FY 1996 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
Joyce E. Turner-Waits
Marshall Space Flight Center • MSFC, Alabama
In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Baltimore, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1996 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>6</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC REFERENCE PUBLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>10</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>14</td>
</tr>
<tr>
<td>INDEX</td>
<td>52</td>
</tr>
</tbody>
</table>
The second United States Microgravity Payload (USMP–2), flown in March 1994, carried four major microgravity experiments plus a sophisticated accelerometer system. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission. The four USMP–2 experiments dealt with understanding fundamental aspects of materials behavior, three with the formation of crystals from melts, and one with the critical point of a noble gas. This successful, scientifically rich mission also demonstrated telescience operations.

This report documents the Marshall Space Flight Center (MSFC) 13-month smoothed solar flux ($F_{10,7}$) and geomagnetic index (A_p) intermediate (months) and long-range (years) statistical estimation technique, referred to as the MSFC Lagrangian Linear Regression Technique (MLLRT). Estimates of future solar activity are needed as updated input to upper atmosphere density models used for satellite and spacecraft orbital lifetime predictions. An assessment of the MLLRT computer program's products is provided for 5-year periods from the date estimates were made. This was accomplished for a number of past solar cycles.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY95. It also includes papers of MSFC contractors.

A space flight qualified controller for experiments that is modular and based on an open architecture commercially available standard can reduce system development time by leveraging off commercial hardware and software. While the unique requirements of flight may mandate custom hardware designs, a modular design approach in which a core set of modules is designed and built would provide a basis for future experiment controllers. Any unique requirements could then be met by adding modules as necessary. A central processing unit module, a MIL-STD-1553 interface module, and a Spacelab interface module were developed. These modules are linked using the IEEE standard 1296 Multibus II™ bus architecture.
Zerodur™ is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur™ an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur™ is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur™ density. This increase in density is described as a compaction.

Experimental data showing proton-induced compaction of Zerodur™ is presented. The dependence of compaction on proton dose was determined to be a power law relationship. Previous publications determined a powder law relationship between Zerodur™ compaction and electron radiation. Correlation between the published data and the results of this investigation are currently being studied.

To obtain the proper measurement amplitude with a spectrum analyzer, the correct frequency-dependent transducer factor must be added to the voltage measured by the transducer. This report will examine how entering transducer factors into a spectrum analyzer can cause significant errors in field amplitude due to the misunderstanding of the analyzer’s interpolation methods. It will also discuss how to reduce these errors to obtain a more accurate field amplitude reading.

The space station furnace facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The thermal control system (TCS) is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The report formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances and plant uncertainties. The desired decoupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities, time-varying plant parameters, and variations of the system pressure supplied to the controlled subsystems. A comparison against the popular proportional-plus-derivative-plus-integral (PID) control algorithm is included to demonstrate improved performance over traditional control techniques.

This is a programmer’s guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer’s Guide. C.G. Justus,* B.F. James, and D.L. Johnson. Electromagnetics and Aerospace Environments Branch, System Analysis and Integration Laboratory. *Computer Sciences Corporation, Huntsville, AL. 19960036976N (96N-30652)
model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and "map" of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through "common" lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

TM-108510 June 1996

A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

TM-108511 June 1996

The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; atmospheric thermodynamic models and properties; thermal radiation; U.S. and world surface environment extremes; humidity; precipitation, fog, and icing; cloud characteristics and cloud cover models; atmospheric electricity; atmospheric constituents; vehicle engine exhaust and toxic chemical release; occurrences of tornadoes and hurricanes; geological hazards, and sea states. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating, and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

TM-108512 June 1996

More extensive testing was performed through a NASA research announcement (NRA) between Marshall Space Flight Center (MSFC) and Lockheed Martin Astronautics on the promising LO$_2$ propellant conditioning concept of passive recirculation (no-bleed). Data from the project are being used to further anchor models in LO$_2$ conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan LO$_2$ pump attachment, feed duct slope effects, and up-leg booster effects. LN$_2$ was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of MSFC. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

TM-108513 July 1996
This report describes the newly revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide (Justus et al., 1996) for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart (1987). The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM) of Bouger et al. (1990). The new thermospheric model includes revised dependence on the 10.7-cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are (1) realistic variations of temperature and density with latitude and time of day; (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients; and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the "ORBIT" subroutine.

TM–108514

19960044383N (96N–31927)

The Computer-Aided System Engineering and Analysis (CASE/A) Version 5.0 User's Manual provides the user with information needed to execute and learn the CASE/A 5.0 modeling package. CASE/A 5.0 is a trade study tool that provides modeling/simulation capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the Space Station Freedom.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS™ environment. It utilizes the Tektronics 4014™ graphics display system and the VT100™ text manipulation/display system.

TM–108515

Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund Final Report, Project 93–03). W.T. Sutherland. Astronics Laboratory.

A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the preamplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.

TM–108516

A vacuum chamber designed for use in shearography nondestructive evaluation of aerospace components is presented. The inspection of an aerospace insulation is used as an example of vacuum excitation shearography for evaluation of debonds. Design drawings of subcomponents and the assembly are included in an appendix.

TM–108517

The Computer Aided System Engineering and Analysis (CASE/A) Version 5.0 Programmer's Manual provides the programmer and user with information regarding the internal structure of the CASE/A 5.0 software system. CASE/A 5.0 is a trade study tool that provides modeling/simulation
capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the space station.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS™ environment. It utilizes the Tektronics 4014™ graphics display system and the VT100™ text manipulation/display system.
Localized corrosion in welded samples of 2219–T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment or other inducer and impeller applications.

Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5–eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon™-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glossy black paint and Z–93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar™, bulk PEEK, and silverized FEP Teflon™. Aluminized and nonaluminized Chemfab 250™ beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectrophotometer and like measurements made using an AZ Technology-developed laboratory portable spectrophotometer.

Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbal requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability.

As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director’s Discretionary Fund Project 93–05 and has a previous and subsequent companion publication.

While the systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems- and component-dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted.
through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.

TP–3648 August 1996
19960045438N (96N–32360)

The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle’s maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle’s minimum and maximum relates to the size of the following cycle’s minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number \(R_m = 12.3 \pm 7.5 \) and maximum smoothed sunspot number \(R_m = 198.8 \pm 36.5 \), at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising, larger-than-average-size cycle. Because of the inferred correlation between ascent duration and period, it also seems likely that it will have a period shorter than average length.

TP–3653 September 1996

The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.
CP–3332 March 1996
Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology (Volume I). Compiled by R.W. Williams. Structures and Dynamics Laboratory. 19960029140N (96N–29750)

CP–3332 March 1996
Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology (Volume II). Compiled by R.W. Williams. Structures and Dynamics Laboratory. 19960029140N (96N–29670)

CP–3325 February 1996
CR-4705 February 1996
Marietta Manned Space Systems. 19960016404N (96N–22207)

CR-4706 February 1996
Structural Damage Prediction and Analysis for Hypervelocity Impacts—Handbook. NAS8–
38856. Lockheed Martin Marietta Manned Space Systems. 19960016651N (96N–22275)

CR-4707 February 1996
Formation and Description of Debris Clouds Produced by Hypervelocity Impact. NAS8–
38856. University of Dayton Research Institute. 19960015933N (96N–22124)

CR-4716 February 1996
Vulnerability of Space Station Freedom Modules: A Study of the Effects of Module Perforation
on Crew and Equipment. NCC8–28. University of Alabama in Huntsville. 19960048094N (96N–33587)

CR-4720 February 1996
Catastrophic Failure Modes Assessment of the International Space Station Alpha. NAS8–
37383. Meyer Analytics, Inc. 19960017822N (96N–23346)

CR-4740 May 1996
Contamination Control Engineering Design Guidelines for the Aerospace Community. NAS5–32876. Rockwell International
Corporation. 19960044619N (96N–32082)

CR-4744 May 1996
Services Corporation. 19960027988N (96N–29107)

CR-199201 September 1995
Special Environmental Control and Life Support Equipment Test Analyses and Hardware, Final
Report. NAS8–38250. ION Electronics. 19960004068N (96N–14078)

CR-199817 September 1995
Methods of Video and Shearography Inspection, Final Report (September 22, 1994 to September

CR-199818 September 25, 1995
Characterization of Coating for Replication, Final Report, March 27, 1995 to September 25,
1995. NAS8–38609, D.O. No. 139, University of Alabama in Huntsville. 19960010955N (96N–70388)

CR-199819 September 18, 1995
Lidar Analyses, Final Report (July 1, 1993 to October 30, 1994). NAS8–38609, D.O. No. 79,
University of Alabama in Huntsville. 19960003444N (96N–13453)

CR-199820 October 23, 1995

CR-199826 November 30, 1995
Mechanisms Test Bed Math Model Modification and Simulation Support, Final Report (July 9,

CR-199828 September 15, 1995
NAS8–39131, D.O. No. 26. Auburn University. 19960008037N (96N–15203)

CR-199829 December 10, 1995
NAS8–38609, D.O. No. 114, University of Alabama in Huntsville. 19960016701N (96N–71076)

CR-199830 February 1996
Research Reports – 1995 NASA/ASEE Summer Faculty Fellowship Program, Final Report. NGT–
01–008–021, University of Alabama in Huntsville and Tuscaloosa. 19960025420N (96N–27465)
NASA CONTRACTOR REPORTS

(Abstracts for these reports may be obtained from STAR)

CR-199831 July 14, 1995
Space Station Water Processor Process Pump,
Final Report. NAS8–38250–12, ION Electronics.
19960016957N (96N–22564)

CR-199832 May 22, 1995
Preliminary Design Program Vapor Compression Distillation Flight Experiment Program,
NAS8–38250–11. ION Electronics.
19960016649N (96N–22274)

CR-199833 August 1995
19960016584N (96N–22228)

CR-199834 September 1995
McDonnell Douglas Aerospace.
19960016571N (96N–22215)

CR-199835 July 23, 1995
19960016594N (96N–22238)

CR–199836 February 1, 1996
19960017615N (96N–23172)

CR–199837 December 1995
19960017548N (96N–23130)

CR–199838 July 14, 1995
Space Station Water Processor Mostly Liquid Separator (MLS), Final Report. NAS8–38250–12, United Technologies.
19960017622N (96N–23179)

CR–200696 August 31, 1995
19960017630N (96N–23186)

CR–200697 January 20, 1995
19960017611N (96N–23168)

CR–200698 March 1996
19960017612N (96N–23169)

CR–200699 July 1995
19960017565N (96N–23144)

CR–200700 May 22, 1995
19960021248N (96N–23160)

CR–200701 December 15, 1995
19960017620N (96N–23177)

CR–200702 December 15, 1995
19960017621N (96N–23178)

CR–200703 October 1995
19960017710N (96N–23241)

CR–200704 September 1995
19960020399N (96N–23977)

CR–200705 January 22, 1996
Video Emulated Tweening: Simulating Full Motion Video From Intermittent Video, Final Report. Omniview, Inc.
19960017541X (95X–36537)

CR–200708 March 22, 1996
19960017563N (96N–23143)
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR–200711 November 30, 1995

CR–200715 October 1995
Structural Damage Prediction and Analysis for Hypervelocity Impact, Final Report (Attachments 2, 3, 4, 5, 6, 8, and 9). NAS8–38856. Lockheed Martin. 19960022784N (96N–25677)

CR–200718 April 11, 1996
Final Report for Delivery Order 84. NAS8–38609, University of Alabama in Huntsville. 19960024140N (96N–71446)

CR–200719 April 12, 1996

CR–200720 May 8, 1995

CR–200721 June 21, 1995

CR–201124 July 1995

CR–201125 July 1995

CR–201126 July 1995

CR–201127 July 1995

CR–201128 July 1995

CR–201131 November 10, 1995
Materials Engineering Data Base, Final Report. NAS8–37780. BAMSI, Inc. 1996003269N (96N–30749)

CR–201132 December 31, 1995

CR–201133 December 1995

CR–201134 April 30, 1996

CR–201135 February 15, 1996
Parabolic Aircraft Solidification Experiments. NAS8–38609, D.O. No. 130. University of Alabama in Huntsville. 19960034386N (96N–30231)

CR–201136 May 1996

CR–201137 May 16, 1996
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR–201138 August 1996

CR–201139 April 24, 1996

CR–201141 July 1996

CR–201142 June 1996

CR–201143 May 16, 1995

CR–201144 June 3, 1996

CR–201145 August 13, 1996
ABDDELAYEM, H.A. ES41
FRAZIER, D.O. ES76
PALEY, M.S. ES76
WITHEROW, W.K. ES76
SHIELDS, A. ES76

Intrinsic Optical Bistability in Vapor Deposited Films of Metal-Free Phthalocyanine. For publication in Applied Physics Letters, Argonne, IL.

ABDDELAYEM, H.A. ES76 (USRA)
FRAZIER, D.O. ES76
PALEY, M.S. ES76
WITHEROW, W.K. ES76
SHIELDS, A. ES76
BANKS, C. ES76
HICKS, R. ES76

ABDDELAYEM, H.A. USRA
FRAZIER, D.O. ES01
PALEY, M.S. ES01
WITHEROW, W.K. ES01
BANKS, C. ES01
HICKS, R. ES01
SHIELDS, A. ES01

Optical Computers and Space Technology. For presentation at The International Association of Science and Technology for Development (LASTED), Cairo, Egypt, December 4–7, 1995.

ABDDELAYEM, H.A. USRA
FRAZIER, D.O. ES01
PALEY, M.S. ES01
WITHEROW, W.K. ES01
BANKS, C. ES01
HICKS, R. ES01
SHIELDS, A. ES01

ABDDELAYEM, H.A. USRA
FRAZIER, D.O. ES01
PALEY, M.S. ES01
WITHEROW, W.K. ES01
BANKS, C. ES01
HICKS, R. ES01
SHIELDS, A. ES01

Optical Computers and Space Technology. For presentation at The International Association of Science and Technology for Development (LASTED), Cairo, Egypt, December 4–7, 1995.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PENN, B.G. ES76
WITHEROW, W.K. ES76
BANKS, C. ES76
SHELDON, A.D. ES76
HICKS, R.M. ES76
ASHLEY, P.R. U.S. Army Missile Command

ABEL, T.M. Lockheed Martin
BOARDMAN, T.A. Thiokol Corp.
COOK, J.R. PS04

ABRAMS, M.C. University of Liege
CHANG, A.Y. JPL
GUNSON, M.R. JPL
ABBAS, M.M. ES41
GOLDMAN, A. University of Denver
IRION, F.W. JPL
MICHELS, H.A. Harvard University
NEWCHURCH, M.J. UAH
RINSLAND, C.P. LaRC
ET AL.

