FY 1996 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
Joyce E. Turner-Waits
Marshall Space Flight Center • MSFC, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

October 1996
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Baltimore, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1996 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>6</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC REFERENCE PUBLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>10</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>14</td>
</tr>
<tr>
<td>INDEX</td>
<td>52</td>
</tr>
</tbody>
</table>
The second United States Microgravity Payload (USMP–2), flown in March 1994, carried four major microgravity experiments plus a sophisticated accelerometer system. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission. The four USMP–2 experiments dealt with understanding fundamental aspects of materials behavior, three with the formation of crystals from melts, and one with the critical point of a noble gas. This successful, scientifically rich mission also demonstrated telesience operations.

This report documents the Marshall Space Flight Center (MSFC) 13-month smoothed solar flux ($F_{10,7}$) and geomagnetic index (A_p) intermediate (months) and long-range (years) statistical estimation technique, referred to as the MSFC Lagrangian Linear Regression Technique (MLLRT). Estimates of future solar activity are needed as updated input to upper atmosphere density models used for satellite and spacecraft orbital lifetime predictions. An assessment of the MLLRT computer program's products is provided for 5-year periods from the date estimates were made. This was accomplished for a number of past solar cycles.

A space flight qualified controller for experiments that is modular and based on an open architecture commercially available standard can reduce system development time by leveraging off commercial hardware and software. While the unique requirements of flight may mandate custom hardware designs, a modular design approach in which a core set of modules is designed and built would provide a basis for future experiment controllers. Any unique requirements could then be met by adding modules as necessary. A central processing unit module, a MIL–STD–1553 interface module, and a Spacelab interface module were developed. These modules are linked using the IEEE standard 1296 Multibus II™ bus architecture. This report describes the work done to develop this core set of processing and interface modules that meet the IEEE 1296 Multibus II™ standards.
Zerodur™ is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur™ an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur™ is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur™ density. This increase in density is described as a compaction.

Experimental data showing proton-induced compaction of Zerodur™ is presented. The dependence of compaction on proton dose was determined to be a power law relationship. Previous publications determined a powder law relationship between Zerodur™ compaction and electron radiation. Correlation between the published data and the results of this investigation are currently being studied.

To obtain the proper measurement amplitude with a spectrum analyzer, the correct frequency-dependent transducer factor must be added to the voltage measured by the transducer. This report will examine how entering transducer factors into a spectrum analyzer can cause significant errors in field amplitude due to the misunderstanding of the analyzer’s interpolation methods. It will also discuss how to reduce these errors to obtain a more accurate field amplitude reading.

The space station furnace facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The thermal control system (TCS) is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The report formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances and plant uncertainties. The desired decoupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities, time-varying plant parameters, and variations of the system pressure supplied to the controlled subsystems. A comparison against the popular proportional-plus-derivative-plus-integral (PID) control algorithm is included to demonstrate improved performance over traditional control techniques.

This report is a summary of work accomplished under Technical Task Agreement by the Marshall Space Flight Center (MSFC) and documents activities regarding the Environmental Control and Life Support Systems (ECLSS) of the International Space Station (ISS) program. These MSFC activities were in-line to the designing, the development, the testing, and the flight of ECLSS equipment. MSFC’s unique capabilities for performing integrated system testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs are the basis for the Technical Task Agreement activities. Tasks were completed in the water recovery systems, air revitalization systems, and microbiology areas. The results of each task are described in this summary report.
model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and "map" of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through "common" lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

TM–108510 June 1996

19960027992N (96N–29111)

A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

TM–108511 June 1996

19960047082N (96N–29111)

The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; atmospheric thermodynamic models and properties; thermal radiation; U.S. and world surface environment extremes; humidity; precipitation, fog, and icing; cloud characteristics and cloud cover models; atmospheric electricity; atmospheric constituents; vehicle engine exhaust and toxic chemical release; occurrences of tornados and hurricanes; geological hazards, and sea states. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle’s operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating, and take off/landing capabilities. The launch vehicle’s capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

TM–108512 June 1996

19960027985N (96N–29104)

More extensive testing was performed through a NASA research announcement (NRA) between Marshall Space Flight Center (MSFC) and Lockheed Martin Astronautics on the promising LO2 propellant conditioning concept of passive recirculation (no-bleed). Data from the project are being used to further anchor models in LO2 conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan LO2 pump attachment, feed duct slope effects, and up-leg booster effects. LN2 was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of MSFC. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

TM–108513 July 1996

19960042695N (96N–31648)
This report describes the newly revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer’s guide (Justus et al., 1996) for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart (1987). The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM) of Bougher et al. (1990). The new thermospheric model includes revised dependence on the 10.7-cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are (1) realistic variations of temperature and density with latitude and time of day; (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients; and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the "ORBIT" subroutine.

TM–108514 June 1996

19960044383N (96N–31927)

The Computer-Aided System Engineering and Analysis (CASE/A) Version 5.0 User’s Manual provides the user with information needed to execute and learn the CASE/A 5.0 modeling package. CASE/A 5.0 is a trade study tool that provides modeling/simulation capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the Space Station Freedom.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS™ environment. It utilizes the Tektronics 4014™ graphics display system and the VT100™ text manipulation/display system.

TM–108515 June 1996
Enhancement of High-Speed Infrared Array Electronics (Center Director’s Discretionary Fund Final Report, Project 93–03). W.T. Sutherland. Astronics Laboratory.

A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.

TM–108516 September 1996

A vacuum chamber designed for use in shearography nondestructive evaluation of aerospace components is presented. The inspection of an aerospace insulation is used as an example of vacuum excitation shearography for evaluation of debonds. Design drawings of subcomponents and the assembly are included in an appendix.

TM–108517 September 1996

The Computer Aided System Engineering and Analysis (CASE/A) Version 5.0 Programmer’s Manual provides the programmer and user with information regarding the internal structure of the CASE/A 5.0 software system. CASE/A 5.0 is a trade study tool that provides modeling/simulation
capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the space station.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using “User Operations (OPS) Code.” This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS™ environment. It utilizes the Tektronics 4014™ graphics display system and the VT100™ text manipulation/display system.
Localized corrosion in welded samples of 2219–T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leaders to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment or other inducer and impeller applications.

Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5-eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon™-impregnated fiberglass cloth. Aluminum anodizations were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glossy black paint and Z–93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar™, bulk PEEK, and silverized FEP Teflon™. Aluminized and nonaluminized Chemfab 250™ beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability.

As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director’s Discretionary Fund Project 93–05 and has a previous and subsequent companion publication.

While the systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems- and component-dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted.
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3±7.5 and maximum smoothed sunspot number Rm = 198.8±36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum amplitude. Using cycle 22 as a test case, we show that by the 12th month following conventional onset, cycle 22 appeared highly likely to be fast-rising, larger-than-average-size cycle. Because of the inferred correlation between ascent duration and period, it also seems likely that it will have a period shorter than average length.

TP–3653

September 1996

The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-4705 February 1996
Marietta Manned Space Systems. 19960016404N (96N–22207)

CR-4706 February 1996
Marietta Manned Space Systems. 19960016651N (96N–22275)

CR-4707 February 1996

CR-4716 February 1996

CR-4720 February 1996
Catastrophic Failure Modes Assessment of the International Space Station Alpha. NASA–37383. Meyer Analytics, Inc. 19960017822N (96N–23346)

CR-4740 May 1996

CR-4744 May 1996

CR-199197 July 7, 1995

CR-199198 October 1995

CR-199201 September 1995

CR-199817 September 1995

CR-199818 September 25, 1995

CR-199819 September 18, 1995

CR-199820 October 23, 1995

CR-199826 November 30, 1995

CR-199828 September 15, 1995

CR-199829 December 10, 1995

CR-199830 February 1996
NASA CONTRACTOR REPORTS

(Abstracts for these reports may be obtained from STAR)

CR-199831 July 14, 1995
Space Station Water Processor Process Pump,
Final Report. NAS8–38250–12, ION Electronics.
19960016957N (96N–22564)

CR-199832 May 22, 1995
Preliminary Design Program Vapor Compression
Distillation Flight Experiment Program,
NAS8–38250–11. ION Electronics.
19960016649N (96N–22274)

CR-199833 August 1995
19960016584N (96N–22228)

CR-199834 September 1995
Molecular Sieve Bench Testing and Computer
McDonnell Douglas Aerospace.
19960016571N (96N–22215)

CR-199835 July 23, 1995
PCR-Based Microbial Monitor for Analysis of
Recycled Water Aboard the ISS: Issues and Prospects,
Final Report (October 1, 1994 to June 15, 1995).
NAS8–38250. ION Electronics.
19960016594N (96N–22238)

CR-199836 February 1, 1996
Study of Activation of Metal Samples From
H–13013D. Eastern Kentucky University.
19960017615N (96N–23172)

CR-199837 December 1995
Investigation of Advanced Processed Single-
Crystal Turbine Blade Alloys, Final Report
(December 16, 1991 to December 31, 1995).
NAS8–39050. United Technology Corporation,
Pratt & Whitney.
19960017548N (96N–23130)

CR-199838 July 14, 1995
Space Station Water Processor Mostly Liquid
Separator (MLS), Final Report. NAS8–38250–12,
United Technologies.
19960017622N (96N–23179)

CR–200696 August 31, 1995
Enhanced Urine Ersatz Development and Test-
ing, Final Report. NAS8–38250–11, Life Sys-
tems, Inc.
19960017630N (96N–23186)

CR–200697 January 20, 1995
Spacelab Charcoal Analyses, Phase II Final
19960017611N (96N–23168)

CR–200698 March 1996
Phase I Final Report for VRA Modeling Con-
tract. NAS8–38250–18. ION Electronics.
19960017612N (96N–23169)

CR–200699 July 1995
SPE Oxygen Generator Assembly (OGA)
(Refurbishment of the Technology Demostra-
tor LFSPE Oxygen Generation Subsystem), Final
19960017565N (96N–23144)

CR–200700 May 22, 1995
Static Feed Electrolyzer Flight Experiment Pro-
gram Preliminary Design Program, Final Report.
19960021248N (96N–23160)

CR–200701 December 15, 1995
Generic Health Management: A System
Engineering Process Handbook Overview and
Processes, Final Report. NAS8–40365. Alpha
Technology.
19960017620N (96N–23177)

CR–200702 December 15, 1995
SSFF Health Management Analysis Report Part
II (Proof of Concept), Final Report. NAS8–
40365, Alpha Technology.
19960017621N (96N–23178)

CR–200703 October 1995
Advanced Transportation System Studies Tech-
ical Area 3, Alternate Propulsion Subsystem
Concepts, Tripropellant Comparison Study, Final
19960017710N (96N–23241)

CR–200704 September 1995
Rocket Engine Combustion Devices Design and
Demonstration Program, Final Report. NAS8–
39567, Rockwell.
19960020399N (96N–23977)

CR–200705 January 22, 1996
Video Emulated Tweening: Simulating Full
Motion Video From Intermittent Video, Final
Report. Omniview, Inc.
19960017541X (95X–36537)

CR–200708 March 22, 1996
Design of Low Stress Switching Electronics for
EMA Applications, Final Report. NAS8–39131,
D.O. No. 31. Auburn University.
19960017563N (96N–23143)
CR–200711 November 30, 1995

CR–200715 October 1995
Structural Damage Prediction and Analysis for Hypervelocity Impact, Final Report (Attachments 2, 3, 4, 5, 6, 8, and 9). NAS8–38856. Lockheed Martin. 19960022784N (96N–25677)

CR–200718 April 11, 1996
Final Report for Delivery Order 84. NAS8–38609, University of Alabama in Huntsville. 19960024140N (96N–71446)

CR–200719 April 12, 1996

CR–200720 May 8, 1995

CR–200721 June 21, 1995

CR–201124 July 1995

CR–201125 July 1995

CR–201126 July 1995

CR–201127 July 1995

CR–201128 July 1995

CR–201131 November 10, 1995
Materials Engineering Data Base, Final Report. NAS8–37780. BAMSI, Inc. 19960038269N (96N–30749)

CR–201132 December 31, 1995

CR–201133 December 1995

CR–201134 April 30, 1996

CR–201135 February 15, 1996
Parabolic Aircraft Solidification Experiments. NAS8–38609, D.O. No. 130. University of Alabama in Huntsville. 19960034386N (96N–30231)

CR–201136 May 1996

CR–201137 May 16, 1996
CR–201138 August 1996
Tethered Satellite System (TSS) Dynamics
Assessments and Analyses TSS–1R Post Flight
Data Evaluation, Final Report (February 1, 1994
to June 14, 1996). NAS8–39880. Control
Dynamics. (96N–36511)

CR–201139 April 24, 1996
Launch Deployment Assembly Extravehicular
Activity Neutral Buoyancy Development Test
Report, Final Report. NAS8–40586. Signatech,
Inc. (96N–36252)

CR–201141 July 1996
Thermal Excitation System for Shearography
(TESS), Final Report (April 26, 1995 through
University of Alabama in Huntsville.
(96N–36510)

CR–201142 June 1996
F/NAS/R&D of the Components of SEDS Project
Office—SEDSAT–1 Technology Development,
Final Report (January 2, 1996 to June 1, 1996).
NAS8–38609, D.O. No. 157. University of
Alabama in Huntsville.
19960046989N (96N–32786)

CR–201143 May 16, 1995
Interferometric Test/Alignment of Water Window
Imaging X-Ray Microscopes, Final Report
(November 16, 1993 to May 15, 1995). NAS8–
38609, D.O. No. 98. University of Alabama in
Huntsville.

CR–201144 June 3, 1996
Application of Russian Thermo-Electric Devices
(TEDS) for the U.S. Microgravity Program Pro-
tein Crystal Growth (PCG) Project, Final Report.
NAS8–38609, D.O. No. 141. University of
Alabama in Huntsville.

CR–201145 August 13, 1996
Analysis of Measurements for Solid State Lidar
Development, Final Report (August 8, 1994 to
118. University of Alabama in Huntsville.
19960046999N (96N–32796)
ABBAS, M. ES41
MICHELEN, H.A. Harvard University
GUNSON, M.R. JPL
ABRAMS, M.C. LaRC
NEWCHURCH, M.J. UAH
CHANG, A.Y. JPL
GOLDMAN, A. Denver University
IRION, F.W. California Institute of Technology
MANNEY, G.L. JPL
ET AL.
Hydrogen Budget of the Stratosphere From ATMOS/ATLAS Measurements of Water Vapor and Methane. For publication in EOS, American Geophysical Union Fall Meeting, San Francisco, CA, 1996.

ABBAS, M.M. ES41
GUNSON, M.R. JPL
NEWCHURCH, M.J. UAH
MICHELEN, H.A. Harvard University
SALAWITCH, R.J. JPL
ALLEN, M. California Institute of Technology
ABRAMS, M.C. LaRC
CHANG, A.Y. JPL
GOLDMAN, A. Denver University
ET AL.

ABBAS, M.M. ES41
MICHELEN, H.A. Harvard University
GUNSON, M.R. JPL
ABRAMS, M.C. LaRC
NEWCHURCH, M.J. UAH
SALAWITCH, R.J. JPL
CHANGE, A.Y. JPL
GOLDMAN, A. Denver University
IRION, F.W. California Institute of Technology
ET AL.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
PENN, B.G. ES76
WITHEROW, W.K. ES76
SHIELDS, A. ES76

Two-Photon Absorption in Polydiacetylene Thin Films Using the Z-Scan Technique at Low He-Ne Laser Illumination. For publication in Applied Physics Letters, Argonne, IL.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA
WITHEROW, W.K. ES76

Intensity-Dependent Changes in the Third-Order Nonlinearity of Polydiacetylene Using Z-Scan Technique. For publication in Journal of Optical Society of America-B, Washington, DC.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PENN, B.G. ES76
WITHEROW, W.K. ES76
BANKS, C. ES76
SHIELDS, A. ES76
HICKS, R. ES76

Intrinsic Optical Bistability in Vapor Deposited Films of Metal-Free Phthalocyanine. For publication in Applied Physics Letters, Argonne, IL.

