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Abstract

An integrated multidisciplinary optimization procedure is developed for application to
rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics,
aeroelasticity, and structures are coupled within a closed-loop optimization process. The
procedure developed is applied to address two different problems. The first problem
considers the optimization of a helicopter rotor blade and the second problem addresses the
optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the
objective is to reduce the critical vibratory shear forces and moments at the blade root,
without degrading rotor aerodynamic performance and aeroelastic stability. In the case of
the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed
cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic
performance in hover. The problems studied involve multiple design objectives; therefore,
the optimization problems are formulated using multiobjective design procedures. A
comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic
and aeroelastic stability analyses and an algorithm developed specifically for these purposes
is used for the structural analysis. A nonlinear programming technique coupled with an
approximate analysis procedure is used to perform the optimization. The optimum blade

designs obtained in each case are compared to corresponding reference designs.



Table of Contents

Page

LSt Of Tables ....uone it viii
LSt Of FAgUIES ..ottt ix
NOMENCIATUIE ...\ttt e et aae s Xi
| SR 115 o Yo 10U o1 £ Lo | DO SRR 1
Helicopter Design Considerations..............cooviiiiiiiiiiiiiiiiniieea, 1
Helicopter Rotor Blade Optimization...............ccccooiimiiiiiiiiiiiiiiiniiiiin.... 3
Sequential OptIMIZAtion........cociviiiiiiiiiiiiiniri e 3
Multidisciplinary Optimization.............c.ocviiiiiiiiiiiiiiiii e, 4

High-Speed Rotorcraft Design Considerations .............oooooiiviiiiiiiniinn. 5
High-Speed Rotorcraft Optimization...............ooviiviiieniiii e 6
Multiple Design ObJECHVES........uvuiiiiiniiiiiiiiiiiii e 7

DO O3] o6 9
III. Multiobjective OptimiZatioON............ouoviiiiiiiiiiiiiiiiiriii s 10
Modified Global Criteria Approach ...............coovviiiiiiiiiiiiiii 10
Minimum Sum Beta (Min ZB) Approach...........c.coooiiiiiiiiiiiiiiiin. 11
Kreisselmeier-Steinhauser (K-S) Function Approach ..., 12
Problem Statement ........o.vvueenertiiiiit i e 13

Blade model.......ooineiiiiiii e 14
OPtiMIZAtION. .. cuuiiniiniiiii i 17
ADNALYSIS © vttt ittt e 19
Dynamic, Aerodynamic and Aeroelastic Analyses ..................c.o..ceene 19

Structural ANALYSIS ......ouiueieinininniiiiiiiii e 19
Optimization Implementation...........cccoiiiiiimiiiiiniiiiiiii 20

iii



Results and DiSCUSSIONS.......couiuiiuiniiiiin i 21
CONCIUSIONS . . ..ttt et e e e e e e et e e e e 30

IV. Integrated Helicopter Rotor Blade Optimization..............cccceevimiiiiiiniininninnnna. 33
Problem Definition ..........o.oiviiiiii 33

Blade Model ... 34
OPtIMIZALION. . ce ittt e ae e 38
ANALYSIS . oonntiini e 40
Dynamic, Aerodynamic and Aeroelastic Analyses ........................... 40

Structural AnalysiS.......cooovviiiiiiiiiiiiiii 41
Optimization Implementation.............cooviiiiiiiiiiiiiiiiii e, 41
Results and DisSCUSSIONS........oouiiiiiiiiiiii e 41
CONCIUSIONS . . .. ettt ettt et a et e e eaneenenes 53

V. Integrated High-Speed Proprotor Optimization ..................ccoiiiiiiiiiiin.. 55
Problem Definition ..ot 55

Blade Model....c.oniiiniiiiii e 55
OPtimMiZAtioN...c.ouitiiiiii i 57
ADALYSIS .ottt e 58
Dynamic, Aerodynamic and Aeroelastic Analyses ............................ 58

Structural ANAlYSiS .....covvvvniieiriiiiiiiiii 59
Optimization Implementation.............ccoeiiiiiiiiiiiiiiiiniiin e, 59
Results and DiSCUSSIONS........oociiiiiiiiiiiiiiiiiii i 61

[00) T 11 3 10 ) o St 76

AY B 205 = (= 11 = OO PSSOt 78

iv



Table

List of Tables

Page
Summary of Multiobjective Optimization Constraints...........c.ueueveerrerrennnennnn. 23
Summary of Multiobjective Design Variables................ccooiciiiiiniiniin, 23
Summary of Integrated Helicopter Rotor Blade Optimization Results ................ 44
Summary of Integrated Helicopter Rotor Blade Optimization Design
VarADIES . . .ottt e e e 45
Summary of Integrated High-Speed Proprotor Optimization Results................. 63
Summary of Integrated High-Speed Proprotor Optimization Design
AV o Lo (< PN 65



Figure

ol R e ). ey - VU ]

—
)