ABRAMS, M.C. LaRC
MANNEY, G.L. JPL
GUNSON, M.R. JPL
ABBAS, M.M. ES41
CHANG, A.Y. JPL
GOLDMAN, A. University of Denver
IRION, F.W. JPL
MICHELS, H.A. Harvard University
NEWCHURCH, M.J. UAH
ET AL.

ALISSANDRakis, C.E. University of Ioannina
BORGIOLI, F. University of Florence, Italy
DRAGO, F.C. University of Florence, Italy
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

HAGYARD, M. ES82
SHIBASAKI, K. Nobeyama Radio

ANDERSON, B.J. EL23
COOKE, W.J. Computer Sciences Corp.
PAVELITZ, S.D. Sverdrup, Inc.

ANTAR, B.N. University of Tennessee
KORNFEIJD, D.M. ES76

AUGUSTEIJN, T. ESO
DESTENE, G.V. ESO
VAN DER HOOF, F. University of Amsterdam
VAN PARADIJS, J. UAH
KOULIYETTOU, C. USRA
FISHMAN, G.J. ES84
IAUC #6326 GRO J1744–28. For publication in IAU Circular, Cambridge, MA.

AUGUSTEIJN, T. ESO
VAN DE STEEN, G. ESO
FRAIL, D.A. National Radio Ast.
VAN PARADIJS, J. UAH
KOULIYETTOU, C. USRA (ES84)
FISHMAN, G.J. ES84
ET AL.
IAUC #6309: Possible Optical Counterpart. For publication in IAUC #6309, Cambridge, MA.

AUSTIN, R.A. USRA
MINAMITANI, T. USRA
RAMSEY, B.D. ES84

BAGDIGIAN, R.M. ED62
HOLDER, D.W. ED62
HUTCHENS, C.F. ED62
JONES, K.U. ED62
OGLE, K.Y. ED62
PARKER, D. Hamilton Standard
SCHUBERT, F. Life Systems, Inc.

BARRET, C. ED15

BATTIS, G.W. CSC
PEARSON, S.D. EL23

BAUGHER, C.R. ES75
RAMACHANDRAN, N. USRA
ROARK, W. Mavetec Corp.
MSG: Microgravity Science Glovebox. For presentation at SPIE Conference on Space Processing of Materials, Denver, CO, August 4–9, 1996.

BECK, J. G. UCLA
HATHAWAY, D.H. ES82
SIMON, G.W. National Solar Observatory

BERG, W. University of Colorado
OLSON, W. GSFC
FERRARO, R. NOAA
GOODMAN, S.J. ES41
LAFONTAINE, F.J. Hughes STX

BICKLEY, F., III EE31
MUNAFO, P. EE31
BOLSTAD, D. Lockheed Martin
RANDOLPH, W. Lockheed Martin
Considerations for the Application of Al-Li Alloys to Large Aerospace Structures. For presentation at ASM/TMS Materials Week, Cleveland, OH, October 31, 1995.

BLAKESLEE, R.J. ES41
KOSKAK, W.J. ES41
BAILEY, J.C. ES41
Application of Linear Analytic Techniques to Lightning Location Retrieval During the Maritime Continent Thunderstorm Experiment

BOLOTNIKOV, A. ES84/NRC
RAMSEY, B. ES84

BOOKOUT, P.S. ED26
RICKS, E. ED26
JONES, R. ED26
Examination of Three Methods of Loads Recovery From a Coupled Loads Analysis on Space Shuttle Payloads. For presentation at AIAA Dynamics Special Conference, Salt Lake City, UT, April 18–19, 1996.

BOOKOUT, P.S. ED23
RICKS, E. ED23
JONES, R. ED23

BROWN, A.M. ES76
RICKS, E. ES75
JONES, R. ES75
FOROOGAN, S. TRW

BRITTAIN, A.M. ES76
SHAFFER, J.A. ES76

BOOKOUT, P.S. ED26
RICKS, E. ED26
JONES, R. ED26
Examination of Three Methods of Loads Recovery From a Coupled Loads Analysis on Space Shuttle Payloads. For presentation at AIAA Dynamics Special Conference, Salt Lake City, UT, April 18–19, 1996.

BOOKOUT, P.S. ED23
RICKS, E. ED23
JONES, R. ED23

BROWN, A.M. ED23
FOWLER, S.B. ED23
HARRIS, D.L. ED23
MIMS, K.K. ED23
Structural Dynamic Analysis of the X34 Orbital Vehicle Engine. For publication in AIAA Journal.

BROWN, R.W. PD34

BUECHLER, D. Inst. for Global Res.
GOODMAN, S.J. ES41
MCCAUL, E.W. Inst. for Global Res.
KNUPP, K. UAH

B── R, D. Inst. for Global Change
BLAKESLEE, R.J. ES41
CHRISTIAN, H.J. ES41
CREASY, R. Inst. for Global Change
DRISCOLL, K. Inst. for Global Change
GOODMAN, S.J. ES41
MACH, D.M. Inst. for Global Change

BUNE, A.V. ES75
Heat Mass Transfer in Furnaces for Crystal Growth From the Melt. Global Numerical Models. For publication in Izvestiga RAN Mekhaniks Zhidkostiigasa Fluid and Gas Mechanics, Russian Academy of Sciences, Moscow, Russia.

B── A, V. ES75
GILLIES, D.C. ES75
LEHOUCZYK, S.L. ES75

17

BUNE, A.V. NRC
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
ALEXANDER, H.A. Mevatec

BUNE, A.V. NRC (ES75)
GILLIES, D.C. ES75
WATING, D.A. ES75
LEHOCZKY, S.L. ES75
Modeling of Convection and Segregation During HgCdTe Directional Solidification With Emphasis on Coupling With Crystal-Melt Interface Alternation. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

BURNS, H.D. EH12
SULLIVAN-HOLT, R. EH12
SMITH, M. Lockheed Martin

BURSEY, R.W., JR. United Technologies
OLINGER, J.B. United Technologies
PRICE, J.L. United Technologies
CHIN, H.A. United Technologies
TENNANT, M.L. United Technologies
MOORE, L.C. EH14
THOM, R.L. EH14
MOORE, J.D. SRS Technologies
MARTY, D.E. SRS Technologies

BUTLER, B.L. Science Applications International
GAUSE, R.L. Science Applications International
LOOMIS, W.C. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04
NICHOLS, R.L. PS04

CAMMARATA, M. NOAA
MCCAUL, E.W. USRA
BUECHLER, D. University of Alabama

CAMPBELL, J.W. PS02

CARRASQUILLO, R.L. ED62
WIELAND, P.O. ED62
REUTER, J.L. ED62

CARTER, D.C. ES76

CARTER, D.C. ES76
TWIGG, P.D.
WRIGHT, B.
HO, J.X.
LIM, K.
CHAPMAN, J.
MILLER, T.
Multi-User Facility for Protein Crystal Growth in Microgravity: Results From PCAM and DCAM. For presentation at IUCR Meeting, Seattle, WA, August 14–16, 1996.

CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
MOORE, T.E. ES83
POLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
WYGANT, J.R. University of Minnesota
<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, A.Y.</td>
<td>JPL</td>
</tr>
<tr>
<td>Salawitch, R.J.</td>
<td>JPL</td>
</tr>
<tr>
<td>Michelsen, H.A.</td>
<td>Harvard University</td>
</tr>
<tr>
<td>Gunson, M.R.</td>
<td>JPL</td>
</tr>
<tr>
<td>Abrams, M.C.</td>
<td>LaRC</td>
</tr>
<tr>
<td>Zander, R.</td>
<td>University of Liege</td>
</tr>
<tr>
<td>Rinsland, C.P.</td>
<td>LaRC</td>
</tr>
<tr>
<td>Webster, C.R.</td>
<td>JPL</td>
</tr>
<tr>
<td>Abbas, M.M.</td>
<td>ES41</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
</tbody>
</table>

A Comparison of Measurements From ATMOS and Instruments Aboard the ER–2 Aircraft: Halogenated Gases. For publication in American Geophysical Union, Washington, DC, 1996.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, F.-C.</td>
<td>UAH</td>
</tr>
<tr>
<td>Jedlovec, G.J.</td>
<td>ES41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, F.-C.</td>
<td>UAH</td>
</tr>
<tr>
<td>Jedlovec, G.J.</td>
<td>ES41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, F.-C.</td>
<td>UAH</td>
</tr>
<tr>
<td>Jedlovec, G.J.</td>
<td>ES41</td>
</tr>
</tbody>
</table>

Total Precipitable Water Distribution During Severe Winters Over the Southeastern United States. For presentation at The 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen, P.S.</td>
<td>IIT Research Institute</td>
</tr>
<tr>
<td>Kuruvilla, A.K.</td>
<td>IIT Research Institute</td>
</tr>
<tr>
<td>Malone, T.W.</td>
<td>EH23</td>
</tr>
<tr>
<td>Stanton, W.P.</td>
<td>EH23</td>
</tr>
</tbody>
</table>

Improving Cryogenic Toughness of Alloy 2195 by Optimizing Aging. For publication in Journal of Materials Science and Engineering, Stony Brook, NY.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chou, L.C.</td>
<td>ED32</td>
</tr>
<tr>
<td>Guo, K.L.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Liaw, G.S.</td>
<td>Alabama A&M University</td>
</tr>
</tbody>
</table>

Transitionary Flows Over a Vertical Plate by a Modified Direct Simulation Monte Carlo Method. For presentation at 20th International Symposium of Rarefied Gas Dynamics Conference, Beijing, China, August 19–24, 1996.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian, J.H.</td>
<td>ES41</td>
</tr>
<tr>
<td>Berghstrom, J.W.</td>
<td>ES41</td>
</tr>
<tr>
<td>Stewart, M.F.</td>
<td>ES41</td>
</tr>
</tbody>
</table>

The Low Light Level Cloud Imager. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian, H.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>Driscoll, K.T.</td>
<td>ES41</td>
</tr>
<tr>
<td>Goodman, S.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>Blakelee, R.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>Mach, D.A.</td>
<td>ES41</td>
</tr>
<tr>
<td>Buechler, D.E.</td>
<td>ES41</td>
</tr>
</tbody>
</table>

Seasonal Variation and Distribution of Lightning Activity. For presentation at Fall AGU Meeting, San Francisco, CA, December 1996.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chung, H.</td>
<td>SUNY</td>
</tr>
<tr>
<td>Raghothamachar, B.</td>
<td>SUNY</td>
</tr>
<tr>
<td>Zhou, W.</td>
<td>SUNY</td>
</tr>
<tr>
<td>Dudley, M.</td>
<td>ES75</td>
</tr>
<tr>
<td>Lichtensteineger, M.</td>
<td>ES75</td>
</tr>
<tr>
<td>Gillies, D.C.</td>
<td>ES75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, A.M.</td>
<td>Harvard-Smithsonian</td>
</tr>
<tr>
<td>Bruni, R.J.</td>
<td>Harvard-Smithsonian</td>
</tr>
<tr>
<td>Romaine, S.E.</td>
<td>Harvard-Smithsonian</td>
</tr>
<tr>
<td>Schwartz, D.A.</td>
<td>Harvard-Smithsonian</td>
</tr>
<tr>
<td>Van Speybroeck, L.</td>
<td>Harvard-Smithsonian</td>
</tr>
<tr>
<td>Yip, P.W.</td>
<td>USAF</td>
</tr>
<tr>
<td>Drehman, A.J.</td>
<td>USAF</td>
</tr>
<tr>
<td>Shapiro, A.P.</td>
<td>ES52</td>
</tr>
</tbody>
</table>

Correlation Between X-Ray Reflectivity Measurements and Surface Roughness of AXAF Coated Witness Samples. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.

NASA Ceramic Matrix Composite Programs for Liquid Rocket Engine Applications. For presentation at Seventh AeroMat Conference, Dayton, OH, June 3–6, 1996.

Space Station Furnace Facility. For presentation at SPIE’s 1996 International Symposium, Denver, CO, August 4–9, 1996.

CRARY, D.J. ES84
KOUVELIOTOU, C. USRA
VAN PARADISJ. UAH
VAN DER HOOFT, F. University of Amsterdam
SCOTT, D.M. USRA
ZHANG, S.N. USRA
RUBIN, B.C. USRA
FINGER, M.H. USRA
HARMON, B.A. ES84
ET AL.

1,100 Days of BATSE Observations of Cygnus X–1. For publication in Astronomy and Astrophysics, Germany.

CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
COMFORT, R.H. UAH

The Search for He+. For presentation at 1996 American Geophysical Union Meeting, San Francisco, CA, December 1996.

CRAVEN, P.D. ES83
COMFORT, R.H. UAH
RICHARDS, P.G. UAH

CRAVEN, P.D. ES83
GALLAGHER, D.L. ES83
COMFORT, R.H. UAH

The Relative Concentration of He+ in the Inner Magnetosphere as Observed by DE1/RIMS. For publication in Journal of Geophysical Research.

CRONISE, R.J. ES76
NOEVER, D.A. ES76
BRITTAIN, A. ES76

Self Organized Criticality in Closed Ecosystems: Carbon Dioxide Fluctuations in Biosphere 2. For publication in International Journal of Climatology, Birmingham, United Kingdom.

CURREL, P.A. ES75
Snyder, R.S. ES75
LEHOCZKY, S.L. ES75

Materials Science in Low Gravity. For presentation at SPACE 96, Fifth International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, June 1–6, 1996.

CURTIS, L. PD21
VAN DYKE, M. PD21
LAJOIE, R.M. Boeing

CURTIS, R. Boeing
PERRY, J. ED62
ABRAMOV, L. Boeing

DESANCTIS, C. PS01

An Overview of Future NASA Programs. For presentation at 33rd Space Congress, Cocoa Beach, FL, April 23–26, 1996.

DISCHINGER, H.C. EO66
EVANS, A.M. EO66
LOUGHEAD, T.E. EO66

DOLD, P. University of Freiburg
CROLL, A. University of Freiburg
ZOFRAN, F. ES75
KAISER, T. University of Freiburg
SALK, M. University of Freiburg
FIEDERLE, M. University of Freiburg
BENZ, K.W. University of Freiburg

DRISCOLL, K.T. ES41
BLAKESLEE, R.J. ES41
BAILEY, J.C. ES41
CHRISTIAN, H.J. ES41

Atmospheric Conductivity Observations Over a Wide Latitudinal Range. For presentation at 10th International Conference on Atmospheric Electricity, Osaka, Japan, June 10–14, 1996.

