METHOD OF IMPLEMENTING DIGITAL PHASE-LOCKED LOOPS

Inventors: Scott A. Stephens, South Pasadena; J. Brooks Thomas, La Canada, both of Calif.

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.

Filed: Oct. 13, 1993

References Cited

U.S. PATENT DOCUMENTS
3,772,600 11/1973 Natali .. 327/98
4,426,712 1/1984 Gorski-Popiel 375/343
4,769,816 9/1988 Hochstadt et al. 370/105.3
4,771,250 9/1988 Statman et al. 331/17
4,794,341 12/1988 Barton et al. 329/304
4,820,993 4/1989 Cohen et al. 327/156
4,821,294 4/1989 Thomas, Jr. 375/543

ABSTRACT

In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, and root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (B,T →0) and in a discrete-update formulation with arbitrary B,T. Deficiencies of the continuous-update approximation in large-B,T applications are avoided in the new discrete-update formulation.

8 Claims, 17 Drawing Sheets
U.S. Patent Feb. 11, 1997 Sheet 1 of 17 5,602,883

DIGITIZED INPUT SIGNAL
A e i φ

COMPLEX MULTIPLY

ACCUMULATE COUNTER-ROTATED SIGNAL PHASORS
N
U = \sum Ae e^{i(φ_{k+n})}

U_I, U_Q

EXTRACT RESIDUAL PHASE
\sin: \delta \phi_n = U_I/U_Q (2\pi\Delta)
\arctan: \delta \phi_n = \arctan(U_Q/U_I)/2\pi

\delta \phi_n \equiv \phi_n - \phi_m

ESTIMATE NEXT PHASE RATE (LOOP FILTER)
\hat{\phi}_{m,n+1,T} = K_1 \delta \phi_n + K_2 \sum \delta \phi_i

GENERATE NEXT MODEL PHASE
\phi_{m,n+1} = \phi_{m,n} + \hat{\phi}_{m,n+1,T}

GENERATE COUNTER-ROTATION PHASORS (NCO)

FIG. 1
FIG. 2

2 equal real roots
(Critically damped)

Complex pair
(Underdamped)

2 real roots
(Overdamped)

"Standard underdamped"
COMPLEX PAIR AND REAL ROOT
CRITICALLY DAMPED
ALL ROOTS REAL

FIG. 3
FIG. 4a

FIG. 4b

FIG. 4c

FIG. 4d

- $\eta_1^2 = 0$
- $\eta_2^2 = 0$
- $\lambda_2 = 1$

No real roots
2 Real roots
4 Real roots

η_1^2 and $\eta_2^2 < 0$
η_1^2 or $\eta_2^2 < 0$
η_1^2 and $\eta_2^2 > 0$

(Underdamped)

$q = \frac{3}{2} q_{CRIT}$
$q = \frac{5}{4} q_{CRIT}$
$q = q_{CRIT} = \frac{2}{27}$
$q = \frac{3}{4} q_{CRIT}$
FIG. 5a
\[\eta^2 = -2 \]
\[\lambda_2 = 1 \]

Normalized Frequency \(\nu / B_L \), dB

FIG. 5b
\[\eta^2 = -1 \]

"Std. Underdamped"

Normalized Frequency \(\nu / B_L \), dB

FIG. 5c
\[\eta^2 = 0 \]

"Supercritical"

Normalized Frequency \(\nu / B_L \), dB

FIG. 5d
\[\eta^2 = +0.5 \]

1st order, 2nd order, 3rd order, 4th order

\[\lambda_2 = 1 \]

Normalized Frequency \(\nu / B_L \), dB
FIG. 5e
\(\eta^2 = -2 \)

\(\lambda_2 = 0.5 \)

FIG. 5f
\(\eta^2 = -1 \)

\(\lambda_2 = 0.5 \)

FIG. 5g
\(\eta^2 = 0 \)

\(\lambda_2 = 0.5 \)

FIG. 5h
\(\eta^2 = +0.5 \)

\(\lambda_2 = 0.5 \)
No computation delay

Computation delay = 1 update interval

(No computation delay plotted on same scale)

(Independent root passes through the unit circle: response becomes unstable)
First Order

- Critically damped
- Standard underdamped

FIG. 7a

<table>
<thead>
<tr>
<th>BLT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0.2</td>
<td>-5</td>
<td>-10</td>
<td>-15</td>
</tr>
<tr>
<td>0.1</td>
<td>-10</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>0.05</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
</tbody>
</table>

Second Order

- Critically damped
- Standard underdamped

FIG. 7b

<table>
<thead>
<tr>
<th>BLT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>1.0</td>
<td>-5</td>
<td>-10</td>
<td>-15</td>
</tr>
<tr>
<td>0.5</td>
<td>-10</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>0.2</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>0.05</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
</tbody>
</table>
FIG. 8a

- **3rd order**
 - Critically damped
 - Standard underdamped
 - $|H(v)|^2$, dB
 - νT: 0.1, 0.2, 0.3, 0.4, 0.5
 - BLT: 2.0, 1.0, 0.5, 0.2, 0.05

FIG. 8b

- **4th order**
 - Critically damped
 - Standard underdamped
 - $|H(v)|^2$, dB
 - νT: 0.1, 0.2, 0.3, 0.4, 0.5
 - BLT: 2.0, 1.0, 0.5, 0.2, 0.05
1st order

- Critically damped
- Standard underdamped

| \(|H(v)| \) | dB |
|----------|----|
| 0.1 | 5 |
| 0.2 | 10 |
| 0.3 | 15 |
| 0.4 | 20 |
| 0.5 | 25 |

\(BLT = 0.075 \)
\(BLT = 0.05 \)

FIG. 9a

2nd order

- Critically damped
- Standard underdamped

| \(|H(v)| \) | dB |
|----------|----|
| 0.1 | 5 |
| 0.2 | 10 |
| 0.3 | 15 |
| 0.4 | 20 |
| 0.5 | 25 |

\(BLT = 0.2 \) (Underdamped only)
\(BLT = 0.1 \)
\(BLT = 0.05 \)

FIG. 9b
Critically damped

Standard underdamped

$|H(v)|^2$, dB

$B_LT = 0.3$ (Underdamped only)

$B_LT = 0.2$

$B_LT = 0.1$

$B_LT = 0.05$

FIG. 10a

4th order

Critically damped

Standard underdamped

$|H(v)|^2$, dB

$B_LT = 0.5$ (Underdamped only)

$B_LT = 0.4$

$B_LT = 0.3$

$B_LT = 0.2$

$B_LT = 0.1$

$B_LT = 0.05$

FIG. 10b
AT TRUE $BLT = 1.185$
(PARAMETER $BLT = 0.375$), $s_1 T \rightarrow -\infty$, AND RETURNS ALONG $\text{Im}[sT] = \pi$

CONTROLLED ROOT vs. TRUE BLT

 CU APPROXIMATION:
DEVIANt ROOT vs. TRUE BLT
(AND PARAMETER BLT)

ST-PLANE

FIG. 11a

FIG. 11c

CU APPROXIMATION

DU FORMULATION

TRUE BLT
FIG 11b
\[
\chi_N \equiv \frac{(B_{LT})^N}{K_N}
\]

FIG. 13a

\[\delta \phi_{ss} = \chi_N \frac{\phi^{(N)}}{B_L^N}\]

FIG. 13b
Fig. 14a

Critical damping
Standard underdamped

\[\chi_N \equiv \frac{(B_{LT})^N}{K_N} \]

4th order

3rd order

2nd order

1st order

Fig. 14b

Critically damped
Standard underdamped

\[\delta \phi_{ss} = \chi_N \frac{\phi_{(N)}}{B_L} \]

1st order

2nd order

3rd order

4th order

\[\frac{B_{L,eff}}{B_L} \]
METHOD OF IMPLEMENTING DIGITAL PHASE-LOCKED LOOPS

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected not to retain title.

BACKGROUND ART

The present invention comprises a method of implementation of a digital phase-locked loop with loop constants derived from roots placed in the s-plane on a root-by-root basis in terms of root-specific damping and root specific decay rates. The method provides improved flexibility in tailoring high-order loop performance and the design is more straightforward and understandable for high-order loops. The inventive method provides a fully digital formulation, free of analog complications. Further, loop bandwidth and damping do not change for high-gain loops.

STATEMENT OF THE INVENTION

The instant invention comprises an approach that reverses the conventional procedure of design for obtaining loop filter constants. The instant innovation is a method in which loop roots are first placed in the s-plane on the basis of new root-specific damping and root-specific-decay-rate parameters. Loop constants are then calculated on the basis of these roots.

In the present invention, loop-filter constants are specified in terms of new loop parameters. By design, each of these parameters has a simple and direct physical meaning in terms of a useful loop property: loop noise bandwidth, transient decay time or damping. For example, a simple choice of parameter values will automatically give a loop a particular selected loop bandwidth and supercritically-damped behavior (i.e., all roots real, negative, and equal).

Thus, the need to solve for root location as a function of loop bandwidth. The analysis is extended to fourth-order loops because of the potential advantages of such loops. In some spacecraft applications, loop bandwidth can be set to a smaller value for a fourth-order loop than for a third-order loop. Consequently, lower signal strengths can be reliably tracked.

The analysis is extended to fourth-order loops because of the potential advantages of such loops. In some spacecraft applications, loop bandwidth can be set to a smaller value for a fourth-order loop than for a third-order loop. Consequently, lower signal strengths can be reliably tracked.

Fourth-order DPLLs, unlike their analog counterparts, are easy to design and implement, given the new fully-digital formulation. Accurate placement of loop roots results from a simple selection of parameters values rather than complicated analog circuit design.

To establish a foundation for analysis, a high-level description of a DPLL is presented by way of background. For loops of first to fourth order, the new controlled-root parameterization is used to derive a CU-limit solution and to develop a general approach from which numerical, controlled-root solutions to the DU loop can be derived. Solutions are given for phase and phase-rate feedback, with computation delay for closing the loop set to either zero or one update interval. To tie in with traditional analysis, the new loop parameters are related to old loop parameters in the CU limit. Loop transfer functions are presented for each loop order. The technique for direct transient-free acquisition is extended to fourth-order loops. Finally, results for two
measures of loop performance, mean time to first cycle slip and steady-state phase error, are described.

OBJECTS OF THE INVENTION

It is therefore a principal object of the present invention to provide a method for specifying loop-filter constants of digital phase-locked loops in terms of loop parameters having direct physical meaning as a useful loop property.

It is another object of the invention to provide a method of simplifying the analysis of digital phase-locked loops by obviating the need to solve for root location as a function of standard loop parameters.

