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[57] ABSTRACT

A robot manipulator controller for a flexible manipulator
arm having plural bodies connected at respective movable
hinges and flexible in plural deformation modes correspond-
ing to respective modal spatial influence vectors relating
deformations of plural spaced nodes of respective bodies to
the plural deformation modes, operates by computing articu-
lated body quantities for each of the bodies from respective
modal spatial influence vectors, obtaining specified body
forces for each of the bodies, and computing modal defor-
mation accelerations of the nodes and hinge accelerations of
the hinges from the specified body forces, from the articu-
lated body quantities and from the modal spatial influence
vectors. In one embodiment of the invention, the controller
further operates by comparing the accelerations thus com-
puted to desired manipulator motion to determine a motion
discrepancy, and correcting the specified body forces so as
to reduce the motion discrepancy. The manipulator bodies
and hinges are characterized by respective vectors of defor-
mation and hinge configuration variables, and computing
modal deformation accelerations and hinge accelerations is
carried out for each one of the bodies beginning with the
outermost body by computing a residual body force from a
residual body force of a previous body and from the vector
of deformation and hinge configuration variables, comput-
ing a resultant hinge acceleration from the body force, the
residual body force and the articulated hinge inertia, and
revising the residual body force modal body acceleration.

45 Claims, 7 Drawing Sheets
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CONTROLLING FLEXIBLE ROBOT ARMS
USING HIGH SPEED DYNAMICS PROCESS

ORIGIN OF THE INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
contractor has elected not to retain title.

BACKGROUND OF THE INVENTION

1. Technical Field

The invention relates to robot manipulators and more
particularly to a method and apparatus for controlling robot
arms having flexible links using a high speed recursive
dynamics algorithm to solve for the accelerations of link
deformation and hinge rotations from specified body forces
applied to the links.

2. Background Art

Controlling robot manipulator arms is a well-known prob-
lem and has been described in a number of publications. The
invention herein will be described with reference to the
following publications by referring to each publication by
number, such as Ref. [1], Ref. [2], or simply [1] or [2], for
cxample.

References
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Operator Algebra for Manipulator Modeling and Con-
trol,” The International Journal of Robotics Research,
Vol. 10, No. 4, August 1991, pp. 371-381.

[2] Jain, A., “Unified Formulation of Dynamics for Serial
Rigid Multibody Systems,” Journal of Guidance, Con-
trol and Dynamics, Vol. 14, No. 3, May-June 1991, pp.
531-542.

[3] Kim, S. S. and Haug, E. J., “A Recursive Formulation
for Flexible Multibody Dynamics, Part I: Open-Loop
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and Engineering, Vol. 71, No. 3, 1988, pp. 293-314.

[4] Changizi, K. and Shabana, A. A., “A Recursive
Formulation for the Dynamic Analysis of Open Loop
Deformable Multibody Systems,” ASME JI. of Applied
Mechanics, Vol. 55, No. 3, September 1988, pp.
687-693.
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No. 2, March-April 1990.
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H. P. “A Digital Computer Program for the Dynamic
Interaction Simulation of Controls and Structure (DIS-
COS),” NASA Technical Paper 1219, NASA, May
1978.
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JPL Publication 90-26, Jet Propulsion Laboratory,
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Manipulators,” ASME Journal of Dynamic Systems,
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pp. 69-76.

[14] Jain, A. and Rodriguez, G., “Kinematics and Dynam-
ics of Under-Actuated Manipulators,” in IEEE Inter-
national Conference on Robotics and Automation, Sac-
ramento, Calif., April 1991.

[15] Featherstone, R., “The Calculation of Robot Dynam-
ics using Articulated-Body Inertias,” The International
Joumal of Robotics Research, Vol. 2, No. 1, Spring
1983, pp. 13-30. ’

{16] Padilla, C. E. and von Flotow, A. H., “Nonlinear
Strain-Displacement Relations and Flexible Multibody
Dynamics,” in Proceedings of the 3rd Annual Confer-
ence on Aerospace Computational Control, Vol. 1,
Oxnard, Calif., pp. 230-245, August 1989. (JPL Pub-
lication 89-45, Jet Propulsion Laboratory, Pasadena,
Calif., 1989).

[17] Kane, T. R., Ryan, R. R., and Banerjee, A. K.,
“Dynamics of a Cantilevered Beam attached to a Mov-
ing Base,” Journal of Guidance, Control and Dynam-
ics, Vol. 10, No. 2, March-April 1987, pp. 139-151.

The invention uses spatial operators to develop new
spatially recursive dynamics algorithms for flexible multi-
body systems. The operator description of the dynamics is
identical to that for rigid multibody systems. Assumed-mode
models are used for the deformation of each individual body.
The algorithms are based on two spatial operator factoriza-
tions of the system mass matrix. The first (Newton-Euler)
factorization of the mass matrix leads to recursive algo-
rithms for the inverse dynamics, mass matrix evaluation, and
composite-body forward dynamics for the system. The sec-
ond (Innovations) factorization of the mass matrix, leads to
an operator expression for the mass matrix inverse and to a
recursive articulated-body forward dynamics algorithm. The
primary focus is on serial chains, but extensions to general
topologies are also described. A comparison of computa-
tional costs shows that the articulated-body forward dynam-
ics algorithm is much more efficient than the composite-
body algorithm for most flexible multibody systems.

1. Nomenclature

We use coordinate-free spatial notation ([1, 2]) in this
specification. A spatial velocity of a frame is a 6-dimensional
quantity whose upper 3 elements are the angular velocity
and whose lower 3 elements are the linear velocity. A spatial
force is a 6-dimensional quantity whose upper 3 elements
are a moment vector and whose lower 3 elements are a force
vector.

A variety of indices are used to identify different spatial
quantities. Some examples are: V(j,) is the spatial velocity
of the j* node on the k™ body; V (k)=col{V ()} is the
composite vector of spatial velocities of all the nodes on the
k" body; V. =col{V (k)} is the vector of spatial velocities of
all the nodes for all the bodies in the serial chain. The index
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k will be used to refer to both the k™ body as well as the k™

body reference frame #,, with the usage being apparent
from the context. Some key quantities are defined below in
accordance with FIGS. 1a and 1b.
General Quantities
=[XT" € £ —the skew-symmetric cross-product
matrix associated with the 3-dimensional vector x

dx
dt

x= -

the time derivative of x with respect to an inertial frame
¥—the time derivative of x with respect to the body-fixed
(rotating) frame
diag{x(k)}—a block diagonal matrix whose k" diagonal
element is x(k)
col{x(k)}—a column vector whose k element is x(k)
1(x,y) € s>—the vector from point/frame x to point/frame

y
) e Roxs

the spatial transformation operator which transforms
spatial velocities and forces between points/frames x
and y

Individual Body Nodal Data

n,(k)—number of nodes on the k** body

F,—body reference frame with respect to which the
deformation field for the k™ body is measured. The
motion of this frame characterizes the motion of the k**
body as a rigid body.

jx—ij™ node on the k” body

19k,j,) € ss—vector from F, to the location (before
deformation) of the j"* node reference frame on the k*
body

8,(j,) € s>—translational deformation of the j** node on
the k™ body

1k j)=lo(k,j)+8,(G,) € s> —vector from F, to the loca-
tion (after deformation) of the " node reference frame
on the k* body

sth

3,,(i,) € g —deformation angular velocity of the j* node
on the k” body with respect to the body frame 7,
3,(i) € s —deformation linear velocity of the j** node
on the k” body with respect to the body frame F,

u(j,) € g°—the spatial displacement of node j,. The
translational component of u(j,) is ,(j,), while its time

derivative with respect to the body frame *, is
f] iy 8m(ilc)
2 _( 8v(ji) )

() € 5> *—inertia tensor about the nodal reference
frame for the j node on the kX body

p(j) € ¢ —vector from the nodal reference frame to the
node center of mass for the j** node on the k” body

m(j,)—mass of the j** node of the k' body

I Ixy)

Oxy) = ( 0 4

mp)
m(l

TG

- ) e Rox6 .
-m(jep(i)

MGy = (

spatial inertia about the nodal reference frame for the j**

node on the k” body
M,(k) diag{M,G)} e g*®®__giructural mass
matrix for the k”* body
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K (k) e go®@=m®__gmctural stiffness matrix for the
k™ body

Individual Body Modal Data

n,,(k)—number of assumed modes for the k" body

N (k)=n,,(k)+6—number of deformation plus rigid-body
degrees of freedom for the k" body

nk) € g™ *—vector of modal deformation variables for
the k” body

I1/(k) e °—modal spatial displacement vector for the
" mode at the j,* nodal reference frame

W)=/ ®), . . . , 1, o/()le 5*"®—modal spatial
influence vector for the j,”* node. The spatial deforma-
tion of node j, is given by u(j)=IFkmk).

I(k)=col {IF(k) }e g°=*>™=®_the modal matrix for the
k™ body. The r'* column of II(k) is denoted I, (k) €
3%® and is the mode shape function for the r'*
assumed mode for the k' body. The deformation field
for the k™ body is given by u(k)=II(k)n(k), while

2 (k)=lkn(k).
M, (k) € s N (k)xV(k)—modal mass matrix for the
k™ body.
K,.(k) € g ¥ (KX (k)—modal stiffness matrix for the
k* body.
Multibody Data

N—number of bodies in the serial flexible multibody
system

7o ¥ Wg.
k=1

overall degrees of freedom in the serial chain obtain by
disregarding the hinge constraints
n,(k)—number of degrees of freedom for the k”* hinge
N (&)=n,,(k)+n,(k)—number of deformation plus hinge
degrees of freedom for the X body

N_o YN,
k=1

overall deformation plus hinge degrees of freedom for
the serial chain.

d,—node on the k* body to which the k'* hinge is
attached

t,—node on the k* body to which the (k—1)" hinge is
attached

o,—reference frame for the k* hinge on the k* body.
This frame is fixed to node d,.

0, —reference frame for the k* hinge on the (k+1)*
body. This frame is fixed to node t,;.

0(k) € 3™ ®—vector of configuration variables for the k**
hinge

B(k) e ™ —vector of generalized velocities for the k'

hinge
) e Mo .

relative spatial velocity for the k™ hinge defined as the
spatial velocity of frame @, with respect to frame ©,"

H*(k) € %" —joint map matrix for the k™ hinge,
whose columns comprise the unit vectors of the hinge.
We have that A (k)=H*(k)B(k).

Aulh)
Al = ( A
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. ( n(®)

) cFNw .
(k)

vector of (deformation plus hinge) generalized configu-
ration variables for the k” body

)= ( Nk

B(K) )E A,

vector of (deformation plus hinge) generalized veloci-
ties for the k™ body

)65)16.

spatial velocity of the k™ body reference frame #,,
with w(k) and v(k) denoting the angular and linear

w(k)

V(D) = V(B = ( o

velocities respectively of frame *,
V(©,) € #°—spatial velocity of frame @,
V(0" € 5%—spatial velocity of frame ©,*

V(o) € 2°—spatial velocity of the j** node on the k**
body.

a,(j,) € # *—spatial acceleration of the j* node on the k”
body.

n)

) eR Naw.
V(k)

Vm(k) = (

modal spatial velocity of the k” body

ozm(k)=\7m(k) € s N(k)—modal spatial acceleration of
the k™ body

a,,(k) € g N (k)—modal Coriolis and centrifugal accel-
erations for the k¥ body

b,.(k) € g A (k)—modal gyroscopic forces for the k™.

body

f.(k) € g A(k)—modal spatial force of interaction
between the k?”* and (k+1)" bodies

f(j,) € s —spatial force at node j,

f(k) e g°—effective spatial force at frame F,

T(k) € % A'(k)—generalized force for the k" body

HF&=HKO( 0, k) € s™*°—joint map matrix
referred to frame ¥, for the k' hinge

—] k)*
(k)=(1 (i)

N )Eé)t/\f(k)xﬁ(k).
0 HTk)

{deformation plus hinge) modal joint map matrix for
the k™ body

A(k)=(

relates spatial forces and velocities between node t, and
frame F,

B&k+1,K)=[0, ®(t,.,, k)] € ¥ (k)—relates spatial
forces and velocities between node t,,, and frame #,
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Ok+ 1= Ak +1)Bk +1,k)=

0 [k + DI*¢ (e 1.k
0 Gk +1,k)

) e RN tx N g

the interbody transformation operator which relates
modal spatial forces and velocities between the k™ and
(k+1)"" bodies

Clhk-1= otk —1) € Renguxs

0

Bk)=[ok,1), ¢(k,2), . . . , dkn k)] e g¥oO—
relates the spatial velocity of frame F, to the spatial
velocities of all the nodes on the k™ body when the
body is regarded as being rigid

M € g X N—the multibody system mass matrix

C e ¢ N—the vector of Coriolis, centrifugal and elastic
forces for the multibody system

2. Introduction

The invention uses spatial operators ([1, 2]) to formulate
the dynamics and develop efficient recursive algorithms for
flexible multibody systems. Flexible spacecraft, limber
space manipulators, and vehicles are important examples of
flexible multibody systems. Key features of these systems
are the large number of degrees of freedom and the com-
plexity of their dynamics models.