ABDELDAYEM, H.A. ES76 (USRA)
FRAZIER, D.O. ES76
PENN, B.G. ES76
WITHEROW, W.K. ES76
BANKS, C. ES76
SHIELDS, A. ES76
HICKS, R. ES76

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES01
PENN, B.G. ES01
PALEY, M.S. USRA
WITHEROW, W.K. ES01
BANKS, C. ES01
HICKS, R. ES01
SHIELDS, A. ES01

Optical Computers and Space Technology. For presentation at The International Association of Science and Technology for Development (LASTED), Cairo, Egypt, December 4–7, 1995.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Presentation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frazier, D.O.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Withrow, W.K.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Banks, C.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Shields, A.D.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Hicks, R.M.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Ashley, P.R.</td>
<td>U.S. Army Missile Command</td>
<td>Fractal Analysis of the Magnetic Complexity of a Flaring Active Region: The Hurst Method. For publication in Astrophysical Journal, Chicago, IL.</td>
</tr>
<tr>
<td>Cook, J.R.</td>
<td>PS04</td>
<td></td>
</tr>
<tr>
<td>Gunson, M.R.</td>
<td>JPL</td>
<td></td>
</tr>
<tr>
<td>Goldman, A.</td>
<td>University of Denver</td>
<td></td>
</tr>
<tr>
<td>Irion, F.W.</td>
<td>JPL</td>
<td></td>
</tr>
<tr>
<td>Michelsen, H.A.</td>
<td>Harvard University</td>
<td></td>
</tr>
<tr>
<td>Rinsland, C.P.</td>
<td>LaRC</td>
<td></td>
</tr>
<tr>
<td>Stark, B.A.</td>
<td>NRC</td>
<td></td>
</tr>
<tr>
<td>Hathamay, D.H.</td>
<td>ES82</td>
<td></td>
</tr>
<tr>
<td>Musielak, Z.E.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Chang, A.Y.</td>
<td>JPL</td>
<td></td>
</tr>
<tr>
<td>Ahmad, A.</td>
<td>UAH</td>
<td>Performance Modeling of Grazing Incidence Optics Due to Structural Deformations and Metrology Errors. For presentation at 1996 SPIE Symposium, Denver, CO, August 4–9, 1996.</td>
</tr>
</tbody>
</table>
HAGYARD, M. ES82
SHIBASAKI, K. Nobeyama Radio

ANDERSON, B.J. EL23
COOKE, W.J. Computer Sciences Corp.
PAVELITZ, S.D. Sverdrup, Inc.

ANTAR, B.N. University of Tennessee
KORNFIELD, D.M. ES76

AUGUSTEIJN, T. ESO
DESTEENE, G.V. ESO
VAN DER HOOFT, F. University of Amsterdam
VAN PARADIJS, J. UAH
KOUVELIOTOU, C. USRA
FISHMAN, G.J. ES84
IAUC #6326 GRO J1744–28. For publication in IAU Circular, Cambridge, MA.

AUGUSTEIJN, T. ESO
VAN DE STEEN, G. ESO
FRAIL, D.A. National Radio Ast.
VAN PARADIJS, J. UAH
KOUVELIOTOU, C. USRA (ES84)
FISHMAN, G.J. ES84
ET AL.
IAUC #6309: Possible Optical Counterpart. For publication in IAUC #6309, Cambridge, MA.

AUSTIN, R.A. USRA
MINAMITANI, T. USRA
RAMSEY, B.D. ES84

BAGDIGIAN, R.M. ED62
HOLDER, D.W. ED62
HUTCHENS, C.F. ED62
JONES, K.U. ED62
OGLE, K.Y. ED62
PARKER, D. Hamilton Standard
SCHUBERT, F. Life Systems, Inc.

BARRET, C. ED15

BATTIS, G.W. CSC
PEARSON, S.D. EL23

BAUGHER, C.R. ES75
RAMACHANDRAN, N. USRA
ROARK, W. Mevatec Corp.
MSG: Microgravity Science Glovebox. For presentation at SPIE Conference on Space Processing of Materials, Denver, CO, August 4–9, 1996.

BECK, J. G. UCLA
HATHAWAY, D.H. ES82
SIMON, G.W. National Solar Observatory

BERG, W. University of Colorado
OLSON, W. GSFC
FERRARO, R. NOAA
GOODMAN, S.J. ES41
LAFONTAINE, F.J. Hughes STX

BICKLEY, F., III EE31
MUNAFO, P. EE31
BOLSTAD, D. Lockheed Martin
RANDOLPH, W. Lockheed Martin
Considerations for the Application of Al-Li Alloys to Large Aerospace Structures. For presentation at ASM/TMS Materials Week, Cleveland, OH, October 31, 1995.

BLAKESLEE, R.J. ES41
KOSHAK, W.J. ES41
BAILEY, J.C. ES41
Application of Linear Analytic Techniques to Lightning Location Retrieval During the Maritime Continent Thunderstorm Experiment
BOLOTNIKOV, A. ES84/NRC

BOOKOUT, P.S. ED26
Examination of Three Methods of Loads Recovery From a Coupled Loads Analysis on Space Shuttle Payloads. For presentation at AIAA Dynamics Special Conference, Salt Lake City, UT, April 18–19, 1996.

BOOKOUT, P.S. ED23

BRITTAIN, A.M. ES76

BRITTAIN, A.M. ES76

BROWN, A.M. ED23

BUECHLER, D. Inst. for Global Res.

BUNE, A.V. ES75
Heat Mass Transfer in Furnaces for Crystal Growth From the Melt. Global Numerical Models. For publication in Izvestiga RAN Mekhaniks Zhidkostiigasa Fluid and Gas Mechanics, Russian Academy of Sciences, Moscow, Russia.

BUNE, A.V. NRC
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
ALEXANDER, H.A. Mevatec

BUNE, A.V. NRC (ES75)
GILLIES, D.C. ES75
WATRING, D.A. ES75
LEHOCZKY, S.L. ES75
Modeling of Convection and Segregation During HgCdTe Directional Solidification With Emphasis on Coupling With Crystal-Melt Interface Alternation. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

BURNS, H.D. EH 12
SULLIVAN-HOLT, R. EH 12
SMITH, M. Lockheed Martin

BURSEY, R.W., JR. United Technologies
OLINGER, J.B. United Technologies
PRICE, J.L. United Technologies
CHIN, H.A. United Technologies
TENNANT, M.L. United Technologies
MOORE, L.C. EH 14
THOM, R.L. EH 14
MOORE, J.D. SRS Technologies
MARTY, D.E. SRS Technologies

BUTLER, B.L. Science Applications International
GAUSE, R.L. Science Applications International
LOOMIS, W.C. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04
NICHOLS, R.L. PS04

CAMMARATA, M. NOAA
MCCAUL, E.W. USRA
BUECHLER, D. University of Alabama

CAMPBELL, J.W. PS02

CARRASQUILLO, R.L. ED62
WIELAND, P.O. ED62
REUTER, J.L. ED62

CARTER, D.C. ES76
CARTER, D.C. ES76
TWIGG, P.D.
WRIGHT, B.
HO, J.X.
LIM, K.
CHAPMAN, J.
MILLER, T.
Multi-User Facility for Protein Crystal Growth in Microgravity: Results From PCAM and DCAM. For presentation at IUCR Meeting, Seattle, WA, August 14–16, 1996.

CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
MOORE, T.E. ES83
POLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
WYGANT, J.R. University of Minnesota
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

CHANG, A.Y. JPL
SALAWITCH, R.J. JPL
MICHELSCHEN, H.A. Harvard University
GUNSON, M.R. JPL
ABRAMS, M.C. LaRC
ZANDER, R. University of Liege
RINSLAND, C.P. LaRC
WEBSTER, C.R. JPL
ABBAS, M.M. ES41
ET AL.

A Comparison of Measurements From ATMOS and Instruments Aboard the ER–2 Aircraft: Halogenated Gases. For publication in American Geophysical Union, Washington, DC, 1996.

CHANG, A.Y. JPL
SALAWITCH, R.J. JPL
MICHELSCHEN, H.A. Harvard University
GUNSON, M.R. JPL
ABRAMS, M.C. LaRC
ZANDER, R. University of Liege
RINSLAND, C.P. LaRC
LOEWENSTEIN, M. ARC
ABBAS, M.M. ES41
ET AL.

A Comparison of Measurements From ATMOS and Instruments Aboard the ER–2 Aircraft: Tracers of Atmospheric Transport. For publication in American Geophysical Union, Washington, DC, 1996.

CHANG, F.-C. UAH
JEDLOVEC, G.J. ES41

CHANG, F.-C. UAH
JEDLOVEC, G.J. ES41

CHANG, F.-C. UAH
JEDLOVEC, G.J. ES41

Total Precipitable Water Distribution During Severe Winters Over the Southeastern United States. For presentation at The 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

CHEN, P.S. IIT Research Institute
KURUVILLA, A.K. IIT Research Institute
MALONE, T.W. EH23
STANTON, W.P. EH23

Improving Cryogenic Toughness of Alloy 2195 by Optimizing Aging. For publication in Journal of Materials Science and Engineering, Stony Brook, NY.

CHOU, L.C. ED32
GUO, K.L. Alabama A&M University
LIAW, G.S. Alabama A&M University

Transitional Flows Over a Vertical Plate by a Modified Direct Simulation Monte Carlo Method. For presentation at 20th International Symposium of Rarefied Gas Dynamics Conference, Beijing, China, August 19–24, 1996.

CHRISTIAN, J.H. ES41
BERGSTROM, J.W. ES41
STEWART, M.F. ES41

The Low Light Level Cloud Imager. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

CHRISTIAN, H.J. ES41
DRISCOLL, K.T. ES41
GOODMAN, S.J. ES41
BLAKESLEE, R.J. ES41
MACH, D.A. ES41
BUECHLER, D.E. ES41

Seasonal Variation and Distribution of Lightning Activity. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

CHUNG, H. SUNY
RAGHOTHAMACHAR, B. SUNY
ZHOU, W. SUNY
DUDLEY, M. SUNY
LICHTENSTEIGER, M. ES75
GILLIES, D.C. ES75

CLARK, A.M. Harvard-Smithsonian
BRUNI, R.J. Harvard-Smithsonian
ROMAINE, S.E. Harvard-Smithsonian
SCHWARTZ, D.A. Harvard-Smithsonian
YIP, P.W. USAF
DREHMAN, A.J. USAF
SHAPIRO, A.P. EB52

Correlation Between X-Ray Reflectivity Measurements and Surface Roughness of AXAF Coated Witness Samples. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Title</th>
<th>Conference/Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDBETTER, F.E.</td>
<td>EH32</td>
<td>Core Plasma Ion Temperatures From POLAR/TIDE.</td>
<td>For presentation at 1996 Huntsville Workshop, Huntsville, AL, September 1996.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mir Space Station Trace Contaminant Assessment.</td>
<td>For presentation at SAE 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Issues on Geomechanics.</td>
<td>For presentation at Fifth International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search for Rapid X-Ray Variability From the Black-Hole Candidate GRO J1655−40.</td>
<td>For publication in Astrophysical Journal, Chicago, IL.</td>
<td></td>
</tr>
<tr>
<td>COBB, S.D.</td>
<td>ES75</td>
<td>Space Station Furnace Facility.</td>
<td>For presentation at SPIE’s 1996 International Symposium, Denver, CO, August 4–9, 1996.</td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN PARADIS, J.</td>
<td>UAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCOTT, D.M.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
<td></td>
<td>For publication in Astrophysical Journal, Chicago, IL.</td>
<td></td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN PARADIS, J.</td>
<td>UAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCOTT, D.M.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACIESAS, W.S.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DER KLIS</td>
<td>University of Amsterdam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
<td></td>
<td>For publication in Astrophysical Journal, Chicago, IL.</td>
<td></td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRARY, D.J. ES84 KOUVELIOTOU, C. USRA VAN PARADUS, J. UAH VAN DER HOOFT, F. University of Amsterdam SCOTT, D.M. USRA ZHANG, S.N. USRA RUBIN, B.C. USRA FINGER, M.H. USRA HARMON, B.A. ES84 ET AL.

1,100 Days of BATSE Observations of Cygnus X–1. For publication in Astronomy and Astrophysics, Germany.

CRAVEN, P.D. CHANDLER, M.O. MOORE, T.E. COMFORT, R.H.
The Search for He$^+$. For presentation at 1996 American Geophysical Union Meeting, San Francisco, CA, December 1996.

CRAVEN, P.D. COMFORT, R.H. RICHARDS, P.G.

CRAVEN, P.D. GALLAGHER, D.L. COMFORT, R.H.
The Relative Concentration of He$^+$ in the Inner Magnetosphere as Observed by DE1/RIMS. For publication in Journal of Geophysical Research.

CRONISE, R.J. NOEVER, D.A. BRITTAIN, A.
Self Organized Criticality in Closed Ecosystems: Carbon Dioxide Fluctuations in Biosphere 2. For publication in International Journal of Climatology, Birmingham, United Kingdom.

CURRENI, P.A. SNYDER, R.S. LEHOCZYK, S.L.
Materials Science in Low Gravity. For presentation at SPACE 96, Fifth International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.

CURTIS, L. PD21 VAN DYKE, M. PD21 LAJOIE, R.M. Boeing

CURTIS, R. Boeing PERRY, J. ED62 ABRAMOV, L.

DESANCTIS, C. PS01
An Overview of Future NASA Programs. For presentation at 33rd Space Congress, Cocoa Beach, FL, April 23–26, 1996.

DISCHINGER, H.C. EO66 EVANS, A.M. EO66 LOUGHEAD, T.E. EO66

DOLD, P. University of Freiburg CROLL, A. University of Freiburg SZOFRAN, F. ES75 KAISER, T. University of Freiburg SALK, M. University of Freiburg FIEDERLE, M. University of Freiburg BENZ, K.W. University of Freiburg

DRISCOLL, K.T. ES41 BLAKESLEE, R.J. ES41 BAILEY, J.C. ES41 CHRISTIAN, H.J. ES41
Atmospheric Conductivity Observations Over a Wide Latitudinal Range. For presentation at 10th International Conference on Atmospheric Electricity, Osaka, Japan, June 10–14, 1996.

DUMBACHER, D.L. XX01
Results of the DC–XA Program. For presentation at 1996 AIAA Space Program and Technology Conference and Exhibit, Huntsville, AL, September 24–26, 1996.
EDBERG, D. McDonnell Douglas
SCHENCK, D. McDonnell Douglas
NURRE, G. ED01
WHORTON, M. ED12

EDBERG, D. McDonnell Douglas
SCHENK, D. McDonnell Douglas
BOUCHER, R. McDonnell Douglas
NURRE, G. ED01
WHORTON, M. ED01

EDWARDS, D.L. EH12
HUBBS, W.C. EH12
PISZCZOR, M. LeRC

EDWARDS, D.L. EH12
ZWIENER, J.M. EH12
WERTZ, G.E. EH12
VAUGHN, J.A. EH12
KAMENETZKY, R.R. EH12
FINCKENOR, M.M. EH12
MESHISHNEK, M.J. The Aerospace Corp.

Radiation-Induced Degradation of White Thermal Control Paint. For presentation at 14th International Conference on the Application of Accelerator in Research and Industry, Denton, TX, November 6-9, 1996, and for publication in the conference proceedings.

EFFINGER, M. EH34
BARNETT, T. SRI
TUCKER, D. EH34

Tensile and Interlaminar Shear Evaluation of DuPont/Lanxide CMC’s. For presentation at 20th Annual American Ceramic Society Meeting, Cocoa Beach, FL, January 1996.

ELLIOIT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83

Preliminary Ion Velocities Obtained Using Thermal Ion Dynamics Experiment (TIDE). For presentation at The Huntsville Workshop, Guntersville, AL, September 1996.

EMRICH, W.J., JR. PS05

ERICKSON, R.J. ED62
ROY, R.J. Hamilton Std. Sp. Sys.
TATARA, J.D. ION Electronics, Inc.

Solid Polymer Electrolysis Oxygen Generator Testing at MSFC. For presentation at International Conference on Environmental Systems, Monterey, CA, July 8-11, 1996.

ETHRIDGE, E.C. ES75

The Viscosity of Palladium Alloys. For publication in Journal of Applied Physics, Argonne, IL.

ETTER, B.D. Texas A&M University
DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. Signatech, Inc.

EVANS, D. JPL
QUATTROCHI, D. ES41

EVANS, D.M. University of Texas at El Paso
HUANG, D. University of Texas at El Paso
MCCLURE, J.C. University of Texas at El Paso
NUNES, A.C. EH23

Melting and Arc Efficiency of Plasma Arc Welds. For publication in American Welding Society Journal, Miami, FL.