[
[y

12
13
14
15
16
17
18
19
20
21
22
23

List of Figures

Page
Simplified rotor blade model with linear taper.....................oooiii L. 14
Centrifugal stress distribution............cccooiiiiiiiiiiiiiiiiiie e, 24
Lead-lag bending stiffness distribution....................oo 25
Nonstructural weight distribution ... 26
Comparison of individual objective functions ...............cooeviiiiiiiiiiiinn.. 27
4/rev vertical shear iteration history ... 28
3/rev inplane shear iteration history ... 29
Objective function iteration history.............cooceviiiiiiiiiiiiii 30
Double-celled box beam configuration..........ccccoeoviiiiiiiiniiiiiiniiiieiinnennna.. 33
Variation of tip shape with tip shape parameter, p......c.ccoccciiiinriininnennnn 35
Variation of tip shape with tip shape parameter, 0................cooeviiiiiiii.. 36
Variation of blade twist with changes in tip shape parameter, 8...................... 37
Comparisons of normalized vibratory loads and total power ......................... 46
Torsional bending stiffness distribution...............coovviiiiiiii 47
Blade nonstructural weight distributions ............c..cooviiiiiiiiiiiii 48
Chord distribution. .......oovviiieii i 49
Blade center of gravity offset distribution...............cooooi 50
4/rev vertical shear iteration hiStory ..............coociiiiiiiiiiiiiiiiiiiiiii, 51
4/rev lagging moment iteration hiStOrY...........ccciiiiiiiiiiininiiiiiiiinn, 52
Objective function convergence hiStOry...........cocomiiiiiiiiiiiiiinn... 53
Swept blade planform............ccooiiiiiiiii 57
Comparison of individual objective functions ....................o 64
Chord distribUtion..........ccvviiiiiiiiii 66

vi



Figure
24
25
26
27
28
29
30
31
32

Page
Flapwise bending stiffness distribution........cc...ccooooiiiiiiiiin.. 67
Lead-lag bending stiffness distribution..................cooiiiii 68
Torsional bending stiffness distribution.................coooiiiiiiiiiiiiii i, 69
Nonstructural weight distribution ... 70
Twist  diStribution........coooviiiiiiiiii 71
Sweep distribution .........cooiiiiiiiiiii 73
Lifting line distribution ..........c.oouiiiiiiiiiiii i 74
Individual objective function iteration hiStOry..............ccccocovccciiniiiininnin. 75
Objective function iteration history ... 76

vii



Nomenclature

bm base of the mth box beam member, ft

c chord, ft

Co-C3 chord distribution parameters

f; natural frequency of the ith mode, per rev (/rev)

fr 3/rev radial shear, Ib

fx 3/rev inplane shear, 1b

fz 4/rev vertical shear, 1b

g1, 82, 83 vector of constraint functions

g approximated constraint vector

hm height of the mth box beam member, ft

k principle radius of gyration, ft

me 3/rev torsional moment, Ib-ft

my 3/rev flapping moment, 1b-ft

my 4/rev lagging moment, Ib-ft

p chord distribution shape parameter

Pn two point approximation exponent for the nth design variable
tm box beam wall thickness of the mth member, ft

Wi leading edge nonstructural weight at the jth node, Ib/ft

Wej central nonstructural weight at the jth node, Ib/ft

Wskj blade skin weight at the jth node, Ib/ft

Whej honeycomb filler weight at the jth node, 1b/ft

Xe nondimensional center of gravity offset forward of shear center
X, Y, Z reference axes

y nondimensional radial location

9j distance from the blade root to the center of the jth segment, ft
Aj average area of the jth segment, ft2

Al autorotational inertia, Ib-ft2

Cr thrust coefficient

Cp power coefficient

Elyx, El; bending stiffnesses, Ib-ft2

Fy kth objective function

Fro values of the objective function Fy at the beginning of an iteration

multiobjective formulation of the individual objective functions, Fy

viil



prescribed target of the objective function Fy
approximated value of the objective function Fy

hover figure of merit
torsional stiffness, 1b-ft2

length of the jth segment, ft

total number of constraints and objective functions

number of constraints

number of design variables

number of objective functions

number of blade segments

number of box beam structural members
blade radius, ft

thrust, Ib
nonstructural weight of the jth segment, Ib

structural weight of the jth segment, Ib
total weight of the jth segment, b
total blade weight, 1b

chord distribution shape parameter

kth aeroelastic stability root

pseudo design variables

lifting line curvature parameters

twist shape parameter

kth eigenvalue of the Floquet transition matrix

inverse taper ratio

advance ratio

design variable vector

ith design variable

K-S function multiplier
blade twist, degrees

blade twist distribution parameters
area solidity

stress in ith segment, 1b/ft2
centrifugal stress, Ib/ft2
vibratory stress, Ib/ft2

X



Subscripts
max

r
ref

-

twist ratio

minimum allowable aeroelastic damping for the kth mode
prescribed bounds for blade distribution parameters

rotor angular velocity, revolutions per minute (RPM)

rotor angular velocity, rad/sec

maximum value

value at the blade root
reference blade value
value at the blade tip
lower bound

upper bound



I. Introduction

Design optimization methodologies have recently emerged as a practical tool in the
design of aerospace vehicles! and an extensive amount of research has been conducted in
bringing the state of the art in optimization techniques to a very high level2:3. Although
these techniques have received widespread attention in the fixed-wing industry, they are
less well-known in rotary wing applications. Previously, rotary wing design procedures
relied heavily on the designer's experience as well as trial and error methods. However,
with the improved understanding of rotorcraft analysis techniques, the availability of
sophisticated computing resources and the existence of efficient optimization algorithms, it
is now possible to use design optimization at both the preliminary and redesign stages of
the development of rotary wing aircraft. In the following sections, brief descriptions of the
design considerations in helicopter and high-speed proprotor aircraft along with

optimization efforts in these fields are presented.

