Ca-rich carbonate melts: A regular-solution model, with applications to
carbonatite magma + vapor equilibria and carbonate lavas on Venus

ALLAN H. TREIMAN
Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058-1113, U.S.A.

ABSTRACT

A thermochemical model of the activities of species in carbonate-rich melts would be useful in quantifying chemical equilibria between carbonatite magmas and vapors and in extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich carbonate melts is developed here, using the fact that they are ionic liquids, and can be treated (to a first approximation) as interpenetrating regular solutions of cations and of anions. Thermochemical data on systems of alkali metal cations with carbonate and other anions are drawn from the literature; data on systems with alkaline earth (and other) cations and carbonate (and other) anions are derived here from liquidus phase equilibria. The model is validated in that all available data (at 1 kbar) are consistent with single values for the melting temperature and heat of fusion for calcite, and all liquidi are consistent with the liquids acting as regular solutions.

At 1 kbar, the metastable congruent melting temperature of calcite (CaCO₃) is inferred to be 1596 K, with ΔH_mf(calcite) = 31.5 ± 1 kJ/mol. Regular solution interaction parameters (W) for Ca²⁺ and alkali metal cations are in the range -3 to -12 kJ/mol; W for Ca²⁺-Ba²⁺ is approximately -11 kJ/mol; W for Ca²⁺-Mg²⁺ is approximately -40 kJ/mol, and W for Ca²⁺-La³⁺ is approximately +85 kJ/mol. Solutions of carbonate and most anions (including OH⁻, F⁻, and SO₄²⁻) are nearly ideal, with W between 0 (ideal) and -2.5 kJ/mol. The interaction of carbonate and phosphate ions is strongly nonideal, which is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid immiscibility. Solution of H₂O, for all but the most H₂O-rich compositions, can be modeled as a disproportionation to hydronium (H₃O⁺) and hydroxyl (OH⁻) ions with W for Ca²⁺-H₃O⁺ ≈ 33 kJ/mol².

The regular-solution model of carbonate melts can be applied to problems of carbonatite magma + vapor equilibria and of extrapolating liquidus equilibria to unstudied systems. Calculations on one carbonatite (the Husereau dike, Oka complex, Quebec, Canada) show that the anion solution of its magma contained an OH mole fraction of ~0.07, although the vapor in equilibrium with the magma had P(H₂O) = 8.5 × P(CO₂). F in carbonatite systems is calculated to be strongly partitioned into the magma (as F⁻) relative to coexisting vapor. In the Husereau carbonatite magma, the anion solution contained an F⁻ mole fraction of ~6 × 10⁻⁵.

Calcite and anhydrite may be present on the surface of Venus, but they would not be molten at ambient surface temperature (660-760 K) because the minimum melt temperature (eutectic) for the calcite + anhydrite system is calculated to be 1250 K. The Venus atmosphere contains 5 ppb HF, which implies that the anion solution of a carbonate-rich magma in equilibrium with the atmosphere would contain a F⁻ mole fraction of ~7 × 10⁻³, or about 0.1 wt%. Although this proportion of F is much enriched compared with the atmosphere, it would have little effect on phase relations of the carbonatite.

INTRODUCTION

Carbonatites are igneous rocks that formed from carbonate-rich magmas. The petrogeneses of carbonatites are imperfectly understood, in part because of uncertainties in the physical and chemical properties of their parent magmas. Although the physical and mass-transport properties of carbonate magmas are becoming appreciated (Treiman and Schedl, 1983; Dawson et al., 1990; Keller and Krafft, 1990; Watson, 1991; Norton and Pinkerton, 1992), their thermochemical properties have been studied little (Bradley, 1962; Treiman, 1989). Thus, investigations of carbonatites have not benefited from quantitative thermochemical models such as have been developed for silicate magmas (e.g., Ghiorso et al., 1983; Berman and Brown, 1987; Ghiorso, 1987).
For instance, a thermochemical model of carbonate melts would provide a quantitative link between the compositions of carbonatite magmas and the compositions of their associated volatile phases. Carbon dioxide is obviously important in carbonatite magmas; H₂O has played a prominent role in experimental studies of carbonatite genesis (Wyllie, 1989), and the potential importance of F has recently been reemphasized (Gittins et al., 1990; Jago and Gittins, 1991). In addition, most plutonic carbonatites are surrounded by volumetrically significant zones of metasomatized rock, i.e., fenite (McKie, 1966). These zones bespeak large fluxes of volatiles associated with carbonatite magmas. It has been possible to constrain the composition of the volatile phases through the compositions and phases of the solids with which they equilibrated (e.g., Rubie and Gunter, 1983; Treiman and Essene, 1984; Kresten and Morogan, 1986; Andersen, 1986). However, it has been impossible to constrain compositions of carbonatite magma from fluid compositions, except in the most general terms. With a quantitative thermochemical model of carbonatite magmas, the connection between fluid and magma compositions would be straightforward.

Similarly, a thermochemical model of carbonate melts would permit extrapolation of known liquidus equilibria to physical and chemical conditions that have not been studied experimentally. In this way, a thermochemical model would provide a structure for understanding the results of experiments already completed, a ready way of applying experimental results to complex natural systems, and an aid in designing new experimental programs.

In this paper, I propose a thermochemical model of carbonate-rich magmas, based on regular-solution theory and the observation that carbonatite magmas are ionic liquids (Treiman and Schedl, 1983). In the model, all available data (at 1 kbar) are consistent with a single temperature of melting for calcite (metastable congruent melting), and a single value for the heat of fusion for calcite. Similarly, the locations of all liquidus calcite-saturated liquidus surfaces are consistent with the Ca-rich carbonate melts being regular solutions. Portions of this model were presented by Treiman (1989), which is superseded by this work.

TEMKIN MELT MODEL

Carbonate-rich melts are ionic melts or fused salts, liquids in which the discrete entities (ions) are charged and bound by electrostatic forces (Zarzycki, 1962; Sundheim, 1964; Lumsden, 1966; Kleppa, 1977, 1981). Polymerization of anions (as in silicate liquids) is unimportant, and ionic complexes can be treated as distinct ionic species.

 Ionic liquids are amenable to relatively simple thermochemical analysis because their cations and anions may be treated, to a first approximation, as independent solutions. This approximation is the quasi-lattice or Temkin (1945) model. It is justifiable because enormous energy would be needed to exchange, for instance, a cation surrounded by anions for an anion surrounded by anions (Blander, 1964).

The Temkin model is consistent with ideal behavior in each ion solution and also with regular behavior, in which there is heat of mixing but no excess entropy of mixing (Forland, 1955). Here, I use the simplest version of the Temkin model, in which all cations occupy identical quasi-lattice sites, as do all anions. This model ignores complexation except as reflected by regular solution behavior and ignores the expectation of differing sites in the liquid quasi-lattice. The Temkin model is only an approximation because local charge balance does not permit ions of different charges to interchange completely freely (e.g., Ca²⁺ vs. Na⁺) and because common sense (and the Gibbs-Duhem relation) suggest that different ions affect their surrounding ions in different ways. For instance, one cannot expect ions of different sizes (e.g., Ca²⁺ vs. Mg²⁺) and charges (e.g., Ca²⁺ vs. Na⁺) to maintain identical distances and coordinations with surrounding ions.

With these caveats, the Temkin model is a good first approximation for the properties of many ionic liquids, including (as I show below) those of Ca- and carbonate-rich melts to the level of detail permitted by most available data. In addition, the regular solution model is familiar in the geological community and is the simplest formulation of real solutions (e.g., Ghiorso et al., 1983; Ghiorso, 1987; Berman and Brown, 1987; Helffrich and Wood, 1989). More physically accurate models for ionic salts (e.g., the reciprocal-salt or conformal-solution model: Blander and Topol, 1966; Kleppa, 1977, 1981) may be better representations of reality, but they are not justified by the quality and quantity of data available.

INTERPRETATIVE METHOD

For some components in carbonate magmas, thermochemical data can be taken directly from the literature. But for many major components, like Ca and Mg carbonates, and for magmas at high pressure, such data must be gained indirectly. The most accessible sources of these data are liquidus phase equilibria (in effect, measurements of freezing point depressions), which can be manipulated to retrieve heats of fusion and activity-composition relationships (Lewis and Randall, 1961).

To simplify the interpretation of liquidus surfaces, solid and liquid phases both must be referred to the same standard state. For simplicity and consistency with geological applications, the standard state for a component is taken as the chemically pure phase in its equilibrium structure at the temperature of interest. Thus, pure solid phases below their melting temperatures have activities of unity; hypothetical pure liquids below their solidification temperatures have activities exceeding unity. Activities of components in solutions (solid and liquid) are referred to the same standard state. For solid phases below their melting temperatures, this is a normal solvent standard state: the ratio of activity to mole fraction for a component (a/X) is unity for the pure component (X = 1). For liquid solutions phases, this is also a solvent solid state, but with the pure solvent having nonunit activity at subsolidification temperatures. The hypothetical pure liquid in its standard state must have the same structure.
as the solution, which need not be the same liquid structure as in the pure system at its melting temperature.