EVANS, S.W. ED13

Post-Deployment Recontact Issues for the SEDS/SEDSAT Mission. For presentation at Sixth AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, February 11-15, 1996.

FALCONER, D.A. ES82 (NRC)
ALLEN, G.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82

3-D Magnetic Fields and Coronal Heating in Active Regions. For presentation at 188th AAS SPD, Madison, WI, June 9-13, 1996.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

FALCONER, D.A. ES82
MOORE, R.L. ES82
GARY, G.A. ES82
PORTER, J.G. ES82
Magnetic Field Conditions That Produce Strong
Coronal Heating in Active Regions: Ranking by
Magnetic Volume Ratio. For presentation at
American Geophysical Union Meeting, San
Francisco, CA, December 1996.

FALCONER, D.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo
Neutral-Line Magnetic Shear and Enhanced
Coronal Heating in Solar Active Regions. For
publication in Astrophysical Journal, Chicago, IL.

FINCKENOR, M.M. EH12
KAMENETZKY, R.R. EH12
VAUGHN, J.A. EH12
MELL, R. AZ Technology
SIMS, J. AZ Technology
THOMPSON, R. AZ Technology
LEMASTER, P. AZ Technology
Investigations of Space Environment Effects on
Electrically Conductive Thermal Control Coatings at MSFC. For presentation at 28th Inter-

FISHMAN, G.J. ES81
Gamma-Ray Bursts: Observational Overview. For

FISHMAN, G.J. ES81
Gamma-Ray Bursts: An Overview. For publication in Astronomical Society of the Pacific,
Baltimore, MD, December 1995.

FISHMAN, G.J. ES81
The Mystery of Gamma-Ray Bursts. For presenta-
tion at Colloquium at Washington University,
St. Louis, MO, January 30–February 2, 1996.

FISHMAN, G.J. ES81
Gamma-Ray Bursts: Observational Overview. For
presentation at International School of Cosmic-

FISHMAN, G.J. ES81
The Mystery of Gamma-Ray Bursts. For presenta-
tion at Auburn University, Auburn, AL, May
10, 1996.

FISHMAN, G.J. ES81
HARMON, B.A. ES84
KOUVELIOTOU, C. USRA
VAN PARADIJZ, J. UAH
BRIGGS, M.S. UAH
ET AL.
GRO J1744–28. For publication in Central
Bureau for Astronomical Telegrams, Circular
No. 6290.

FISHMAN, G.J. ES81
HARMON, B.A. ES84
ZHANG, S.-N. USRA
BATSE-COMPTON Observatory as an All-Sky
Monitor for INTEGRAL. For presentation at
INTEGRAL Workshop, St. Malo, France,
September 1996.

FISHMAN, G.J. ES81
KOUVELIOTOU, C. USRA
VAN PARADIJZ, J. UAH
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ET AL.
Galactic Center. For publication in Central
Bureau for Astronomical Telegrams, Circular
No. 6272.

FITZJARRALD, D.E. ES41
ROBERTSON, F.R. ES41
CROSSON, W. Institute for Global Change
SRIKISHEN, J. Institute for Global Change
Short-Term Climate Variability Induced by SST
and Soil Moisture Anomalies During 1987–
1988. For presentation at AMS Conference on
Global Ocean-Atmosphere-Land System,
Atlanta, GA, January 1996.

FOK, M.-C. ES83
MOORE, T.E. ES83
GREENSPAN, M.E. University of Maryland
Ring Current Development During Storm Main
Phase. For publication in Journal of Geophysical
Research-Space Physics.

FOK, M.C. USRA
PEREZ, J.D. Auburn University
SPIRO, R.W. Rice University
MOORE, T.E. ES83
Neutral Atom Imaging of a Documented Storm.
For presentation at 1996 Fall American Geo-
physical Union Meeting. San Francisco, CA,
December 1996.
GRINDLAY, J. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian

FOSTER, R.S. Naval Research Laboratory
TAVANI, M. Columbia University
HARMON, B.A. ES84
ZHANG, S.N. USRA
PACIESAS, W.S. UAH

FRAZIER, D.O. ES01

FRAZIER, D.O. ES01
HUNG, R.J. UAH
PALEY, M.S. USRA
LONG, Y.T. UAH
Effects of Convection During the Photodeposition of Polydiacetylene Thin Films. For publication in Journal of Applied Physics, Argonne, IL.

FRAZIER, D.O. ES71
HUNG, R.J. UAH
PALEY, M.S. USRA
PENN, B.G. ES71
LONG, Y.T. UAH
Convection During Low Pressure Processing by Physical Vapor Transport. For publication in Journal of Crystal Growth, The Netherlands.

GALLAGHER, D.L. ES83
CRaven, P.D. ES83
COMFORT, R.H. UAH
Global Core Plasma Model. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

GALLAGHER, D.L. ES83
FOK, M.-C. ES83
FUSELIER, S. Lockheed Martin
GLADSTONE, R. Southwest Research
GREEN, J.L. GSFC
SMITH, M. GSFC
FUNG, S.F. GSFC
PEREZ, J. Auburn University
REIFF, P. Rice University
WILSON, G. ES83
Theory and Modeling for the Image Mission. For presentation at 1996 Fall American Geo-

GALLAGHER, D.L. ES83
OBER, D. UAH
Plasmasphere Modeling for the Image Mission. For presentation at 1996 Fall American Geo-

GALLAHER, M. ED13
COUGHLIN, D. ED13
KRUPP, D. ED13
A Guidance and Control Assessment of Three Vertical Landing Options for RLV. For present-

GARY, G.A. ES82
Rendering Three-Dimensional Solar Coronal Structures. For presentation at SCOSTEP/STEP

GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
SOFRED, F.R. ES75
WATING, D.A. ES75
ALEXANDER, H.A. USRA
JERMANN, G.A. ES75
Effect of Residual Accelerations During Micro-

GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
SOFRED, F.R. ES75
WATING, D.A. ES75
ALEXANDER, H.A. USRA
JERMANN, G.A. ES75
Directional Solidification of Mercury Cadmium Telluride During the Second United States

GILLIES, D.C. ES75
REEVES, F.A. ES75
JETER, L.B. ES75
SLED, J.D. ES75
HOLMES, R.R. ES75
COLE, J.M. ES75
LEHOCZKY, S.L. ES75

GOLDBERG, B. ED01
More Green for NASA. For publication in Aerospace America.

GOODWIN, C.J. Meyer Analytics
GOLDBERG, B. ED52
Catastrophic Failure of Stored Energy Modules Following Orbital Debris Penetration. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4–9, 1996.

GREEN, J.L. GSFC
TAYLOR, W.W.L. Nichols Research Corp.
FUNG, S.F. GSFC
BENSON, R. GSFC
CALVERT, W. University of Iowa
REINISCH, B. University of Massachusetts
GALLAGHER, D.L. ES83
REIFF, P. Rice University

GREENWOOD, L.R. FA31

GRINER, CAROLYN S. DD01
LUTTRELL, TERRY A11
Evolution of NASA’s Communications Networks: Cost-Effective Synergy Between Industry and Government. For presentation at 47th International Astronautical Congress, Beijing, China, October 7–11, 1996.

GUILLORY, A.R. ES41

GUILLORY, A.R. ES41
SUGGS, R.J. ES41
LERNER, J. ES41

GUONSI, M.R. JPL
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
ALLEN, M. JPL
BROWN, L.R. JPL
BROWN, T.L. JPL
CHANG, A.Y. JPL
GOLDMAN, A. University of Denver
IRION, F.W. California Institute of Technology
ET AL.

GUO, H. New Mexico Highlands
MARTINEZ, A. New Mexico Highlands
MYERS, T. New Mexico Highlands
GONZALEZ, N. New Mexico Highlands
SANCHADASA, M. University of Alabama
PENN, B. ES76
CLARK, R.D. New Mexico Highlands

HAGOPIAN, J. EO47
MAXWELL, T. EO47

HAGYARD, M.J. ES82

HAGYARD, M.J. ES82
Recent Results on Preflare Energy Buildup. For publication in Proceedings of Workshop on
Solar Flares and Related Disturbances, Hitachi, Japan, January 1996.

HALE, J.P., II

HALE, J.P., II

HALL, D.K.
LAYTON, S.D.
Lockheed Martin

HAMAKER, J.W.

HAMMER, R.
Kiepenheuer-Institut fur Sonnenphysik
NESIS, A.
Kiepenheuer-Institut fur Sonnenphysik
MOORE, R.L.
ES82
SUSS, S.T.
ES82
MUSIELAK, Z.M.
UAH
Effects of Thermal Conduction on the Energy Balance of Open Corona Regions. For publication in Astronomical Society of the Pacific Griffith Observatory, Los Angeles, CA.

HANICHAK, M.
FINCKENOR, M.
Lockheed Martin
EH12

HANSON, J.M.
DUKEMAN, G.A.
ED13
KASHER, J. University of Nebraska

SIMON, G.W. AFMC/PL/GFSS
GONG Observations of Solar Surface Flows. For presentation at 188th Meeting of the AAS, Madison, WI, June 9–13, 1996.

HEAMAN, J.P. ED34
A Nozzle Test Facility. For presentation at 85th Supersonic Tunnel Association Meeting, Atlanta, GA, April 14–17, 1996.

HERRMANN, M. PD21

HILL, F. National Solar Observatory
STARK, P.B. ES82
ANDERSON, E.R. National Solar Observatory
ANTIA, H.M. National Solar Observatory
BROWN, T.M. High Altitude Observatory
HATHAWAY, D.H. ES82
ET AL.
GONG Estimates of Solar Eigenspectral Parameters. For publication in Science, Washington, DC.

HIRAHARA, J. UAH
HORWITZ, J.L. UAH
GERMANY, G. UAH
MOORE, T.E. ES83
SPANN, J.M. ES83
CHANDLER, M.O. ES83
GILES, B.L. ES83
Properties of Upflowing Ionospheric Ion Conics and Magnetosheath Proton Precipitation at 5,000 km Altitude Over Cusp/Cleft Auroral Forms: Initial Observations From the TIDE and UVI Instruments on POLAR. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

HO, J.X. ES76
CHANG, B. ES76
KEELING, K. ES76
HOLOWACHUK, E.W. MIB Hospital
PETERS, T. MIB Hospital
CARTER, D.C. ES76

HOOD, R.E. ES41
SPENCER, R.W. ES41

HOOD, R.E. ES41
SPENCER, R.W. ES41
CHISHOLM, W. ES93
SPENCE, R. Mevatec
SIMMONS, D. Mevatec
CORREA, T. Mevatec
MARTINEZ, N. ES93
LOBL, E. UAH

HOOD, R.E. ES41
SPENCER, R.W. ES41

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
HAKKILA, J. Mankato State University
The Internal Luminosity Distribution of Bright Gamma-Ray Bursts and Its Relation to Duration and Spectral Hardness. For publication in Astrophysical Journal, University of Chicago Press, Chicago, IL.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution(s)</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAKKILA, J.</td>
<td>Mankato State University</td>
<td>Gas Contamination During Plasma Welds in Aluminum.</td>
<td>For publication in Welding Journal, Miami, FL.</td>
</tr>
<tr>
<td>HOU, R.</td>
<td>University of Texas</td>
<td>Baffle Effect of Sloshing-Induced Fluid Mass Center Disturbances and Slosh Reaction Force Acting on Spacecraft in Response to Impulse in Microgravity.</td>
<td>For publication in Journal of Astronautics, 1995.</td>
</tr>
</tbody>
</table>
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Effect of Baffles on Orbital Accelerations—
Induced Bubble Oscillations in Microgravity.
For publication in International Journal of
Mechanical Science, 1996.

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Baffle Effect Modulated Interface Oscillations
Activated by Gravity Gradient Dominated
Accelerations in Microgravity. For publication in
Microgravity Quarterly, 1996.

HUNG, R.J. ES71 (UAH)
PAN, H.L. ES71 (UAH)
Effect of Baffles on Sloshing Modulated Forces
and Torques Disturbances Reacted to Gravity
Gradient Dominated Accelerations. For publica-
tion in Transactions of the Canadian Society for
Mechanical Engineering, 1996.

HUNG, R.J. ES41 (UAH)
ZU, G.J. UAH
LONG, Y.T. UAH
Coupling of Gravity-Gradient-Dominated Accele-
ration-Induced Slosh Reaction Torques With
Spacecraft Orbital Dynamics. For publication in

HUTT, J.J. EP12
CRAMER, J.M. EP12
Advanced Rocket Injector Development at the
Marshall Space Flight Center. For presentation at
AIAA Space Programs and Technology Confer-
ence, Huntsville, AL, September 24–26, 1996.

IRION, F.W. California Institute of Technology
MOYER, E.J. California Institute of Technology
GUNSON, M.R. JPL
RINSLAND, C.P. LaRC
MICHELSON, H.A. Harvard University
SALAWITCH, R.J. JPL
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
CHANG, A.Y. JPL
ET AL.
Stratospheric Observations of CH3D and HDO
From ATMOS Infrared Solar Spectra: Enrich-
ments of Deuterium in Methane and Implica-
tions for HD. For publication in American Geo-
physical Union, Washington, DC, 1996.

JACKSON, M.E. ED12
SHTESSEL, Y.B. UAH
Sliding Mode Thermal Control System for Space
Station Furnace Facility. For publication in IEEE
Transactions on Control Systems Technology,

JARZEMBSKI, M.A. ES41
SRIVASTAVA, V. ES41
CHAMBERS, D.M. Micro Craft, Inc.
Lidar Calibration Technique Using Lab-
Generated Aerosols. For publication in Applied

JEDLOVEC, G.J. ES41
ATKINSON, R.J. Lockheed Martin
LERNER, J.A. UAH
Upper-Level Water Vapor Transport From
GOES Data. For presentation at Conference on
Hydrology, 77th AMS Annual Meeting, Long

JEDLOVEC, G.J. ES41
ATKINSON, R.J. Lockheed Martin
KIDDER, S.Q. Colorado State University
A Water Vapor Transport Index for Climate
Research. For presentation at Second GEWEX

JENKINS, F.M. Auburn University
CRUIT, W. EP12
SMITH, A. EP12
Cold-Flow Study of Hybrid Rocket Motor Flow
Dynamics. For presentation at 32nd Annual
Joint Propulsion Conference, Orlando, FL, July
1996.

JOHNSON, D.L. EL23
PEARSON, S.D.
Tornadic Weather Consideration for Various
NASA Sites/Projects. For presentation at AIAA

JOHNSON, L. PS02
ESTES, R. Smithsonian
LORENZINI, E. Smithsonian
CARROLL, J. Tether Appl. Comp.
GILCHRIST, B. University of Michigan
Electrodynamic Tethers for Spacecraft Propul-
sion and Reboost of the International Space
Station. For presentation at AIAA Space Programs
and Technology Conference, Huntsville, AL,
September 24–26, 1996.

JUSTUS, C.G. Computer Sciences Corp.
JAMES, B. EL23
JOHNSON, D.L. EL23

JUSTUS, C.G. Computer Sciences Corp. JOHNSON, D.L. EL23

JUSTUS, C.G. Computer Sciences Corp. JOHNSON, D.L. EL23

KANKELBORG, C.C. Stanford University WALKER, A.B.C., Jr. Stanford University HOOVER, R.B. ES82 BARBEE, T.W., Jr.

Lawrence Livermore National Laboratory Observation and Modeling of Soft X-Ray Bright Points. For publication in Astrophysical Journal, Chicago, IL.

KAUKLER, W.F. UAH CURRERI, P.A. ES75

KAYE, J.A. NASA Headquarters MILLER, T.L. ES41

The ATLAS Series of Shuttle Missions. For publication in Geophysical Research Letters, June 1996.

KELLER, V. PS02 CARRINGTON, C. PD12 RUPP, C. PS04 CARROLL, J. Tether Applications, Inc. VAS, I. Boeing JOHNSON, I. Boeing

Space Station Reboost Via Orbiter Towing and Tethered Momentum Exchange. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

KEYS, A. EO37

KHAZANOV, G.V. ES83 LIEMOHN, M.W. ES83 MOORE, T.E. ES83

KHAZANOV, G.V. ES83 MOORE, T.E. ES83 HORWITZ, J.L. UAH RICHARDS, P.G. UAH KONIKOV, Y.V. Izmiran, Russia

KHAZANOV, G.V. ES83 MOORE, T.E. ES83 KRIVORUTSKY, E.N. UAH HORWITZ, J.L. UAH LIEMOHN, M.W. University of Michigan

Lower Hybrid Turbulence and Ponderomotive Force Effects in Space Plasmas Subjected for Large-Amplitude Low-Frequency Waves. For publication in Geophysical Letter.