It is still an additional object of the present invention to provide a method for parameterizing digital phase-locked loops, wherein loop constants are computed on the basis of loop noise bandwidth and controlled-root independent parameters related to decay times and damping.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned objects and advantages of the present invention, as well as additional objects and advantages thereof, will be more fully understood hereinafter as a result of a detailed description of a preferred embodiment when taken in conjunction with the following drawings in which:

FIG. 1 is a block diagram of a digital phase-locked loop with phase and phase-rate updates;

FIG. 2 is a graphical illustration of the relation between the conventional second-order loop filter parameter r and the controlled-root parameter \(\eta_1 \) in the continuous update limit;

FIG. 3 is a graphical illustration of relations between third-order loop filter parameters \(r, \kappa \) and controlled-root parameters \(\eta_1, \lambda_2 \) in the continuous update limit with the shaded area representing values of \(r, \kappa \) where all roots are real;

FIG. 4 is a graphical illustration of the relationship between fourth-order loop filter parameters \(r, \kappa, a \) and controlled-root parameters \(\eta_1, \lambda_2, \lambda_3 \) in the continuous update limit;

FIG. 5 is a graphical illustration of transfer functions for loops of order 1 to 4 for various values of \(\eta_1 \) and \(\lambda_2 \);

FIG. 6, comprising FIGS. 6a and 6b, is a graphical illustration of normalized loop bandwidth \(B_T \) versus reference decay rate parameter \(B_T \) for a third-order loop without and with computation delay, respectively;

FIG. 7, comprising FIGS. 7a and 7b, is a graphical illustration of transfer functions for first and second order loops with phase and phase-rate feedback and no computation delay;

FIG. 8, comprising FIGS. 8a and 8b, is a graphical illustration of transfer functions for third and fourth order loops with phase and phase-rate feedback and no computation delay;

FIG. 9, comprising FIGS. 9a and 9b, is a graphical illustration of transfer functions for first and second order loops with phase and phase-rate feedback and computation delay of one update interval;

FIG. 10, comprising FIGS. 10a and 10b, is a graphical illustration of transfer functions for third and fourth order loops with phase and phase-rate feedback and computation delay of one update interval;

FIG. 11, comprising FIGS. 11a and 11b, is a graphical illustration of root-locus plots for a second order loop using discrete-update formulation (thick line) and continuous-update approximation (thin line) as a function of \(B_T \);

FIG. 12, comprising FIGS. 12a and 12b, is a graphical illustration of mean time to first cycle slip for discrete-update loops with supercritical damping, phase and phase-rate feedback, no computation delay and sine phase extractor;

FIG. 13, comprising FIGS. 13a and 13b, is a graphical illustration of quantities describing steady-state phase error in discrete-update loops with phase and phase-rate feedback and no computation delay; and

FIG. 14, comprising FIGS. 14a and 14b, is a graphical illustration of quantities describing steady-state phase error in discrete-update loops with phase and phase-rate feedback and computation delay of one update interval.

1.0 DETAILED DESCRIPTION OF THE INVENTION

2.0 HIGH-LEVEL DESCRIPTION OF A DPLL

The block diagram in FIG. 1 shows the basic elements of a DPLL. The example DPLL shown in FIG. 1 is based on "immediate update" of the loop filter and feedback of phase as well as phase-rate. Alternate DPLL designs might feed-back only phase rate and/or have a substantial computation delay ("transport lag"). The analysis below also treats the case when the computation delay is equal to one update interval.

An incoming signal is sampled at a high rate (\(f_s \)) and then counter-rotated sample by sample with model phase values generated by a number-controlled oscillator (NCO) as directed by loop feedback. The resulting counter-rotated signal, which should have very low frequency, is then accumulated over an update interval length \(T \). A phase extractor then processes the resulting complex sum to produce a value for residual phase for the given interval (n). For an ideal phase extractor, the \(n \)th residual phase is equivalent to the difference of the \(n \)th input signal phase \(\Phi_n \) and the \(n \)th model phase \(\Phi_{m,n} \):

\[
\Phi_{n} = \Phi_{m,n} - \Phi_{m,n-1} \tag{2.1}
\]

with each reference to the center of the sum interval. Even though actual residual phase can deviate from this linear model due to nonlinearity in the phase extractor and/or cycle ambiguities, the theory presented here will be based on the approximation of Equation (2.1). This \(n \)th residual phase is immediately passed to the loop filter to assist in the prediction of the phase rate for the \((n+1) \)th interval. The loop filter generates an estimate of phase rate, \(\dot{\Phi}_{m,n+1} \), in the form of phase change per update interval. An estimate of the next model phase, the \((n+1) \)th, is projected ahead to interval center by adding this estimate phase change to the previous \(n \)th model phase:

\[
\Phi_{m,n+1} = \Phi_{m,n} + \Phi_{m,n+1} \tag{2.2}
\]

The \((n+1) \)th model phase, along with estimated phase rate, is used to initialize the phase and rate registers of the NCO in a manner that causes the NCO to produce over the \((n+1) \)th interval, phase values characterized by said rate and center-interval phase. In this manner, the loop is closed and a new value for residual phase is produced to repeat the process.

3.0 LOOP THEORY

3.1 LOOP FILTER

As suggested above, residual phase from a given interval can either immediately enter the loop filter and influence feedback in the very next interval or its effect can be delayed
to allow more time for computation. Two cases are considered here: a) "immediate" updates with acceptably small computation times and b) updates delayed by one update interval. Immediate updates are discussed first.

The use of residual phase from a given interval to update NCO phase in the very next interval can lead to a "dead time" during which no counter-rotated phasors are performed, and during which no counter-rotated phasors are accumulated. If the length of this "dead time" can be made such a small fraction of an update interval that the SNR loss is acceptably small, the immediate update of the loop filter becomes feasible. For immediate updates, an Nrh-th order loop digital loop filter, using residual phase values \(\delta_p \) up to and including the \(n \)th sum interval, estimates phase rate for the \((n+1) \)th interval according to

\[
\phi_{n+1,T} = K_i \delta_p + K_r \sum_{i=1}^{n-1} \delta_p + K_s \sum_{i=1}^{j=n} \delta_p + \ldots
\]

where \(\phi_{n+1,T} \) is phase change per update interval \(T \) and the loop constants \(K_i \) are to be specified below. (An \(N \)th-order loop has \(N \) terms.)

In the case of a relatively long computation time, loss of data can often be eliminated by performing filter computations in parallel with signal accumulation in each update interval, and applying the result one interval later than the immediate-update approach. For a computation delay ("transport lag") of one update interval, the loop filter estimates phase rate by computing during the \(n \)th interval the expression

\[
\dot{\phi}_{n+1,T} = K_i \delta_p + K_r \sum_{i=1}^{n-1} \delta_p + K_s \sum_{i=1}^{j=n} \delta_p + \ldots
\]

Note that the only change between Equations (3.1) and (3.2) is that the \(n \)th residual phase is not used in computing the \((n+1) \)th phase-rate estimate.

In the following discussion, the loop equation will be solved on the basis of immediate updates Equation (3.1), while only results are presented for Equation (3.2).

3.2 CONTINUOUS-UPDATE LIMIT

3.2.1 LOOP EQUATION

In many applications, the update interval \(T \) is much shorter than all other filter time scales, and considerable insight may be gained by writing Equation (3.1) in the "continuous-update limit", \(T \to 0 \). (One can easily show that Equation (3.2) leads to the same result in this limit.) To facilitate this, define new loop constants \(K_i \) as

\[
K_{i,n} = \frac{K_i}{n} \text{ for } i = 1, N
\]

so that Equation (3.1) becomes

\[
\dot{\phi}_{n+1,T} = \frac{K_i \delta_p + K_r \sum_{i=1}^{n-1} \delta_p + K_s \sum_{i=1}^{j=n} \delta_p + \ldots}{T}
\]

where estimated phase rate has been rewritten on the basis of Equation (2.2) under the assumption that the NCO is updated in both phase and phase rate. In the limit \(T \to 0 \), the first term becomes a derivative and the sums become integrals:

\[
\frac{d}{dt} \dot{\phi}_n = K_i \delta_p + K_r \int_{t_0}^{t} dt \delta_p + K_s \int_{t_0}^{t} dt \delta_p + \ldots
\]

Thus, in this limit, the basic equation governing "NCO rate" is the same equation that governs the VCO rate of an analog loop, given perfect integrators.

Solutions of the closed-loop equation can be used on the theory of differential equations after substituting Equation (2.1) and differentiating \(N-1 \) times:

\[
\frac{d^{N-1}}{dt^{N-1}} \dot{\phi}_n = K_1 \frac{d^{N-1}}{dt^{N-1}} \delta_p + K_2 \frac{d^{N-2}}{dt^{N-2}} \delta_p + \ldots + K_N \delta_p = \phi \frac{d^{N-1}}{dt^{N-1}} \phi + K_1 \frac{d^{N-2}}{dt^{N-2}} \phi + \ldots + K_N \phi = \phi
\]

Solution of this differential equation will give the behavior of model phase \(\phi_m \) in response to input phase \(\phi \).

3.2.2 TRANSFER FUNCTION AND LOOP NOISE BANDWIDTH

To find the frequency response of the loop, take the Fourier transform of both sides of Equation (3.6), and utilize the relation

\[
F \left\{ \frac{d^{N-1}}{dt^{N-1}} \phi(t) \right\} = (i2\pi f)^{N-1} F\{\phi(t)\}
\]

where \(F \{ \} \) represents a Fourier transform. This produces

\[
(i2\pi f)^{N-1} \phi_m(f) + K_1 (i2\pi f)^{N-2} \phi_m(f) + \ldots + K_N \phi_m(f) = \phi \phi + K_1 \phi f + \ldots + K_N \phi f
\]

where \(\phi(f) \) and \(\phi_m(f) \) are the Fourier transforms of \(\phi(t) \) and \(\phi_m(t) \). The closed-loop transfer function \(H(f) \) is defined by \(\phi_m(f) = H(f)\phi(f) \), so we have

\[
H(f) = \frac{\phi_m(f)}{\phi(f)} = \frac{K_1 (i2\pi f)^{N-2} + \ldots + K_N (i2\pi f)^{N-1} + \phi(f)}{\phi \phi + K_1 \phi f + \ldots + K_N \phi f}
\]

Plots of the transfer function for various loop orders and constants are shown in FIGS. 7 to 10. The single-sided loop noise bandwidth \(B_L \) for the closed loop is defined by

\[
2B_L = \int_{-\infty}^{\infty} \frac{1}{2\pi} \mid H(f) \mid^2 df
\]

This integral is evaluated in Appendix A to find \(B_L \) as a function of \(K_1, K_2, \ldots \). continuous-update limit and the results are summarized in Table 3-1 for loop fourth order.

3.2.3 PARAMETERIZATION OF LOOP CONSTANTS

Loop bandwidth \(B_L \) provides us with one parameter for parameterizing the loop constants. Conventional loop theory
specifies additional parameters at this point (e.g., \(r, \kappa, \ldots \)) to complete the parameterization. However, since \(r, \kappa, \) etc. cannot be given direct physical significance for loops higher than second order, they are less useful than more carefully chosen parameters.

To begin the process of defining new parameters, define the higher \(\kappa \)'s in terms of \(\kappa_1 \):

\[
\kappa_i = \alpha_i \kappa_1^i \quad \text{for } i = 3, N
\]

(3.11)

No loss of generality is suffered at this step since three new parameters replace the three \(\kappa \)'s. When this equation is substituted for the \(\kappa \)'s in the expression for loop bandwidth, one obtains \(B_L \) as a function of the \(\alpha \)'s, as shown in Table 3-1. This equation can be solved for \(\kappa_1 \) in terms of \(B_L \) and the \(\alpha \)'s, as shown by the first line of equations for each loop order in Table 3-2. Based on this expression for \(\kappa_1 \) and Equation (3.11), the loop constants can be expressed as a function of \(B_L \) and the \(\alpha \)'s.