Freezing point depression is treated in detail in standard thermodynamics textbooks (e.g., Lewis and Randall, 1961). Consider the isobaric melting reaction A (solid) = A (liquid solution) in the system A-B at \(T < T_{\text{fus}} \), the congruent melting temperature of A (solid). One can approach this state in two steps: melting of pure A at \(T < T_{\text{fus}} \), and isothermal solution of B into the melt and solid until they are at equilibrium. For the first step, the free energy of melting pure A at a temperature below \(T < T_{\text{fus}} \) is given as

\[
\Delta G_{\text{fus}}^\circ = \Delta H_{\text{fus}}^\circ \left(1 - \frac{T}{T_{\text{fus}}} \right) \tag{1}
\]

where \(\Delta H_{\text{fus}}^\circ (A) \) is the molar enthalpy change on melting (heat of fusion) of pure phase A at \(T_{\text{fus}} \) (viz., Flood et al., 1949; Lewis and Randall, 1961, p. 415). Equation 1 assumes that the heat of fusion is not a function of temperature, i.e., the effect of \(\Delta C_{p,\text{fus}}(A) \) on melting A is relatively small, which is justifiable for carbonate melt systems at the present level of precision. Ignoring \(\Delta C_{p,\text{fus}} \) in carbonate, chloride, or nitrate systems causes < 1% error in the \(\Delta H_{\text{fus}} \) and < 10% error in regular solution parameters (Treiman, unpublished calculations). This \(\Delta G_{\text{fus}}^\circ (A) \) is positive because a melt of pure A composition.

\[
\Delta S_{\text{fus}} = \Delta H_{\text{fus}}^\circ / T_{\text{fus}} \tag{9}
\]

\(\Delta H_{\text{fus}}^\circ \) is given as

\[
\Delta H_{\text{fus}}^\circ = \Delta H_{\text{fus}}^\circ \left(1 - \frac{T}{T_{\text{fus}}} \right) \tag{1}
\]

For a multicomponent solution of species A, B, and C, the heat of mixing is given as

\[
\Delta H_{\text{mix}} = (n_a + n_b + n_c)(X_A X_B W_{AB} + X_A X_C W_{AC} + X_B X_C W_{BC} + X_A X_B X_C W_{ABC}) \tag{4}
\]

where \(n \) is the number of moles of a species present, and \(W \) is the interaction parameter for that pair (or triplet) of species (Lewis and Randall, 1961). The ternary interaction parameter is assumed here to be zero, although this value is not required by theory (Hellfrich and Wood, 1989). The activity coefficient \(\gamma \) for species A is then

\[
RT \ln \gamma_A = (X_A + X_B + X_C) W_{AB} + (X_B + X_C) W_{AC} - X_B X_C W_{BC} \tag{5}
\]

\(\Delta S_{\text{fus}} = \Delta H_{\text{fus}}^\circ / T_{\text{fus}} \) (Andersen and Lindsley, 1981). In an ideal solution, all \(W = 0 \), and so \(\gamma = 1 \). In the Temkin model of ionic liquids, the cations and anions are treated independently as regular solutions, each with its own \(X, n, W, \) and \(\gamma \) terms. Substituting Equations 3 and 5 into Equation 2 for the system A-B and rearranging into the format \(y = ax + b \) yields

\[
-RT \ln(X_{A,\text{melt}}) - RT \ln(a_{A,\text{solid}}) = \frac{1 - T}{T_{\text{fus}}} - \frac{1 - T}{T_{\text{fus}}} + \Delta H_{\text{fus}}^\circ (A). \tag{6}
\]

If the phase A is purely component A, its activity is unity, and Equation 6 simplifies to

\[
-RT \ln(X_{A,\text{melt}}) = W_{AB} (1 - X_{A,\text{melt}})^2 + \Delta H_{\text{fus}}^\circ (A). \tag{7}
\]

For points on this A-saturated liquidus, a graph of \(-RT \ln(X_{A,\text{melt}})/(1 - T/T_{\text{fus}}) \) vs. \((1 - X_{A,\text{melt}})/(1 - T/T_{\text{fus}}) \) should yield a straight line of slope \(W_{AB} \) and intercept \(\Delta H_{\text{fus}}^\circ (A) \) (e.g., Flood et al., 1949). Typically, phase-equilibrium experiments yield bracketed ranges in \(T \) and \(X \) within which a liquidus must lie, and so this graph would consist of brackets through which the straight line must pass. These brackets can typically be satisfied by ranges of \(W_{AB} \) and \(\Delta H_{\text{fus}}^\circ (A) \).

These descriptions of the liquidus surface can be related to the Temkin model of ionic melts with a few definitions of standard state for ion activities. As with solid and liquid phases, the reference state for an ionic species is a crystalline solid containing that pure ionic species at the temperature of interest. For example, systems in equilibrium with the pure solid phase \(L^+ M^- \) have activities of ionic components \(L^+ \) and \(M^- \) of unity. If a solution phase contains both \(L^+ \) and \(M^- \) ions,

\[
a_{L^+} a_{M^-} = a_{L^+} a_{M^-}. \tag{8}
\]

If a solid phase contains only a single cation or anion species, the activity of that ion species is unity, and the activity of the phase is equal to the activity of the other ion species. Activities of individual ion species in melt solutions can be determined by their mole fractions and regular solution interaction parameters (Eqs. 3 and 5). The activity of a component in a melt solution is referenced, as before, to the pure component in its equilibrium phase at that \(T \). Thus, in a melt in equilibrium with solid, pure \(L^+ M^- \), the activity product \(a_{L^+} a_{M^-} \) is unity.

Other thermochemical quantities are calculated with standard methods. The molar entropy of melting is calculated from the heat of melting as

\[
\Delta S_{\text{fus}} = \Delta H_{\text{fus}}^\circ / T_{\text{fus}} \tag{9}
\]
because congruent melting of a pure phase is isothermal. Volume changes on melting can be derived from direct measurement or from polybaric equilibria by the Clausius-Clapeyron equation:

$$\Delta V_{\text{fus}} = \frac{\Delta S_{\text{fus}}}{(dP/dT)_{\text{fus}}}.$$ \hfill (10)

Extrapolation of heats of melting over temperatures and pressures follow from the partial derivatives of enthalpy:

$$\frac{\partial \Delta H_{\text{fus}}}{\partial T} = \Delta C_p,$$

$$\frac{\partial \Delta H_{\text{fus}}}{\partial P} = \Delta V_{\text{fus}},$$ \hfill (11)

where ΔC_p is the difference in heat capacities between molten and solid phases (Tables 1 and 2). Note that ΔC_p is negative for the alkali carbonates (Tables 1 and 2), as it is for many ionic salts (Robie et al., 1979; DeKock, 1986). A negative ΔC_p suggests premelting structural changes in the solid and does not violate the second law of thermodynamics.

ALKALI CARBONATES

Alkali carbonates are inferred to be important constituents of some carbonate magmas (LeBas, 1981; Dawson et al., 1987; Gittins, 1989), although few carbonatites contain alkali carbonate minerals. There is an extensive literature on melting and mixing properties of the alkali carbonates, from which much of Table 1 is drawn directly or calculated.

For volume changes on fusion, ΔV_{fus} for the alkali carbonates (Table 1), the data of Klement and Cohen (1975) are preferred over those of Janz et al. (1979), which are larger than those of Klement and Cohen by $\sim 20\%$. The discrepancy in ΔV_{fus} lies in the volumes of the solid phases, as both groups report comparable melt volumes. Klement and Cohen's (1975) data are preferred, because their solid volumes are from high-temperature X-ray diffrac...
Heat of melting

High pressure. The locations of calcite-saturated liquids at high pressure (500–1000 bars) imply that $\Delta H^\text{ fus}_{\text{calcite}} = 31.5 \pm 1 \text{ kJ/mol}$. This value is constrained most closely by the location of the calcite-saturated liquidus in the system CaCO$_3$-CaF$_2$-BaSO$_4$ (Kuellmer et al., 1966), and is consistent with all available determinations of calcite-saturated liquids at high pressure, in which calcite is a pure phase.