Helicopter Design Considerations

The conventional rotor blade design process consists of first designing the blade to
satisfy certain aerodynamic requirements. This is followed by structural modeling and
blade tuning based on dynamic analysis. The aerodynamic design process alone, consists
of selection of variables such as blade planform, airfoils and twist. The process is further
complicated by the often conflicting design requirements. For example, as indicated by
Magee et al.4 the “best” twist for hover produces negative angle of attack on inboard airfoil
sections in forward flight conditions, whereas the “best” twist in forward flight causes the
blade to stall inboard in hover. Similar conflicts also occur in the choice of the chord
distributions. These trade-offs necessitate the use of parametric studies to be completed
prior to the selection of such parameters. This process is tedious and computationally

expensive and can be avoided by implementing appropriate design optimization strategies.
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Vibration has long been a major source of problems in helicopters and its alleviation
plays an important role in the rotor blade design process. The potential sources for
helicopter vibrations are rotors, engines and gear boxes and each produces loads over a
wide range of frequencies. These vibrations can be categorized as low and high frequency
vibrations. The high frequency vibrations are mainly acoustic and are not responsible for
mechanical failures, except for some isolated cases of structural resonance. The low
frequency vibrations are the cause of all fatigue-related failures and are therefore of
importance not only to the rotor system but also to the airframe. For a helicopter in
forward flight, the nonuniform flow passing through the rotor causes oscillating airloads
on the rotor blades which are translated into vibratory shear forces and bending moments at
the hub. In the rotor system itself, loads are present at all harmonics of rotor speed, but the
symmetry of the rotor system ensures that significant loads are transmitted to the airframe
only at multiples of the rotor passing frequency (i.e. in€2, where i is an integer, n
represents the number of blades and Q is the rotor RPM.). The biggest component of the
airframe vibratory forces occur at the fundamental blade passing frequency (n€2). This
involves consideration of the rotor responses to airloads at nt1 harmonics as well3.
Because a rotor producing low hub loads will produce low vibration throughout the
airframe, vibration alleviation plays a major role in the rotor blade design. As indicated in a
survey by Reichert, it is necessary to consider vibration reduction throughout the
development phase of the helicopter. The survey also outlines the various existing methods
of reducing helicopter vibration such as the use of special absorbers at the rotor blades or
the hub. More innovative vibration techniques, such as active higher harmonic control and
vibrational isolation of the fuselage from the rotor/transmission assembly based on
antiresonance, are also discussed. The use of structural optimization in the early stages of
the design process is suggested as a mechanism for reducing the “main-in-the-loop” type of

iterations.



Helicopter Rotor Blade Optimization

Recently there has been some interest in applying optimization strategies to rotary wing
aircraft design. However, most of these researchers®-20 have addressed the problem in a
sequential manner, based on individual disciplines, and attempts were made only to satisfy
certain design requirements and criteria related to a single discipline. Such design
procedures often lead to a final design that may not be the optimum solution when all
disciplines are considered simultaneously. The rotary wing design process is truly
multidisciplinary in nature and involves the coupling of several disciplines, such as
structures, aerodynamics, dynamics, aeroelasticity and acoustics. For example, in an effort
to reduce vibration by changing the mass and stiffness distributions of the blade, spanwise
and/or chordwise, it is important to ensure that the aeroelastic stability of the rotor is not
degraded. Also, while reducing the weight of the blade it is important to ensure that the
rotor has sufficient autorotational inertia to autorotate in the case of an engine failure and
that the rotor retains sufficient lifting capability. A proper formulation of the rotorcraft
design problem therefore requires the coupling of all of these disciplines within the design
optimization loop. The need to incorporate all of the necessary disciplines within a closed-
loop optimization process is recently being recognized2!-31. Brief descriptions of both the

sequential and multidisciplinary optimization efforts follow.