DUMBACHER, D.L. XX01

Results of the DC–XA Program. For presentation at 1996 AIAA Space Program and Technology Conference and Exhibit, Huntsville, AL, September 24–26, 1996.

Radiation-Induced Degradation of White Thermal Control Paint. For presentation at 14th International Conference on the Application of Accelerator in Research and Industry, Denton, TX, November 6–9, 1996, and for publication in the conference proceedings.

Tensile and Interlaminar Shear Evaluation of DuPont/Lanxide CMC’s. For presentation at 20th Annual American Ceramic Society Meeting, Cocoa Beach, FL, January 1996.

Preliminary Ion Velocities Obtained Using Thermal Ion Dynamics Experiment (TIDE). For presentation at The Huntsville Workshop, Guntersville, AL, September 1996.
FALCONER, D.A. ES82
MOORE, R.L. ES82
GARY, G.A. ES82
PORTER, J.G. ES82

FALCONER, D.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo

FINCKENOR, M.M. EH12
KAMENETZKY, R.R. EH12
VAUGHN, J.A. EH12

MELL, R. AZ Technology
SIMS, J. AZ Technology
THOMPSON, R. AZ Technology
LEMASTER, P. AZ Technology

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81

The Mystery of Gamma-Ray Bursts. For presentation at Colloquium at Washington University, St. Louis, MO, January 30–February 2, 1996.

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81

The Mystery of Gamma-Ray Bursts. For presentation at Auburn University, Auburn, AL, May 10, 1996.
GRINDLAY, J. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian

FOSTER, R.S. Naval Research Laboratory
TAVANI, M. Columbia University
HARMON, B.A. ES84
ZHANG, S.N. USRA
PACIESAS, W.S. UAH

FRAZIER, D.O. ES01

FRAZIER, D.O. ES01
HUNG, R.J. UAH
PALEY, M.S. USRA
LONG, Y.T. UAH
Effects of Convection During the Photodeposition of Polydiacetylene Thin Films. For publication in Journal of Applied Physics, Argonne, IL.

FRAZIER, D.O. ES71
HUNG, R.J. UAH
PALEY, M.S. USRA
PENN, B.G. ES71
LONG, Y.T. UAH
Convection During Low Pressure Processing by Physical Vapor Transport. For publication in Journal of Crystal Growth, The Netherlands.

GALLAGHER, D.L. ES83
CRAVEN, P.D. ES83
COMFORT, R.H. UAH
Global Core Plasma Model. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

GALLAGHER, D.L. ES83
FOK, M.-C. ES83
FUSELIER, S. Lockheed Martin
GLADSTONE, R. Southwest Research
GREEN, J.L. GSFC
SMITH, M. GSFC
FUNG, S.F. GSFC
PEREZ, J. Auburn University
REIFF, P. Rice University
WILSON, G. ES83
Theory and Modeling for the Image Mission. For presentation at 1996 Fall American Geo-

GALLAGHER, D.L. ES83
OBER, D. UAH

GALLAHER, M. ED13
COUGHLIN, D. ED13
KRUPP, D. ED13

GARY, G.A. ES82
Rendering Three-Dimensional Solar Coronal Structures. For publication in Solar Physics, Tucson, AZ.

GARY, G.A. ES82
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
WATRING, D.A. ES75
ALEXANDER, H.A. USRA
JERMANN, G.A. ES75
Effect of Residual Accelerations During Microgravity Directional Solidification of Mercury Cadmium Telluride on the USMP–2 Mission. For presentation at 10th American Conference for Crystal Growth, Vail, CO, August 4–9, 1996.

GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
WATRING, D.A. ES75
ALEXANDER, H.A. USRA
JERMANN, G.A. ES75

GILLIES, D.C. ES75
REEVES, F.A. ES75
JETER, L.B. ES75
SLEDD, I.D. ES75
HOLMES, R.R. ES75
COLE, J.M. ES75
LEHOCZKY, S.L.

GOLDBERG, B.
More Green for NASA. For publication in Aerospace America.

GOODWIN, C.J.
Meyer Analytics

WILLIAMSEN, J.
ED52

Catastrophic Failure of Stored Energy Modules Following Orbital Debris Penetration. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4–9, 1996.

GREEN, J.L.
GSFC

TAYLOR, W.W.L.
Nichols Research Corp.

FUNG, S.F.
GSFC

BENSON, R.
GSFC

CALVERT, W.
University of Iowa

REINISCH, B.
University of Massachusetts

GALLAGHER, D.L.
ES83

REIFF, P.

GREENWOOD, L.R.
JPL

GRINER, CAROLYN S.
EO47

Evolution of NASA’s Communications Networks: Cost-Effective Synergy Between Industry and Government. For presentation at 47th International Astronautical Congress, Beijing, China, October 7–11, 1996.

GUILLORY, A.R.
ES41

GUILLORY, A.R.
ES41

SUGGS, R.J.
ES41

LERNER, J.
ES41

Solar Flares and Related Disturbances, Hitachi, Japan, January 1996.

HALE, J.P., II

HALE, J.P., II

HALL, D.K.

HAMAKER, J.W.

HAMMER, R.
Effects of Thermal Conduction on the Energy Balance of Open Coronal Regions. For publication in Astronomical Society of the Pacific

HANNICHAK, M.
Lockheed Martin

HANSON, J.M.
KASHER, J. University of Nebraska
SIMON, G.W. AFMC/PL/GPSS
GONG Observations of Solar Surface Flows. For presentation at 188th Meeting of the AAS, Madison, WI, June 9-13, 1996.

HEAMAN, J.P. ED34
A Nozzle Test Facility. For presentation at 85th Supersonic Tunnel Association Meeting, Atlanta, GA, April 14-17, 1996.

HERRMANN, M. PD21

HILL, F. National Solar Observatory
STARK, P.B. ES82
ANDERSON, E.R. National Solar Observatory
ANTIA, H.M. National Solar Observatory
BROWN, T.M. High Altitude Observatory
HATHAWAY, D.H. ES82
ET AL.
GONG Estimates of Solar Eigenspectral Parameters. For publication in Science, Washington, DC.

HIRAHARA, J. UAH
HORWITZ, J.L. UAH
GERMANY, G. UAH
MOORE, T.E. ES83
SPANN, J.M. ES83
CHANDLER, M.O. ES83
GILES, B.L. ES83
Properties of Upflowing Ionospheric Ion Conics and Magnetosheath Proton Precipitation at 5,000 km Altitude Over Cusp/Cleft Auroral Forms: Initial Observations From the TIDE and UVI Instruments on POLAR. For presentation at 1996 Huntsville Workshop, Guntersville, AL, September 1996.

HO, J.X. ES76
CHANG, B. ES76
KEELING, K. ES76
HOLOWACHUK, E.W. MIB Hospital
PETERS, T. MIB Hospital
CARTER, D.C. ES76

HOOD, R.E. ES41
SPENCER, R.W. ES41

HOOD, R.E. ES41
SPENCER, R.W. ES43
CHISHOLM, W. ES93
SPENCE, R. Mevatec
SIMMONS, D. Mevatec
CORREA, T. Mevatec
MARTINEZ, N. ES93
 LOBL, E. UAH

HOOD, R.E. ES41
SPENCER, R.W. ES41

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
EMSLIE, A.G. UAH
KOSHUT, T.M. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84

HORACK, J.M. ES84
HAKKILA, J. Mankato State University
The Internal Luminosity Distribution of Bright Gamma-Ray Bursts and Its Relation to Duration and Spectral Hardness. For publication in Astrophysical Journal, University of Chicago Press, Chicago, IL.
HORACK, J.M. ES84
HAKKILA, J. Mankato State University
PREECE, R.D. UAH
KOSHUT, T.M. USRA
MALLOZZI, R.S. UAH

HORACK, J.M. ES84
MALLOZZI, R.S. UAH
KOSHUT, T.M. UAH

HORACK, J.M. ES84
MEEGAN, C.A. ES84
HAKKILA, J. Mankato State University
EMSLIE, A.G. UAH

HORACK, J.M. ES84
RIZVI, S. Buckhorn High School
FRIEND, L. Buckhorn High School

HOU, R. University of Texas
EVANS, D.M. University of Texas
MCCLURE, J.C. University of Texas
NUNES, A.C. EH23
GARCIA, G. EH23

The Role of Shield Gas on Heat Transfer Efficiency in Plasma Arc Welding. For publication in Welding Journal, American Welding Society, Miami, FL.

HOUSTON, R. Sverdrup
HULGAN, W. EL24

HUANG, D. University of Texas
MCCLURE, J.C. University of Texas
NUNES, A.C. EH23

Gas Contamination During Plasma Welds in Aluminum. For publication in Welding Journal, Miami, FL.

HUDSON, S.T. ED34
COLEMAN, H.W. UAH

HUFFAKER, F. PS03
FLEMING, B. Lockheed Martin

HUH, O.K. Louisiana State University
MOELLER, C. University of Wisconsin
RICKMAN, D. ES41

HUNG, R.J. ES41 (UAH)
LONG, Y.T. ES41 (UAH)

HUNG, R.J. ES71 (UAH)
LONG, Y.T. ES71 (UAH)

HUNG, R.J. ES41 (UAH)
LONG, Y.T. UAH
ZU, G.J. UAH

HUNG, R.J. ES41 (UAH)
LONG, Y.T. UAH
ZU, G.J. UAH

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNG, R.J.</td>
<td>ES71 (UAH)</td>
<td>Effect of Baffles on Orbital Accelerations—Induced Bubble Oscillations in Microgravity.</td>
<td>For publication in International Journal of Mechanical Science, 1996.</td>
</tr>
<tr>
<td>RINSLAND, C.P.</td>
<td>LaRC</td>
<td>Cold-Flow Study of Hybrid Rocket Motor Flow Dynamics.</td>
<td>For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.</td>
</tr>
</tbody>
</table>

JUSTUS, C.G. Computer Sciences Corp.
JOHNSON, D.L. EL23

JUSTUS, C.G. Computer Sciences Corp.
JOHNSON, D.L. EL23

KANKELBORG, C.C. Stanford University
WALKER, A.B.C., Jr. Stanford University
HOOVER, R.B. ES82
BARBEE, T.W., Jr. Lawrence Livermore National Laboratory
Observation and Modeling of Soft X-Ray Bright Points. For publication in Astrophysical Journal, Chicago, IL.

KAUKLER, W.F. UAH
CURREN, P.A. ES75

KAYE, J.A. NASA Headquarters
MILLER, T.L. ES41
The ATLAS Series of Shuttle Missions. For publication in Geophysical Research Letters, June 1996.

KELLER, V. PS02
CARRINGTON, C. PD12
RUPP, C. PS04
CARROLL, J. Tether Applications, Inc.
VAS, I. Boeing
JOHNSON, J. Boeing
Space Station Reboost Via Orbiter Towing and Tethered Momentum Exchange. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

KEYS, A. EO37

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
MOORE, T.E. ES83

KHAZANOV, G.V. ES83
MOORE, T.E. ES83
HORWITZ, J.L. UAH
RICHARDS, P.G. UAH
KONIKOV, Y.V. Izmiran, Russia

KHAZANOV, G.V. ES83
MOORE, T.E. ES83
KRIVORUTSKY, E.N. UAH
HORWITZ, J.L. UAH
LIEMOHN, M.W. University of Michigan
Lower Hybrid Turbulence and Ponderomotive Force Effects in Space Plasmas Subjected for Large-Amplitude Low-Frequency Waves. For publication in Geophysical Letter.

KHAZANOV, G.V. ES83/NRC
MOORE, T.E. ES83
LIEMOHN, M.W. University of Michigan
KOZYRA, J.U. University of Michigan

KOMMERS, J.M. MIT
RUTLEDGE, R.E. MIT
FOX, D.W. MIT
LEWIN, W.H.G. MIT
MORGAN, E.H. MIT
KOUVELIOTOU, C. USRA (ES84)

KOSHK, W.J. ES41
SOLAKIWEZ, R.J. Chicago State University
•

KOSHUT, T.M. UAH
PACIESAS, W.S. UAH
KOUVELIOTOU, C. USRA
VAN PARADIS, J. UAH
PENDLETON, G.N. UAH
FISHMAN, G.J. ES81
MEEGAN, C.A. ES84

KOUVELIOTOU, C. USRA
DEAL, K. UAH
WOODS, P. UAH
BRIGGS, M. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES81
VAN PARADIS, J. UAH
FINGER, M.H. USRA
KOMMERS, J. MIT
LEWIN, H.G. MIT

KOUVELIOTOU, C. USRA (ES84)
KOMMERS, J. MIT
LEWIN, W.H.G. MIT
VAN PARADIS, J. UAH

KOUVELIOTOU, C. USRA
VAN PARADIS, J. UAH
FISHMAN, G.J. ES81
BRIGGS, M.S. UAH
KOMMERS, J. MIT
HARMON, B.A. ES84
MEEGAN, C.A. ES84
LEWIN, W.H.G. MIT

KRAMER, E.A. University of Georgia
LUVALL, J.C. ES41

The Use of Thermal Remote Sensing for Measuring the Vegetation Dynamics of a Dry Tropical Forest in Costa Rica. For presentation at U.S. Landscape Ecology Symposium, Galveston, TX, March 26–30, 1996.

KRIVORUTSKY, E.N. UAH
HORWITZ, J.L. UAH
KHAZANOV, G.V. NRC/ES83
MOORE, T.E. ES83
LIEUMOHN, M.W. ES83

Lower Hybrid Oscillations in the Multicomponent Space Plasmas Subjected to Low-Frequency Waves. For presentation at 1996 Spring American Geophysical Union Meeting, May 20–24, 1996.

LAL, R.B. Alabama A&M University
ZHANG, H.W. Alabama A&M University
WANG, W.S. Alabama A&M University
AGGARWAL, M.D. Alabama A&M University
LEE, H.W.H. LLNL

PENN, B.G. ES76

Crystal Growth and Optical Properties of 4-Aminobenzophenone (ABP) Crystals for NLO Applications. For presentation at the 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

LANSING, M. UAH
WALKER, J. UAH
RUSSELL, S.S. EH13N

Composite Pressure Vessel Failure Prediction by Computer Vision and Neural Network Analysis. For presentation at 1996 Spring ASNT Conference, Norfolk, VA, March 18–22, 1996.

LARSON, D. EO47
HAGOPIAN, J. EO47

LASSITER, J.O. ED74

Microgravity Acceleration Measurements for Payload Isolation Development. For publication in Sound and Vibration, Bay Village, OH, 1996.