The experimental location of the calcite-saturated liquidus in the system BaSO$_4$-CaCO$_3$-CaF$_2$ (Fig. 1, Table 3; Kuellmer et al., 1966) is the most restrictive available constraint on $\Delta H^\text{ fus}_{\text{calcite}}$. Calcite grown in this system is effectively pure; it does not accept significant SO$_4$ in solid solution, and Kuellmer et al. (1966) reported no indication of solid solution with Ba. To retrieve $\Delta H^\text{ fus}_{\text{calcite}}$ from this system, one substitutes Temkin melt activity models (Eq. 5) for individual anion and cation solutions into Equation 8 and then substitutes the resultant melt activity model into Equation 7, the description of the liquidus surface. The anion interaction parameters $W_{\text{CO}_3^--\text{F}^-}$, $W_{\text{SO}_4^{2-}\cdot\text{F}^-}$, and $W_{\text{CO}_3^--\text{SO}_4^{2-}}$ are approximately zero (derived below, viz., Table 4), so Equation 8 reduces to

\[
RT \ln\left(\frac{X_{\text{Ca}^{2+},\text{cation melt}}}{X_{\text{CO}_3^{2-},\text{anion melt}}}\right) = 1 - \frac{T}{T^\text{ fus}} + \frac{W_{\text{Ca}^{2+}\cdot\text{Ba}^{2+}}}{(1 - \frac{T}{T^\text{ fus}})^2} + \Delta H^\text{ fus}_{\text{calcite}}.
\]

(12)

The data of Kuellmer et al. (1966) are recast by this equation in Figure 1. If the Temkin regular solution model is valid, and if the anion interaction parameters are effectively zero, the liquidus surface separating the liquid-only data points (open symbols) and liquid + calcite points (filled symbols) should be representable as a straight line with slope of $W_{\text{Ca}^{2+}\cdot\text{Ba}^{2+}}$ and a Y-axis intercept of $\Delta H^\text{ fus}_{\text{calcite}}$. The liquidus can in fact be represented as a straight line consistent with the error bars of all points, suggesting $\Delta H^\text{ fus}_{\text{calcite}} = 31.05 \pm 0.25 \text{ kJ/mol}$. However, these tight error limits are dictated by a single liquid-only point (the open symbol that extends below the lines). The conservative approach taken here is to assume that point is in error and to estimate $\Delta H^\text{ fus}_{\text{calcite}} = 31.5 \pm 1 \text{ kJ/mol}$ and $W_{\text{Ca}^{2+}\cdot\text{Ba}^{2+}} = -11 \pm 9 \text{ kJ/mol}^2$ from the remaining points (Fig. 1). The error limits correspond to a temperature uncertainty of $\pm 5 \text{ K}$ and a compositional uncertainty of $\pm 0.2 \text{ wt%}$ in the most abundant component.

This value for $\Delta H^\text{ fus}_{\text{calcite}}$ is consistent with all available high-pressure determinations of liquid saturated in pure calcite. Figure 2a–2f show many sets of calcite-saturated liquidus recast following Equation 7. Within uncertainty, all these liquidus are consistent with $\Delta H^\text{ fus}_{\text{calcite}} = 31.5 \pm 1 \text{ kJ/mol}$. This value is essentially identical to the only independent estimate of $\Delta H^\text{ fus}_{\text{calcite}}$ at high pressure that has been made, $\Delta H^\text{ fus}_{\text{calcite}} = 31.5 \pm 1 \text{ kJ/mol}$ (Forland, 1955).

TABLE 3. Expressions for ordinate Q values in Figs. 1 and 2

<table>
<thead>
<tr>
<th>Q_i expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}_3^{2-},\text{anion melt}})}{1 - T/T^\text{ fus}}$</td>
<td>For liquid-only points (open symbols)</td>
</tr>
<tr>
<td>$Q_2 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}_3^{2-},\text{anion melt}})}{1 - T/T^\text{ fus}}$</td>
<td>For liquid + calcite points (filled symbols)</td>
</tr>
<tr>
<td>$Q_3 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}_3^{2-},\text{anion melt}})}{1 - T/T^\text{ fus}}$</td>
<td>For liquid-only points (open symbols)</td>
</tr>
<tr>
<td>$Q_4 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}_3^{2-},\text{anion melt}})}{1 - T/T^\text{ fus}}$</td>
<td>For liquid + calcite points (filled symbols)</td>
</tr>
<tr>
<td>$Q_5 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}3^{2-},\text{anion melt}}) + W{\text{CO}_3^{2-}\cdot\text{Ba}^{2+}}}{1 - T/T^\text{ fus}}$</td>
<td>For liquid-only points (open symbols)</td>
</tr>
<tr>
<td>$Q_6 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}3^{2-},\text{anion melt}}) + W{\text{CO}_3^{2-}\cdot\text{Ba}^{2+}}}{1 - T/T^\text{ fus}}$</td>
<td>For liquid + calcite points (filled symbols)</td>
</tr>
<tr>
<td>$Q_7 = -\frac{RT \ln(X_{\text{Ca}^{2+},\text{cation melt}}/X_{\text{CO}3^{2-},\text{anion melt}}) + W{\text{CO}_3^{2-}\cdot\text{Ba}^{2+}}}{1 - T/T^\text{ fus}}$</td>
<td>For liquid-only points (open symbols)</td>
</tr>
</tbody>
</table>

Fig. 1. Regular-solution interpretation of calcite-saturated liquidus in CaCO$_3$-BaSO$_4$-CaF$_2$ (500 bars CO$_2$, Kuellmer et al., 1966), following Eq. 12. See Table 3 for definition of Q_1. Open and filled symbols represent liquid-only and liquid + calcite experiments, respectively. Lines from each data point represent a conservative estimate of errors ($\pm 5 \text{ K}$ in T; $\pm 0.2 \text{ wt%}$ in X), showing only the error bar halves that contribute to uncertainty in slope and intercept. The liquidus surfaces, linear with slope and ordinate intercept of $\Delta H^\text{ fus}_{\text{calcite}}$, should lie between these groups of experiments. Within error, all data are consistent with slope of $\pm 0.3 \text{ kJ/mol}$ and filled symbols represent liquid-only and liquid + calcite experiments, respectively zero, the liquidus surface separating the liquid-only points (Fig. 1). The error limits correspond to a temperature uncertainty of $\pm 5 \text{ K}$ and a compositional uncertainty of $\pm 0.2 \text{ wt%}$ in X.
TREIMAN: Ca-RICH CARBONATE MELTS

pressure, 29 kJ/mol (Bradley, 1962). Bradley assumed that 1-kbar melts in CaCO₃-Ca(OH)₂ were ideal solutions and performed an analysis of the freezing point depression similar to that here. Results here on anion solutions are consistent with near-ideal mixing of carbonate and hydroxide anions (Fig. 2c, Table 4).

One bar. Most of the limited experimental data on the melting properties of calcite at 1 bar are consistent with results from high pressure: \(T_{\text{fin}}(\text{calcite}) = 1583 \) K and \(\Delta H_{\text{fin}}^o(\text{calcite}) = 31.5 \pm 1 \) kJ/mol [Table 1; Flood et al.,
Fig. 2. Regular-solution interpretation of calcite-saturated liquidus from other high-pressure experiments. Open and filled symbols represent liquid-only and liquid + calcite experiments, respectively. See Table 3 for expressions of ordinate ‘Q’ values. Heavy lines from each data point represent a conservative estimate of errors (+5 K in T; ±0.2 wt % in X), showing only the error-bar halves that contribute to uncertainty in slope and intercept. The liquidus surfaces, linear with slope W and ordinate intercept of \(\Delta H_{f}^{\text{calcite}} \), should lie between these groups of experiments. Thin solid lines encompass range of liquidus surfaces permitted by these data (with error bars), and \(\Delta H_{f}^{\text{calcite}} \) = 31.5 ± 1 kJ/mol (Fig. 1); the given range of W values is for these solid lines. (a) CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) (1-kbar CO\(_{2}\); Cooper et al., 1975), following Eq. 7. \(W_{\text{Ca}^{2+}-\text{Na}^{+}} = -6 \pm 2 \text{kJ/mol} \). (b) CaCO\(_{3}\)-K\(_{2}\)CO\(_{3}\) (1-kbar CO\(_{2}\); Cooper et al., 1975), following Eq. 7.

\[
W_{\text{Ca}^{2+}-\text{K}^{+}} = -14.5 \pm 2.5 \text{kJ/mol}. \quad \text{(c) CaCO}_{3}-\text{Ca(OH)}_{2}, \quad \text{(1-kbar CO}_{2}; \quad \text{Wyllie and Tuttle, 1960; published temperatures corrected by -32 K according to Gittins and Tuttle, 1964), following Eq. 7.} \quad W_{\text{Ca}^{2+}-\text{OH}} = 2.3 \pm 2.3 \text{kJ/mol}. \quad \text{(d) CaCO}_{3}-\text{CaF}_{2}, \quad \text{(Gittins and Tuttle, 1964; Kuellmer et al., 1966), following Eq. 7. The data sets are not consistent within error limits; ignoring the two discrepant points (ordinate values of 30.5 and 32) permits} \quad W_{\text{Ca}^{2+}-\text{F}} = 0 \pm 2 \text{kJ/mol}. \quad \text{(e) CaCO}_{3}-\text{MgCO}_{3} \quad \text{(10-kbar CO}_{2}; \quad \text{Byrnes and Wyllie, 1981), following Eq. 6. Activities of CaCO}_{3} \quad \text{in calcite calculated from Anovitz and Essene (1987).} \quad W_{\text{Ca}^{2+}-\text{Mg}^{2+}} = -40 \pm 30 \text{kJ/mol}. \quad \text{(f) CaCO}_{3}-\text{Ca(OH)}_{2}-\text{La(OH)}_{3}, \quad \text{(1-kbar CO}_{2}; \quad \text{Jones and Wyllie, 1986), following Eq. 13.} \quad W_{\text{Ca}^{2+}-\text{La}^{3+}} = 85 \pm 50 \text{kJ/mol}. \quad \text{(g) CaCO}_{3}-\text{H}_{2}O \quad \text{(1-kbar CO}_{2}; \quad \text{Wyllie and Tuttle, 1960, temperatures corrected by -32 K according to Gittins and Tuttle, 1964), following Eq. 15.} \quad W_{\text{Ca}^{2+}-\text{H}^{+}} = 33 \pm 2 \text{kJ/mol}. \]

1949; Førland, 1955; the location of the calcite-saturated liquidus in CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) by Poletaev et al., 1975, spans too small a composition range to constrain \(\Delta H_{f}^{\text{calcite}} \). However, the liquidus position in the CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) system at temperatures below 1170 K is consistent with \(T_{m}^{\text{calcite}} = 1463 \text{K and } \Delta H_{f}^{\text{calcite}} = 38 \text{kJ/mol} \) (Table 1; Flood et al., 1949; Førland, 1955). To account for these discrepancies, Førland (1955) suggested that lower temperature melts in CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) do not have the same structure as higher temperature melts and melts in other systems (notably K-bearing). There is no evidence that the low-temperature structure persists to higher temperature or pressure in the Ca-rich system examined here.

