FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Baltimore, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>6</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC REFERENCE PUBLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>10</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>14</td>
</tr>
<tr>
<td>INDEX</td>
<td>52</td>
</tr>
</tbody>
</table>
The second United States Microgravity Payload (USMP–2), flown in March 1994, carried four major microgravity experiments plus a sophisticated accelerometer system. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission. The four USMP–2 experiments dealt with understanding fundamental aspects of materials behavior, three with the formation of crystals from melts, and one with the critical point of a noble gas. This successful, scientifically rich mission also demonstrated telescience operations.

This report documents the Marshall Space Flight Center (MSFC) 13-month smoothed solar flux ($F_{10.7}$) and geomagnetic index ($A_p$) intermediate (months) and long-range (years) statistical estimation technique, referred to as the MSFC Lagrangian Linear Regression Technique (MLLRT). Estimates of future solar activity are needed as updated input to upper atmosphere density models used for satellite and spacecraft orbital lifetime predictions. An assessment of the MLLRT computer program's products is provided for 5-year periods from the date estimates were made. This was accomplished for a number of past solar cycles.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY95. It also includes papers of MSFC contractors. After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

Zerodur™ is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur™ an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur™ is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur™ density. This increase in density is described as a compaction.

Experimental data showing proton-induced compaction of Zerodur™ is presented. The dependence of compaction on proton dose was determined to be a power law relationship. Previous publications determined a powder law relationship between Zerodur™ compaction and electron radiation. Correlation between the published data and the results of this investigation are currently being studied.


To obtain the proper measurement amplitude with a spectrum analyzer, the correct frequency-dependent transducer factor must be added to the voltage measured by the transducer. This report will examine how entering transducer factors into a spectrum analyzer can cause significant errors in field amplitude due to the misunderstanding of the analyzer’s interpolation methods. It will also discuss how to reduce these errors to obtain a more accurate field amplitude reading.

Sliding Mode Thermal Control System for Space Station Furnace Facility. M.E. Jackson. Structures and Dynamics Laboratory. 19960021179N (96N–24648)

The space station furnace facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The thermal control system (TCS) is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The report formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances and plant uncertainties. The desired decoupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities, time-varying plant parameters, and variations of the system pressure supplied to the controlled subsystems. A comparison against the popular proportional-plus-derivative-plus-integral (PID) control algorithm is included to demonstrate improved performance over traditional control techniques.


To obtain the proper measurement amplitude with a spectrum analyzer, the correct frequency-dependent transducer factor must be added to the voltage measured by the transducer. This report will examine how entering transducer factors into a spectrum analyzer can cause significant errors in field amplitude due to the misunderstanding of the analyzer’s interpolation methods. It will also discuss how to reduce these errors to obtain a more accurate field amplitude reading.

Sliding Mode Thermal Control System for Space Station Furnace Facility. M.E. Jackson. Structures and Dynamics Laboratory. 19960021179N (96N–24648)

The space station furnace facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The thermal control system (TCS) is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The report formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances and plant uncertainties. The desired decoupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities, time-varying plant parameters, and variations of the system pressure supplied to the controlled subsystems. A comparison against the popular proportional-plus-derivative-plus-integral (PID) control algorithm is included to demonstrate improved performance over traditional control techniques.
model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and "map" of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through "common" lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

TM-108510 June 1996

A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

TM-108511 June 1996

The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; atmospheric thermodynamic models and properties; thermal radiation; U.S. and world surface environment extremes; humidity; precipitation, fog, and icing; cloud characteristics and cloud cover models; atmospheric electricity; atmospheric constituents; vehicle engine exhaust and toxic chemical release; occurrences of tornados and hurricanes; geological hazards, and sea states. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle’s operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating, and take off/landing capabilities. The launch vehicle’s capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

TM-108512 June 1996

More extensive testing was performed through a NASA research announcement (NRA) between Marshall Space Flight Center (MSFC) and Lockheed Martin Astronautics on the promising LO₂ propellant conditioning concept of passive recirculation (no-bleed). Data from the project are being used to further anchor models in LO₂ conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan LO₂ pump attachment, feed duct slope effects, and up-leg booster effects. LN₂ was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of MSFC. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

TM-108513 July 1996
This report describes the newly revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide (Justus et al., 1996) for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart (1987). The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM) of Bougher et al. (1990). The new thermospheric model includes revised dependence on the 10.7-cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are (1) realistic variations of temperature and density with latitude and time of day; (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients; and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the "ORBIT" subroutine.

TM–108514


The Computer-Aided System Engineering and Analysis (CASE/A) Version 5.0 User's Manual provides the user with information needed to execute and learn the CASE/A 5.0 modeling package. CASE/A 5.0 is a trade study tool that provides modeling/simulation capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the Space Station Freedom.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS environment. It utilizes the Tektronics 4014 graphics display system and the VT100 text manipulation/display system.

TM–108515

Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund Final Report, Project 93–03). W.T. Sutherland. Astrionics Laboratory.

A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the preamplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.

TM–108516


A vacuum chamber designed for use in shearography nondestructive evaluation of aerospace components is presented. The inspection of an aerospace insulation is used as an example of vacuum excitation shearography for evaluation of debonds. Design drawings of subcomponents and the assembly are included in an appendix.

TM–108517


The Computer Aided System Engineering and Analysis (CASE/A) Version 5.0 Programmer's Manual provides the programmer and user with information regarding the internal structure of the CASE/A 5.0 software system. CASE/A 5.0 is a trade study tool that provides modeling/simulation
capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the space station.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS™ environment. It utilizes the Tektronics 4014™ graphics display system and the VT100™ text manipulation/display system.
TP–3588 November 1995
19960016630N (96N–22263)

Localized corrosion in welded samples of 2219–T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leaders to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

TP–3589 November 1995
19960014632N (96N–19293)

The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water–flow rig testing. Also, guidelines are given for estimating the dynamic environment or other inducer and impeller applications.

TP–3595 December 1995
19960029068N (96N–29631)

Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5–eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon™-impregnated fiberglass cloth. Aluminum anodizations were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glossy black paint and Z–93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar™, bulk PEEK, and silverized FEP Teflon™. Aluminized and nonaluminized Chemfab 250™ beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectrophotometer and like measurements made using an AZ Technology-developed laboratory portable spectrophotometer.

TP–3615 April 1996
Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations (Center Director’s Discretionary Fund Project 93–05 Part II). C. Barret. Structures and Dynamics Laboratory.
(96N–26811)

Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability.

As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director’s Discretionary Fund Project 93–05 and has a previous and subsequent companion publication.

TP–3642 July 1996
19960049664N (96N–33957)

While the systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems- and component-dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted.
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number $R_m = 12.3\pm7.5$ and maximum smoothed sunspot number $R_m = 198.8\pm36.5$, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum amplitude, with cycles of larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Use cycle 22 as a test case, we show that by the 12th month following conventional onset, cycle 22 appeared highly likely to be fast-rising, larger-than-average-size cycle. Because of the inferred correlation between ascent duration and period, it also seems likely that it will have a period shorter than average length.

The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.
Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology (Volume I). Compiled by R.W. Williams. Structures and Dynamics Laboratory.
19960029140N (96N-29670)

Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology (Volume II). Compiled by R.W. Williams. Structures and Dynamics Laboratory.
19960029254N (96N-29750)

19960020567N (96N-24116)
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR–4705 February 1996

CR–4706 February 1996

CR–4707 February 1996
Formation and Description of Debris Clouds Produced by Hypervelocity Impact. NAS8–38856. University of Dayton Research Institute. 19960015933N (96N–22124)

CR–4716 February 1996

CR–4720 February 1996
Catastrophic Failure Modes Assessment of the International Space Station Alpha. NAS8–37383. Meyer Analytics, Inc. 19960017822N (96N–23346)

CR–4740 May 1996

CR–4744 May 1996

CR–199197 July 7, 1995

CR–199198 October 1995

CR–199201 September 1995
Special Environmental Control and Life Support Equipment Test Analyses and Hardware, Final Report. NAS8–38250. ION Electronics. 19960004068N (96N–14078)

CR–199817 September 1995

CR–199818 September 25, 1995

CR–199819 September 18, 1995

CR–199820 October 23, 1995

CR–199826 November 30, 1995

CR–199828 September 15, 1995

CR–199829 December 10, 1995

CR–199830 February 1996
CR-199831 July 14, 1995
Space Station Water Processor Process Pump, Final Report. NAS8–38250–12, ION Electronics. 19960016957N (96N–22564)

CR-199832 May 22, 1995

CR-199833 August 1995

CR-199834 September 1995

CR-199835 July 23, 1995

CR-199836 February 1, 1996

CR-199837 December 1995

CR-199838 July 14, 1995
Space Station Water Processor Mostly Liquid Separator (MLS), Final Report. NAS8–38250–12, United Technologies. 19960017622N (96N–23179)

CR-200696 August 31, 1995

CR-200697 January 20, 1995
Spacelab Charcoal Analyses, Phase II Final Report. NAS8–38250–14, ION Electronics. 19960017611N (96N–23168)

CR-200698 March 1996

CR-200699 July 1995

CR-200700 May 22, 1995

CR-200701 December 15, 1995

CR-200702 December 15, 1995
SSFF Health Management Analysis Report Part II (Proof of Concept), Final Report. NAS8–40365, Alpha Technology. 19960017621N (96N–23178)

CR-200703 October 1995

CR-200704 September 1995

CR-200705 January 22, 1996
Video Emulated Tweening: Simulating Full Motion Video From Intermittent Video, Final Report. Omniview, Inc. 19960017541X (95X–36537)

CR-200708 March 22, 1996
| CR-200718 | April 11, 1996 | Final Report for Delivery Order 84. NAS8-38609, University of Alabama in Huntsville. | |
ABBAS, M. M., FRAZIER, D.O., PALEY, M.S., WITHEROW, W.K., SHIELDS, A., HICKS, R.
Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for
Microgravity Processing Studies. For presentation at SPIE—International Society for Optical
Engineering, Denver, CO, August 1996.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
WITHEROW, W.K. ES76
SHIELDS, A. ES76

Two-Photon Absorption in Polydiacetylene Thin Films Using the Z-Scan Technique at Low He-
Ne Laser Illumination. For publication in Applied Physics Letters, Argonne, IL.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
WITHEROW, W.K. ES76

Intensity-Dependent Changes in the Third-Order Nonlinearity of Polydiacetylene Using Z-Scan Technique. For publication in Journal of Optical Society of America-B, Washington, DC.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
WITHEROW, W.K. ES76

Intrinsic Optical Bistability in Vapor Deposited Films of Metal-Free Phthalocyanine. For publication in Applied Physics Letters, Argonne, IL.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
WITHEROW, W.K. ES76

Optical Computers and Space Technology. For presentation at The International Association of Science and Technology for Development (LASTED), Cairo, Egypt, December 4–7, 1995.


HAGYARD, M.  
SHIBASAKI, K.  

ANDERSON, B.J.  
COOKE, W.J.  
PAVELITZ, S.D.  

ANTAR, B.N.  
KORNFIELD, D.M.  

AUGUSTEIJN, T.  
DESTEENE, G.V.  
VAN DER HOOFT, F.  
VAN PARADIJS, J.  
KOUVELIOTOU, C.  
FISHMAN, G.J.  
IAUC #6326 GRO J1744–28. For publication in IAU Circular, Cambridge, MA.

AUGUSTEIJN, T.  
VAN DE STEEN, G.  
FRAIL, D.A.  
VAN PARADIJS, J.  
KOUVELIOTOU, C.  
FISHMAN, G.J.  
ET AL.  
IAUC #6309: Possible Optical Counterpart. For publication in IAUC #6309, Cambridge, MA.

AUSTIN, R.A.  
MINAMITANI, T.  
RAMSEY, B.D.  

BAGDIGIAN, R.M.  
HOLDER, D.W.  
HUTCHENS, C.F.  
JONES, K.U.  
OGLE, K.Y.  
PARKER, D.  
SCHUBERT, F.  

BARRET, C.  

BATTs, G.W.  
PEARSON, S.D.  
Natural Environment Requirements Definition For Aerospace Vehicle Design. For presentation at 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 15-18, 1996.

BECKETT, C.R.  
RAMACHANDRAN, N.  
ROARK, W.  
MSG: Microgravity Science Glovebox. For presentation at SPIE Conference on Space Processing of Materials, Denver, CO, August 4–9, 1996.

BECK, J. G.  
HATHAWAY, D.H.  
SIMON, G.W.  

BERG, W.  
OLSON, W.  
FERRARO, R.  
GOODMAN, S.J.  
LAFONTAINE, F.J.  

BICKLEY, F., III  
MUNAFo, P.  
BOLSTAD, D.  
RANDOLPH, W.  
Considerations for the Application of Al-Li Alloys to Large Aerospace Structures. For presentation at ASM/TMS Materials Week, Cleveland, OH, October 31, 1995.

BLAKESLEE, R.J.  
KOSHAK, W.J.  
BAILEY, J.C.  
Application of Linear Analytic Techniques to Lightning Location Retrieval During the Maritime Continent Thunderstorm Experiment
For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

BOLOTNIKOV, A. ES84/NRC
RAMSEY, B. ES84

BOOKOUT, P.S. ED26
RICKS, E. ED26
JONES, R. ED26
Examination of Three Methods of Loads Recovery From a Coupled Loads Analysis on Space Shuttle Payloads. For presentation at AIAA Dynamics Special Conference, Salt Lake City, UT, April 18–19, 1996.

BOOKOUT, P.S. ED23
RICKS, E. ED23
JONES, R. ED23

BROWN, A.M. ES76
SHAFFER, J.A. ES76
NOEVER, D.A. ES76
CRONISE, R. ES76

BROWN, A.M. ED23
FOWLER, S.B. ED23
HARRIS, D.L. ED23
MIMS, K.K. ED23
Structural Dynamic Analysis of the X34 Orbital Vehicle Engine. For publication in AIAA Journal.

BROWN, R.W. PD34

BREWER, J.C. EB12
JACKSON, L.G. EB12
LURIE, C. TRW
FOROZAN, S. TRS
Real-Time Mission Simulation Test for AXAF-1. For presentation at IECEC, Washington, DC, August 11–16, 1996, and for publication in the proceedings of the conference.

BRITTAIN, A.M. ES76

BUNE, A.V. ES75
Heat Mass Transfer in Furnaces for Crystal Growth From the Melt. Global Numerical Models. For publication in Izvestiga RAN Mekhaniks Zhidkostiigasa Fluid and Gas Mechanics, Russian Academy of Sciences, Moscow, Russia.

BUNE, A.V. NRC
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
ALEXANDER, H.A. Mevatec

BUNE, A.V. NRC (ES75)
GILLIES, D.C. ES75
WATERING, D.A. ES75
LEHOCZKY, S.L. ES75
Modeling of Convection and Segregation During HgCdTe Directional Solidification With Emphasis on Coupling With Crystal-Melt Interface Alternation. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

BURD, H.D. EH12
SULLIVAN-HOLT, R. EH12
SMITH, M. Lockheed Martin

BURNEY, R.W., JR. United Technologies
OLINGER, J.B. United Technologies
PRICE, J.L. United Technologies
CHIN, H.A. United Technologies
TENNANT, M.L. United Technologies
MOORE, L.C. EH14
THOM, R.L. EH14
MOORE, J.D. SRS Technologies
MARTY, D.E. SRS Technologies

BUTLER, B.L. Science Applications International
GAUSE, R.L. Science Applications International
LOOMIS, W.C. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04
NICHOLS, R.L. PS04

CAMMARATA, M. NOAA
MCCAUL, E.W. USRA
BUECHLER, D. University of Alabama

CAMPBELL, J.W. PS02

CARRASQUILO, R.L. ED62
WIELAND, P.O. ED62
REUTER, J.L. ED62

CARTER, D.C. ES76

CARTER, D.C. ES76
TWIGG, P.D.
WRIGHT, B.
HO, J.X.
LIM, K.
CHAPMAN, J.
MILLER, T.
Multi-User Facility for Protein Crystal Growth in Microgravity: Results From PCAM and DCAM. For presentation at IUCR Meeting, Seattle, WA, August 14–16, 1996.

CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
MOORE, T.E. ES83
POLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
WYGANT, J.R. University of Minnesota
A Comparison of Measurements From ATMOS and Instruments Aboard the ER–2 Aircraft: Halogenated Gases. For publication in American Geophysical Union, Washington, DC, 1996.

A Comparison of Measurements From ATMOS and Instruments Aboard the ER–2 Aircraft: Tracers of Atmospheric Transport. For publication in American Geophysical Union, Washington, DC, 1996.


Total Precipitable Water Distribution During Severe Winters Over the Southeastern United States. For presentation at the 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

Improving Cryogenic Toughness of Alloy 2195 by Optimizing Aging. For publication in Journal of Materials Science and Engineering, Stony Brook, NY.

The Low Light Level Cloud Imager. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

Seasonal Variation and Distribution of Lightning Activity. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

Correlation Between X-Ray Reflectivity Measurements and Surface Roughness of AXAF Coated Witness Samples. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.

CLINTON, R.G. EH32
LEDBETTER, F.E. EH32
LAWRENCE, T.W. EH32
ECKEL, A.J. LeRC
KOENIG, J.R. SRI

NASA Ceramic Matrix Composite Programs for Liquid Rocket Engine Applications. For presentation at Seventh AeroMat Conference, Dayton, OH, June 3–6, 1996.

CLINTON, R.G. EH32
LEDBETTER, F.E., III EH32
LAWRENCE, T.W. EH32
ECKEL, A.J. LeRC
KOENIG, J.R. SRI


CLINTON, R.G., JR. EH32
MIMS, K.K. EH32
SULLIVAN, R. EH32
KOENIG, J.R. SRI
FESCO, A.Z. DuPont Lanxide
KLACKA, W.R. DuPont Lanxide


COBB, S.D. ES75
LEHOCZKY, S.L. ES75

Space Station Furnace Facility. For presentation at SPIE’s 1996 International Symposium, Denver, CO, August 4–9, 1996.

COLE, H. Boeing
MANUEL, S. Boeing
RATHER, D. Boeing
WARD, S. Boeing
JONES, K. ED62
PERRY, J. ED62
GOUZENBERG, A. RSC Energia
SAVINA, V. Institute of Biomedical Problems
MIKOS, K. Institute of Biomedical Problems

Mir Space Station Trace Contaminant Assessment. For presentation at SAE 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

COMFORT, R.H. UAH
CRAVEN, P.D. ES83
GALLAGHER, D.L. ES83
MOORE, T.E. ES83

Core Plasma Ion Temperatures From POLAR/TIDE. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

COOK, B. EH42
HENDERSON, A. EH42
DARBY, S. EH42
SHARPE, M. EH42


COOK, S.A. XX01

The X–33 Advanced Technology Demonstrator: Structural Dynamics Challenges. For presentation at AIAA Structures and Dynamics Conference, Salt Lake City, UT, April 16–18, 1996.

COSTES, N.C. ES71
STURE, S. University of Colorado

Issues on Geomechanics. For presentation at Fifth International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.

CRARY, D.J. ES84
KOUVELIOTOU, C. USRA
VAN PARADISUS, J. UAH
VAN DER HOOFT, F. University of Amsterdam
VAN DER KLIS, M. University of Amsterdam
RUBIN, B.C. USRA
SCOTT, D.M. USRA
FINGER, M.H. USRA
HARMON, B.A. ES84


CRARY, D.J. ES84
KOUVELIOTOU, C. USRA
VAN PARADISUS, J. UAH
VAN DER HOOFT, F. University of Amsterdam
SCOTT, D.M. USRA
PACIESAS, W.S. UAH
VAN DER KLIS University of Amsterdam
FINGER, M.H. USRA
HARMON, B.A. ES84
LEWIN, W.H.G. MIT

CRARY, D.J. ES84
KOUVELIOTOU, C. USRA
VAN PARADUS, J. UAH
VAN DER HOOF, F. University of Amsterdam
SCOTT, D.M. USRA
ZHANG, S.N. USRA
RUBIN, B.C. USRA
FINGER, M.H. USRA
HARMON, B.A. ES84
ET AL.

1,100 Days of BATSE Observations of Cygnus X–1. For publication in Astronomy and Astrophysics, Germany.

CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
COMFORT, R.H. UAH

The Search for He+. For presentation at 1996 American Geophysical Union Meeting, San Francisco, CA, December 1996.

CRAVEN, P.D. ES83
COMFORT, R.H. UAH
RICHARDS, P.G. UAH


CRAVEN, P.D. ES83
GALLAGHER, D.L. ES83
COMFORT, R.H. UAH

The Relative Concentration of He+ in the Inner Magnetosphere as Observed by DE1/RIMS. For publication in Journal of Geophysical Research.

CRONISE, R.J. ES76
NOEVER, D.A. ES76
BRITTAINE, A. ES76

Self Organized Criticality in Closed Ecosystems: Carbon Dioxide Fluctuations in Biosphere 2. For publication in International Journal of Climatology, Birmingham, United Kingdom.

CURREN, P.A. ES75
SNEYDER, R.S. ES75
LEHOCHSKY, S.L. ES75

Materials Science in Low Gravity. For presentation at SPACE 96, Fifth International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.
EMRICH, W.J., JR.  PS05
Practical Interplanetary Travel Using a Gas-
ydynamic Mirror Fusion Propulsion System. For
presentation at 32nd AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, Lake Buena Vista,
FL, July 1–3, 1996.

ERICKSON, R.J.  ED62
ROY, R.J.  Hamilton Std. Sp. Sys.
TATARA, J.D.  ION Electronics, Inc.
Solid Polymer Electrolysis Oxygen Generator
Testing at MSFC. For presentation at Interna-
tional Conference on Environmental Systems,
Monterey, CA, July 8–11, 1996.

ETHRIDGE, E.C.  ES75
The Viscosity of Palladium Alloys. For publica-
tion in Journal of Applied Physics, Argonne, IL.

ETTER, B.D.  Texas A&M University
DISCHINGER, H.C., JR.  EO66
LOUGHEAD, T.E.  Signatech, Inc.
Evaluation of an Anthropometric Human Body
Model for Simulated EVA Task Assessment. For
presentation at 1996 Southeastern Simulation
Conference, Huntsville, AL, October 7–8, 1996.

EVANS, D.  JPL
QUATTROCHI, D.  ES41
U04 Recent Developments in Natural Hazards
Research and Technology (Joint With A, G, H, S,
T, V). For presentation at 1996 Fall AGU Con-
ference, San Francisco, CA, December 15–19,
1996.

EVANS, D.M.  University of Texas at El Paso
HUANG, D.  University of Texas at El Paso
MCCLURE, J.C.  University of Texas at El Paso
NUNES, A.C.  EH23
Melting and Arc Efficiency of Plasma Arc
Welds. For publication in American Welding
Society Journal, Miami, FL.

EVANS, S.W.  ED13
Post-Deployment Recontact Issues for the
SEDS/SEDSAT Mission. For presentation at
Sixth AAS/AIAA Space Flight Mechanics Meet-
ing, Austin, TX, February 11–15, 1996.

FALCONER, D.A.  ES82 (NRC)
ALLEN, G.A.  ES82
MOORE, R.L.  ES82
PORTER, J.G.  ES82
3-D Magnetic Fields and Coronal Heating in
Active Regions. For presentation at 188th AAS
SPD, Madison, WI, June 9–13, 1996.

22


The Mystery of Gamma-Ray Bursts. For presentation at Colloquium at Washington University, St. Louis, MO, January 30–February 2, 1996.


The Mystery of Gamma-Ray Bursts. For presentation at Auburn University, Auburn, AL, May 10, 1996.
GRINDLAY, J. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
Anticorrelated Hard/Soft X-Ray Emission From
the X-Ray Burster 4U 0614+091. For publica-
tion in The Astrophysical Journal Letters,
Chicago, IL.

FOSTER, R.S. Naval Research Laboratory
TAVANI, M. Columbia University
HARMON, B.A. ES84
ZHANG, S.N. USRA
PACIESAS, W.S. UAH
Radio and X-Ray Variability of the Galactic
Superluminal Source GRS 1915+105. For publi-
cation in The Astrophysical Journal Letters,
Chicago, IL.

FRAZIER, D.O. ES01
Microgravity Processing and Photonic Applica-
tions of Organic and Polymeric Materials. For
publication in Electrical and Optical Organic
Systems: Fundamentals, Methods, and Applica-
tions, World Scientific Publishing Co.

FRAZIER, D.O. ES01
HUNG, R.J. UAH
PALEY, M.S. USRA
LONG, Y.T. UAH
Effects of Convection During the Photodeposi-
tion of Polydiacetylene Thin Films. For publica-
tion in Journal of Applied Physics, Argonne, IL.

FRAZIER, D.O. ES71
HUNG, R.J. UAH
PALEY, M.S. USRA
PENN, B.G. ES71
LONG, Y.T. UAH
Convection During Low Pressure Processing by
Physical Vapor Transport. For publication in

GALLAGHER, D.L. ES83
CRAVEN, P.D. ES83
COMFORT, R.H. UAH
Global Core Plasma Model. For presentation at
1996 Spring American Geophysical Union

GALLAGHER, D.L. ES83
FOK, M.-C. ES83
FUSELIER, S. Lockheed Martin
GLADSTONE, R. Southwest Research
GREEN, J.L. GSFC
SMITH, M. GSFC
FUNG, S.F. GSFC
PEREZ, J. Auburn University
REIFF, P. Rice University
WILSON, G. ES83
For presentation at 1996 Fall American Geo-
physical Union Meeting, San Francisco, CA,
December 1996.
LEHOCZKY, S.L. ES75

GOLDBERG, B. ED01
More Green for NASA. For publication in Aerospace America.

GOODWIN, C.J. Meyer Analytics
WILLIAMSEN, J. ED52
Catastrophic Failure of Stored Energy Modules Following Orbital Debris Penetration. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4–9, 1996.

GREEN, J.L. GSFC
TAYLOR, W.W.L. Nichols Research Corp.
FUNG, S.F. GSFC
BENSON, R. GSFC
CALVERT, W. University of Iowa
REINISCH, B. University of Massachusetts
GALLAGHER, D.L. ES83
REIFF, P. Rice University

GREENWOOD, L.R. FA31

GRINER, CAROLYN S. DD01
LUTTRELL, TERRY A11
Evolution of NASA's Communications Networks: Cost-Effective Synergy Between Industry and Government. For presentation at 47th International Astronautical Congress, Beijing, China, October 7–11, 1996.

GUILLORY, A.R. ES41

GUILLORY, A.R. ES41
SUGGS, R.J. ES41
LERNER, J. ES41

GUNJI, S. ES84
AUSTIN, R.A. ES84
ELSNER, R.F. ES84
RAMSEY, B.H.D. ES84
WEISSKOPF, M.C. ES84

GUNSON, M.R. JPL
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
ALLEN, M. JPL
BROWN, L.R. JPL
BROWN, T.L. JPL
CHANG, A.Y. JPL
GOLDMAN, A. University of Denver
IRION, F.W. California Institute of Technology
ET AL.

GUO, H. New Mexico Highlands
MARTINEZ, A. New Mexico Highlands
MYERS, T. New Mexico Highlands
GONZALEZ, N. New Mexico Highlands
SANJHADASA, M. University of Alabama
PENN, B. ES76
CLARK, R.D. New Mexico Highlands

HAGOPIAN, J. EO47
MAXWELL, T. EO47

HAGYARD, M.J. ES82

HAGYARD, M.J. ES82
Recent Results on Preflare Energy Buildup. For publication in Proceedings of Workshop on
Solar Flares and Related Disturbances, Hitachi, Japan, January 1996.

HALE, J.P., II

HALE, J.P., II

HALE, J.P., II

HALL, D.K.
LAYTON, S.D.
Lockheed Martin

HAMAKER, J.W.

HAMMER, R.
Kiepenheuer-Institut fur Sonnenphysik
NESIS, A. Kiepenheuer-Institut fur Sonnenphysik
MOORE, R.L. ES82
SUSS, S.T. ES82
MUSIELAK, Z.M. UAH

HANICHAK, M.
FINCKENOR, M.
Lockheed Martin
EH12

HANSON, J.M.
DUKEMAN, G.A.
ED13
KASHER, J. University of Nebraska
SIMON, G.W. AFMC/PL/GPSS
GONG Observations of Solar Surface Flows. For presentation at 188th Meeting of the AAS, Madison, WI, June 9-13, 1996.

HEAMAN, J.P. ED34
A Nozzle Test Facility. For presentation at 85th Supersonic Tunnel Association Meeting, Atlanta, GA, April 14-17, 1996.

HERRMANN, M. PD21

HILL, F. National Solar Observatory
STARK, P.B. ES82
ANDERSON, E.R. National Solar Observatory
ANTIA, H.M. National Solar Observatory
BROWN, T.M. High Altitude Observatory
HATHAWAY, D.H. ES82
ET AL.
GONG Estimates of Solar Eigenspectral Parameters. For publication in Science, Washington, DC.

HIRAHARA, J. UAH
HORWITZ, J.L. UAH
GERMANY, G. UAH
MOORE, T.E. ES83
SPANN, J.M. ES83
CHANDLER, M.O. ES83
GILES, B.L. ES83
Properties of Upflowing Ionospheric Ion Conics and Magnetosheath Proton Precipitation at 5,000 km Altitude Over Cusp/Cleft Auroral Forms: Initial Observations From the TIDE and UVI Instruments on POLAR. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

HO, J.X. ES76
CHANG, B. ES76
KEELING, K. ES76
HOLOWACHUK, E.W. MIB Hospital
PETERS, T. MIB Hospital
CARTER, D.C. ES76

HOOD, R.E. ES41
SPENCER, R.W. ES41

HOOD, R.E. ES41
SPENCER, R.W. ES43
CHISHOLM, W. ES93
SPENCE, R. Mevatec
SIMMONS, D. Mevatec
CORREA, T. Mevatec
MARTINEZ, N. ES93
LOBL, E. UAH

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
HAKKILA, J. Mankato State University
The Internal Luminosity Distribution of Bright Gamma-Ray Bursts and Its Relation to Duration and Spectral Hardness. For publication in Astrophysical Journal, University of Chicago Press, Chicago, IL.
HORACK, J.M. ES84
HAKKILA, J. Mankato State University
PREECE, R.D. UAH
KOSHUT, T.M. USRA
MALLOZZI, R.S. UAH


HORACK, J.M. ES84
MALLOZZI, R.S. UAH
KOSHUT, T.M. UAH


HORACK, J.M. ES84
MEEGAN, C.A. ES84
HAKKILA, J. Mankato State University
EMSLIE, A.G. UAH


HORACK, J.M. ES84
RIZVI, S. Buckhorn High School
FRIEND, L. Buckhorn High School


HOU, R. University of Texas
EVANS, D.M. University of Texas
MCCLURE, J.C. University of Texas
NUNES, A.C. EH23
GARCIA, G. EH23

The Role of Shield Gas on Heat Transfer Efficiency in Plasma Arc Welding. For publication in Welding Journal, American Welding Society, Miami, FL.