The variables \(\alpha_2, \ldots, \alpha_N \) will now be parameterized in terms of physically significant quantities. To begin the search for such parameters, return to Equation (3.6). When the roots are unequal (i.e., non-degenerate), the general solution to the homogeneous equation \((\phi(t)) = 0\) is of the form

\[
\phi_0(t) = \sum_{i=1}^{N} a_i e^{q_i t}
\]

(3.12)

where each \(s_i \) is a root of the characteristic equation

\[
s^n + a_{n-1}s^{n-1} + \cdots + a_0 = 0
\]

(3.13)

and where the \(a_i \) are amplitudes to be determined by the initial conditions. We can use characteristics of these roots to parameterize \(\kappa_1, \kappa_2, \ldots, \kappa_N \) so as to create a more physically interpretable representation.

Since the loop constants \(\kappa \)'s are real, we can parameterize the roots without loss of generality as

\[
[s_1, s_2, s_3, s_4, \ldots] = [-\beta_1(1+i\eta_1); -\beta_1(1-i\eta_1); -\beta_2; \ldots]
\]

(3.14)

where \(\eta_1^2 \) and \(\beta_1 \) are real. For an odd number of roots, the unpaired root is not given an \(\eta \) parameter. This parameterization takes advantage of the fact that complex roots of a polynomial equation always occur in conjugate pairs when the polynomial coefficients are real. Our goal here is to create parameters which dictate the relative behavior of the roots once \(B_L \) has been specified. Thus we can choose one root factor, \(\beta_1 \), as the reference decay-rate parameter, which is to be determined below as a function of \(B_L \), and form new parameters \(\lambda_1 \) which indicate magnitude relative to the first:

\[
\beta_i = \lambda_i \beta_1 \quad \text{for } i \geq 2
\]

(3.15)

Our root parameterization is now given by:

\[
[s_1, s_2, s_3, s_4, \ldots] = [-\beta_1(1+i\eta_1); -\beta_1(1-i\eta_1); -\beta_2; \lambda_3 \beta_1; \ldots]
\]

(3.16)

The overall scale factor \(\beta_1 \), which we choose to be a positive real number for loop stability, is proportional to \(B_L \) in the CU limit, as can be inferred from the specific example in Section 3.2.4.

The \(\eta_1^2 \), which we will refer to as the damping parameters, contain useful information about each root pair. The sign of \(\eta_1^2 \) for a given root pair determines the damping behavior for that root pair:

\[
\eta_1^2 > 0 \quad \text{two real roots; overdamped}
\]

\[
\eta_1^2 = 0 \quad \text{two real, equal roots; critically damped}
\]

\[
\eta_1^2 < 0 \quad \text{complex conjugate pair; underdamped/oscillatory}
\]

and the magnitude of \(\eta_1^2 \) is a measure of the separation of the root pair:

\[
\eta_1^2 = \frac{4\Delta}{(s_i - s_j)^2}
\]

(3.17)

The \(\lambda_1 \)'s, which we will refer to as the relative magnitude parameters, control the relative magnitudes of different root pairs. Furthermore, a negative (positive) \(\lambda_1 \) for a given root indicates an exponentially growing (decaying) solution to (3.6), since \(\beta_1 \) is chosen to be a positive real value. Some interesting values of \(\lambda_1 \)'s and \(\eta_1^2 \)'s are:

all \(\lambda_1 = 1 \), all real parts of roots equal

all \(\eta_1^2 = 0 \), \(\lambda_1 \) = 1 , all roots real and equal (supercritically damped)

all \(\eta_1^2 = -1 \), \(\lambda_1 \) = 1 "standard" underdamped response

where "standard" underdamped response for a given root corresponds to the response of a 2nd-order loop with \(r = 2(\zeta = 0.707) \).

To express the \(\kappa \)'s as a function of these new root parameters, equate each term in Equation (3.13) with the like term in the same polynomial factored into its roots:

\[
(s-s_1)(s-s_2)\cdots(s-s_N) = 0
\]

(3.18)

The \(\kappa \)'s are then given by

\[
\kappa_i = \sum_{j=1}^{N} \frac{N}{s_j}
\]

(3.19)

\[
\kappa_i = \sum_{j=1}^{N} \frac{N}{s_j}
\]

(3.20)

\[
\kappa_i = \sum_{j=1}^{N} \frac{N}{s_j}
\]

(3.21)

\[
\kappa_i = (-1)^{i}n_{s_1 s_2} \cdots s_N
\]

(3.22)

When the root expressions in Equation (3.16) and the \(\kappa \) expressions in Equation (3.11) are substituted into these equations for the \(\kappa \)'s, one can solve for \(\beta_1 \) and \(\alpha \) in terms of \(B_L, \lambda_1 \), and \(\eta_1^2 \). Results for the \(\alpha \)'s are given for loops of order 1 to 4 in the second line of equations for each loop order in Table 3-2. To tie in with traditional parameters, the \(\alpha \)'s are also given in terms of \(r, \eta_1, \) and \(a \) in the third line in Table 3-2. A graphical mapping between the new parameters and traditional parameters is presented in FIGS. 2, 3, and 4 for second-, third-, and fourth-order loops, respectively. For reference, plots of the transfer functions for loops of order 1 to 4 are presented in FIG. 5 for various values of \(\lambda_1 \) and \(\eta_1^2 \).

Since the transient response of a loop is characterized by the solution, Equation (3.12), to the homogeneous equation, knowledge of root locations provides a basis for predicting transient behavior and settling time. Because the \(\eta_1^2 \) and \(\lambda_1 \) values, along with the loop bandwidth, completely specify the roots by location in the complex plane, loop transient response is directly selected at the outset when the new loop parameters are chosen. For loops of first to fourth orders, Table 3-3 presents loop constants for two likely implementations: a) standard underdamping, where all roots have the same decay time (all \(\lambda_1 \) = 1) and all \(\eta_1^2 = -1 \) and b) supercritical damping, where all roots have the same decay time and are critically damped (all \(\eta_1^2 = 0 \)). For comparison, Table 3-3 also presents the corresponding conventional parameters.
3.2.4 Detailed Derivation for a Fourth-Order DPLL

To illustrate the method hereof, a fourth-order loop will be treated in detail. As indicated by Equation (3.16), the roots for a fourth-order loop are expressed in terms of the controlled-root parameters as

$$\{\eta_1, \eta_2; \eta_3, \eta_4\} = \{\beta_1, (1 \pm i \eta_1); \beta_2, \lambda_2(1 \pm i \eta_2)\}$$ \hspace{1cm} (3.23)

Using Equations (3.19) through (3.22) and Equation (3.23), we can write:

$$\beta_1 = \frac{-s_1 + s_2 + 2s_3}{2 + 2s_3}$$ \hspace{1cm} (3.24)

$$\beta_2 = \frac{s_1s_2 + s_1s_4 + s_2s_4 + s_3s_4}{2 + 2s_2}$$ \hspace{1cm} (3.25)

$$\beta_3 = \frac{-s_1s_3 + s_1s_4 + s_3s_4}{2 + 2s_3}$$ \hspace{1cm} (3.26)

$$\beta_4 = \frac{s_1s_2s_3s_4}{2 + 2s_2}$$ \hspace{1cm} (3.27)

Equation (3.24) can be used to express β_1 in terms of ω_b:

$$\beta_1 = \frac{-s_1 + s_2 + 2s_3}{2 + 2s_3}$$ \hspace{1cm} (3.28)

This expression and Equation (3.11) can be substituted in Equations (3.25) to (3.27) and the three resulting equations can be solved for the α's to give

$$\alpha_2 = \frac{4s_2 + (1 - \eta_1^2) + \lambda_2^2(1 - \eta_2^2)}{2 + 2s_2}$$ \hspace{1cm} (3.29)

$$\alpha_3 = \frac{2s_3(1 - \eta_1^3) + 2s_3(1 - \eta_2^3)}{2 + 2s_2}$$ \hspace{1cm} (3.30)

$$\alpha_4 = \frac{\lambda_2^2(1 - \eta_1^2)(1 - \eta_2^2)}{2 + 2s_2}$$ \hspace{1cm} (3.31)

Analytical evaluation of the loop bandwidth integral in Equation (3.10) gives loop bandwidth in terms of the κ's:

$$\frac{\kappa_1^2\kappa_3 + \kappa_1^2 \kappa_4 - \kappa_1^2 \kappa_2}{(2 + 2s_2)} = \frac{\kappa_1^2\kappa_3 + \kappa_2^2 \kappa_4 - \kappa_1^2 \kappa_2}{(2 + 2s_2)} + \frac{\kappa_1^2 \kappa_3 + \kappa_2^2 \kappa_4 - \kappa_1^2 \kappa_2}{(2 + 2s_2)}$$ \hspace{1cm} (3.32)

Substitution of Equation (3.11) into this expression allows a solution for κ_1 in terms of B_L and the α's:

$$\kappa_1 = \frac{4B_L}{\alpha_2(\alpha_2 - \alpha_3^2 - \alpha_4^2)}$$ \hspace{1cm} (3.33)

Note that this equation in combination with Equation (3.28) shows that β_1 is proportional to B_L.

Thus, if η_1^2, λ_2, and η_2^2 are specified, one can calculate the α's using Equations (3.29) to (3.31). These values of α_2 can then be substituted in Equation (3.33) along with B_L to obtain a value for κ_1. This value for κ_1, along with the α's, lead to values for κ_2, κ_3, and κ_4 through Equation (3.11). As shown in Equation (3.3) and listed in Table 3-2, the κ's are multiplied by an appropriate power of T to obtain the κ's to be used in the loop filter. In this manner, the loop constants for a fourth-order loop (in the limit $T \to 0$) can be calculated in terms of loop bandwidth and the controlled-root parameters η_1^2 and λ_2.
in Equation (3.41) where \(v \) is the frequency in \(H_{\nu} \). Plots of the transfer function for various loop implementations are presented in FIGS. 7-10.

3.3.3 LOOP-NOISE BANDWIDTH

In analogy with Equation (3.10), the single-sided noise bandwidth for the closed loop is defined by

\[
2B_L = \int_{-\infty}^{\infty} \frac{|H(e^{j2\pi v})|}{1} dv
\]

which can be rewritten as a contour integral in the form

\[
2B_L = \frac{1}{2\pi j} \oint H(z)H^{-1}(z)\frac{dz}{z}
\]

where the closed path is along the unit circle. This integral can be computed on the basis of residues within the unit circle. For simple poles, the integral is given by

\[
2B_L = \sum_{i=1}^{N} \text{Res}(H(z))
\]

where the \(z_i \) are poles of the integrand within the unit circle. (For cases with poles of order greater than first, the residue evaluation must be appropriately modified.)

As seen in Equation (3.41), the poles of \(H(z) \) are the roots of the polynomial \(D(z) \) in the denominator of \(H(z) \) and therefore satisfy the characteristic equation

\[
D(z) = (z-z_1)(z-z_2)\ldots(z-z_N) = 0
\]

Let the \(N \) roots of this polynomial be \(z_i \) so that this equation can also be written as

\[
D(z) = (z-z_1)(z-z_2)\ldots(z-z_N) = 0
\]

Since the \(N \) roots of \(D(z) \) must all lie within the unit circle if the loop is to be stable (see next subsection), all poles of \(H(z) \) will lie outside the unit circle and will not contribute to the contour integral. Furthermore, one can easily show that the residue for the pole at \(z=0 \) is zero since \(H(z^{-1}) \rightarrow 0 \) as \(z \rightarrow 0 \). Thus the contour integral can be evaluated in a straightforward though algebraically tedious fashion on the basis of the \(N \) poles of \(H(z) \). The resulting expressions for \(B_LT \) as a function of the \(z_i \) are lengthy and uninformativ, particularly for the higher-order loops, and will not be presented here.