Extrapolations of \(T_{m}^{\text{calcite}} \) and \(\Delta H_{f}^{\text{calcite}} \) from high pressure are consistent with most of the 1-bar liquidus experiments of Førland (1955), who calculated both values from the compositions of melts saturated with CaO (lime) in the systems CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\), CaCO\(_{3}\)-K\(_{2}\)CO\(_{3}\), and CaCO\(_{3}\)-NaKCO\(_{3}\) as functions of CO\(_{2}\) pressure between 1203 and 1273 K. Compositions were measured by weight loss (CO\(_{2}\) loss); a (calcite) was calculated from measured CO\(_{2}\) pressure and the known pressure of CO\(_{2}\) in equilibrium with calcite and CaO; uncertainties were not given and cannot be evaluated. The linear correlation of \(\Delta G_{m}^{\text{calcite}} \) (calcite) and \(T_{m}^{\text{calcite}} \) for the systems CaCO\(_{3}\)-K\(_{2}\)CO\(_{3}\) and CaCO\(_{3}\)-NaKCO\(_{3}\) implied \(T_{m}^{\text{calcite}} = 1523 \text{K and } \Delta H_{f}^{\text{calcite}} = 35 \text{kJ/mol} \). The original data are consistent with \(T_{m}^{\text{calcite}} = 1583 \text{K (extrapolated above from high-pressure equilibrium), which yields } \Delta H_{f}^{\text{calcite}} = 30.5 \text{kJ/mol, consistent with high-pressure phase equilibria. Liquidus experiments at high Ca contents and higher temperatures in the system CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) are also consistent with the high-pressure values, although data are limited.}

At lower temperatures and lower Ca contents, the CaO-saturated liquidus in CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) is not consistent with \(T_{m}^{\text{calcite}} \) and \(\Delta H_{f}^{\text{calcite}} \) from high-pressure phase equilibria. Rather, Førland (1955) found that these liquidus determinations suggested \(T_{m}^{\text{calcite}} = 1463 \text{K and } \Delta H_{f}^{\text{calcite}} = 37.5 \text{kJ/mol} \). This higher \(\Delta H_{f}^{\text{calcite}} \) and lower \(T_{m}^{\text{calcite}} \) are also consistent with the earlier liquidus experiments of Flood et al. (1949). They determined the CaO-saturated liquidus surfaces in CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\), CaCO\(_{3}\)-K\(_{2}\)CO\(_{3}\), and CaCO\(_{3}\)-Li\(_{2}\)CO\(_{3}\) under 1 bar CO\(_{2}\), from 1244 to 1378 K. Activities of calcite in the melt solutions were calculated from the pressure of CO\(_{2}\) in equilibrium with calcite and lime; uncertainties were given only as error bars on graphs and cannot be readily evaluated. Flood et al. (1949) took the melting temperature for calcite to be 1613 K, used a molecular mole fraction model for melt activities, and calculated (from Eq. 7) that \(\Delta H_{f}^{\text{calcite}} = 14.2 \text{kJ/mol.} \)

Recalculating their data for CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) for melting temperatures of 1585 or 1463 K and with a Temkin melt model (e.g., ionic fractions) yields \(\Delta H_{f}^{\text{calcite}} = 39 \text{kJ/mol, consistent with Førland’s (1955) data on Ca-poor compositions in CaCO}_{3}. \)

The determinations for CaCO\(_{3}\)-K\(_{2}\)CO\(_{3}\) and CaCO\(_{3}\)-Li\(_{2}\)CO\(_{3}\) of Flood et al. (1949) are more scattered and are consistent with either pair of \(T_{m}^{\text{calcite}} \) and \(\Delta H_{f}^{\text{calcite}} \).

To explain the discrepancies in \(\Delta H_{f}^{\text{calcite}} \) and \(T_{m}^{\text{calcite}} \), Førland (1955) suggested that the more Na-rich and lower-temperature melts in CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) have a different structure from those at higher Ca contents and temperatures. On the basis of the \(\Delta H_{f}^{\text{calcite}} \) values, the Ca-rich melt structure is present in all systems at high pressure. Another speculative explanation is that the solid in the CaCO\(_{3}\)-Na\(_{2}\)CO\(_{3}\) experiments was not actually CaO but a mixed oxide phase in CaO-Na\(_{2}\)O. I am aware, however, of no reports of mixed Na-Ca oxide phases.

Melt volume

The volume change on melting calcite at high pressure may be calculated from Equation 9. The entropy of fusion, \(\Delta S_{m}^{\text{calcite}} \), is calculated from \(\Delta H_{f}^{\text{calcite}} \) and \(T_{m}^{\text{calcite}} \), as in Table 2. The slope of the polybaric congruent melting for calcite curve is 80 K/bar (Irving and Wyllie, 1973, 1975), yielding \(\Delta V_{m}^{\text{calcite}} = 2.5 \pm 0.1 \text{cm}^3/\text{mol} \) at high pressure. This value is comparable with \(\Delta V_{m}^{\text{calcite}} \) for Li\(_{2}\)CO\(_{3}\), but significantly smaller than those for K\(_{2}\)CO\(_{3}\) and Na\(_{2}\)CO\(_{3}\) (Table 2).

The molar volume of CaCO\(_{3}\) melt could now be esti-
in Na at low pressure and relatively lower temperature, \(\Delta H_{\text{ fus}}(\text{calcite}) \approx 38.5 \text{ kJ/mol} \) and \(T_{\text{ fus}}(\text{calcite}) = 1463 \text{ K} \). On the basis of molar entropies, one may speculate that the former melts are structurally comparable to molten \(\text{K}_2\text{CO}_3 \) and the latter are structurally comparable with molten \(\text{Na}_2\text{CO}_3 \).

Magnesium carbonate

The common presence of magnesian calcite, dolomite, and magnesian silicates in carbonatites shows that magnesium carbonate is an important component in carbonate petrogenesis. Unfortunately, data on the melting and thermophysical properties of magnesium carbonate are either absent or uncertain. Dolomite, \(\text{CaMg} (\text{CO}_3)_2 \), is the most common Mg-bearing carbonate in carbonatites, but it decarbonates at low pressure and melts incongruently at high pressure. In addition, there appear to be no available liquidus equilibria that can be used as above to derive its melting properties. Data on Mg in carbonate melts must now come from the limited studies available involving \(\text{MgCO}_3 \), magnesite.

Magnesite melts incongruently at pressures below 25 kbar, and the hypothetical congruent melting temperature must be extrapolated from there to the range of interest. Using the high-pressure liquidus determinations of Irving and Wyllie (1975), the 1 kbar congruent melting temperature for \(\text{MgCO}_3 \) may be extrapolated as 1753 K.

\(\Delta H_{\text{ fus}}(\text{magnesite}) \) is very poorly determined by the single available liquidus location, in \(\text{MgCO}_3 \cdot \text{K}_2\text{CO}_3 \) (Ragone et al., 1966), for which magnesite is not a solid solution. Taken at face value, the brackets of Ragone et al. (1966) on the magnesite-saturated liquidus surface only restrict \(\Delta H_{\text{ fus}}(\text{magnesite}) \) to a value of 32 ± 25 kJ/mol and (Table 2), with a corresponding entropy of fusion of 18 ± 15 J/(mol·K) (Table 2) and a \(W_{\text{ fus}}^{m=+\cdot\text{K}} \) of -20 ± 30 kJ/mol². However, including reasonable experimental uncertainties in the analysis (5 K and 0.2 mol% \(\text{MgCO}_3 \)) only restricts \(\Delta H_{\text{ fus}}(\text{magnesite}) \) to >7 kJ/mol and \(W_{\text{ fus}}^{m=+\cdot\text{K}} \) to <10 kJ/mol². Clearly, much work remains.

THERMOCHEMISTRY OF SOLUTION

In the regular-solution model, there is a heat effect in the formation of a solution, but no entropy effect beyond that of random mixing of constituents (Eq. 4; viz., Lewis and Randall, 1961). The heat effect is described by a single interaction parameter, \(W \), for each possible pair (or multiplet) of species in a solution. For a Temkin ionic solution, there are independent \(W \)s for the cation and anion solutions. The regular solution parameters \(W \) are obtained simultaneously with estimates of \(\Delta H_{\text{ fus}} \), and so have already appeared above in discussions of Figures 1, 2, and 3.

Anion mixing

It is likely that the anion solution of carbonatite magmas is dominated by the carbonate anion, but other anions may play an important or essential role in carbonate petrogenesis. For instance, the presence of OH anions...
permits carbonate-rich magmas to melt at geologically reasonable temperatures (Wyllie and Tuttle, 1966; Wyllie, 1989), and fluoride anions are inferred to have an equally large effect on liquidus phase relations (Gittins et al., 1990; Jago and Gittins, 1991).