HUANG, D. University of Texas
MCCLURE, J.C. University of Texas
NUNES, A.C. EH23

Gas Contamination During Plasma Welds in Aluminum. For publication in Welding Journal, Miami, FL.

HUDSON, S.T. ED34
COLEMAN, H.W. UAH


HUFFAKER, F. PS03
FLEMING, B. Lockheed Martin


HUH, O.K. Louisiana State University
MOELLER, C. University of Wisconsin
RICKMAN, D. ES41


HUNG, R.J. ES41 (UAH)
LONG, Y.T. ES41 (UAH)


HUNG, R.J. ES71 (UAH)
LONG, Y.T. ES71 (UAH)


HUNG, R.J. ES41 (UAH)
LONG, Y.T. UAH
ZU, G.J. UAH


HUNG, R.J. ES41 (UAH)
LONG, Y.T. UAH
ZU, G.J. UAH

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Effect of Baffles on Orbital Accelerations—
Induced Bubble Oscillations in Microgravity.
For publication in International Journal of
Mechanical Science, 1996.

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Baffle Effect Modulated Interface Oscillations
Activated by Gravity Gradient. Dominated
Accelerations in Microgravity. For publication in
Microgravity Quarterly, 1996.

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Effect of Baffles on Sloshing Modulated Forces
and Torques Disturbances Reacted to Gravity
Gradient Dominated Accelerations. For publica-
tion in Transactions of the Canadian Society for
Mechanical Engineering, 1996.

HUNG, R.J. ES41 (UAH)
ZU, G.J. UAH
LONG, Y.T. UAH
Coupling of Gravity-Gradient-Dominated Acce-
eration-Induced Slosh Reaction Torques With
Spacecraft Orbital Dynamics. For publication in

HUTT, J.J. EP12
CRAMER, J.M. EP12
Advanced Rocket Injector Development at the
Marshall Space Flight Center. For presentation at
AIAA Space Programs and Technology Confer-
ce, Huntsville, AL, September 24–26, 1996.

IRION, F.W. California Institute of Technology
MOYER, E.J. California Institute of Technology
GUNSON, M.R. JPL
RINSLAND, C.P. LaRC
MICHELSON, H.A. Harvard University
SALAWITCH, R.J. JPL
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
CHANG, A.Y. JPL
ET AL.
Stratospheric Observations of CH3D and HDO
From ATMOS Infrared Solar Spectra: Enrich-
ments of Deuterium in Methane and Implica-
tions for HD. For publication in American Geo-
physical Union, Washington, DC, 1996.

JACKSON, M.E. ED12
SHTESSEL, Y.B. UAH
Sliding Mode Thermal Control System for Space
Station Furnace Facility. For publication in IEEE
Transactions on Control Systems Technology,

JUSTUS, C.G. Computer Sciences Corp.
JOHNSON, D.L. EL23

JUSTUS, C.G. Computer Sciences Corp.
JOHNSON, D.L. EL23

KANELBORG, C.C. Stanford University
WALKER, A.B.C., Jr. Stanford University
HOOVER, R.B. ES82
BARBEE, T.W., Jr. Lawrence Livermore National Laboratory
Observation and Modeling of Soft X-Ray Bright Points. For publication in Astrophysical Journal, Chicago, IL.

KAUKLER, W.F. UAH
CURREN, P.A. ES75

KAYE, J.A. NASA Headquarters
MILLER, T.L. ES41
The ATLAS Series of Shuttle Missions. For publication in Geophysical Research Letters, June 1996.

KELLER, V. PS02
CARRINGTON, C. PD12
RUPP, C. PS04
CARROLL, J. Tether Applications, Inc.
VAS, I. Boeing
JOHNSON, J. Boeing
Space Station Reboost Via Orbiter Towing and Tethered Momentum Exchange. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

KEYS, A. EO37

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
MOORE, T.E. ES83

KHAZANOV, G.V. ES83
MOORE, T.E. ES83
HORWITZ, J.L. UAH
RICHARDS, P.G. UAH
KONIKOV, Y.V. Izmiran, Russia

KHAZANOV, G.V. ES83
MOORE, T.E. ES83
KRIVORUTSKY, E.N. UAH
HORWITZ, J.L. UAH
LIEMOHN, M.W. University of Michigan
Lower Hybrid Turbulence and Ponderomotive Force Effects in Space Plasmas Subjected for Large-Amplitude Low-Frequency Waves. For publication in Geophysical Letter.

KHAZANOV, G.V. ES83
MOORE, T.E. ES83
LIEMOHN, M.W. University of Michigan
KOZYRA, J.U. University of Michigan

KOMMERS, J.M. MIT
RUTLEDGE, R.E. MIT
FOX, D.W. MIT
LEWIN, W.H.G. MIT
MORGAN, E.H. MIT
KOVELIOTOU, C. USRA (ES84)

KOSHER, W.J. ES41
SOLAKIWEZ, R.J. Chicago State University
KOSHUT, T.M. UAH
PACIESAS, W.S. UAH
KOUVELIOTOU, C. USRA
VAN PARADIS, J. UAH
PENDLETON, G.N. UAH
FISHMAN, G.J. ES81
MEEGAN, C.A. ES84


KOUVELIOTOU, C. USRA
DEAL, K. UAH
WOODS, P. UAH
BRIGGS, M. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES81
VAN PARADIS, J. UAH
FINGER, M.H. USRA
KOMMERS, J. MIT
LEWIN, H.G. MIT


KOUVELIOTOU, C. USRA
GREINER, J. UAH
VAN PARADIS, J. UAH
FISHMAN, G.J. ES81

ET AL.
IAUC #6369: GRO J1744–28. For publication in IAUC #6369, Cambridge, MA.

KOUVELIOTOU, C. USRA (ES84)
KOMMERS, J. MIT
LEWIN, W.H.G. MIT
VAN PARADIS, J. UAH

ET AL.

KOUVELIOTOU, C. USRA
VAN PARADIS, J. UAH
FISHMAN, G.J. ES81
BRIGGS, M.S. UAH
KOMMERS, J. MIT
HARMON, B.A. ES84
MEEGAN, C.A. ES84
LEWIN, W.H.G. MIT


KRAMER, E.A.
LUVALL, J.C. ES41

The Use of Thermal Remote Sensing for Measuring the Vegetation Dynamics of a Dry Tropical Forest in Costa Rica. For presentation at U.S. Landscape Ecology Symposium, Galveston, TX, March 26–30, 1996.

KRIVORUTSKY, E.N. UAH
HORWITZ, J.L. UAH
KHAZANOV, G.V. NRC/ES83
MOORE, T.E. ES83
LIEMOHN, M.W. ES83

Lower Hybrid Oscillations in the Multicomponent Space Plasmas Subjected to Low-Frequency Waves. For presentation at 1996 Spring American Geophysical Union Meeting, May 20–24, 1996.

LAL, R.B. Alabama A&M University
ZHANG, H.W. Alabama A&M University
WANG, W.S. Alabama A&M University
AGGARWAL, M.D. Alabama A&M University
LEE, H.W.H. LLNL

PENN, B.G. ES76
Crystal Growth and Optical Properties of 4-Aminobenzophenone (ABP) Crystals for NLO Applications. For presentation at the 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

LANSING, M. UAH
WALKER, J. UAH
RUSSELL, S.S. EH13N

Composite Pressure Vessel Failure Prediction by Computer Vision and Neural Network Analysis. For presentation at 1996 Spring ASNT Conference, Norfolk, VA, March 18–22, 1996.

LARSON, D. EO47
HAGOPIAN, J. EO47


LASSITER, J.O.

Microgravity Acceleration Measurements for Payload Isolation Development. For publication in Sound and Vibration, Bay Village, OH, 1996.

LASSITER, J.O.


LEE, J.A.
EH23


LO, C.P.  University of Georgia QUATTROCHI, D.A.  LUVALL, J.C.  Detection of Urban Heat Island Development Using High-Resolution Thermal Infrared Remote Sensing. For presentation at AIAA Space Programs and Technologies
MSFC PAPERS CLEARED FOR PRESENTATION
Available only from authors. Dates are presentation dates.

Conference, Huntsville, AL, September 23–25, 1996.

LUVALL, J.C. ES41
QUATTROCHI, D.A. ES41
LO, C.-P. University of Georgia

LYLES, G.M. PF02

MACKERRAS, D. University of Queensland
DARVENIZA, M. University of Queensland
ORVILLE, R.E. Texas A&M University
WILLIAMS, E.R. MIT
GOODMAN, S.J. ES41

MAJUMDAR, A.K. Sverdrup
BAILEY, J.W. Sverdrup
HOLT, K.A. EP22
TURNER, S.G. EP22

MARTIN, C. EP12
VAN DYKE, M. EP42

MAXWELL, T. EO47
HAGOPIAN, J. EO47

MAZURUK, K. USRA
SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.I. ES75
Thermophysical and Thermodynamic Properties of Hg1-xZnxTe Pseudobinary Melts III: Viscosity. For publication in Journal of Applied Physics, Argonne, IL.

MCCALEY, R.C. AE01

MEEGAN, C.A. ES84
Observations of Gamma-Ray Bursts. For presentation at Joint APS/AAPT Meeting, Indianapolis, IN, May 2–5, 1996.

MEEGAN, C.A. ES84

MEEGAN, C.A. ES84
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
KOUVELIOTOU, C. USRA
ET AL.
The Third BATSE Gamma-Ray Burst Catalog. For publication in Astrophysical Journal, Chicago, IL.

MEHTA, G. Lockheed Martin
HASTINGS, J. EP23
PERRY, G. EP85
JOHNSTONE, S. EP85

MEHTA, G. Lockheed Martin
INGRAM, C. Lockheed Martin
STONE, B. Lockheed Martin
GROSSKOPF, W.J. Rocketdyne
MCRIGHT, P. EP42
LEE, C. EP42

MICHELESEN, H.A. Harvard University
SALAWITCH, R.J. JPL
GUNSON, M.R. JPL
AELLIG, C. Naval Research Laboratory
KAEMPFER, N. Naval Research Laboratory
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
BROWN, T.L. JPL
CHANG, A.Y. JPL
ET AL.
MILLER, T.L. ES42

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MOHAMADINEJAD, H. McDonnell Douglas
KNOX, J.C. ED62
SMITH, J.E. UAH
FINN, J.E. Ames

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, R.L. ES82
FALCONER, D.A. NRC
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo
Evidence that Strong Coronal Heating Results From Photospheric Magnetic Flux Cancellation. For presentation at 27th Meeting of the AAS SPD, Madison, WI, June 9–13, 1996.

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. Lockheed
SHIBATA, K. National Solar Observatory
HIRAYAMA, T. National Solar Observatory
OGAWARA, Y. Institute of Space and Astronomical Science

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. LPARL
SHIBATA, K. NAO, Japan
HIRAYAMA, T. NAO, Japan
OGAWARA, Y. ISAS, Japan
The 3-D Magnetic Eruption in the Birth of CME’s: Coronal Observations From the Yohkoh SXT. For presentation at Chapman Conference, Bozeman, MT, August 11–15, 1996.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
POLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
ET AL.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
POLLOCK, C.J. ES83
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
MCCOMAS, D.J. Los Alamos National Laboratory
NORDHOLT, J.E. Los Alamos National Laboratory
BERTHELIER, J.J. Centre d’Etudes Terrestre
Initial Results From the Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Investigation (PSI) on POLAR. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

MOORE, T.E. ES83
CHAPPELL, C.R. ES83
CHANDLER, M.O. ES83
FIELDS, S.A. ES83
POLLOCK, C.J. ES83
REASONER, D.L. ES83
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

EAKER, N. Southwest Research
ET AL.

MOORE, T.E. ES83
POLLOCK, C.J. ES83
ADRIAN, M.F. UAH

MOORE, T.E. ES83
POLLOCK, C.J. ES83
KINTNER, P.M. Cornell University
ARNOLDY, R.L. University of New Hampshire

MOORE, T.E. ES83
POLLOCK, C.J. ES83
YOUNG, D.T. Southwest Research
Kinetic Core Plasma Diagnostics. For publication in AGU Monograph on Measurement Techniques for Space Plasmas, Los Alamos, NM.

MUSS, J. Aerojet
NGUYEN, T. Aerojet
RESKE, E. ED32
MCDANIELS, D. ED32
GOROKOV, V. Chemical Automatics

NADARAJAH, A. UAH
PUSEY, M.L. ES76
Growth Mechanism and Morphology of Tetragonal Lysozyme Crystals. For publication in Journal of Acta Crystallographica Section D.

NEERGAARD, L.F. UAH
MUSIELEK, Z.E. UAH
HATHAWAY, D.H. ES82
Klein-Gordon Equations for Acoustic Waves and Their Applications in Helioseismology. For publication in Solar Physics, Dordrecht/Boston/London.

NEWCHURCH, M.J. UAH
ALLEN, M. JPL
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
COLLINS, G.B. UAH
HUSTON, K.H. UAH
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
CHANG, A.Y. JPL
ET AL.
Stratospheric NO and NO2 Abundances From ATMOS Solar-Occultation Measurements. For publication in American Geophysical Union, Washington, DC, 1996.

NGUYEN, H.O. ED63

NICHOLAS, D.P. EB13
Video Printers Versus Instant Film: A Comparison. For presentation at Alabama Imaging and Microscopy Society Meeting, Orange Beach, AL, February 29–March 1, 1996.

NOEVER, D. ES76

NOEVER, D. ES76
BASKARAN, S. Hughes (ES76)

NOEVER, D. ES76
MATSOS, H. ES76
BRITTAFF, A. ES76
OBENHUBER, D. ES76
CRONISE, R. ES76
ARMSTRONG, S. ES76
Microbial Diffraction Gratings as Optical Detectors for Heavy Metal Pollutants. For publication in Reviews of Scientific Instruments, Argonne, IL.

NOEVER, D. ES76
SIBILLE, L. USRA
CRONISE, R. ES76
BASKARAN, S. Hughes (ES76)
HUNT, A. Lawrence Berkeley
Neural Net to Predict Silica Aerogel Transparency. For publication in Physical Review A, Ridge, NY.

NOEVER, D.A. ES76
Computerized Monitoring of Aqueous Heavy Metal and Organic Chemical Contamination Based on Protozoa Swimming Response. For presentation at The Second International Conference on Environment and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOEVER, D.A. ES76
BRITTAIN, A. NRC/ES76
MATSO, H.C. ES76
BASKARAN, S. Hughes
OBENHUBER, D. MCI
The Effects of Variable Biome Distribution on Global Climate. For presentation at The Seventh Annual Global Warming International Conference and Expo, Vienna, Austria, April 1–3, 1996.

NOEVER, D.A. ES76
CRONISE, R.J. ES76
MATSO, H.C. ES76
Optimized Group Contribution Methods for Predicting Chemical Biodegradation and Eye Irritancy. For publication in Toxicological and Environmental Chemistry, Bayreuth, Germany.

NOEVER, D.A. ES76
MATSO, H.C. ES76
CRONISE, R.J. ES76
LOOGER, L.L. ES76
RELWANI, R.A. ES76
JOHNSON, J.U. Alabama A&M University
Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns. For presentation at The Second International Conference on Environmental and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOLEN, A.M. EH12
ROBINSON, J.H. ED52
Aluminum Foam as Orbital Debris Shielding. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

NONEMAN, S.R. EO02
NAHAY, E. Teledyne Brown

NONEMAN, S.R. EO02

NOVAK, H.L. USBI
HALL, P.B. EH14
Development of Environmentally Compatible Solid Film Lubricants. For presentation at Second Aerospace Technology Conference, Huntsville, AL, August 6–8, 1996.