Some of the goals of the invention are: (1) providing a
high-level architectural understanding of the structure of the
mass matrix and its inverse; (2) showing that the high-level
expressions can be easily implemented within the very well
understood Kalman filtering and smoothing architecture; (3)
developing very efficient inverse and forward dynamics
recursive algorithms; and (4) analyzing the computational
cost of the new algorithms. Accomplishing these goals adds
to the rapidly developing body of research in the recursive
dynamics of flexible multibody systems (see {3, 4, 5]).

It is assumed that the bodies undergo small deformations
so that a linear model for elasticity can be used. However,
large articulation at the hinges is allowed. No special
assumptions are made regarding the geometry of the com-
ponent bodies. To maximize applicability, the algorithms
developed here use finite-element and/or assumed-mode
models for body flexibility. For notational simplicity, and
without any loss in generality, the main focus of this
specification is on flexible multibody serial chains. Exten-
sions to tree and closed-chain topologies are discussed.

In Section 3 we derive the equations of motion and
recursive relationships for the modal velocities, modal
accelerations, and modal forces. This section also contains a
derivation of the Newton-Euler Operator Factorization of
the system mass matrix. A recursive Newton-Euler inverse
dynamics algorithm to compute the vector of generalized
forces corresponding to a given state and vector of gener-
alized accelerations is described in Section 4.

In Section 5, the Newton-Euler factorization of the mass
matrix is used to develop a partly recursive composite-body
forward dynamics algorithm for computing the generalized
accelerations of the system. The recursive part is for com-
puting the multibody system mass matrix. This forward
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dynamics algorithm is in the vein of well-established
approaches ([6, 7]) which require the explicit computation
and inversion of the system mass matrix. However, the new
algorithm is more efficient because the mass matrix is
computed recursively and because the detailed recursive
computations follow the high-level architecture (i.e. road-
map) provided by the Newton-Euler factorization.

In Section 6 we derive new operator factorization and
inversion results for the mass matrix that lead to the recur-
sive articulated-body forward dynamics algorithm. A new
mass matrix operator factorization, referred to as the Inno-
vations factorization, is developed. The individual factors in
the innovations factorization are square and invertible opera-
tors. This is in contrast to the Newton-Euler factorization in
which the factors are not square and therefore not invertible.
The Innovations factorization leads to an operator expres-
sion for the inverse of the mass matrix. Based on this
expression, in Section 7 we develop the recursive articulated
body forward dynamics algorithm for the multibody system.
This algorithm is an alternative to the composite-body
forward dynamics algorithm and requires neither the explicit
formation of the system mass matrix nor its inversion. The
structure of this recursive algorithm closely resembles those
found in the domain of Kalman filtering and smoothing
({8D.

In Section 8 we compare the computational costs for the
two forward dynamics algorithms. It is shown that the
articulated body forward dynamics algorithm is much more
efficient than the composite body forward dynamics algo-
rithm for typical flexible multibody systems. In Section 9 we
discuss the extensions of the formulation and algorithms in
this specification to tree and closed-chain topology multi-
body systems.

SUMMARY OF THE INVENTION

A robot manipulator controller for a flexible manipulator
arm having plural bodies connected at respective movable
hinges and flexible in plural deformation modes correspond-
ing to respective modal spatial influence vectors relating
deformations of plural spaced nodes of respective bodies to
the plural deformation modes, operates by computing articu-
lated body quantities for each of the bodies from respective
modal spatial influence vectors, obtaining specified body
forces for each of the bodies, and computing modal defor-
mation accelerations of the nodes and hinge accelerations of
the hinges from the specified body forces, from the articu-
lated body quantities and from the modal spatial influence
vectors. In one embodiment of the invention, the controller
further operates by comparing the accelerations thus com-
puted to desired manipulator motion to determine a motion
discrepancy, and correcting the specified body forces so as
to reduce the motion discrepancy.

Computing the articulated body quantities is carried out
for each body beginning at the outermost body by comput-
ing a modal mass matrix, computing an articulated body
inertia from the articulated body inertia of a previous body
and from the modal mass matrix, computing an articulated
hinge inertia from the articulated body inertia, computing an
articulated body to hinge force operator from the articulated
hinge inertia, computing a null force operator from the
articulated body to hinge force operator. This is followed by
revising the articulated body inertia by transforming it by the
null force operator.

The manipulator bodies and hinges are characterized by
respective vectors of deformation and hinge configuration
variables, and computing modal deformation accelerations

10

15

20

25

30

35

50

55

60

65

8

and hinge accelerations is carried out for each one of the
bodies beginning with the outermost body by computing a
residual body force from a residual body force of a previous
body and from the vector of deformation and hinge con-
figuration variables, computing a resultant hinge accelera-
tion from the body force, the residual body force and the
articulated hinge inertia, and then, for each one of the bodies
beginning with the innermost body, by computing a modal
body acceleration from a modal body acceleration of a
previous body, computing a modal deformation acceleration
and hinge acceleration from the resulting hinge acceleration
and from the modal body acceleration transformed by the
body to hinge force operator.

Computing a resultant hinge force is followed by revising
the residual body force by the resultant hinge force trans-
formed by the body to hinge force operator, and computing
a modal deformation acceleration and hinge acceleration is
followed by revising the modal body acceleration based
upon the deformation and hinge acceleration. The comput-
ing is performed cyclically in a succession of time steps, and
the vector of deformation and hinge configuration variables
is computed from the modal deformations and hinge accel-
erations of a previous time step, or is derived by reading
robot joint sensors in real time.

In a preferred embodiment, the articulated body inertia,
the articulated hinge inertia, the body to hinge force opera-
tor, the null force operator, the body force, the residual body
force, the resultant hinge acceleration and the resultant hinge
force are each partitioned into free and rigid versions. This
embodiment operates by computing the flexible version of
the resultant hinge force from the applied body force, and
computing the flexible version of the residual body force and
from the rigid version of the residual body force transformed
by the modal spatial influence vector. The articulated body
inertia is decomposed into rigid-free and rigid-rigid coupling
components, and the rigid version of the residual body force
is revised based upon a function of the rigid-rigid and
rigid-free coupling components of the articulated body iner-
tia and a flexible version of the articulated body inertia. This
embodiment decomposes the manipulator’s modal mass
matrix into rigid-free and rigid-rigid coupling components
and computes the rigid-rigid and rigid-free coupling com-
ponents of the articulated body inertia from respective ones
of the rigid-rigid and rigid-free coupling components of the
modal mass matrix.

In this embodiment, free and rigid versions of a defor-
mation and hinge modal joint map matrix are computed for
each body so that the flexible version of the articulated hinge
inertia is computed from the articulated body inertia trans-
formed by the flexible version of the corresponding defor-
mation and hinge modal joint map matrix, the rigid version
of the articulated body inertia is computed from a function
of the rigid-rigid and rigid-free coupling components of the
articulated body inertia transformed by the flexible version
of the corresponding deformation and hinge modal joint map
matrix, the rigid version of the articulated hinge inertia is
computed from the rigid version of the articulated body
inertia, and the rigid version of the body to hinge force
operator is computed from the rigid versions of the articu-
lated body inertia and the articulated hinge inertia. The free
and rigid versions of the deformation and hinge modal joint
map matrix are formed by computing a joint map matrix
corresponding to unit vectors of the hinges and computing
the deformation and hinge modal joint map matrix from the
joint map matrix and from the modal spatial influence
vector.

In this embodiment, the flexible version of the resulting
hinge acceleration is computed from the flexible versions of
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the articulated hinge inertia and resulting hinge force, and
the rigid version of the resulting hinge acceleration is
computed from the rigid versions of the articulated hinge
inertia and resulting hinge force. The residual body force is
revised in this embodiment by adding to the residual body
force a product of the rigid versions of the resultant hinge
force and the body to hinge force operator.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a simplified diagram of a portion of a robot
manipulator having flexible links, and illustrating the coor-
dinate system employed in one embodiment of the inven-
tion.

FIG. 1b is a simplified diagram illustrating the finite
element analysis employed in the invention, in which the
displacement of plural spaced nodes along the length of a
flexible link follows a well-recognized pattern for each
mode of flexibility.

FIG. 2 is a block diagram illustrating how the articulated
body quantities are produced in ome embodiment of the
invention.

FIG. 3 is a block diagram illustrating an articulated body
forward dynamics algorithm for flexible link manipulators in
accordance with the present invention.

FIG. 4 is a block diagram illustrating the process of the
invention for controlling a robot manipulator having flexible
links.

FIGS. 5a and 5b constitute a block diagram illustrating a
preferred embodiment of the articulate body forward
dynamics algorithm employed in the process of FIG. 4.

FIG. 6 is a simplified schematic block diagram of appa-
ratus embodying the present invention.

DETAILED DESCRIPTION OF THE INVENTION

3. Equations of Motion for Flexible Serial Chains

In this section, we develop the equations of motion for a
serial flexible multibody system with N flexible bodies.
Each flexible body is assumed to have a lumped mass model
consisting of a collection of nodal rigid bodies. Such models
are typically developed using standard finite element struc-
tural analysis software. The number of nodes on the k body
is denoted n,(k). The j** node on the k” body is referred to
as the j;™* node. Each body has associated with it a body
reference frame, denote F, for the k™ body. The deforma-
tions of the nodes on the body are described with respect to
this body reference frame, while the rigid body motion of the

k” body is characterized by the motion of frame F,.
The 6-dimensional spatial deformation (slope plus trans-

lational) of node j, (with respect to frame #,) is denoted
u(j,) € #°. The overall deformation field for the ¥ body is
defined as the vector u(k)=col{u(j,)} € °=®. The vector

from frame F, to the reference frame on node j, is denoted
Ik,jo) € o’

With M(k,) e % denoting the spatial inertia of the
j*™ node, the structural mass matrix for the k”* body M,(k)
is the block diagonal matrix diag{M(j)} e g5m¢>om®,
The structural stiffness matrix is denoted K (k) € %%
6n®. Both M,(k) and K (k) are typically generated using
finite element analysis.

As shown in FIG. 1a, the bodies in the serial chain are
numbered in increasing order from tip to base. We use the
terminology inboard (outboard) to denote the direction along
the serial chain towards (away from) the base body. The k™
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body is attached on the inboard side to the (k+1)" body via
the k" hinge, and on the outboard side to the (k—1)" body
via the (k—1)" hinge. On the k™ body, the node to which the
outboard hinge (the (k—1)" hinge) is attached is referred to
as node t,, while the node to which the inboard hinge (the k**
hinge) is attached is denoted node d,. Thus the k' hinge
couples together nodes d, and t,, ;. Attached to each of these
pair of adjoining nodes are the k”* hinge reference frames
denoted @, and ©,7, respectively. The number of degrees
of freedom for the k" hinge is denoted n,(k). The vector of
configuration variables for the k™ hinge is denoted 8(k)
e ™0, while its vector of generalized speeds is denoted
Bk) € ™. In general, when there are nonholonomic hinge
constraints, the dimensionality of B(k) may be less than that
of 8(k). For notational convenience, and without any loss
generality, it is assumed here that the dimensions of the
vectors O(k) and B(k) are equal. In most situations, P(k) is
simply 0. However there are many cases where the use of
quasi-coordinates simplifies the dynamical equations of
motion and an alternative choice for f(k) may be preferable.
The relative spatial velocity A,(k) across the hinge is given
by H*(k)B(k), where H*(k) denotes the joint map matrix for
the k** hinge.

Assumed modes are typically used to represent the defor-
mation of flexible bodies, and there is a large body of
literature dealing with their proper selection. There is how-
ever a close relationship between the choice of a body
reference frame and the type of assumed modes. The com-
plete motion of the flexible body is contained in the knowl-
edge of the motion of the body reference frame and the
deformation of the body as seen from this body frame. In the
multibody context, it is often convenient to choose the
location of the k™ body reference frame ¥, as a material
point on the body and fixed to node d, at the inboard hinge.
For this choice, the assumed modes are cantilever modes and
node d, exhibits zero deformation (u(d,)=0). Free-free
modes are also used for representing body deformation and
are often preferred for control analysis and design. For these
modes, the reference frame F, is not fixed to any node, but
is rather assumed to be fixed to the undeformed body, and as
a result all nodes exhibit nonzero deformation. The dynam-
ics modeling and algorithms developed here handle both
types of modes, with some additional computational sim-
plifications arising from Eqg. (1) when cantilever modes are
used. For a related discussion regarding the choice of
reference frame and modal representations for a flexible
body see [9].

We assume here that a set of n,,(k) assumed modes has
been chosen for the k™ body. Let II/(k) € ° denote the
modal spatial displacement vector at the j,”* node for the r**
mode. The modal spatia!l displacement influence vector IF(k)
€ %=® for the j,” node and the modal matrix TI(k)
€ go=@*m® for the k™ body are defined as follows:

WEO=I=I/), . . . 1, /()] and Hk)=col{T¥()}

The r* column of II(k) is denoted II,(k) and defines the
mode shape for the r* assumed mode for the k* body. Note
that for cantilever modes we have

1L4K)=0 for r=1 . . . n,,(k) )
With ni(k) e &™*® denoting the vector of modal deformation
variables for the k™ body, the spatial deformation of node j,
and the spatial deformation field u(k) for the k™ body are
given by

u(i=IEGomM(K) and wk)=1IGn(k) @
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The vector of generalized configuration variables v(k) and
generalized speeds X(k) for the k' body are defined as

N CRWYI . ( nw
ok = ( o) )6 w2 ® = gy

where A (k) an,,(k)+n,(k). The overall vectors of general-
ized configuration variables v and generalized speeds X for
the serial multibody system are given by

vaco{vik)} € & N and X & co{X(K)} ep N

) ) @

@

where

denotes the overall number of degrees of freedom for the
multibody system. The state of the multibody system is
defined by the pair of vectors {v,X}. For a given system state
{v,X}, the equations of motion define the relationship

between the vector of generalized accelerations X and the

vector of generalized forces T € g A for the system. The
inverse dynamics problem consists of computing the vector
of generalized forces T for a prescribed set of generalized
accelerations X. The forward dynamics problem is the
converse one and consists of computing the set of general-

ized accelerations X resulting from a set of generalized
forces T. The equations of motion for the system are
developed in the remained of this section.

