location.
This feature could also be applied to a removable memory
board for playback at a more convenient location and which
might contain either a plurality of individual transducer
signal recordings or perhaps a single more lengthy record-
ning. Multiple analog memory component circuitry is shown
in FIG. 2 which is discussed hereinafter.

Resistors 56 and 58 are used to attenuate an analog
accelerometer signal from accelerometer circuit 12 and to
establish, in a preferred embodiment, a 50 millivolt peak to
peak analog signal at pin 20, the analog input terminal of
memory component 30. Resistor 56 has a nominal value of
20 kilo-ohms and resistor 58 has a nominal value of
47kilo-ohms and resistor

Switches 108b-d, f, g, are indicated as associated with
their respective channels. Many arrangements of these
switches may be made as will be discussed. As illustrated,
switches 108b, c,d may be used to allow for parallel or
simultaneous operation of channels a-d or may optionally be
used to connect several analog memory components to
channel "a" so that data storage capacity may be selectively
increased for at least one channel. Switches 108b-d may be
moved to the position opposite from that shown in FIG. 2 to
connect their respective analog memory components
106b-d to channel "a". With proper control signals from
timing circuit 110, four times as much data may be stored
with respect to channel "a" as would have been possible
otherwise. Switches 108b-d allow three times as much data
to be stored with respect to channel "a" as would have been
possible without switching. Alternatively, switches 108b-d,
f, g may be set for parallel operation of all channels. It will
be appreciated that other possible operating modes are also
 conceivable using these same switches. On the other hand,
it may be more desirable to use multiple pole switches
connecting simultaneously to all or most channels and
having only two possible switch positions to make operation
more convenient. It is also possible that switches may be
an electronically controllable switch used to select
channels. Those skilled in the art will realize that other arrangements,
numbers, and/or combinations of switches may be used.

Timing control 110 uses EOD (end of data) lines 114 for
operation of analog memory components 106a-g although
this is not mandatory since timing signals can be generated
without the EOD signals. In practice, lines 114 may be
connected directly to each subsequent analog memory com-
ponent if it is desired to dedicate the circuit to cascade
operation. Alternatively, timing control 110 may be used for
selective connection of lines 114 as desired. Such selective
operation may include a cascade mode or a parallel mode or
some combination of the two with some channels having
cascaded memory components as desired. As each analog
memory component reaches capacity, an end of data flag is
set and applied to the appropriate line 114 which prompts
timing circuit 110 to initiate operation of a subsequent
analog memory component via control lines 116. Control
lines 116 may each comprise several connections to each
analog memory component since several terminals are
involved in controlling each analog memory component.
At least one or more of EOD lines 114 may also be used as an
output for use in synchronizing externally located vibration
analysis machines (not shown). The circuit configuration of
be quite low—typically less than 4 kilograms due in main to
recorder
the desired operating mode. These controls may be rather
means to interface to a user for selection and indication of
combination mode control
typically be physically attached to monitoring equipment
reduced.

bined signal conditioning components. It may be desirable
the light weight analog memory components and the com-
loops may exist between controller
operations, the overall weight of recorder module
specifications desired. However, even with sophisticated
art
that many modifications
will
As
may be made without departing from the scope and spirit of the invention. For instance, individual circuits
shown and described may be combined into a single circuit
or circuit element. Therefore, the invention is not restricted

The foregoing description of the invention has been
directed in primary part to a particular, preferred embod-
ment in accordance with the requirements of the patent
stantes and for purposes of illustration. It will be apparent,
however, to those skilled in the art that many modifications
and changes in the specifically described recorder module
or
in

The apparatus of claim 1, wherein:
said solid state analog signal storage integrated circuit is
mechanically attachable and detachable from said accel-
cometer record and playback module.

The apparatus of claim 1, further comprising:
a plurality of solid state analog signal storage integrated
circuits, and
at least one switch to switch between a first state of
operation during which each of said plurality of solid
state analog signal storage integrated circuits are
simultaneously activated.

The apparatus of claim 5, further comprising:
an end of data control terminal associated with each of
said solid state analog signal storage integrated circuits,
and
said at least one switch being connected electrically to
said end of data control terminal of at least one of said
solid state analog signal storage integrated circuits.

The apparatus of claim 1, further comprising:
a plurality of accelerometer signal amplitude regulating
circuits, and
a plurality of solid state analog signal storage integrated
circuits each having an associated analog signal input
connection for receiving an amplitude regulated analog
accelerometer signal from a respective one of said
plurality of accelerometer signal amplitude regulating
circuits, said plurality of solid state analog signal
storage devices being simultaneously activated.

* * * * *