3.3.4 LOOP CONSTANTS FROM LOOP ROOTS

To obtain the relationship between the roots and the loop constants, first collect terms according to the power of \(z \) in Equations (3.47) and (3.48). When this homogenous equation is given by

\[
\phi = \sum_{i=1}^{N} a_i z_i^k
\]

where \(N/k \) is the binomial coefficient. These \(N \) equations can be used to solve for each of the \(N \) loop constants in terms of the \(N \) roots, \(z_i \). First solve Equation (3.53) for \(K_1 \). The result can then be substituted in Equation (3.52) to allow a solution for \(K_2 \) in terms of the \(z_i \). Proceeding sequentially in this manner through the rest of the equation, one can obtain an expression for each loop constant in terms of the roots. Thus, if the roots are known, the loop constants can be calculated.

When the contour integral for \(B_LT \) is evaluated as a function of roots for a given loop order, the result can be reduced to a form that contains only the functions of \(z_i \) found on the left-hand side of Equations (3.40) to (3.53). When this form is reached, \(B_LT \) can then be easily expressed as a function of only the loop constants. The results are presented in Table 3-4 for loops of order one to four.

3.3.5 SOLUTION TO HOMOGENEOUS EQUATION

Solutions to the homogeneous form of Equation (3.36) provide information as to the transient behavior and stability of the loop. The general non-degenerate solution to the homogeneous equation is given by

\[
\phi = \sum_{i=1}^{N} a_i z_i^k
\]

where the \(N \) amplitudes \(a_i \) are to be determined from initial conditions and where the \(N \) complex numbers \(z_i \) are again the roots of the polynomial \(D(z) \) in Equation (3.47). (To see that these roots provide solutions to the homogeneous equation, substitute \(\phi = z^k \) in the left-hand side of Equation (3.36), with the right-side set equal to zero, and reduce to the form of Equation (3.47).) Thus, the roots from the homogeneous equation are also the poles of the transfer function. In order for the loop to be stable, the loop constants \(K_i \) must be set to values that cause all the roots to fall within the unit circle. With a modulus less than 1, a root cannot cause the homogeneous solution in Equation (3.54) to diverge.

3.3.6 LOOP PARAMETERIZATION

Loop parameterization in the case of discrete update intervals parallels Section 3.2.3 for the CU limit. Loop noise bandwidth \(B_L \) and the same root-location parameters are adopted as independent loop parameters. The roots will be parameterized in the form

\[
\{z_1, z_2, z_3, \ldots \} = \{e^{-\beta_D(1+i\theta_D)_T}, e^{-\beta_D(2+i\theta_D)_T}, \ldots \} \quad (3.55)
\]

where \(\beta_D \) and \(\theta_D \) are the \(N=1 \) independent parameters specified in Section 3.2.3, with \(\beta_D=1 \). These parameters and "normalized" loop bandwidth \(B_LT \) will comprise the \(N \) independent loop parameters needed to completely specify the loop.
In Equation (3.55), the reference decay-rate parameter \(\beta_1 \), which will be represented in the normalized, dimensionless form \(\beta, T \) in the DU case, must be determined as a function of these \(N \) parameters. In the CU limit, determination of \(\beta_1 \) in terms of \(B_T \), \(\lambda \), and \(n_e \), could be carried out explicitly, as shown in Section 3.2.3. For DU loops, however, the complexity of the equations makes a closed-form solution in the general case impractical. Thus, a numerical solution has been carried out by first selecting a value for \(\beta, T \) and the \(N=1 \) independent parameters, \(\lambda \) and \(n_e \), and then computing numerical values for the \(N \) roots through use of Equation (3.55). The resulting \(z_i \) values can be used to compute the normalized loop bandwidth, \(B, T \), as shown in Section 3.3.3, and the loop constants, as shown in Section 3.3.4. Repeating the process in this fashion on the basis of the same \(\lambda \) and \(n_e \) values, one can vary the parameter \(\beta, T \) numerically to obtain \(B, T \) and the loop constants as a function of \(\beta, T \).

In general, \(B, T \) increases as \(\beta, T \) increases from zero but can go no higher than a loop-specific maximum value. Plots of \(B, T \) versus \(\beta, T \) are shown in FIGS. 6a and 6b for two supercritically-damped third-order loops with phase and phase-rate update, one with a computation delay of zero, the other with a computation delay equal to one update interval. In the zero-computation delay case, \(B, T \) can get no higher than 9.5, which corresponds to a \(\beta, T \) value of \(-\ln(0.9)\). In the other case, \(B, T \) reaches a peak at \(\beta, T=\ln(4) \) as \(\beta, T \) increases, where \(B, T=0.3 \) is the maximum attainable value.

For a given \(B, T \), therefore, one can find the corresponding \(\beta, T \) if any, and the corresponding loop constants on the basis of the analysis outlined above. Thus, loop constants can be determined for given \(\lambda \) and \(n_e \) as a function of \(B, T \). Results are presented in Tables 3-5 and 3-6 for loops of order one to four, given phase and phase-rate feedback, supercritical damping and standard underdamping. Once \(\beta \) and the loop roots are known, the transfer function can be computed on the basis of Equation (3.41). Results are plotted in FIGS. 7a and 7b through FIGS. 10a and 10b for the two standard loop configurations. Even though a general solution to the DU loop has not been obtained, the equations can be expanded as a power series in \(B, T \) to obtain the higher-order terms relative to the CU limit. Results are presented in Table 3-7 and 3-8 for the loop constants as a power series in \(B, T \) for the standard loops.

3.4 EXAMPLE OF STRAYING ROOTS AT LARGE \(B, T \) VALUES IN THE CONTINUOUS-UPDATE APPROXIMATION

As \(B, T \) increases in the CU approximation for loop constants (e.g., Table 3-3), the path of the loop roots can stray from their original intended course and true loop noise bandwidth can exceed the \(\beta, T \) parameter value used to compute the loop constants. This deviation is illustrated in both the \(sT \)-plane and \(z \)-plane in FIGS. 11a and 11b for a second-order DU loop with phase and phase-rate feedback, standard underdamping, and no computation delay. The thick straight lines, which are based on the exact DU solution presented in preceding subsections, show the paths taken by standard-underdamped roots as (true) \(B, T \) increases from 0 to 1.4. The thin curved lines, which are produced by the CU approximation, follow the DU lines until about \(B, T=0.1 \) and then curve toward the real axis. (Note that the CU-approximation curves are marked by both true \(B, T \) values and "parameter" \(B, T \) values. True \(B, T \) is the actual effective noise bandwidth for a DU loop, while "parameter" \(B, T \) is the value used to compute the loop constants in Table 3-3.) Where the curves separate, the CU approximation starts to diverge from standard underdamping and loop transient response changes. The inset plot illustrates this divergence in terms of the corresponding damping parameter \(n' \), which starts at the intended underdamped value of \(-1 \) at \(B, T=0 \), increases to a critically-damped value of 0 at true \(B, T=0.8 \), and then approaches \(+1 \) at true \(B, T=1.2 \). Thus, loop response at high \(B, T \) values will not match original intended response. In contrast, as indicated by the thick lines, the DU exact solution maintains standard underdamping (i.e., \(n'=\pm-1 \)) for allowed values of \(B, T \).

4.0 TRANSIENT-FREE ACQUISITION WITH DPLLS

If the signal phase and its time derivatives are accurately known at start-up, it is possible to initialize the loop sums and loop phase so that the loop starts tracking in-lock, with no transients. In steady-state tracking, residual phase becomes a constant \((\delta \phi_{e}=\delta \phi_{m}) \) so that Equation (3.1) or Equation (3.2) becomes

\[
\Delta \phi_{n}=K_{1} \delta \phi_{n}+K_{2} \sum_{j=1}^{n_{e}-n_{c}} \delta \phi_{j}+K_{3} \sum_{j=1}^{n_{e}} \delta \phi_{j}, \quad (4.1)
\]

for up to a fourth-order loop. The quantity \(n_{e} \) is the computation delay, which is zero or one update interval for the present analysis. Note that estimated model phase rate, \(\hat{\phi}_{m_{n_{1}}}T \) has been replaced by differenced input phase since model phase tracks input phase exactly, except for a constant offset, in steady-state tracking. Based on this expression, higher-order differences become

\[
\Delta \phi_{n+1}=K_{1} \delta \phi_{n}+K_{2} \sum_{j=1}^{n_{e}-n_{c}} \delta \phi_{j}+K_{3} \sum_{j=1}^{n_{e}} \delta \phi_{j}, \quad (4.2)
\]

\[
\Delta \phi_{n+1}=K_{1} \delta \phi_{n}+K_{2} \sum_{j=1}^{n_{e}} \delta \phi_{j}, \quad (4.3)
\]

\[
\Delta \phi_{n+1}=K_{1} \delta \phi_{n}, \quad (4.4)
\]

One can easily show the differences are related to input phase values by

\[
\Delta \phi_{n+1}=\Delta \phi_{n}+\delta \phi_{n+1}, \quad (4.5)
\]

\[
\Delta \phi_{n+1}=\Delta \phi_{n}+\Delta \phi_{n+1}, \quad (4.6)
\]

\[
\Delta \phi_{n+1}=-3\phi_{m_{n_{1}}}-\phi_{m_{n_{2}}}, \quad (4.7)
\]

\[
\Delta \phi_{n+1}=-3\phi_{m_{n_{1}}}-\phi_{m_{n_{2}}}, \quad (4.8)
\]

where each phase value is referenced to interval center. We can relate these phase values to derivatives of incoming signal phase \(\phi^{(0)} \) by means of a Taylor expansion whose origin is the center of the \(n \)th interval (i.e., \(t_{n} \)).

\[
\phi(t)=\phi_{n}+\left(1-t_{n}^{2}\right) \phi_{n}^{(0)}+\frac{\left(1-t_{n}^{2}\right)^{2}}{2} \phi_{n}^{(2)}+\frac{\left(1-t_{n}^{2}\right)^{3}}{6} \phi_{n}^{(3)}+\frac{\left(1-t_{n}^{2}\right)^{4}}{24} \phi_{n}^{(4)}+\ldots
\]

This expansion shows that phase at the center of the nearby intervals is given by...
where T is the separation between intervals ("update interval"). By substituting Equations (4.10) through (4.14) in Equations (4.5) through (4.8), one can easily show the phase differences are related to input phase derivatives by

\begin{align*}
\Delta \phi_{n+1} &= T\phi^{(0)} + \frac{T^2}{6} \phi^{(2)} + \frac{T^4}{24} \phi^{(4)} + \cdots \tag{4.15} \\
\Delta \phi_{n+2} &= 2T\phi^{(0)} + 8 \frac{T^2}{6} \phi^{(2)} + 16 \frac{T^4}{24} \phi^{(4)} + \cdots \tag{4.16} \\
\Delta \phi_{n+3} &= 3T\phi^{(0)} + 9 \frac{T^2}{2} \phi^{(2)} + 27 \frac{T^4}{6} \phi^{(4)} + \cdots \tag{4.17} \\
\Delta \phi_{n+4} &= 4T\phi^{(0)} + 16 \frac{T^2}{2} \phi^{(2)} + 64 \frac{T^4}{6} \phi^{(4)} + \cdots \tag{4.18}
\end{align*}

By respectively equating Equations (4.15) through (4.18) with Equations (4.1) through (4.4), one obtains of unknowns, where the unknowns are $\delta\phi_{n+2}$ and the loop a set of equations whose number is equal to the number sums. Thus, these unknowns can be expressed in terms of the derivatives of input phase.