LASSITER, J.O. ED73

LEE, J.A. EH23

31
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

LEE, J.A. EH23

LEE, S. Kyunggi University, Korea
SALAMON, N.J. Pennsylvania State
SULLIVAN, R.M. ED24
Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion. For publication in AIAA Journal of Thermophysics and Heat Transfer.

LERNER, J.A. UAH
JEDLOVEC, G.J. ES41
Precipitable Water Variability on a Continental Scale Using the SSM/I and GOES VAS Pathfinder Data Sets. For presentation at AMS Eighth Conference on Satellite Meteorology, Atlanta, GA, January 28–February 2, 1996.

LIU, J. Engineering Sciences, Inc.
SHANG, H.M. Engineering Sciences, Inc.
CHEN, Y.S. Engineering Sciences, Inc.
WANG, T.S. ED32

LO, C.P. University of Georgia
QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

LO, C.P. University of Georgia
QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

LU, H.-I. UAH
MILLER, T.L. ES41
Wave Dispersion in a Rotating, Differentially Heated Fluid Model. For publication in Dynamics of Atmospheres and Oceans.

LU, H.-I. UAH
MILLER, T.L. ES41
Characteristics of Annulus Baroclinic Flow Structure During Amplitude Vacillation. For publication in Dynamics of Atmospheres and Oceans.

LU, H.-I. UAH
MILLER, T.L. ES41
Wave Dispersion in a Rotating, Differentially Heated Fluid Model. For publication in Dynamics of the Atmosphere and Oceans, Amsterdam, The Netherlands, 1995.

LURIE, C. TRW
FOROOZAN, S. TRW
BREWER, J. EB74
JACKSON, L. EB72

LURIE, C. TRW
FOROOZAN, S. TRW
BREWER, J. EB74
JACKSON, L. EB72

LUTTRELL, T.M. AI11

LUTZ, B. Meyer Analytics
WILLIAMSEN, J. ED52
Critical Fracture of Space Station Modules Following Orbital Debris Penetration. For presentation at AIAA Space Programs and Technologies
LUVALL, J.C. ES41
QUATTROCHI, D.A. ES41
LO, C.-P. University of Georgia

LYLES, G.M. PF02

MACKERRAS, D. University of Queensland
DARVENIZA, M. University of Queensland
ORVILLE, R.E. Texas A&M University
WILLIAMS, E.R. MIT
GOODMAN, S.J. ES41

MAJUMDAR, A.K. Sverdrup
BAILEY, J.W. Sverdrup
HOLT, K.A. EP22
TURNER, S.G. EP22

MARTIN, C. EP12
VAN DYKE, M. EP42

MAXWELL, T. EO47
HAGOPIAN, J. EO47

MAZURUK, K. USRA
SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg1-xZnxTe Pseudobinary Melts III: Viscosity. For publication in Journal of Applied Physics, Argonne, IL.

MCCaleb, R.C. AE01

MEEGAN, C.A. ES84
Observations of Gamma-Ray Bursts. For presentation at Joint APS/AAPT Meeting, Indianapolis, IN, May 2–5, 1996.

MEEGAN, C.A. ES84

MEHTA, G. Lockheed Martin
HASTINGS, J. EP23
PERRY, G. EP85

MEHTA, G. Lockheed Martin
INGRAM, C. Lockheed Martin
STONE, B. Rocketdyne
GROSSKOPF, W.J. EP42
LEE, C. EP42
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

MILLER, T.L. ES42

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MIN, J.B. ED27
XIQUES, K.E. Adaptive Research

MOHAMADINEJAD, H. McDonnell Douglas
KNOX, J.C. ED62
SMITH, J.E. UAH
FINN, J.E. Ames

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College

MOORE, R.L. ES82
FALCONER, D.A. NRC
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo
Evidence that Strong Coronal Heating Results From Photospheric Magnetic Flux Cancellation. For presentation at 27th Meeting of the AAS SPD, Madison, WI, June 9–13, 1996.

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. Lockheed
SHIBATA, K. National Solar Observatory
HIRAYAMA, T. National Solar Observatory
OGAWARA, Y. Institute of Space and Astronomical Science

MOORE, R.L. ES82
HUDSON, H.S. University of Hawaii
LEMEN, J.R. LPARL
SHIBATA, K. NAO, Japan
HIRAYAMA, T. NAO, Japan
OGAWARA, Y. ISAS, Japan
The 3-D Magnetic Eruption in the Birth of CME’s: Coronal Observations From the Yohkoh SXT. For presentation at Chapman Conference, Bozeman, MT, August 11–15, 1996.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
POLLOCK, C.J. Southwest Research
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
ET AL.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
POLLOCK, C.J. ES83
WAITE, J.H. Southwest Research
YOUNG, D.T. Southwest Research
MCCOMAS, D.J. Los Alamos National Laboratory
NORDHOLT, J.E. Los Alamos National Laboratory
BERTHELIER, J.J. Centre d’Etudes Terrestre
Initial Results From the Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Investigation (PSI) on POLAR. For presentation at 1996 Spring American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

MOORE, T.E. ES83
CHAPPELL, C.R. ES83
CHANDLER, M.O. ES83
FIELDS, S.A. ES83
POLLOCK, C.J. ES83
REASONER, D.L. ES83
YOUNG, D.T. Southwest Research
BURCH, J.L. Southwest Research
EAKER, N. Southwest Research ET AL.

MOORE, T.E. ES83
POLLOCK, C.J. ES83
ADRIAN, M.F. UAH

MOORE, T.E. ES83
POLLOCK, C.J. ES83
ADRIAN, M.F. UAH
KINTNER, P.M. Cornell University
ARNOLDS, R.L. University of New Hampshire
LYNCH, K.A. University of New Hampshire
SCIFER—The Cleft Ion Plasma Environment at Low Solar Activity. For publication in Geophysical Research Letters.

MUSS, J. Aerojet
NGUYEN, T. Aerojet
RESKE, E. ED32
MCDANIELS, D. ED32
GOROKOV, V. Chemical Automatics

NADARAJAH, A. UAH
PUSEY, M.L. ES76
Growth Mechanism and Morphology of Tetragonal Lysozyme Crystals. For publication in Journal of Acta Crystallographica Section D.

NEERGAARD, L.F. UAH
MUSIEJAK, Z.E. UAH
HATHAWAY, D.H. ES82
Klein-Gordon Equations for Acoustic Waves and Their Applications in Helioseismology. For publication in Solar Physics, Dordrecht/Boston/London.
Neural Net to Predict Silica Aerogel Transparency. For publication in Physical Review A, Ridge, NY.

NOEVER, D.A. ES76
Computerized Monitoring of Aqueous Heavy Metal and Organic Chemical Contamination Based on Protozoa Swimming Response. For presentation at The Second International Conference on Environment and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOEVER, D.A. ES76
BRITTAINE, A. NRC/ES76
MATSOS, H.C. ES76
BASKARAN, S. Hughes
OBENHUBER, D. MCI
The Effects of Variable Biome Distribution on Global Climate. For presentation at The Seventh Annual Global Warming International Conference and Expo, Vienna, Austria, April 1–3, 1996.

NOEVER, D.A. ES76
CRONISE, R.J. ES76
MATSOS, H.C. ES76
Optimized Group Contribution Methods for Predicting Chemical Biodegradation and Eye Irritancy. For publication in Toxicological and Environmental Chemistry, Bayreuth, Germany.

NOEVER, D.A. ES76
MATSOS, H.C. ES76
CRONISE, R.J. ES76
LOOGER, L.L. ES76
RELWANI, R.A. ES76
JOHNSON, J.U. Alabama A&M University Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns. For presentation at The Second International Conference on Environmental and Industrial Toxicology, Bangkok, Thailand, December 9–13, 1996.

NOLEN, A.M. EH12
ROBINSON, J.H. ED52
Aluminum Foam as Orbital Debris Shielding. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

NONEMAN, S.R. EO02

NONEMAN, S.R. EO02

NOVAK, H.L. USBI
HALL, P.B. EH14
Development of Environmentally Compatible Solid Film Lubricants. For presentation at Second Aerospace Technology Conference, Huntsville, AL, August 6–8, 1996.

NURRE, G.S. ED12
WHORTON, M.S. ED12
KIM, Y. ED12
EDBERG, D. McDonnell Douglas
BOUCHER, D. McDonnell Douglas
SCHENCK, D.
Results of the STABLE Microgravity Vibration Isolation Flight Experiment. For presentation at 67th Shock and Vibration Symposium, Monterey, CA, November 18–22, 1996.

NURRE, G.S. ED12
WHORTON, M.S. ED12
KIM, Y. ED12
EDBERG, D. McDonnell Douglas
SCHENCK, D.
Oxygen Generation Technology Tests at MSFC. For presentation at 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

OGLE, K.Y. ED62
ERICKSON, R.J. ED62

OWENS, S.M. University of Albany
ULLRICH, J.B.
PANOMAREV, I.Y.
XIAO, Q.F.
CARTER, D. ES76
SISK, R.C. ES76
GIBSON, W.M.

PACIESAS, W.S. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES84
ZHANG, S.N. USRA
ROBINSON, C.R. USRA
Galactic Center. For publication in IAU Circular No. 6284, Cambridge, MA.

PALEY, M.S. USRA
FRAZIER, D.O. ES76
Photodeposition of Polydiacetylene Thin Films for Photonic Applications in 1-g and in Microgravity. For presentation at SPIE’s Annual Meeting, Denver, CO, August 4–9, 1996.

PALOSZ, W. ES75
Removal of Oxygen From Electronic Materials by Vapor Phase Processes. For presentation at 10th American Conference on Crystal Growth, Vail, CO, August 4–9, 1996.

PAVELITZ, S.D. Sverdrup Technology
ANDERSON, B.J. EL23
JAMES, B.F. EL23

PECK, J.A. ED23
Shape Optimization of Actively Controlled Mirror Segments. For publication in AIAA Journal.

PENDLETON, G.N. UAH
MALLOZZI, R.S. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
KOSUT, T.M. UAH
HORACK, J.M. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84
ET AL.
The Intensity Distribution for Gamma-Ray Bursts Observed With BATSE. For publication in Astrophysical Journal, Chicago, IL.

PENDRUSH, G.J., III UAH
SMITH, A.E. UAH
GREGORY, J.C. UAH
THOBURN, C. ES84
AUSTIN, R.W. ES84
PARNELL, T. ES84
ROBERTS, E. ES84
Scintillating Optical Fiber Calorimeter (SOFICAL) Detector. For presentation at SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, August 4–9, 1996.

PERRY, J.L. ED62
CARRASQUILLO, R.L. ED62
FRANKS, G.D. ED62
FREDERICK, K.R. ED62
KNOX, J.C. ED62
LONG, D.A. ED62
OGLE, K.Y. ED62
PARRISH, K.J. ED62

PETRUZZO, J.J., III UAH
SMITH, A.E. UAH
GREGORY, J.C. UAH
THOBURN, C. ES84
AUSTIN, R.W. ES84
PARNELL, T. ES84
DERRICKSON, J.H. ES84
MASHEDER, M.R.W. University of Bristol

FOWLER, P.H. University of Bristol

PHILLIPS, S.M. EO47

PINDERA, M.Z. CFD Research Corp.
GIRIDHARAN, M.G. CFD Research Corp.
HUTT, J. EP13

POLITES, M.E. EB21

POLITES, M.E. EB21

POLITES, M.E. EB21

POLLOCK, C.J. ES83
COFFEY, V.N. ES83
ENGLAND, J.D. ES83
MARTINEZ, N.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
Thermal Electron Capped Hemisphere Spectrometer (TECHS) for Ionospheric Studies. For publication in Proceedings for Chapman Conference, Santa Fe, NM, April 1996.

POLLOCK, C.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
KINTNER, P.M. Cornell University
ARNOLDY, R.L. University of New Hampshire
SCIFER—Cleft Region Thermal Electron Distribution Functions. For publication in Geophysical Research Letter.

POLLOCK, C.J. ES83
MOORE, T.E. ES83
ADRIAN, M.L. UAH
KINTNER, P.M. Cornell University
BONNELL, J. Cornell University
ARNOLDY, R.L. University of New Hampshire
DEEHR, C. University of Alaska
STEINBECK-NEILSEN, H. University of Alaska
HOLTET, J. University of Oslo
ET AL.
Rocket Sounding of the Cleft, With the Help of Near Real Time IMF and Solar Wind Data From the ISTP Wind Satellite. For presentation at 1996 Spring American Geophysical Union, Baltimore, MD, May 20–24, 1996.

PORTER, J.G. ES82
FALCONER, D.A. ES82 (NRC)
MOORE, R.L. ES82
HARVEY, K.L. SPRC
RABIN, D.M. NSO
SHIMIZU, T. University of Tokyo
Microflaring in Sheared Core Magnetic Fields and Episodic Heating in Large Coronal Loops. For presentation at 188th AAS SPD, Madison, WI, June 9–13, 1996.

POWERS, W.T. EB22
COOPER, A.E. EB22
WALLACE, T.L. Vanderbilt University

PREECE, R.D. UAH
BRIGGS, M.S. UAH
PENDLETON, G.N. UAH
PACIESAS, W.S. UAH
MATTESON, J.L. University of California
BAND, D.L. University of California
SKELETON, R.T. University of California
MEEGAN, C.A. ES84

PRESTWICH, A.H. Smithsonian Astrophysical
JOY, M. ES84
LUGINBUHL, C.B. U.S. Naval Observatory
SULKANEN, M. ES84
NEWBERRY, M. Axion Research
PUSEY, M.L. ES76

QUATTROCHI, D.A. ES41
Cities as Urban Ecosystems: A Remote Sensing Perspective. For presentation at PECORA 13 Symposium, Sioux Falls, SD, August 19–22, 1996.

QUATTROCHI, D.A. ES41
LAM, N.S-N. Louisiana State University
QIU, H.-L. Louisiana State University
ZHAO, W. Louisiana State University

QUATTROCHI, D.A. ES44
LO, C.P. University of Georgia
LUVALL, J.C. ES41

QUATTROCHI, D.A. ES41
LUVALL, J.C. ES41

RAMACHANDRAN, N. USRA
BAUGHER, C.R. ES75
ROGERS, J. ES75
PETERS, P. ES75
ROARK, W. Mevatec Corp.
PEARCY, G. Mevatec Corp.
Thermal Diffusion Experiment “Chuck”—Payload of STABLE. For presentation at SPIE Conference on Space Processing of Materials, Denver, CO, August 4–9, 1996.