Sequential Optimization: An early review of the literature in the area of application of
optimum design techniques for helicopter rotor blades with dynamic constraints is due to
Friedmann’. Successful applications of such techniques are presented in Refs. [8-20].
Bennett? addressed the problem of reducing the vertical hub shear transferred from the
blade to the rotor mast by combining a conventional helicopter analysis with a nonlinear
programming technique. Peters et al.10 used two different objective functions at two stages
of the design. Initially blade weight was used as the objective function which was later

replaced by the difference between the actual and the desired natural frequency. A
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simplified forced-response analysis was used, and a constraint was used on the
autorotational inertia. More recently Chattopadhyay and Walsh!4.15 addressed the problem
of optimum blade designs with dynamic constraints. Minimum weight designs were
obtained with constraints on frequencies, stresses and autorotational inertia for articulated
rotor blades with rectangular and tapered planforms. Weller and Davis!6 used a simplified
rotor analysis code and quasisteady airloads to optimize rotor blades with dynamic and
aeroelastic stability constraints. The results of Ref. [16] were verified by the authors
through experimentation!’7. Walsh et al.!18 performed an aerodynamic/performance
optimization using hover horsepower as the objective function with constraints on the
horsepower required at five other flight conditions and the airfoil section drag coefficients.
A combination of rotor horsepower in forward flight and hover was minimized by Kumar
and Bassett19 to obtain optimum rotor geometry for a future light helicopter. A preliminary
structural optimization of rotor blades was conducted by Nixon20. Blade weight was used
as the objective function and constraints were imposed on twist deformation, stresses and
autorotational inertia.

Multidisciplinary Optimization: The necessity of integrated multidisciplinary
optimization procedure for rotary wing design is currently being recognized. Celi and
Friedmann2! addressed the coupling of dynamic and aeroelastic criteria with quasisteady
airloads for blades with straight and swept tips. Lim and Chopra22? coupled a
comprehensive aeroelastic analysis code with the nonlinear optimization algorithm
CONMINS32 to reduce all of the six 4/rev hub loads of a hingeless four-bladed rotor in
order to reduce vibration without compromising aeroelastic stability in forward flight.
However in these studies, only quasisteady airloads were used. A truly integrated
aerodynamic/dynamic optimization procedure was presented by Chattopadhyay et al.23.
The 4/rev vertical shear and blade weight of a four-bladed articulated rotor were minimized.

A modified Global Criteria approach was used to formulate the multiobjective optimization
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problem. The integration of aerodynamic loads and dynamics was achieved by coupling
the comprehensive helicopter analysis codle CAMRAD33 with CONMIN and an
approximate analysis technique. The program CAMRAD permitted the calculation of actual
airloads. Its use within the optimization loop allowed for the effects of design variable
changes, during optimization, and the associated changes in airloads to be included in the
design process. Chattopadhyay and Chiu2#4 extended the work of Ref. [23] to include the
remaining critical vibratory forces and moments in the form of objective functions and/or
constraints A combined structural, dynamic and aerodynamic optimization of rotor blades
was performed by He and Peters25. A simple box beam model was used to represent the
structural component in the blade and the blade performance was optimized using the
power required in hover as the objective function. Constraints were imposed on natural
frequencies, blade stress and fatigue life. However, the optimization procedure was
decoupled into two levels. Straub et al.26 addressed the problem of combined
aerodynamic performance and dynamic optimization at both forward flight and hover flight
conditions by using the comprehensive rotor analysis codle CAMRAD/JA34. A linear
combination of the objective functions was used to formulate the multiple design objective

problem.

High-Speed Rotorcraft Design Considerations

High-speed rotorcraft designs, such as the tilting rotor configuration, pose an entirely
new problem in the rotary wing field. The design goals for this class of aircraft include
low downwash velocity in hover, good low speed maneuverability and cruise speeds of
350 - 500 knots35. Several new concepts36-39 have recently been proposed to meet these
design goals. Extensive research performed in this field have led to the XV-15 research
aircraft40 and ultimately to the production of the V-22 Osprey tilting rotor for the US Navy.

The combined requirements of efficient high-speed performance of a fixed wing

aircraft and good helicopter-like hover characteristics complicates the design process of
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tilting high-speed proprotor aircraft. It is necessary to maintain good aerodynamic
efficiency in high-speed axial flight without degrading hover efficiency. This often leads to
conflicting design requirements. For example, improved efficiency in high-speed cruise
demands high drag divergence Mach numbers which are normally associated with thin
airfoils. This however, reduces the hover figure of merit by reducing Ct/c. Therefore, to
maintain the required thrust ceiling in hover, the rotor solidity has to increase. Also as the
forward speed increases, helical tip Mach number limitations, which when large reduce the
aerodynamic efficiency of the rotor, require a reduction in the rotor rotational velocity.
Introducing blade sweep can alleviate this problem by reducing the effective chordwise
Mach number, which allows for higher speeds, without reducing the rotor RPM.
Therefore the proper design of proprotor blades capable of achieving the design objectives
must consider the right combination of airfoil thickness and blade sweep in addition to

other aerodynamic variables such as planform and twist.