To complete initialization of the loop, an estimate of starting model phase must be computed. To be exact, this estimate must account for steady-state phase error. For an arctangent phase extractor, tracking error is equal to residual phase (neglecting system-noise error and possible cycle ambiguities). For a sine phase extractor, however, steady-state tracking error becomes

\begin{align*}
\delta\phi_{n+2} &= \arcsin\left(\frac{\gamma}{\gamma_n}\right) + 2\pi \left\lfloor \frac{\gamma}{2\pi} \right\rfloor \tag{4.19}
\end{align*}

where phase is measured in cycles. Thus, model phase for the n^{th} interval, after accounting for tracking error, is given by

\begin{align*}
\phi_{n+1} &= \phi_{n+2} - 2\pi \left\lfloor \frac{\gamma}{2\pi} \right\rfloor \\
\phi_{n+2} &= \arcsin\left(\frac{\gamma}{\gamma_n}\right) + 2\pi \left\lfloor \frac{\gamma}{2\pi} \right\rfloor \tag{4.20}
\end{align*}

where phase is measured in cycles.

The solution for a fourth-order loop will be presented in detail. If we assume that time derivatives of $\phi(t)$ are negligible above $\phi^{(0)}$, and equate Equations (4.18) and (4.4), we obtain a value for steady-state residual phase for a fourth-order loop:

\begin{align*}
\delta\phi_{n+4} &= \frac{\gamma}{K_4} \phi^{(0)} \tag{4.21}
\end{align*}

The loop sums are determined in a similar fashion. By equating Equations (4.3) and (4.17), one can solve for the single sum:

\begin{align*}
\sum_{k=1}^{n-n_c} \sum_{\ell=1}^{\infty} \delta\phi = \frac{1}{K_4} \left(T\phi^{(0)} + \frac{T^2}{2} \phi^{(2)} + \frac{T^4}{6} \phi^{(4)} + \cdots \right) \tag{4.22}
\end{align*}

Similarly, the double sum is determined by equating Equations (4.2) and (4.16):

\begin{align*}
\sum_{k=1}^{n-n_c} \sum_{\ell=1}^{\infty} \delta\phi = \frac{1}{K_4} \left(T\phi^{(0)} + \frac{T^2}{2} \phi^{(2)} + \frac{T^4}{6} \phi^{(4)} + \cdots \right) \tag{4.23}
\end{align*}

where the single sum is known from Equation (4.22). Finally, the triple sum is determined by equating Equations (4.1) and (4.15):

\begin{align*}
\sum_{k=1}^{n-n_c} \sum_{\ell=1}^{\infty} \delta\phi &= \frac{1}{K_4} \left(T\phi^{(0)} + \frac{T^2}{2} \phi^{(2)} + \frac{T^4}{6} \phi^{(4)} + \cdots \right) \tag{4.24}
\end{align*}

where the single and double sums are determined by means of Equations (4.22) and (4.23). Thus, if a priori values of signal phase and its derivatives are available at the start of a track, all of the loop variables can be initialized through use of Equations (4.20) through (4.24). If the a priori information is sufficiently accurate, the loop will start tracking in lock, with no transients.

Based on these equations for loop sums and model phase, the loop can be initialized as follows. Suppose a priori estimates of signal phase and its derivatives for a phantom "nth interval" at time t_n are available. Then Equations (4.22) through (4.24) can provide estimates for loop sums at interval "completion" while Equation (4.20) provides an estimate of model phase at interval center, with steady-state phase error given by Equation (4.21). To project ahead to the first interval to be processed, the $(n+1)^{th}$ first estimate phase rate according to Equation (4.1) using these estimates for loop sums and steady-state phase error. Model phase for the $(n+1)^{th}$ interval is then computed according to Equation (2.2) on the basis of this estimated $(n+1)^{th}$ phase rate and n^{th} a priori signal phase. The resulting values for the $(n+1)^{th}$ phase and rate are then used to initialize the NCO for the $(n+1)^{th}$ model phase. Loop iteration is normal after this point, and steady-state lock should be achieved.

The above analysis has focused on a fourth-order loop. Similar analysis can be carried out for loops of order lower than fourth, and the results are presented in Table 4.1. The preceding derivation assumed a signal with polynomial phase so that a steady-state phase error would develop. Under less ideal dynamics, the above initialization process will not eliminate transients but can greatly assist direct acquisition with higher-order loops. Similarly, if the derivatives of signal phase are known, but phase is not, the loops can be initialized using Equations (4.22) to (4.24), with initial loop phase arbitrarily set to zero. Again, loop acquisition will be greatly enhanced.
5.0 TWO MEASURES OF LOOP PERFORMANCE

5.1 MEAN TIME TO FIRST CYCLE SLIP

Simulations have been carried out to determine mean time to first cycle slip, \((T_{1,1})\), for loops with phase and phase-rate feedback, no computation delay, supercritical damping, and a sine phase extractor with perfect amplitude normalization. The tracking-error criterion for detecting a cycle slip was \(|\theta_{1,2}| > 0.75\) cycles. After each slip, the loop was reinitialized with perfect initial values so that it would start off in steady-state lock with no transients. A Gaussian random-number generator simulated noise for the counter-rotation sums.

Loops of \(2^{nd}\) to \(4^{th}\) order have been simulated on the basis of the loop constants in Table 3–5. Assumed values of \(B,T\) ranged between 0.02 and 2.0 and loop SNR between 0 and 6 dB. Results are summarized in FIGS. 12a and 12b, where \(B,T\) times mean time to first cycle slip is plotted versus loop SNR. In terms of cycle slips, loop performance deteriorates somewhat as loop order increases, given a fixed loop SNR. For a given loop order and loop SNR, however, cycle-slip performance improves as \(B,T\) increases, as shown in FIGS. 12a and 12b where \(B,T(T_{1,1})\) is plotted versus \(B,T\) for \(2^{nd}\) to \(4^{th}\) order loops, given a loop SNR of 7 dB. With a \(3^{rd}\) order loop, for example, FIGS. 13a and 13b indicates that \(B,T(T_{1,1})\) improves by two orders of magnitude when \(B,T\) is increased from 0.02 to 0.5.

As a test of the simulation software, the cycle-slip criteria have been made the same as Viterbi’s criteria in his exact closed form solution (5) for a first-order loop in the CU limit. To within a statistical error of about 10%, our results for \(B,T(T_{1,1})\) agree with Viterbi’s theoretical predictions up to SNR=6 dB, the maximum loop SNR attempted.

5.2 STEADY-STATE PHASE ERROR

Loop performance at large values of \(B,T\) has also been assessed in terms of the steady-state phase error (SSPE). In the CU limit, SSPE is proportional to \(B^{-N}\) for an \(N^{th}\) order loop, as can be derived from Tables 4-1 and 3-2. For large values of \(B,T\), however, the SSPE in a root-controlled loop does not decrease as \(B^{-N}\) as \(B,T\) increases, as illustrated in FIGS. 13a, 13b, 14a and 14b. FIGS. 13a, 13b, 14a and 14b plot as a function of \(B,T\) the dimensionless coefficient required to multiply the CU-limit form for SSPE. These plots pertain to loops of order 1 to 4, with phase and phase-rate feedback, with supercritical damping or standard underdamping, and with the indicated computation delay. At \(B,T=0\), the coefficient is equal to the CU-limit value. As \(B,T\) increases, the increase in this coefficient relative to the zero-\(B,T\) value is a measure of the “excess” SSPE relative to the nominal CU-limit values. As FIGS. 13a and 13b indicate, for example, the SSPE at \(B,T=0.5\) for a third-order, standard underdamped loop, is about four times as large as the CU limit would predict.

FIGS. 13a, 13b, 14a and 14b plot effective loop bandwidth as determined from SSPE, where “effective” denotes the decrease in bandwidth relative to the \(B^{-N}\) model. In FIGS. 13a and 13b, for example, the effective bandwidth is about 0.6 times the actual loop bandwidth when \(B,T=0.5\) for a second-order loop.

SUMMARY

A first-principles analysis of DPLLs has led to a new approach for parameterizing loops. Loop constants are computed on the basis of loop noise bandwidth and new trolled-root independent parameters that have direct physical significance relative to decay times and damping. In the continuous-update limit, loop constants of loops of first to fourth order are obtained in closed form as a function of these new parameters. In a solution for a discrete-update (DU) loop, however, complexity of the equations leads to a numerical approach. The analysis has been applied to loops with phase and phase-rate feedback, given either zero computation delay or a computation delay equal to one update interval. With the new parameterization, exact selection of loop bandwidth and damping behavior can be carried out for high order loops, even when \(B,T\) is large.

Simulations of loop behavior in terms of mean time to first cycle slip have been carried out for loops of first to fourth order based on the new parameterization, including the larger values of \(B,T\). For a given loop bandwidth, loops with larger \(B,T\) exhibited a considerably better (larger) mean time to first cycle slip than those with smaller \(B,T\) values. Loop performance has been assessed on the basis of steady-state phase error (SSPE). As \(B,T\) increases or a given value of \(B,T\), SSPE is essentially constant or small \(B,T\) values (e.g., \(B,T=0.02\)) but increases for larger values of \(B,T\). Plots provide a measure of this “excess” SSPE for large \(B,T\) values for loops with phase and phase-rate feedback.