The anion solutions (Temkin model) in carbonate-rich melts are nearly ideal for all nonpolymerizing anions (Table 4): "... mixed anion–common cation fused salts often are very nearly ideal solutions" (Kleppa and Julsrud, 1980). Data are available from Ca-rich and some other binary systems on the interaction of carbonate anions with fluoride and other halide, hydroxide, oxide, peroxide, and sulfate ions (Table 4). W values constrained here include those for CO_2--OH^- (Fig. 2c) and CO_2--F^- (Fig. 2d). Values of W in Table 4 for all anion solutions except carbonate-orthophosphate are near zero, confirming their nearly ideal behavior.

Mixing of sulfate and carbonate in ionic melts appears essentially ideal. Flood et al. (1952) studied melts in the system Na2CO3-Na2SO4-CO2 for electrochemical applications, and found that the melts behaved as ideal solutions. The ideality of carbonate-sulfate mixing extends to Ca-rich compositions, as the calcite-saturated liquidus surface in CaCO3-CaSO4 at 1 bar (Fuerstenau et al., 1981) is consistent with W = 0 kJ/mol^2, if ΔH_kca(calcite) = 31.5 kJ/mol (Fig. 3).

Mixing properties of carbonate and sulfide anions would be very useful in understanding redox states of natural systems and in some carbonatite-hosted ore deposits, but no definitive data are available. The liquidus location in CaCO3-Ca(OH)2-CaS at 1 kbar by Helz and Wyllie (1979) cannot be interpreted uniquely here because W = 0 kJ/mol^2 is not known. Their data on the binary join Ca(OH)2-CaS and estimates of the melting temperature and heat of fusion for CaS suggest that W = approximately +15 kJ/mol^2; this value is obviously suspect. The liquidus location in CaCO3-Ca(OH)2-CaS determined at low pressure by Fuerstenau et al. (1981) cannot be interpreted unambiguously here because W = 0 kJ/mol^2 is not known. However, if W = 0 kJ/mol^2 is taken as zero, W > 100 kJ/mol.

The behavior of phosphate may be far from ideal. The mixing of carbonate and orthophosphate (PO_4^-^3) anions was suggested to be nearly ideal by analogy with the mixing of carbonate and sulfate anions (Table 4; Treiman, 1989). However, Tacker and Stormer (1933) have shown that solutions of molten calcium orthophosphate and other calcium salts (hydroxide, chloride, and fluoride) are not ideal, with regular-solution interaction parameters more positive than -20 kJ/mol^2. They suggested further that carbonate-orthophosphate mixing might also be non-ideal. The data of Biggar (1969) appear to be the only liquidus determinations relevant to the mixing of alkaline earth carbonates and phosphates. His experiments yielded only a single bracket on the calcite-saturated liquidus. Taken at face value, this liquidus bracket suggests W = 65 kJ/mol^2, assuming a symmetrical regular solution, ΔH_kca(calcite) = 31.5 kJ/mol (Table 2), W = -2.3 kJ/mol^2 (Table 4), and W = -27 kJ/mol^2 (calculated from Table 4 of Tacker and Stormer, 1933). However, Biggar (1969) suggested that these experiments may be faulty and that the liquidus may lie at even higher temperatures, in which case W = 65 kJ/mol^2 would be even larger. Such a large positive W implies that some carbonate-rich and phosphate-rich melts might be immiscible. In nature, phosphate-rich segregations (called phoscorite or camafite) are common in some carbonatites (e.g., Eriksson, 1989), and it has been suggested they form by carbonate-phosphate liquid immiscibility (Lapin, 1976).

Fig. 3. Liquidus phase diagrams for CaCO3-CaSO4 phases are CC, calcite (CaCO3); AH, anhydrite (CaSO4), not including polymeric transitions; and L, liquid. Solid lines are as predicted by the regular-solution model (Eq. 7) and ideal mixing of CO_2--OH^- and CO_2--SO_4^- (Table 4) for a total pressure of ~100 bars. Open squares and dotted lines are experimental determinations of the liquidus and solidus by differential thermal analysis (Fuerstenau et al., 1981). Predicted and experimental positions of the calcite-saturated liquidus agree within error. The experimentally determined position of the anhydrite-saturated liquidus is not consistent with the predicted liquidus and does not extrapolate to the known melting temperature of anhydrite. Since Fuerstenau et al. (1981) did not characterize their experiment products, it is possible that their liquidus surface represents growth of a mixed anion solid that melts incongruently.

There are few quantitative data on the mixing behavior of carbonate and silicate anions in carbonate melts. The mixing of carbonate with orthosilicate (SiO_2^-^4) may be close to ideal (Treiman, 1989). However, the limited data available (in the system CaO-SiO_2-CO_2-H_2O: Wyllie and Haas, 1965) are difficult to interpret because the proportions and speciations of H_2O in the melts are not known. Mixing of carbonate anions with more polymerized aluminosilicate anions is far from ideal, as shown by the immiscibility of carbonate and silicate melts. This liquid immiscibility covers a wide range of synthetic and natural compositions (e.g., Koster van Groos and Wyllie, 1966; Treiman and Essene, 1985; Kjarsgaard and Hamilton, 1989). Even in compositions without immiscibility, car-
bonate anions tend to form clusters that exclude polymerized silicate anions (Mysen and Virgo, 1980). The degree of this nonideality is a function of the composition of the silicate melt (Mysen and Virgo, 1980; Fine and Stolper, 1985) and remains to be characterized fully.

Cation mixing

Within the accuracy limits of available data, cation mixing in Ca-rich carbonate melts is adequately described by the regular-solution model. The regular-solution parameters W in Table 4 are taken from the literature and developed here (Figs. 1, 2a–2b, 2e–2f, and 3). Regular-solution interaction parameters for Ca$^{2+}$ and monovalent and divalent cations tend to be moderate and negative, suggesting the association of unlike cations in the melt. The only value for a trivalent cation, La$^{3+}$, is large and positive.

Alkali cations. The interaction parameters W for Ca-Na and Ca-K carbonate systems at high pressure (Table 4) were derived in concert with ΔH_{liq}(calcite) from data of Cooper et al. (1975) in Figure 2a and 2b. The $W_{\text{Ca}^2+-\text{Na}^+}$ value for 1 bar are significantly higher (Table 4, based on Flood et al., 1949, and Farland, 1955); the source of the discrepancy is unknown. A Ca$^{2+}$-Li$^+$ interaction parameter is available in the literature (Lumsden, 1966). The $W_{\text{Na}^+-\text{K}^+}$ and $W_{\text{Na}^+-\text{Li}^+}$ of Table 4 are averages from the data of Anderson and Kleppa (1976); their precise calorimetry showed that both values are slight functions of composition across the respective joins.

Alkaline earth cations. Very few data are available for the estimation of solution parameters for alkaline earths (besides Ca) in carbonate melts. The value for $W_{\text{Ca}^{2+}-\text{Mg}^{2+}}$ was defined in Figure 1 during determination of ΔH_{liq}(calcite).

To estimate the W interaction parameter for the Ca$^{2+}$-Mg$^{2+}$ cation solution in carbonate melts, Equation 6 and the activity-composition model of Anovitz and Essene (1987) can be applied to the liquidus phase equilibria of Byrnes and Wyllie (1981). Figure 2e shows that liquidus, with the range of permissible liquidus locations forced through ΔH_{liq}(calcite) = 31.5 ± 1 kJ/mol on the vertical axis. The permissible liquidus locations correspond to $W = -40 ± 30$ kJ/mol. This result must be used with caution because the liquidus of Byrnes and Wyllie (1981) was determined at 10 kbar; the activity-composition model has been extrapolated somewhat beyond its known range of applicability, and the validity of the activity model is in question (McSwiggen, 1993). As a further caution, a similar analysis performed on the 27-kbar liquidus in CaCO$_3$-MgCO$_3$ (Irving and Wyllie, 1975) is consistent with a regular solution W of approximately zero. Obviously, data in this system are too sparse for firm conclusions, but changes in melt structures are possible.

Other cations. Interpretable liquidus data for other cations in carbonate melts are limited to lanthanum in the system CaCO$_3$-Ca(OH)$_2$-La(OH)$_3$ (Jones and Wyllie, 1986). As calcite accepts little OH$^-$ or La$^{3+}$ in solid solution, the calcite-saturated liquidus may be modeled as

$$-\left[RT \ln(X_{\text{Ca}^{2+}, \text{cation}} \cdot X_{\text{CO}^{2-}, \text{anion}}) + W_{\text{CO}^{2-}, \text{OH}^-}(1 - X_{\text{CO}^{2-}, \text{anion}})^2 \right] \left(1 - \frac{T}{T_{\text{fus}}^c}\right)$$

$$= W_{\text{Ca}^{2+}, \text{La}^{3+}} \left(1 - X_{\text{Ca}^{2+}, \text{cation}} \cdot X_{\text{La}^{3+}, \text{anion}}\right)^2 + \Delta H_{\text{liq}}^c{(\text{calcite})}$$

following Equations 7 and 12. This equation is in the format $y = ax + b$; when it is graphed in that manner, experimental brackets on the calcite-saturated liquidus ought to permit it to be a straight line with a slope of $W_{\text{Ca}^{2+}, \text{La}^{3+}}$ and an intercept of $\Delta H_{\text{liq}}^c{(\text{calcite})} = 31.5 ± 1$ kJ/mol. The limited data are consistent with regular-solution behavior and $W_{\text{Ca}^{2+}, \text{La}^{3+}} = +80 ± 50$ kJ/mol2 (Fig. 2f, Table 4).