KHAZANOV, G.V. ES83 MOORE, T.E. ES83 LIEMOHN, M.W. University of Michigan KOZYRA, J.U. University of Michigan

KOSHK, W.J. ES41 SOLAKIEWIEZ, R.J. Chicago State University

KOSHUT, T.M. UAH
PACIESAS, W.S. UAH
KOUVELIOTOU, C. USRA
VAN PARADIJS, J. UAH
PENDLETON, G.N. UAH
FISHMAN, G.J. ES81
MEEGAN, C.A. ES84

KOUVELIOTOU, C. USRA
DEAL, K. UAH
WOODS, P. UAH
BRIGGS, M. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES81
VAN PARADIJS, J. UAH
FINGER, M.H. USRA
KOMMERS, J. MIT
LEWIN, H.G. MIT

KOUVELIOTOU, C. USRA
GREINER, J. UAH
VAN PARADIJS, J. UAH
FISHMAN, G.J. ES81
ET AL.

IAUC #6369: GRO J1744–28. For publication in IAUC #6369, Cambridge, MA.

KOUVELIOTOU, C. USRA (ES84)
KOMMERS, J. MIT
LEWIN, W.H.G. MIT
VAN PARADIJS, J. UAH
ET AL.

KOUVELIOTOU, C. USRA
VAN PARADIJS, J. UAH
FISHMAN, G.J. ES81
BRIGGS, M.S. UAH
KOMMERS, J. MIT
HARMON, B.A. ES84
MEEGAN, C.A. ES84
LEWIN, W.H.G. MIT

KRAMER, E.A. University of Georgia
LUVALL, J.C. ES41

The Use of Thermal Remote Sensing for Measuring the Vegetation Dynamics of a Dry Tropical Forest in Costa Rica. For presentation at U.S. Landscape Ecology Symposium, Galveston, TX, March 26–30, 1996.

KRvorUTSKY, E.N. UAH
HORWITZ, J.L. UAH
KHAZANOY, G.V. NRC/ES83
MOORE, T.E. ES83
LIEMOHN, M.W. ES83

Lower Hybrid Oscillations in the Multicomponent Space Plasmas Subjected to Low-Frequency Waves. For presentation at 1996 Spring American Geophysical Union Meeting, May 20–24, 1996.

LAL, R.B. Alabama A&M University
ZHANG, H.W. Alabama A&M University
WANG, W.S. Alabama A&M University
AGGARWAL, M.D. Alabama A&M University
LEE, H.W.H. LLNL

PENN, B.G. ES76
Crystal Growth and Optical Properties of 4-Aminobenzophenone (ABP) Crystals for NLO Applications. For presentation at the 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

LANSING, M. UAH
WALKER, J. UAH
RUSSELL, S.S. EH13N

Composite Pressure Vessel Failure Prediction by Computer Vision and Neural Network Analysis. For presentation at 1996 Spring ASNT Conference, Norfolk, VA, March 18–22, 1996.

LARSON, D. EO47
HAGOPIAN, J. EO47

LASSITER, J.O. ED74

Microgravity Acceleration Measurements for Payload Isolation Development. For publication in Sound and Vibration, Bay Village, OH, 1996.

LASSITER, J.O. ED73

LEE, J.A. EH23

LEE, J.A.

LEE, J.A.

LEE, S. Kyunggi University, Korea
SALAMON, N.J. Pennsylvania State University

LERNER, J.A.

LIU, J. Engineering Sciences, Inc.
SHANG, H.M. Engineering Sciences, Inc.
CHEN, Y.S. Engineering Sciences, Inc.

LO, C.P. University of Georgia
QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

LO, C.P. University of Georgia
QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

LO, C.P. University of Georgia
QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

LU, H.-I.
MILLER, T.L. Wave Dispersion in a Rotating, Differentially Heated Fluid Model. For publication in Dynamics of Atmospheres and Oceans.

LU, H.-I.
MILLER, T.L. Wave Dispersion in a Rotating, Differentially Heated Fluid Model. For publication in Dynamics of Atmospheres and Oceans.

LU, H.-I.
MILLER, T.L. Wave Dispersion in a Rotating, Differentially Heated Fluid Model. For publication in Dynamics of the Atmosphere and Oceans, Amsterdam, The Netherlands, 1995.

LURIE, C.
FOROozan, S.
BREWER, J.

Conference, Huntsville, AL, September 23–25, 1996.

LUVALL, J.C. ES41
QUATTROCHI, D.A. ES41
LO, C.-P. University of Georgia

LYLES, G.M. PF02

MACKERRAS, D. University of Queensland
DARVENIZA, M. University of Queensland
ORVILLE, R.E. Texas A&M University
WILLIAMS, E.R. MIT
GOODMAN, S.J. ES41

MAJUMDAR, A.K. Sverdrup
BAILEY, J.W. Sverdrup
HOLT, K.A. EP22
TURNER, S.G. EP22

MARTIN, C. EP12
VAN DYKE, M. EP42

MAXWELL, T. EO47
HAGOPIAN, J. EO47

MAZURUK, K. USRA
SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZYK, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg1-xZnxTe Pseudobinary Melts III: Viscosity. For publication in Journal of Applied Physics, Argonne, IL.

MCCALEY, R.C. AE01

MEEGAN, C.A. ES84
Observations of Gamma-Ray Bursts. For presentation at Joint APS/AAPT Meeting, Indianapolis, IN, May 2–5, 1996.

MEEGAN, C.A. ES84

MEEGAN, C.A. ES84
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
KOUELIOTOU, C. USRA
ET AL.
The Third BATSE Gamma-Ray Burst Catalog. For publication in Astrophysical Journal, Chicago, IL.

MEHTA, G. Lockheed Martin
HASTINGS, J. EP23
PERRY, G. EP85
JOHNSTONE, S. Rocketdyne

MEHTA, G. Lockheed Martin
INGRAM, C. Lockheed Martin
STONE, B. Rocketdyne
GROSSKOPF, W.J. EP42
LEE, C. EP42

MICHelsen, H.A. Harvard University
SALAwITCH, R.J. JPL
GUNSON, M.R. JPL
AELLIG, C. Naval Research Laboratory
KAempfer, N. Naval Research Laboratory
ABBAS, M.M. ES41
ABRAMS, M.C. LaRC
BROWN, T.L. JPL
CHANG, A.Y. JPL
ET AL.
MILLER, T.L. ES42

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MOHAMADINEJAD, H. McDonnell Douglas
KNOX, J.C. ED62
SMITH, J.E. UAH
FINN, J.E. Ames

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, R.L. ES82
FALCONER, D.A. NRC
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo
Evidence that Strong Coronal Heating Results From Photospheric Magnetic Flux Cancellation. For presentation at 27th Meeting of the AAS SPD, Madison, WI, June 9-13, 1996.

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. Lockheed
SHIBATA, K. National Solar Observatory
HIRAYAMA, T. National Solar Observatory
OGAWARA, Y.
Institute of Space and Astronomical Science
Form and Action of the 3-D Magnetic Field in Eruptive Solar Flares: Coronal Observations From the Yohkoh SXT. For presentation at SCOSTEP/STEP WG-1 Workshop on Measurements and Analyses of 3-D Solar Magnetic Field, Huntsville, AL, April 9-11, 1995.

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. Lockheed
SHIBATA, K. National Solar Observatory
HIRAYAMA, T. National Solar Observatory
OGAWARA, Y.
The 3-D Magnetic Eruption in the Birth of CME's: Coronal Observations From the Yohkoh SXT. For presentation at Chapman Conference, Bozeman, MT, August 11-15, 1996.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
PLOLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCHI, J.L. Southwest Research
ET AL.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
PLOLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
MCCOMAS, D.J. Los Alamos National Laboratory
NORDHOLT, J.E. Los Alamos National Laboratory
BERTHELIER, J.J. Centre d'Etudes Terrestre
Initial Results From the Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Investigation (PSI) on POLAR. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20-24, 1996.

MOORE, T.E. ES83
CHAPPELL, C.R. ES83
CHANDLER, M.O. ES83
FIELDS, S.A. ES83
PLOLLOCK, C.J. ES83
REASONER, D.L. ES83
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
EAKER, N. Southwest Research ET AL.

MOORE, T.E. ES83
POLLOCK, C.J. ES83
ADRIAN, M.F. UAH

MOORE, T.E. ES83
POLLOCK, C.J. ES83
ADRIAN, M.L. UAH
KINTNER, P.M. Cornell University
ARNOLDY, R.L. University of New Hampshire
LYNCH, K.A. University of New Hampshire

SCIFER—The Cleft Ion Plasma Environment at Low Solar Activity. For publication in Geophysical Research Letters.

MUSSE, J. Aerojet
NGUYEN, T. Aerojet
RESKE, E. ED32
MCDANIELS, D. ED32
GOROKOV, V. Chemical Automatics

NADARAJAH, A. UAH
PUSEY, M.L. ES76

Growth Mechanism and Morphology of Tetragonal Lysozyme Crystals. For publication in Journal of Acta Crystallographica Section D.

NEERGAARD, L.F. UAH
MUSIELAK, Z.E. UAH
HATHAWAY, D.H. ES82

Klein-Gordon Equations for Acoustic Waves and Their Applications in Helioseismology. For publication in Solar Physics, Dordrecht/Boston/London.
Neural Net to Predict Silica Aerogel Transparency. For publication in Physical Review A, Ridge, NY.

NOEVER, D.A. ES76
Computerized Monitoring of Aqueous Heavy Metal and Organic Chemical Contamination Based on Protozoa Swimming Response. For presentation at The Second International Conference on Environment and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOEVER, D.A. ES76
BRITTAIN, A. NRC/ES76
MATSOS, H.C. ES76
BASKARAN, S. Hughes
OBENHUBER, D. MCI
The Effects of Variable Biome Distribution on Global Climate. For presentation at The Seventh Annual Global Warming International Conference and Expo, Vienna, Austria, April 1–3, 1996.

NOEVER, D.A. ES76
CRONISE, R.J. ES76
MATSOS, H.C. ES76
Optimized Group Contribution Methods for Predicting Chemical Biodegradation and Eye Irritancy. For publication in Toxicological and Environmental Chemistry, Bayrenth, Germany.

NOEVER, D.A. ES76
MATSOS, H.C. ES76
CRONISE, R.J. ES76
LOOGER, L.L. ES76
RELWANI, R.A. ES76
JOHNSON, J.U. Alabama A&M University
Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns. For presentation at The Second International Conference on Environmental and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOLEN, A.M. EH12
ROBINSON, J.H. ED52
Aluminum Foam as Orbital Debris Shielding. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

NONEMAN, S.R. EO02
NAHAY, E. Teledyne Brown

NONEMAN, S.R. EO02

NOVAK, H.L. USBI
HALL, P.B. EH14
Development of Environmentally Compatible Solid Film Lubricants. For presentation at Second Aerospace Technology Conference, Huntsville, AL, August 6–8, 1996.

NURRE, G.S. ED12
WHORTON, M.S. ED12
KIM, Y. ED12
EDBERG, D. McDonnell Douglas
BOUCHER, R. McDonnell Douglas
SCHENCK, D.
Results of the STABLE Microgravity Vibration Isolation Flight Experiment. For presentation at 67th Shock and Vibration Symposium, Monterey, CA, November 18–22, 1996.

NURRE, G.S. ED12
WHORTON, M.S. ED12
KIM, Y. ED12
EDBERG, D. McDonnell Douglas
SCHENCK, D.
Oxidation Generation Technology Tests at MSFC. For presentation at 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

OGLE, K.Y. ED62
ERICKSON, R.J. ED62

OWENS, S.M. University of Albany
ULLRICH, J.B.
PANOMAREV, I.Y.
XIAO, Q.F.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

CARTER, D. ES76
SISK, R.C. ES76
GIBSON, W.M. ES76

PACIESAS, W.S. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES84
ZHANG, S.N. USRA
ROBINSON, C.R. USRA
Galactic Center. For publication in IAU Circular No. 6284, Cambridge, MA.

PALEY, M.S. USRA
FRAZIER, D.O. ES76
Photodeposition of Polydiacetylene Thin Films for Photonic Applications in 1-g and in Microgravity. For presentation at SPIE’s Annual Meeting, Denver, CO, August 4–9, 1996.

PALOSZ, W. ES75
Removal of Oxygen From Electronic Materials by Vapor Phase Processes. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

PALOSZ, W. ES75
GEORGE, M.A. Fisk University
COLLINS, E.E. Fisk University
CHEN, K.-T. Fisk University
ZHANG, Y. Fisk University
HU, Z. Fisk University
BURGER, A. Fisk University
Growth and Characterization of Cadmium-Zinc Telluride Crystals Grown by Seeded PVT. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

PALOSZ, W. ES75
GILLIES, D. ES75
GRASZA, K. IP PAS, Polland
CHUNG, H. SUNY
RAGHOTHAMACHAR, B. SUNY
DUDLEY, M. SUNY

PALOSZ, W. ES75
GRASZA, K. Polish Academy of Sciences
GILLIES, D. ES75
JERMAN, G. ES75

PETRUZZO, J.J., III UAH
SMITH, A.E. UAH
GREGORY, J.C. UAH
THOBURN, C. ES84
AUSTIN, R.W. ES84
PARNELL, T. ES84
DERICKSON, J.H. ES84
MASHEDER, M.R.W. University of Bristol

PARNELL, T. ES84
CHRISTL, M. ES84
ROBERTS, E. ES84
Scintillating Optical Fiber Calorimeter (SOFCAL) Detector. For presentation at SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, August 4–9, 1996.

PAVELITZ, S.D. Sverdrup Technology
ANDERSON, B.J. EL23
JAMES, B.F. EL23

PECK, J.A. ED23
Shape Optimization of Actively Controlled Mirror Segments. For publication in AIAA Journal.

PENDLETON, G.N. UAH
MALLOZZI, R.S. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
KOSHUT, T.M. UAH
HORACK, J.M. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES81
ET AL.
The Intensity Distribution for Gamma-Ray Bursts Observed With BATSE. For publication in Astrophysical Journal, Chicago, IL.

PERRY, J.L. ED62
CARRASQUILO, R.L. ED62
FRANKS, G.D. ED62
FREDERICK, K.R. ED62
KNOX, J.C. ED62
LONG, D.A. ED62
OGLE, K.Y. ED62
PARRISH, K.J. ED62

PETRUZZO, J.J., III UAH
SMITH, A.E. UAH
GREGORY, J.C. UAH
THOBURN, C. ES84
AUSTIN, R.W. ES84
PARNELL, T. ES84
DERICKSON, J.H. ES84
MASHEDER, M.R.W. University of Bristol

37
FOWLER, P.H. University of Bristol

PHILLIPS, S.M. EO47

PINDERA, M.Z. CFD Research Corp.
GIRIDHARAN, M.G. CFD Research Corp.
HUTT, J. EP13

POLITES, M.E. EB21

POLITES, M.E. EB21

POLITES, M.E. EB21

POLLOCK, C.J. ES83
COFFEY, V.N. ES83
ENGLAND, J.D. ES83
MARTINEZ, N.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
Thermal Electron Capped Hemisphere Spectrometer (TECHS) for Ionospheric Studies. For publication in Proceedings for Chapman Conference, Santa Fe, NM, April 1996.

POLLOCK, C.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
KINTNER, P.M. Cornell University
ARNOLDY, R.L. University of New Hampshire
SCIFER—Cleft Region Thermal Electron Distribution Functions. For publication in Geophysical Research Letter.

POLLOCK, C.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
KINTNER, P.M. Cornell University
BONNELL, J. Cornell University
ARNOLDY, R.L. University of New Hampshire
DEEHR, C. University of Alaska
STEINBECK-NEILSEN, H. University of Alaska
ET AL.
Rocket Sounding of the Cleft, With the Help of Near Real Time IMF and Solar Wind Data From the ISTP Wind Satellite. For presentation at 1996 Spring American Geophysical Union, Baltimore, MD, May 20–24, 1996.

