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ABSTRACT

Face-milled spirM bevel gears with uniform tooth height

ate considered. An approach is proposed for the design of

low-noise and localized bearit_g ¢ontacl, of such gears. The
approach is based on the mismatch of cont_ting surfaces

and perrmts two types of bearing contact either directed lon-

gitudinally or across the surf;tee to be obtained. A Tooth

Contact AnMysis ('I'CA) comput_er progra_n was developed.

This analysis wa_ n_d to determine the influence of mi_-

alignment on meshing and contact of the spiral bevel gears.

A numerical example _hat illustrates the dew, loped theory

is provid d.

1 INTRODUCTION

Two models for spiral bevel gears with uniform tooth

height were proposed by Litvin et a.l [t5]. The generation of

tooth surfaces of such gears is based on apphcation: (i) of

two cona_ that are in tangency along their common gener

atr,x (model 1): and (ki) a cone and a :;urface of revolution

that are in tangency along a common ,:itch (model 2)5Fhe
pinion and the gear a._e face.-milled by head-c.utters whose

blade._ by rotation form the generating surfaces.

The g,'me_rating surfac_ provide conjugate pinion-gear

tooth surfaces with ;_ localized bearing contact #,hat, is

formed by a set of instantaneou.,, contact ellipses. The path

of contact is directed across the _;urfaces in model 1 (fig. 1),

and in the longitudinal direction in model 2 (fig. 2). The

tr_s_:nis_i:m errors are ze_-o but only Fo_: aligned gear drives.

It is well known ,_.hat misalignment of a gear drive causes
the shift of the bearir, g contact and transmission errors. The

transrnissiot, errors arc one of the main source:; of vibration.

Therefore, the direct application of the models discussed

above for generating surface._ is undesirable.

It was discovered that misalignme_t era gear d_:ive causes

an almost linear bu_ discontinuous transmission function.

However, such function,; can be absorbed by a predesigned
parabolic function of transmission errors. The interaction

of the parabolic function and a linear function zesults a

parabolic function with the same parabola, coefficient [9].

Based on this consideration, it. becomes necessary to mod-

ify the process for generation discus_d above to obtain a

predesigned parabolic functio;n of transmission errors. It

was proposed in work [10] to obtain the desired parabolic

function of transmis,6on errors by execu_;ing proper nov_!in-

ear relations between the mot;ons of the _radle _nd the gear

(or the pinion) being generated. This approach requires the

application of the CNC machines.

The purpose of this paper it; to propose tnodifications of

gem'.rating surfaces t;hat will obtain: (i)a Iocahzed bearing

contact that may be directed in the longitud:ma! direction or

across t.he sur face, and (ii)a predefigned parabolic A'um:tion.

These goals that will be proven later ate obta,ined by the

proper rob;match of the ideal genera_ing_ surfaces shown in

figs.l and 2. The mi:;m_tch of surfaee._ is achieved by appli-

cation of modified generating surfaces shown in fig. 3. The

modified ge,,,.rating surfaces are in point contact instead

of tangency along a line that the ide'al generat,ing surfaces

have. The desired parabolic lone'ion of transmi_sic.n errors.

the orientation of the path of contact, and the, magnitude

of the major rods of the contact ellip,,.es are obt._ined by the

proper determination of the curva.ture and the mean radius

of the surface of revolution of the generating tool.

The medfirtg and contact of the tooth surfac_ wa_; sim-

ulated by the q'CA computer program dewloped by the

authors. Numerical cxarnples for the illustraticm of the pro-

pond approach are considered.



2 METItOD FOR GENERATION OF CONJU-

GATE PINION-GEAR TOOTH SURFACES

The head-¢ utter for gear generation is provided with i_aer

and outer straight-line blade (fig. 4), that form two cones

while the blades are rot.Med about, the Z_:-axi_ of the head

cutter. These con_ will generate the convex and conc_Lve

si&_ of the space of the gear, respectively.