Solution of H$_2$O

H$_2$O is important, both as a flux to permit melting of carbonates at geologically reasonable conditions (Wyllie and Tuttle, 1960) and as a constituent of the vapors associated with carbonatites (e.g., Rankin, 1975; Nesbitt and Kelly, 1977; McKee, 1966; LeBas, 1977; Rubie and Gunter, 1983). H$_2$O is problematic within an ionic melt model as it is not an ionic liquid. Further, the speciation of H$_2$O in ionic solutions may be affected by cation complexation, formation of mixed anions (like bicarbonate), and changes in intrinsic variables (like acidity and f_{CO_2}). In addition, H$_2$O does not behave as OH does in carbonate-rich ionic melts; the calcite-saturated liquidus in CaCO$_3$-Ca(OH)$_2$ is effectively straight and not inflected, whereas the calcite-saturated liquidus in CaCO$_3$-H$_2$O is strongly curved and inflected, concave up at high CaCO$_3$ contents, and concave down at lower CaCO$_3$ contents (Figs. 5 and 6, respectively, of Wyllie and Tuttle, 1960).

Even so, the solution of H$_2$O in Ca-carbonate melts can be described with a simple regular-solution model, on the basis of the liquidus surface in the system CaCO$_3$-H$_2$O (Wyllie and Tuttle, 1960, temperatures corrected by −32 K per Gittins and Tuttle, 1964). I will assume that H$_2$O ionizes completely into hydroxide and hydronium ions on solution in a carbonate melt:

$$2\text{H}_2\text{O} = \text{H}_3\text{O}^+ + \text{OH}^-$$

and so affects both the cation and anion solutions directly. The experiments of Wyllie and Tuttle (1960) were done with excess vapor in most cases; because the composition of the vapor is unconstrained, I must assume further that the mass of vapor was insignificant compared with that of the solid (i.e., that the mass of H$_2$O input to the charge effectively represents the mass of H$_2$O in the liquid). With this speciation model, Equations 5 and 7 can be combined and reduced to yield
both arise from disproportionation of H₂O. Constraints XCO₃⁻, ani comparable with Equation from Table term attached on the calcite-saturated liquidus in Ca₃O₃-H₂O from kJ/mol 2, which is high but not unreasonable compared values, which have <40 wt% H₂O (equivalent criteria the surface must be representable as a straight line, or violation of other assumptions are possible curve through all other W_{Ca^{2+},H₂O} = \frac{(1 - X_{Ca^{2+},cation \text{ melt}})^2}{1 - \frac{T}{T_{us}}} + \Delta H_{fus}(\text{calcite}) \quad (15)

comparable with Equation 13 above. \(X_{Ca^{2+},cation \text{ melt}}\) and \(X_{CO₃⁻,anion \text{ melt}}\) have the same numerical values, because they both arise from disproportionation of H₂O. Constraints on the calcite-saturated liquidus in Ca₃O₃-H₂O from Wyllie and Tuttle (1960) are recast in Figure 2g in this form, with the term in brackets on the ordinate and the term attached to \(W_{Ca^{2+},H₂O}\) on the abscissa. \(W_{CO₂⁻,oH⁻}\) is from Table 4. For the model to be correct, the liquidus surface must be representable as a straight line, with an ordinate intercept of \(\Delta H_{fus,calcite} = 31.5 \pm 1 \text{ kJ/mol}\) and a slope of \(W_{Ca^{2+},H₂O}\). Figure 2g shows that these criteria are met for the ten experiments at lower abscissa values, which have <40 wt% H₂O (equivalent to \(X_{H₂O} \leq 0.9\)). To match these experiments, \(W_{Ca^{2+},H₂O} = 36 \pm 2 \text{ kJ/mol}^2\), which is high but not unreasonable compared with other W values (Table 4).

It remains unclear how closely this model cleaves to reality. Instead of a straight line in Figure 2g, one could also fit a smooth curve through all the liquidus brackets, inconsistent with regular solution behavior. It is entirely possible that effects of formation of complexes, formation of mixed anions, or violation of other assumptions are hidden in the correlation of Figure 2g. If accurate, however, it suggests that dissolved H₂O at high temperatures in ionizing environments behaves as the ionic compound hydronium hydroxide, H₂O·OH⁻. These hypotheses about H₂O in carbonate melts should be readily testable.

APPLICATIONS

Beyond the value of a theoretical understanding of carbonatite magmas, this regular-solution model can help answer real geological questions involving carbonate melts. Here, two types of questions are considered: the relationships between the compositions of carbonatite magmas and their vapors and the prediction of liquidus equilibria.

Carbonatite magma and vapor

A fluid or vapor phase is commonly associated with carbonatites, as shown by their fluid inclusions (e.g., Rankin, 1975; Nesbitt and Kelly, 1977) and surrounding metasomatic rocks (fenites: e.g., McKeie, 1966; LeBas, 1977; Rubie and Gunter, 1983). An understanding of the vapor phase is important for understanding the application of experimental phase equilibrium to natural carbonatites, the origins of carbonatite metasomatism, and the effects of volatile loss or gain on magma composition. Because the vapor phase is fugitive, its composition is elusive. In rare cases, its composition can be constrained by the mineral assemblage of the carbonatite (Treiman and Essene, 1984), but not without dispute (Gittins et al., 1990, 1992; Treiman and Essene, 1992).

A solution model for carbonate-rich melts provides a link between carbonatite magmas and vapors. From the composition of a carbonatite magma (e.g., its halogen content), a solution model permits calculation of some compositional constraints on the vapor in equilibrium with the magma. Alternatively, given the composition of a vapor phase (e.g., its H₂O content), one can constrain the composition of the magma.

F: Experimental calibration. Carbonatite magmas can contain significant F. Most carbonatites contain fluorapatite and some carry fluorite (CaF₂); many other F-bearing minerals may be present, e.g., pyrochlore, fluorocerite (Ce,La)F₃, bastnaesite [(Ce,La)(CO₃)F], and amphiboles (Hogarth, 1989). The natrocarbonatites of Oldoinyo Lengai, Tanzania, also contain F-bearing nyerereite [(Na,K)₂Ca(CO₃)₃], and gregoryite [(Na₂,Ca)CO₃] (Peterson, 1990). Many fenites associated with carbonatites contain fluorite, some in economic proportions. In addition, theoretical interest has recently focused on F because of the experimental observation that F is similar to H₂O as a flux to permit melting of carbonates at geologically reasonable temperatures (Gittins et al., 1990; Jago and Gittins, 1991).

The behavior of F in carbonate magma-vapor systems can be modeled by the reaction

\[\text{F}_2 + \text{CO}_3^- = 2\text{F}^- + \text{CO}_2 + \frac{1}{2}\text{O}_2 \quad (16) \]

which describes the equilibrium distribution of F between carbonate melt and vapor. To calibrate the distribution of F, one must derive the standard Gibbs free energy of Reaction 16 in the temperature range of interest (ignoring the effects of pressure on melt components),

\[\Delta G^°_f = -RT \ln \left(\frac{f_{\text{CO}_2,\text{vapor}} \cdot f_{\text{O}_2,\text{vapor}} \cdot a_{\text{F}_2,\text{vapor}}}{f_{\text{F}_2,\text{vapor}} \cdot a_{\text{CO}_3^-,\text{melt}}} \right) \quad (17) \]

where each \(a\) is the activity of a melt component and each \(f\) is the fugacity of a vapor species. If all the fugacities and activities can be determined at a given temperature, the free energy of reaction is readily calculated.