3.1 Recursive Propagation of Velocities

Let V(k) € &° denote the spatial velocity of the k* body

reference frame F,. The spatial velocity V(i,,,) € %° of
node t,,; (on the inboard of the k” hinge) is related to the
spatial velocity V(k+1) of the (k+1)" body reference frame

Fr+1» and the modal deformation variable rates m(k+1) as
follows:
®

Vi) =080+ L)Vl + D+ (ta0)

=%k + Ltge )V + 1) + ik + 1nk+ 1)

6x6

The spatial transformation operator ¢(x,y) € g above is

defined to be

9x3)= ( 1y )

i

©

where 1(x,y) € g> denotes the vector between the points x
and y. Note that the following important (group) property
holds:
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O(x,y)9(y.2)=0(x,2)

for arbitrary points x, y and z. As in Eq. (5), and throughout
this specification, the index k will be used to refer to both the

k" body as well as to the k" body reference frame #, with
the specific usage being evident from the context. Thus for

instance, V(k) and ¢(k,t,) are the same as V( F,), and ¢( 7,
t;) respectively.

The spatial velocity V(0,") of frame ©,* (on the inboard
side of the k™ hinge) is related to V,(t,,,) via

V(O )=*t01, OV (terr) N

Since the relative spatial velocity A, (k) across the k™ hinge
is given by H*(k)B(k), the spatial velocity V(©,) of frame
0, on the outboard side of the X hinge is
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V(O =V(O Y RBK) ®

The spatial velocity V(k) of the k* body reference frame is
given by

v =5 (Tov( G- " @ )

=% DV Oy - mgom®

Putting together Eq. (5), Eq. (7), Eq. (8) and Eg. (3.1), it
follows that

V{)=9* (bt LYVt D O* (k1 IR 1M+ 1)+0%( O
RH* BRI (om (k) (10

Thus, with W (k) an,,(k)+6, and using Eq. (10), the modal
spatial velocity V,,(k) € g 7 for the k”* body is given by

k) an
Vk)
where the interbody transformation operator @(.,.) and the

modal joint map matrix H(k) are defined as

Vinlly = ( ) = O+ LRVl + 1) + Tox@oxwe ® N

12
0 [k + DI*¢(tir1.k) 2

ry RN @i N
Ok+ 1,k = ( 0 o+ 1) )E (ke 1) )

13)

Moo | 1-I0GRT
(k)—(o i

)egtN(k)me

where
H F (k) 8HK)O( O k) € e

Note that

Bk+1 k)= Ak+1) Ber1,k) (14)

where

Awé(

and

() a3

e RN wxs
ok, 1)
Bk + LBAO, 0t 0le %N oo
Also, the modal joint map matrix (k) can be partitioned as

H
H(k) = ( Hi((ll?) ) € R N(k)x W(k) (16)

where
H ) LI € 7@ N and H,(0) 2 [0, HIO O,
Wle R0 O an

With

T_o YW,
k=1

we define the spatial operator g4, as

18)

0 0 0 0 0
o(2,1) 0 .. .0 0
0 ®32 .. .0 0
E¢ & € R ./_\rxN
0 0 ONN-1) 0
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Using the fact that g4, is nilpotent (i.e. g4"=0), we define
the spatial operator ® as

G2 (I~ gyl = (19)
I+ 8y +...+ EX =
I 0 0
o) I 0
e ANN
OW,1) ON2) . . . 1
where

() ADGG,i-1) . . . D(+14) for ij

Also define the spatial operator # 4 diag { #(k)} € g XN
Using these spatial operators, and defining V,, 4 col{V,,(k)}
€ ¢ N, from Eq. (11) it follows that the spatial operator
expression for V,, is given by

V,=0% H*X 0

3.2 Modal Mass Matrix for a Single Body
With V(i) € %° denoting the spatial velocity of node j,,
and V (k) acol{V,(j,)} € &°™® the vector of all nodal spatial
velocities for the k™ body, it follows (see Eq. (5)) that
V®=B* @V % R=lIIE), B*R)V, %) (21)
where
B(k) &[0k, 1), $k.20), . - - ok (k)] e R (22)

Since M, (k) is the structural mass matrix of the k™ body, and
using Eq. (21), the kinetic energy of the k” body can be
written in the form

WV XM ()V k) = 2V, * (M, (K)V,,(k) 23
where
Mal) 2 ( g )M:(k)[ﬂ(k),B*(k)] -
IOMBTIE  TROMOBR
BOMMOI®  BOMMB*®
K MK
- MZ( ) n®) € RN wx N w
MI® Mk

Corresponding to the generalized speeds vector X(k), M,,,(k)
as defined above is the modal mass matrix of the k™ body.
In the block partitioning in Eq. (23), the superscripts f and
r denote the flexible and rigid blocks respectively. Thus
M, (k) represents the flex/flex coupling block, white
M, /"(k) the flex/rigid coupling block of M,,(k). We will use
this notational convention through this specification. This
partitioning is readily carried out by simply recognizing that
the M, 7(k) block is a square matrix of dimensionality equal
to the number of deformation modes while the M, (k)
block is a square 6-by-6 matrix. Note that M, (k) is
precisely the rigid body spatial inertia of the k” body.
Indeed, M,,,(k) reduces to the rigid body spatial inertia when
the body flexibility is ignored, i.e., no modes are used, since

10

15

20

25

30

35

40

45

50

55

60

65

14
in this case n,,(k)=0 (and II(k) is null).
Since the vector 1(k,j,) from F, to node j, depends on
the deformation of the node, the operator B(k) is also
deformation dependent. From Eq. (23) it follows that while

the block M, (k) is deformation independent, both the
blocks M,,"(k) and M,,”" (k) are deformation dependent. The
detailed expression for the modal mass matrix can be
defined using modal integrals which are computed as a part
of the finite-element structural analysis of the flexible bod-
ies. These expressions for the modal integrals and the modal
mass matrix of the k™ body can be found in [10]. Often the
deformation dependent parts of the modal mass matrix are
ignored, and free-free eigen-modes are used for the assumed
modes II(k). When this is the case, M, /"(k) is zero and
M, 7(k) is block diagonal.

3.3 Recursive Propagation of Accelerations

Differentiating the velocity recursive equation, Eq. (11),
we obtain the following recursive expression for the modal

spatial acceleration o, (k) € g A (k)for the k”* body:

) @9

D+ Lok + 1) + AR + 0 (k)

k)

k) 2 V() = (
ouk)

where oc(k)=V(k), and the Coriolis and centrifugal accelera-
tion term a (k) € g A (k)is given by

(25)

H
ﬂ‘i(_k_gtlL Vplk + 1) +_d_.(7:_ﬁ‘_)__ x(®

oc,,.(k) =

The detailed expressions for a,(k) can be found in [10].
Defining a,,=col{a,,(k)} €  ~Nand om,=col{x,(K)} e g ¥,
and using spatial operators we can rexpress Eq. (24) in the
form

o, =0*( H*X+a,,) (26)

The vector of spatial accelerations of all the nodes for the k*
body, o.(k) acol{o,(} € 5%, is obtained by differenti-
ating Eq. (21):

o (K)=V (R)=1Ik), B¥®)]ov,, (kyra(k) @n
where
TI(k), B*(k (28)
atk) £ col{ag)} =M;1_t_()_]___ Vn(k) € Rens

3.4 Recursive Propagation of Forces

Let f(k~1) € %° denote the effective spatial force of
interaction, referred to frame F,_,, between the k™ and
(k=1)"* bodies across the (k—1)* hinge. Recall that the
(k—1)"" hinge is between node t, on the k" body and node
d,_, on the (k—1)" body. With £,(j,)e ° denoting the spatial
force at a node j,, the force balance equation for node t; is
given by

Fltd=0(t k= D=1+ M (50l (29)

For all nodes other than node t, on the k™ body, the force
balance equation is of the form

F(j)=M o G+b(oo (e

In the above f(k)=K (k)u(k) e #*=* denotes the vector of
spatial elastic strain forces for the nodes on the k™ body,
while b(j,) € »° denotes the spatial gyroscopic force for the
node j, and is given by

30
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)eéfts

where ©(j,) € &° notes the angular velocity of node j,.
Collecting together the above equations and defining

) TG 3D
m(ielidelopyo
3

b(ji) = (

0 @2

Clhk-1) 2 | ol k=1 € Rénglions

and
bk) & col{b(jp} e ®™®
it follows from Eq. (29) and Eq. (30) that

F)=Clle k~1)flk-1)+M (K)o (k) +b(k)+K (k)u(k) (33)
where f,(k) acol{f,(j)} € %=®. Noting that
fk)=Bfk) G4

and using the principle of virtual work, it follows from Eq.

(21) that the modal spatial forces f, (K) e g N (k)for the
k™ body are given by

N TRk (35
Sl £ ( g9 )ﬁ(k)=( (/()1{)() )
Premultiplying Eq. (33) by
IT*(k)
B(k)

and using Eq. (23), Eq. (27), and Eq. (35) leads to the
following recursive relationship for the modal spatial forces:

MR Chk — 1) 36

f® = (B(k)C(k,k-l)

bm(k) + Km(k)B(K)

[

B o1
k) + Kn(R)B(K)

= Ok = Dl = 1)+ Mu(k)0tm(R) +

bufk) + Kn(k)O(K)
Here we have defined

. ) Sk — 1) + Mu(k)oun(k) +

) Otr,k — Dfk — 1) + Mp(k)0im(k) +

I*(k) (37

bn®) é( 0 )[b(k)ms(k)a(k)]emﬁ ®

and the modal stiffness matrix

(38)
Koy & ( T K®  ®) 2 AT T o

The expression for K,, (k) in Eq. (38) uses the fact that the
columns of B*(k) are indeed the deformation dependent
rigid body modes for the k”* body and hence they do not
contribute to its elastic strain energy. Indeed, when a defor-
mation dependent structural stiffness matrix K (k) is used,
we have that

K, (K)B*(k)=0 (39
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However the common practice (also followed here) of using
a constant, deformation-independent structural stiffness
matrix leads to the anomalous situation wherein Eq. (39)
does not hold exactly. We ignore these fictitious extra terms
on the left-hand side of Eq. (39).

The velocity-dependent bias term b, (k) is formed using
modal integrals generated by standard finite-element pro-
grams, and a detailed expression for it is given in [10]. From
Eqg. (36), the operator expression for the modal spatial forces

f,acol{f (k)} e ¢ ¥ for all the bodies in the chain is given
by

=M, 0+, +K,. V) (40)

where
M,, Adiag{M,, ()} ¢ St NN, K., &diag{K,, ()} ¢ & NN,
and b,, &col{b, @)} e N

From the principle of virtual work, the generalized forces
vector T e ¢ & for the multibody system is given by the
expression

T="Hf, @n

3.5 Operator Expression for the System Mass Matrix
Collecting together the operator expressions in Eq. (20),
Eq. (26), Eq. (40) and Eq. (41) we have:
V,, = @ H*y 42)
0, = O H*Y +a,,)
fn = OM, 0, + by + K, 0) = OM, 0% HAy +

DM, D%a,, + b, + K, V)

T = Hp= Homuar Moo oMu®*an+ b
= Mx +C
where
M2HOM,0* H* ¢ § Nx Nand C2 HOM, ¥, +b,+
K.v) e N 43)

Here M is the system mass matrix for the serial chain and

the expression H®M,,D* 1 * is referred to as the Newton-
Euler Operator Factorization of the mass matrix. Cis the
vector of Coriolis, centrifugal, and elastic forces for the
system.

It is noteworthy that the operator expressions for A and
C are identical in form to those for rigid multibody systems
(see [1, 11]). Indeed, the similarity is more than superficial,
and the key properties of the spatial operators that are used
in the analysis and algorithm development for rigid multi-
body systems also hold for the spatial operators defined here.
As a consequence, a large part of the analysis and algorithms
for rigid multibody systems can be easily carried over and
applied to flexible multibody systems. This is the approach
adopted here.
4. Inverse Dynamics Algorithm

This section describes a recursive Newton-Euler inverse
dynamics algorithm for computing the generalized forces T,
for a given set of generalized accelerations X and system
state {v, X}. The inverse dynamics algorithm also forms a
part of forward dynamics algorithms such as those based
upon composite body inertias or the conjugate gradient
method ([12]).