We apply coordinate systems ,-qc2, $2, Sm that are rigidly

connected to the cr-oAle of the generating machine, the gear

and the cutting machine, _espectively (figs 5 and 6). The

cra_lle with coordinate system S¢2 perforn_ rotation about

the Z_n-a.x_, and ¢¢_ is the cut-rent angle of rotation of

the cr;_le (We take i = 2 in the designations of fig. 5).

Coordinate system St_ i.s rigidly connect,-.d to the gear head-
cutter that is mounted on the cradle. The installment of _,he

head-cutter i.,; determined with angle q2 and S_, = ]_-_-0_[

(fig. 5(b)). The gear in the process for generation performs

rotation about the Zwaxis of the auxiliary fu'<e:d coordinate

system S_ that is rigidly connected to the S,, coordinate

system (fig. 6). The in,;tallment of Sb with respect to S,_ is

determined with angle "Y2, where 72 is the angle of the g_ar

pitch cone. The current angle of gear rotation is t_2 (fig. 6).

Angles 6¢_ and 'P2 are related, as

¢_ _ w¢_ _ sin 7_ (1

"fhe ob,;er_ation of this equation guaranties that the X,,,-

axis is the 5nstantaneous axis of rotation of the gear in it._

relative motion ,_ith respect to the cradle.

Pilfiora Clen era.tj_9.a:

_he beaut-cutters for pinion generation are provided with

separate blades that will _,¢nt:ra_e the convex and conc_ve

sides of the space of the pinit>n, respectively (fig. 7). 3"he

pinior, generating tool is installed on the cradL- si_uilarly to

the in_,;tallment of the gear generating cone (We fake i :: 1

in the designations of fig. 5). An auxiliary fixed coordinate
system S_ is rigidly connected, to the S,, coordinate system

(fig. 8). The installment of S,, with respect; to Sm is deter-

mined with angie 71 of the pinion pitcb ,:one. An imaginary

process for the pinion generation for the purpose of t;impli-

fic_tion of the TCA progra.m is consider,ed. 'The ir_stallment

of,:oo_:dinate system 5'_ with re.,;pect to Sm is determined

in the real process of cutting by the angle 7_ that i:_ mea-

sured clockwise, opposite to the direction shown in fig. 8.

The panion performs rotation about the Z,-axis and et is

the cu trent angle of rotation. The angles of rotation of the

pinion and the cradle are _elated as

¢_--_-= _---_1 sir_'r, (2)
I_1 (MI

Axi,; X,, in accordanc_ to equation (2) is the instanta-

neous axis of rotation of the piniort in its relative rnotion

with respect to the cradle

3 DEItXV.ATION OF GEAR. TOOTH SURFACE

We consider that the gear head-cutter surface is repre-

sented in S_ by vector funetio_ rt_(s_,0_), where s¢ and

0_ are the surface, pararaeters. A family of tool sur|_ee_ is

generated in gear coordinate system S: _hile the cradle and

the mounted tool and the gear perform the rotati,_al mo-

tion,; that are shown in figs. 5 _md 6. The family of sufface_

iq repre;ented in S_ by the matrix equat.ion

(3)
The product, of matrices M_t, i._ based, on the coordinate

transformations from St_ to $2 (figs. 5 and 6). The deriva-

tion of vector function rt_(s¢, Oo) is'. repres:eated in Appendix
I.

The envelope to the. family of gm'faces r2(g_,0#,¢_) is

determi.ned with equation (3) and th_ equation of meshing

i:;[9]

N_ • _!7 _ =/_,(s,, 0_,¢_) = o (4)

whe_:e Nt= is the normal to the geaer._tiug surface, and

v_: _p') i_ the relative velocity of the tool with respect to the

gear Vectors in equation (4) are represemed in coordinate

system S_.

An alternative approach for the de_ivat.ioa of the equation

of meshing is based on the consideration that the. normal

to the generat.ing surface at. a point of ta.nge.ncy of the con-

tactmg surfaces panics through the ins_aataneou:_ axis of

rotation.