NURRE, G.S. ED12
WHORTON, M.S. ED12
KIM, Y. ED12
EDBERG, D. McDonnell Douglas
BOUCHER, R. McDonnell Douglas
SCHENCK, D.

OGLE, K.Y. ED62
ERICKSON, R.J. ED62
Oxygen Generation Technology Tests at MSFC. For presentation at 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

OJAKANGAS, G.W. University of Minnesota
ANDERSON, B.J. EL54
ANZ-MEADOR, P.D. Lockheed
The Contribution of Solid Rocket Motors to the Large-Particle Orbital Debris Population. For publication in Journal of Spacecraft and Rockets.

ORR, M.F., JR. ED23

OWENS, S.M. University of Albany
ULLRICH, J.B.
PANOMAREV, I.Y.
XIAO, Q.F.
CARTER, D. ES76
SISK, R.C. ES76
GIBSON, W.M. ES76

PACIESAS, W.S. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES84
ZHANG, S.N. USRA
ROBINSON, C.R. USRA
Galactic Center. For publication in IAU Circular No. 6284, Cambridge, MA.

PALEY, M.S. USRA
FRAZIER, D.O. ES76
Photodeposition of Polydiacetylene Thin Films for Photonic Applications in 1-g and in Micro-g. For presentation at SPIE's Annual Meeting, Denver, CO, August 4-9, 1996.

PALOSZ, W. ES75
Removal of Oxygen From Electronic Materials by Vapor Phase Processes. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4-9, 1996.

PARNELL, T. ES84
CHRISTL, M. ES84
ROBERTS, E. ES84
Scintillating Optical Fiber Calorimeter (SOFCAL) Detector. For presentation at SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, August 4-9, 1996.

PAVELITZ, S.D. Sverdrup Technology
ANDERSON, B.J. EL23
JAMES, B.F. EL23

PECK, J.A. ED23
Shape Optimization of Actively Controlled Mirror Segments. For publication in AIAA Journal.

PENDLETON, G.N. UAH
MALLOZZI, R.S. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
KOSHUT, T.M. UAH
HORACK, J.M. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES81
ET AL.
The Intensity Distribution for Gamma-Ray Bursts Observed With BATSE. For publication in Astrophysical Journal, Chicago, IL.

PENDLETON, G.N. UAH
CARRASQUILLO, R.L. ED62
FRANKS, G.D. ED62
FREDERICK, K.R. ED62
KNOX, J.C. ED62
LONG, D.A. ED62
OGLE, K.Y. ED62
PARRISH, K.J. ED62

PETRUZZO, J.J., III UAH
SMITH, A.E. UAH
GREGORY, J.C. UAH
THOBURN, C. ES84
AUSTIN, R.W. ES84
PARNELL, T. ES84
DERRICKSON, J.H. ES84
MASHEDER, M.R.W. University of Bristol
FOWLER, P.H.  University of Bristol
A 1-Meter Radius Spherical Electron Drift
Chamber for the Measurement of Relativistic
Heavy Nuclei. For publication in Nuclear
Instruments and Methods in Physics Research,
North Holland, The Netherlands.

PHILLIPS, S.M.  EO47
The Capabilities of the Graphical Observation
Scheduling System (GROSS) as Used by the
ASTRO-2 Spacelab Mission. For presentation at
Space Ops 1996, Fourth International
Symposium on Space Mission Operations and
Ground Data System, Munich, Germany,
September 16–20, 1996.

PINDERA, M.Z.  CFD Research Corp.
GIRIDHARAN, M.G.  CFD Research Corp.
HUTT, J.  EP13
Acoustic Interactions with Atomization and
Spray Combustion in Rocket Thrust Chambers.
For presentation at 32nd JANNAF Combustion
Subcommittee Meeting, Marshall Space Flight
Center, AL, October 24–25, 1995.

POLITES, M.E.  EB21
1996 Digital Avionics Highlights. For publication
in Aerospace America, December 1996.

POLITES, M.E.  EB21
1996 Guidance, Navigation, and Control High-
lights. For publication in Aerospace America,
December 1996.

POLITES, M.E.  EB21
Recent Events in Guidance, Navigation, and
Control. For publication in Proceedings of 1996
AIAA GN&C Conference.

POLLOCK, C.J.  ES83
COFFEY, V.N.  ES83
ENGLAND, J.D.  ES83
MARTINEZ, N.J.  ES83
MOORE, T.E.  ES83
ADRIAN, M.L.  UAH
Thermal Electron Capped Hemisphere Spec-
trometer (TECHS) for Ionospheric Studies. For
publication in Proceedings for Chapman Con-
ference, Santa Fe, NM, April 1996.

POLLOCK, C.J.  ES83
MOORE, T.E.  ES83
ADRIAN, M.L.  UAH
KINTNER, P.M.  Cornell University
ARNOLDY, R.L.  University of New Hampshire
SCIFER—Cleft Region Thermal Electron Distribu-
tion Functions. For publication in Geophys-
ical Research Letter.

POLLOCK, C.J.  ES83
MOORE, T.E.  ES83
ADRIAN, M.L.  UAH
KINTNER, P.M.  Cornell University
BONNELL, J.  Cornell University
ARNOLDY, R.L.  University of New Hampshire
DEEHR, C.  University of Alaska
STEINBECK-NEILSEN, H.  University of Alaska
HOLTET, J.  University of Oslo
ET AL.
Rocket Sounding of the Cleft, With the Help of
Near Real Time IMF and Solar Wind Data From
the ISTP Wind Satellite. For presentation at 1996
Spring American Geophysical Union, Baltimore,
MD, May 20–24, 1996.

PORTER, J.G.  ES82
FALCONER, D.A.  ES82 (NRC)
MOORE, R.L.  ES82
HARVEY, K.L.  SPRC
RABIN, D.M.  NSO
SHIMIZU, T.  University of Tokyo
Microflaring in Sheared Core Magnetic Fields and
Episodic Heating in Large Coronal Loops.
For presentation at 188th AAS SPD, Madison,
WI, June 9–13, 1996.

POWERS, W.T.  EB22
COOPER, A.E.  EB22
WALLACE, T.L.  Vanderbilt University
Validation of UV-VIS Atomic Spectral Model
for Quantitative Prediction of Number Density,
Temperature, and Broadening Parameter. For
presentation at 22nd JANNAF Exhaust Plume
Technology Subcommittee, Marshall Space
Flight Center, AL, October 23–27, 1995, and for
publication in the conference proceedings.

PRESTWICH, A.H.  Smithsonian Astrophysical
JOY, M.  ES84
LUGINBUHL, C.B.  U.S. Naval Observatory
SULKANEN, M.  Axion Research
NEWBERRY, M.  Axion Research
A Search for the Cooling Flow Accretion Popu-
lation: Optical and Near-Infrared Imaging of
NGC 1275. For publication in Astrophysical
Journal, Tucson, AZ.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

PUSEY, M.L. ES76

QUATTROCHI, D.A. ES41
Cities as Urban Ecosystems: A Remote Sensing Perspective. For presentation at PECORA 13 Symposium, Sioux Falls, SD, August 19–22, 1996.


RAMSEY, B.D. ES84 New Developments in X-Ray Detector Systems. For presentation at 50th Anniversary of Tata Institute of Fundamental Research, Bombay, India, August 12–17, 1996.


RAO GUDIMETLA, V.S. Oregon Graduate Institute KAVAYA, M.J. EB53 Special Relativity Corrections to the Point of Return, Receiving Angles, and the Doppler Shift for Space-Based Lasers. For publication in Journal of Optical Society of America.

RICHARDSON, R.W. Ohio State University SUBRAMANIAN, V.V. Ohio State University PAGAN, J. Ohio State University NUNES, A.C., JR. EH23 Arc Phenomena in Variable Polarity Plasma Arc Welding. For presentation at American Welding Society Technical Program, Chicago, IL, April 1996.


RINS LAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
MICH ELSEN, H.A. Harvard University
ZANDER, R. University of Liege
NEW CHURCH, M.J. UAH
ABBAS, M.M. ES41
ABRAMS, M.C. Science Applications
MANNEY, G.L. JPL
ET AL.


RINS LAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
NEW CHURCH, M.J. UAH
ZANDER, R. University of Liege
ABBAS, M.M. ES41
ABRAMS, M.C. Science Applications
MANNEY, G.L. JPL
ET AL.


RITCHIE, A.A., JR. ES41
SMITH, M. ES41
GOODMAN, M. ES41
SCHUDALLA, R. ES41
CONWAY, D. ES41
LAFONTAINE, F. ES41
MOSS, D. ES41
MOTTA, B. ES41

Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Data Sets. For publication in Journal of Atmospheric Sciences, 1996.

ROBERTSON, F.R. ES41
BRASWELL, W.D. Nichols Research Corp.
FITZJARRALD, D.E. ES41

Water Vapor Feedback Deduced From Interannual Variability in ERBE Fluxes. For presentation at Second GEWEX Conference, Washington, DC, June 1996.

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41
BRASWELL, W.D. Nichols Research Corp.


ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41
M ARSHALL, S. University of North Carolina

Anomalies in Coupled Energy and Water Budgets Over the Americas as Diagnosed From PREOOS Data Sets. For presentation at 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41
M ARSHALL, S. University of North Carolina

Anomalies in Coupled Energy and Water Budgets Over the Americas as Diagnosed From PREOOS Data Sets. For presentation at AMS Annual Meeting, San Diego, CA, February 1997.

ROBERTSON, F.R. ES41
MCCAUL, E.W. USRA
SAMUELSON, D. ES41
JEDLOVEC, G. ES41

Synthesis of Upper-Tropospheric Vapor and Cloud Analyses During the NASA/NOAA Pathfinder Period. For presentation at AMS Meeting, Atlanta, GA, January 28–February 2, 1996.

ROBINSON, C.R. ES84
CORDOVA, F.A. NASA Headquarters
ISHIDA, M. Institute of Space and Astronautical Science, Japan


ROBINSON, J.H. ED52


ROBINSON, K. EO01

Investigator "Telescience" Requirements and NASA Capabilities for Space Station. For presentation at 1996 AIAA Space Programs and

ROE, F.D. EB44
MITCHELL, D.W. EB44
LINNER, B.M. EB44
KELLEY, D.L. EB44


ROGERS, J.R. ES76
ROBINSON, M.B. ES76

Containerless Processing in Reduced Gravity Using the TEMPUS Facility. For presentation at AIAA Conference, Huntsville, AL, September 24–27, 1996.

ROMAINE, S.E.
BRUNI, R.J.
CLARK, A.M.
PODGORSKI, W.A.
ZHOU, Y.
SCHULTZ, D.
SCHWARTZ, D.A.
VAN SPEYBROECK, L.
SHAPIRO, A.P.

ET AL.

Monitoring Program for the Coating of the AXAF Flight Optics. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.

ROMAN, M.C.


ROMANOWSKI, G.J.
RICKMAN, D. ES41


ROMERO, L.
PENN, B.
CLARK, R.D.

New Mexico Highlands

Synthesis of 4-(N, N-Dimethylamino)-3-Dodecylamidonitro Benzene. For presentation at 13th Rocky Mountain Regional Meeting of American Chemical Society, Denver, CO, June 9–12, 1996.

ROMERO, M.
WILSON, F.
TOWNSEND, C.
MYERS, T.
PARHAM, T.
MCCALL, S.
CARDELINO, B.
MOORE, C.
PENN, B.

CLARK, R.D.

New Mexico Highlands


ROTHERMEL, J.
HARDESTY, R.M.
MENZIES, R.T.


RUSSELL, C.
PATON, B.

Space Welding: On the Agenda. For presentation at 33rd Space Congress, Cocoa Beach, FL, April 23–26, 1996.

RUSSELL, K.
CORDER, E.
BRISCOE, J.
WALLACE, S.
DAVIS, J.

CHAPPELL, J.H.

New England Advanced

The Solar X-Ray Imager (SXI) Detector Characterization. For presentation at SPIE, GOES–8 and Beyond, Denver, CO, August 4–9, 1996.

RYAN, R.S. ED01

RYAN, R.S. ED01
TOWNSEND, J.S. ED01

SANDUBRAE, J.A.
Science Applications International
ROBERTS, H.A. Science Applications International
TEGLIA, W.R. Science Applications International
BUTLER, B.L. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04
The NASA Solid Propulsion Integrity Program (SPIP) CD-ROM Information System Database. For presentation at JANNAF S&MBS Meeting, Tampa, FL, December 4–8, 1995.

SANGHADASA, M. UAH
BARR, T.A., Jr. UAH
WU, B. UAH
CLOMENIL, D. UAH
TONG, Y. UAH
BHAT, K.N. UAH
CLARK, R.D. New Mexico Highlands
PENN, B. ES76

SCARL, E. Boeing
MCCALL, K. EB12

SCHILLER, S. South Dakota State
LUVALL, J.C. ES44
JUSTUS, J. ES44
Calibration of MODTRAN3 With PGAMS Observational Data for Atmospheric Corrections Applications. For presentation at SPIE—The International Society for Optical Engineering, Orlando, FL, April 17–21, 1996.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE
SIMNETT, G.M. University of Birmingham
FONTENLA, J.M. HAO/NCAR
TANDBERG-HANSSEN, E. ES01
Subflares and Surges in AR 2/44 During SMM. For publication in Astronomy and Astrophysics Journal.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE, Argentina
SIMNETT, G.M. University of Birmingham
TANDBERG-HANSSEN, E. ES01
VAN DRIEL-GESZTELYI, L. Observatoire de Paris
SHIBATA, K. NAO, Japan
GOULB, L. Harvard-Smithsonian

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
FROST, C. ED52
Hole Size and Crack Length Following Orbital Debris Penetration of Space Station Module Walls at 6.5 and 11.5 km/sec. For presentation at 20th International Symposium on Space Technology and Science, Gifu, Japan, May 19–26, 1996.

SCHONBERG, W.P. UAH
DAVENPORT, Q. UAH
SERRANO, J. UAH
GALA, D. UAH
LIQUORNIK, D.J. UAH
HAYAMI, R.A. UAH
WILLIAMSEN, J.E. ED52
Modeling the Internal Effects Within a Habitable Module Due to Perforation by an Orbital Debris Particle. For presentation at Sixth Annual AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, February 11–15, 1996.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
Space Station Module Wall Hole Size and Crack Length Following Orbital Debris Penetration. For presentation at Space 96: The Fifth International Conference and Exposition on
Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCOTT, D.W. EO65
Spaceborne Digital Video—Perched on the High Dive of Interactive Ops. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

SEN, S. USTA
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
CATALINA, A. University of Alabama
CURRERI, P.A. ES75

SEN, S. ES75
STEFANESCU, D.M. ES75
KAUKLER, W.K. ES75
CURRERI, P.A. ES75
DHINDAW, B.K. ES75

SHA, Y.-G. USRA
SU, C.-H. ES75
ALEXANDER, H.A. USRA
LEHOCZKY, S.L. ES75
WANG, J.-C. Alabama A&M University
Seeded Growth of HgZnTe by Directional Solidification Using an Initial Composition Profile Simulating a “Diffusion-Boundary” Layer. For publication in Journal of Crystal Growth, Amsterdam, The Netherlands.

SHA, Y.-G. ES71
SU, C.-H. ES75
LEHOCZKY, S.L. ES75
Seeded Growth of HgZnTe by Directional Solidification Using Initial Composition Profile Simulating a “Diffusion-Boundary” Layer. For presentation at 10th American Conference on Crystal Growth, Vail, CO, Aug. 4–9, 1996.

SHA, Y.-G. USRA
SU, C.-H. ES75
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg$_{1-x}$Zn$_x$Te Pseudobinary Melts II: Thermal Diffusivity and Conductivity of Hg$_{1-x}$Zn$_x$Te Solids and Melts. For publication in Journal of Applied Physics, Argonne, IL.