APPENDIX A. LOOP BANDWIDTH FROM LOOP CONSTANTS IN THE CONTINUOUS-UPDATE LIMIT

We wish to solve for loop bandwidth

\[
2B_L = \int_0^\infty dv h(v) v^2
\]

(1.1)

in terms of loop constants \(\kappa_n\), where the transfer function is given by

\[
h(v) = \frac{\kappa_0(i2\pi v)^{n+2} + \kappa_1(i2\pi v)^{n+1} + \cdots + \kappa_n}{(i2\pi v)^2 + \kappa_0(i2\pi v)^{n+1} + \kappa_1(i2\pi v)^{n+2} + \cdots + \kappa_n}
\]

(2.1)

Under the change of variable \(v=2\pi n\), we have

\[
H(u) = \frac{\kappa_0(u)^{n+2} + \kappa_1(u)^{n+1} + \cdots + \kappa_n}{(u)^2 + \kappa_0(u)^{n+1} + \kappa_1(u)^{n+2} + \cdots + \kappa_n}
\]

(3.1)

\[
2\pi B_L = \int_{-\infty}^{\infty} \text{d} u h(u) u^2 = \int_{-\infty}^{\infty} \text{d} u u^2 H(u)
\]

(4.1)

\[
\int_{-\infty}^{\infty} \frac{g(x)}{h(x)} dx = \frac{\pi}{\alpha} \frac{M_N}{\Delta_N}
\]

(5.1)

where

\[
g(x) = b_1 x^{2n-1} + b_2 x^{2n-2} + \cdots + b_n
\]

(6.1)

\[
h(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n
\]

(7.1)
Comparing Equations (A.3) and (A.4) with (A.5), we get an expression for $g_{\alpha}(u)$:

$$g_{\alpha}(u) = \left[\frac{K_1}{s^2 + \alpha^2 - \beta^2} + \frac{K_2}{s^2 + \alpha^2 - \beta^2} + \ldots + \frac{K_N}{s^2 + \alpha^2 - \beta^2} \right]$$

and an expression for $h_{\alpha}(u)$:

$$h_{\alpha}(u) = (s^2 + \alpha^2)^{N-1} \left[\frac{K_1}{s^2 + \alpha^2 - \beta^2} + \frac{K_2}{s^2 + \alpha^2 - \beta^2} + \ldots + \frac{K_N}{s^2 + \alpha^2 - \beta^2} \right]$$

where the choice of $+i$ rather than $-i$ has been made to place the roots of $h_{\alpha}(u)$ in the upper half-plane. Finally, by equating like terms in (A.6) with (A.10) and (A.7) with (A.11), we have the coefficients a_j and b_j in terms of the loop constants κ_j:

$$a_j = \left\{ \begin{array}{ll} (+i)^N & \text{if } j = 0; \\ (+i)^N \kappa_j & \text{otherwise}. \end{array} \right.$$ \hspace{1cm} (A.12)

$$b_j = \kappa_j^2 + 2 \min(N-j-1, k=1) \kappa_k^2 a_{k+1}$$ \hspace{1cm} (A.13)

one can now express loop bandwidth as a function of loop filter constants by combining (A.4) and (A.5) to obtain

$$B_L = \frac{i f_{u0}}{A_N} M_S$$ \hspace{1cm} (A.14)

where the right side is given by Equations (A.8) and (A.9) with the substitution of Equations (A.12) and (A.13).

Table 3-1 lists results of Equation (A.14) and presents B_L as a function of κ_1 for the first four loop orders. The table also presents B_L as a function of the α's after substitution of Equation (3.12).

APPENDIX B. ADAPTATION OF ANALYSIS TO LOOPS WITH COMPUTATION DELAY OF ONE UPDATE INTERVAL

The preceding DU analysis is based on a loop filter with no computation delay. Even though the analogous derivation for a loop filter with a computation delay of one update interval is in many ways a straightforward generalization, there are a few differences that are worth mentioning. In analogy with Equation (3.34), the loop equation for a loop with a computation delay of one update interval and phase and phase-rate feedback becomes

$$\Delta t_{\alpha} \cdot 1_{\alpha} + K_1 \Delta t_{\alpha} \cdot 1_{\alpha} + K_2 \Delta t_{\alpha} \cdot 1_{\alpha} + \ldots = \left(K_1 \Delta t_{\alpha} \cdot 1_{\alpha} + K_2 \Delta t_{\alpha} \cdot 1_{\alpha} + \ldots \right)$$

Based on this equation, we find in a fashion similar to Sections 3.3.1 through 3.3.3 that the closed-loop transfer function is given by

$$D(z) = \frac{D(z) - (z - 1)^N}{D(z)}$$ \hspace{1cm} (B.2)

where the denominator is defined by

$$D(z) = (z-z_1)(z-z_2)(z-z_3) \ldots (z-z_{N+1})$$ \hspace{1cm} (B.3)

This polynomial has $N+1$ roots in contrast to the zero-computation-delay case in Equation (3.42) and can be represented by

$$D(z) = (z-z_1)(z-z_2)(z-z_3) \ldots (z-z_{N+1})$$ \hspace{1cm} (B.4)

Upon expansion of $D(z)$, a constraint equation for the extra $(N+1)^{th}$ root comes from the coefficient of z^N when Equations (B.3) and (B.4) are equated:

$$z_{N+1} = N \frac{z_1}{z_i}$$ \hspace{1cm} (B.5)

Thus if roots z_1, z_2, \ldots, z_N are designated as selectable roots, the $(N+1)^{th}$ dependent root is determined by this equation. As explained in Section 3.3.6, we are free to place the N selectable roots, as before, according to loop noise bandwidth, damping parameter and relative-magnitude parameter. The DU analysis of a computation-delay loop is otherwise parallel to the analysis for zero-computation-delay loop. The linear equations relating the loop constants to the independent roots are similar to Equations (3.49) through (3.53) and will not be shown here. Results for this implementation have been presented in the text.

TABLE 3-1

<table>
<thead>
<tr>
<th>Loop Bandwidth from Loop Constants in the Continuous-update Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{st} order</td>
</tr>
<tr>
<td>2^{nd} order</td>
</tr>
<tr>
<td>3^{rd} order</td>
</tr>
<tr>
<td>4^{th} order</td>
</tr>
</tbody>
</table>

5,602,883
TABLE 3-2

Loop Filter Constants in the Continuous-update Limit

<table>
<thead>
<tr>
<th>Order</th>
<th>Loop Type</th>
<th>Equation</th>
<th>(K_3)</th>
<th>(K_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order</td>
<td>Controlled-root</td>
<td>(K_1 = 4B_r T)</td>
<td>(\alpha_2 = \frac{1 - \eta^2}{4})</td>
<td>(\alpha_3 = \frac{1}{r})</td>
</tr>
<tr>
<td>2nd order</td>
<td>Controlled-root</td>
<td>(K_1 = 4B_r T)</td>
<td>(\frac{\alpha_2 - \alpha_3}{\alpha_2 - \alpha_3 + \alpha_2^2})</td>
<td>(\alpha_3 = \alpha_3 K_3^2)</td>
</tr>
<tr>
<td>Standard</td>
<td>(\alpha_2 = \frac{1}{r})</td>
<td>(\alpha_3 = \frac{k}{r^2})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>Loop Type</th>
<th>Equation</th>
<th>(K_3)</th>
<th>(K_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd order</td>
<td>Controlled-root</td>
<td>(K_1 = 4B_r T)</td>
<td>(\frac{\alpha_2 - \alpha_3}{\alpha_2 - \alpha_3 + \alpha_2^2})</td>
<td>(\alpha_3 = \alpha_3 K_3^3)</td>
</tr>
<tr>
<td>Standard</td>
<td>(\alpha_2 = \frac{1}{r})</td>
<td>(\alpha_3 = \frac{k}{r^2})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3-3

Loop-filter Constants for Typical Implementations in the Continuous-update Approximation

<table>
<thead>
<tr>
<th>Loop Constants</th>
<th>Conventional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_1)</td>
<td>(K_3)</td>
</tr>
<tr>
<td>(\alpha_1) (K_1^2)</td>
<td>(\alpha_3) (K_3^3)</td>
</tr>
</tbody>
</table>

Supercritically damped: \(\eta^2 = 0, \lambda = 1\), for all roots

<table>
<thead>
<tr>
<th>Order</th>
<th>Loop Type</th>
<th>(B_r T)</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
<th>(\alpha_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td></td>
<td>(4)</td>
<td>(\frac{1}{4})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order</td>
<td></td>
<td>(\frac{16}{5})</td>
<td>(\frac{1}{2})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Order</td>
<td></td>
<td>(\frac{32}{11})</td>
<td>(\frac{1}{4})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Order</td>
<td></td>
<td>(\frac{256}{93})</td>
<td>(\frac{2}{9})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard underdamped: \(\eta^2 = -1, \lambda = 1\), for all roots

<table>
<thead>
<tr>
<th>Order</th>
<th>Loop Type</th>
<th>(B_r T)</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
<th>(\alpha_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td></td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order</td>
<td></td>
<td>(\frac{8}{3})</td>
<td>(\frac{1}{3})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Order</td>
<td></td>
<td>(\frac{60}{23})</td>
<td>(\frac{4}{9})</td>
<td>(K_1^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- \(\alpha_1\), \(\alpha_2\), \(\alpha_3\), \(\alpha_4\) are coefficients related to the loop filter constants.
- \(K_1\), \(K_2\), \(K_3\), \(K_4\) are the loop constants.
- \(r\), \(k\), \(a\) are the conventional parameters used in the continuous-update approximation.
- The tables provide values for different orders and loop types, illustrating the relationships between the loop constants and the conventional parameters.

5,602,883

21 22
TABLE 3-3-continued

| Loop-filter Constants for Typical Implementations in the Continuous-update Approximation |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | K_2 | K_3 | K_4 | r |
| | (αK_1^3) | (αK_1^3) | (αK_1^3) | $(1/\alpha)$ |
| 4th Order | $-\frac{64}{27} B_2T$ | $\frac{1}{2} K_2$ | $\frac{1}{8} K_3$ | $\frac{1}{64} K_4$ |

TABLE 3-4

Loop Bandwidth from Loop Constants for Discrete-update Loops with Phase and Phase-Rate Feedback and No Computation Delay

<table>
<thead>
<tr>
<th>Order</th>
<th>$B_2T = -\frac{K_1}{2(2-K_1)}$</th>
<th>$B_2T = -\frac{2K_1^2 + 2K_2 + K_3 K_4}{2K_1(4 - 2K_1 - K_3)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order</td>
<td>$-\frac{1}{2} K_1$</td>
<td></td>
</tr>
<tr>
<td>2nd order</td>
<td>$-\frac{1}{4} K_1^2 + \frac{1}{2} K_1 K_2 + K_1 K_3 K_4$</td>
<td></td>
</tr>
<tr>
<td>3rd order</td>
<td>$-\frac{1}{8} K_1^3 + \frac{1}{4} K_1^2 K_2 + \frac{1}{2} K_1 K_3 K_4 + \frac{1}{8} K_1 K_2 K_3 + 4K_1 K_3 K_4$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3-5

Loop Filter Constants for a Discrete-update Loop with Phase and Phase-rate Feedback and Supercritically-damped Response

<table>
<thead>
<tr>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2T</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
</tr>
<tr>
<td>0.001</td>
<td>0.003997</td>
<td>2.553e-05</td>
<td>2.553e-05</td>
</tr>
<tr>
<td>0.005</td>
<td>0.01582</td>
<td>6.309e-05</td>
<td>6.309e-05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.03130</td>
<td>0.0003488</td>
<td>0.0003488</td>
</tr>
<tr>
<td>0.02</td>
<td>0.06125</td>
<td>0.0006927</td>
<td>0.0006927</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1132</td>
<td>0.0012118</td>
<td>0.0012118</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1818</td>
<td>0.0024825</td>
<td>0.0024825</td>
</tr>
<tr>
<td>0.075</td>
<td>0.2609</td>
<td>0.0047426</td>
<td>0.0047426</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3333</td>
<td>0.0094482</td>
<td>0.0094482</td>
</tr>
<tr>
<td>0.15</td>
<td>0.4615</td>
<td>0.0186940</td>
<td>0.0186940</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5714</td>
<td>0.0368420</td>
<td>0.0368420</td>
</tr>
<tr>
<td>0.25</td>
<td>0.6667</td>
<td>0.068535</td>
<td>0.068535</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7900</td>
<td>0.1155</td>
<td>0.1155</td>
</tr>
<tr>
<td>0.35</td>
<td>0.8235</td>
<td>0.1529</td>
<td>0.1529</td>
</tr>
<tr>
<td>0.4</td>
<td>0.8889</td>
<td>0.1950</td>
<td>0.1950</td>
</tr>
<tr>
<td>0.45</td>
<td>0.9474</td>
<td>0.2465</td>
<td>0.2465</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.2950</td>
<td>0.2950</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7828</td>
<td>0.1713</td>
<td>0.1713</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8237</td>
<td>0.1906</td>
<td>0.1906</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8599</td>
<td>0.2061</td>
<td>0.2061</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8874</td>
<td>0.2107</td>
<td>0.2107</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9096</td>
<td>0.2135</td>
<td>0.2135</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9425</td>
<td>0.2155</td>
<td>0.2155</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9645</td>
<td>0.2176</td>
<td>0.2176</td>
</tr>
</tbody>
</table>