Collecting together the recursive equations in Eq. (11),
Eq. (24), Eq. (36) and Eq. (41) we obtain the following
recursive Newton-Euler inverse dynamics algorithm:
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( VuN+1)=0, 0N+ 1)=0
fork=N...1
Vin(k) = @*(k + LK)Vn(k + 1) + H*(k)x(k)
Oum(k) = ©*(k + 1,00k + 1)+ TEXERIZ0) + an®)

end loop

( Ju0) =0

fork=1...N
k) = Bk — 1)fulk — 1) + MR (K) + (k) + Kn(DOK)
70 = "W

18

44

\ end loop
15
The structure of this algorithm closely resembles the recur- the generalized forces vector T(k) corresponding to the
sive Newton-Euler inverse dynamics algorithm for rigid hinge actuator forcefs T"(k) can be set, white the remaining
multibody systems (see [13, 1]). All external forces on the ~ generalized forces T'(k) are zero. Thus in contrast with rigid
k™ body are handled by absorbing them into the gyroscopic multibody systems, ﬂex1ble_ multibody systems are u_nder-
force term b, (k). Base mobility is handled by attaching an 20 actuated systems ([14]), since the number of available
additional 6 degrees of freedom hinge between the mobile ~ 2Ctuators 1s less than the number of motion degrees of
base and an inertial frame freedorn in the system. For s.uch under-actuated systems, the
By taking advant f.the special structure of ®(k+1.k) inverse dynamics computations for the generalized force T
y g vantage o pect 0 ’ are meaningful only when the prescribed generalized accel-
and ﬂ(k) _mEEq. 41512) and fEr?ﬁ (1?’)’ ihg é\I%WFOHfIMCE 25 erations X form a consistent data set. For a consistent set of
recursions in Eq. (44) can be further simplified. Using bloc generalized accelerations, the inverse dynamics computa-
partitioning and the superscripts f and r as before to denote tions will lead to a generalized force vector T such that
the flexible and rigid components or versions of the various T/()=0.
quantities, we have that 5. Composite Body Forward Dynamics Algorithm
30  The forward dynamics problem for a multibody system
Valh) = Vol Y =] requires computing the generalized accelerations X for a
Vol (k) 0t (k) given vector of generalized forces T and state of the system
{v.X}. The composite body forward dynamics algorithm
Sl = ) 2nd 700 = ( ) ) described below consists of the followings steps: (a) com-
" ) (k) 35 puting the system mass matrix A4, (b) computing the bias
vector C, and (c) numerically solving the following linear
It is easy to verify that Eq. (45) below is a simplified matrix equation for X:
version of the inverse dynamics algorithm in Eq. (44).
( VaV+1)=0, otu(N + 1) =0 “45)
fork=N...1
Vallk) = (0)
{ Vol = 4%k, 0) 4+ DVinlk+ 1)+ BB - 40100
ouf(k) =M(k)
O (k) = 6*(fs1,k) ‘A*(k + Dl + 1) + BB - IERITR) + an &)
k end loop
fn(0)=0
fork=1...N
Ful) = A0k~ 1o (k= 1) + Ma)0in8) + bnl) + KR
— [TT4 T
o~ ( %) )= T8 = TG )
(k) HE(k)fm (k)
\ end loop
In the foregoing algorithm, n(k) and n(k) are the modal ME=T-C 46)

deformation velocities and accelerations, respectively, com-
puted from the results obtained for a previous time step by
a forward dynamics algorithm of the type described below
herein. Flexible multibody systems have actuators typically
only at the hinges. Thus for the k" body, only the subset of

65

Later in Section 6 we describe the recursive articulated body
forward dynamics algorithm that does not require the

explicit computation of either M or C.
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It is evident from Eq. (46) that the components of the
vector C are the generalized forces for the system when the
generalized accelerations X are all zero. Thus C can be
computed using the inverse dynamics algorithm in Eq. (45).
We describe next an efficient composite-body-based recur-
sive algorithm for the computation of the mass matrix M.
This algorithm is based upon the following lemma which
contains a decomposition of the mass matrix into block
diagonal, block upper triangular and block lower triangular
components.
Lemma 5.1

Define the composite body inertias R(k) € g M (k)X
N (K)recursively for all the bodies in the serial chain as
follows:

R(0)=0 7
fork=1...N
R(k) = Dk k ~ DRk — 1)D*(kk — 1) + Min(k)

end loop

Also define Radiag{R(k)} € g ¥XN. Then we have the
following spatial operator decomposition

DM, O*=R+DOR+RD* (48)

where @ 2®-1:
Proof: See Appendix A.

Physically, R(k) is the modal mass matrix of the compos-
ite body formed from all the bodies outboard of the k” hinge
by freezing all their (deformation plus hinge) degrees of
freedom. It follows from Eq. (43) and Lemma 5.1 that

M=HOM, o* H*= HR H* HROR H*+ HRO*H*  (49)

Note that the three terms on the right of Eq. (49) are block
diagonal, block lower triangular and block upper triangular
respectively. The following algorithm for computing the

mass matrix M computes the elements of these terms
recursively.

forj=k+1)...N
X()
Ms =

Mgy = Hxg)

end loop

l end loop

The main recursive proceeds from tip to base, and computes
the blocks along the diagonal of M. As each such diagonal
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element is computed, a new recursion to compute the
off-diagonal elements is spawned. The structure of this
algorithm closely resembles the composite rigid body algo-
rithm for computing the mass matrix of rigid multibody
systems ([12, 8]). Like the latter, it is also highly efficient.
Additional computational simplifications of the algorithm
arising from the sparsity of both #{,(k) and #,(k) are easy
to incorporate.

6. Factorization and Inversion of the Mass Matrix

An operator factorization of the system mass matrix M,
denoted the Innovations Operator Factorization, is derived
in this section. This factorization is an alternative to the
Newton-Euler factorization in Eq. (43) and, in contrast with
the latter, the factors in the Innovations factorizations are
square and invertible. Operator expressions for the inverse
of these factors are developed and these immediately lead to
an operator expression for the inverse of the mass matrix.
The operator factorization and inversion resuits here closely
resemble the corresponding results for rigid multibody sys-
tems (see [1]).

Given below is a recursive algorithm illustrated in FIG. 2
which defines some required articulated body quantities. In
the following algorithm, P(k) is the articulated body inertia
of body k, D(k) is the articulated hinge inertia of hinge k,
G(k) is a body to hinge force operator of body and hinge k,
and T(k) is a null force operator for hinge k which accounts
for the component of applied force resulting in no hinge
acceleration.

(50

R(O)=0
fork=1...N
R = ©Okk- DRk~ DO* k- 1)+ Muk)
= Aotk - DR - D@k — 1) A*0) + Malk)
Xt = R& M@
Man = Huxwp

OGj-DXG-1)= ‘A(i)¢(tjd' ~DX (-1
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21
’ PH0)=0
fork=1...N

P(k) = Okk- DP(k— DO*(k~1) + Ma®) e EN x N @
D) = Hopwy Mgy e BN ox Ny
o) = PO Mrpi@e RNV wxNw
Kk+1h) = 0Ok+106H e FN oxNw
0 = 1-6R) Hp e BN N w
PR = Pk e RN 0N w®
k1D = Ok LR e AN ox N

l end loop

The operator P e g XA is defined as a block diagonal

matrix with the k" diagonal element being P(k). The quan- -

tities defined in Eq. (51) form the component elements of the
following spatial operators:

D aMP Hi*=diag{D(K)} e % NxN
G &P H*D '=diag{G()} € R Nx N
K2€,Ge R Nx N

TAI-G H=diag{T1())} e & Nx N

£,885T e R NxN (52

The only nonzero block elements of K and g, are the
elements’ K(k+1,k)’s and y(k+1.k)’s respectively along the
first sub-diagonal.

As in the case for g4, £, i nilpotent, so we can define
the operator y as follows.

1 0 ... 0 (53)
w2,1) I ... 0
va -y RN H
wiND wNg . . L]
where

W) & wEi-1 ... wG+1p)forlli>j

The structure of the operators g, and W is identical to that
of the operators g4, and @ respectively except that the
component elements are now W(i,j) rather than @(i,j). Also,
the elements of y have the same semigroup properties as the
elements of the operator @, and as a consequence, high-level
operator expressions involving them can be directly mapped
into recursive algorithms, and the explicit computation of
the elements of the operator W is not required.

The Innovations Operator Factorization of the mass
matrix is defined in the following lemma.
Lemma 6.1

M=+ HOKID[+ HOK]* 54

Proof: See Appendix A.

Note that the factor [I+H®PK] € g XN is square,
block lower triangular and nonsingular, while D is a block
diagonal matrix. This factorization provides a closed-form
expression for the block LDL* decomposition of M. The
following lemma gives the closed form operator expression

for the inverse of the factor [I+ #®K].
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Lemma 6.2

[+ HOK]=[I- HyK] (55)

Proof: See Appendix A.

It follows from Lemma 6.1 and 6.2 that the operator expres-
sion for the inverse of the mass matrix is given by:
Lemma 6.3

M ={1- HyK]*D™'[I- HyK] (56)
Once again, note that the factor [I- #wK] is square, block

lower triangular and nonsingular and so Lemma 6.3 pro-

vides a closed-form expression for the block LDL* decom-

position of M.

7. Articulated Body Forward Dynamics Algorithm

We first use the operator expression for the mass matrix
inverse developed in Section 6 to obtain an operator expres-
sion for the generalized accelerations X. This expression
directly leads to a recursive algorithm for the forward
dynamics of the systems. The structure of this algorithm is
completely identical in form to the articulated body algo-
rithm for serial rigid multibody systems. The computational
cost of this algorithm is further reduced by separately
processing the flexible and hinge degrees of freedom at each
step in the recursion, and this leads to the articulated body
forward dynamics algorithm for serial flexible multibody
systems. This algorithm is an alternative to the composite-
body forward dynamics algorithm developed earlier.

The following lemma describes the operator expression
for the generalized accelerations X in terms of the general-
ized forces T.

Lemma 7.1

Kefl- HyR*D [T~ Hy{ KT+Pa,+b,+K, v -k, (57)
Proof:

See Appendix A.

As in the case of rigid multibody systems ({1, 2]), the
direct recursive implementation of Eq. (57) leads to the
following recursive forward dynamics algorithm illustrated
in FIG. 3. In the following algorithm, z(k) is a residual body
force on body k, e(k) is the resultant hinge force on hinge k,
v(k) is the resultant hinge acceleration of hinge k and z*(k)
is the revised residual body force on body k:
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r + @
Z/(0)=0
fork=1...n
z(k) = Ok~ Dtk — 1)+ Pkank) +
Bufk) + Kn(0)8(K)
€k = T®- e
v(k) = D i(kel)
) = 2k +Ghek)
{ end loop
( or(n+1)=0
fork=n...1
ontk) = O¥(k+ LE)ogk+1)
W = vk - Gl (k)
w®) = o+ THRE) + om®)
end loop

The structure of this algorithm is closely related to the
structure of the well known Kalman filtering and smoothing
algorithms ([8]). All the degrees of freedom for each body
(as characterized by its joint map matrix #*(.)) are pro-
cessed together at each recursion step in this algorithm.
However, by taking advantage of the sparsity and special
structure of the joint map matrix, additional reduction in
computational cost is obtained by processing the flexible
degrees of freedom and the hinge degrees of freedom
separately. These simplifications are described in the fol-
lowing sections.

7.1 Simplified Algorithm for the Articulated Body Quan-
tities

Instead of a detailed derivation, we describe here the
conceptual basis for the separation of the modal and hinge
degrees of freedom for each body. First we recall the
velocity recursion equation in Eq. (11)

Vu()=0*(k+-1,k)V,, (k+1)+ H*(K)X (k) (59)
and the partitioned form of (k) in Eq. (13)
H
Mo j(k)) (60)
(k)—( H g

Introducing a dummy variable k', we can rewrite Eq. (59) as
V(K= 0* (ke LYW, (k+1)+ H* (kmk)

Vo lk)=0* (k. )V, (k)+ H* (k)P 61)

where
Dk+1.k") 2D(k+1,k) and D(K' k) AT

Conceptually, each flexible body is now associated with two
new bodies. The first one has the same kinematical and
mass/inertia properties as the real body and is associated
with the flexible degrees of freedom. The second body is a
fictitious body and is massless and has zero extent. It is
associated with the hinge degrees of freedom. The serial
chain now contains twice the number of bodies as the
original one, with half the new bodies being fictitious ones.