PORTER, J.G. ES82
FALCONER, D.A. ES82 (NRC)
MOORE, R.L. ES82
HARVEY, K.L. SPRC
RABIN, D.M. NSO
SHIMIZU, T. University of Tokyo
Microflaring in Sheared Core Magnetic Fields and Episodic Heating in Large Coronal Loops. For presentation at 188th AAS SPD, Madison, WI, June 9–13, 1996.

POWERS, W.T. EB22
COOPER, A.E. EB22
WALLACE, T.L. Vanderbilt University

PREECE, R.D. UAH
BRIGGS, M.S. UAH
PENDLETON, G.N. UAH
PACIESAS, W.S. UAH
MATTESON, J.L. University of California
BAND, D.L. University of California
SKELETON, R.T. University of California
MEEGAN, C.A. ES84

PRESTWICH, A.H. Smithsonian Astrophysical
JOY, M. ES84
LUGINBUHL, C.B. U.S. Naval Observatory
SULKANEN, M. ES84
NEWBERRY, M. Axion Research
PUSEY, M.L. ES76

QUATTROCHI, D.A. ES41
Cities as Urban Ecosystems: A Remote Sensing Perspective. For presentation at PECORA 13 Symposium, Sioux Falls, SD, August 19–22, 1996.

QUATTROCHI, D.A. ES41
LAM, N.S-N. Louisiana State University
QIU, H.-L. Louisiana State University
ZHAO, W. Louisiana State University

QUATTROCHI, D.A. ES44
LO, C.P. University of Georgia
LUVALL, J.C. ES41

QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

RAMACHANDRAN, N. USRA
BAUGHER, C.R. ES75
ROGERS, J. ES75
PETERS, P. ES75
ROARK, W. Mevatec Corp.
PEARCY, G. Mevatec Corp.
Thermal Diffusion Experiment “Chuck”—Payload of STABLE. For presentation at SPIE Conference on Space Processing of Materials, Denver, CO, August 4–9, 1996.

RAMACHANDRAN, R. ES41
RAGHAVAN, R. ES41
GOODMAN, S.J. ES41
Estimating Ice Water Content Using Observed Lightning. For presentation at 10th International Conference on Atmosphere Electricity, Osaka, Japan, June 10–14, 1996.

RAMSEY, B.D. ES84
New Developments in X-Ray Detector Systems. For presentation at 50th Anniversary of Tata Institute of Fundamental Research, Bombay, India, August 12–17, 1996.

RAMSEY, B.D. ES84
APPLE, J.A. USRA
AUSTIN, R.A. USRA
DIETZ, K.L. USRA
MINAMITANI, T. USRA
KOLODZIEJCZAK, J.J. USRA
WEISSKOPF, M.C. ES84

RAO GUDIMETLA, V.S. Oregon Graduate Institute
KAVAYA, M.J. EB53
Special Relativity Corrections to the Point of Return, Receiving Angles, and the Doppler Shift for Space-Based Lidars. For publication in Journal of Optical Society of America.

RICHARDSON, R.W. Ohio State University
SUBRAMANIAN, V.V. Ohio State University
PAGAN, J. Ohio State University
NUNES, A.C., JR. EH23

RICKMAN, D. ES41

RINSLAND, C.F. LaRC
MAHIEU, E. University of Liege
ZANDER, R. University of Liege
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
CHANG, A.Y. JPL
GOLDMAN, A. University of Denver
ABRAMS, M.C. Systems and Applied Sciences Corp.
ABBAS, M.M. ET AL.

39

RINSLAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
MICHELSIEN, H.A. Harvard University
ZANDER, R. University of Liege
NEWCHURCH, M.J. UAH
ABBAS, M.M. ES41
ABRAMS, M.C. Science Applications
MANNEY, G.L. JPL
ET AL.

RINSLAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
NEWCHURCH, M.J. UAH
ZANDER, R. University of Liege
ABBAS, M.M. ES41
ABRAMS, M.C. Science Applications
MANNEY, G.L. JPL
ET AL.

RITCHIE, A.A., JR. ES41
SMITH, M. ES41
GOODMAN, M. ES41
SCHUDALLA, R. ES41
CONWAY, D. ES41
LAFONTAINE, F. ES41
MOSS, D. ES41
MOTTA, B. ES41

Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Data Sets. For publication in Journal of Atmospheric Sciences, 1996.

ROBERTSON, F.R. ES41
BRASWELL, W.D. Nichols Research Corp.
FITZJARRALD, D.E. ES41

Water Vapor Feedback Deduced From Interannual Variability in ERBE Fluxes. For presentation at Second GEWEX Conference, Washington, DC, June 1996.

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41

MARSHALL, S. University of North Carolina
Anomalies in Coupled Energy and Water Budgets Over the Americas as Diagnosed From Pre-EOS Data Sets. For presentation at 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41

Synthesis of Upper-Tropospheric Vapor and Cloud Analyses During the NASA/NOAA Pathfinder Period. For presentation at AMS Meeting, Atlanta, GA, January 28–February 2, 1996.

ROBINSON, C.R. ES84
CORDOVA, F.A. NASA Headquarters
ISHIDA, M. Institute of Space and Astronautical Science, Japan

ROBINSON, J.H. ED52

ROBINSON, K. EO01

Investigator “Telescience” Requirements and NASA Capabilities for Space Station. For presentation at 1996 AIAA Space Programs and

ROE, F.D. EB44
MITCHELL, D.W. EB44
LINNER, B.M. EB44
KELLEY, D.L. EB44

ROGERS, J.R. ES76
ROBINSON, M.B. ES76

Containerless Processing in Reduced Gravity Using the TEMPUS Facility. For presentation at SPIE—International Society for Optical Engineering, Denver, CO, August 1996.

ROMAINE, S.E. Harvard-Smithsonian
BRUNI, R.J. Harvard-Smithsonian
CLARK, A.M. Harvard-Smithsonian
PODGORSKI, W.A. Harvard-Smithsonian
ZHOU, Y. Harvard-Smithsonian
SCHULTZ, D. Harvard-Smithsonian
SCHWARTZ, D.A. Harvard-Smithsonian
VAN SPEYBROECK, L. Harvard-Smithsonian
SHAPIRO, A.P. EB52

Monitoring Program for the Coating of the AXAF Flight Optics. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.

ROMAN, M.C. ED62

ROMANOWSKI, G.J.
RICKMAN, D. ES41

ROMERO, L. New Mexico Highlands
PENN, B. ES76
CLARK, R.D. New Mexico Highlands

Synthesis of 4-(N, N-Dimethylamino)-3-Dodecylamidonitro Benzene. For presentation at 13th Rocky Mountain Regional Meeting of American Chemical Society, Denver, CO, June 9–12, 1996.

ROMERO, M. New Mexico Highlands
WILSON, F. New Mexico Highlands
TOWNSEND, C. New Mexico Highlands
MYERS, T. New Mexico Highlands
PARHAM, T. New Mexico Highlands
MCCALL, S. Spelman College
CARDELINO, B. Spelman College
MOORE, C. ES76
PENN, B. ES76

CLARK, R.D. New Mexico Highlands

ROTHERMEL, J. ES41
HARDESTY, R.M. ES43
MENZIES, R.T. ES41

ROTHERMEL, J. ES43
HARDESTY, R.M. ES43
MENZIES, R.T. ES43

RUSSELL, C. EH23
PATON, B. Paton Electric Welding

Space Welding: On the Agenda. For presentation at 33rd Space Congress, Cocoa Beach, FL, April 23–26, 1996.

RUSSELL, K. EB53
CORDER, E. EB53
BRISCOE, J. EB53
WALLACE, S. EB53
DAVIS, J. EB53

RUSSELL, S.S. EH13N
WALKER, J. UAH
LANSING, M. UAH
NETTLES, A. EH33

RYAN, R.S. ED01

RYAN, R.S. ED01
TOWNSEND, J.S. ED01

SANDUBRAE, J.A.
Science Applications International
ROBERTS, H.A. Science Applications International
TEGLIA, W.R. Science Applications International
BUTLER, B.L. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04
The NASA Solid Propulsion Integrity Program (SPIP) CD-ROM Information System Database. For presentation at JANNAF S&MBS Meeting, Tampa, FL, December 4–8, 1995.

SANGHADASA, M. UAH
BARR, T.A., Jr. UAH
WU, B. UAH
CLOMENIL, D. UAH
TONG, Y. UAH
BHAT, K.N. UAH
CLARK, R.D. New Mexico Highlands
PENN, B. ES76

SCARL, E. Boeing
MCCALL, K. EB12

SCHILLER, S. South Dakota State
LUVALL, J.C. ES44
JUSTUS, J. ES44
Calibration of MODTRAN3 With PGAMS Observational Data for Atmospheric Corrections Applications. For presentation at SPIE—The International Society for Optical Engineering, Orlando, FL, April 17–21, 1996.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE
SIMNETT, G.M. University of Birmingham
FONTENLA, J.M. HAO/NCAR
TANDBERG-HANSSEN, E. ES01
Subflares and Surges in AR 2/44 During SMM. For publication in Astronomy and Astrophysics Journal.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE, Argentina
SIMNETT, G.M. University of Birmingham
TANDBERG-HANSSEN, E. ES01
VAN DRIEL-GESZTELYI, L. Observatoire de Paris
SHIBATA, K. NAO, Japan
GOULB, L. Harvard-Smithsonian

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
FROST, C. ED52
Hole Size and Crack Length Following Orbital Debris Penetration of Space Station Module Walls at 6.5 and 11.5 km/sec. For presentation at 20th International Symposium on Space Technology and Science, Gifu, Japan, May 19–26, 1996.

SCHONBERG, W.P. UAH
DAVENPORT, Q. UAH
SERRANO, J. UAH
GALA, D. UAH
LIQUORNIK, D.J. UAH
HAYAMI, R.A. UAH
WILLIAMSEN, J.E. ED52
Modeling the Internal Effects Within a Habitable Module Due to Perforation by an Orbital Debris Particle. For presentation at Sixth Annual AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, February 11–15, 1996.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
Space Station Module Wall Hole Size and Crack Length Following Orbital Debris Penetration. For presentation at Space 96: The Fifth International Conference and Exposition on
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCOTT, D.W. EO65
Spaceborne Digital Video—Perched on the High Dive of Interactive Ops. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

SEN, S. USTA
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
CATALINA, A. University of Alabama
CURRERI, P.A. ES75

SEN, S. ES75
STEFANESCU, D.M. ES75
KAUKLER, W.K. ES75
CURRERI, P.A. ES75
DHINDAW, B.K. ES75

SHA, Y.-G. USRA
SU, C.-H. ES75
ALEXANDER, H.A. USRA
LEHOCZKY, S.L. ES75
WANG, J.C. University of Alabama
Seeded Growth of HgZnTe by Directional Solidification Using an Initial Composition Profile Simulating a "Diffusion-Boundary" Layer. For publication in Journal of Crystal Growth, Amsterdam, The Netherlands.

SHA, Y.-G. ES71
SU, C.-H. ES75
LEHOCZKY, S.L. ES75
Seeded Growth of HgZnTe by Directional Solidification Using Initial Composition Profile Simulating a "Diffusion-Boundary" Layer. For presentation at 10th American Conference on Crystal Growth, Vail, CO, Aug. 4–9, 1996.

SHAH, Y.-G. USRA
SU, C.-H. ES75
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg1-xZnxTe Pseudobinary Melts II: Thermal Diffusivity and Conductivity of Hg1-xZnxTe Solids and Melts. For publication in Journal of Applied Physics, Argonne, IL.

SHAW, E.J. PP03

SHELL, M. EO37

SMITH, A.E. UAH
PETRUZZO, J.J. III UAH
GREGORY, J.C. UAH
THOBURN, C. UAH
AUSTIN, R.W. ES84
DERRICKSON, J.H. ES84
PARNELL, T.A. ES84
MASHEDER, M.R.W. University of Bristol
FOWLER, P.H. University of Bristol

SMITH, A.W. ED34
RAMACHANDRAN, N. ED34

SMITH, D.D. ES76
Cancellation of Nonlinear Absorption in Composite Materials. For presentation at Optical Society of America, Rochester, NY, October 20–24, 1996.

SMITH, D.D. ES76
FISCHER, G. University of Rochester
BOYD, R.W. University of Rochester
GREGORY, D.A. UAH
Cancellation of Photo-Induced Absorption in Metal Nanoparticle Composites Through a Counterintuitive Consequence of Local Field Effects. For publication in Journal of the Optical Society of America B, Washington, DC.

43
SMITH, O.E. Computer Sciences Corp.
ADELFANG, S.I. Computer Sciences Corp.
JUSTUS, C.G. Computer Sciences Corp.
SMITH, R.E. Physitron, Inc.
ANDERSON, B.J. EL54

SMITHERS, M.E. EB52
ZISSA, D.E. EB52

SPANN, J.F. ES83
GERMANY, G.A. UAH
PARKS, G.K. UW
BRITTNACHER, M.J. UW
ELSEN, R. UW

SPANN, J.F. ES83
PARKS, G.K. University of Washington
BRITTNACHER, M.J. University of Washington
ELSEN, R. University of Washington
GERMANY, G.A. University of Alabama
LUMMERZHEIM, D. University of Alaska
REES, M.H. University of Alaska
Observations of Dayside Aurora. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

SPANN, J.F. ES83
PARKS, G.K. University of Washington
BRITTNACHER, M.J. University of Washington
FREEMAN, T.J. University of Washington
SKOUG, R. University of Washington
GERMANY, G.A. UAH
DOUGANI, H. Tala Advanced
CAMPBELL, R.D. Computer Sciences Corp.
LEVITON, D.B. GSFC
BOUCARUT, R.A. GSFC
Comparison of Preliminary GGS/Polar Ultraviolet Imager Data and Ground Based Calibration Results. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

SPANN, J.F. ES83
PARKS, G.K. University of Washington
GERMANY, G.A. UAH
Preliminary Performance and Results From the Ultraviolet Imager on ISTP/GGS/Polar Satellite. For presentation at COSPAR Scientific Assembly, Birmingham, UK, July 13–21, 1996.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Water Vapor Feedback in the Tropics Deduced From SSM/T-2 Water Vapor and MSU Temperatures. For presentation at AMS Seventh Symposium on Global Change Studies, Atlanta, GA, January 28–February 2, 1996.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Satellite Measurements Show No Water Vapor Feedback During Post-Pinatubo Warm-Up. For publication in Nature.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.

SPENCER, R.W. ES41
CHRISTY, J.R. UAH
GRODY, N.C. NOAA/NESDIS

SPENCER, R.W. ES41
LAFONTAINE, F.J. Hughes STX
DEFELICE, T. University of Wisconsin
WENTZ, F.J. Remote Sensing Systems
Tropical Oceanic Precipitation Changes After the 1991 Pinatubo Eruption. For publication in AMS Journal of Atmospheric Sciences, Boston, MA.

SPENCER, S. Sverdrup
PARNELL, T.A. ES84

SPRINGER, A. ED34
COOPER, K. ED34
ROBERTS, F., III ED34

SPRINGER, A.M. ED34

STARK, B. ES82
ADAMS, M. ES82
HATHAWAY, D.H. ES82
HAGYARD, M.J. ES82
Evaluation of Two Fractal Methods for Magnetogram Image Analysis. For publication in Solar Physics, Boston, MA.

STARK, B. NRC
HATHAWAY, D.H. ES82
ADAMS, M. ES82

STONE, N.H. ES83

STONE, N.H. ES83
An Early Assessment of Science Results From the TSS–1R Mission. For presentation at AIAA Conference, Huntsville, AL, September 1996.

STONE, N.H. ES83
BONIFAZI, C. Agenzia Spaziale Italiana
GILCHRIST, B.E. University of Michigan
HARDY, D.A. PL/PGSG
MARIANI, F. Second University of Rome, Italy

SU, C.-H. ES75
LEHOCZKY, S.L. ES75
The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials. For publication in Microgravity Science and Technology, Bremen, Germany.

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
COBB, S.D. ES75
SCRIPA, R.N. UAH
Crystal Growth of Selected II-VI Semiconducting Alloys by Directional Solidification 1, Ground-Based Experiments. For publication in Journal of Materials Science, London, UK.

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
COBB, S.D. ES75
SCRIPA, R.N. UAH

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg1−xZnxTe Pseudobinary Melts I: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SUESS, S.T. ES82
SMITH, E.J. JPL
Latitudinal Dependence of the Radial IMF Component—Coronal Imprint. For publication in American Geophysical Union, Washington, DC.