No computation delay

TABLE 3-6

Loop Filter Constants for a Discrete-update Loop with Phase and Phase-rate Feedback and Supercritically-damped Response

<table>
<thead>
<tr>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2T</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
</tr>
<tr>
<td>0.001</td>
<td>0.003997</td>
<td>2.553e-05</td>
<td>2.553e-05</td>
</tr>
<tr>
<td>0.005</td>
<td>0.01582</td>
<td>6.309e-05</td>
<td>6.309e-05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.03130</td>
<td>0.0003488</td>
<td>0.0003488</td>
</tr>
<tr>
<td>0.02</td>
<td>0.06125</td>
<td>0.0006927</td>
<td>0.0006927</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1132</td>
<td>0.0012118</td>
<td>0.0012118</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1818</td>
<td>0.0024825</td>
<td>0.0024825</td>
</tr>
<tr>
<td>0.075</td>
<td>0.2609</td>
<td>0.0047426</td>
<td>0.0047426</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3333</td>
<td>0.0094482</td>
<td>0.0094482</td>
</tr>
<tr>
<td>0.15</td>
<td>0.4615</td>
<td>0.0186940</td>
<td>0.0186940</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5714</td>
<td>0.0368420</td>
<td>0.0368420</td>
</tr>
<tr>
<td>0.25</td>
<td>0.6667</td>
<td>0.068535</td>
<td>0.068535</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7900</td>
<td>0.1155</td>
<td>0.1155</td>
</tr>
<tr>
<td>0.35</td>
<td>0.8235</td>
<td>0.1529</td>
<td>0.1529</td>
</tr>
<tr>
<td>0.4</td>
<td>0.8889</td>
<td>0.1950</td>
<td>0.1950</td>
</tr>
<tr>
<td>0.45</td>
<td>0.9474</td>
<td>0.2465</td>
<td>0.2465</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.2950</td>
<td>0.2950</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7828</td>
<td>0.1713</td>
<td>0.1713</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8237</td>
<td>0.1906</td>
<td>0.1906</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8599</td>
<td>0.2061</td>
<td>0.2061</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8874</td>
<td>0.2107</td>
<td>0.2107</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9096</td>
<td>0.2135</td>
<td>0.2135</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9425</td>
<td>0.2155</td>
<td>0.2155</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9645</td>
<td>0.2176</td>
<td>0.2176</td>
</tr>
</tbody>
</table>

No computation delay
TABLE 3-5-continued

<table>
<thead>
<tr>
<th></th>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_L T</td>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9793</td>
<td>0.7328</td>
<td>0.9237</td>
<td>0.6130</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9893</td>
<td>0.8006</td>
<td>0.9366</td>
<td>0.6599</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9950</td>
<td>0.8631</td>
<td>0.9902</td>
<td>0.6935</td>
</tr>
<tr>
<td>2.5</td>
<td>1.00</td>
<td>1.00</td>
<td>0.9697</td>
<td>0.7689</td>
</tr>
<tr>
<td>3.0</td>
<td>0.9811</td>
<td>0.8248</td>
<td>0.9612</td>
<td>0.7347</td>
</tr>
<tr>
<td>3.5</td>
<td>0.9881</td>
<td>0.8572</td>
<td>0.9710</td>
<td>0.8058</td>
</tr>
<tr>
<td>4.0</td>
<td>0.9235</td>
<td>0.8997</td>
<td>0.9778</td>
<td>0.8366</td>
</tr>
<tr>
<td>5.0</td>
<td>0.9791</td>
<td>0.9444</td>
<td>0.9864</td>
<td>0.8814</td>
</tr>
</tbody>
</table>

Computation delay = 1 update interval

TABLE 3-6

<table>
<thead>
<tr>
<th></th>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_L T</td>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
</tr>
<tr>
<td>0.001</td>
<td>0.003976</td>
<td>0.000181</td>
<td>0.002892</td>
<td>0.000860</td>
</tr>
<tr>
<td>0.005</td>
<td>0.01942</td>
<td>0.005145</td>
<td>0.007272</td>
<td>0.000258</td>
</tr>
<tr>
<td>0.010</td>
<td>0.03779</td>
<td>0.009325</td>
<td>0.009532</td>
<td>0.000552</td>
</tr>
<tr>
<td>0.020</td>
<td>0.01072</td>
<td>0.008185</td>
<td>0.007461</td>
<td>0.000193</td>
</tr>
<tr>
<td>0.030</td>
<td>0.01571</td>
<td>0.01245</td>
<td>0.01136</td>
<td>0.000447</td>
</tr>
<tr>
<td>0.075</td>
<td>0.02148</td>
<td>0.01685</td>
<td>0.01538</td>
<td>0.009283</td>
</tr>
<tr>
<td>0.150</td>
<td>0.02946</td>
<td>0.02487</td>
<td>0.02377</td>
<td>0.009972</td>
</tr>
<tr>
<td>0.250</td>
<td>0.03000</td>
<td>0.04617</td>
<td>0.03079</td>
<td>0.000343</td>
</tr>
<tr>
<td>0.350</td>
<td>0.3211</td>
<td>0.06074</td>
<td>0.006129</td>
<td>0.000254</td>
</tr>
</tbody>
</table>

No computation delay

TABLE 3-7

<table>
<thead>
<tr>
<th></th>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_L T</td>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000992</td>
<td>0.0002661</td>
<td>0.002603</td>
<td>0.001086</td>
</tr>
<tr>
<td>0.005</td>
<td>0.001980</td>
<td>0.001319</td>
<td>0.002390</td>
<td>0.001733</td>
</tr>
<tr>
<td>0.010</td>
<td>0.003922</td>
<td>0.002609</td>
<td>0.004252</td>
<td>0.002926</td>
</tr>
<tr>
<td>0.020</td>
<td>0.007692</td>
<td>0.005106</td>
<td>0.004996</td>
<td>0.001133</td>
</tr>
<tr>
<td>0.030</td>
<td>0.01132</td>
<td>0.004999</td>
<td>0.007338</td>
<td>0.002469</td>
</tr>
<tr>
<td>0.050</td>
<td>0.01818</td>
<td>0.01199</td>
<td>0.007658</td>
<td>0.000445</td>
</tr>
<tr>
<td>0.075</td>
<td>0.02609</td>
<td>0.01713</td>
<td>0.01607</td>
<td>0.001345</td>
</tr>
<tr>
<td>0.150</td>
<td>0.03335</td>
<td>0.02179</td>
<td>0.02670</td>
<td>0.002226</td>
</tr>
<tr>
<td>0.250</td>
<td>0.05714</td>
<td>0.03675</td>
<td>0.03845</td>
<td>0.002595</td>
</tr>
<tr>
<td>0.350</td>
<td>0.06667</td>
<td>0.04258</td>
<td>0.04166</td>
<td>0.002790</td>
</tr>
<tr>
<td>0.450</td>
<td>0.07500</td>
<td>0.04701</td>
<td>0.04562</td>
<td>0.003030</td>
</tr>
<tr>
<td>0.550</td>
<td>0.08255</td>
<td>0.05196</td>
<td>0.04996</td>
<td>0.003371</td>
</tr>
<tr>
<td>0.650</td>
<td>0.08889</td>
<td>0.05577</td>
<td>0.05463</td>
<td>0.003710</td>
</tr>
<tr>
<td>0.454</td>
<td>0.09474</td>
<td>0.05361</td>
<td>0.05793</td>
<td>0.004032</td>
</tr>
<tr>
<td>0.554</td>
<td>0.09819</td>
<td>0.05753</td>
<td>0.06072</td>
<td>0.004343</td>
</tr>
<tr>
<td>0.654</td>
<td>0.10172</td>
<td>0.06151</td>
<td>0.06306</td>
<td>0.004644</td>
</tr>
<tr>
<td>0.754</td>
<td>0.10471</td>
<td>0.06450</td>
<td>0.06530</td>
<td>0.004945</td>
</tr>
<tr>
<td>0.854</td>
<td>0.10756</td>
<td>0.06679</td>
<td>0.06753</td>
<td>0.005246</td>
</tr>
<tr>
<td>0.954</td>
<td>0.11007</td>
<td>0.06889</td>
<td>0.06963</td>
<td>0.005547</td>
</tr>
<tr>
<td>1.054</td>
<td>0.11257</td>
<td>0.07090</td>
<td>0.07163</td>
<td>0.005849</td>
</tr>
<tr>
<td>1.154</td>
<td>0.11467</td>
<td>0.07288</td>
<td>0.07343</td>
<td>0.006151</td>
</tr>
<tr>
<td>1.254</td>
<td>0.11667</td>
<td>0.07478</td>
<td>0.07513</td>
<td>0.006454</td>
</tr>
<tr>
<td>1.354</td>
<td>0.11867</td>
<td>0.07669</td>
<td>0.07673</td>
<td>0.006757</td>
</tr>
<tr>
<td>1.454</td>
<td>0.12067</td>
<td>0.07859</td>
<td>0.07823</td>
<td>0.007061</td>
</tr>
<tr>
<td>1.554</td>
<td>0.12267</td>
<td>0.08049</td>
<td>0.07964</td>
<td>0.007366</td>
</tr>
<tr>
<td>1.654</td>
<td>0.12467</td>
<td>0.08239</td>
<td>0.08104</td>
<td>0.007672</td>
</tr>
<tr>
<td>1.754</td>
<td>0.12667</td>
<td>0.08429</td>
<td>0.08244</td>
<td>0.007979</td>
</tr>
<tr>
<td>1.854</td>
<td>0.12867</td>
<td>0.08619</td>
<td>0.08384</td>
<td>0.008286</td>
</tr>
<tr>
<td>1.954</td>
<td>0.13067</td>
<td>0.08809</td>
<td>0.08524</td>
<td>0.008594</td>
</tr>
<tr>
<td>2.054</td>
<td>0.13267</td>
<td>0.09000</td>
<td>0.08664</td>
<td>0.008903</td>
</tr>
</tbody>
</table>

No computation delay
TABLE 3-6-continued

Loop Filter Constants for a Discrete-update Loop with Phase and Phase-rate Feedback and Standard-underdamped Response