Equations (3) and (4) represent the gear tooth surface by

three related parameters. Taking into account that these

equations are linear with respect to s#, we may eliminate

s# and represent the gear tooth surface by two _ndependent

parameters, _e and ¢2

4 DEH_IVATION OF PINION TODTH SURFACE

The derival, ions are similar to those (.hat have been de-

scribed in section 3. The family of generating surfaces is

represented by the matrix equation

rt(X_,0_,¢_) =: Mta(¢l)M,,,_Mm¢,(¢c,)M,,t_rh(kr,Ot,)

== Mt,,r,, (,_ r, _)

(s)

Here, r_ t()'r, 0p) is the vector function that represenf.¢ the

generating surface ( Appendix 2 ), where Xr and _r are tl_e

surfi_ce patameters.

The equation of meshing is



Equations (5) and (6) repr_ent the pinion tooth surface

by three related parameters. After elimination of param-

eter _p we may represent the pinion tooth surface by two

independent parameters, 0p and ¢,.

- 5 LOCAL SYNTHESIS

The ideas of localsynthesis are based on the following

considerations [9] :

(1) The pinion and gear tooth surfaces are in tangency

at the mean contact point M that is in the rniddle of t.he

contacting surface.

(2) The gear ratio is equal to the theoretical one.

(3) Considering the principal curvatures of the contacting

surfaces, we have to provide in the neighborhood of M _he

following transmissiota function (fig. 9)

N_ I , ._
¢_(6t) = _--__, .- _mz,¢, (7)

wLere -_rn211, is the parabola parameter of the ptedesigned

parabai]c function of transmission errors

A_(_2) = -:_m:,tC, (s)

(4) In .addition it. is necessary to provide the desired Ji-

rection of th¢ contact path.

All these goals can be achieved by the proper mismatch

of the contacting surfa,:c_ of the pinion-gear tooth surfaces.

The procedure of the local synthesis is as |otlows:

Step 1: We consider _.s given the surface of the head-

cutter that gen,_-rates the gear tooth :;urfacc. The head-

cutter surface is a cone and is in line contact with ti,e sur-

face of the gear One of such contact line_ passes through

the mean point M of tangency of the pinion a.nd the tooth

surfaces. Considering the surface of the gear ht'.ad-cutter

being as known, we determine at point M the principal

cu rval.ures and directkms of the gear head-cutter.

Step 2: Our next goal is to determine at M the princi-

pal curvatures 1:, _.nd k¢ and directions of the gear tooth

surface E_. We apply for this purpose the equa'Aons that

have been proposed in [9] and represent the direct relations

between the principal curvatures and directions for two sur-

fa_:es being in line t_)nt.act.

Step 3: We con,rider at this _step that gear and pinion

tooth surfaces, E2 and Z:I, are in tangency al M. As a

reminder the mismatched gear and pinion tooth surface_

are.in po:nt co_ act at every ins,'ant.

. Unit vectors e, and eI represew; the known directions

of the principaldirectionson surface E_. The principal

curvatures k, and kq on the gear principal direztions are

known. Our goal is to determine angle _'12 _,hat is formed by

vectors ej and ,,., (fig. 10) and the principal curvatures k 1

and kh of the pinion tooth surface at. point M. Unit vectors

e I and ea represent the sought-for principal directions on

the pinion tooth surface El.

Step 4: The tbree unknowns: ky, ka and tr12 can be

determined using the approach developed in [9]. We ut;e for

this pro"pose the following system of three linear equations

[9].
aitv!l}4"ai_v_ 1) = a;3 (i=1,2,3) (9)

The augmented matrix formed by the coefficients ail, ai2

a,nd a,3 is a skew-tyrametric one [9]. Here, v_l) and v_t)
axe the components of the velocity of the contact point that

moves in £he process of m_hing over the pinion tooth, sur-

face.,; _. Coefficients al_, at_ and at3 are represented in

terms of k,, kt k/, ks, z_ and the parameters of motion.