SU, C.-H. ES75
SUESS, S.T. ES82
SMITH, E.J. JPL
PHILLIPS, J. Los Alamos National Laboratory
GOLDSTEIN, B.E. JPL
NERNEY, S. Ohio University

SU, C.-H. ES75
SUESS, S.T. ES82
SMITH, E.J. JPL
PHILLIPS, J. Los Alamos National Laboratory
NERNEY, S. Ohio University
Volumetric Heating in Coronal Streamers. For publication in Journal of Geophysical Research, Washington, DC.

SULKANEN, M.E. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. USRA

SULLIVAN, R.M. ED24
STOKES, E.H. Southern Research

A Model for the Effusion of Water in Carbon Phenolic Composites. For presentation at ASME International Mechanical Engineers Conference and Exposition, Atlanta, GA, November 17–21, 1996.

SUNKARA, H.B. ES76
WEISSMAN, J.M. University of Pittsburgh
PENN, B.G. ES76
FRAZIER, D.O. ES76
ASHER, S.A. University of Pittsburgh

SWANSON, G.R. ED25

SWANSON, G.R. ED25
ZACHARY, L.W. Iowa State University

TALIA, G.E. Wichita State University
NUNES, A.C. EH23

TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
MEEGAN, C.A. ES84

Improved Limits on Gamma-Ray Burst Repetition. For publication in Astrophysical Journal Letters, Chicago, IL.

TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
MEEGAN, C.A. ES84

TINKER, M.L. ED26

TINKER, M.L. ED23

Nonlinearities Due to Joint Friction and Clearance in a Structural Dynamic Test Fixture. For presentation at 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996.

TOMSICK, J. Columbia University
KAARET, P. Columbia University
FORD, E. Columbia University
DWYER, J. Columbia University
NOVICK, R Columbia University
SILVER, E. SAO/CFA
WEISSKOPF, M. ES84
ELSNER, R. ES84
ZIOCK, K. LLNL
ET AL.

TROUT, D.H. EL23

Investigation of the Bulk Current Injection Technique by Comparison to Induced Currents From Radiated Electromagnetic Fields. For presentation at IEEE Symposium for EMC, Santa Clara, CA, August 1996.

ULLRICH, J.B. X-Ray Optical Systems
OWENS, S.M.
XIAO, Q.F.
PANOMAREV, I.Y.
CARTER, D. ES76
SISK, R.C. ES76
GIBSON, W.M.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
<th>Event/Conference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
<td>Low-Frequency QPO in the X-Ray Transient GRO J1719-24. For publication in Astronomy and Astrophysics, Heidelberg, Germany.</td>
<td>ED01</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
<td>Damping of Natural Convection in Liquid Gallium With a Rotating Magnetic Field. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.</td>
<td></td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>ES75</td>
<td>Thermoconvective Instability in a Rotating Magnetic Field. For publication in Physics of Fluids Journal, Woodbury, NY.</td>
<td></td>
</tr>
<tr>
<td>VERDERAIME, V.</td>
<td>ED01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAUGHAN, R.</td>
<td>ED01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALKER, J.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORKMAN, G.L.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WANG, P.H. Alabama A&M University
HALE, J.P. EO66

WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. CORNELISON, J.

WATTING, D.A. GILLIES, D.C. LEHOCZKY, S.L. SZOFRAN, F.R. ALEXANDER, H. USRA
Convective Influence on Radial Segregation During Unidirectional Solidification of the Binary Alloy HgCdTe. For presentation at SPIE's 1996 International Symposium, Denver, CO, August 4–9, 1996.

WATRING, D.A. LEHOCZKY, S.L. WHORTON, M. BUSCHEK, H. CALISE, A.J. ED12

WEI, H. Engineering Sciences, Inc.
CHEN, Y.S. Engineering Sciences, Inc.
SHANG, H.M. Engineering Sciences, Inc.
WANG, T.S. ED32

WEISSKOPF, M.C. ES01
SPEYBROECK, L.V. Smithsonian Astrophysical
The Advanced X-Ray Astrophysics Facility (AXAF). For presentation at SPIE’s Annual Meeting, Denver, CO, August 4–9, 1996.

WENTZ, F.J. Remote Sensing Systems
SPENCER, R.W. ES41
SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm. For publication in AMS Journal of Atmospheric Sciences, Boston, MA.

WHITAKER, A.F. ES01

WHITESIDES, R.H. ERC, Inc.
DILL, R.A. ERC, Inc.
PURINTON, D.C. ERC, Inc.
SAMBAMURTHI, J.K. ED32

WHORTON, M. ED12
CALISE, A.J. Georgia Institute of Technology

WHORTON, M.S. ED12
CALISE, A.J. Georgia Institute of Technology

WILLIAMS, C. Lockheed Martin
SPARKS, S. EH33
ET Thermal Protection Materials Considerations Due to EPA Regulations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

WILLIAMSEN, J.E. ED52
GROSCHE, D. Southwest Research
SCHONBERG, W.P. UAH
Empirical Prediction Models for Hole and Crack Size in Space Station Shielding From 6 to 12 km/sec. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4–9, 1996.

WILLIAMSEN, J.E. ED52
GUAY, T.D. Sverdrup
International Space Station—Quantifying and Reducing Risk Following Orbital Debris Penetration. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 23–25, 1996.

WILSON, C.A. ES83
ZHANG, S.-N. USRA
FINGER, M.H. USRA
WILSON, R.B. ES84
SCOTT, M.
GRO J2058+42. For publication in IAUC 6238, International Astronomical Union.

WILSON, G.R. ES83

WILSON, G.R. ES83
CRAVEN, P.D. ES83

The Energization and Outflow of Molecular Ions. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WILSON, R.B. ES84
ZHANG, S.-N. USRA
SCOTT, M.
HARMON, B.A. ES84
KOH, T. California Institute of Technology
CHAKRABARTY, D. California Institute of Technology
VAUGHAN, B. California Institute of Technology
PRINCE, T.A. California Institute of Technology
Circular No. 6207: GRO J1735–27. For publication in IAU Circular No. 6207, Cambridge, MA.

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHHMANN, E.J. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHHMANN, E.J. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHHMANN, E.J. ES82

WINGARD, C.D. EH32

WINGARD, C.D. EH32
Use of the TMA Film Tension Technique for Applications With Polymeric Materials in the Space Station Program. For presentation at 11th International Congress on Thermal Analysis and Calorimetry (ICTAC), Philadelphia, PA, August 12–16, 1996.

WINNINGHAM, J.D. ES83
GURGIOLO, C.A. ES83
STONE, N.A. ES83
WRIGHT, K.H. ES83
Energetic Electrons Observed on TSS–1R, Their Dependence on Spacecraft Voltage and Relationship to Tether Current. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WRIGHT, H.B. Boeing ELROD, W. NASA

International Space Station U.S. Laboratory Outfitting. For presentation at SAE 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

WRIGHT, J.D. TDA Research, Inc. CHEN, B. TDA Research, Inc. WANG, C.M. TDA Research, Inc. PERRY, J. ED62

TATARA, J.D. Ion Electronics, Inc.

WRIGHT, K.H., JR. ES83 STONE, N.H. ES83 SORENSEN, J. UAH WINNINGHAM, J.D. Southwest Research Institute CONIFAZI, C. ASI, Italy

Ion Outflow From the TSS Satellite Plasma Sheath. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WU, S.-T. ES41

Training Capabilities in Support of Crew and Ground Space Station Payload Operations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

ZANDER, R. University of Liege MAHIEU, E. University of Liege GUNSON, M.R. JPL AELLIG, C. Systems and Applied Sciences Corp. ABRAMS, M.C. JPL

IRION, F.W. California Institute of Technology GOLDMAN, A. University of Denver ET AL.

ZHANG, S.N. USRA EBISAWA, K. USRA SUNYAEV, R. Space Research Institute UEDA, Y. Institute of Space and Astronautical Science, Japan HARMON, B.A. ES84 SAZONOV, S. Space Research Institute FISHMAN, G.J. ES84 INOUE, H. Institute of Space and Astronautical Sciences, Japan PACIESAS, W.S. UAH ET AL.

ZHANG, S.N. USRA FINGER, M.H. USRA HARMON, B.A. ES84 WILSON, C.A. ES84 PACIESAS, W.S. UAH ET AL.

ZHANG, S.N. USRA HARMON, B.A. ES84
Low State Hard X-Ry Outburst From the X-Ray Burster 4U1608–522 Observed by BATSE/CGRO. For presentation at Third Compton Symposium, Munich, Germany, October 1995.

Zhang, S.N. USRA
Harm, B.A. ES84
Paciesas, W.S. UAH
Fisher, G.J. ES84

Zhang, S.N. USRA
Harm, B.A. ES84
Paciesas, W.S. UAH
Fisher, G.J. ES84

Zhang, S.N. USRA
Harm, B.A. ES84
Paciesas, W.S. UAH
Grindlay, J.E. Harvard
Barret, D. Harvard
Bloser, P. Harvard
Ford, E. Columbia
Kaaret, P. Columbia

INDEX

TECHNICAL MEMORANDA

BATTs, G.W. ... 3
BEABOUT, B. ... 1
CARRUTH, M.R. Jr. ... 1
CURREN, P.A. .. 1
EDWARDS, D.L .. 2
EULER, H.C. Jr. ... 1
HASTINGS, J.H. .. 3
HAYDEN, M. ... 2
HERREN, K. ... 2
HORTON, C.M. .. 4
JACKSON, M.E. .. 2
JAMES, B.F. ... 2, 3
JASPER, G.L ... 3
JOHNSON, D.L .. 2, 3
JUSTUS, C.G. .. 2, 3
KNOX, J.C. .. 4
MARTIN, J.L. ... 2
MAZURUK, K. ... 3
MCCAULEY, D.E ... 1
MCCOLLUM, M. ... 1
MCDONALD, K. ... 2
MEHTA, G.K ... 3
MINTON-SUMMERS, S 2
NIEHUESS, K.O. ... 1
PEARSON, S.D. ... 3
PERRY, G.L.E .. 3
RAY, C.D. ... 2
RUSSELL, S.S .. 4
SEMMEL, C.L ... 2
SIMS, J.A. ... 2
SUTHERLAND, W.T .. 4
TURNER, JOYCE E .. 1
VAUGHAN, W.W .. 1, 3
VAUGHN, J.A .. 1
VOLZ, M.P ... 3

TECHNICAL PAPERS

BARRET, C .. 6
BLAIR, J. ... 6
DANFORD M.D .. 6
FINCKENOR, M .. 6
GROSS, R.S ... 6
HATHAWAY, D.H ... 7
HERDA, D.A ... 6
KAMENETZKY, R.R ... 6
LINTON, R.C. .. 6
NUNES, A.C ... 6
REICHMAN, E.J ... 7
RYAN, R.S ... 6, 7
TOWNSSEND, J. ... 6
VAUGHAN, J.A .. 6
VERDERAIME, V ... 6
WILSON, R.M .. 7

CONFERENCE PROCEEDINGS

BREWER, J.C .. 8
WILLIAMS, R.W ... 8

REFERENCE PUBLICATIONS

ALEXANDER, M.B .. 9
BEDINGFIELD, K.L ... 9
LEACH, R.D ... 9

CONTRACTOR REPORTS

Alpha Technology ... 11
Analysis and Measurement Services Corp 10
Auburn University ... 10, 11
BAMSI, Inc .. 12
Control Dynamics ... 10, 13
Eastern Kentucky University 11
Geospace Research, Inc 10
ION Electronics .. 10, 11
Life Systems, Inc ... 11
Lockheed Martin .. 12
Lockheed Martin Marietta Manned Space Systems 10
McDonnell Douglas Aerospace 11
Meyer Analytics, Inc 10
Nichols Research Corp 12
Rocketdyne .. 11
Rockwell .. 11
Rockwell International Corp 10
SAIC .. 12
SECA, Inc ... 10
Signatech, Inc .. 13
Tec-Masters, Inc ... 10
United Technologies 11
United Technology Corp. Pratt & Whitney 11
UAH ... 10, 11, 12, 13
University of Alabama in Huntsville and Tuscaloosa 10
University of Dayton Research Institute 10
University of Tennessee Space Institute 12