High-Speed Rotorcraft Optimization

Over the last few years, there has been a revival of interest in VTOL aircraft capable of
operating in fixed wing as well as rotary wing mode. Several studies have been
performed41-46 to study design trade offs between the two flight modes. For example,
Johnson et al.#! performed a detailed study on the performance, maneuverability and
stability of high-speed tilting proprotor aircraft, including the XV-15 and the V-22. Liu
and McVeigh4? recently studied the use of highly swept rotor blades for high-speed tilt
rotor use. However, formal optimization techniques were not applied. Recently an effort
was initiated by Chattopadhyay and Narayan43:44 to develop formal multidisciplinary
optimization procedures for the design of civil high-speed tilting proprotor blades. The
propulsive efficiency in axial flight was maximized with constraints on the figure of merit
in hover, aeroelastic stability in cruise and other aerodynamic and structural design criteria.

McCarthy and Chattopadhyay#> furthered this work by using multiobjective function
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formulation techniques with the propulsive efficiency in cruise and the hover figure of merit
as the individual objective functions to be maximized. Constraints were again imposed on
the aeroelastic stability in cruise as well as on other structural design criteria such as the

total blade weight.

Multiple Design Objectives

Multiobjective optimization refers to problems where the objective function is
composed from a set of distinct criterion. For example in a structural design problem these
may be stresses, displacements, weight, etc. As optimization is emerging as a practical
design tool in the rotary wing industry and the need for multidisciplinary coupling is being
recognized, multiobjective decision making is becoming an important issue. Therefore,
there is a renewed interest in multicriteria programming for application to design problems.
Following is a brief description of the current state of the art in multiobjective optimization.

The first concepts of multiobjective optimization date back to Pareto*6 who introduced
the concept within the framework of welfare economics. Most applications of these
problems in structural and mechanical designs are based on an ordering of the objective
functions, prior to optimization, with the introduction of weight functions47-50. These
techniques are, however, judgmental in nature as the weight factors rely heavily on the
designer’s experience and are often hard to justify. Also, in the highly nonlinear
environment of rotary wing design, such techniques are often not well posed.

The use of multicriteria design techniques was recently studied by Chattopadhyay and
McCarthy27-31 for application to helicopter rotor blade design. In Ref. [27], the Minimum
Sum Betal6 (Min ZB) and the Kreisselmeier-Steinhauser (K-S) function3! approaches
were used to reformulate the multiobjective function problem of Ref. [24]. The results
from these two approaches were compared to the results from the modified Global Criteria
approach as implemented in the original work. This work was extended in Ref. [28] by

introducing additional discipline coupling. Also, the “generic” design variables such as
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stiffnesses, used in Ref. [23,24,27] were replaced by a detailed structural modeling of the

principal load carrying member in the blade. The Min Zf and the K-S function approaches

were used to formulate the multiple objective function problem.



II. Objectives

The scope of the present work is threefold. Since most multidisciplinary optimization
problems involve multiple design objectives, the formulation of such problems is
investigated initially. The methods studied are applied to a helicopter rotor blade
optimization problem. Next, using these multiobjective formulation techniques, a fully
integrated dynamic/aerodynamic/structural/aeroelastic optimization procedure is developed
for the design of helicopter rotor blades. In the last part of the thesis, such
multidisciplinary optimization techniques are applied to study the complex design issues in

high-speed tilting proprotor aircraft.



III. Multiobjective Optimization

A typical optimization problem involving multiple objective functions can be

mathematically posed as follows.

Minimize Fk(¢n) k=1,2,..,NOBJ (objective functions)
n=1,2,..,NDV
Subject to
gj(d)n) <0 j=1,2,..,NCON (inequality constraints)
Onp £9n < ény (side constraints)
where NOBJ denotes the number of objective functions, NDV is the number of design
variables and NCON is the total number of constraints. The subscripts L and U denote
lower and upper bounds, respectively, on the design variable ¢p. A detailed description of
the multicriteria design objective formulation follows.

This study examines three multiobjective function formulation techniques that are less
judgmental than the Pareto-based weight factors and are therefore more suited to large
scale, highly nonlinear optimization problems that are associated with rotary wing design.
The three multiobjective function techniques used are the modified Global Criteria, the
Minimum Sum Beta (Min XZf) and the Kreisselmeier-Steinhauser (K-S) function

approaches. A detailed description of all three of the methods used follows.

Modified Global Criteria Approach

This approach was used by Chattopadhyay et al.24 to formulate the two objective
function problem studied in the original work, and is presented here for the sake of
comparison. Using this method, each of the original objective functions is optimized
individually. The optimum solution is then obtained by minimizing a “global criterion”
defined as the sum of the squares of the relative deviations of the individual objective

functions from their respective individually optimized values. Due to the nonlinearities
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associated with a simple sum of the squares formulation, the square root of the summation
is taken. The optimization problem reduces to minimizing the single global objective

function, l~31(d>), where

B F@-Fean |
Fy(®) = Z[k & “} (D
Fy(ox)
k=1
subject to the complete set of inequality constraints
glj((D) <0 j=1,2,... ,NCON. (2)

Side constraints are imposed on the design variables (®) to keep them in a practical range.
The design variable vectors <I>: are obtained by individually minimizing the single objective
function Fy(®P) subject to the set of constraints glj((b), such that NOBJ optimizations of the
original objective functions must be performed prior to the implementation of the modified

Global Criteria approach.