Coefficient a3_ contains the derivative

d (_(6,)) {_0)=
where

_ = _6--_ (_)

Step 5: Equation system (9) representz a system of three

linear equa.tions in two unknowns: v_ _) and v_ t). Surfaces

E_ and E2 are in point contact, the path of cont_£t has a

definite direction., and the solution of equation system (9)

with. respect to v! l) and vr__) mu._t be unique. Therefore.

the rank of the augmented matr_ formed by a;1, ai_: and

al3 is equal to two. Thi:_ yields that

f all at2 ats i

a12 tt2,'¢, a23 := ['(k.l, k h, ks, kq, a12, rn_l ) = 0
a13 _23 1133

(t2)

The other relation between the coefficients a_:, a, z and

at3 may be determined considering that

v__ )
:z ---

tan _?_ v_) (13)

where _1_ is the a_signed direction at M of the' tangent to

the path of contact on the pinion surface rq.

Using the relations between the coefficient:; of linear equa-

tion (9) discussed above, we are able to deCermine the

sougbt-for pinion principal curvatures kl, ha and orienta-
tion angle a_.

Step 6: We consid,:r uow that pinion principal cu.rvatmres

kf, kh and angle al_, and the principal direction:; e / and

e.h on surface E_ are known. The generating surface of

the head-cutter is designed as a ,mrface of revolution. (fig.

3). The pink,n head-cutter surface and the pinion _:ooth

surface are in line contact at every ins;tant. IJsing the direct

relations between the principal curvatures and directions

for two surfaces being in line contact [9], we may determine

the principal curvature:_ of the pinion head-cutter..'rhea,

the desired mismatch of the ,mrfaces of the gear and the

pinion will be obtained by the generation of the gear and

the pinion by the designed head-cutters.



Step7- Knowing the principal curvatures and directions

of the pinion and gear tooth surfaces, the elastic approach

of the surfaces, we may determine the orientation and the

ax_ of the instantm_eous contact ellipse [9].

6 TOOTI['I CONTACT ANALYSIS

The purpose of TCA is to determine the influence of mis-

alignment on the shift of the bearing contract and the trans-

mi._sion error.';. This goal is obtained by the simulation of

meshing and ,:ontact, of pinion and gear tooth _urfaees of a

nalsalJgned gear drive.

We consider that the pinion and gear tooth surfaces are

analytically repr_ented in coordinate .,;ysterrr; S_ and Sz

(see sections :3 and 4, r_peetively). The meshing of pinion

and gear _;oot, h surfaces is considered in fixed coordinate

system Sa (figs. 11 and 12). Auxiliary fixed coordinate sys-

tem. Sa and S,, are applied I;o describe the ifistallment of the

pinion with respe.ct to Sh (fig. 11). The pinion a.lignment

error _Ap is the pinion axial displacement. The rrtisatigned
pinion in the process of meshing with the ge.ar performs ro-

tation about Z:axi,;. The current angle of m_;ation of the

pinion is designated by ¢bl (f,g. 11).

Auxiliary coordinaXe systems S_, S,. and Sd are applied

to describe the insta.Ument of mi_;aligned gear with respect

to ,<;h. The errors of alignment are: the change A7 cf the

sb.aft angle (fig. 12), the offset A.E and the gear axial dis-

plg:ement AAg (fig. 13). The misaligned gear performs

ro_,ation about the Zd-axis, and _2 is the current an:,le of

the gea.r rotation.

,4. TCA computer program was developed to simulate the

meshing of pinion-gear t,ool,h surt_ces of the misalig, ned gear

drive. The development of the "]?CA program is based on

the following consideral.ions:

Step 1. We consider that ti_e pinion and gear tooth sur-

fac(s and the surface unit norma2_ are represented in coor-

dinate system $1 and S'2 by veer, or functions

ri(0,,¢i ) (i = 1,2) (14)

.,[0+,¢+) (_ = t,2) (3.5)

where (0i, _)i) arc the slJrfgce parameters.