PAPERS CLEARED FOR PRESENTATION

ABBAS, M.M ... 14, 15, 19, 25, 29, 33, 35, 39, 50
ABDELDAYEM, H ... 14, 15
ABEL, T.M ... 15
ABRAMOV, L ... 21
ABRAMS, M.C .. 14, 15, 19, 25, 29, 33, 35, 39, 50
ADAMS, M ... 15, 45
ADELFANG, S.I ... 44
ADRIAN, M.F ... 35
ADRIAN, M.L ... 15, 38
AELLIG, C ... 33, 50
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggarwal, M.D.</td>
<td>31</td>
</tr>
<tr>
<td>Ahmad, A.</td>
<td>15</td>
</tr>
<tr>
<td>Ahmed, R.</td>
<td>15</td>
</tr>
<tr>
<td>Al-Shibli, K.A.</td>
<td>15</td>
</tr>
<tr>
<td>Alexander, H.</td>
<td>48</td>
</tr>
<tr>
<td>Alexander, H.A.</td>
<td>18, 24, 43</td>
</tr>
<tr>
<td>Aliassandarakis, C.E.</td>
<td>15</td>
</tr>
<tr>
<td>Allen, G.A.</td>
<td>22</td>
</tr>
<tr>
<td>Allen, M.</td>
<td>14, 25, 35</td>
</tr>
<tr>
<td>Anderson, B.J.</td>
<td>16, 36, 37, 44</td>
</tr>
<tr>
<td>Anderson, E.R.</td>
<td>27</td>
</tr>
<tr>
<td>Antar, B.N.</td>
<td>16</td>
</tr>
<tr>
<td>Antlia, H.M.</td>
<td>27</td>
</tr>
<tr>
<td>Anz-Meador, P.D.</td>
<td>36</td>
</tr>
<tr>
<td>Apple, J.A.</td>
<td>39</td>
</tr>
<tr>
<td>Armstrong, S.</td>
<td>35</td>
</tr>
<tr>
<td>Arndoldy, R.J.</td>
<td>35, 38</td>
</tr>
<tr>
<td>Asher, S.A.</td>
<td>46</td>
</tr>
<tr>
<td>Ashley, P.R.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Atkinson, R.J.</td>
<td>29</td>
</tr>
<tr>
<td>Augusteijn, T.</td>
<td>16</td>
</tr>
<tr>
<td>Austin, R.A.</td>
<td>16, 25, 39</td>
</tr>
<tr>
<td>Austin, R.W.</td>
<td>37, 43</td>
</tr>
<tr>
<td>BabcSAN, N.</td>
<td>48</td>
</tr>
<tr>
<td>Bagdigan, R.M.</td>
<td>16</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>16, 21</td>
</tr>
<tr>
<td>Bailey, J.W.</td>
<td>33</td>
</tr>
<tr>
<td>Band, D.L.</td>
<td>38</td>
</tr>
<tr>
<td>Banks, C.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Barbree, T.W., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>Barnett, T.</td>
<td>22</td>
</tr>
<tr>
<td>Barr, T.A., Jr.</td>
<td>42</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>16</td>
</tr>
<tr>
<td>Barret, D.</td>
<td>23, 51</td>
</tr>
<tr>
<td>Baskaran, S.</td>
<td>35</td>
</tr>
<tr>
<td>Baits, G.W.</td>
<td>16</td>
</tr>
<tr>
<td>Baugher, C.R.</td>
<td>16, 39</td>
</tr>
<tr>
<td>Beck, J. G.</td>
<td>16</td>
</tr>
<tr>
<td>Benson, R.</td>
<td>25</td>
</tr>
<tr>
<td>Benz, K.W.</td>
<td>21</td>
</tr>
<tr>
<td>Berg, W.</td>
<td>16</td>
</tr>
<tr>
<td>Bergstrom, J.W.</td>
<td>19</td>
</tr>
<tr>
<td>Berthelier, J.J.</td>
<td>34</td>
</tr>
<tr>
<td>Bhat, K.N.</td>
<td>42</td>
</tr>
<tr>
<td>Bickley, F., III</td>
<td>16</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>16, 17, 19, 21</td>
</tr>
<tr>
<td>Blosner, P.</td>
<td>24, 51</td>
</tr>
<tr>
<td>Boardman, T.A.</td>
<td>15</td>
</tr>
<tr>
<td>Boilotnikov, A.</td>
<td>17</td>
</tr>
<tr>
<td>Bolstad, D.</td>
<td>16</td>
</tr>
<tr>
<td>Bonifazi, C.</td>
<td>45</td>
</tr>
<tr>
<td>Bonnell, J.</td>
<td>38</td>
</tr>
<tr>
<td>Bookout, P.S.</td>
<td>17</td>
</tr>
<tr>
<td>Borgiai, F.</td>
<td>15</td>
</tr>
<tr>
<td>Boucarut, R.A.</td>
<td>44</td>
</tr>
<tr>
<td>Boucher, R.</td>
<td>22, 36</td>
</tr>
<tr>
<td>Boyd, R.W.</td>
<td>43</td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>40, 44</td>
</tr>
<tr>
<td>Brewer, J.</td>
<td>17, 32</td>
</tr>
<tr>
<td>Brewer, L.A.</td>
<td>50</td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>23, 31, 33, 37, 38, 46</td>
</tr>
<tr>
<td>Briscoe, J.</td>
<td>41</td>
</tr>
<tr>
<td>Brittain, A.M.</td>
<td>17, 21, 35</td>
</tr>
<tr>
<td>Brittnacher, M.J.</td>
<td>44</td>
</tr>
<tr>
<td>Brown, A.M.</td>
<td>17</td>
</tr>
<tr>
<td>Brown, L.R.</td>
<td>25</td>
</tr>
<tr>
<td>Brown, R.W.</td>
<td>17</td>
</tr>
<tr>
<td>Brown, T.L.</td>
<td>25, 33</td>
</tr>
<tr>
<td>Brown, T.M.</td>
<td>27</td>
</tr>
<tr>
<td>Bruni, R.J.</td>
<td>19, 41</td>
</tr>
<tr>
<td>Buechler, D.E.</td>
<td>17, 18, 19</td>
</tr>
<tr>
<td>Bune, A.V.</td>
<td>17, 18</td>
</tr>
<tr>
<td>Burch, J.L.</td>
<td>18, 34</td>
</tr>
<tr>
<td>Burger, A.</td>
<td>37</td>
</tr>
<tr>
<td>Burns, H.D.</td>
<td>18</td>
</tr>
<tr>
<td>Bursey, R.W., Jr.</td>
<td>18</td>
</tr>
<tr>
<td>Buschek, H.</td>
<td>48</td>
</tr>
<tr>
<td>Butler, B.I.</td>
<td>18, 42</td>
</tr>
<tr>
<td>Calise, A.J.</td>
<td>48</td>
</tr>
<tr>
<td>Calvert, W.</td>
<td>25</td>
</tr>
<tr>
<td>Cammarata, M.</td>
<td>18</td>
</tr>
<tr>
<td>Campbell, J.W.</td>
<td>18</td>
</tr>
<tr>
<td>Campbell, R.D.</td>
<td>44</td>
</tr>
<tr>
<td>Cardelino, B.H.</td>
<td>34, 41</td>
</tr>
<tr>
<td>Carrasquillo, R.L.</td>
<td>18, 37</td>
</tr>
<tr>
<td>Carrington, C.</td>
<td>30</td>
</tr>
<tr>
<td>Carroll, J.</td>
<td>29, 30</td>
</tr>
<tr>
<td>Carter, D.</td>
<td>37, 46</td>
</tr>
<tr>
<td>Carter, D.C.</td>
<td>18, 27</td>
</tr>
<tr>
<td>Catalina, A.</td>
<td>43</td>
</tr>
<tr>
<td>Chakraborty, D.</td>
<td>49</td>
</tr>
<tr>
<td>Chambers, D.M.</td>
<td>29</td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td>18, 21, 22, 27</td>
</tr>
<tr>
<td>Chang, A.Y.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>Chang, B.</td>
<td>27</td>
</tr>
<tr>
<td>Chang, F.-C.</td>
<td>19</td>
</tr>
<tr>
<td>Chapman, J.</td>
<td>18</td>
</tr>
<tr>
<td>Chappell, C.R.</td>
<td>34</td>
</tr>
<tr>
<td>Chappell, J.H.</td>
<td>41</td>
</tr>
<tr>
<td>Chen, B.</td>
<td>50</td>
</tr>
<tr>
<td>Chen, K.-T.</td>
<td>37</td>
</tr>
<tr>
<td>Chen, L.</td>
<td>44</td>
</tr>
<tr>
<td>Chen, P.S.</td>
<td>19</td>
</tr>
<tr>
<td>Chen, Y.-S.</td>
<td>32, 48</td>
</tr>
<tr>
<td>Chin, H.A.</td>
<td>18</td>
</tr>
<tr>
<td>Chisholm, W.</td>
<td>27</td>
</tr>
<tr>
<td>Chou, L.C.</td>
<td>19</td>
</tr>
<tr>
<td>Christian, H.J.</td>
<td>17, 19, 21</td>
</tr>
<tr>
<td>Christian, J.H.</td>
<td>19</td>
</tr>
<tr>
<td>Christl, M.</td>
<td>37</td>
</tr>
<tr>
<td>Christy, J.R.</td>
<td>44</td>
</tr>
<tr>
<td>Chung, H.</td>
<td>19, 37</td>
</tr>
<tr>
<td>Clark, A.M.</td>
<td>19, 41</td>
</tr>
<tr>
<td>Clark, R.D.</td>
<td>25, 41, 42</td>
</tr>
<tr>
<td>Clinton, R.G., Jr.</td>
<td>20</td>
</tr>
<tr>
<td>Clemenil, D.</td>
<td>42</td>
</tr>
<tr>
<td>Cobb, S.D.</td>
<td>20, 45</td>
</tr>
<tr>
<td>Coffey, V.N.</td>
<td>38</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>COLE, H</td>
<td>20</td>
</tr>
<tr>
<td>COLE, J.M</td>
<td>24</td>
</tr>
<tr>
<td>COLEMAN, H.W</td>
<td>28</td>
</tr>
<tr>
<td>COLLINS, E.E</td>
<td>37</td>
</tr>
<tr>
<td>COLLINS, G.B</td>
<td>35</td>
</tr>
<tr>
<td>COMFORT, R.H</td>
<td>20, 21, 22, 24</td>
</tr>
<tr>
<td>CONIFAZI, C</td>
<td>50</td>
</tr>
<tr>
<td>CONWAY, D</td>
<td>40</td>
</tr>
<tr>
<td>COOK, B</td>
<td>20</td>
</tr>
<tr>
<td>COOK, J.R</td>
<td>15</td>
</tr>
<tr>
<td>COOK, S.A</td>
<td>20</td>
</tr>
<tr>
<td>COOKE, W.J</td>
<td>16</td>
</tr>
<tr>
<td>COOPER, A.E</td>
<td>38</td>
</tr>
<tr>
<td>COOPER, K</td>
<td>44</td>
</tr>
<tr>
<td>CORDELL, E</td>
<td>41</td>
</tr>
<tr>
<td>CORDOVA, F.A</td>
<td>40</td>
</tr>
<tr>
<td>CORNELISON, J</td>
<td>48</td>
</tr>
<tr>
<td>CORREA, T</td>
<td>27</td>
</tr>
<tr>
<td>COSTES, N.C</td>
<td>15, 20</td>
</tr>
<tr>
<td>COUGHLIN, D</td>
<td>24</td>
</tr>
<tr>
<td>Cramer, J.M</td>
<td>29</td>
</tr>
<tr>
<td>CRARY, D.</td>
<td>20, 21, 46</td>
</tr>
<tr>
<td>CRAVEN, P.D</td>
<td>18, 20, 21, 22, 24, 34, 49</td>
</tr>
<tr>
<td>CREASEY, R</td>
<td>17</td>
</tr>
<tr>
<td>CROLL, A</td>
<td>21</td>
</tr>
<tr>
<td>CRONISE, R.J</td>
<td>17, 21, 35</td>
</tr>
<tr>
<td>CROSSON, W</td>
<td>23</td>
</tr>
<tr>
<td>CRUIT, W</td>
<td>29</td>
</tr>
<tr>
<td>CURRERI, P.A</td>
<td>21, 30, 43</td>
</tr>
<tr>
<td>CURTIS, L</td>
<td>21</td>
</tr>
<tr>
<td>CURTIS, R</td>
<td>21</td>
</tr>
<tr>
<td>DARBY, S.</td>
<td>20</td>
</tr>
<tr>
<td>DARVENIZA, M</td>
<td>33</td>
</tr>
<tr>
<td>DAVENPORT, Q</td>
<td>42</td>
</tr>
<tr>
<td>DAVIS, J.</td>
<td>41</td>
</tr>
<tr>
<td>DEAL, K.J.</td>
<td>26, 31</td>
</tr>
<tr>
<td>DEEHR, C</td>
<td>38</td>
</tr>
<tr>
<td>DEES, G.K.</td>
<td>50</td>
</tr>
<tr>
<td>DEFELICE, T.</td>
<td>44</td>
</tr>
<tr>
<td>DERRICKSON, J.H.</td>
<td>37, 43</td>
</tr>
<tr>
<td>DESANCTIS, C</td>
<td>21</td>
</tr>
<tr>
<td>Desteene, G.V.</td>
<td>16</td>
</tr>
<tr>
<td>DHINDAW, B.K.</td>
<td>43</td>
</tr>
<tr>
<td>DIETZ, K.L.</td>
<td>39</td>
</tr>
<tr>
<td>DILL, R.A.</td>
<td>48</td>
</tr>
<tr>
<td>DISCHINGER, H.C., Jr.</td>
<td>21, 22</td>
</tr>
<tr>
<td>DOBROWOLNY, M.</td>
<td>50</td>
</tr>
<tr>
<td>DOLD, P.</td>
<td>21</td>
</tr>
<tr>
<td>DOUGANI, H.</td>
<td>44</td>
</tr>
<tr>
<td>DRAGO, F.C.</td>
<td>15</td>
</tr>
<tr>
<td>DREHMEN, A.J.</td>
<td>19</td>
</tr>
<tr>
<td>DRISCOLL, K.T.</td>
<td>17, 19, 21</td>
</tr>
<tr>
<td>DUDLEY, M.</td>
<td>19, 37</td>
</tr>
<tr>
<td>DUKERMAN, G.A.</td>
<td>26</td>
</tr>
<tr>
<td>DUMBACHER, D.L.</td>
<td>21</td>
</tr>
<tr>
<td>DWYER, J.</td>
<td>46</td>
</tr>
<tr>
<td>EAKER, N.</td>
<td>35</td>
</tr>
<tr>
<td>EBISAWA, K</td>
<td>50</td>
</tr>
<tr>
<td>ECKEL, A.J.</td>
<td>20</td>
</tr>
<tr>
<td>EDBERG, D.</td>
<td>22, 36</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>22, 47</td>
</tr>
<tr>
<td>EFFINGER, M.</td>
<td>22</td>
</tr>
<tr>
<td>ELLIOTT, H.A.</td>
<td>22</td>
</tr>
<tr>
<td>ELROD, W.</td>
<td>50</td>
</tr>
<tr>
<td>ELSEN, R.</td>
<td>44</td>
</tr>
<tr>
<td>ELSNER, R.F.</td>
<td>25, 46</td>
</tr>
<tr>
<td>EMRICH, W.J., Jr.</td>
<td>22</td>
</tr>
<tr>
<td>EMSLIE, A.G.</td>
<td>27, 28</td>
</tr>
<tr>
<td>ENGLAND, J.D.</td>
<td>38</td>
</tr>
<tr>
<td>ERICKSON, R.J.</td>
<td>22, 36</td>
</tr>
<tr>
<td>ESTES, R.</td>
<td>29</td>
</tr>
<tr>
<td>ETHRIDGE, E.C.</td>
<td>22</td>
</tr>
<tr>
<td>ETTER, B.D.</td>
<td>22</td>
</tr>
<tr>
<td>EVANS, A.M.</td>
<td>21</td>
</tr>
<tr>
<td>EVANS, D.M.</td>
<td>22, 28</td>
</tr>
<tr>
<td>EVANS, S.W.</td>
<td>22</td>
</tr>
<tr>
<td>FALCONE, D.A.</td>
<td>22, 23, 34, 38</td>
</tr>
<tr>
<td>FENG, C.</td>
<td>15</td>
</tr>
<tr>
<td>FERRARO, R.</td>
<td>16</td>
</tr>
<tr>
<td>FESCO, A.Z.</td>
<td>20</td>
</tr>
<tr>
<td>FIEDERLE, M.</td>
<td>21</td>
</tr>
<tr>
<td>FIELDS, S.A.</td>
<td>34</td>
</tr>
<tr>
<td>FINKER, N.M.</td>
<td>23, 26, 47</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>20, 21, 31, 47, 49, 50</td>
</tr>
<tr>
<td>FINN, J.E.</td>
<td>34</td>
</tr>
<tr>
<td>FISCHER, G.</td>
<td>43</td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>16, 23, 26, 31, 37, 50, 51</td>
</tr>
<tr>
<td>FITZIOARRALD, D.E.</td>
<td>23, 40</td>
</tr>
<tr>
<td>FLEMING, S.</td>
<td>28</td>
</tr>
<tr>
<td>FOK, M.-C.</td>
<td>23, 24</td>
</tr>
<tr>
<td>FONTENLA, J.M.</td>
<td>42</td>
</tr>
<tr>
<td>FORD, E.</td>
<td>23, 46, 51</td>
</tr>
<tr>
<td>FOROZAN, S.</td>
<td>17, 32</td>
</tr>
<tr>
<td>FOSTER, R.S.</td>
<td>24</td>
</tr>
<tr>
<td>FOWLER, P.H.</td>
<td>38, 43</td>
</tr>
<tr>
<td>FOWLER, S.B.</td>
<td>17</td>
</tr>
<tr>
<td>FOX, D.W.</td>
<td>30</td>
</tr>
<tr>
<td>FRAIL, D.A.</td>
<td>16</td>
</tr>
<tr>
<td>FRANKS, G.D.</td>
<td>37</td>
</tr>
<tr>
<td>FRAZIER, D.O.</td>
<td>14, 15, 24, 37, 46</td>
</tr>
<tr>
<td>FREDERICK, K.R.</td>
<td>37</td>
</tr>
<tr>
<td>FREEMAN, T.J.</td>
<td>44</td>
</tr>
<tr>
<td>FRIEND, L.</td>
<td>28</td>
</tr>
<tr>
<td>FROST, C.</td>
<td>42</td>
</tr>
<tr>
<td>FUNG, S.F.</td>
<td>24, 25</td>
</tr>
<tr>
<td>FUSELIER, S.</td>
<td>24</td>
</tr>
<tr>
<td>GALA, D.</td>
<td>42</td>
</tr>
<tr>
<td>GALLAGHER, D.L.</td>
<td>20, 21, 24, 25</td>
</tr>
<tr>
<td>GALLAHER, M.</td>