RAMACHANDRAN, R. ES41
RAGHAVAN, R. ES41
GOODMAN, S.J. ES41
Estimating Ice Water Content Using Observed Lightning. For presentation at 10th International Conference on Atmosphere Electricity, Osaka, Japan, June 10–14, 1996.

RAMSEY, B.D. ES84
New Developments in X-Ray Detector Systems. For presentation at 50th Anniversary of Tata Institute of Fundamental Research, Bombay, India, August 12–17, 1996.

APPLE, J.A. USRA
AUSTIN, R.A. USRA
DIETZ, K.L. USRA
MINAMITANI, T. USRA
KOLODZIEJCZAK, J.J. USRA
WEISSKOPF, M.C. ES84

RAO GUDIMETLA, V.S. Oregon Graduate Institute
KAVAYA, M.J. EB53
Special Relativity Corrections to the Point of Return, Receiving Angles, and the Doppler Shift for Space-Based Lidars. For publication in Journal of Optical Society of America.

RICHARDSON, R.W. Ohio State University
SUBRAMANIAN, V.V. Ohio State University
PAGAN, J. Ohio State University
NUNES, A.C., JR. EH23

RICKMAN, D. ES41

RINSLAND, C.F. LaRC
MAHIEU, E. University of Liege
ZANDER, R. University of Liege
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
CHANG, A.Y. JPL
GOLDMAN, A. University of Denver
ABRAMS, M.C. Systems and Applied Sciences Corp.
ABBAS, M.M. ES41
ET AL.

RINSLAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
MICHELSSEN, H.A. Harvard University
ZANDER, R. University of Liege
NEWCHURCH, M.J. UAH
ABBAS, M.M. ES41
ABRAMS, M.C. Science Applications
MANNEY, G.L. JPL
ET AL.

RINSLAND, C.P. LaRC
GUNSON, M.R. JPL
SALAWITCH, R.J. JPL
NEWCHURCH, M.J. UAH
ZANDER, R. University of Liege
ABBAS, M.M. ES41
ABRAMS, M.C. Systems and Applied Sciences Corp.
MANNEY, G.L. JPL
MICHELSSEN, H.A. Harvard University
ET AL.

RITCHIE, A.A., JR. ES41
SMITH, M. ES41
GOODMAN, M. ES41
SCHUDALLA, R. ES41
CONWAY, D. ES41
LAFONTAINE, F. ES41
MOSS, D. ES41
MOTTA, B. ES41

Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Data Sets. For publication in Journal of Atmospheric Sciences, 1996.

ROBERTSON, F.R. ES41
BRASWELL, W.D. Nichols Research Corp.
FITZJARRALD, D.E. ES41

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41

MARSHALL, S. University of North Carolina
Anomalies in Coupled Energy and Water Budgets Over the Americas as Diagnosed From Pre-EOS Data Sets. For presentation at 21st Annual Climate Diagnostics and Prediction Workshop, Huntsville, AL, October 28–November 1, 1996.

ROBERTSON, F.R. ES41
FITZJARRALD, D.E. ES41

MARSHALL, S. University of North Carolina
Anomalies in Coupled Energy and Water Budgets Over the Americas as Diagnosed From Pre-EOS Data Sets. For presentation at AMS Annual Meeting, San Diego, CA, February 1997.

ROBERTSON, F.R. ES41
MCCAUL, E.W. USRA
SAMUELSON, D. ES41
JEDLOVEC, G. ES41

Synthesis of Upper-Tropospheric Vapor and Cloud Analyses During the NASA/NOAA Pathfinder Period. For presentation at AMS Meeting, Atlanta, GA, January 28–February 2, 1996.

ROBINSON, C.R. ES84
CORDOVA, F.A. NASA Headquarters
ISHIDA, M. Institute of Space and Astronautical Science, Japan

ROBINSON, J.H. ED52

ROBINSON, K. EO01

Investigator “Telescience” Requirements and NASA Capabilities for Space Station. For presentation at 1996 AIAA Space Programs and

ROE, F.D. EB44
MITCHELL, D.W. EB44
LINNER, B.M. EB44
KELLEY, D.L. EB44

ROGERS, J.R. ES76
ROBINSON, M.B. ES76

Containerless Processing in Reduced Gravity Using the TEMPUS Facility. For presentation at AIAA Conference, Huntsville, AL, September 24–27, 1996.

ROMAINE, S.E. Harvard-Smithsonian
BRUNI, R.J. Harvard-Smithsonian
CLARK, A.M. Harvard-Smithsonian
PODGORSKI, W.A. Harvard-Smithsonian
ZHOU, Y. Harvard-Smithsonian
SCHULTZ, D. Harvard-Smithsonian
SCHWARTZ, D.A. Harvard-Smithsonian
VAN SPEYBROECK, L. Harvard-Smithsonian
SHAPIRO, A.P. EB52

ET AL.

Monitoring Program for the Coating of the AXAF Flight Optics. For presentation at SPIE 1996 International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, August 4–9, 1996.

ROMAN, M.C. ED62

ROMANOWSKI, G.J.
RICKMAN, D. ES41

ROGERS, J.R. ES76

Synthesis of 4-(N, N-Dimethylamino)-3-Dodecylamidonitro Benzene. For presentation at 13th Rocky Mountain Regional Meeting of American Chemical Society, Denver, CO, June 9–12, 1996.

ROMERO, M. New Mexico Highlands
WILSON, F. New Mexico Highlands
TOWNSEND, C. New Mexico Highlands
MYERS, T. New Mexico Highlands
PARHAM, T. New Mexico Highlands
MCCALL, S. Spelman College
CARDELINO, B. Spelman College
MOORE, C. ES76
PENN, B. ES76

CLARK, R.D. New Mexico Highlands

ROTHERMEL, J. ES41
HARDESTY, R.M. ES41
MENZIES, R.T. ES41

ROTHERMEL, J. ES43
HARDESTY, R.M. ES43
MENZIES, R.T. ES43

RUSSELL, C. EH23
PATON, B. Paton Electric Welding

Space Welding: On the Agenda. For presentation at 33rd Space Congress, Cocoa Beach, FL, April 23–26, 1996.

RUSSELL, K. EB53
CORDER, E. EB53
BRISCOE, J. EB53
WALLACE, S. EB53
DAVIS, J. EB53

CHAPPELL, J.H. New England Advanced

The Solar X-Ray Imager (SXI) Detector Characterization. For presentation at SPIE, GOES–8 and Beyond, Denver, CO, August 4–9, 1996.

RYAN, R.S. ED01

RYAN, R.S. ED01
TOWNSEND, J.S. ED01

SANDUBRAE, J.A. Science Applications International
ROBERTS, H.A. Science Applications International
TEGLIA, W.R. Science Applications International
BUTLER, B.L. Science Applications International
KUBLIN, T. PS04
STUCKER, M. PS04

SANGHADASA, M. UAH
BARR, T.A., Jr. UAH
WU, B. UAH
CLOMENIL, D. UAH
TONG, Y. UAH
BHAT, K.N. UAH
CLARK, R.D. New Mexico Highlands
PENN, B. ES76
Investigation of Solvent Effect on Optical Nonlinearity of Organic Molecular Systems. For presentation at SPIE, Denver, CO, August 4–9, 1996.

SCARL, E. Boeing
MCCALL, K. EB12

SCHILLER, S. South Dakota State
LUVALL, J.C. ES44
JUSTUS, J. ES44
Calibration of MODTRAN3 With PGAMS Observational Data for Atmospheric Corrections Applications. For presentation at SPIE—The International Society for Optical Engineering, Orlando, FL, April 17–21, 1996.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE
SIMNETT, G.M. University of Birmingham
FONTENLA, J.M. HAO/NCAR
TANDBERG-HANSSEN, E. ES01
Subflares and Surges in AR 2/44 During SMM. For publication in Astronomy and Astrophysics Journal.

SCHMIEDER, B. Observatoire de Paris
ROVIRA, M. IAFE Argentina
SIMNETT, G.M. University of Birmingham
TANDBERG-HANSSEN, E. ES01
VAN DRIEL-GESZTELYI, L. Observatoire de Paris
SHIBATA, K. NAO, Japan
GOULB, L. Harvard-Smithsonian

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
FROST, C. ED52
Hole Size and Crack Length Following Orbital Debris Penetration of Space Station Module Walls at 6.5 and 11.5 km/sec. For presentation at 20th International Symposium on Space Technology and Science, Gifu, Japan, May 19–26, 1996.

SCHONBERG, W.P. UAH
DAVENPORT, Q. UAH
SERRANO, J. UAH
GALA, D. UAH
LIQUORNOK, D.J. UAH
HAYAMI, R.A. UAH
WILLIAMSEN, J.E. ED52
Modeling the Internal Effects Within a Habitable Module Due to Perforation by an Orbital Debris Particle. For presentation at Sixth Annual AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, February 11–15, 1996.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
Space Station Module Wall Hole Size and Crack Length Following Orbital Debris Penetration. For presentation at Space 96: The Fifth International Conference and Exposition on
SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52

SCOTT, D.W. EO65
Spaceborne Digital Video—Perched on the High Dive of Interactive Ops. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 24–26, 1996.

SEN, S. USTA
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
CATALINA, A. University of Alabama
CURRERI, P.A. ES75

SHA, Y.-G. USRA
SU, C.-H. ES75
ALEXANDER, H.A. USRA
LEHOCZKY, S.L. ES75
WANG, J.-C. University of Alabama
Seeded Growth of HgZnTe by Directional Solidification Using an Initial Composition Profile Simulating a “Diffusion-Boundary” Layer. For publication in Journal of Crystal Growth, Amsterdam, The Netherlands.

SMITH, A.W. ED34
RAMACHANDRAN, N. ED34

SHA, Y.-G. ES71
SU, C.-H. ES75
LEHOCZKY, S.L. ES75
Seeded Growth of HgZnTe by Directional Solidification Using Initial Composition Profile Simulating a “Diffusion-Boundary” Layer. For presentation at 10th American Conference on Crystal Growth, Vail, CO, Aug. 4–9, 1996.

SHAW, E.J. PP03

SHELL, M. EO37

SHA, Y.-G. USRA
SU, C.-H. ES75
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hg$_{1-x}$Zn$_x$Te Pseudobinary Melts II: Thermal Diffusivity and Conductivity of Hg$_{1-x}$Zn$_x$Te Solids and Melts. For publication in Journal of Applied Physics, Argonne, IL.

SHAW, E.J. PP03

SHELL, M. EO37

SMITH, A.E. UAH
PETRUIZZO, J.J. III UAH
GREGORY, J.C. UAH
THOBURN, C. UAH
AUSTIN, R.W. ES84
DERRICKSON, J.H. ES84
PARNELL, T.A. ES84
MASHEDER, M.R.W. University of Bristol
FOWLER, P.H. University of Bristol

SMITH, D.D. ES76
Cancellation of Nonlinear Absorption in Composite Materials. For presentation at Optical Society of America, Rochester, NY, October 20–24, 1996.

SMITH, D.D. ES76
FISCHER, G. University of Rochester
BOYD, R.W. University of Rochester
GREGORY, D.A. UAH
Cancellation of Photo-Induced Absorption in Metal Nanoparticle Composites Through a Counterintuitive Consequence of Local Field Effects. For publication in Journal of the Optical Society of America B, Washington, DC.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Title</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADELFANG, S.I.</td>
<td>Computer Sciences Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUSTUS, C.G.</td>
<td>Computer Sciences Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, R.E.</td>
<td>Physitron, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDERSON, B.J.</td>
<td>ES43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZISSA, D.E.</td>
<td>EB52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORESENSE, J.E.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRIGHT, K.H., JR.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKS, G.K.</td>
<td>UW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRITTNACHER, M.J.</td>
<td>UW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELSEN, R.</td>
<td>UW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPANN, J.F.</td>
<td>ES83</td>
<td>Preliminary Performance and Results From the Ultraviolet Imager on ISTP/GGS/Polar Satellite.</td>
<td>COSPAR Scientific Assembly, Birmingham, UK, July 13–21, 1996.</td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>University of Alabama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMMERZHEIM, D.</td>
<td>University of Alaska</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPENCER, R.W.</td>
<td>ES41</td>
<td>Tropical Oceanic Precipitation Changes After the 1991 Pinatubo Eruption.</td>
<td>For publication in AMS Journal of Atmospheric Sciences, Boston, MA.</td>
</tr>
<tr>
<td>GRODY, N.C.</td>
<td>NOAA/NESDIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAFOZTINE, F.J.</td>
<td>Hughes STX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFFELICE, T.</td>
<td>University of Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WENTZ, F.J.</td>
<td>Remote Sensing Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRISTY, J.R.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPENCER, S.</td>
<td>Sverdrup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARNELL, T.A.</td>
<td>ES84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRINGER, A.</td>
<td>ED34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOPER, K.</td>
<td>ED34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBERTS, F., III</td>
<td>ED34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

American Geophysical Union Meeting, Baltimore, MD, May 20–24, 1996.

Water Vapor Feedback in the Tropics Deduced From SSM/T-2 Water Vapor and MSU Temperatures. For presentation at AMS Seventh Symposium on Global Change Studies, Atlanta, GA, January 28–February 2, 1996.

SPRINGER, A.M. ED34

STARK, B. ES82
ADAMS, M. ES82
HATHAWAY, D.H. ES82
HAGYARD, M.J. ES82
Evaluation of Two Fractal Methods for Magnetogram Image Analysis. For publication in Solar Physics, Boston, MA.

STARK, B. NRC
HATHAWAY, D.H. ES82
ADAMS, M. ES82

STONE, N.H. ES83

STONE, N.H. ES83
An Early Assessment of Science Results From the TSS–1R Mission. For presentation at AIAA Conference, Huntsville, AL, September 1996.

STONE, N.H. ES83
BONIFAZI, C. Agenzia Spaziale Italiana
GILCHRIST, B.E. University of Michigan
HARDY, D.A. PL/PGSG
MARIANI, F. Second University of Rome, Italy

SU, C.-H. ES75
LEHOCZKY, S.L. ES75
The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials. For publication in Microgravity Science and Technology, Bremen, Germany.

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
CRIPA, R.N. UAH
Crystal Growth of Selected II-VI Semiconductor Alloys by Directional Solidification 1, Ground-Based Experiments. For publication in Journal of Materials Science, London, UK.