The new #* operator now has the same number of columns

but twice the number of rows as the original #* operator.
The new ® operator has twice as many rows and columns as
the original one. Repeating the analysis described in the
previous sections, we once again obtain the same operator
expression as Eq. (57). This expression also leads to a
recursive forward dynamics algorithm as in Eq. (58). How-
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ever each sweep in the algorithm now contains twice as
many steps as the original algorithm. But since each step
now processes only a smaller number of degrees of freedom,
this leads to a reduction in the overall cost. In the following
algorithm, the subscript r denotes the rigid component or
version of the subscripted quantity while the subscript f
denotes the flexible component or version of the subscripted

quantity. Thus, # (k) is a matrix including the correspond-
ing modal spatial influence vector, while #,(k) is a matrix
including the corresponding transformed joint map matrix.
The new algorithm (replacing Eq. (51) for computing the
articulated body quantities is as follows:

’ ' 62
P+(0) = 0

fork= 1...N
r® = Bak-vpt-nBruik-1edos
PO = Awre A + Mok e BN eV w
Dyk) - H () P(K) H (k) € Rombkdam(h)
6w = P®MrmD®) e RN @anw
W = I-Gwe PN oxNw
P = PweRN o Nw
D = Mwpaw M) e Bt
G = P w0 e BN waw
W = -G MmN oNw
PR = TP e RN ex N

Bk 1K = BE+1, 0k e AN N ®

end loop

We now use the sparsity of B(k+1k), #,(k) and #,(k) to
further simplify the above algorithm. Using the symbol “x”
to indicate “don’t care” blocks, the structure in block par-
titioned form of some of the quantities in Eq. (62) is given
below. In the following algorithm, the subscripts f and r have
the same significance as that discussed previously herein,
the subscript R denotes another rigid version of the sub-
scripted quantity (defined below), while P7(k) and P™(k)
denote the blocks of the articulated body inertia P(k) parti-
tioned in the same manner as that discussed previously
herein with reference to the partitioning of the modal mass
matrix in Equation (23):

T(k) = ¢, k — PRk — Dd*(t, k — 1),

(Pg"(k) is defined below)
Gytk) = ( o0 ) , where g(k) = p(0D7' (k) € RO,

and p®) & [PAR), PR H i) e S
Al = ( i ) , where Pa(k) = P7(R) - gout(h) e R
D) = H F RPR(OH FH(R) g0t

G = ( GR)Ek) ) , where Gp(k) 2 Pr(HT*(R)D; (k) e Roxartt)

_ 1 _ i
T =( 0 ;RZ;) ) , where Tg(k) = I — Gr(RHT(X) e 66
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-continued
* * P Roxs
PHk) = Pt | where Pg*(k) = Tr(K)Pg(k) €

Using the structure described above the simplified algorithm >

for computing the articulated body quantities is as follows:

(63)
r PR(0) =0
fork=1...N
TR = & k- DPrk— Do, k—1)
Py = Awrm A + Mak)
pw = Mwrw M
p® = [(PIR, Pl
gk = uBDr®
PR = PR - (et
Dp(k) = Hf(k)PR(k)Hf*(k)
Grtk) = PrOHT*EWDR k)
K = I-GrOHEI®
Prl) = Ta(PR()
lcnd loop

fork

2(k)

k)
e
2&(k)
er(k)
V(K

zr* (k)
\ end loop

for k
)
Bty

{ og(k)

k)

am(k)

\ end loop
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7.2 Simplified Articulated Body Forward Dynamics Algo-
rithm

The complete recursive articulated body forward dynam-
ics algorithm for a serial flexible multibody system follows
directly from the recursive implementation of the expression
in Eq. (57). The algorithm consists of the following steps as
illustrated in FIG. 4: () a base-to-tip recursion as in Eq. (45)
for computing the modal spatial velocities V,,(k) and the
Coriolis and gyroscopic terms a,,(k) and b,,(k) for all the
bodies; (b) computation of the articulated body quantities
using Eq. (78) and Eq. (63); and (c) a tip-to-base recursion

15 followed by a base-to-tip recursion for the joint accelera-
tions X as described below and illustrated in FIGS. 5a and
5b:

20

25

64
z*(0)=0
1...N
z(k)

(

zAk)

)

A(k)¢(1k, k= Dzt — 1) + bu(h) + Kn(R)0K) BN ®

T(K) — zk) + [TTGR)]* 2 (k) € Rnm®

D (efk) e Frmt)

2AR) + g(k)ek) + Prik)oimr(k) e F6

TAK) — HE(R)zp(k) e R0

DR (k)er(k) €T

(k) + Gr(R)er(k) €6

N+ D=0

N...

1

O*(ter1, k) A*(k + D)0k + 1) 36

Va(k) - Gr*R)or*(k) eIt

ot (k) + HEORM) + Olmr(k) e R6

V) - g (k)atg(k) € Fnm®

(

)

. BN w
or(k) ~ TE(km k)
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The recursion in Eq. (64) is obtained by simplifying the
recursions in Eq. (58) in the same manner as described in the
previous section for the articulated body quantities. The
rigid Coriolis and centrifugal acceleration a,,.(k) is given in
Appendix C below herein.

In contrast with the composite body forward dynamics
algorithm described in Section 5, the articulated body for-
ward dynamics algorithm does not require the explicit
computation of either A4 or C. The structure of this articu-
lated body algorithm closely resembles the recursive articu-
lated body forward dynamics algorithm for rigid multibody
systems described in references ({15, 1]).

The articulated body forward dynamics algorithm has
been used to develop a dynamics simulation software pack-
age (called DARTS) for the high-speed, real-time, hardware-
in-the-loop simulation capability for planetary spacecraft.
Validation of the DARTS software was carried out by
comparing simulation results with those from a standard
flexible multibody simulation package ([6]). The results
from the two independent simulations have shown complete
agreemert.

A System Embodying the Invention

Referring to FIG. 6, a robot manipulator 100 having
flexible links (bodies), such as the manipulator illustrated in
FIGS. 1a and 15, includes joint servos 110 controlling
respective articulating hinges of the manipulator. A robot
control computer 120 includes a processor 125 which com-
putes the articulated body quantities of the manipulator 100
from the current state of the manipulator 100 using the
process of FIG. 2. The current state of the manjpulator 100
is also used by a processor 130 to compute the Coriolis and
centrifugal accelerations and gyroscopic forces of the
manipulator links using the algorithm of Equation (44). A set
of link (body) forces is specified to a processor 135. The
processor 135 uses the specified body forces, the articulated
body quantities computed by the processor 125 and the
gyroscopic and Coriolis terms computed by the processor
130 to compute the deformation acceleration of the finite
element nodes of each link (body) and the acceleration of
each hinge by executing the algorithm of FIGS. 5a and 5b.

In one embodiment of the invention described above with
reference to FIG. 4, the processor 135 repeats its operation
over successive time steps, and the configuration vectors of
the manipulator 100 required by the processors 125 and 130
are computed by a processor 140 from the accelerations
computed by the processor 135 for the previous time step. In
an alternative embodiment of the invention, the hinge con-
figuration vectors are derived by the processors 125 and 130
directly from joint sensors 142 on the hinges of the manipu-
lator 100.

As one example of the application of the results computed
by the processor 135, a desired robot motion is defined by
a set of user-specified node deformations and hinge accel-
erations for a succession of time steps. The node deforma-
tions and hinge accelerations computed during each time
step by the processor 135 are compared by a processor 144
with a desired user-specified node deformations and hinge
accelerations for the corresponding time step to determine
an error and to correct the specified body forces to reduce the
error using well-known feedback control techniques. Such
feedback control techniques are well-understood in the art
and need not be described here. The corrected body forces
are then stored for later (or immediate) conversion by a
processor 146 to joint servo commands for transmittal to the
joint servos 110.

8. Computational Cost

This section discusses the computational cost of the

composite body and the articulated body forward dynamics
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algorithms. For low-spin multibody systems, it has been
suggested in [16] that using ruthlessly linearized models for
each flexible body can lead to significant computational
reduction without sacrificing fidelity. These linearized mod-
els are considerably less complex and do not require much
of the modal integral data for the individual fiexible bodies.
All computational costs given below are based on the use of
ruthlessly linearized models and the computationally sim-
plified steps described in Appendix B.

Flexible multibody systems typically involve both rigid
and flexible bodies and, in addition, different sets of modes
are used to model the flexibility of each body. As a conse-
quence, where possible, we described the contribution of a
typical (non-extremal) flexible body, denoted the k” body, to
the overall computational cost. Note that the computational
cost for extremal bodies as well as for rigid bodies is lower
than that for a non-extremal flexible body. Summing up this
cost for all the bodies in the system gives a figure close to
the true computational cost for the algorithm. Without any
loss in generality, we have assumed here that all the hinges
are single degree of freedom rotary joints and that free-free
assumed modes are being used. The computational costs are
given in the form of polynomial expressions for the number
of floating point operations with the symbol M denoting
multiplications and A denoting additions.

8.1 Computational Cost of the Composite Body Forward
Dynamics Algorithm

The composite body forward dynamics algorithm
described in Section 5 is based on solving the linear matrix
equation.

MX=T-C

The computational cost of this forward dynamics algorithm
is given below:
1. Cost of computing R(k) for the k' body using the
algorithm in Eq. (50) is

[48n,,(k) + 901M + [n, (k) + %%n,, (k) + 116]A.

2. Contribution of the k™ body to the cost of computing
M (excluding cost of R(k)’s) using the algorithm in
Eq. (50) is  {k[12n,2(k)+34n,,(k)+13]IM+{k
[11n,,%(k)+24n,,(k)+13]} A.

3. Setting the generalized accelerations X=0, the vector
C can be obtained by using the inverse dynamics
algorithm described in Eq. (45) for computing the
generalized forces T. The contribution of the k*”* body
to the computational cost for c(k) is {2nm,*(k)+
54n, (k)+206} M+{2n, *(k)+50n, (k)+143} A.

4. The cost of computing T-C is { ¥} A.

5. The cost of solving the linear equation in Eq. (46) for
the accelerations X is

N +%BN2 —UNIM +{%N? + N2 —%NA

The overall complexity of the composite body forward
dynamics algorithm is O( &%)

8.2 Computational Cost of the Articulated Body Forward
Dynamics Algorithm

The articulated body forward dynamics algorithm is based
on the recursions described in Eq. (78), Eq. (63) and Eq.
(64). Since the computations in Eq. (78) can be carried out
prior to the dynamics simulation, the cost of this recursion
is not included in the cost of the overall forward dynamics
algorithm described below:

1. The algorithm for the computation of the articulated
body quantities is given in Eq. (63). The step involving
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the computation of D™*(k) can be carried out either by

an explicit inversion D(k) with O(n,,*(k)) cost, or by

the indirect procedure described in Eq. (63) with

0O(n,,%(k)) cost. The first method is more efficient than

the second one for n,,(k)=7.

Cost of Eq. (63) for the k™ body based on the explicit
inversion of D(k) (used when n,,(k})=7) is

(e, 2 () + 25am, 2(Kk) + ™an, (k) + 180}M +

{3, 3(k) + 2an, 2(K) + 5%84n,,(k) + 164}

Cost of Eq. (63) for the k™ body based on the indirect
computation of D™'(k) (used when n,(k)Z8) is
{12n, 2(k)+255n,,(k)+572} M+{13n,,%(k)+182n,,(k)

2. The cost for the tip-to-base recursion sweep in Eq. (64)
for the k™ body is {n,,*(k)+25n,,(k}+491 M+{n, *(k)+
24n,,(k)+50} A,

3. The cost for the base-to-tip recursion sweep in Eq. (64)
for the k”* body is {18n,,(k)+52{19n,,(k)+42{ A.

The overall complexity of this algorithm is O(Nn,,?), where
n,, is an upper bound on the number of modes per body in
the system.

From a comparison of the computational costs, it is clear
that the articulated body algorithm is more efficient than the
composite body algorithm as the number modes and bodies
in the multibody system increases. The articulated body
algorithm is faster by over a factor of 3 for 5 modes per body,
and by over a factor of 7 for the case of 10 modes per body.
The divergence between the costs for the two algorithms
becomes even more rapid as the number of bodies is
increased.

9. Extensions to General Topology Flexible Multibody Sys-
tems

For rigid multibody systems, [11] describes the extensions
to the dynamics formulation and algorithms that are required
as the topology of the system goes from a serial chain
topology, to a tree topology and finally to a closed-chain
topology system. The key to this progression is the invari-
ance of the operator description of the system dynamics to
increases in the topological complexity of the system.
Indeed, as seen here, the operator description of the dynam-
ics remains the same even when the muliibody system
contains flexible rather than rigid component bodies. Thus,
using the approach in [11] for rigid multibody systems, the
dynamics formulation and algorithms for flexible multibody
systems with serial topology can be extended in a straight-
forward manner to systems with tree or closed-chain topol-
ogy. Based on these observations, extending the serial chain
dynamics algorithms described in this specification to tree
topology flexible multibody systems requires the follow
steps:

1. For each outward sweep involving a base to tip(s)
recursion, at each body, the outward recursion must be
continued along each outgoing branch emanating from
the current body.

2. For cach inward sweep involving a tip(s) to base
recursion, at each body, the recursion must be contin-
ued inwards only after summing up contributions from
each of the other incoming branches for the body.

A closed-chain topology flexible multibody system can be
regarded as a tree topology system with additional closure
constraints. As described in [11], the dynamics algorithm for
closed-chain systems consists of recursions involving the
dynamics of the tree topology system, and in addition the
computation of the closure constraint forces. The computa-
tion of the constraint forces requires the effective inertia of
the tree topology system reflected to the points of closure.
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The algorithm for closed-chain flexible multibody systems
for computing these inertias is identical in form to the
recursive algorithm described in [11].
10. Conclusions

This invention uses spatial operator methods to develop a
new dynamics formulation for flexible multibody systems. A
key feature of the formulation is that the operator description
of the flexible system dynamics is identical in form to the
corresponding operator description of the dynamics of rigid
muitibody systems. A significant advantage of this unifying
approach is that it allows ideas and techniques for rigid
multibody systems to be easily applied to flexible multibody
systems. The Newton-Euler Operator Factorization of the
mass matrix forms the basis for recursive algorithms such as
those for the inverse dynamics, the computation of the mass
matrix, and the composite body forward dynamics algorithm
for the flexible multibody system. Subsequently, we develop
the articulated body forward dynamics algorithm, which, in
contrast to the composite body forward dynamics algorithm,
does not require the explicit computations of the mass
matrix. While the computational cost of the algorithms
depends on factors such as the topology and the amount of
flexibility in the multibody system, in general, the articu-
lated body forward dynamics algorithm is by far the more
efficient algorithm for flexible multibody systems containing
even a small number of flexible bodies. All of the algorithms
are closely related to those encountered in the domain of
Kalman filtering and smoothing. While the major focus in
this specification is on flexible multibody systems with serial
chain topology, the extensions to tree and closed chain
topologies are straightforward and are described as well.