<td>24</td>
</tr>
<tr>
<td>GARCIA, G.</td>
<td>28</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>23, 24, 34</td>
</tr>
<tr>
<td>GAUSE, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>GEORGE, M.A.</td>
<td>37</td>
</tr>
<tr>
<td>GERMANY, G.</td>
<td>27</td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>44</td>
</tr>
<tr>
<td>GIBSON, W.M.</td>
<td>37, 46</td>
</tr>
<tr>
<td>GILCHRIST, B.E.</td>
<td>29, 45, 50</td>
</tr>
<tr>
<td>GILES, B.L.</td>
<td>18, 27, 34</td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>17, 18, 19, 24, 37, 45, 47, 48</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Gilman, P</td>
<td>26</td>
</tr>
<tr>
<td>Giridharan, M.G.</td>
<td>38</td>
</tr>
<tr>
<td>Gladstone, R</td>
<td>24</td>
</tr>
<tr>
<td>Goldberg, B</td>
<td>25</td>
</tr>
<tr>
<td>Goldman, A</td>
<td>14, 15, 25, 39, 50</td>
</tr>
<tr>
<td>Goldstein, B.E.</td>
<td>45</td>
</tr>
<tr>
<td>Gonzales, N</td>
<td>25</td>
</tr>
<tr>
<td>Goodman, M</td>
<td>40</td>
</tr>
<tr>
<td>Goodman, S.J.</td>
<td>16, 17, 19, 33, 39</td>
</tr>
<tr>
<td>Goodwin, C.J.</td>
<td>25</td>
</tr>
<tr>
<td>Gorokov, V</td>
<td>35</td>
</tr>
<tr>
<td>Goulb, L</td>
<td>42</td>
</tr>
<tr>
<td>Gouzenberg, A</td>
<td>20</td>
</tr>
<tr>
<td>Graszka, K</td>
<td>37</td>
</tr>
<tr>
<td>Green, J.L.</td>
<td>24, 25</td>
</tr>
<tr>
<td>Greenspan, M.E.</td>
<td>23</td>
</tr>
<tr>
<td>Greenwood, L.R.</td>
<td>25</td>
</tr>
<tr>
<td>Gregory, D.A.</td>
<td>43</td>
</tr>
<tr>
<td>Gregory, J.C.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Greiner, J.</td>
<td>31</td>
</tr>
<tr>
<td>Grindlay, J.</td>
<td>24</td>
</tr>
<tr>
<td>Grindlay, J.E.</td>
<td>51</td>
</tr>
<tr>
<td>Griner, Carolyn S.</td>
<td>25</td>
</tr>
<tr>
<td>Grody, N.C.</td>
<td>44</td>
</tr>
<tr>
<td>Grosch, D.</td>
<td>49</td>
</tr>
<tr>
<td>Grosskopf, W.J.</td>
<td>33</td>
</tr>
<tr>
<td>Guay, T.D.</td>
<td>49</td>
</tr>
<tr>
<td>Guillory, A.R.</td>
<td>25</td>
</tr>
<tr>
<td>Gunji, S.</td>
<td>25</td>
</tr>
<tr>
<td>Gunson, M.R.</td>
<td>14, 15, 19, 25, 29, 33, 35, 39, 50</td>
</tr>
<tr>
<td>Guo, H.</td>
<td>25</td>
</tr>
<tr>
<td>Guo, K.L.</td>
<td>19</td>
</tr>
<tr>
<td>Gurgiolo, C.A.</td>
<td>49</td>
</tr>
<tr>
<td>Gurgiolo, C.A.</td>
<td>50</td>
</tr>
<tr>
<td>Hagnopian, J</td>
<td>25, 31, 33</td>
</tr>
<tr>
<td>Hagyard, M.</td>
<td>16</td>
</tr>
<tr>
<td>Hagyard, M.J.</td>
<td>25, 45</td>
</tr>
<tr>
<td>Hakila, J</td>
<td>27, 28, 46</td>
</tr>
<tr>
<td>Hale, J.P. II</td>
<td>26, 48</td>
</tr>
<tr>
<td>Hall, D.K.</td>
<td>26</td>
</tr>
<tr>
<td>Hall, P.B.</td>
<td>36</td>
</tr>
<tr>
<td>Hamaker, J.W.</td>
<td>26</td>
</tr>
<tr>
<td>Hammer, R.</td>
<td>26</td>
</tr>
<tr>
<td>Hanichak, M.</td>
<td>26</td>
</tr>
<tr>
<td>Hanson, J.M.</td>
<td>26</td>
</tr>
<tr>
<td>Hardesty, R.M.</td>
<td>41</td>
</tr>
<tr>
<td>Hardy, D.</td>
<td>45, 50</td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>20, 21, 23, 24, 26, 31, 37, 47, 49, 50, 51</td>
</tr>
<tr>
<td>Harrington, F.</td>
<td>47</td>
</tr>
<tr>
<td>Harris, D.L.</td>
<td>17</td>
</tr>
<tr>
<td>Hartmann, D.H.</td>
<td>46</td>
</tr>
<tr>
<td>Harvey, J.</td>
<td>26</td>
</tr>
<tr>
<td>Harvey, K.L.</td>
<td>38</td>
</tr>
<tr>
<td>Hastings, J.</td>
<td>33</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td>15, 16, 26, 27, 35, 45, 49</td>
</tr>
<tr>
<td>Hayami, R.A.</td>
<td>42</td>
</tr>
<tr>
<td>Heaman, J.P.</td>
<td>27</td>
</tr>
<tr>
<td>Henderson, A.</td>
<td>20</td>
</tr>
<tr>
<td>Herrmann, M.</td>
<td>27</td>
</tr>
<tr>
<td>Hicks, R.M.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Hill, F.</td>
<td>26, 27</td>
</tr>
<tr>
<td>Hirahara, J.</td>
<td>27</td>
</tr>
<tr>
<td>Hirayama, T.</td>
<td>34</td>
</tr>
<tr>
<td>Ho, J.X.</td>
<td>18, 27</td>
</tr>
<tr>
<td>Holder, D.W.</td>
<td>16</td>
</tr>
<tr>
<td>Holmes, R.R.</td>
<td>24</td>
</tr>
<tr>
<td>Holowachuk, E.W.</td>
<td>27</td>
</tr>
<tr>
<td>Holt, K.A.</td>
<td>33</td>
</tr>
<tr>
<td>Holtet, J.</td>
<td>38</td>
</tr>
<tr>
<td>Hood, R.E.</td>
<td>27</td>
</tr>
<tr>
<td>Hoover, R.B.</td>
<td>30</td>
</tr>
<tr>
<td>Horack, J.M.</td>
<td>27, 28, 37</td>
</tr>
<tr>
<td>Horwitz, J.L.</td>
<td>27, 30, 31</td>
</tr>
<tr>
<td>Hou, R.</td>
<td>28</td>
</tr>
<tr>
<td>Houston, R.</td>
<td>28</td>
</tr>
<tr>
<td>Howard, R.</td>
<td>26</td>
</tr>
<tr>
<td>Hu, Z.</td>
<td>37</td>
</tr>
<tr>
<td>Huang, D.</td>
<td>22, 28</td>
</tr>
<tr>
<td>Hubs, W.C.</td>
<td>22</td>
</tr>
<tr>
<td>Hudson, H.S.</td>
<td>34</td>
</tr>
<tr>
<td>Hudson, S.T.</td>
<td>28</td>
</tr>
<tr>
<td>Hufaker, F.</td>
<td>28</td>
</tr>
<tr>
<td>Hu, O.K.</td>
<td>28</td>
</tr>
<tr>
<td>Hulgan, W.</td>
<td>28</td>
</tr>
<tr>
<td>Hung, R.J.</td>
<td>24, 28, 29</td>
</tr>
<tr>
<td>Hunt, A.</td>
<td>35</td>
</tr>
<tr>
<td>Huston, K.H.</td>
<td>35</td>
</tr>
<tr>
<td>Hutchens, C.F.</td>
<td>16</td>
</tr>
<tr>
<td>Hutt, J.J.</td>
<td>29, 38</td>
</tr>
<tr>
<td>Ingram, C.</td>
<td>33</td>
</tr>
<tr>
<td>Inoue, H.</td>
<td>26, 50</td>
</tr>
<tr>
<td>Irion, F.W.</td>
<td>14, 15, 25, 29, 50</td>
</tr>
<tr>
<td>Ishida, M.</td>
<td>40</td>
</tr>
<tr>
<td>Jackson, L.G.</td>
<td>17, 32</td>
</tr>
<tr>
<td>Jackson, M.E.</td>
<td>29</td>
</tr>
<tr>
<td>James, B.F.</td>
<td>29, 37</td>
</tr>
<tr>
<td>Jarzembski, M.A.</td>
<td>29</td>
</tr>
<tr>
<td>Jedlovic, G.J.</td>
<td>19, 29, 32, 40</td>
</tr>
<tr>
<td>Jenkins, F.M.</td>
<td>29</td>
</tr>
<tr>
<td>Jerman, G.</td>
<td>37</td>
</tr>
<tr>
<td>Jermann, G.A.</td>
<td>24</td>
</tr>
<tr>
<td>Jeter, L.B.</td>
<td>24</td>
</tr>
<tr>
<td>Johnson, D.L.</td>
<td>29, 30</td>
</tr>
<tr>
<td>Johnson, J.</td>
<td>30</td>
</tr>
<tr>
<td>Johnson, I.U.</td>
<td>36</td>
</tr>
<tr>
<td>Johnson, L.</td>
<td>36</td>
</tr>
<tr>
<td>Johnstone, S.</td>
<td>33</td>
</tr>
<tr>
<td>Jones, H.P.</td>
<td>26</td>
</tr>
<tr>
<td>Jones, K.U.</td>
<td>16, 20</td>
</tr>
<tr>
<td>Jones, R.</td>
<td>17</td>
</tr>
<tr>
<td>Joy, M.</td>
<td>38</td>
</tr>
<tr>
<td>Justus, C.G.</td>
<td>29, 30, 44</td>
</tr>
<tr>
<td>Justus, J.</td>
<td>42</td>
</tr>
<tr>
<td>Kaaret, P.</td>
<td>23, 46, 51</td>
</tr>
<tr>
<td>Kaempfer, N.</td>
<td>33</td>
</tr>
<tr>
<td>Kaiser, T.</td>
<td>21</td>
</tr>
<tr>
<td>Kamenetzky, R.R.</td>
<td>22, 23, 47</td>
</tr>
<tr>
<td>Kankelborg, C.C.</td>
<td>30</td>
</tr>
<tr>
<td>Kasher, J.</td>
<td>27</td>
</tr>
<tr>
<td>Keshet, L.</td>
<td>55</td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>HOOFT, F.</td>
<td>16, 20, 21, 47</td>
</tr>
<tr>
<td>ULLRICH, J.B.</td>
<td>36, 46</td>
</tr>
<tr>
<td>UEDA, Y.</td>
<td>37, 43</td>
</tr>
<tr>
<td>TWORZYDIO, W.W.</td>
<td>34</td>
</tr>
<tr>
<td>TURNER, S.G.</td>
<td>33</td>
</tr>
<tr>
<td>TWIGG, P.D.</td>
<td>18</td>
</tr>
<tr>
<td>TAYLOR, W.W.L.</td>
<td>25</td>
</tr>
<tr>
<td>THOM, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>THOMSON, R.</td>
<td>23</td>
</tr>
<tr>
<td>TINKER, M.I.</td>
<td>17, 46</td>
</tr>
<tr>
<td>Tomsick, J.</td>
<td>46</td>
</tr>
<tr>
<td>TONG, Y.</td>
<td>42</td>
</tr>
<tr>
<td>Townsend, C.</td>
<td>41</td>
</tr>
<tr>
<td>Townsend, J.S.</td>
<td>42</td>
</tr>
<tr>
<td>Trout, D.H.</td>
<td>46</td>
</tr>
<tr>
<td>Tucker, D.</td>
<td>22</td>
</tr>
<tr>
<td>Turner, S.G.</td>
<td>33</td>
</tr>
<tr>
<td>Vas, I.</td>
<td>30</td>
</tr>
<tr>
<td>Vaughan, B.</td>
<td>49</td>
</tr>
<tr>
<td>Vaughan, R.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughan, J.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughan, J.A.</td>
<td>22, 23</td>
</tr>
<tr>
<td>Verderaime, V</td>
<td>47</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>47</td>
</tr>
<tr>
<td>Waite, J.H.</td>
<td>18, 34</td>
</tr>
<tr>
<td>Walker, A.B.C., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>Walker, J.</td>
<td>31, 41, 47</td>
</tr>
<tr>
<td>Wallace, S.</td>
<td>41</td>
</tr>
<tr>
<td>Wallace, T.I.</td>
<td>38</td>
</tr>
<tr>
<td>Walls, B.</td>
<td>47</td>
</tr>
<tr>
<td>Waltman, E.B.</td>
<td>26</td>
</tr>
<tr>
<td>Wang, A.H.</td>
<td>45</td>
</tr>
<tr>
<td>Wang, C.M.</td>
<td>50</td>
</tr>
<tr>
<td>Wang, J.-C.</td>
<td>43</td>
</tr>
<tr>
<td>Wang, P.H.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T.-S.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T.S.</td>
<td>32, 48</td>
</tr>
<tr>
<td>Wang, W.S.</td>
<td>31</td>
</tr>
<tr>
<td>Ward, S.</td>
<td>20</td>
</tr>
<tr>
<td>Warsi, S.</td>
<td>48</td>
</tr>
<tr>
<td>Watring, D.A.</td>
<td>18, 24, 47, 48</td>
</tr>
<tr>
<td>Webster, C.R.</td>
<td>19</td>
</tr>
<tr>
<td>Wei, H.</td>
<td>48</td>
</tr>
<tr>
<td>Weisskopf, M.C.</td>
<td>25, 39, 46, 48</td>
</tr>
<tr>
<td>Weissman, J.M.</td>
<td>46</td>
</tr>
<tr>
<td>Wentz, F.J.</td>
<td>44, 48</td>
</tr>
<tr>
<td>Wertz, G.E.</td>
<td>22</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
<td>48</td>
</tr>
<tr>
<td>Whitesides, R.H.</td>
<td>48</td>
</tr>
<tr>
<td>Whorton, M.</td>
<td>22, 36, 48</td>
</tr>
<tr>
<td>Wieland, P.O.</td>
<td>18</td>
</tr>
<tr>
<td>Williams, C.</td>
<td>49</td>
</tr>
<tr>
<td>Williams, E.R.</td>
<td>33</td>
</tr>
<tr>
<td>Williamsen, J.E.</td>
<td>25, 32, 42, 43, 49</td>
</tr>
<tr>
<td>Wilson, C.A.</td>
<td>49, 50</td>
</tr>
<tr>
<td>Wilson, F.</td>
<td>41</td>
</tr>
<tr>
<td>Wilson, G.</td>
<td>24</td>
</tr>
<tr>
<td>Wilson, G.R.</td>
<td>49</td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>26, 49</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
<td>49</td>
</tr>
<tr>
<td>Wingard, C.D.</td>
<td>49</td>
</tr>
<tr>
<td>Winningham, J.D.</td>
<td>49, 50</td>
</tr>
<tr>
<td>Withrow, W.K.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Woods, P.</td>
<td>31</td>
</tr>
<tr>
<td>Workman, G.L.</td>
<td>47</td>
</tr>
<tr>
<td>Wright, B.</td>
<td>18</td>
</tr>
<tr>
<td>Wright, H.B.</td>
<td>50</td>
</tr>
<tr>
<td>Wright, J.D.</td>
<td>50</td>
</tr>
<tr>
<td>Wright, K.H., Jr.</td>
<td>44, 49, 50</td>
</tr>
<tr>
<td>Wu, B.</td>
<td>42</td>
</tr>
<tr>
<td>Wu, S.-T.</td>
<td>50</td>
</tr>
<tr>
<td>Wu, S.T.</td>
<td>45, 50</td>
</tr>
<tr>
<td>Wygant, J.R.</td>
<td>18</td>
</tr>
<tr>
<td>Xiao, Q.F.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Xiao, Y.C.</td>
<td>50</td>
</tr>
<tr>
<td>Xiques, K.E.</td>
<td>34</td>
</tr>
<tr>
<td>Yip, P.W.</td>
<td>19</td>
</tr>
<tr>
<td>Young, D.T.</td>
<td>18, 34, 35</td>
</tr>
<tr>
<td>Young, R.M., Jr.</td>
<td>50</td>
</tr>
<tr>
<td>Yung, S.</td>
<td>29</td>
</tr>
<tr>
<td>Zachary, L.W.</td>
<td>46</td>
</tr>
<tr>
<td>Zander, R.</td>
<td>19, 39, 50</td>
</tr>
<tr>
<td>Zhang, H.W.</td>
<td>31</td>
</tr>
<tr>
<td>Zhang, S.-N.</td>
<td>21, 23, 24, 26, 37, 49, 50, 51</td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>37</td>
</tr>
<tr>
<td>Zhao, W.</td>
<td>39</td>
</tr>
<tr>
<td>Zhou, W.</td>
<td>19</td>
</tr>
<tr>
<td>Zhou, Y.</td>
<td>41</td>
</tr>
<tr>
<td>Ziock, K.</td>
<td>46</td>
</tr>
<tr>
<td>Zissa, D.E.</td>
<td>15, 44</td>
</tr>
<tr>
<td>Zu, G.J.</td>
<td>28, 29</td>
</tr>
<tr>
<td>Zwiener, J.M.</td>
<td>22, 47</td>
</tr>
</tbody>
</table>
APPROVAL

FY 1996 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner Waits

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Tereasa H. Washington
Director
Human Resources and Administrative Support Office
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY96. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.