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
GILLIES, D.C. ES75
CRIPA, R.N. UAH

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts I: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts II: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts III: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts IV: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts V: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts VI: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts VIII: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts IX: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts X: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Thermophysical and Thermodynamic Properties of Hgl_{1-x}ZnxTe Pseudobinary Melts XII: Phase Diagram, Density, Heat Capacity, and Enthalpy of Mixing. For publication in Journal of Applied Physics, Argonne, IL.

SU, C.-H. ES75
SHA, Y.-G. USRA
MAZURUK, K. USRA
LEHOCZKY, S.L. ES75
THOMAS, R. Los Alamos National Laboratory
Volumetric Heating in Coronal Streamers. For publication in Journal of Geophysical Research, Washington, DC.

SULKANEN, M.E. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. USRA

SULLIVAN, R.M. ED24
STOKES, E.H. Southern Research
A Model for the Effusion of Water in Carbon Phenolic Composites. For presentation at ASME International Mechanical Engineers Conference and Exposition, Atlanta, GA, November 17–21, 1996.

SUNKARA, H.B. ES76
WEISSMAN, J.M. University of Pittsburgh
PENN, B.G. ES76
FRAZIER, D.O. ES76
ASHER, S.A. University of Pittsburgh

SWANSON, G.R. ED25

SWANSON, G.R. ED25
ZACHARY, L.W. Iowa State University

TALIA, G.E. Wichita State University
NUNES, A.C. EH23

TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
MEEGAN, C.A. ES84

Improved Limits on Gamma-Ray Burst Repetition. For publication in Astrophysical Journal Letters, Chicago, IL.

TEGMARK, M. Max-Planck Institute
HARTMANN, D.H. Clemson University
BRIGGS, M.S. UAH
MEEGAN, C.A. ES84

TINKER, M.L. ED26

TINKER, M.L. ED23

Nonlinearities Due to Joint Friction and Clearance in a Structural Dynamic Test Fixture. For presentation at 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996.

TINKER, M.L. ED23

TROUT, D.H. EL23

Investigation of the Bulk Current Injection Technique by Comparison to Induced Currents From Radiated Electromagnetic Fields. For presentation at IEEE Symposium for EMC, Santa Clara, CA, August 1996.

ULLRICH, J.B. X-Ray Optical Systems
OWENS, S.M.
XIAO, Q.F.
PANOMAREV, I.Y.
CARTER, D.
SISK, R.C.
GIBSON, W.M.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-Frequency QPO in the X-Ray Transient GRO J1719–24. For publication in Astronomy and Astrophysics, Heidelberg, Germany.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN DER HOOFT, F.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>RUBIN, B.C.</td>
<td>USRA</td>
</tr>
<tr>
<td>CRARY, D.J.</td>
<td>ES84</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>USRA</td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td>ES84</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAUGHN, J.</td>
<td>EH12</td>
</tr>
<tr>
<td>KAMENETZKY, R.</td>
<td>EH15</td>
</tr>
<tr>
<td>FINCKENOR, M.</td>
<td>EH15</td>
</tr>
<tr>
<td>EDWARDS, D.</td>
<td>EH12</td>
</tr>
<tr>
<td>ZWIEHER, J.</td>
<td>EH12</td>
</tr>
<tr>
<td>VERDERAIME, V.</td>
<td>ED01</td>
</tr>
<tr>
<td>HARFFINGTON, F.</td>
<td>ED01</td>
</tr>
<tr>
<td>VERDERAIME, V.</td>
<td>ED01</td>
</tr>
<tr>
<td>VAUGHAN, R.</td>
<td>ED01</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>ES75</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>USRA</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>SZOFRAN, F.R.</td>
<td>ES75</td>
</tr>
<tr>
<td>WATRING, D.A.</td>
<td>ES75</td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES75</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>LEHOCZYK, S.L.</td>
<td>ES75</td>
</tr>
<tr>
<td>WALLS, B.</td>
<td>EB12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>USRA</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>SZOFRAN, F.R.</td>
<td>ES75</td>
</tr>
<tr>
<td>WATRING, D.A.</td>
<td>ES75</td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES75</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>LEHOCZYK, S.L.</td>
<td>ES75</td>
</tr>
<tr>
<td>WALLS, B.</td>
<td>EB12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>WATRING, D.A.</td>
<td>ES75</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>LEHOCZYK, S.L.</td>
<td>ES75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>WALCER, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>WORKMAN, G.L.</td>
<td>UAH</td>
</tr>
<tr>
<td>RUSSELL, S.S.</td>
<td>EH13N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLZ, M.P.</td>
<td>ES75</td>
</tr>
<tr>
<td>WATRING, D.A.</td>
<td>ES75</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>LEHOCZYK, S.L.</td>
<td>ES75</td>
</tr>
<tr>
<td>WALLS, B.</td>
<td>EB12</td>
</tr>
</tbody>
</table>

Adaptive Load Priority Management. For presentation at Intersociety Energy Conversion
Engineering Conference (IECEC), Washington, DC, August 11–16, 1996.

WANG, P.H. Alabama A&M University
HALE, J.P. EO66

WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. ED32
CORNELISON, J.

WATRING, D.A. ES75
GILLIES, D.C. ES75
LEHOCZYK, S.L. ES75
SZOFRAN, F.R. ES75
ALEXANDER, H. ES75
Convective Influence on Radial Segregation During Unidirectional Solidification of the Binary Alloy HgCdTe. For presentation at SPIE’s 1996 International Symposium, Denver, CO, August 4–9, 1996.

WATRING, D.A. ES75
LEHOCZYK, S.L. ES75

WATRING, D.A. ES75
SU, C.-H. ES75
GILLIES, D. ES75
ROOSZ, T. USRA
BABCSAN, N. USRA
The Universal Multizone Crystallizer (UMC) Furnace: An International Cooperative Agreement. For presentation at SPIE’s 1996 International Symposium, Denver, CO, August 4–9, 1996.

WEI, H. Engineering Sciences, Inc.
CHEN, Y.S. Engineering Sciences, Inc.
SHANG, H.M. Engineering Sciences, Inc.
WANG, T.S. ED32

WEISSKOPF, M.C. ES01

WEISSKOPF, M.C. ES01
O’DELL, S.L. ES01

WENTZ, F.J. Remote Sensing Systems
SPENCER, R.W. ES41
SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm. For publication in AMS Journal of Atmospheric Sciences, Boston, MA.

WHITAKER, A.F. ES01

WHITESIDES, R.H. ERC, Inc.
DILL, R.A. ERC, Inc.
PURINTON, D.C. ERC, Inc.
SAMBAFURTHI, J.K. ED32

WHORTON, M. ED12
BUSCHEK, H. Georgia Institute of Technology
CALISE, A.J. Georgia Institute of Technology

WHORTON, M. ED12
CALISE, A.J. Georgia Institute of Technology

WHORTON, M.S. ED12
CALISE, A.J. Georgia Institute of Technology
Experimental Investigation of Robust Control of Flexible Space Structures. For presentation at 19th Annual AAS Guidance and Control Conference, Breckenridge, CO, February 7-11, 1996.

WILLIAMS, C. Lockheed Martin
SPARKS, S. EH33
ET Thermal Protection Materials Considerations Due to EPA Regulations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24-26, 1996.

WILLIAMSEN, J.E. ED52
GROSCHE, D. Southwest Research
SCHONBERG, W.P. UAH
Empirical Prediction Models for Hole and Crack Size in Space Station Shielding From 6 to 12 km/sec. For presentation at SPIE Consequences of Orbital Debris Conference, Denver, CO, August 4-9, 1996.

WILLIAMSEN, J.E. ED52
GUAY, T.D. Sverdrup
International Space Station—Quantifying and Reducing Risk Following Orbital Debris Penetration. For presentation at AIAA Space Programs and Technology Conference, Huntsville, AL, September 23-25, 1996.

WILSON, R.B. ES84
ZHANG, S.-N. USRA
SCOTT, M.
HARMON, B.A. ES84
KOH, T. California Institute of Technology
CHAKRABARTY, D.
California Institute of Technology
VAUGHAN, B. California Institute of Technology
PRINCE, T.A. California Institute of Technology
Circular No. 6207: GRO J1735–27. For publication in IAU Circular No. 6207, Cambridge, MA.

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WINGARD, C.D. EH32

WINGARD, C.D. EH32
Use of the TMA Film Tension Technique for Applications With Polymeric Materials in the Space Station Program. For presentation at 11th International Congress on Thermal Analysis and Calorimetry (ICTAC), Philadelphia, PA, August 12–16, 1996.

WINNINGHAM, J.D. ES83
GURGILO, C.A. ES83
STONE, N.A. ES83
WRIGHT, K.H. ES83
Energetic Electrons Observed on TSS–1R, Their Dependence on Spacecraft Voltage and Relationship to Tether Current. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WRIGHT, H.B. Boeing
ELROD, W. NASA
International Space Station U.S. Laboratory Outfitting. For presentation at SAE 26th International Conference on Environmental Systems, Monterey, CA, July 8–11, 1996.

WRIGHT, J.D. TDA Research, Inc.
CHEN, B. TDA Research, Inc.
WANG, C.M. TDA Research, Inc.
PERRY, J. ED62
TATARA, J.D. Ion Electronics, Inc.

WRIGHT, K.H., JR. ES83
STONE, N.H. ES83
SORENSEN, J. UAH
WINNINGHAM, J.D. Southwest Research Institute
CONIFAZI, C. ASI, Italy
Ion Outflow From the TSS Satellite Plasma Sheath. For presentation at 1996 Fall American Geophysical Union Meeting, San Francisco, CA, December 1996.

WRIGHT, K.H., JR. UAH
STONE, N.H. ES83
WINNINGHAM, J.D. Southwest Research Institute
GURGIOLO, C. Southwest Research Institute
BONIFAZI, C. ASI, Italy
GILCHRIST, B. University of Michigan
DOBROWOLNY, M. ASI, Italy
MARIANI, F. Second University of Rome
HARDY, D. Phillips Laboratory

WU, S.T. UAH
XIAO, Y.C. UAH
MUSIELAK, Z.E. UAH
SUESS, S.T. ES82

WU, S.-T. ES41

YOUNG, R.M., Jr. EO66
DEES, G.K. EO66
BREWER, L.A. JSC
Training Capabilities in Support of Crew and Ground Space Station Payload Operations. For presentation at AIAA Space Programs and Technologies Conference, Huntsville, AL, September 24–26, 1996.

ZANDER, R. University of Liege
MAHIEU, E. University of Liege
GUNSON, M.R. JPL
AELLIG, C. Systems and Applied Sciences Corp.
CHANG, A.Y. JPL
ABBAS, M.M. ES41
IRION, F.W. California Institute of Technology
GOLDMAN, A. University of Denver ET AL.

ZHANG, S.N. USRA
EBISWA, K. USRA
SUNYAEV, R. Space Research Institute
UEDA, Y. Institute of Space and Astronautical Science, Japan
HARMON, B.A. ES84
SAZONOV, S. Space Research Institute
FISHMAN, G.J. ES84
INOUE, H. Institute of Space and Astronautical Sciences, Japan
PACIESAS, W.S. UAH ET AL.

ZHANG, S.N. USRA
FINGER, M.H. USRA
HARMON, B.A. ES84
WILSON, C.A. ES84
PACIESAS, W.S. UAH ET AL.

ZHANG, S.N. USRA
HARMON, B.A. ES84
FINGER, M.H. USRA
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH
ET AL.
IAU: GRO J1849–03. For publication in IAU Circular GRO J1849–03, Cambridge, MA.

ZHANG, S.N. USRA
HARMON, B.A. ES84
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH
BARRET, D. Harvard
GRINDLAY, J.E. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia
FORD, E. Columbia

ZHANG, S.N. USRA
HARMON, B.A. ES84
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia

IAU: GRS 1915+105. For publication in IAU Circular, GRS 1915+105, Cambridge, MA.

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
TAVANI, M. Columbia
KAARET, P. Columbia
ET AL.

Low State Hard X-Ry Outburst From the X-Ray Burster 4U1608–522 Observed by BATSE/CGRO. For presentation at Third Compton Symposium, Munich, Germany, October 1995.

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
BLOSER, P. Harvard
FORD, E. Columbia
TAVANI, M. Columbia
KAARET, P. Columbia
ROBINSON, C.R. ES84/USRA

ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES84
GRINDLAY, J.E. Harvard
BARRET, D. Harvard
BLOSER, P. Harvard
FORD, E. Columbia
TAVANI, M. Columbia
KAARET, P. Columbia
ET AL.