SCHWARTZ, E.J. PP03

SHEEHY, M. EO37

SMITH, A.E. UAH
PETRIZZO, J.J., III UAH
GREGORY, J.C. UAH
THOBURN, C. UAH
AUSTIN, R.W. ES84
DERRICKSON, J.H. ES84
PARNELL, T.A. ES84
MASHEDER, M.R.W. University of Bristol
FOWLER, P.H. University of Bristol

SMITH, A.W. ED34
RAMACHANDRAN, N. ED34

SMITH, D.D. ES76
Cancellation of Nonlinear Absorption in Composite Materials. For presentation at Optical Society of America, Rochester, NY, October 20–24, 1996.

SMITH, D.D. ES76
FISCHER, G. University of Rochester
BOYD, R.W. University of Rochester
GREGORY, D.A. UAH
Cancellation of Photo-Induced Absorption in Metal Nanoparticle Composites Through a Counterintuitive Consequence of Local Field Effects. For publication in Journal of the Optical Society of America B, Washington, DC.
SMITH, O.E. Computer Sciences Corp.
ADELFANG, S.I. Computer Sciences Corp.
JUSTUS, C.G. Computer Sciences Corp.
SMITH, R.E. Physitron, Inc.
ANDERSON, B.J. EL54

SMITHERS, M.E. EB52
ZISSA, D.E. EB52

SPANN, J.F. ES83
GERMANY, G.A. UAH
PARKS, G.K. UW
BRITTNACHER, M.J. UW
ELSEN, R. UW

SPANN, J.F. ES83
GERMANY, G.A. UAH
PARKS, G.K. University of Washington
BRITTNACHER, M.J. University of Washington
ELSEN, R. University of Washington
CHEN, L. University of Washington
GERMANY, G.A. University of Alabama
LUMMERZHEIM, D. University of Alaska
REES, M.H. University of Alaska
Observations of Dayside Aurora. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

SPANN, J.F. ES83
PARKS, G.K. University of Washington
BRITTNACHER, M.J. University of Washington
FREEMAN, T.J. University of Washington
SKOUG, R. University of Washington
GERMANY, G.A. UAH
DOUGANI, H. Tala Advanced
CAMPBELL, R.D. Computer Sciences Corp.
LEVITON, D.B. GSFC
BOUCARUT, R.A. GSFC
Comparison of Preliminary GGS/Polar Ultraviolet Imager Data and Ground Based Calibration Results. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

SPANN, J.F. ES83
PARKS, G.K. University of Washington
GERMANY, G.A. UAH
Preliminary Performance and Results From the Ultraviolet Imager on ISTP/GGS/Polar Satellite. For presentation at COSPAR Scientific Assembly, Birmingham, UK, July 13–21, 1996.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Water Vapor Feedback in the Tropics Deduced From SSM/T-2 Water Vapor and MSU Temperatures. For presentation at AMS Seventh Symposium on Global Change Studies, Atlanta, GA, January 28–February 2, 1996.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Satellite Measurements Show No Water Vapor Feedback During Post-Pinatubo Warm-Up. For publication in Nature.

SPENCER, R.W. ES41
CHRYST, J.R. UAH
GRODY, N.C. NOAA/NESDIS

SPENCER, R.W. ES41
LAFONTAINE, F.J. Hughes STX
DEFELICE, T. University of Wisconsin
WENTZ, F.J. Remote Sensing Systems
Tropical Oceanic Precipitation Changes After the 1991 Pinatubo Eruption. For publication in AMS Journal of Atmospheric Sciences, Boston, MA.

SPENCER, S. Sverdrup
PARNELL, T.A. ES84

SPRINGER, A. ED34
COOPER, K. ED34
ROBERTS, F., III ED34

SPRINGER, A.M. ED34

STARK, B. ES82
ADAMS, M. ES82
HATHAWAY, D.H. ES82
HAGYARD, M.J. ES82
Evaluation of Two Fractal Methods for Magnetogram Image Analysis. For publication in Solar Physics, Boston, MA.

SU, C.-H. ES75
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
COBB, S.D. ES75
SCRIPA, R.N. UAH

Crystal Growth of Selected II-VI Semiconducting Alloys by Directional Solidification 1, Ground-Based Experiments. For publication in Journal of Materials Science, London, UK.


STONE, N.H. ES83

An Early Assessment of Science Results From the TSS–1R Mission. For presentation at AIAA Conference, Huntsville, AL, September 1996.

STONE, N.H. ES83
BONIFAZI, C. Agenzia Spaziale Italiana
GILCHRIST, B.E. University of Michigan
HARDY, D.A. PL/PGSG
MARIANI, F. Second University of Rome, Italy

SU, C.-H. ES75
LEHOCZKY, S.L. ES75

The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials. For publication in Microgravity Science and Technology, Bremen, Germany.

SU, C.-H. ES75
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
COBB, S.D. ES75
SCRIPA, R.N. UAH


SU, C.-H. ES75
LEHOCZKY, S.L. ES75
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75

Thermophysical and Thermodynamic Properties of Hg1–xZnxTe Pseudobinary Melts I: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.
Volumetric Heating in Coronal Streamers. For publication in Journal of Geophysical Research, Washington, DC.

SULKANEN, M.E. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. USRA


SULLIVAN, R.M. ED24
STOKES, E.H. Southern Research

A Model for the Effusion of Water in Carbon Phenolic Composites. For presentation at ASME International Mechanical Engineers Conference and Exposition, Atlanta, GA, November 17–21, 1996.

SUNKARA, H.B. ES76
WEISSMAN, J.M. University of Pittsburgh
PENN, B.G. ES76
FRAZIER, D.O. ES76
ASHER, S.A. University of Pittsburgh


SWANSON, G.R. ED25


SWANSON, G.R. ED25
ZACHARY, L.W. Iowa State University


TALIA, G.E. Wichita State University


TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
HAKKIJA, J. Mankato State University

MEEGAN, C.A. ES84

Improved Limits on Gamma-Ray Burst Repetition. For publication in Astrophysical Journal Letters, Chicago, IL.

TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
MEEGAN, C.A. ES84


TINKER, M.L. ED26


TINKER, M.L. ED23

Nonlinearities Due to Joint Friction and Clearance in a Structural Dynamic Test Fixture. For presentation at 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996.

TOMSICK, J. Columbia University
KAARET, P. Columbia University
FORD, E. Columbia University
Dwyer, J. Columbia University
NOVICK, R Columbia University
SILVER, E. SAO/CFA
WEISSKOPF, M. ES84
ELSNER, R. ES84
ZIOCK, K. LLNL

ET AL.


TROUT, D.H. EL23

Investigation of the Bulk Current Injection Technique by Comparison to Induced Currents From Radiated Electromagnetic Fields. For presentation at IEEE Symposium for EMC, Santa Clara, CA, August 1996.

ULLRICH, J.B. X-Ray Optical Systems
OWENS, S.M.
XIAO, Q.F.
PANOMAREV, I.Y.
CARTER, D.
SISK, R.C.
GIBSON, W.M.


MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

*Engineering Conference (IECEC), Washington, DC, August 11-16, 1996.*

**WANG, P.H.**  
**Hale, J.P.**  
*Alabama A&M University*  
*A User Interface for an Integrated Virtual Reality Environment.*  
For presentation at 34th Annual ACM Southeast Conference, Auburn, AL, April 18-19, 1996.

**WANG, T.-S.**  
*ED32*  

**WANG, T.-S.**  
*ED32*  
*Thermo-Kinetics Characterization of Kerosene/RP-1 Combustion.*  

**WANG, T.-S.**  
**CORNELISON, J.**  
*Analysis of Flowfields Over Four-Engine DC-X Rockets.*  

**WANG, T.-S.**  
**MCCONNAUGHLEY, P.**  
**CHEN, Y.-S.**  
*Engineering Sciences, Inc.*  
*Computational Pollutant Environment Assessment From Propulsion System Testing.*  
For publication in Journal of Spacecraft and Rockets, Washington, DC.

**WATRING, D.A.**  
**GILLIES, D.C.**  
**LEHOCZYK, S.L.**  
**SZOFRAZ, F.R.**  
**ALEXANDER, H.**  
*USRA*  
*Convective Influence on Radial Segregation During Unidirectional Solidification of the Binary Alloy HgCdTe.*  
For presentation at SPIE's 1996 International Symposium, Denver, CO, August 4-9, 1996.

**WATRING, D.A.**  
*LEHOCZYK, S.L.*  
*ERC, Inc.*  
*Magneto Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe.*  
For publication in Journal of Crystal Growth, Amsterdam, The Netherlands.

**WATRING, D.A.**  
**SU, C.-H.**  
*USRA*  

**GILLIES, D.**  
**ROOSZ, T.**  
**BABCSAN, N.**  
*USRA*  
*The Universal Multizone Crystallizer (UMC) Furnace: An International Cooperative Agreement.*  
For presentation at SPIE's 1996 International Symposium, Denver, CO, August 4-9, 1996.

**WEI, H.**  
*Engineering Sciences, Inc.*  
**CHEN, Y.S.**  
*Engineering Sciences, Inc.*  
**SHANG, H.M.**  
*Engineering Sciences, Inc.*  
**WANG, T.S.**  
*ED32*  
*The Study of Flow Pattern and Phase-Change Problem in Die Casting Process.*  

**WEISSKOPF, M.C.**  
**SPEYBROECK, L.V.**  *Smithsonian Astrophysical*  
*The Advanced X-Ray Astrophysics Facility (AXAF).*  
For presentation at SPIE's Annual Meeting, Denver, CO, August 4-9, 1996.

**WEISSKOPF, M.C.**  
**O'DELL, S.I.**  
*ES01*  
*The Advanced X-Ray Astrophysics Facility (AXAF)—An Overview.*  
For presentation at 1996 Meeting of the AAS High Energy Astrophysics Division, San Diego, CA, April 30-May 3, 1996.

**WENTZ, F.J.**  
*Remote Sensing Systems*  
**SPENCER, R.W.**  
*ES41*  
*SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm.*  
For publication in AMS Journal of Atmospheric Sciences, Boston, MA.

**WHITAKER, A.F.**  
*ES01*  
*Engineering in the 21st Century—The NASA Perspective.*  
For presentation at The Society of Women Engineers, Columbia, MO, February 2-4, 1996.

**WHITESIDES, R.H.**  
**DILL, R.A.**  
**PURINTON, D.C.**  
**SAMBAMURTHI, J.K.**  
*ED32*  
*Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis.*  

**WHORTON, M.**  
**BUSCHEK, H.**  *Georgia Institute of Technology*  
**CALISE, A.J.**  *Georgia Institute of Technology*

WHORTON, M.  ED12
CALISE, A.J.  Georgia Institute of Technology

WHORTON, M.S.  ED12
CALISE, A.J.  Georgia Institute of Technology

WILLIAMS, C.  Lockheed Martin
SPARKS, S.  EH33
ET Thermal Protection Materials Considerations Due to EPA Regulations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

WILLIAMSSEN, J.E.  ED52
GROSCHE, D.  Southwest Research
SCHONBERG, W.P.  UAH
Empirical Prediction Models for Hole and Crack Size in Space Station Shielding From 6 to 12 km/sec. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4–9, 1996.

WILLIAMS, R.B.  ES84
ZHANG, S.-N.  USRA
SCOTT, M.  USRA
HARMON, B.A.  ES84
KOH, T.  California Institute of Technology
CHAKRABARTY, D.  California Institute of Technology
VAUGHAN, B.  California Institute of Technology
PRINCE, T.A.  California Institute of Technology
Circular No. 6207: GRO J1735–27. For publication in IAU Circular No. 6207, Cambridge, MA.

WILSON, R.M.  ES82
HATHAWAY, D.H.  ES82
REICHMANN, E.J.  ES82

WILSON, R.M.  ES82
HATHAWAY, D.H.  ES82
REICHMANN, E.J.  ES82

WILSON, R.M.  ES82
HATHAWAY, D.H.  ES82
REICHMANN, E.J.  ES82

WINGARD, C.D.  EH32

WINGARD, C.D.  EH32
Use of the TMA Film Tension Technique for Applications With Polymeric Materials in the Space Station Program. For presentation at 11th International Congress on Thermal Analysis and Calorimetry (ICTAC), Philadelphia, PA, August 12–16, 1996.

WINNINGHAM, J.D.  ES83
GURGIOLO, C.A.  ES83
STONE, N.A.  ES83
WRIGHT, K.H.  ES83
Energetic Electrons Observed on TSS–1R, Their Dependence on Spacecraft Voltage and Relationship to Tether Current. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WRIGHT, H.B. Boeing
ELROD, W. NASA
International Space Station U.S. Laboratory Outfitting. For presentation at SAE 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

WRIGHT, J.D. TDA Research, Inc.
CHEN, B. TDA Research, Inc.
WANG, C.M. TDA Research, Inc.
PERRY, J. ED62
TATARA, J.D. Ion Electronics, Inc.

WRIGHT, K.H., JR. UAH
STONE, N.H. USRA
SORENSEN, J. UAH
WINNINGHAM, J.D. Southwest Research Institute
CONIFAZI, C. ASI, Italy
Ion Outflow From the TSS Satellite Plasma Sheath. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WRIGHT, K.H., JR. UAH
STONE, N.H. USRA
WINNINGHAM, J.D. Southwest Research Institute
GURGIOLO, C. Southwest Research Institute
BONIFAZI, C. ASI, Italy
GILCHRIST, B. University of Michigan
DOBROWOLNY, M. ASI, Italy
MARIANI, F. Second University of Rome
HARDY, D. Phillips Laboratory

WU, S.T. UAH
XIAO, Y.C. UAH
MUSIELAK, Z.E. UAH
SUSS, S.T. ES82

WU, S.-T. ES41

YOUNG, R.M., JR. EO66
DEES, G.K. EO66
BREWER, L.A. JSC
Training Capabilities in Support of Crew and Ground Space Station Payload Operations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

ZANDER, R. University of Liege
MAHIEU, E. University of Liege
GUNSON, M.R. JPL
AELLLIG, C. Systems and Applied Sciences Corp.
CHANG, A.Y. JPL
ABBAS, M.M. ES41
IRON, F.W. California Institute of Technology
GOLDMAN, A. University of Denver
ET AL.

ZHANG, S.N. USRA
EBISAWA, K. USRA
SUNYAEV, R. Space Research Institute
UEDA, Y. Institute of Space and Astronautical Science, Japan
HARMON, B.A. ES84
SAZONOV, S. Space Research Institute
FISHMAN, G.J. ES84
INOUE, H. Institute of Space and Astronautical Sciences, Japan
PACIESAS, W.S. UAH
ET AL.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

FINGER, M.H. USRA
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH
ET AL.
IAU: GRO J1849–03. For publication in IAU Circular GRO J1849–03, Cambridge, MA.

ZHANG, S.N. USRA
HARMON, B.A. ES84
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH
BARRET, D. Harvard
GRINDLAY, J.E. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia
FORD, E. Columbia


ZHANG, S.N. USRA
HARMON, B.A. ES84
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH
GRINDLAY, J.E. Harvard


ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84


ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia


Zhang, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia

ET AL.

Zhang, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
Zhang, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
Finger, M.H. ES84/USRA
Robinson, C.R. ES84/USRA


Zhang, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
Finger, M.H. ES84/USRA
Robinson, C.R. ES84/USRA

ET AL.

### TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTS, G.W.</td>
<td>3</td>
</tr>
<tr>
<td>BEABOUT, B.</td>
<td>1</td>
</tr>
<tr>
<td>CARRUTH, M.R. Jr.</td>
<td>1</td>
</tr>
<tr>
<td>CURREN, P.A.</td>
<td>1</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>2</td>
</tr>
<tr>
<td>EULER, H.C. Jr.</td>
<td>1</td>
</tr>
<tr>
<td>HASTINGS, J.H.</td>
<td>3</td>
</tr>
<tr>
<td>HAYDEN, M.</td>
<td>2</td>
</tr>
<tr>
<td>HERREN, K.</td>
<td>2</td>
</tr>
<tr>
<td>HORTON, C.M.</td>
<td>4</td>
</tr>
<tr>
<td>JACKSON, M.E.</td>
<td>2</td>
</tr>
<tr>
<td>JAMES, B.F.</td>
<td>2, 3</td>
</tr>
<tr>
<td>JASPER, G.L.</td>
<td>3</td>
</tr>
<tr>
<td>JOHNSON, D.L.</td>
<td>2, 3</td>
</tr>
<tr>
<td>JUSTUS, C.G.</td>
<td>2, 3</td>
</tr>
<tr>
<td>KNOX, J.C.</td>
<td>4</td>
</tr>
<tr>
<td>MARTIN, J.L.</td>
<td>2</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>3</td>
</tr>
<tr>
<td>MCCAULEY, D.E.</td>
<td>1</td>
</tr>
<tr>
<td>MCCOLLUM, M.</td>
<td>1</td>
</tr>
<tr>
<td>MCDONALD, K.</td>
<td>2</td>
</tr>
<tr>
<td>MEHTA, G.K.</td>
<td>3</td>
</tr>
<tr>
<td>MINTON-SUMMERS, S.</td>
<td>2</td>
</tr>
<tr>
<td>NIEHUISS, K.O.</td>
<td>1</td>
</tr>
<tr>
<td>PEARSON, S.D.</td>
<td>3</td>
</tr>
<tr>
<td>PERRY, G.L.E.</td>
<td>2</td>
</tr>
<tr>
<td>RAY, C.D.</td>
<td>2</td>
</tr>
<tr>
<td>RUSSELL, S.S.</td>
<td>4</td>
</tr>
<tr>
<td>SEMMEL, C.L.</td>
<td>2</td>
</tr>
<tr>
<td>SIMS, J.A.</td>
<td>2</td>
</tr>
<tr>
<td>SUTHERLAND, W.T.</td>
<td>4</td>
</tr>
<tr>
<td>TURNER, JOYCE E.</td>
<td>1</td>
</tr>
<tr>
<td>VAUGHAN, W.W.</td>
<td>1, 3</td>
</tr>
<tr>
<td>VAUGHN, J.A.</td>
<td>1</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>3</td>
</tr>
</tbody>
</table>

### TECHNICAL PAPERS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARRET, C.</td>
<td>6</td>
</tr>
<tr>
<td>BLAIR, J.</td>
<td>6</td>
</tr>
<tr>
<td>DANFORD M.D.</td>
<td>6</td>
</tr>
<tr>
<td>FINCKENOR, M.</td>
<td>6</td>
</tr>
<tr>
<td>GROSS, R.S.</td>
<td>6</td>
</tr>
<tr>
<td>HATHAWAY, D.H.</td>
<td>7</td>
</tr>
<tr>
<td>HERDA, D.A.</td>
<td>6</td>
</tr>
<tr>
<td>KAMENETZKY, R.R.</td>
<td>6</td>
</tr>
<tr>
<td>LINTON, R.C.</td>
<td>6</td>
</tr>
<tr>
<td>NUNES, A.C.</td>
<td>6</td>
</tr>
<tr>
<td>REICHER, E.J.</td>
<td>7</td>
</tr>
<tr>
<td>RYAN, R.S.</td>
<td>6, 7</td>
</tr>
<tr>
<td>TOWNSEND, J.</td>
<td>6</td>
</tr>
<tr>
<td>VAUGHAN, J.A.</td>
<td>6</td>
</tr>
<tr>
<td>VERDERAIME, V.</td>
<td>6</td>
</tr>
<tr>
<td>WILSON, R.M.</td>
<td>7</td>
</tr>
</tbody>
</table>

### CONFERENCE PROCEEDINGS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREWER, J.C.</td>
<td>8</td>
</tr>
<tr>
<td>WILLIAMS, R.W.</td>
<td>8</td>
</tr>
</tbody>
</table>

### REFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXANDER, M.B.</td>
<td>9</td>
</tr>
<tr>
<td>BEDINGFIELD, K.L.</td>
<td>9</td>
</tr>
<tr>
<td>LEACH, R.D.</td>
<td>9</td>
</tr>
</tbody>
</table>

### CONTRACTOR REPORTS

- Alpha Technology .......................................................... 11
- Analysis and Measurement Services Corp. .......................... 10
- Auburn University ...................................................... 10, 11
- BAMS, Inc. ................................................................. 12
- Control Dynamics ....................................................... 10, 13
- Eastern Kentucky University ......................................... 11
- Geospace Research, Inc. .............................................. 10
- ION Electronics ......................................................... 10, 11
- Life Systems, Inc. ..................................................... 11
- Lockheed Martin ........................................................ 12
- Lockheed Martin Marietta Manned Space Systems ................. 10
- McDonnell Douglas Aerospace ........................................ 11
- Meyer Analytics, Inc. ................................................ 10
- Nichols Research Corp. ............................................... 12
- Rocketdyne ................................................................. 11
- Rockwell ................................................................. 11
- Rockwell International Corp. ...................................... 10
- SAIC ......................................................................... 12
- SECA, Inc. ................................................................. 10
- Signatech, Inc. .......................................................... 13
- Tec-Masters, Inc. ........................................................ 10
- United Technologies ................................................... 11
- United Technology Corp. Pratt & Whitney ......................... 11
- UAH ................................................................. 10, 11, 12, 13
- University of Alabama in Huntsville and Tuscaloosa .......... 10
- University of Dayton Research Institute ....................... 10
- University of Tennessee Space Institute ....................... 12