The Gibbs energy of Equation 17 can be calculated along the calcite + fluorite saturated liquidus in the system CaF₂-Ca(OH)₂-CaCO₃, as drawn by Gittins and Tuttle (1964) from their 1-kbar experimental results (their Fig. 4). The ratio of gas species fugacities in Equation 17 is buffered by the presence of solid calcite and fluorite,

\[\text{F}_2 + \text{CaCO}_3 = \text{CaF}_2 + \text{CO}_2 + \frac{1}{2}\text{O}_2 \quad (18) \]

Activities of melt species come directly from the analyzed or inferred compositions of the melts, and activity coef-
ficients come from the melt solution model. With W_{OH^-}, F^-, CO_3^{2-} and F^- as zero (Table 4), activity coefficients are given as

$$RT \ln \gamma_{\text{OH}^-} = W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{OH}^-}^2 + X_F X_{\text{OH}^-}) - W_{F^--\text{OH}^-}(X_F X_{\text{OH}^-})$$

(19a)

and

$$RT \ln \gamma_F = W_{F^--\text{OH}^-}(X_{\text{OH}^-}^2 + X_{\text{CO}_3^{2-}} X_{\text{OH}^-}) - W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{CO}_3^{2-}} X_{\text{OH}^-})$$

(19b)

from Equation 5. To obtain ΔG°_f in Equation 17, the gas fugacity ratio is calculated using thermochemical data from Chase et al. (1974) and Robie et al. (1979), and melt component activities are calculated from measured or inferred melt compositions (Gittins and Tuttle, 1964) and activity coefficients (Eq. 19), with W values from Table 4. Taking seven points from the liquidus of Gittins and Tuttle (1964) from 1153–848 K yielded a regressed free energy equation of

$$\Delta G^\circ_f = -412.0 (\pm 2.8) - 0.091 (\pm 0.003)T (\text{kJ/mol})$$

(20)

with $r^2 = 0.995$, where the uncertainties are the 2σ standard errors of regression. If the regular-solution model here is accurate, this calibration should be valid for all Ca-rich carbonate-rich melts, whether in synthetic or complex natural systems. The free energies of reactions are negative and imply that Reaction 16 favors strongly the production of fluoride ions and carbon dioxide gas. Thus, the vast proportion of F in Ca-rich carbonate melts, whether in synthetic or complex natural systems. The free energies of reaction components are calculated from measured melt compositions (Gittins and Tuttle, 1964). Activity coefficients (Eqs. 24a and 24b) using W values are from Table 4. Taking compositions at the end points and one intermediate point yields a regressed free energy equation of

$$\Delta G^\circ_f = 79.2 (\pm 3.1) - 0.038 (\pm 0.003)T (\text{kJ/mol})$$

(25)

with $r^2 = 0.995$, where the uncertainties are only the 2σ standard errors of regression. This calibration is probably more uncertain than the regular-solution activity coefficients. With W_{OH^-}, F^-, and CO_3^{2-} as zero (Table 4), activity coefficients are given as

$$RT \ln \gamma_{\text{OH}^-} = W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{OH}^-}^2 + X_F X_{\text{OH}^-}) - W_{F^--\text{OH}^-}(X_F X_{\text{OH}^-})$$

(24a)

and

$$RT \ln \gamma_F = W_{F^--\text{OH}^-}(X_{\text{OH}^-}^2 + X_{\text{CO}_3^{2-}} X_{\text{OH}^-}) + W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{CO}_3^{2-}} X_{\text{OH}^-})$$

(24b)

from Equation 5. To obtain ΔG°_f in Equation 22, the gas fugacity ratio is calculated using thermochemical data from Chase et al. (1974) and Robie et al. (1979), and melt component activities are calculated from measured melt compositions (Gittins and Tuttle, 1964). Activity coefficients (Eqs. 24a and 24b) using W values are from Table 4. Taking compositions at the end points and one intermediate point yields a regressed free energy equation of

$$\Delta G^\circ_f = 79.2 (\pm 3.1) - 0.038 (\pm 0.003)T (\text{kJ/mol})$$

(25)

with $r^2 = 0.995$, where the uncertainties are only the 2σ standard errors of regression. This calibration is probably more uncertain than the regular-solution activity coefficients. With W_{OH^-}, F^-, and CO_3^{2-} as zero (Table 4), activity coefficients are given as

$$RT \ln \gamma_{\text{OH}^-} = W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{OH}^-}^2 + X_F X_{\text{OH}^-}) - W_{F^--\text{OH}^-}(X_F X_{\text{OH}^-})$$

(24a)

and

$$RT \ln \gamma_F = W_{F^--\text{OH}^-}(X_{\text{OH}^-}^2 + X_{\text{CO}_3^{2-}} X_{\text{OH}^-}) + W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{CO}_3^{2-}} X_{\text{OH}^-})$$

(24b)

from Equation 5. To obtain ΔG°_f in Equation 22, the gas fugacity ratio is calculated using thermochemical data from Chase et al. (1974) and Robie et al. (1979), and melt component activities are calculated from measured melt compositions (Gittins and Tuttle, 1964). Activity coefficients (Eqs. 24a and 24b) using W values are from Table 4. Taking compositions at the end points and one intermediate point yields a regressed free energy equation of

$$\Delta G^\circ_f = 79.2 (\pm 3.1) - 0.038 (\pm 0.003)T (\text{kJ/mol})$$

(25)

with $r^2 = 0.995$, where the uncertainties are only the 2σ standard errors of regression. This calibration is probably more uncertain than the regular-solution activity coefficients. With W_{OH^-}, F^-, and CO_3^{2-} as zero (Table 4), activity coefficients are given as

$$RT \ln \gamma_{\text{OH}^-} = W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{OH}^-}^2 + X_F X_{\text{OH}^-}) - W_{F^--\text{OH}^-}(X_F X_{\text{OH}^-})$$

(24a)

and

$$RT \ln \gamma_F = W_{F^--\text{OH}^-}(X_{\text{OH}^-}^2 + X_{\text{CO}_3^{2-}} X_{\text{OH}^-}) + W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{CO}_3^{2-}} X_{\text{OH}^-})$$

(24b)

from Equation 5. To obtain ΔG°_f in Equation 22, the gas fugacity ratio is calculated using thermochemical data from Chase et al. (1974) and Robie et al. (1979), and melt component activities are calculated from measured melt compositions (Gittins and Tuttle, 1964). Activity coefficients (Eqs. 24a and 24b) using W values are from Table 4. Taking compositions at the end points and one intermediate point yields a regressed free energy equation of

$$\Delta G^\circ_f = 79.2 (\pm 3.1) - 0.038 (\pm 0.003)T (\text{kJ/mol})$$

(25)

as zero (Table 4), activity coefficients are given as

$$RT \ln \gamma_{\text{OH}^-} = W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{OH}^-}^2 + X_F X_{\text{OH}^-}) - W_{F^--\text{OH}^-}(X_F X_{\text{OH}^-})$$

(24a)

and

$$RT \ln \gamma_F = W_{F^--\text{OH}^-}(X_{\text{OH}^-}^2 + X_{\text{CO}_3^{2-}} X_{\text{OH}^-}) + W_{\text{CO}_3^{2-}-\text{OH}^-}(X_{\text{CO}_3^{2-}} X_{\text{OH}^-})$$

(24b)

from Equation 5. To obtain ΔG°_f in Equation 22, the gas fugacity ratio is calculated using thermochemical data from Chase et al. (1974) and Robie et al. (1979), and melt component activities are calculated from measured melt compositions (Gittins and Tuttle, 1964). Activity coefficients (Eqs. 24a and 24b) using W values are from Table 4. Taking compositions at the end points and one intermediate point yields a regressed free energy equation of

$$\Delta G^\circ_f = 79.2 (\pm 3.1) - 0.038 (\pm 0.003)T (\text{kJ/mol})$$

(25)
Essene, 1992; Gittins et al., 1992). Application of the regular-solution model for carbonate-rich magmas can resolve this issue.

To calculate the concentrations of fluoride and OH in the Husereau carbonate magma, one can apply Reactions 16 and 21 using the calibration in Equations 20 and 25. Treiman and Essene (1984) inferred that the Husereau carbonate magma was equilibrated with calcite, apatite, oxides, and other phases at 913 K and 1 kbar of total pressure. The gas phase was calculated to contain 110 bars CO2; by difference, H2O was inferred to account for 882 bars of the total vapor.

To calculate the abundance of OH in the Husereau dike magma, one can use the calculated composition of the Husereau gas phase in Reaction 21. Applying the calibration of Equation 25 yields

$$\frac{a_{\text{OH}^- \text{melt}}}{a_{\text{CO}_3^- \text{melt}}} = 2.8 \times 10^{-1}. \quad (26)$$

If one assumes the magma contained no abundant ion species besides carbonate and hydroxide, the regular-solution activity model (Eq. 5, Table 4), allows Equation 26 to be satisfied by $X_{\text{OH}^-} \approx 0.07$ and $X_{\text{CO}_3^-} \approx 0.93$. This ratio is consistent with the absence of portlandite or other hydroxides as magmatic phases (viz., Gittins and Tuttle, 1964) and affirms that carbonate magmas were much poorer in H2O than their equilibrium vapors (here 882 bars H2O and 110 bars CO2). There is no mineralogic evidence for this abundance of magmatic OH in the Husereau dike, and one may speculate that it was expelled during solidification as a H2O-rich vapor phase. Some of this H2O-rich vapor might have been consumed in the pervasive conversion of magmatic periclase in the dike to brucite (Treiman and Essene, 1984), but most of it must have left the dike completely.

Fugacities of F-bearing gas species were calculated assuming F-OH exchange equilibria between apatite in the dike rock and vapor. From the inferred f_{O_2} of the QFM buffer (10^{-18.6} bars), Treiman and Essene calculated that the gas fugacity of F2 was $10^{-43.9}$ bars. From the temperature, gas fugacities, and Equation 20, one can now calculate the ratio of specie activities in the Husereau carbonatite melt as

$$\frac{a_{\text{F}_2 \text{melt}}}{a_{\text{CO}_3^- \text{melt}}} = 4.8 \times 10^{-9}. \quad (27)$$

If the activity of carbonate in the melt was approximately unity, the activity of fluoride was 7×10^{-3}. The anion fraction of fluoride in the melt can be calculated knowing the anion fraction of carbonate in the melt, 0.93, as calculated above. This value gives a fluoride activity of 6.7×10^{-3} (Eq. 27), a fluoride activity coefficient of 1.06 (Eq. 19b), and so a fluoride anion fraction of 6.3×10^{-3}. Clearly, this is not much fluoride in the melt, and it is consistent with the lack of F-bearing minerals other than apatite in the dike. If the thermochemical analysis so far is correct, the only way for the melt to have had more F is for it to have been present in complexes, like molecular HF, SiF6²⁻, etc. There is no evidence for or against the presence of such fluoride complexes in the Husereau dike.