INDEX

TECHNICAL MEMORANDA

BATTTS, G.W. ... 3
BEABOUT, B. ... 1
CARRUTH, M.R. Jr. .. 1
CURRERI, P.A. ... 1
EDWARDS, D.L .. 2
EULER, H.C. Jr. ... 1
HASTINGS, J.H .. 3
HAYDEN, M ... 2
HERREN, K ... 2
HORTON, C.M. ... 4
JACKSON, M.E. .. 2
JAMES, B.F. ... 2, 3
JASPER, G.L ... 3
JOHNSON, D.L ... 2, 3
JUSTUS, C.G. .. 2, 3
KNOX, J.C. ... 4
MARTIN, J.L .. 2
MAZURUK, K ... 3
MCCAULEY, D.E ... 1
MCCOLLUM, M ... 1
MCDONALD, K ... 2
MEHTA, G.K ... 3
MINTON-SUMMERS, S .. 2
NIEUWSS, K.O. ... 1
PEARSON, S.D. .. 3
PERRY, G.L.E .. 2
RAY, C.D ... 2
RUSSELL, S.S. ... 4
SEMMEL, C.L .. 2
SIMS, J.A. ... 2
SUTHERLAND, W.T ... 4
TURNER, JOYCE E .. 1
VAUGHAN, W.W ... 1, 3
VAUGHN, J.A .. 1
VOLZ, M.P ... 3

TECHNICAL PAPERS

BARRET, C ... 6
BLAIR, J ... 6
DANFORD M.D. .. 6
FINCKENOR, M .. 6
GROSS, R.S ... 6
HATHAWAY, D.H .. 7
HERDA, D.A. ... 6
KAMENETZKY, R.R ... 6
LINTON, R.C ... 6
NUNES, A.C. ... 6
REICHMAN, E.J. .. 7
RYAN, R.S ... 6, 7
TOWNSEND, J .. 6
VAUGHAN, J.A ... 6
VERDERAIME, V .. 6
WILSON, R.M .. 7

CONFERENCES PROCEEDINGS

BREWER, J.C ... 8
WILLIAMS, R.W ... 8

REFERENCE PUBLICATIONS

ALEXANDER, M.B ... 9
BEDINGFIELD, K.L ... 9
LEACH, R.D .. 9

CONTRACTOR REPORTS

Alpha Technology ... 11
Analysis and Measurement Services Corp 10
Auburn University .. 10, 11
BAMSI, Inc ... 12
Control Dynamics ... 10, 13
Eastern Kentucky University ... 11
Geospace Research, Inc ... 10
ION Electronics ... 10, 11
Life Systems, Inc ... 11
Lockheed Martin ... 12
Lockheed Martin Marietta Manned Space Systems 10
McDonnell Douglas Aerospace 11
Meyer Analytics, Inc ... 10
Nichols Research Corp ... 12
Rocketdyne .. 11
Rockwell ... 11
Rockwell International Corp 10
SAIC ... 12
SECA, Inc ... 10
Signatech, Inc ... 13
Tec-Masters, Inc ... 10
United Technologies ... 11
United Technology Corp Pratt & Whitney 11
UAH ... 10, 11, 12, 13
University of Alabama in Huntsville and Tuscaloosa 10
University of Dayton Research Institute 10
University of Tennessee Space Institute 12