While the invention has been described in detail by
specific reference to preferred embodiments thereof, it is
understood that variations and modifications may be made
without departure from the true spirit of the invention.
Appendix A: Proofs of the Lemmas

At the operator level, the proofs of the lemmas in this
publication are completely analogous to those for rigid
multibody systems ([1, 2]).
Proof of Lemma 5.1: Using operators, we can rewrite Eq.
(47) in the form

M, =R-E4R €%, (65)

From Eg. (19) it follows that @ g4, =g, P=0-I=P. Multi-
plying Eq. (65) from the left and right by ® and ®*
respectively leads to

DM, O *=DRO*—D €4, R &*4=(DO+HNR(G+H)*—DRO*=R+DOR+RD*

Proof of Lemma 6.1: It is easy to verify that TPT*=TP. As a
consequence, the recursion for P(.) in Eg. (51) can be
rewritten in the form

M,=P—&,, P £* =P~ £,P €*4=P—£q, P &%, +KDK* (65)

Pre- and post-multiplying the above by ® and ®* respec-
tively then leads to

DM, O*=P+OP+PD*OKDK*D*
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Hence,

- Mo Hopyer He= Hip o op 1 pd+ + okDK*ox He

= D+ Raokp+Drror Hx L Hogprror Hx -
7+ Hoxpir+ Hoky

Proof of Lemma 6.2: Using a standard matrix identify we
have that

[+ HOK] '=I- HO[IHK HO]™ K 67)
Note that

yl=l-£ =0~ 8o+ E4G H=0"+K H (68)
from which it follows that

ylo=IHKHO

Using this with Eq. (67) it follows that

[+ HOK]'=I- HO[y & K=l HyK

Proof of Lemma 7.1: From Eq. (42) and Eq. (43), the
expression for the generalized accelerations X is given by

X= MYT=C)={I- HyK]*D [~ HyK][T- HOM, d*a,+b,+

K,v]] (69)

From Eq. (68) we have that

[I- HyK] Hd= Hyly'-K H]d=Hy (70)
Thus, Eq. (69) can be written as

X=(I- HyK)*D~N[T- HY[KT+M, ®*a,+b,+K,V1] (71
From Eq. (66) it follows that

M,=P- &P E*4—>YM,D*<yP+PO* (72)
and so Eq. (71) simplifies to

X={I- HyK|*D™ V[ T—- HY(KT+Pa, b, K,v1- HP®*a,]  (73)

From Eq. (68) we have that

- HyK]*D ! HPO*=[I- HyK]*K A D*=K gy *—K H | *D*=
K*yr* (74

Using this in Eq. (73) leads to the result.
Appendix B: Ruthless Linearization of Flexible Body
Dynamics

It has been pointed out in recent literature ([17, 161) that
the use of modes for modeling body flexibility leads to
“premature linearization” of the dynamics, in the sense that
while the dynamics model contains deformation dependent
terms, the geometric stiffening terms are missing, These
missing geometric stiffening terms are the dominant terms
among the first-order (deformation) dependent terms. In
general, it is necessary to take additional steps to recover the
missing geometric stiffness terms to obtain a “consistently”
linearized model with the proper degree of fidelity. However
for systems with low spin rate, there is typically little loss is
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model fidelity when the deformation and deformation rate
dependent terms are dropped altogether from the dynamical
equations of motion ({16]). Such models have been dubbed
the ruthlessly linearized models. These linearized models
are considerably less complex, and do not require most of
the modal integrals data for each individual flexible body. In
this model, the approximations to M,,(k), a,,(k), and b,,(k)
are as follows:

3)

M) = MuP(R), am(k) = » and bu(k) = bn(k)

k)
With this approximation, M, (k) is constant in the body
frame, while a,(k) and b, (k) are independent of 1(k) and
n(k). With this being the case, the formation of D" in Eg.
(51) can be simplified. Using the matrix identity.

[A+BCB*|"'=A"-A"'B[C*+B*A™'B]'B*A™* (76)

which holds for general matrices, A, B and C, it is easy to
verify that
D =AR-YRIT R+QE R Y*(k) an

where the matrices A(k), L(k), and Y(k) are precomputed
just once prior to the dynamical simulation as follows:

( for k = 1...N (78)
AR = [ oM Mt RN <N
Ww = HepAp BN
YR = AR RN
Qk) = [HERYK) eFos
end loop

Using Eq. (77) reduces the computational cost for comput-
ing the articulated body inertias to a quadratic rather than a
cubic function of the number of modes.
Appendix C: Expressions for M, (%), a,,(k) and b,,k)

The modal spatial displacement influence vector IF(k) for
node j;has the structure:
; 79
) k)

HO={ y

The components of the vectors ¥(k) € #>*® and Y(k) e
g% are the modal slope displacement influence vector
and the modal translational displacement influence vector
respectively for node j,. They define the contribution of the
various modes to the slope (or differential change in orien-
tation) and translational deformation for the j,* node on the
k™ body. Define

& Rexnmy

8,02 XEMEK) e %3 8,2 Y(ENK) € §>, and

30 & vYlom) e #° (80

Note that
Uk j)=loGr)+3,Gx)

where 1,(j,) denotes the undeformed vector from frame

Fr tonode j,. Note that M (j,) denotes the spatial inertia of
the j” node on the k” body and is given by

TG0 mGopG @D
-mopG)  mGol
C.1 Modal Integrals for the Individual Bodies

Defined below are a set of modal integrals for the k body
which simplify the computation of the modal mass matrix

M, :(ik) = € Hexs
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M,,(k) and the bias vector b,,(k). These modal integrals can
be computed as a part of the finite-element structural analy-
sis of the individual bodies.

ny(k)
mk) & I m(y)
Fl

. n(h)
pot & 1] % mGpG + e i) €%
=1

ng(k)
Pk & (Umil)] | mGoyk) eR3
i
":(k) -
BN & 3 m{)y/®) - poAI(R)] e 3
J=lk
ns(k) . - - - - )
Fo(r) é_ﬁ TGoMIR) + mGillotk, j) + PG — mGotk, jOPGOMIR) €
=1k

ns(k) - . - .
FiXr, s) éj % mGOWI®) - pGorE) R
=1k

ns(k)

GH(r, ) éj )13 T TGOAIR) + mGOA PG/ ) + mGOIIRI*PGOI0) mU iy R *i(6) € R
I

. ns(k) - - R - .
Teh & _j }13 TG — mG otk jlotk, jio) + pliolo(k, 0 + otk jopGio) e B3
=1y

ny(k) - - "
2 mGy iRk jo +pGip] eF33
=l

Tk &
ns(k) . .

T, 5) &~ S mGy/teyik) e R
Al

ny(k) _ . . -
514r) éj % (mGpGIA Rtk ji) Tiori(ky e B30
=1k

ny(k) _ .
Sk, 8) éj—)l: [mGIPGIAI () (k) e N33
=l

ny(k) _ _ - -
Ki(n = i 717 2otk ) mGOpGOMEF = TGAIE) + A1) T (o) A>3
=1k

nalh) .
= ASKA* —_rs% ® TG0 + TGoM®)
=1l

ns(k) _ - )
K, 5) éj )i: 2 mp(hI (R = 28, )} e RS
=1k

":(k)
RéM & 2 TGMk) e %3
=l

ny(k) . - - . -
R s) & j—% (A0 TG — mGilotk, jOARIPRIAIK) € 3
=ik

ns(k) - - _
Rikg, 1, 5) éj_g G OMRIPGiAJ k) € 73
=1k

ns(k).. ) _ )

Wik(r, 5) éj % MEmGopGon/®) 3
=1
nylk).

LECDR> M) TGrdc) eR3
FFlk

ny(k)

LK 8) 2 -{Um®)] | T mioAKRPGAK)
F=le

ny(k) . - - )
Tir, 5) é]__% MGV RGO + TGOM RIS R) e B2
=1k
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~continued
ns(k) o .
T, 5) é]_ >13 ImpGOTR — A0 T GoINJ(R) 32
=l

ns(k) N - )
Tg, r 9) éj 213 IR ImGOYRPGD + TGOA M) €T
=1k

Note that 1o Hence, in block partitioned form
G r,8)=C*sn) and J ,5(8)=T ,5(s,r)
Gk [F*]* [E"]* (86)
Also define,
) @y M) = o T m(k)p()
P 2pit+ T pilsmes) M3 15
s=1 -
EX —m(k)pk ol
) . m(k)p(k) mik)
k L ki k 3
P 2 F0)+ 2 PR ) € . . -
nnR) 20
Ny 2| Tk + 2 Tok(r sm(s) | = edts = | Rt Ter m(pet |+
5=
(k) % Sk
Tw 2 T+ = [Tk + { TP NG + E —m(k) po m(il
r=1
25
np(k) nm(k)
> Tz"(r, MO R3a MO(k)
r=1 s=1
(k) 0 [Fi*n]* 0
S 2 SMA+ T SHMr, sm(s) €33 1
s=1
(k)
1K) Fifn = (T + 1T m@iprr ¥
RG) £ KM+ %K o) <090 =1
5=
k) 35 0 0 0
R s) £ RIm )+ T Rilq 7 @) %
5=
Ml (k)
C.2 Modal Mass Matrix
We have from Eqg. (23) that the modal mass matrix of the
k" body is given by
. TG Yy . g mHM® ®  meMese | 9
o= ( B )M“"( L®Em = BOM(®) (X  BUOM(0B*W)
K Mk
= Mt ) RN wx N
MIKY Mok
Define the matrices: 50
pr & Ip AU, .. p ()] egPon® (85)
Ff & [FMQ), . .. Fof(n(k)) eg>n®
Fa [P, ... P (k)] e ¥om® .
E & [EX1), ... E(n,, (k)] e ¥om® 55 -continued -
0
Also define the matrix G* e §™®=® g0 that its ()" 0 0
element is given by the modal integral G*(r,s). ) )
Using these matrices, and Eq. (84), it is easy to establish 0 M TokGr, sim(Am(s) 0
that ™=l s=l
60
Fk 0 0 0
M(k) = Gk, MY(k) = ,and
EX )
m(k)

T m(p(k) )

MR = ( .
—m(k)p(k) m(il

The superscript i=0,1,2 in M,,'(k) denotes the order of
dependency of the terms on the deformation variables.
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C.3 Expression for a,,k) to the angular accelerations and the term at the bottom to the
In this section we derive explicit expressions for the linear acceleration of the body. Also

Coriolis and centrifugal acceleration term a,,(k). Since

0 ey ) 3

¢(x,y)=( 00

it follows from Eq. (12) and Eq. (79) that

. (0 [Tk + D)P*$(ikanb) + [Tk + DI#0(01.K) )
Ok + 1,5 = .
0 o+ 1k
0 NG+DIF MG+ DI Kt ) + [+ DI + NGk + DIk
= loo Ik + 1,6)
00 0
Recalling that the spatial velocity of frame F, is 20

(k)
o= ( (k) )
where ®(k) and v(k) denote the angular and linear velocity 25
respectively of F, we have that

TIige) = ,A{(k) _ (i)(k) ?l(k)
Y& (kY k)
And thus

0

. ok + D8ultir1)
O*k+ 1, Vmk+ 1) =

Kttt YK + 1Bo(ter) + @l + DB(t1)
+Buter )t 1K) + @k + DIk + 1K)

40
The vector above has bee partitioned so that the term on the

top corresponds to modal accelerations, the term in middle

I+ 1) = 00k + DIE + Ljres) + 8uliees)

" and

k) = @)tk + A0 — 8@ + gl Tk
Lok + 1)+ Bt D )+ AvC8) = 8u(d) + Bl D)

i

where
Au(k) &7
= = H* 3
Ak A® H*)B(k)
Thus

M+ 1R = I+ L) + ltisn )
@k + DIk + 1,6 + Bulten) + Bt )Mt 1,0) + ACR) — Bulde) + AulRI( 0’(1")

Also

0 0
Hugy 2
*(k) = ( _ ﬁ”(k) Hf*(k) )

and
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-continued
‘ o o
HY () = - HH
(k) 0 o 0::) (k)
(OLE) = o( O Ok) ~ 8,(dy)
Thus we have that
0
M) = a( OAa() — w(0)Bo(ds)

O DoAE) — D008 + Al Tik) = T Orhorint Tasth)

From Eq. (25) and the above expressions it follows that

dD*(k + 1,%) d H*(k) 0 (88)
ap(k) = et V(e + 1) o e (k) =
"’ "’ ()

where
Wk + Dolter) + 00K ~ o Tde(de)

(k) K+ DO+ DIK + 1)+ 28ta)] + [0001s2) + 0 ] (v —v( O +

[0k + 1) + Bu(ths )18 DICke1.8) — [280(0) — Bua(di)18v(dp)
o)Ak

@0+ 1)k + Dlglk + 1,0 + [k + 1) + dE1vE ~v( )]

(k)
+ 0k + Diok + D8, () — 8,(dd] + 26,04, @)