Step 2. We represent now the pinion-gear tooth surfaces

and their su_/'ace unit normals in coordinate system Sh,

and take into account that the .,.urfac_i are in continuous

tangeney. Then we obtain the following equations

n(_l)(0_, ¢1, Ca) - _(h2)(02, ¢2, _2) = 0 (t7)

Equations (16)and {17) represent the conditions that the

contacting surfaces at the point of tangency have a. co,ninon

position vector and a common surface unit normal gqua-

tions (16) and (17) yiel:l a system of fiw, ,dependent, scalar

equations of the following strncture

]i(81, ¢'t, dl, 0_, ¢_, ¢_) = 0 .fi _ G I (i :: 1..5) (18)

As a reminder vector equation (17) yields only two in-

dependent scalar equations and not three, since In(O! =

In,z) I = ].
Ste.p 3. System (18) of five nonlinear equations contains

six unknowns, but one of the unknowns, say ¢_, may be con-

sidered as the input parameter. Our goal is the numerical

solution of nonlinear equations (18) by fimctions

{o,(¢,),¢,(¢,},o_(_,),++(+,),_+(¢,)}+c a (19)

The sought-for numerical solution is an iterative proce,m

that requires oa each it, eration the observat.ion of the fob

lowing conditions [9][3]:

(i) Tt.ere is a set of parameters (the first gu_,s)

prn{o) .,Co) a,(o_ a(o) g,(o),d(,:,),, (20)

that satisfies the equation system (18).

(ii) The Jacobian taken at P differ,; from zero. "thus, we
have

__- # 0 (21)
D(O_, ¢_, _:_, ¢,:_,¢_)

"rhea, as it follows from the "rheorern of Implicit Function

System Existence, equatio__ system (1_) can be solved in the

neighborhood of P by functions (19).

Using the obtained solution, we can determine the path

of contact on the pinion..gear tooth surface, and the t'_ans.

rnismon errors caused by misalignment. The path of contact

on surface Ei (i = 1,2) is determined by the expressions

r+(0+,v+), _,(_), _+(_,_) (i::1,_) (2::)

The transmission errors are determined by equation

NI ,

The dimensions and orientations of the in:_tantarmous

contact ellipse at the contact point may he determined con.

sLdering that :he principal curvatures and dJrectiotm of the

contacting surfaces, and the elasti,: approach of the _urfa¢:e

[9] are known.

7 NUMEP,.ICAL ]/;XAM:P[,]_

The blank data is _iw;n in Table 1.

The ?,ear head-<'.utter i.s a cone (figs. 2, 3 and 4), the cut-

ter radius is designated by R_ (fig. 1), the radi;d setting of

thehea,+-cutte,is I + 7,1 S(b)),,,,+d+hein,tal m,,, 
angle is q+ (fig. 5). "]'he data for the gear h,,ad..cutter that

generates the gear c,_nc_ve side are represented in Table 2,

Th- _,,rameters of the pinion head-cutter were deter-

mined by application of the method of local synthesis (sec-

tion 5). The data fi)r the pinion head-cutte, that gener-

ates the pinion convex side are represented m Table 3. We



consideredin the numerical examples the meshing of the
gear tooth concave side with the pinion tooth convex side.

Case 1 corresponds to the orientation of the bearing contact

across the surface, c_e 2 _orr_ponds to the orientation of

the bearing contact in the Io_.gitudinal direction.

The application of TCA for the simulagion of meshing

and contact per_xfit_s the de_rmination of misalignment ef-

fects on the transmi_ion errors and the shift of the bearing

contact. ]ll_has been shown _hat in the ca_e of application

of ideal generating :_urfaees (without mismatch, figs. 1 and

2) the errors of mis_,lignment cau._e indeed discontinuous M-

most line:_r tran:_mission errors a_ shown in fig. 14 for shaft

angle error A3,. Sirrfilav funet[ona of transmission errors are

caused by error.'; &A r, AA_ and AE. Tn.b]e 4 ,_hows the

maximal _,ransmdssion _rrors cau._ed by mi_,;alignment.