Minimum Sum Beta (Min XJ3) Approach

This method was first used by Weller at al.16 to formulate a two objective function
rotor vibration problem. This method is a further modification of the Global Criterion
approach in which the individually optimized values Fk(fbi'é) are replaced by specified target
values. These prescribed values are analogous to the individually optimized values of the
Global Criterion approach; however, these values represent user supplied information. The
objective function, Fy(®), is defined as a linear combination of the tolerances of each
objective function to its specified target value.

NOBJ
Fa@) = 3 B 3)
k=1
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where By are pseudo design variables with properties such that the original objective
functions Fy remain within a B tolerance of some prescribed values. This requirement
introduces new constraints of the following form.

Fy - Fx
Fx

< B k=1,2, .., NOBJ @

The quantities Fy are the prescribed target values of the individual objective functions Fy.
Using the above formulation, as the values of variables By are reduced to zero the values of
the individual objective functions F are driven to their prescribed values, Fx. The design
variables for the Min X formulation comprise the original set of design variables and the
pseudo design variables, Bx. A new constraint vector, gzm(d)), m=1,2,..,M,is also
defined and this constraint vector comprises the original constraints and the new constraints

presented in Eqn. 4, i.e., M = NCON + NOBJ.

Kreisselmeier-Steinhauser (K-S) Function Approach

This technique was first utilized by Sobieski et al.5! at the NASA Langley Research
Center. The first step in formulating the objective function in this approach involves
transformation of the original objective functions into reduced objective functions>2. These

reduced objective functions take the form

Fil(P)

*
Fi(®) = “§,

-1.0-gmax £ 0 k=1,..,NOBJ (5)
0

where Fy represents the value of F calculated at the beginning of each iteration. The

quantity gmax is the value of the largest constraint corresponding to the design variable
vector @ and is held to be constant for each iteration. These reduced objective functions are

analogous to the previous constraints, and therefore a new constraint vector g3 (®),

m=1, 2, ..., M, is introduced, where M = NCON + NOBJ. This constraint vector
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includes the original constraints of the problem as well as the constraints introduced by
Eqn. 5. The new objective function to be minimized is then defined, using the K-S

function as follows:

M
= 1 P(gm(¢)—fmax)
F3(®) = fnax + —In E e 6
max P (6)

m=I]

where fmax is the largest constraint corresponding to the new constraint vector, g3, (),

and in general is not equal to gmax. The optimization procedure is as follows. Initially in
an infeasible design space, where the original constraints are violated, the constraints due to
the reduced objective functions (Eqn. 5) are satisfied (gmax is negative). Once the original
constraints are satisfied, the constraints due to the reduced objective functions become
violated. When this happens, the optimizer attempts to satisfy these constraints and in an
effort to do so, so minimizes the original objective functions (Fk). The multiplier p is
analogous to a draw-down factor where p controls the distance from the surface of the K-S
objective function to the surface of the maximum constraint function. When p is large the
K-S function closely follows the surface of the largest constraint function. When p is
small the K-S function includes contributions from all violated constraints. The design

variable vector @ is identical to that used in the Global Criteria approach.

Problem Statement

The objective is to evaluate the different multiobjective formulation techniques
described above. This is accomplished by reformulating the multicriteria objective function
formulation of Ref. [24] in which the objective function was formulated using the modified

Global Criteria approach. The two new techniques, the Min Zf and the K-S function
approaches are used. As in the original study both structural and aerodynamic design

variables are used to study the trade off between dynamic and aerodynamic performance
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requirements. The objectives are to reduce the critical vibratory hub loads, without

incorporating weight penalties or degrading the lifting capability of the rotor.

Blade model

The reference rotor, as used in Ref. [24], is a modified wind tunnel version of the
Growth Black Hawk rotor blade33, which is a four bladed articulated rotor. For
convenience a description of the blade model as used by Chattopadhyay et al.23 is given
below. The blade planform is modeled with linear taper (Fig. 1), and the blade stiffnesses
are assumed to be contributed entirely by the blade structural components (i.e. the
stiffnesses contributed by the skin, the honeycomb, etc., are assumed to be negligible).
The blade is assumed to have a linear twist distribution with a tip twist value of -16

degrees.

Q
'y >
o
o) y N
Cr

y

< >
Xy

Figure 1 Simplified rotor blade model with linear taper

The linear chord distribution is given as

o) = D= FAR-D+1] ™

where c; is the root chord, y is the nondimensional radial location (y = y/R, where R is the

blade radius) and X is the inverse taper ratio, i.e. A = c/c; where ¢ is the tip chord. Note



15

that when A = O the planform is triangular. The mean chord, ce , is found from the

weighted average of the chord length at each node as follows
1 -
Ce = 2 zLici (8)

where NSEG represents the total number of segments in the discretized blade, L is the

length and ¢; the average chord of the ith segment, respectively. Based on the above chord

distribution and the fact that moments of inertia are proportional to [L]4, the stiffness Elxx

is represented as follows.