~ ~ (90)
+[Btks) — Ba(dIIVEK) = V(O]

+ 0k + DB Moltrr s k) — 28,008,(dy) aln®)

0
+ . . - .
( @(k + 1)Be(tke1)81(tks1 + B(tes1)Berth1 Motk — 1) + Sex(di)Oudi)By(ddi) )

ok

0 %1)
+1 - .
Bu (1 1) (tir1)01(tir1,k)

R

In the above a,, (k) denotes the deformation independent Since,
part of the Coriolis acceleration, while a,,z'(k), a,,2>(k) and )
a,,z (k) denote the parts whose dependency on the defor- Kk j=0@lkjd+8.G0
mation is up to first, second and third order respectively. 355 |,
C.4 Expression for b,,(k) it follows that
We have found Eq. (28) that

O(K)Buit)
aqk):( LRIk fo) + 28] )
; . o Jk) /3
A{TU(R).0*(k, Lo :
“(I'k)=‘—[——(“)‘3_t‘(‘l’gl"‘ Vinl) = TVERIMK) + ¢* (e VER) 60

65
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Also from Eq. (31) we have that

oo TGowgi
b(j) = ( )

m(ReRoGpGi
Thus,
@G TG00G0 + TGEBERBG + mGOpGODERIDE®I +28v0)] ©2
DU +MiGOeGO = i) {= pi000BuGe) + SalinBalIpli) + SaliddrpGe) +
DRI K] + PG} + PG + 28,1}
From Eq. (37) we write s -continued
©3) - @*() [mGPGONIT TRl o5
bok(1 ~ -
) + O RmGTI0K ) + Pl ok) ©6)
2 + 20°(K) [mGPGIAIITE,GY on
bty = T )+ Mot | et - 205 mGOTRGD 8
. - 99)
by ~ [M@I* T (98, Galk)
bt 2 + GO G)B a0l (100
) : k k k: R 101
We develop expressions for b, (r), b, and b," in Eq. (93) + 80+ T GO0 (101)
below. From Eq. (92) and Eq. (93) we have that 102
ns(k) = . (94) 30 - am(l'k)*x;j(k)J (k)
bk = 5 —o*h (0T (o) - .
" L ‘ MGl THBP B (03
. ~ - 104
a* R0 T (98001 — 8 AW T (k) — + 8j* T 0T 0BG (109
. . . _ 35 N SRR (Y (105)
8y A0 T (0807 ~ RI* T (8w + + mIRE*Suliookpy
0* k) IMGIPGOAIOT [T + 28,G)) + + MR *OEBu PG 108

mG IO PBaGonwk) - Using the modal integrals defined in Sc?ctlon C.1, the
R B _ 40 above terms can be expressed in the following manner:
m(e8ER* Y W-{ 1tkjd + plio o) + 28,091 +

mGIVAR* {8,GBulioptie) +

Sudetp(n + OmB.GIpGoT =

n®
% o OB o

45

1 np(k) .
5 1971+102=-0*(®) = TisAnG)
s=1

1

nm(k) -
2[97] + 99 + 101 = —~w*(k) 21 [T(s, 1) + Wik(r.) + Wak(s,nIn(s)
S=

94 + 95 = —*(k)S* M) (k)
96 = ~w*(WN (oK) (107)
nm(k) "m(k) ) .
103+104= 5 X Tygrsmignis)
1 s=1

100 + 105 = 106

nalk) .
98 + 100 + 105 + 106 = —2w*(k) }:1 Fy*(s,r)n(s)Using these, it follows that
5=
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-continued
nm(k) nem(k) L (108)
bnk = —a®)SHn) +NOMei)+ = T Tsgrsmigns) —
g=1 s=1
nm(k) .
@*k) T [Tk + T ) + Wik(ns) + Wok(s,r) + 2R %(s,n)In(s)
j=s
nm(k) . nm(k) nm(k) L
= —0*(IS) + NMey - o¥k) = ram@+ = T THgrsmigns
J=s g=1 s=1
where
Q)& TMsr) + T ) + WkGs) + W) + 2F,Xs.n (109)

Once again from Eq. (92) and Eq. (93) we have that

nsk)_ : o (110)
bt = i % @G0 T GG + TGS + mGopid oIk + 28,G0] +
=1k
MGl {-PUOBRBL) + DRI K + PG} + 28, +
B8P (i) + Sulid@®pGo) + 0(OBW(iOPG t
"s(k)_ " - - . - -
= >I- o®1 TG — mG @Gl + Kptio + Gl jlo®)
=1k
= 2mGRI TG + pGD) 8wl i
= JGBoiw) 813
+ 8 7 Ro®)
+ TGmGpGiS otk 81‘5‘;
+ o) I (8. 116
+ 80 7 (08 -
+1 (ik)T(ik)?m(ik)ﬁm(ik)pUk) (118)
+ m) 1 G08aGBMPGY e
+ m() T({03:GpG) (19
Once again, using modal integrals, the above terms can be 35 ® (k)-continued
reexpressed in the following manner: 116+ 117:"’"2 "'"z REsM(s)
r=1 s=1
110 = 0*(®) J R (120)
® 0 This results in the following expression
N
111 = [ 2 X N ] (k)
r=1
(k) . nm(k) ) (121)
m k— k
1124113+ 114+ 118 + 119 = 7‘1 Ko ot = o(k) ' (k) + r:‘ﬁ [2NKGr) + K¥(nIn(Hok) +
re=
el 4 Com® L n® ) o
~ m . k K,
115= o) 21 REOA) (k) ':21 Rif(rm(n) + ’:21 s=21 Rir,sm(rm(s)
-
Using Eq. (92) and Eq. (93) it also follows that
ns(k) (122)

bt = j_g ~m(OpR8ai) + mide®(0k) ko + PG} + 2840 +
=1y

m(Ba(BaOpGR) + miBuldOMPGY) + midkSu(ipGie)

ng(k) ..
= Z —m(p(ed)Beli
F=li

+ mIORBEN k) + pG} (123)
+ m()8 8P (124
+ 2m( )08,y (125)
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Using the model integrals we have that
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What is claimed is:

1. A method for controlling a manipulator relative to a
desired manipulator motion, said manipulator comprising
plural bodies including an outermost body, and a relatively
stationary innermost body, said plural bodies being sequen-
tially connected together by movable hinges disposed
between each plural body so connected and servos control-
ling said movable hinges in accordance with servo command
signals corresponding to specified body forces of respective
ones of said plural bodies, at least some of said plural bodies
being flexible in plural deformation modes corresponding to
respective modal spatial influence vectors relating deforma-
tions of plural spaced nodes of respective plural bodies to
said plural deformation modes, said method comprising the
steps of:

computing articulated body quantities for each of said

plural bodies from respective modal spatial influence
vectors;
computing modal deformation accelerations of said plural
spaced nodes of respective plural bodies and hinge
accelerations of said movable hinges from said speci-
fied body forces, from said articulated body quantities
and from said modal spatial influence vectors;

comprising said modal deformation and hinge accelera-
tions with said desired manipulator motion to deter-
mine an error, and correcting said specified body forces
so as to reduce said error thereby producing corrected
specified body forces;

generating said servo command signals by converting in

a processor means said corrected specified body forces
to servo commands to correct manipulator motion to
said desired manipulator motion, and transmitting said
servo command signals to said servos.

2. The method of claim 1 wherein said step of computing
articulated body quantities comprises, for each body begin-
ning at said outermost body:

computing a modal mass matrix;

computing an articulated body inertia from the articulated
body inertia of a previous body and from said modal
mass matrix;

computing an articulated hinge inertia from said articu-
lated body inertia;

computing an articulated body to hinge force operator
from said articulated hinge inertia;
computing a null force operator from said articulated
body to hinge force operator.
3. The method of claim 2 wherein said step of computing
a null force operator is followed by revising said articulated
body inertia by transforming said articulated body inertia by
said null force operator to produce a revised articulated body
inertia.
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4. The method of claim 2 wherein said plural bodies and
movable hinges are characterized by respective vectors of
deformation and hinge configuration variables, and wherein
said computing modal deformation accelerations and hinge
accelerations comprises:

for each one of said plural bodies beginning with said

outermost body:

computing a residual body force from a residual body
force of a previous body and from said vector of
deformation and hinge configuration variables,

computing a resultant hinge force from said specified
body force and said residual body force,

computing a resultant hinge acceleration from said
resultant hinge force transformed by said articulated
hinge inertia;

and, for each one of said plural bodies beginning with said

innermost body:

computing a current modal body acceleration of a
current body from a modal body acceleration of a
previous body,

computing a modal deformation acceleration and hinge
acceleration from said resultant hinge acceleration
and from said current modal body acceleration trans-
formed by said articulated body to hinge force opera-
tor.

5. The method of claim 4 wherein:

said step of computing a resultant hinge acceleration is
followed by the step of revising said residual body
force by said resultant hinge force transformed by said
body to hinge force operator to produce a revised
residual body force for use in said correcting of said
specified body forces; and
said step of computing a modal deformation accelera-
tion and hinge acceleration is followed by the step of
revising said current modal body acceleration based
upon said modal deformation and hinge acceleration
to produce a revised current modal body acceleration
for use in said correcting of said specified body
forces.

6. The method of claim 5 wherein all said computing
comprises a single cycle corresponding to one of a succes-
sion of time steps, all said computing being repeated for
subsequent time steps, wherein said vector of deformation
and hinge configuration variables are computed from the
modal deformations and hinge accelerations of a previous
time step and wherein the revised articulated body inertia,
revised residual body force and revised current modal body
acceleration from the previous time step are used for com-
puting in a current time step.

7. The method of claim 4 wherein said manipulator
comprises joint sensors at each of said movable hinges, and
wherein a hinge configuration portion of said vector of
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deformation and hinge configuration variables is derived
from reading said joint sensors.

8. The method of claim 4 wherein said articulated body
inertia, said articulated hinge inertia, said body to hinge
force operator, said null force operator, said specified body
force, said residual body force, said resultant hinge accel-
eration and said resultant hinge force each corresponds to a
flexible and a rigid version thereof.

9. The method of claim 8 wherein said step of computing
a resultant hinge force comprises computing the flexible
version of said resultant hinge force from said specified
body force, said flexible version of said residual body force
and from said rigid version of said residual body force
transformed by said modal spatial influence vector.

10. The method of claim 8 wherein said articulated body
inertia comprises a rigid-flexible and rigid-rigid coupling
components thereof, and wherein said method further com-
prises the step of revising said rigid version of said residual
body force based upon a function of said rigid-rigid and
rigid-flexible coupling components of said articulated body
inertia and a flexible version of said articulated body inertia
to produce a revised rigid version of said residual body force
for use in said correcting of said specified body forces.

11. The method of claim 10 wherein said computing said
articulated body inertia step comprises decomposing said
modal mass matrix into rigid-flexible and rigid-rigid cou-
pling components and computing said rigid-rigid and rigid-
flexible coupling components of said articulated body inertia
from respective ones of said rigid-rigid and rigid-flexible
coupling components of said modal mass matrix.

12. The method of claim 11 wherein said computing said
articulated body quantities step is preceded by the step of
computing flexible and rigid versions of a deformation and
hinge modal joint map matrix for each plural body, and
wherein:

the flexible version of said articulated hinge inertia is
computed from said articulated body inertia trans-
formed by the flexible version of the corresponding
deformation and hinge modal joint map matrix;

the rigid version of said articulated body inertia is com-

puted from a function of said rigid-rigid and rigid-
flexible coupling components of said articulated body
inertia transformed by said flexible version of said
corresponding deformation and hinge modal joint map
matrix;

the rigid version of said articulated body inertia is com-

puted from said rigid version of said articulated body
inertia;

the rigid version of said body to hinge force operator is

computed from said rigid versions of said articulated
body inertia and said articulated hinge inertia.

13. The method of claim 12 wherein said computing
flexible and rigid versions of a deformation and hinge modal
joint map matrix step comprises computing a joini map
matrix corresponding to unit vectors of said movable hinges
and computing said deformation and hinge modal joint
matrix from said joint map matrix and from said modal
spatial influence vector.

14. The method of claim 8 wherein the flexible version of
said resultant hinge acceleration is computed from the
flexible versions of said articulated hinge inertia and result-
ant hinge force, and the rigid version of said resultant hinge
acceleration is computed from the rigid versions of said
articulated hinge inertia and resultant hinge force.

15. The method of claim 14 further comprising the step of
revising said residual body force by adding to said residual
body force a product of the rigid versions of said resultant

50

hinge force and said body to hinge force operator to produce
a revised residual body force for use in said correcting of
said specified body forces.
16. Apparatus for controlling a manipulator relative to a
5 desired manipulator motion based upon specified body
forces, said manipulator comprising plural bodies including
an outermost body, and a relatively stationary innermost
body, said plural bodies being sequentially connected
together by movable hinges disposed between each plural
body so connected and servos controlling said movable
hinges in accordance with servo command signals corre-
sponding to specified body forces of respective ones of said
plural bodies, at least some of said plural bodies being
flexible in plural deformation modes corresponding to
respective modal spatial influence vectors relating deforma-
tions of plural spaced nodes of respective plural bodies to
said plural deformation modes, said apparatus comprising:
means for computing articulated body quantities for each
of said plural bodies from respective modal spatial
influence vectors;

means for computing modal deformation accelerations of
said plural spaced nodes of respective plural bodies and
hinge accelerations of said movable hinges from said
specified body forces, from said articulated body quan-
tities and from said modal spatial influence vectors;
means for comparing said modal deformation and hinge
accelerations with said desired manipulator motion so
as to determine a motion discrepancy, and correcting
said specified body forces so as to reduce said motion
discrepancy; and
means for generating said servo command signals by
converting in a processor means said corrected speci-
fied body forces to servo commands to correct manipu-
lator motion to said desired manipulator motion, and
transmitting said servo command signals to said servos.
17. The apparatus of claim 16 wherein said means for
computing articulated body quantities comprises a means,
operative for each plural body, beginning at said outermost
body for:
computing a modal mass matrix;

computing an articulated body inertia from the articulated
body inertia of a previous body and from said modal
mass matrix;

computing an articulated body to hinge force operator
from said articulated hinge inertia;

computing a null force operator from said articulated

body to hinge force operator.