The re.quits of TCA for the: properly mismatched gener-

ating zurf_ces (see :_ection 5) confirmed that _. prede:signed

parabolic function indeed ab.sorbs the transrrfission errors

cau_d by mi;salignnaent, and the resulting function of t,rans-

mission is a parabolic one (fig. 15). "]?he ab,;orption of linear
function of tr ansmis_io_a errors is carried out &_ well in other

cases ofrrfisalignment: AAp, AA 9 and. AE. The bearing

contact of the drive is stabilized, and it,; shift is permissible

(fit;. 16). Model 2 of the gear drive (with longitudinal di-

rection of the bearing contact) is preferable due to the Io_er

level of transmi.'_sion errors c_.used by misalignment.

8 CONCLUSION

From the study conducted the following general conclu-
sions can be dra,wn:

(]) An apl)ro;uzh ha_. been zleveloped for the synthesis of

spiral bevel gears that provides: (i) localized bearing con-

tact. and (ii) low level of t,ransrnission errors of a parabolic

type. The approach developed pernai_s two possible direc-

tions of the I)ea_ing contact: acros._ the tooth surface or in

the lo:agit udinal direction.

(2) A q'ooLh Contact, Analysis (TCA) computer program

for the in vesf.igation of the influence of misalignm,mt on the
shift of the bearing contact was developed.

(3) The low level of transmJs._ion errors, the parabolic

type of the f.-'nction of transmission errorz_, and the local-

iza.tion of the bearing cortta¢t are achieved by the proper

mismatch of contacting surfaces.

(4) The influence of the following errors ,)f aligr:ment was
inuestigated: (i) for axial di,_placement, of the pinion, (ii)

axial displace.ment of the gear, (tii) offset, and (iv) change of

the shaft angle. Th,me types of misaligncnent were proven to

cause discon¢inuou.,; almost linear functions of transnfission

errors, but they are absorbed by the predesigned par_.bolic
function of tran,mission errors.

"rhe re,_ults of this inve,,tigation show that a predesigned
parabolic function car_ indeed absorb the linear functions

of transmission errors caused by misalignment. The design

of gears with a longitudinal bearing c(mtact (in ¢ompariron

with the bearing contact across the surface) is preferable

since a lower level of transnfission errors ¢_ be oblained.
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APPENDIX 1

Equ.atiom; of Gear Generating S,arfi_ces

The genorating cone represented in S,_ is

[ (R_ - s_sin %)cosa_
r_(s_,O_) =: (R_ -. _ _in cq) sin _

s_ cos ¢I_

(24)



wheresaand0a are the surface coordinates; _ is the blade

angle; R_ is the radius of the head-cutter 8' _aean point.

Equations (24) may also represent the con_'ex side of the

generating cone considering that t_a is negative.

Coordinate system S_ is rigidly connected to coordinate

system S,_, and the unit normal to the gear generating sur-

face is represented by the equations

n,_(0a ) = Ne_ ar,_ art, (25)

Equations (24) and (25) yield

ne,(0g) = cos ctg sin 0_ (26)

sina_

APPIgNDIX 2

Eq_mtio_s of Pin,on G _etxeratiug S_urfaces

The generating surface of revolution is represented in S,,
as

[ [Rp-- _t(c°g°tp--Cos(op-tl-._,,))]cOSSp l
r,,(Av.e,) = [R_, - Rl(cos e, - cos(ep + >._))] sin 0p

--/ih(sin a v - sin(a r + Ap))

(27)

where Ar and 0p arc the generating ,mrface coordinates; a_

is the profile angle at M point,; R_, is the radius of the head-

cut, ter at mean point; /'_1 is the radius of surf_.ce of revolu-

tion. Equations (27) can also represent the concave ,dde of

the generating surface of revolution if t_e subztitute ap as
180 _ - oep.