— EIl -
Blxx() = i = 5 ) - 1+ 118 ©)
T

where E is Young’s modulus and Iyx is the moment of inertia about the x-axis. Similar

expressions are obtained for the lagging stiffness Elzz and the torsional stiffness, GJ,

where G is the torsional rigidity and J is the polar moment of inertia. The total blade

weight is formulated as follows
w; = Z(wSi + Was;) (10)

where W, and Wi refer to the structural and nonstructural weights, respectively, of the

ith segment. The structural weight of each segment is represented as

Ws = pAiL; (11)

where A; the average area of the ith segment and p is the density. Because the structural

weight is dependent upon the cross-sectional area it is necessary to estimate the cross-
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sectional area of each segment. This is done by formulating the area in terms of the blade
stiffnesses and radius of gyration as

- (Elxx + EIzz)

A
Ek2

(12)
where k is the principal radius of gyration given by
k2 = kxx2 + kzzz (13)

The nonstructural weights (per unit length), w; , are specified at each node point. The total
nonstructural weight of each segment is then formulated as the average of the nonstructural
weights per unit length at adjacent node points multiplied by the length of the segment as

follows.

i=1,2, .., NSEG (14)

Wnsi — Lil:_l__l‘”]

2
The autorotational inertia, Al, is formulated from the blade weights as follows.
A=Y Wi as)

Where W; is the total weight of the ith segment and 91 represents the length from the blade

root to the center of the ith segment. The centrifugal stress, Gj, of the ith segment is then

calculated as
NSEG
2.V’
o =L i=1,2, .. NSEG (16)
Aj

where o is the rotational velocity of the rotor blade in rad/sec.
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Optimization

Objective Functions: For a four-bladed rotor, often the 4/rev vibratory vertical shear at

blade root is not the only critical source of hub vibration. Depending upon the hub
impedance and other factors, the contributions from the 3/rev and 5/rev harmonics often
become significant. Therefore, in this problem the objective functions used are the 4/rev

vertical shear (f;) and the 3/rev inplane shear (fy) at the blade root.

Design Variables: For the optimization procedure, both aerodynamic and structural
design variables are used in order to provide additional flexibility to the optimization

process. Following, is a summary of the design variables used.
(i)  Chord distribution parameters; cr, A
(i)  Blade stiffnesses at the root; Elxx, El;; and GJ;
(iii)  Radius of gyration at the root; k;

(iv)  Nonstructural weights; wj; j=1,2, ..., NSEG

Dynamic Criteria: In this problem, the optimum design of the rotor blade under
forward flight condition is addressed with the objective of minimizing the critical vibratory
forces and moments at the blade root. As mentioned before, the rotor being four-bladed,
the 4/rev vertical shear and the 3/rev inplane shear at the blade root, are used as objective
functions. However, to ensure that there is no degradation of the remaining critical
vibratory forces, upper bound constraints are imposed on these forces and moments. Also
to avoid resonance, upper and lower bounds, or “window” constraints, are placed on the
first four elastic coupled flap and lead-lag natural frequencies of the blade. This ensures
that the blade natural frequencies are away from integer harmonics of the rotor. These
constraints are formulated as follows

(i)  3/revradial shear; fr <fy;

(i)  4/rev lagging moment; m; < My
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(i)  4/rev flapping moment; my < myy
(iv)  4/rev torsional moment; me < mgyy

(v)  first four elastic coupled lead-lag natural frequencies;

fip <fi<fiy 1=3,..., 6 (the first two modes, i = 1,2, represent rigid

body modes.)

Aerodynamic Criteria: In order to make a meaningful comparison between the

optimum and reference rotors it is necessary that the optimum rotor has at least the same
lifting capability as the reference rotor. Therefore, a lower bound is imposed on the total

rotor thrust. This constraint takes the following form .

(viy T 2T,

Structural Criteria: Most conventional vibration reduction problems are associated
with increased weight due to the addition of tuning masses and/or vibration isolators. To
avoid such a weight penalty, an upper bound is imposed on the total blade weight, W. A
lower bound is imposed on the autorotational inertia of the blade (Al) in order to ensure that
the blade has sufficient autorotational inertia to autorotate in the case of engine failure.
Further, it is necessary that the blade is capable of withstanding the centrifugal stresses
from its rotation, therefore upper bounds are placed on the blade centrifugal stress (oj, i =

1,2, ..., NSEG). Details of the structural constraints follow.

(vii) W< Wy

(vii) AIZ AL}
(vil) ©Cj< 0y i=1,2,..,NSEG
Analysis
Dynamic, Aerodynamic and Aeroelastic Analyses: The program CAMRAD is used for

both blade dynamic and aerodynamic analyses. Since the reference blade is a wind tunnel
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blade model, the wind tunnel option within CAMRAD is used for all of the problems
studied. The blade is trimmed, within CAMRAD, at each cycle of design optimization.
This ensures that the intermediate designs, which are feasible, represent trimmed
configurations. The rotor lift and drag, each normalized with respect to solidity, and the
flapping angle are trimmed using the collective pitch, the cyclic pitch and the shaft angle in
the helicopter rotor blade optimization. The optimum rotor is trimmed to the (Ct/c) value
of the reference blade, where Ct represents the rotor thrust coefficient and © is the area-
weighted solidity of the rotor. A Galerkin approach is used within CAMRAD to solve the
dynamic equations of motion and the aecrodynamics are based on lifting line theory with

unsteady and yawed flow corrections with the assumption of uniform inflow.