Carbonate magma on the surface of Venus

Carbonate-rich magmas may not be unique to the Earth, but may be of broader planetary importance, possibly occurring on Mars (Longhi, 1991) and Venus. The temperature and pressure of the Venus surface could be conducive to carbonate volcanism (Sill, 1984), and Magellan radar images of long sinuous channels on the Venus surface (presumably H2O-free) have given that idea new life (Baker et al., 1992; Komatsu et al., 1992; Kargel et al., 1993). The possibility of carbonate magmas on Venus must be considered in the context of its surface conditions: a global mean temperature of 740 K and a mean atmospheric pressure of 95 bars (Seiff, 1983); the atmosphere consists of 96.5% CO2, 3.5% N2, and ~150 ppm SO2 (Fegley et al., 1992). The Venera and VEGA chemical analyses of the Venus surface are consistent with tholeiitic or alkaline basalt, with two analyses suggesting felsic or peralkaline compositions (Barsukov, 1992).

Melting of calcite + anhydrite. Near-surface rocks on Venus are inferred to contain both calcite (CaCO3) and anhydrite (CaSO4) as weathering products of igneous minerals (Fegley and Prinn, 1989; Fegley et al., 1992); alkali carbonates and sulfates are not predicted to be significant in the weathering assemblage. Might calcite + anhydrite be molten under Venus surface conditions, or might calcite + anhydrite melt be formed under reasonable geological conditions (e.g., volcanic or impact heating)? On Venus, is it also possible that carbonate-sulfate magmas might be generated by liquid immiscibility from volatile-rich basaltic magma (Kargel et al., 1993)? Answering these questions requires knowing the liquidus surface in the system CaCO3-CaSO4, which can be calculated using the regular solution model developed here.

Melting relations in the system CaCO3-CaSO4 can be modeled with the thermochemical parameters derived and compiled here and compared with the experimentally determined phase equilibria of Fuerstenau et al. (1981). To calculate the liquidus surface, one requires heats of melting, temperatures of melting, solution models for calcite and anhydrite, and a solution model for their melts. Melting data for calcite are calculated for 100 bars from data in Tables 1 and 2. The melt solution of CO3⁻ and SO4⁻ is essentially ideal (Table 4). It is assumed that calcite and anhydrite are pure phases, that the $\Delta H^\circ_{\text{m}}$ (anhydrite) is 28 kJ/mol, for a 1-bar melting temperature of 1723 K (Robie et al., 1979), and that this $\Delta H^\circ_{\text{m}}$ (anhydrite) is relevant to 100 bars pressure. At 1468 K, anhydrite inverts to a high-temperature phase, which melts at 1737 ± 4 K (Rowe et al., 1965). The lower temperature chosen for this calculation is estimated for metastable melting of the lower temperature anhydrite polymorph, which would be stable at the Venus surface.
From these data and Equation 7, one can map the liquidus surface in CaCO$_3$-CaSO$_4$, ignoring the polymorphic transition in solid CaSO$_4$ (Fig. 3). The calcite-saturated and anhydrite-saturated liquidus curves are calculated independently. The intersection of the curves (the stable coexistence of calcite, anhydrite, and melt) at 1250 K is the eutectic point, the lowest temperature at which melt can exist in CaCO$_3$-CaSO$_4$. The eutectic temperature is 335 K below the melting temperature of calcite alone and 473 K below the melting temperature of anhydrite alone.

Predicted melting relations in CaCO$_3$-CaSO$_4$ are in partial accord with the experimental results of Fuerstenau et al. (1981), as shown in Figure 3. Fuerstenau et al. inferred phase relations by differential thermal analysis on sealed charges. They had little control on pressure, which was inferred to vary between 15 and 35 bars. Fuerstenau et al. did not analyze their experiment products, and so their identification of solid phases is completely by inference.

For the CaCO$_3$-rich calcite-saturated limb of the liquidus (Fig. 3), there is excellent agreement between the predictions here and the experiments of Fuerstenau et al. (1981). However, prediction and experiment do not agree for the CaSO$_4$-saturated limb of the liquidus. The experimental determination of this limb, inferred to be anhydrite + liquid (Fuerstenau et al., 1981), is not consistent with $T_{\text{ fus}}$(anhydrite) = 1723 K (viz., Robie et al., 1979) but rather with $T_{\text{ fus}}$ ≈ 1550 K (Fig. 3). Using the latter $T_{\text{ fus}}$ implies (by means of Eq. 6) that the CaSO$_4$-rich solid has $\Delta H_{\text{ fus}}$ per cation of ~28 kJ/mol, which is reasonable for an ionic compound. The source of these discrepancies is unclear; experimental error is possible, but a polymorphic transition in solid CaSO$_4$ is unlikely (Rowe et al., 1965). To me, it seems likely that the liquidus phase detected by Fuerstenau et al. (1981) is a previously unreported intermediate mixed-anion compound, for instance Ca$_2$(SO$_4$)$_2$(CO$_3$), that melts incongruently to anhydrite + liquid.

Applying either predicted or experimental liquidus surfaces to Venus, one can see that mixtures of calcite + anhydrite will not melt at normal Venus surface temperatures, 660–760 K (Seiff, 1983). To melt a mixture of calcite + anhydrite on the Venus surface would require temperatures at least 500 K above ambient, which could easily be supplied by impact heating or basaltic volcanism (solids temperatures near 1300–1400 K). Additional components, like alkalis or halides, would decrease the melting temperature, but the availability of these components is not clear. Similarly, the eutectic temperature calculated here does not invalidate the speculation that carbonate-sulfate magma could exsolve from basaltic magmas (Kargel et al., 1993).

F in Venus carbonatites. The near-surface atmosphere of Venus contains approximately 5 ppb of HF (Fegley et al., 1992), and one may inquire whether this much F in the atmosphere would significantly affect the compositions of ionic melts on the Venus surface. The model for fluorine-carbonate exchange between carbonate melts and vapor in Reaction 16 can be applied here, assuming that its free energy calibration (Eq. 20) can be extrapolated to 740 K from its minimum calibration temperature of 848 K. With thermochemical data from Robie et al. (1979) and the near-surface Venus atmospheric abundances of CO = ~20 ppm and H$_2$O = 20 ppm, the reactions

$$2\text{HF} + \text{CO}_2 = \text{F}_2 + \text{H}_2\text{O} + \text{CO} \quad (28a)$$

and

$$2\text{CO}_2 = 2\text{CO} + \text{O}_2 \quad (28b)$$

imply that $f_{\text{co}} = 1.1 \times 10^{-47}$ bars and $f_{\text{o}} = 3.5 \times 10^{-22}$ bars, within the magnetite stability field in Fe-O (Fegley et al., 1992). From Reaction 16 and its calibrations in Equations 17 and 20, one can now calculate the activity of fluoride in a carbonate-rich melt in equilibrium with the Venus atmosphere. With the derivation of Equation 21, fluoride and carbonate activities are related as

$$\frac{a_{\text{F}}}{a_{\text{CO}_3}} = 4.4 \times 10^{-3}. \quad (29)$$

This implies that fluoride activity in a carbonate melt is, at most, 7×10^{-3}. The fluoride activity coefficient is unity in the absence of OH (Eq. 19b), implying the same value for the anion concentration of fluoride; this abundance corresponds to a F abundance of approximately 0.1 wt% (calculated for a melt containing only Ca$^{2+}$, CO$_3^{2-}$, and F$^-$. Thus, F from the atmosphere would be strongly concentrated in carbonate-rich melts on the Venus surface. However, the proportion of F would be so low as to have little effect in stabilizing those melts (Jago and Gittins, 1991).

Caveats

Caution must be exercised in applying this regular solution model of carbonate magmas, particularly in the precision of its implications. Many parameters in the model are poorly known, including heats of melting for magnesium carbonate and W interaction parameters for all cations with Mg$^{2+}$. The Temkin regular-solution model is only a first approximation to real behavior (Andersen and Kleppa, 1976) and can undoubtedly be improved given additional high-quality data. Finally, there remain the possibilities of multiple melt structures in Ca-rich carbonate magmas and of previously unreported liquidus phases in unexplored systems. It is hoped that this model can serve as a starting point for a deeper understanding of the thermochemical behavior of carbonate-rich magmas.

Acknowledgments

This work was started ten years ago during my doctoral studies at the University of Michigan, under the tutelage of E.J. Essene and W. Kelly, and with the assistance of L.M. Anovitz and J.W. Valley. More recently, I am grateful to B. Jago and J. Gittins for reviving my interest in carbonatite thermochemistry and to B. Fegley, Jr. and J. Kargel for collaborations on carbonate-sulfate magmas on Venus. The calculations here would have been impossible without the careful experiments reported over many years by P.J. Wyllie, J. Gittins, and their colleagues. This paper has ben-

REFERENCES CITED