Coordinate sy.3tem St, is rigidly cow_ected to coordinate

system Set, and the unit normal to the pinion generating

surface is represented by the equations

t},t(,kp,Or) = N,, 0rt, 0rtt (28)i l' N,,:=vZ;×
Equations (27) and (28) yield

[ _o,.Op cos(ap + Ap) ]
n_, ()b,. 0v) =: sin Or cos(o, + Ap) (29)

sin(o r + Ap)

TABLE l: Blank Data

N1,N2, Number of teeth

X, Shag anl,/e

Mean spiral angle

ttand, of spiral

Whole depth_.Qnm)

"¢_,"r',, Pitch a,._,._._.

_
90 °

10.0 ] 100

'7"_---'_'_ r-Contact Path

V R_

FIGURE 1: Gener_tlng cone,,;

_t, --_[[[--_ ¢- Contact Path

Zt..-. ["f_T_ M

L22'_
FIG URE 2: Oenera_.itlg cone and generating surface of rev-
olution

\// I \

L -C-

FIGU R E 3: Mismatched generating ,;urtaees

Generatin
cones

//_1_,_ Cutter blade

IZt,

HG URE d: Cones for gear geners.tion
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C_

Z,_,Zq

I
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Zc_ t /

(a) (b)

FI';URE 5: Coordinate :;yst.em_ S<:and Sm

%'2 Vm'Yb----"1111

Gearpitch cone-.,,,,y_.__,7_/_'-----m

2 b ,Z::

FIGURE 6: Coerdinate systems .5"_, Sb and S_

(a)

(b)
"1

Ot! ....

FIGURE 7: (a)Co3ave× (inside blade) and (b)coacave (out-

side blade) sides of the generating blades and generating
surfaces of revolution

tlj -.

1

FIGURE 8: Coordinate system_ S._, Sa and S'I

(a) (_)
Ideal tran:smi.ssion

function

FIGURE 9: Ttansmi_ion function and predesigne0

parabolic function of ttansmis_ion errors, ,bt-pinion _ota-

tion angle; _,-gear rotation angle; A_.5:-tmn_mi_sion error

e h

M e f

12

FIG U RE l 0: Unit vec tots of principal directions of sutfaces

Z:¢ and _

TAF3LE 2: Parameters and Installment of Gear Head-

Cutter on gear concave side

%: C_t--;YTi-d-7_,.t m_a,_p,,i._ (.,m)._jD's.sL_d
-SC_,---_d---_al--_et--tin'_(mm'-_ L_T0.53 ..J



TABLE; 3: Parameters and Installment, of the Pinion Head-

Cutter on pinion convex side

INP U T

m t

qYU-T70-T
M

_',, (_2m,_.2"t_

Case 1

, 20 °

_5.94

(?9.88, 0.39, 0.17
78.0

235.0

12.5<

(.:a,se 2

20 °

_--51"24'

92 °

-1.2e-3

-10.09

(77.83, 1.64, 0.72)-

64.7

765.0

4.5

TABLE 4: M_ocimum Transmission Errors for Genera,ring

Surfaces wiG. lqismateh

_AA A¢_ t_ arc se_.--]

[xT=;?

XI_,Xt]A___ Za,Zh

(_)

Y.'Yh YtYe

(b)

F]GUPJ] 1].: Simulation of pinion misalignment AA r

YVq'L

o
(,) (b)

FIGU RE 12: Simulat, ion of gear misalignment A7

Ya,Yc ,Yz Ya, Yh

" ZV Oa zo
¢ Z a,Z_, Zz

(a) (b)

FIGURE 13: Simulation of gear rni_alignment AE and AA_

3

.2

1

0

-2

-3

-4

°50-40-30-20-_0 [) _0 20 30 _:z SO

FIGURE ]4: Transmissio_ error,; for a rnisaligned gea,r drive

_il,h ideal surfaces: A7 = 3 are miD.

5

¢" -4

-8

-10

-60-50-40-30-20-I0 0 10 20 30 40

¢_ ('_

FIG U RE 15: Tran_mi,_sion errors fo,,"a misaligned gear d rive

with mismatched gear tooth surfaces: A'r = 3 arc rain.

FIGU R,E 16: Longitudinal bearing contact for a misaligned

gear drive (A3' "_ zi ,_ic rrfin,)
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