18. The method of claim 17 further comprising means for
revising said articulated body inertia by transforming said
articulated body inertia by said null force operator to pro-
duce a revised articulated body inertia.

19. The apparatus of claim 17 wherein said plural bodies
and movable hinges are characterized by respective vectors
of deformation and hinge configuration variables, and
wherein said means for computing modal deformation accel-
erations and hinge accelerations comprise:

means operative for each one of said plural bodies begin-

ning with said outermost body, for:

computing a residual body force from a residual body
force of a previous body and from said vector of
deformation and hinge configuration variables,

computing a resultant hinge force from said specified
body force and said residual body force,

computing a resultant hinge acceleration from said
resultant hinge force transformed by said articulated
hinge inertia;
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and, means operative for each one of said plural bodies
beginning with said innermost body, for:
computing a current modal body acceleration of a
current body from a modal body acceleration of a
previous body,
computing a modal deformation acceleration and hinge
acceleration from said resultant hinge acceleration
and from said current modal body acceleration trans-
formed by said articulated body to hinge force opera-
tor.
20. The apparatus of claim 19 further comprising:

means for revising said residual body force by said
resultant hinge force transformed by said body to hinge
force operator to produce a revised residual body force
for use in said correcting of said specified body forces;
and

means for revising said current modal body acceleration
based upon said modal deformation and hinge accel-
eration to produce a revised current modal body accel-
eration for use in said correcting of said specified body
forces.

21. The apparatus of claim 20 wherein said means for
computing modal deformation accelerations of said plural
spaced nodes of respective plural bodies and hinge accel-
erations of said movable hinges comprises means for com-
puting said modal deformation accelerations and hinge
accelerations once for each one of a succession of time steps,
and wherein said means for computing modal deformation
accelerations of said plural spaced nodes of respective plural
bodies and hinge accelerations of said movable hinges
further comprises means for computing said vector of defor-
mation and hinge configuration variables from the modal
deformations and hinge accelerations of a previous time step
and wherein the revised articulated body inertia, revised
residual body force and revised current modal body accel-
eration from the previous time step are used for computing
said modal deformation accelerations and hinge accelera-
tions during a current time step.

22, The apparatus of claim 19 further comprising means
connected to joint sensors at each of said movable hinges for
producing a hinge configuration portion of said vector of
deformation and hinge configuration variables.

23. The apparatus of claim 19 wherein said articulated
body inertia, said articulated hinge inertia, said body to
hinge force operator, said null force operator, said specified
body force, said residual body force, said resultant hinge
acceleration and said resultant hinge force each comprises at
least one of a flexible and rigid version thereof.

24. The apparatus of claim 23 wherein said means for
computing a resultant hinge force comprises means for
computing the flexible version of said resultant hinge force
from said specified body force, said flexible version of said
residual body force and from said rigid version of said
residual body force transformed by said modal spatial influ-
ence vector.

25. The apparatus of claim 23 further comprising means
for revising said rigid version of said residual body force
based upon a function of rigid-rigid and rigid-flexible cou-
pling components of said articulated body inertia and a
flexible version of said articulated body inertia to produce a
revised rigid version of said residual body force for use in
said correcting of said specified body forces.

26. The apparatus of claim 25 wherein said means for
computing said articulated body inertia comprises means for
decomposing said modal mass matrix into rigid-flexible and
rigid-rigid coupling components and for computing said
rigid-rigid and rigid-flexible coupling components of said
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articulated body inertia from respective ones of said rigid-
rigid and rigid-flexible coupling components of said modal
mass matrix.

27. The apparatus of claim 26 further comprising means
for computing flexible and rigid versions of a deformation
and hinge modal joint map matrix for each plural body, and
further comprising:

a means for computing the flexible version of said articu-
lated hinge inertia, comprising means for computing
the flexible version of said articulated hinge inertia
from said articulated body inertia transformed by the
flexible version of the corresponding deformation and
hinge modal joint map matrix;

a means for computing the rigid version of said articulated
body inertia, comprising means for computing the rigid
version of said articulated body inertia from a function
of said rigid-rigid and rigid-flexible coupling compo-
nents of said articulated body inertia transformed by
said flexible version of said corresponding deformation
and hinge modal joint map matrix;

a means for computing the rigid version of said articulated
hinge inertia, comprising means for computing the
rigid version of said articulated hinge inertia from said
rigid version of said articulated body inertia;

a means for computing the rigid version of said body to
hinge force operator, comprising means for computing
the rigid version of said body to hinge force operator
from said rigid versions of said articulated body inertia
and said articulated hinge inertia.

28. The apparatus of claim 27 wherein said means for
computing flexible and rigid versions of a deformation and
hinge modal joint map matrix comprises means for com-
puting a joint map matrix corresponding to unit vectors of
said movable hinges and means for computing said defor-
mation and hinge modal joint map matrix from said joint
map matrix and from said modal spatial influence vector.

29. The apparatus of claim 23 further comprising

a means for computing the flexible version of said result-
ant hinge acceleration from the flexible versions of said
articulated hinge inertia and resultant hinge force, and

a means for computing the rigid version of said resultant
hinge acceleration from the rigid versions of said
articulated hinge inertia and resultant hinge force.

30. The apparatus of claim 29 further comprising means
for revising said residual body force by adding to said
residual body force a product of the rigid versions of said
resultant hinge force and said body to hinge force operator
to create a revised residual body force for use in said
correcting of said specified body forces.

31. A manipulator controller for a manipulator responsive
to specified body forces, said manipulator comprising plural
bodies including an outermost body, and an innermost body,
said plural bodies being sequentially connected together by
movable hinges, disposed between each plural body so
connected and servos controlling said movable hinges in
accordance with servo command signals corresponding to
specified body forces of respective ones of said plural
bodies, at least some of said plural bodies being flexible in
plural deformation modes corresponding to respective
modal spatial influence vectors relating deformations of
plural spaced nodes of respective plural bodies to said plural
deformation modes, said manipulator controller comprising:

means for computing articulated body quantities for each
of said plural bodies from respective modal spatial
influence vectors;

means for computing modal deformation accelerations of
said plural spaced nodes of respective plural bodies and



5,546,508

53

hinge accelerations of said movable hinges from said
specified body forces, from said articulated body quan-
tities and from said modal spatial influence vectors;
means for comparing said modal deformation and hinge
accelerations with said desired manipulator motion so
as to determine a motion discrepancy, and correcting
said specified body forces so as to reduce said motion
discrepancy; and
means for generating said servo command signals by
converting in a processor means said corrected speci-
fied body forces to servo commands to correct manipu-
lator motion to a desired manipulator motion, and
transmitting said servo command signals to said servos.
32. The apparatus of claim 31 wherein said means for
computing articulated body quantities comprises a means,
operative for each plural body, beginning at said outermost
body for:
computing a modal mass matrix;

computing an articulated body inertia from the articulated
body inertia of a previous body and from said modal
mass matrix;

computing an articulated hinge inertia from said articu-
lated body inertia;

computing an articulated body to hinge force operator
from said articulated hinge inertia;

computing a null force operator from said articulated

body to hinge force operator.

33. The method of claim 32 further comprising means for
revising said articulated body inertia by transforming said
articulated body inertia by said null force operator to pro-
duce a revised articulated body inertia.

34. The apparatus of claim 32 wherein said plural bodies
and movable hinges are characterized by respective vectors
of deformation and hinge configuration variables, and
wherein said means for computing modal deformation accel-
erations and hinge accelerations comprise:

means operative for each one of said plural bodies begin-

ning with said outermost body, for:

computing a residual body force from a residual body
force of a previous body and from said vector of
deformation and hinge configuration variables,

computing a resultant hinge force from said specified
body force and said residual body force,

computing a resultant hinge acceleration from said
resultant hinge force transformed by said articulated
hinge inertia;

and, means operative for each one of said plural bodies

beginning with said innermost body, for:

computing a current modal body acceleration of a
current body from a modal body acceleration of a
previous body,

computing a modal deformation acceleration and hinge
acceleration from said resultant hinge acceleration
and from said current modal body acceleration trans-
formed by said articulated body to hinge force opera-
tor.

35. The apparatus of claim 34 further comprising:

means for revising said residual body force by said

resultant hinge force transformed by said body to hinge
force operator to produce a revised residual body force
for use in said correcting of said specified body forces;
and

means for revising said current modal body acceleration
based upon said modal deformation and hinge accel-
eration to produce a revised current modal body accel-

i0

15

20

25

30

35

40

45

50

55

60

63

54

eration for use in said correcting of said specified body
forces.

36. The apparatus of claim 35 wherein said means for
computing modal deformation accelerations of said plural
spaced nodes of respective plural bodies and hinge accel-
erations of said movable hinges comprises means for com-
puting said modal deformation accelerations and hinge
accelerations once for each one of a succession of time steps,
and wherein said means for computing modal deformation
accelerations of said plural spaced nodes of respective plural
bodies and hinge accelerations of said movable hinges
further comprises means for computing said vector of defor-
mation and hinge configuration variables from the modal
deformations and hinge accelerations of a previous time step
and wherein the revised articulated body inertia, revised
residual body force and revised current modal body accel-
eration from the previous time step are used for computing
said modal deformation accelerations and hinge accelera-
tions during a current time step.

37. The apparatus of claim 34 further comprising means
connected to joint sensors at each of said movable hinges for
producing a hinge configuration portion of said vector of
deformation and hinge configuration variables.

38. The apparatus of claim 34 wherein said articulated
body inertia, said articulated hinge inertia, said body to
hinge force operator, said null force operator, said specified
body force, said residual body force, said resultant hinge
acceleration and said resultant hinge force each comprises at
least one of a flexible and rigid version thereof.

39. The apparatus of claim 38 wherein said means for
computing a resultant hinge force comprises means for
computing the flexible version of said resultant hinge force
from said specified body force, said flexible version of said
residual body force and from said rigid version of said
residual body force transformed by said modal spatial influ-
ence vector.

40. The apparatus of claim 38 further comprising means
for revising said rigid version of said residual body force
based upon a function of rigid-rigid and rigid-flexible cou-
pling components of said articulated body inertia and a
flexible version of said articulated body inertia to produce a
revised rigid version of said residual body force for use in
said correcting of said specified body forces.

41. The apparatus of claim 40 wherein said means for
computing said articulated body inertia comprises means for
decomposing said modal mass matrix into rigid-flexible and
rigid-rigid coupling components and for computing said
rigid-rigid and rigid-flexible coupling components of said
articulated body inertia from respective ones of said rigid-
rigid and rigid-flexible coupling components of said modal
mass matrix.

42. The apparatus of claim 41 further comprising means
for computing flexible and rigid versions of a deformation
and hinge modal joint map matrix for each plural body, and
further comprising:

a means for computing the flexible version of said articu-
lated hinge inertia, comprising means for computing
the flexible version of said articulated hinge inertia
from said articulated body inertia transformed by the
flexible version of the corresponding deformation and
hinge modal joint map matrix;

a means for computing the rigid version of said articulated
body inertia, comprising means for computing the rigid
version of said articulated body inertia from a function
of said rigid-rigid and rigid-flexible coupling compo-
nents of said articulated body inertia transformed by
said flexible version of said corresponding deformation
and hinge modal joint map matrix;
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ameans for computing the rigid version of said articulated 44. The apparatus of claim 38 further comprising
hinge inertia, comprising means for computing the a means for computing the flexible version of said result-

rigid version of said articulated hinge inertia from said
rigid version of said articulated body inertia;

a means for computing the rigid version of said body to 3
hinge force operator, comprising means for computing
the rigid version of said body to hinge force operator
from said rigid versions of said articulated body inertia
and said articulated hinge inertia,

43. The apparatus of claim 42 wherein said means for

ant hinge acceleration from the flexible versions of said
articulated hinge inertia and resultant hinge force, and

a means for computing the rigid version of said resultant
hinge acceleration from the rigid versions of said
articulated hinge inertia and resultant hinge force.

45. The apparatus of claim 44 further comprising means

10 for revising said residual body force by adding to said

computing flexible and rigid versions of a deformation and residual body force a product of the rigid versions of said
hinge modal joint map matrix comprises means for com- resultant hinge force and said body to hinge force operator
puting a joint map matrix corresponding to unit vectors of to create a revised residual body force for use in said
said movable hinges and means for computing said defor- correcting of said specified body forces.

mation and hinge modal joint map matrix from said joint 15
map matrix and from said modal spatial influence vector. * ok ok ok