### PAPERS CLEARED FOR PRESENTATION

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBAS, M.M.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>ABDELDAYEM, H.</td>
<td>14, 15</td>
</tr>
<tr>
<td>ABEL, T.M.</td>
<td>15</td>
</tr>
<tr>
<td>ABRAMOV, L.</td>
<td>21</td>
</tr>
<tr>
<td>ABRAMS, M.C.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>ADAMS, M.</td>
<td>15, 45</td>
</tr>
<tr>
<td>ADELFANG, S.I.</td>
<td>44</td>
</tr>
<tr>
<td>ADRIAN, M.F.</td>
<td>35</td>
</tr>
<tr>
<td>ADRIAN, M.L.</td>
<td>15, 38</td>
</tr>
<tr>
<td>AELLIG, C.</td>
<td>33, 50</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>AGGARWAL, M.D.</td>
<td>31</td>
</tr>
<tr>
<td>AHMAD, A.</td>
<td>15</td>
</tr>
<tr>
<td>AHMED, R.</td>
<td>15</td>
</tr>
<tr>
<td>AL-SHIBLI, K.A.</td>
<td>15</td>
</tr>
<tr>
<td>ALEXANDER, H.</td>
<td>48</td>
</tr>
<tr>
<td>ALEXANDER, H.A.</td>
<td>18, 24, 43</td>
</tr>
<tr>
<td>ALISSANDRAKIS, C.E.</td>
<td>15</td>
</tr>
<tr>
<td>ALLEN, G.A.</td>
<td>22</td>
</tr>
<tr>
<td>ALLEN, M.</td>
<td>14, 25, 35</td>
</tr>
<tr>
<td>ANDERSON, B.J.</td>
<td>16, 36, 37, 44</td>
</tr>
<tr>
<td>ANDERSON, E.R.</td>
<td>27</td>
</tr>
<tr>
<td>ANTAR, B.N.</td>
<td>16</td>
</tr>
<tr>
<td>ANTIA, H.M.</td>
<td>27</td>
</tr>
<tr>
<td>ANZ-MEADOR, P.D.</td>
<td>36</td>
</tr>
<tr>
<td>APPLE, J.A.</td>
<td>39</td>
</tr>
<tr>
<td>ARMSTRONG, S.</td>
<td>35</td>
</tr>
<tr>
<td>ARNOLDY, R.L.</td>
<td>35, 38</td>
</tr>
<tr>
<td>ASHER, S.A.</td>
<td>46</td>
</tr>
<tr>
<td>ASHLEY, P.R.</td>
<td>14, 15</td>
</tr>
<tr>
<td>ATKINSON, R.J.</td>
<td>29</td>
</tr>
<tr>
<td>AUGUSTEINJ, T.</td>
<td>16</td>
</tr>
<tr>
<td>AUSTIN, R.A.</td>
<td>16, 25, 39</td>
</tr>
<tr>
<td>AUSTIN, R.W.</td>
<td>37, 43</td>
</tr>
<tr>
<td>BABCSAN, N.</td>
<td>48</td>
</tr>
<tr>
<td>BAGDIGIAN, R.M.</td>
<td>16</td>
</tr>
<tr>
<td>BALEY, J.C.</td>
<td>16, 21</td>
</tr>
<tr>
<td>BALLERY, J.W.</td>
<td>33</td>
</tr>
<tr>
<td>BAND, D.L.</td>
<td>38</td>
</tr>
<tr>
<td>BANKS, C.</td>
<td>14, 15</td>
</tr>
<tr>
<td>BARBEE, T.W., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>BARNETT, T.</td>
<td>22</td>
</tr>
<tr>
<td>BARR, T.A., Jr.</td>
<td>42</td>
</tr>
<tr>
<td>BARRET, C.</td>
<td>16</td>
</tr>
<tr>
<td>BARRET, D.</td>
<td>23, 51</td>
</tr>
<tr>
<td>BASKARAN, S.</td>
<td>35</td>
</tr>
<tr>
<td>BAITS, G.W.</td>
<td>16</td>
</tr>
<tr>
<td>BAUGHER, C.R.</td>
<td>16, 39</td>
</tr>
<tr>
<td>BECK, J. G.</td>
<td>16</td>
</tr>
<tr>
<td>BENSON, R.</td>
<td>25</td>
</tr>
<tr>
<td>BENZ, K.W.</td>
<td>21</td>
</tr>
<tr>
<td>BERG, W.</td>
<td>16</td>
</tr>
<tr>
<td>BERGSTROM, J.W.</td>
<td>19</td>
</tr>
<tr>
<td>BERTHELIER, I.J.</td>
<td>34</td>
</tr>
<tr>
<td>BHAQ, K.N.</td>
<td>42</td>
</tr>
<tr>
<td>BICKLEY, F., III</td>
<td>16</td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>16, 17, 19, 21</td>
</tr>
<tr>
<td>BLOSSER, P.</td>
<td>24, 51</td>
</tr>
<tr>
<td>BOARDMAN, T.A.</td>
<td>15</td>
</tr>
<tr>
<td>BOLOTNIKOV, A.</td>
<td>17</td>
</tr>
<tr>
<td>BOLSTAD, D.</td>
<td>16</td>
</tr>
<tr>
<td>BONIFAZI, C.</td>
<td>45</td>
</tr>
<tr>
<td>BONNELL, J.</td>
<td>38</td>
</tr>
<tr>
<td>BOOKOUT, P.S.</td>
<td>17</td>
</tr>
<tr>
<td>BORGIOLI, F.</td>
<td>15</td>
</tr>
<tr>
<td>BOUCARUT, R.A.</td>
<td>44</td>
</tr>
<tr>
<td>BOUCHER, R.</td>
<td>22, 36</td>
</tr>
<tr>
<td>BOYD, R.W.</td>
<td>43</td>
</tr>
<tr>
<td>BRASWELL, W.D.</td>
<td>40, 44</td>
</tr>
<tr>
<td>BREWER, J.</td>
<td>17, 32</td>
</tr>
<tr>
<td>BREWER, L.A.</td>
<td>50</td>
</tr>
<tr>
<td>BRIGGS, M.S.</td>
<td>23, 31, 33, 37, 38, 46</td>
</tr>
<tr>
<td>BRISCOE, J.</td>
<td>41</td>
</tr>
<tr>
<td>BRITAIN, A.M.</td>
<td>17, 21, 35</td>
</tr>
<tr>
<td>BRITTNACHER, M.J.</td>
<td>44</td>
</tr>
<tr>
<td>BROWN, A.M.</td>
<td>17</td>
</tr>
<tr>
<td>BROWN, L.R.</td>
<td>25</td>
</tr>
<tr>
<td>BROWN, R.W.</td>
<td>17</td>
</tr>
<tr>
<td>BROWN, T.L.</td>
<td>25, 33</td>
</tr>
<tr>
<td>BROWN, T.M.</td>
<td>27</td>
</tr>
<tr>
<td>BRUNI, R.J.</td>
<td>19, 41</td>
</tr>
<tr>
<td>BUECHLER, D.E.</td>
<td>17, 18, 19</td>
</tr>
<tr>
<td>BUNE, A.V.</td>
<td>17, 18</td>
</tr>
<tr>
<td>BURCH, J.L.</td>
<td>18, 34</td>
</tr>
<tr>
<td>BURGER, A.</td>
<td>37</td>
</tr>
<tr>
<td>BURNS, H.D.</td>
<td>18</td>
</tr>
<tr>
<td>BUSHEY, R.W., Jr.</td>
<td>18</td>
</tr>
<tr>
<td>BUSCHEK, H.</td>
<td>48</td>
</tr>
<tr>
<td>BUTLER, B.J.</td>
<td>18, 42</td>
</tr>
<tr>
<td>CALISE, A.J.</td>
<td>48</td>
</tr>
<tr>
<td>CALVERT, W.</td>
<td>25</td>
</tr>
<tr>
<td>CAMMARATA, M.</td>
<td>18</td>
</tr>
<tr>
<td>CAMPBELL, J.W.</td>
<td>18</td>
</tr>
<tr>
<td>CAMPBELL, R.D.</td>
<td>44</td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>34, 41</td>
</tr>
<tr>
<td>CARRASQUILO, R.L.</td>
<td>18, 37</td>
</tr>
<tr>
<td>CARRINGTON, C.</td>
<td>30</td>
</tr>
<tr>
<td>CARROLL, J.</td>
<td>29, 30</td>
</tr>
<tr>
<td>CARTER, D.</td>
<td>37, 46</td>
</tr>
<tr>
<td>CARTER, D.C.</td>
<td>18, 27</td>
</tr>
<tr>
<td>CATALINA, A.</td>
<td>43</td>
</tr>
<tr>
<td>CHAKRABARTY, D.</td>
<td>49</td>
</tr>
<tr>
<td>CHAMBERS, D.M.</td>
<td>29</td>
</tr>
<tr>
<td>CHANDLER, M.O.</td>
<td>18, 21, 22, 27, 34</td>
</tr>
<tr>
<td>CHANG, A.Y.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>CHANG, B.</td>
<td>27</td>
</tr>
<tr>
<td>CHANG, F.-C.</td>
<td>19</td>
</tr>
<tr>
<td>CHAPMAN, J.</td>
<td>18</td>
</tr>
<tr>
<td>CHAPPELL, C.R.</td>
<td>34</td>
</tr>
<tr>
<td>CHAPPELL, J.H</td>
<td>41</td>
</tr>
<tr>
<td>CHEN, B.</td>
<td>50</td>
</tr>
<tr>
<td>CHEN, K.-T.</td>
<td>37</td>
</tr>
<tr>
<td>CHEN, L.</td>
<td>44</td>
</tr>
<tr>
<td>CHEN, P.S.</td>
<td>19</td>
</tr>
<tr>
<td>CHEN, Y.-S.</td>
<td>32, 48</td>
</tr>
<tr>
<td>CHIN, H.A.</td>
<td>18</td>
</tr>
<tr>
<td>CHISHOLM, W.</td>
<td>27</td>
</tr>
<tr>
<td>CHOU, L.C.</td>
<td>19</td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>17, 19, 21</td>
</tr>
<tr>
<td>CHRISTIAN, J.H.</td>
<td>19</td>
</tr>
<tr>
<td>CHRISTL, M.</td>
<td>37</td>
</tr>
<tr>
<td>CHRISTY, J.R.</td>
<td>44</td>
</tr>
<tr>
<td>CHUNG, H.</td>
<td>19, 37</td>
</tr>
<tr>
<td>CLARK, A.M.</td>
<td>19, 41</td>
</tr>
<tr>
<td>CLARK, R.D.</td>
<td>25, 41, 42</td>
</tr>
<tr>
<td>CLINTON, R.G., Jr.</td>
<td>20</td>
</tr>
<tr>
<td>CLOMENIL, D.</td>
<td>42</td>
</tr>
<tr>
<td>COBB, S.D.</td>
<td>20, 45</td>
</tr>
<tr>
<td>COFFEY, V.N.</td>
<td>38</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>DAVIS, J</td>
<td>41</td>
</tr>
<tr>
<td>DAVENPORT, Q</td>
<td>42</td>
</tr>
<tr>
<td>DARVENIZA, M</td>
<td>33</td>
</tr>
<tr>
<td>CORNELISON, J</td>
<td>48</td>
</tr>
<tr>
<td>CORREA, T</td>
<td>27</td>
</tr>
<tr>
<td>COSTES, N.C.</td>
<td>15, 20</td>
</tr>
<tr>
<td>COUGHLIN, D</td>
<td>24</td>
</tr>
<tr>
<td>Cramer, J.M</td>
<td>29</td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>20, 21, 46</td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td>18, 20, 21, 22, 24, 34, 49</td>
</tr>
<tr>
<td>CREASEY, R</td>
<td>17</td>
</tr>
<tr>
<td>CROLL, A</td>
<td>21</td>
</tr>
<tr>
<td>CRONISE, R.J.</td>
<td>17, 21, 35</td>
</tr>
<tr>
<td>CROSSON, W</td>
<td>23</td>
</tr>
<tr>
<td>CRUIT, W</td>
<td>29</td>
</tr>
<tr>
<td>Curreri, P.A.</td>
<td>21, 30, 43</td>
</tr>
<tr>
<td>CURTIS, L</td>
<td>21</td>
</tr>
<tr>
<td>CURTIS, R</td>
<td>21</td>
</tr>
<tr>
<td>DARBY, S.</td>
<td>20</td>
</tr>
<tr>
<td>DARVENIZA, M</td>
<td>33</td>
</tr>
<tr>
<td>Davenport, Q</td>
<td>42</td>
</tr>
<tr>
<td>Davis, J</td>
<td>41</td>
</tr>
<tr>
<td>Deal, K.J.</td>
<td>26, 31</td>
</tr>
<tr>
<td>Deehr, C</td>
<td>38</td>
</tr>
<tr>
<td>Dees, G.K.</td>
<td>50</td>
</tr>
<tr>
<td>Defelice, T</td>
<td>44</td>
</tr>
<tr>
<td>Derrickson, J.H.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Desanctis, C</td>
<td>21</td>
</tr>
<tr>
<td>Desteene, G.V.</td>
<td>16</td>
</tr>
<tr>
<td>Dhindaw, B.K.</td>
<td>43</td>
</tr>
<tr>
<td>Dietz, K.L.</td>
<td>39</td>
</tr>
<tr>
<td>Dill, R.A.</td>
<td>48</td>
</tr>
<tr>
<td>Dischinger, H.C., Jr.</td>
<td>21, 22</td>
</tr>
<tr>
<td>Dobrowolny, M</td>
<td>50</td>
</tr>
<tr>
<td>Dold, P</td>
<td>21</td>
</tr>
<tr>
<td>Dougan, H</td>
<td>44</td>
</tr>
<tr>
<td>Drago, F.C.</td>
<td>15</td>
</tr>
<tr>
<td>Drehman, A.J.</td>
<td>19</td>
</tr>
<tr>
<td>Driscoll, K.T.</td>
<td>17, 19, 21</td>
</tr>
<tr>
<td>Dudley, M</td>
<td>19, 37</td>
</tr>
<tr>
<td>Dukeman, G.A.</td>
<td>26</td>
</tr>
<tr>
<td>Dumbacher, D.L.</td>
<td>21</td>
</tr>
<tr>
<td>Dwyer, J</td>
<td>46</td>
</tr>
<tr>
<td>Eaker, N</td>
<td>35</td>
</tr>
<tr>
<td>Ebisawa, K</td>
<td>50</td>
</tr>
<tr>
<td>Ecken, A.J.</td>
<td>20</td>
</tr>
<tr>
<td>Ederberg, D</td>
<td>22, 36</td>
</tr>
<tr>
<td>Edwards, D.L.</td>
<td>22, 47</td>
</tr>
<tr>
<td>Effinger, M</td>
<td>22</td>
</tr>
<tr>
<td>Elliott, H.A.</td>
<td>22</td>
</tr>
<tr>
<td>Elrod, W</td>
<td>50</td>
</tr>
<tr>
<td>Elsen, R</td>
<td>44</td>
</tr>
<tr>
<td>Elsner, R.F.</td>
<td>25, 46</td>
</tr>
<tr>
<td>Emrich, W.J., Jr.</td>
<td>22</td>
</tr>
<tr>
<td>Emslie, A.G.</td>
<td>27, 28</td>
</tr>
<tr>
<td>England, J.D.</td>
<td>38</td>
</tr>
<tr>
<td>Erickson, R.J.</td>
<td>22, 36</td>
</tr>
<tr>
<td>Estes, R</td>
<td>29</td>
</tr>
<tr>
<td>Ethridge, E.C.</td>
<td>22</td>
</tr>
<tr>
<td>Etter, B.D.</td>
<td>22</td>
</tr>
<tr>
<td>Evans, A.M.</td>
<td>21</td>
</tr>
<tr>
<td>Evans, D.M.</td>
<td>22, 28</td>
</tr>
<tr>
<td>Evans, S.W.</td>
<td>22</td>
</tr>
<tr>
<td>Falconer, D.A.</td>
<td>22, 23, 34, 38</td>
</tr>
<tr>
<td>Feng, C</td>
<td>15</td>
</tr>
<tr>
<td>Ferraro, R</td>
<td>16</td>
</tr>
<tr>
<td>Fesco, A.Z.</td>
<td>20</td>
</tr>
<tr>
<td>Fiederle, M</td>
<td>21</td>
</tr>
<tr>
<td>Fields, S.A.</td>
<td>34</td>
</tr>
<tr>
<td>Finckenor, M.M.</td>
<td>23, 26, 47</td>
</tr>
<tr>
<td>Finger, M.H.</td>
<td>20, 21, 31, 47, 49, 50</td>
</tr>
<tr>
<td>Finn, J.E.</td>
<td>34</td>
</tr>
<tr>
<td>Fischer, G</td>
<td>43</td>
</tr>
<tr>
<td>Fishman, G.J.</td>
<td>16, 23, 26, 31, 37, 50, 51</td>
</tr>
<tr>
<td>Fitziarrald, D.E.</td>
<td>23, 40</td>
</tr>
<tr>
<td>Fleming, B</td>
<td>28</td>
</tr>
<tr>
<td>Fok, M.-C.</td>
<td>23, 24</td>
</tr>
<tr>
<td>Fontenla, J.M.</td>
<td>42</td>
</tr>
<tr>
<td>Ford, E</td>
<td>23, 46, 51</td>
</tr>
<tr>
<td>Forozan, S</td>
<td>17, 32</td>
</tr>
<tr>
<td>Foster, R.S.</td>
<td>24</td>
</tr>
<tr>
<td>Fowler, P.H.</td>
<td>38, 43</td>
</tr>
<tr>
<td>Fowler, S.B.</td>
<td>17</td>
</tr>
<tr>
<td>Fox, D.W.</td>
<td>30</td>
</tr>
<tr>
<td>Frail, D.A.</td>
<td>16</td>
</tr>
<tr>
<td>Franks, G.D.</td>
<td>37</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td>14, 15, 24, 37, 46</td>
</tr>
<tr>
<td>Frederick, K.R.</td>
<td>37</td>
</tr>
<tr>
<td>Freeman, T.J.</td>
<td>44</td>
</tr>
<tr>
<td>Friend, L</td>
<td>28</td>
</tr>
<tr>
<td>Frost, C</td>
<td>42</td>
</tr>
<tr>
<td>Fung, S.F.</td>
<td>24, 25</td>
</tr>
<tr>
<td>Fuselier, S</td>
<td>24</td>
</tr>
<tr>
<td>Gala, D</td>
<td>42</td>
</tr>
<tr>
<td>Gallagher, D.L.</td>
<td>20, 21, 24, 25</td>
</tr>
<tr>
<td>Gallaher, M</td>
<td>24</td>
</tr>
<tr>
<td>Garcia, G.</td>
<td>28</td>
</tr>
<tr>
<td>Gary, G.A.</td>
<td>23, 24, 34</td>
</tr>
<tr>
<td>Gause, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>George, M.A.</td>
<td>37</td>
</tr>
<tr>
<td>Germany, G.</td>
<td>27</td>
</tr>
<tr>
<td>Germany, G.A.</td>
<td>44</td>
</tr>
<tr>
<td>Gibson, W.M.</td>
<td>37, 46</td>
</tr>
<tr>
<td>Gilchrist, B.E.</td>
<td>29, 45, 50</td>
</tr>
<tr>
<td>Giles, B.L.</td>
<td>18, 27, 34</td>
</tr>
<tr>
<td>Gillies, D.C.</td>
<td>17, 18, 19, 24, 37, 45, 47, 48</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Giridharan, M.G.</td>
<td>38</td>
</tr>
<tr>
<td>Gladstone, R</td>
<td>24</td>
</tr>
<tr>
<td>Goldberg, B.</td>
<td>25</td>
</tr>
<tr>
<td>Goldman, A.</td>
<td>14, 15, 25, 39, 50</td>
</tr>
<tr>
<td>Goldstein, B.E.</td>
<td>45</td>
</tr>
<tr>
<td>Gonzales, N.</td>
<td>25</td>
</tr>
<tr>
<td>Goodman, M.</td>
<td>40</td>
</tr>
<tr>
<td>Goodman, S.J.</td>
<td>16, 17, 19, 33, 39</td>
</tr>
<tr>
<td>Goodwin, C.J.</td>
<td>25</td>
</tr>
<tr>
<td>Gorokov, V.</td>
<td>35</td>
</tr>
<tr>
<td>Goulb, L.</td>
<td>42</td>
</tr>
<tr>
<td>Gouzenberg, A.</td>
<td>20</td>
</tr>
<tr>
<td>Grasza, K.</td>
<td>37</td>
</tr>
<tr>
<td>Green, J.L.</td>
<td>24, 25</td>
</tr>
<tr>
<td>Greenspan, M.E.</td>
<td>23</td>
</tr>
<tr>
<td>Greenwood, L.R.</td>
<td>25</td>
</tr>
<tr>
<td>Gregory, D.A.</td>
<td>43</td>
</tr>
<tr>
<td>Gregory, J.C.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Greiner, J.</td>
<td>31</td>
</tr>
<tr>
<td>Grindlay, J.</td>
<td>24</td>
</tr>
<tr>
<td>Grindlay, J.E.</td>
<td>51</td>
</tr>
<tr>
<td>Griner, Carolyn S.</td>
<td>25</td>
</tr>
<tr>
<td>Grody, N.C.</td>
<td>44</td>
</tr>
<tr>
<td>Grosch, D.</td>
<td>49</td>
</tr>
<tr>
<td>Grosskopf, W.J.</td>
<td>33</td>
</tr>
<tr>
<td>Guay, T.D.</td>
<td>49</td>
</tr>
<tr>
<td>Guillory, A.R.</td>
<td>25</td>
</tr>
<tr>
<td>Gunji, S.</td>
<td>25</td>
</tr>
<tr>
<td>Gunson, M.R.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>Guo, H.</td>
<td>25</td>
</tr>
<tr>
<td>Guo, K.L.</td>
<td>19</td>
</tr>
<tr>
<td>Gurgiolo, C.</td>
<td>50</td>
</tr>
<tr>
<td>Gurgiolo, C.A.</td>
<td>49</td>
</tr>
<tr>
<td>Hagopian, J.</td>
<td>25, 31, 33</td>
</tr>
<tr>
<td>Hayward, M.</td>
<td>16</td>
</tr>
<tr>
<td>Hayward, M.J.</td>
<td>25, 45</td>
</tr>
<tr>
<td>Hakila, J.</td>
<td>27, 28, 46</td>
</tr>
<tr>
<td>Hale, J.P. II</td>
<td>26, 48</td>
</tr>
<tr>
<td>Hall, D.K.</td>
<td>26</td>
</tr>
<tr>
<td>Hall, P.B.</td>
<td>36</td>
</tr>
<tr>
<td>Hamaker, J.W.</td>
<td>26</td>
</tr>
<tr>
<td>Hammer, R.</td>
<td>26</td>
</tr>
<tr>
<td>Hanichak, M.</td>
<td>26</td>
</tr>
<tr>
<td>Hanson, J.M.</td>
<td>26</td>
</tr>
<tr>
<td>Hardesty, R.M.</td>
<td>41</td>
</tr>
<tr>
<td>Hardy, D.</td>
<td>45, 50</td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>20, 21, 23, 24, 26, 31, 37, 47, 49, 50, 51</td>
</tr>
<tr>
<td>Harrington, F.</td>
<td>47</td>
</tr>
<tr>
<td>Harris, D.L.</td>
<td>17</td>
</tr>
<tr>
<td>Hartmann, D.H.</td>
<td>46</td>
</tr>
<tr>
<td>Harvey, J.</td>
<td>26</td>
</tr>
<tr>
<td>Harvey, K.L.</td>
<td>38</td>
</tr>
<tr>
<td>Hastings, J.</td>
<td>33</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td>15, 16, 26, 27, 35, 45, 49</td>
</tr>
<tr>
<td>Hayami, R.A.</td>
<td>42</td>
</tr>
<tr>
<td>Heaman, J.P.</td>
<td>27</td>
</tr>
<tr>
<td>Henderson, A.</td>
<td>20</td>
</tr>
<tr>
<td>Herrmann, M.</td>
<td>27</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Kaukler, W.F.</td>
<td>30</td>
</tr>
<tr>
<td>Kaukler, W.K.</td>
<td>43</td>
</tr>
<tr>
<td>Kavaya, M.J.</td>
<td>39</td>
</tr>
<tr>
<td>Kaye, J.A.</td>
<td>30</td>
</tr>
<tr>
<td>Keeling, K.</td>
<td>27</td>
</tr>
<tr>
<td>Keller, V.</td>
<td>30</td>
</tr>
<tr>
<td>Kelley, D.L.</td>
<td>41</td>
</tr>
<tr>
<td>Kennel, E.B.</td>
<td>32</td>
</tr>
<tr>
<td>Keys, A.</td>
<td>30</td>
</tr>
<tr>
<td>Khazanov, G.V.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Kiddier, S.Q.</td>
<td>29</td>
</tr>
<tr>
<td>Kim, Y.</td>
<td>36</td>
</tr>
<tr>
<td>Kintner, P.M.</td>
<td>35, 38</td>
</tr>
<tr>
<td>Klacka, W.R.</td>
<td>20</td>
</tr>
<tr>
<td>Knox, J.C.</td>
<td>34, 37</td>
</tr>
<tr>
<td>Knupp, K.</td>
<td>17</td>
</tr>
<tr>
<td>Koenig, J.R.</td>
<td>20</td>
</tr>
<tr>
<td>Koh, T.</td>
<td>49</td>
</tr>
<tr>
<td>Kolodziejczak, J.J.</td>
<td>39, 46</td>
</tr>
<tr>
<td>Kommers, J.M.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Konikov, Y.V.</td>
<td>30</td>
</tr>
<tr>
<td>Kornfeld, D.M.</td>
<td>16</td>
</tr>
<tr>
<td>Koshak, W.J.</td>
<td>16, 30</td>
</tr>
<tr>
<td>Koshut, T.M.</td>
<td>27, 28, 31, 37</td>
</tr>
<tr>
<td>Kouveliotou, C.</td>
<td>16, 20, 21, 23, 30, 31, 33, 47</td>
</tr>
<tr>
<td>Kozyra, J.U.</td>
<td>30</td>
</tr>
<tr>
<td>Kramer, E.A.</td>
<td>31</td>
</tr>
<tr>
<td>Krivorutsky, E.N.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Krupp, D.</td>
<td>24</td>
</tr>
<tr>
<td>Kublin, T.</td>
<td>18, 42</td>
</tr>
<tr>
<td>Kuruvilla, A.K.</td>
<td>19</td>
</tr>
<tr>
<td>Lafontaine, F.J.</td>
<td>16, 40, 44</td>
</tr>
<tr>
<td>Lajoie, R.M.</td>
<td>21</td>
</tr>
<tr>
<td>Lal, R.B.</td>
<td>31</td>
</tr>
<tr>
<td>Lam, N.S.-</td>
<td>39</td>
</tr>
<tr>
<td>Lansing, M.</td>
<td>31, 41</td>
</tr>
<tr>
<td>Larson, D.</td>
<td>31</td>
</tr>
<tr>
<td>Lassiter, J.O.</td>
<td>31</td>
</tr>
<tr>
<td>Lawrence, T.W.</td>
<td>20</td>
</tr>
<tr>
<td>Layton, S.D.</td>
<td>26</td>
</tr>
<tr>
<td>Ledbetter, F.E., III</td>
<td>20</td>
</tr>
<tr>
<td>Lee, C</td>
<td>33</td>
</tr>
<tr>
<td>Lee, H.W.H.</td>
<td>31</td>
</tr>
<tr>
<td>Lee, J.A.</td>
<td>31, 32</td>
</tr>
<tr>
<td>Lee, S.</td>
<td>32</td>
</tr>
<tr>
<td>Lehoczky, S.L.</td>
<td>17, 18, 20, 21, 24, 25, 33, 43, 45, 47, 48</td>
</tr>
<tr>
<td>Leibacher, J.</td>
<td>26</td>
</tr>
<tr>
<td>Lemaster, P.</td>
<td>23</td>
</tr>
<tr>
<td>Lemen, J.R.</td>
<td>34</td>
</tr>
<tr>
<td>Lerner, J.</td>
<td>25</td>
</tr>
<tr>
<td>Lerner, J.A.</td>
<td>29, 32</td>
</tr>
<tr>
<td>Leviton, D.B.</td>
<td>44</td>
</tr>
<tr>
<td>Lewin, H.G.</td>
<td>31</td>
</tr>
<tr>
<td>Lewin, W.H.G.</td>
<td>20, 30, 31, 47</td>
</tr>
<tr>
<td>Liaw, G.S.</td>
<td>19</td>
</tr>
<tr>
<td>Lichtensteiger, M.</td>
<td>19</td>
</tr>
<tr>
<td>Liemohn, M.W.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Lim, K.</td>
<td>18</td>
</tr>
<tr>
<td>Linner, B.M.</td>
<td>41</td>
</tr>
<tr>
<td>Liquornik, D.J.</td>
<td>42</td>
</tr>
<tr>
<td>Liu, J.</td>
<td>32</td>
</tr>
<tr>
<td>Lo, C.-P.</td>
<td>32, 33, 39</td>
</tr>
<tr>
<td>Lobel, E.</td>
<td>27</td>
</tr>
<tr>
<td>Loewenstein, M.</td>
<td>19</td>
</tr>
<tr>
<td>Long, D.A.</td>
<td>37</td>
</tr>
<tr>
<td>Long, Y.T.</td>
<td>24, 28, 29</td>
</tr>
<tr>
<td>Looger, L.L.</td>
<td>36</td>
</tr>
<tr>
<td>Loomis, W.C.</td>
<td>18</td>
</tr>
<tr>
<td>Lorenzini, E.</td>
<td>29</td>
</tr>
<tr>
<td>Loughead, T.E.</td>
<td>21, 22</td>
</tr>
<tr>
<td>Lu, H.-I.</td>
<td>32</td>
</tr>
<tr>
<td>Lugnibuhl, C.B.</td>
<td>38</td>
</tr>
<tr>
<td>Lummerzheim, D.</td>
<td>44</td>
</tr>
<tr>
<td>Lurie, C.</td>
<td>17, 32</td>
</tr>
<tr>
<td>Luttrell, T.M.</td>
<td>32</td>
</tr>
<tr>
<td>Luttrell, Tery.</td>
<td>25</td>
</tr>
<tr>
<td>Lutz, B.</td>
<td>32</td>
</tr>
<tr>
<td>Luvall, J.C.</td>
<td>31, 32, 33, 39, 42</td>
</tr>
<tr>
<td>Lyles, G.M.</td>
<td>33</td>
</tr>
<tr>
<td>Lynch, K.A.</td>
<td>35</td>
</tr>
<tr>
<td>Mach, D.A.</td>
<td>19</td>
</tr>
<tr>
<td>Mach, D.M.</td>
<td>17</td>
</tr>
<tr>
<td>Mackerras, D.</td>
<td>33</td>
</tr>
<tr>
<td>Mahieu, E.</td>
<td>39, 50</td>
</tr>
<tr>
<td>Majumdar, A.K.</td>
<td>33</td>
</tr>
<tr>
<td>Mallozzi, R.S.</td>
<td>27, 28, 37</td>
</tr>
<tr>
<td>Malone, T.W.</td>
<td>19</td>
</tr>
<tr>
<td>Manney, G.L.</td>
<td>14, 15, 40</td>
</tr>
<tr>
<td>Manuel, S.</td>
<td>20</td>
</tr>
<tr>
<td>Mariani, F.</td>
<td>45, 50</td>
</tr>
<tr>
<td>Marshall, S.</td>
<td>40</td>
</tr>
<tr>
<td>Martin, C.</td>
<td>33</td>
</tr>
<tr>
<td>Martinez, A.</td>
<td>25</td>
</tr>
<tr>
<td>Martinez, N.</td>
<td>27</td>
</tr>
<tr>
<td>Martinez, N.J.</td>
<td>38</td>
</tr>
<tr>
<td>Marty, D.E.</td>
<td>18</td>
</tr>
<tr>
<td>Masheder, M.R.W.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Mason, R.K.</td>
<td>22</td>
</tr>
<tr>
<td>Matsos, H.</td>
<td>35</td>
</tr>
<tr>
<td>Matteson, J.L.</td>
<td>38</td>
</tr>
<tr>
<td>Maxwell, T.</td>
<td>25, 33</td>
</tr>
<tr>
<td>Mazuruk, K.</td>
<td>33, 43, 45, 47</td>
</tr>
<tr>
<td>McCaleb, R.C.</td>
<td>33</td>
</tr>
<tr>
<td>McCall, K.</td>
<td>42</td>
</tr>
<tr>
<td>McCall, S.</td>
<td>41</td>
</tr>
<tr>
<td>McCaul, E.W.</td>
<td>17, 18, 40</td>
</tr>
<tr>
<td>McClure, J.C.</td>
<td>22, 28</td>
</tr>
<tr>
<td>McCollough, M.L.</td>
<td>26</td>
</tr>
<tr>
<td>Mccomas, D.J.</td>
<td>34</td>
</tr>
<tr>
<td>Mcconnaughhey, P.</td>
<td>48</td>
</tr>
<tr>
<td>Mcdaniels, D.</td>
<td>35</td>
</tr>
<tr>
<td>McRight, P.</td>
<td>33</td>
</tr>
<tr>
<td>Meegan, C.A.</td>
<td>27, 28, 31, 33, 37, 38, 46</td>
</tr>
<tr>
<td>Mehta, G.</td>
<td>33</td>
</tr>
<tr>
<td>Mell, R.</td>
<td>23</td>
</tr>
<tr>
<td>Menzies, R.T.</td>
<td>41</td>
</tr>
<tr>
<td>Meshishnek, M.J.</td>
<td>22</td>
</tr>
<tr>
<td>Michelsen, H.A.</td>
<td>14, 15, 19, 29, 33, 40</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Sulkainen, M.E.</td>
<td>46</td>
</tr>
<tr>
<td>Sullivan, R.</td>
<td>20</td>
</tr>
<tr>
<td>Sullivan, R.M.</td>
<td>32, 46</td>
</tr>
<tr>
<td>Sullivan-Holt, R.</td>
<td>18</td>
</tr>
<tr>
<td>Sunkara, H.B.</td>
<td>46</td>
</tr>
<tr>
<td>Sunyaev, R.</td>
<td>50</td>
</tr>
<tr>
<td>Swanson, G.R.</td>
<td>46</td>
</tr>
<tr>
<td>Szofran, F.</td>
<td>21</td>
</tr>
<tr>
<td>Szofran, F.R.</td>
<td>24, 45, 47, 48</td>
</tr>
<tr>
<td>Talia, G.E.</td>
<td>46</td>
</tr>
<tr>
<td>Tandberg-Hanssen, E</td>
<td>42</td>
</tr>
<tr>
<td>Tatar, J.D.</td>
<td>22, 50</td>
</tr>
<tr>
<td>Tavani, M.</td>
<td>23, 24, 51</td>
</tr>
<tr>
<td>Taylor, W.W.L.</td>
<td>25</td>
</tr>
<tr>
<td>Teiglia, W.R.</td>
<td>42</td>
</tr>
<tr>
<td>Tegmark, M.</td>
<td>46</td>
</tr>
<tr>
<td>Tennant, M.I.</td>
<td>18</td>
</tr>
<tr>
<td>Thoburn, C.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>Thompson, R.</td>
<td>23</td>
</tr>
<tr>
<td>Tinker, M.L.</td>
<td>17, 46</td>
</tr>
<tr>
<td>Tomsick, J.</td>
<td>46</td>
</tr>
<tr>
<td>Tong, Y.</td>
<td>42</td>
</tr>
<tr>
<td>Townsend, C.</td>
<td>41</td>
</tr>
<tr>
<td>Townsend, J.S.</td>
<td>42</td>
</tr>
<tr>
<td>Trout, D.H.</td>
<td>46</td>
</tr>
<tr>
<td>Tucker, D.</td>
<td>22</td>
</tr>
<tr>
<td>Turner, S.G.</td>
<td>33</td>
</tr>
<tr>
<td>Twigg, P.D.</td>
<td>18</td>
</tr>
<tr>
<td>Tworzydlo, W.W.</td>
<td>34</td>
</tr>
<tr>
<td>Ueda, Y.</td>
<td>50</td>
</tr>
<tr>
<td>Ullrich, J.B.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Van de Steen, G.</td>
<td>16</td>
</tr>
<tr>
<td>Van der Hoof, F.</td>
<td>16, 20, 21, 47</td>
</tr>
<tr>
<td>Van der Klis, M.</td>
<td>20, 47</td>
</tr>
<tr>
<td>Van Drigel-Gesztelyi, L</td>
<td>42</td>
</tr>
<tr>
<td>Van Dyke, M.</td>
<td>21, 33</td>
</tr>
<tr>
<td>Van Paradijs, J.</td>
<td>16, 20, 21, 23, 31, 47</td>
</tr>
<tr>
<td>Van Speybroeck, L.</td>
<td>19, 41</td>
</tr>
<tr>
<td>Vas, I.</td>
<td>30</td>
</tr>
<tr>
<td>Vaughan, B.</td>
<td>49</td>
</tr>
<tr>
<td>Vaughan, R.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughn, J.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>22, 23</td>
</tr>
<tr>
<td>Verderaime, V</td>
<td>47</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>47</td>
</tr>
<tr>
<td>Waite, J.H.</td>
<td>18, 34</td>
</tr>
<tr>
<td>Walker, A.B.C., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>Walker, J.</td>
<td>31, 41, 47</td>
</tr>
<tr>
<td>Wallace, S.</td>
<td>41</td>
</tr>
<tr>
<td>Wallace, T.L.</td>
<td>38</td>
</tr>
<tr>
<td>Walls, B.</td>
<td>47</td>
</tr>
<tr>
<td>Waltman, E.B.</td>
<td>26</td>
</tr>
<tr>
<td>Wang, A.H.</td>
<td>45</td>
</tr>
<tr>
<td>Wang, C.M.</td>
<td>50</td>
</tr>
<tr>
<td>Wang, J-C.</td>
<td>43</td>
</tr>
<tr>
<td>Wang, P.H.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T-S.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T.S.</td>
<td>32, 48</td>
</tr>
</tbody>
</table>