<table>
<thead>
<tr>
<th>1st order</th>
<th>2nd order</th>
<th>3rd order</th>
<th>4th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<sub>L</sub>, T</td>
<td>K<sub>1</sub></td>
<td>K<sub>2</sub></td>
<td>K<sub>1</sub></td>
</tr>
<tr>
<td>0.001</td>
<td>0.003976</td>
<td>0.00265</td>
<td>3.516e-06</td>
</tr>
<tr>
<td>0.005</td>
<td>0.01942</td>
<td>0.01299</td>
<td>8.487e-05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.03779</td>
<td>0.02533</td>
<td>0.0003248</td>
</tr>
<tr>
<td>0.02</td>
<td>0.07177</td>
<td>0.04827</td>
<td>0.001194</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1027</td>
<td>0.06919</td>
<td>0.000479</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1571</td>
<td>0.1060</td>
<td>0.005937</td>
</tr>
<tr>
<td>0.075</td>
<td>0.2148</td>
<td>0.1448</td>
<td>0.01130</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1775</td>
<td>0.01725</td>
<td>0.1709</td>
</tr>
<tr>
<td>0.15</td>
<td>0.2300</td>
<td>0.02963</td>
<td>0.2193</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2713</td>
<td>0.04155</td>
<td>0.2554</td>
</tr>
<tr>
<td>0.25</td>
<td>0.3071</td>
<td>0.05222</td>
<td>0.2833</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3342</td>
<td>0.06338</td>
<td>0.3055</td>
</tr>
<tr>
<td>0.35</td>
<td>0.3542</td>
<td>0.06338</td>
<td>0.3055</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3763</td>
<td>0.07006</td>
<td>0.3055</td>
</tr>
<tr>
<td>0.45</td>
<td>0.3963</td>
<td>0.07006</td>
<td>0.3055</td>
</tr>
</tbody>
</table>

Computation delay = 1 update interval
<table>
<thead>
<tr>
<th>K_i</th>
<th>$\alpha_2 = \frac{K_2}{K_i}$</th>
<th>$\alpha_3 = \frac{K_3}{K_i}$</th>
<th>$\alpha_4 = \frac{K_4}{K_i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td>$4B_i T - 8(B_i T)^2 + 16(B_i T)^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order</td>
<td>$\frac{16}{3} B_i T - \frac{896}{125} (B_i T)^2 + \frac{46592}{3125} (B_i T)^3$</td>
<td>$\frac{1}{4} + \frac{2}{3} B_i T - \frac{12}{75} (B_i T)^2$</td>
<td></td>
</tr>
<tr>
<td>3rd Order</td>
<td>$\frac{32}{11} B_i T - \frac{8704}{1331} (B_i T)^2 + \frac{19996672}{449459} (B_i T)^3$</td>
<td>$\frac{1}{3} + \frac{128}{297} B_i T - \frac{25600}{101511} (B_i T)^2 - \frac{1}{27} + \frac{22}{297} B_i T + \frac{1776}{323433} (B_i T)^2$</td>
<td></td>
</tr>
<tr>
<td>4th Order</td>
<td>$\frac{256}{27} B_i T - \frac{4947968}{801355} (B_i T)^2 + \frac{95933007564}{693683695} (B_i T)^3$</td>
<td>$\frac{3}{8} + \frac{40}{93} B_i T - \frac{237440}{804357} (B_i T)^2 + \frac{1}{16} + \frac{5}{31} B_i T + \frac{4544}{268119} (B_i T)^2 - \frac{1}{356} + \frac{1}{62} B_i T + \frac{3976}{268119} (B_i T)^2$</td>
<td></td>
</tr>
<tr>
<td>Standard underdamped: $\eta_i^2 = -1$, $\lambda_i = 1$, for all roots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Order</td>
<td>$4B_i T - 8(B_i T)^2 + 16(B_i T)^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Order</td>
<td>$\frac{8}{3} B_i T - \frac{160}{27} (B_i T)^2 + \frac{1024}{81} (B_i T)^3$</td>
<td>$\frac{1}{2} + \frac{2}{3} B_i T - \frac{6}{9} (B_i T)^2$</td>
<td></td>
</tr>
<tr>
<td>3rd Order</td>
<td>$\frac{60}{23} B_i T - \frac{70220}{13167} (B_i T)^2 + \frac{77635800}{6436343} (B_i T)^3$</td>
<td>$\frac{4}{9} + \frac{100}{207} B_i T - \frac{62880}{328589} (B_i T)^2 - \frac{2}{27} + \frac{40}{207} B_i T + \frac{15809}{945327} (B_i T)^2$</td>
<td></td>
</tr>
<tr>
<td>4th Order</td>
<td>$\frac{64}{27} B_i T - \frac{100352}{19681} (B_i T)^2 + \frac{153992096}{14348067} (B_i T)^3$</td>
<td>$\frac{1}{5} + \frac{4}{9} B_i T - \frac{2720}{6561} (B_i T)^2 - \frac{1}{27} + \frac{2}{27} B_i T - \frac{1328}{19681} (B_i T)^2 - \frac{1}{64} + \frac{1}{18} B_i T + \frac{200}{6561} (B_i T)^2$</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-8

Loop Filter Constants as Power Series in B_cT in the Case of Phase and
Phase-rate Feedback and Computation Delay of One Update Interval

<table>
<thead>
<tr>
<th>Order</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>$4B_cT - 24(B_cT)^2 + 208(B_cT)^3$</td>
</tr>
<tr>
<td>2nd</td>
<td>$\frac{16}{5}B_cT - \frac{2368}{125}(B_cT)^2 + \frac{421888}{3125}(B_cT)^3$</td>
</tr>
<tr>
<td>3rd</td>
<td>$\frac{32}{11}B_cT - \frac{67072}{9393}(B_cT)^2 + \frac{489447424}{4348377}(B_cT)^3$</td>
</tr>
<tr>
<td>4th</td>
<td>$\frac{256}{93}B_cT - \frac{4186112}{988199}(B_cT)^2 + \frac{234721166160}{2318961231}(B_cT)^3$</td>
</tr>
</tbody>
</table>

Supercritically damped: $\eta^2 = 0, \lambda_i = 1$, for all roots

<table>
<thead>
<tr>
<th>Order</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>$4B_cT - 24(B_cT)^2 + 208(B_cT)^3$</td>
</tr>
<tr>
<td>2nd</td>
<td>$\frac{8}{3}B_cT - \frac{128}{9}(B_cT)^2 + \frac{21632}{243}(B_cT)^3$</td>
</tr>
<tr>
<td>3rd</td>
<td>$\frac{60}{23}B_cT - \frac{173800}{12707}(B_cT)^2 + \frac{57510000}{6438343}(B_cT)^3$</td>
</tr>
<tr>
<td>4th</td>
<td>$\frac{64}{27}B_cT - \frac{81920}{6851}(B_cT)^2 + \frac{117784576}{1594323}(B_cT)^3$</td>
</tr>
</tbody>
</table>

Standard underdamped: $\eta^2 = -1, \lambda_i = 1$, for all roots
TABLE 4-1

Transient-free Initialization of DPLLs Based on A Priori Information

For a loop filter specified by update interval T, computation delay τ, update intervals, constants k₁, k₂, ..., kₙ, and input signal phase known in the form \(\phi(t) = \phi_0 + k(1)(t - t_0) + \ldots + \frac{1}{N!} \phi_N^n(t - t_0)^N \) at time \(t_0 \), loop sums and loop model phase \(\phi_{m,n} \) are initialized at the end of the "phantom" nth interval as indicated.

\[
\begin{align*}
1^{st} \text{ Order} & \\
\delta_{h,1} &= \frac{T}{K_1} \phi_{e,1} \\
2^{nd} \text{ Order} & \\
\delta_{h,2} &= \frac{T^2}{K_2} \phi_{e,2} \\
3^{rd} \text{ Order} & \\
\frac{\sum_{i=1}^{n-3} \delta_{h,i}}{3} &= \frac{1}{K_3} \left(\frac{T^2}{2} \phi_{e,2} - K_3 \delta_{h,3} \right) \\
4^{th} \text{ Order} & \\
\delta_{h,4} &= \frac{T^3}{K_4} \phi_{e,3} \\
5^{th} \text{ Order} & \\
\frac{\sum_{i=1}^{n-5} \delta_{h,i}}{5} &= \frac{1}{K_5} \left(\frac{T^4}{2} \phi_{e,3} - \frac{T^2}{2} \phi_{e,2} - \frac{T}{6} \phi_{e,1} \right) \\
\end{align*}
\]

For all orders:
\[
\phi_{m,n} = \left\{ \begin{array}{ll}
\phi_0 - \delta_{h,0} & \text{Atan extractor} \\
\phi_0 - \text{Arccot}(2\pi \delta_{h,0})/2\pi & \text{Sin extractor}
\end{array} \right.
\]

Having thus disclosed a preferred mode of carrying out the invention, what is claimed is:

1. A method for implementing a digital phase-locked loop having discrete updates to loop parameters and a preselected loop order greater than 1 and characterized by preselected parameters for loop bandwidth, computation delay, update-interval damping and decay rate; the method comprising the steps of:
 a) determining the roots for the characteristic equation of the loop from the preselected parameters;
 b) determining the loop constants from the loop roots of step a); and
 c) implementing a digital loop filter incorporating the loop constants of step b) thereby meeting the requirements imposed by said preselected loop parameters.

2. The method recited in claim 1 wherein said digital phase-locked loop is of the type having immediate update for modifying feedback for the very next update interval.

3. The method recited in claim 1 wherein said digital phase-locked loop is of the type having delayed updates for modifying feedback for a subsequent update interval after the very next update interval.

4. A method for establishing the loop filter constants in a digital phase-locked loop of order greater than 1, with discrete updates to loop parameters and characterized by preselected parameters for loop bandwidth, computation delay, update-interval, damping and decay rate, the loop of the type having a numerically-controlled oscillator for generating counter-rotation phasors based upon phase-related feedback for complex multiplication of a digitized input signal, the loop of the type also having an accumulator of counter-rotated signal phasors and a residual phase extractor; the loop filter of the type estimating next phase rate and...
generating feedback for input to the numerically-controlled oscillator; the method comprising the steps of:

a) determining the roots for the characteristic equation of the loop from the preselected parameters;

b) determining the loop constants from the loop roots of step a); and

c) implementing a digital loop filter incorporating the loop constants of said loop filter as determined in step b) thereby meeting the requirements imposed by said preselected loop parameters.

5. The method recited in claim 4 wherein said digital phase-locked loop is of the type having immediate update for modifying feedback for the very next update interval.

6. The method recited in claim 4 wherein said digital phase-locked loop is of the type having delayed updates for modifying feedback for a subsequent update interval after the very next update interval.

7. A method for implementing a digital phase-locked loop having discrete updates to loop parameters and a preselected loop order of 1 and characterized by preselected parameters for loop bandwidth, computation delay and update-interval; the method comprising the steps of:

a) determining the root for the characteristic equation of the loop from the preselected parameters;

b) determining the loop constant from the loop root of step a); and

c) implementing a digital loop filter incorporating the loop constant of step b) thereby meeting the requirements imposed by said preselected loop parameters.

8. A method for establishing the loop filter constant in a digital phase-locked loop of order 1 with discrete updates to loop parameter and characterized by preselected parameters for loop bandwidth, computation delay and update-interval, the loop of the type having a numerically-controlled oscillator for generating counter-rotation phasors based upon phase-related feedback for complex multiplication of a digitized input signal, the loop of the type also having an accumulator of counter-rotated signal phasors and a residual phase extractor; the loop filter of the type estimating next phase rate and generating feedback for input to the numerically-controlled oscillator; the method comprising the steps of:

a) determining the root for the characteristic equation of the loop from the preselected parameters;

b) determining the loop constant from the loop root of step a); and

c) implementing a digital loop filter incorporating the loop constant of said loop filter as determined in step b) thereby meeting the requirements imposed by said preselected loop parameters.