PAPERS CLEARED FOR PRESENTATION

ABBAS, M.M........ 14, 15, 19, 25, 29, 33, 35, 39, 50
ABDELDAYEM, H 14, 15
ABEL, T.M 15
ABRAMOV, L 21
ABRAMS, M.C 14, 15, 19, 25, 29, 33, 35, 39, 50
ADAMS, M 15, 45
ADELFANG, S.I 44
ADRIAN, M.F. 35
ADRIAN, M.L 15, 38
AELLIG, C 33, 50
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVIS, J.</td>
<td>41</td>
</tr>
<tr>
<td>DAVENPORT, Q.</td>
<td>42</td>
</tr>
<tr>
<td>DARVENIZA, M.</td>
<td>43</td>
</tr>
<tr>
<td>CORRERA, T.</td>
<td>44</td>
</tr>
<tr>
<td>COSTES, N.C.</td>
<td>45</td>
</tr>
<tr>
<td>COUCHLIN, D.</td>
<td>46</td>
</tr>
<tr>
<td>CRAMER, J.M.</td>
<td>47</td>
</tr>
<tr>
<td>CRAW, W.</td>
<td>48</td>
</tr>
<tr>
<td>CURRERI, P.A</td>
<td>49</td>
</tr>
<tr>
<td>CREASEY, R.</td>
<td>50</td>
</tr>
<tr>
<td>CROSSON, W.</td>
<td>51</td>
</tr>
<tr>
<td>CRUIT, W.</td>
<td>52</td>
</tr>
<tr>
<td>CURTIS, L.</td>
<td>53</td>
</tr>
<tr>
<td>CURTIS, R.</td>
<td>54</td>
</tr>
<tr>
<td>DARBY, S.</td>
<td>55</td>
</tr>
<tr>
<td>DEAN, H.</td>
<td>56</td>
</tr>
<tr>
<td>DEAN, J.</td>
<td>57</td>
</tr>
<tr>
<td>DEAL, K.J.</td>
<td>58</td>
</tr>
<tr>
<td>DEEHR, C.</td>
<td>59</td>
</tr>
<tr>
<td>DEES, G.K.</td>
<td>60</td>
</tr>
<tr>
<td>DEFELICE, T.</td>
<td>61</td>
</tr>
<tr>
<td>DERRICKSON, J.H.</td>
<td>62</td>
</tr>
<tr>
<td>DESANCTIS, C.</td>
<td>63</td>
</tr>
<tr>
<td>DESTEENE, G.V.</td>
<td>64</td>
</tr>
<tr>
<td>DHINDAW, B.K.</td>
<td>65</td>
</tr>
<tr>
<td>DIETZ, K.L.</td>
<td>66</td>
</tr>
<tr>
<td>DILL, R.A.</td>
<td>67</td>
</tr>
<tr>
<td>DISCHINGER, H.C., Jr.</td>
<td>68</td>
</tr>
<tr>
<td>DOBRANOLNY, M.</td>
<td>69</td>
</tr>
<tr>
<td>DOLL, P.</td>
<td>70</td>
</tr>
<tr>
<td>DOUGANI, H.</td>
<td>71</td>
</tr>
<tr>
<td>DRAGO, F.C.</td>
<td>72</td>
</tr>
<tr>
<td>DREHMAN, A.J.</td>
<td>73</td>
</tr>
<tr>
<td>DRISCOLL, K.T.</td>
<td>74</td>
</tr>
<tr>
<td>DUDLEY, M.</td>
<td>75</td>
</tr>
<tr>
<td>DUKE, G.A.</td>
<td>76</td>
</tr>
<tr>
<td>DUMBACHER, D.L.</td>
<td>77</td>
</tr>
<tr>
<td>Dwyer, J.</td>
<td>78</td>
</tr>
<tr>
<td>EAKER, N.</td>
<td>79</td>
</tr>
<tr>
<td>EBISAWA, K.</td>
<td>80</td>
</tr>
<tr>
<td>ECKEL, A.J.</td>
<td>81</td>
</tr>
<tr>
<td>EDBERG, D.</td>
<td>82</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>83</td>
</tr>
<tr>
<td>EFFINGER, M.</td>
<td>84</td>
</tr>
<tr>
<td>ELLIOTT, H.A.</td>
<td>85</td>
</tr>
<tr>
<td>ELROD, W.</td>
<td>86</td>
</tr>
<tr>
<td>ELSSEN, R.</td>
<td>87</td>
</tr>
<tr>
<td>ELSNER, R.F.</td>
<td>88</td>
</tr>
<tr>
<td>ERMICH, W.J., Jr.</td>
<td>89</td>
</tr>
<tr>
<td>EMSLIE, A.G.</td>
<td>90</td>
</tr>
<tr>
<td>ENGLAND, J.D.</td>
<td>91</td>
</tr>
<tr>
<td>ERICKSON, R.J.</td>
<td>92</td>
</tr>
<tr>
<td>ESTES, R.</td>
<td>93</td>
</tr>
<tr>
<td>ETHRIDGE, E.C.</td>
<td>94</td>
</tr>
<tr>
<td>ETTER, B.D.</td>
<td>95</td>
</tr>
<tr>
<td>EVANS, A.M.</td>
<td>96</td>
</tr>
<tr>
<td>EVANS, D.M.</td>
<td>97</td>
</tr>
<tr>
<td>EVANS, S.W.</td>
<td>98</td>
</tr>
<tr>
<td>FALCONER, D.A.</td>
<td>99</td>
</tr>
<tr>
<td>FENG, C.</td>
<td>100</td>
</tr>
<tr>
<td>FERRARO, R.</td>
<td>101</td>
</tr>
<tr>
<td>FESCO, A.Z.</td>
<td>102</td>
</tr>
<tr>
<td>FIEDERLE, M.</td>
<td>103</td>
</tr>
<tr>
<td>FIELDS, S.A.</td>
<td>104</td>
</tr>
<tr>
<td>FINCKENOR, M.M.</td>
<td>105</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>106</td>
</tr>
<tr>
<td>FINN, J.E.</td>
<td>107</td>
</tr>
<tr>
<td>FISCHER, G.</td>
<td>108</td>
</tr>
<tr>
<td>FISHERMAN, G.J.</td>
<td>109</td>
</tr>
<tr>
<td>FITZIARRALD, D.E.</td>
<td>110</td>
</tr>
<tr>
<td>FLEMING, B.</td>
<td>111</td>
</tr>
<tr>
<td>FOK, M.-C.</td>
<td>112</td>
</tr>
<tr>
<td>FONTENLA, J.M.</td>
<td>113</td>
</tr>
<tr>
<td>FORD, E.</td>
<td>114</td>
</tr>
<tr>
<td>FOROZAN, S.</td>
<td>115</td>
</tr>
<tr>
<td>FOSTER, R.S.</td>
<td>116</td>
</tr>
<tr>
<td>FOWLER, P.H.</td>
<td>117</td>
</tr>
<tr>
<td>FOWLER, S.B.</td>
<td>118</td>
</tr>
<tr>
<td>FOX, D.W.</td>
<td>119</td>
</tr>
<tr>
<td>FRAIL, D.A.</td>
<td>120</td>
</tr>
<tr>
<td>FRANKS, G.D.</td>
<td>121</td>
</tr>
<tr>
<td>FRAZIER, D.O.</td>
<td>122</td>
</tr>
<tr>
<td>FREDERICK, K.R.</td>
<td>123</td>
</tr>
<tr>
<td>FREEMAN, T.J.</td>
<td>124</td>
</tr>
<tr>
<td>FRIEND, L.</td>
<td>125</td>
</tr>
<tr>
<td>FROST, C.</td>
<td>126</td>
</tr>
<tr>
<td>FUNG, S.F.</td>
<td>127</td>
</tr>
<tr>
<td>FUSELIER, S.</td>
<td>128</td>
</tr>
<tr>
<td>GALA, D.</td>
<td>129</td>
</tr>
<tr>
<td>GALLAGHER, D.L.</td>
<td>130</td>
</tr>
<tr>
<td>GALLAGHER, M.</td>
<td>131</td>
</tr>
<tr>
<td>GARCIA, G.</td>
<td>132</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>133</td>
</tr>
<tr>
<td>GAUSE, R.L.</td>
<td>134</td>
</tr>
<tr>
<td>GEORGE, M.A.</td>
<td>135</td>
</tr>
<tr>
<td>GERMANY, G.</td>
<td>136</td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>137</td>
</tr>
<tr>
<td>GIBSON, W.M.</td>
<td>138</td>
</tr>
<tr>
<td>GILCHRIST, B.E.</td>
<td>139</td>
</tr>
<tr>
<td>GILES, B.L.</td>
<td>140</td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>141</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>NGUYEN, H.O</td>
<td>35</td>
</tr>
<tr>
<td>NGUYEN, T</td>
<td>35</td>
</tr>
<tr>
<td>PACIESAS, W.S</td>
<td>23, 24, 26, 31, 37, 38, 50, 51</td>
</tr>
<tr>
<td>MOORE, C.E</td>
<td>34, 41</td>
</tr>
<tr>
<td>MOORE, J.D</td>
<td>18</td>
</tr>
<tr>
<td>MOORE, L.C</td>
<td>18</td>
</tr>
<tr>
<td>MOORE, R.L</td>
<td>22, 23, 26, 34, 38</td>
</tr>
<tr>
<td>MOORE, T.E</td>
<td>15, 18, 20, 21, 22, 23, 27, 30, 31, 34, 35, 38</td>
</tr>
<tr>
<td>MORGAN, E.H</td>
<td>30</td>
</tr>
<tr>
<td>MOSS, D</td>
<td>40</td>
</tr>
<tr>
<td>MOTT, B.</td>
<td>40</td>
</tr>
<tr>
<td>MOYER, E.J</td>
<td>29</td>
</tr>
<tr>
<td>MUNAFO, P.</td>
<td>16</td>
</tr>
<tr>
<td>MUSIELAK, Z.E</td>
<td>15, 35, 50</td>
</tr>
<tr>
<td>MUSIELAK, Z.M</td>
<td>26</td>
</tr>
<tr>
<td>MUS, J.</td>
<td>35</td>
</tr>
<tr>
<td>MYERS, T.</td>
<td>25, 41</td>
</tr>
<tr>
<td>NADARAJAH, A.</td>
<td>35</td>
</tr>
<tr>
<td>NAHAY, E.</td>
<td>36</td>
</tr>
<tr>
<td>NEERGAARD, L.F.</td>
<td>35</td>
</tr>
<tr>
<td>NERNEY, S.</td>
<td>45</td>
</tr>
<tr>
<td>NETTLES, A.</td>
<td>41</td>
</tr>
<tr>
<td>NEWBERRY, M.</td>
<td>38</td>
</tr>
<tr>
<td>NEWCHURCH, M.J.</td>
<td>14, 15, 35, 40</td>
</tr>
<tr>
<td>NGUYEN, H.O</td>
<td>35</td>
</tr>
<tr>
<td>NGUYEN, T.</td>
<td>35</td>
</tr>
<tr>
<td>NICHOLAS, D.P.</td>
<td>35</td>
</tr>
<tr>
<td>NICHOLS, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>NOEVER, D.A.</td>
<td>17, 21, 35</td>
</tr>
<tr>
<td>NOLEN, A.M.</td>
<td>36</td>
</tr>
<tr>
<td>NONEMAN, S.R.</td>
<td>36</td>
</tr>
<tr>
<td>NORTHOLT, J.E.</td>
<td>34</td>
</tr>
<tr>
<td>NOVAK, H.L.</td>
<td>36</td>
</tr>
<tr>
<td>NOVICK, R.</td>
<td>46</td>
</tr>
<tr>
<td>NUNES, A.C., JR.</td>
<td>22, 28, 39, 46</td>
</tr>
<tr>
<td>NURRE, G.</td>
<td>22, 36</td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>48</td>
</tr>
<tr>
<td>OBENHUBER, D.</td>
<td>35</td>
</tr>
<tr>
<td>OBER, D.</td>
<td>24</td>
</tr>
<tr>
<td>OGAWARA, Y.</td>
<td>34</td>
</tr>
<tr>
<td>OGLE, K.Y.</td>
<td>16, 36, 37</td>
</tr>
<tr>
<td>OJAKANGAS, G.W.</td>
<td>36</td>
</tr>
<tr>
<td>OLINGER, J.B.</td>
<td>18</td>
</tr>
<tr>
<td>OLSON, W.</td>
<td>16</td>
</tr>
<tr>
<td>ORR, M.F., JR.</td>
<td>36</td>
</tr>
<tr>
<td>ORVILLE, R.E.</td>
<td>33</td>
</tr>
<tr>
<td>OWENS, S.M.</td>
<td>36, 46</td>
</tr>
<tr>
<td>PACIESAS, W.S.</td>
<td>23, 24, 26, 31, 37, 38, 50, 51</td>
</tr>
<tr>
<td>PAGAN, J.</td>
<td>39</td>
</tr>
<tr>
<td>PALEY, M.S.</td>
<td>14, 24, 37</td>
</tr>
<tr>
<td>PALOSZ, W.</td>
<td>37</td>
</tr>
<tr>
<td>PAN, H.L.</td>
<td>29</td>
</tr>
<tr>
<td>PANOMAREV, I.Y.</td>
<td>36, 46</td>
</tr>
<tr>
<td>PARHAM, T.</td>
<td>41</td>
</tr>
<tr>
<td>PARKER, D.</td>
<td>16</td>
</tr>
<tr>
<td>PARKS, G.K.</td>
<td>44</td>
</tr>
<tr>
<td>PARNELL, T.A.</td>
<td>37, 43, 44</td>
</tr>
<tr>
<td>PARRISH, K.J.</td>
<td>37</td>
</tr>
<tr>
<td>PATON, B.</td>
<td>41</td>
</tr>
<tr>
<td>PAVELITZ, S.D.</td>
<td>16, 37</td>
</tr>
<tr>
<td>PEARCY, G.</td>
<td>39</td>
</tr>
<tr>
<td>PEARSON, S.D.</td>
<td>16, 29</td>
</tr>
<tr>
<td>PECK, J.A.</td>
<td>37</td>
</tr>
<tr>
<td>PENDLETON, G.N.</td>
<td>31, 33, 37, 38</td>
</tr>
<tr>
<td>PENN, B.</td>
<td>25, 41, 42</td>
</tr>
<tr>
<td>PENN, B.G.</td>
<td>15, 24, 31, 46</td>
</tr>
<tr>
<td>PEREZ, J.D.</td>
<td>23, 24</td>
</tr>
<tr>
<td>PERRY, G.</td>
<td>33</td>
</tr>
<tr>
<td>PERRY, J.</td>
<td>20, 21, 50</td>
</tr>
<tr>
<td>PERRY, J.L.</td>
<td>37</td>
</tr>
<tr>
<td>PESKOV, V.</td>
<td>39</td>
</tr>
<tr>
<td>PETERS, P.</td>
<td>39</td>
</tr>
<tr>
<td>PETERS, T.</td>
<td>27</td>
</tr>
<tr>
<td>PETRUZZO, J.J., III</td>
<td>37, 43</td>
</tr>
<tr>
<td>PHILLIPS, J.</td>
<td>45</td>
</tr>
<tr>
<td>PHILLIPS, S.M.</td>
<td>38</td>
</tr>
<tr>
<td>PINDER, M.Z.</td>
<td>38</td>
</tr>
<tr>
<td>PINTAR, J.</td>
<td>26</td>
</tr>
<tr>
<td>PISZCZOR, M.</td>
<td>22</td>
</tr>
<tr>
<td>PODGORSKI, W.A.</td>
<td>41</td>
</tr>
<tr>
<td>POLITES, M.</td>
<td>38</td>
</tr>
<tr>
<td>POLLOCK, C.J.</td>
<td>15, 18, 34, 35, 38</td>
</tr>
<tr>
<td>PORTER, J.G.</td>
<td>22, 23, 34, 38</td>
</tr>
<tr>
<td>PORTER, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>POWERS, W.T.</td>
<td>38</td>
</tr>
<tr>
<td>PRECE, R.D.</td>
<td>28, 37, 38</td>
</tr>
<tr>
<td>PRESTWICH, A.H.</td>
<td>38</td>
</tr>
<tr>
<td>PRICE, J.L.</td>
<td>18</td>
</tr>
<tr>
<td>PRINCE, T.A.</td>
<td>49</td>
</tr>
<tr>
<td>PURINTON, D.C.</td>
<td>48</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td>35, 39</td>
</tr>
<tr>
<td>QUI. H.-L.</td>
<td>39</td>
</tr>
<tr>
<td>QUATTROCHI, D.A.</td>
<td>22, 32, 33, 39</td>
</tr>
<tr>
<td>RABIN, D.M.</td>
<td>38</td>
</tr>
<tr>
<td>RAGHAVAN, R.</td>
<td>39</td>
</tr>
<tr>
<td>RAGHOTHAMACHAR, B.</td>
<td>19, 37</td>
</tr>
<tr>
<td>RAMACHANDRAN, N.</td>
<td>16, 39, 43</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>16, 17, 25, 39</td>
</tr>
<tr>
<td>RANDOLPH, W.</td>
<td>16</td>
</tr>
<tr>
<td>RAO GUIDMETLA, V.S.</td>
<td>39</td>
</tr>
<tr>
<td>RATHER, D.</td>
<td>39</td>
</tr>
<tr>
<td>REASONER, D.L.</td>
<td>34</td>
</tr>
<tr>
<td>REES, M.H.</td>
<td>44</td>
</tr>
<tr>
<td>REEVES, F.A.</td>
<td>24</td>
</tr>
<tr>
<td>REICHMANN, E.J.</td>
<td>49</td>
</tr>
<tr>
<td>REIFF, P.</td>
<td>24, 25</td>
</tr>
<tr>
<td>REINISCH, B.</td>
<td>25</td>
</tr>
<tr>
<td>RELWANI, R.A.</td>
<td>36</td>
</tr>
<tr>
<td>RESKE, E.</td>
<td>35</td>
</tr>
<tr>
<td>REUTER, J.L.</td>
<td>18</td>
</tr>
<tr>
<td>RICHARDS, P.G.</td>
<td>21, 30</td>
</tr>
<tr>
<td>RICHARDSON, R.W.</td>
<td>39</td>
</tr>
<tr>
<td>RICKMAN, D.</td>
<td>28, 39, 41</td>
</tr>
<tr>
<td>RICKMAN, H.</td>
<td>38</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sulkaren, M.E</td>
<td>46</td>
</tr>
<tr>
<td>Sullivan, R.</td>
<td>20</td>
</tr>
<tr>
<td>Sullivan, R.M.</td>
<td>32, 46</td>
</tr>
<tr>
<td>Sullivan-Holt, R.</td>
<td>18</td>
</tr>
<tr>
<td>Sunkara, H.B.</td>
<td>46</td>
</tr>
<tr>
<td>Sunyaev, R.</td>
<td>50</td>
</tr>
<tr>
<td>Swanson, G.R.</td>
<td>46</td>
</tr>
<tr>
<td>Szofran, F.</td>
<td>21</td>
</tr>
<tr>
<td>Szofran, F.R.</td>
<td>24, 45, 47, 48</td>
</tr>
<tr>
<td>Talia, G.E.</td>
<td>46</td>
</tr>
<tr>
<td>Tandberg-Hanssen, E.</td>
<td>42</td>
</tr>
<tr>
<td>Tatara, J.D.</td>
<td>22, 50</td>
</tr>
<tr>
<td>Tavani, M.</td>
<td>23, 24, 51</td>
</tr>
<tr>
<td>Taylor, W.W.L.</td>
<td>25</td>
</tr>
<tr>
<td>Teglia, W.R.</td>
<td>42</td>
</tr>
<tr>
<td>Tegmark, M.</td>
<td>46</td>
</tr>
<tr>
<td>Tennant, M.I.</td>
<td>18</td>
</tr>
<tr>
<td>Thoburn, C.</td>
<td>37, 43</td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>Thompson, R.</td>
<td>23</td>
</tr>
<tr>
<td>Tinker, M.I.</td>
<td>17, 46</td>
</tr>
<tr>
<td>Tomsick, J.</td>
<td>46</td>
</tr>
<tr>
<td>Tong, Y.</td>
<td>42</td>
</tr>
<tr>
<td>Townsend, C.</td>
<td>41</td>
</tr>
<tr>
<td>Townsend, J.S.</td>
<td>42</td>
</tr>
<tr>
<td>Trout, D.H.</td>
<td>46</td>
</tr>
<tr>
<td>Tucker, D.</td>
<td>22</td>
</tr>
<tr>
<td>Turner, S.G.</td>
<td>33</td>
</tr>
<tr>
<td>Twigg, P.D.</td>
<td>48</td>
</tr>
<tr>
<td>Tworzydio, W.W.</td>
<td>34</td>
</tr>
<tr>
<td>Ueda, Y.</td>
<td>50</td>
</tr>
<tr>
<td>Ullrich, J.B.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Van der Steen, G.</td>
<td>16</td>
</tr>
<tr>
<td>Van der Hooft, F.</td>
<td>16, 20, 21, 47</td>
</tr>
<tr>
<td>Van der Klis, M.</td>
<td>20, 47</td>
</tr>
<tr>
<td>Van Driel-Gesztesy, L.</td>
<td>42</td>
</tr>
<tr>
<td>Van Dyke, M.</td>
<td>21, 33</td>
</tr>
<tr>
<td>Van Paradijs, J.</td>
<td>16, 20, 21, 23, 31, 47</td>
</tr>
<tr>
<td>Van Speybroeck, L.</td>
<td>19, 41</td>
</tr>
<tr>
<td>Vas, L.</td>
<td>30</td>
</tr>
<tr>
<td>Vaughan, B.</td>
<td>49</td>
</tr>
<tr>
<td>Vaughan, R.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughn, J.</td>
<td>47</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>22, 23</td>
</tr>
<tr>
<td>Verderaime, V.</td>
<td>47</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>47</td>
</tr>
<tr>
<td>Waite, J.H.</td>
<td>18, 34</td>
</tr>
<tr>
<td>Walker, A.B.C., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>Walker, J.</td>
<td>31, 41, 47</td>
</tr>
<tr>
<td>Wallace, S.</td>
<td>41</td>
</tr>
<tr>
<td>Wallace, T.L.</td>
<td>38</td>
</tr>
<tr>
<td>Walls, B.</td>
<td>47</td>
</tr>
<tr>
<td>Waltman, E.B.</td>
<td>26</td>
</tr>
<tr>
<td>Wang, A.H.</td>
<td>45</td>
</tr>
<tr>
<td>Wang, C.M.</td>
<td>50</td>
</tr>
<tr>
<td>Wang, J.C.</td>
<td>43</td>
</tr>
<tr>
<td>Wang, P.H.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T-S.</td>
<td>48</td>
</tr>
<tr>
<td>Wang, T.S.</td>
<td>32, 48</td>
</tr>
<tr>
<td>Wang, W.S.</td>
<td>31</td>
</tr>
<tr>
<td>Ward, S.</td>
<td>20</td>
</tr>
<tr>
<td>Warsi, S.</td>
<td>48</td>
</tr>
<tr>
<td>Watring, D.A.</td>
<td>18, 24, 47, 48</td>
</tr>
<tr>
<td>Webster, C.R.</td>
<td>19</td>
</tr>
<tr>
<td>Wei, H.</td>
<td>48</td>
</tr>
<tr>
<td>Weisskopf, M.C.</td>
<td>25, 39, 46, 48</td>
</tr>
<tr>
<td>Weissman, J.M.</td>
<td>46</td>
</tr>
<tr>
<td>Wenzl, F.J.</td>
<td>48</td>
</tr>
<tr>
<td>Wertz, G.E.</td>
<td>22</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
<td>48</td>
</tr>
<tr>
<td>Whitesides, R.H.</td>
<td>48</td>
</tr>
<tr>
<td>Whiton, M.</td>
<td>22, 36, 48</td>
</tr>
<tr>
<td>Wieiland, P.O.</td>
<td>18</td>
</tr>
<tr>
<td>Williams, C.</td>
<td>49</td>
</tr>
<tr>
<td>Williams, E.R.</td>
<td>33</td>
</tr>
<tr>
<td>Williamsen, J.E.</td>
<td>25, 32, 42, 43, 49</td>
</tr>
<tr>
<td>Wilson, C.A.</td>
<td>49, 50</td>
</tr>
<tr>
<td>Wilson, F.</td>
<td>41</td>
</tr>
<tr>
<td>Wilson, G.</td>
<td>24</td>
</tr>
<tr>
<td>Wilson, G.R.</td>
<td>49</td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>26, 49</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
<td>49</td>
</tr>
<tr>
<td>Wingard, C.D.</td>
<td>49</td>
</tr>
<tr>
<td>Winningham, J.D.</td>
<td>49, 50</td>
</tr>
<tr>
<td>Withrow, W.K.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Woods, P.</td>
<td>31</td>
</tr>
<tr>
<td>Workman, G.L.</td>
<td>47</td>
</tr>
<tr>
<td>Wright, B.</td>
<td>18</td>
</tr>
<tr>
<td>Wright, H.B.</td>
<td>50</td>
</tr>
<tr>
<td>Wright, J.D.</td>
<td>50</td>
</tr>
<tr>
<td>Wright, K.H., Jr.</td>
<td>44, 49, 50</td>
</tr>
<tr>
<td>Wu, B.</td>
<td>42</td>
</tr>
<tr>
<td>Wu, S.-T.</td>
<td>50</td>
</tr>
<tr>
<td>Wu, S.T.</td>
<td>45, 50</td>
</tr>
<tr>
<td>Wygant, J.R.</td>
<td>18</td>
</tr>
<tr>
<td>Xiao, Q.F.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Xiao, Y.C.</td>
<td>50</td>
</tr>
<tr>
<td>Xiques, K.E.</td>
<td>34</td>
</tr>
<tr>
<td>Yip, P.W.</td>
<td>19</td>
</tr>
<tr>
<td>Young, D.T.</td>
<td>18, 34, 35</td>
</tr>
<tr>
<td>Young, R.M., Jr.</td>
<td>50</td>
</tr>
<tr>
<td>Yung, S.</td>
<td>29</td>
</tr>
<tr>
<td>Zachary, L.W.</td>
<td>46</td>
</tr>
<tr>
<td>Zander, R.</td>
<td>19, 39, 50</td>
</tr>
<tr>
<td>Zhang, H.W.</td>
<td>31</td>
</tr>
<tr>
<td>Zhang, S.-N.</td>
<td>21, 23, 24, 26, 37, 49, 50, 51</td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>37</td>
</tr>
<tr>
<td>Zhao, W.</td>
<td>39</td>
</tr>
<tr>
<td>Zhou, W.</td>
<td>19</td>
</tr>
<tr>
<td>Zhou, Y.</td>
<td>41</td>
</tr>
<tr>
<td>Ziock, K.</td>
<td>46</td>
</tr>
<tr>
<td>Zissa, D.E.</td>
<td>15, 44</td>
</tr>
<tr>
<td>Zu, G.J.</td>
<td>28, 29</td>
</tr>
<tr>
<td>Zwiener, J.M.</td>
<td>22, 47</td>
</tr>
</tbody>
</table>
APPROVAL

FY 1996 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner Waits

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Teresa H. Washington
Director
Human Resources and Administrative Support Office
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave Blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>October 1996</td>
<td>Technical Memorandum</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
FY 1996 Scientific and Technical Reports, Articles, Papers, and Presentations

5. FUNDING NUMBERS

6. AUTHORS
Joyce E. Turner-Waits, Compiler

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
NASA TM-108528
Volume I

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified–Unlimited
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE
Unclassified

13. ABSTRACT (Maximum 200 words)
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY96. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

14. SUBJECT TERMS

15. NUMBER OF PAGES
68

16. PRICE CODE
NTIS

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18