Wang, W.S.                        | 31      |
Ward, S.                            | 20      |
Warsz, S.                           | 48      |
Waturing, D.A.                      | 18, 24, 47, 48 |
Webster, C.R.                       | 19      |
Wei, H.                             | 48      |
Weisskopf, M.C.                     | 25, 39, 46, 48 |
Weissman, J.M.                      | 46      |
Wentz, F.J.                         | 44, 48  |
Wertz, G.E.                         | 22      |
Whitaker, A.F.                      | 48      |
Whitesides, R.H.                    | 48      |
Whorton, M.                         | 22, 36, 48 |
Wieland, P.O.                       | 18      |
Williams, C.                        | 49      |
Williams, E.R.                      | 33      |
Willing, J.E.                       | 25, 32, 42, 43, 49 |
Wilson, C.A.                        | 49, 50  |
Wilson, F.                          | 41      |
Wilson, G.                          | 24      |
Wilson, G.R.                        | 49      |
Wilson, R.B.                        | 26, 49  |
Wilson, R.M.                        | 49      |
Wingard, C.D.                       | 49      |
Winningham, J.D.                    | 49, 50  |
Witherow, W.K.                      | 14, 15  |
Woods, P.                           | 31      |
Workman, P.L.                       | 47      |
Wright, B.                          | 18      |
Wright, H.B.                        | 50      |
Wright, J.D.                        | 50      |
Wright, K.H., Jr.                   | 44, 49, 50 |
Wu, B.                              | 42      |
Wu, S.-T.                           | 50      |
Wu, S.T.                            | 45, 50  |
Wygant, J.R.                        | 18      |
Xiao, Q.F.                          | 36, 46  |
Xiao, Y.C.                          | 50      |
Xiques, K.E.                        | 34      |
Yip, P.W.                           | 19      |
Young, D.T.                         | 18, 34, 35 |
Young, R.M., Jr.                    | 50      |
Yung, S.                            | 29      |
Zachary, L.W.                       | 46      |
Zander, R.                          | 19, 39, 50 |
Zhang, H.W.                         | 31      |
Zhang, S.-N.                        | 21, 23, 24, 26, 37, 49, 50, 51 |
Zhang, Y.                           | 37      |
Zhao, W.                            | 39      |
Zhou, W.                            | 19      |
Zhou, Y.                            | 41      |
Ziock, K.                           | 46      |
Zissa, D.E.                         | 15, 44  |
Zu, G.J.                            | 28, 29  |
Zwiener, J.M.                       | 22, 47  |
APPROVAL

FY 1996 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner Waits

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

TERESA H. WASHINGTON
Director
Human Resources and Administrative Support Office
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY96. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.