Structural Analysis: For this problem the structural properties throughout the span are
calculated based on the “generic” stiffnesses at the root and the chord distribution (Eqns. 7-

16).

Optimization Implementation
Optimization Algorithm: The optimization is performed by using the program
CONMIN. The program uses the method of feasible directions to solve non-linear

constrained optimization problems.

Sensitivity Analysis: The optimization algorithm is based on the method of feasible
directions and requires the first derivatives of the objective functions and the constraints.
Due to the complexity and the nonlinearity of the rotary wing analysis procedure, these
gradients are calculated using a forward finite difference approximation with a step size of

0.1 percent of each design variable.

Approximation Techniques In the optimization process, several evaluations of the

objective function and the constraints are required before convergence to an optimum



20
design is achieved. In large scale optimization problems, such as the rotary wing blade
design problem, this process becomes computationally prohibitive if exact analyses are
performed for every function evaluation. Therefore, an approximate analysis technique is
used to provide this information during intermediate steps within CONMIN. For this
problem, a simple first order linear Taylor series-based expansion is used.

The objective function, F(®), and the constraint function, gm(®), are approximated
using the first order Taylor series as follows

NDV

B(®) = F@) + E (Do) g, (17)
0,
n=l
and

NDV

A (@

Em(P) = gm(Po) + MA% m=12,..,M (18)
§ [ 30,
n=]

where ¢y, is the nth design variable vector, A¢y, is the corresponding incremental difference
in the design variable vector, NDV is the number of design variables and M denotes the
total number of constraints. The quantities /}\?((D) and ﬁm(Q) represent the approximate
values of the objective function and the constraint, respectively. The first order expansion
assumes that the functions are linear, which is valid only for very small intervals.
Therefore a “move limit” defined as the maximum fractional change of each design
variable?3, is introduced as an upper and lower bound on A¢,. The procedure is associated
with a trade-off between a more accurate but slower convergence to a minimum due to a
small move limit and a faster convergence along with the possibility of missing an optimum
point due to a larger move limit. A variable move limit procedure is therefore used.

Initially larger movements of the order of 10 - 25 percent of the design variable values are
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used to converge to point near a local minimum, then move limits as small as 0.1 percent of

the design variable are used to converge smoothly to the optimum design.

Results and Discussions

The blade model studied for this problem is a wind tunnel model of a modified Growth
Black Hack rotor blade which has a radius, R = 4.685 ft. and a rotational velocity, 639.5
RPM (revolutions per minute). Optimization is performed in the forward flight condition
with an advance ratio, i = 0.3. Titanium is used for the structural modeling. The blade
model is discretized into 6 segments (NSEG = 6), therefore, for the modified Global
Criteria and the K-S function approaches 12 design variables are used. For the Min Xf3
approach 14 design variables are used which includes the 2 pseudo design variables. Due
to the high degree of nonlinearities present in the objective functions and the constraints,
the move limits used in the approximation procedure are carefully monitored. Often very
small move limits of the order of 0.1 - 1.0 percent are used which lead to an increase in the
convergence time in the Min Zf case.

Tables 1 and 2 present summaries of the constraints used. Table 1 indicates that all
four elastic modes (f3 - fg) and the autorotational inertia (Al) are at their prescribed upper
bounds in the K-S case. The frequency fg, corresponding to the first elastic lead-lag
dominated mode, is active in the Global Criteria formulation. The weight constraint is
active in the Min X3 and the K-S cases, whereas the blade weight reduces by 0.6 percent in
the Global Criteria approach. The thrust constraint is active in all three cases. Figure 2
presents the distribution of the centrifugal stresses along the blade span (prescribed
Omax = 25 x 106 1b/in2), and indicates reductions of these stresses from the reference
blade values. The most significant reductions occur in the Global Criteria and the K-S

cascs.
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Table 2 presents a summary of the reference blade and the optimized blade design
variables (except for the nonstructural masses). All of the design variables, with the
exception of k; (the radius of gyration) and the nonstructural masses, remain unchanged in
the Global Criteria approach from the reference to the optimum. Substantial changes occur
in both the Min Zf and the K-S cases. For example, the root chord cy is reduced by 4.4
percent in the Min Zf case and by 21.8 percent in the K-S case. The planform remains
uniform after optimization (A = 1.0) using the Global Criteria approach, whereas
optimization produces an “inverse taper” (i.e. larger tip chord relative to the root chord)

with A = 1.04 in the Min Zf case and A = 1.33 in the K-S case (the prescribed upper

limit).
Table 1 Summary of Multiobjective Optimization Constraints
Reference Prescribed bounds Optimum

lower  upper  Global Mip =B K-S

3 (per rev) (flap) 3.07 3.05 3.50 3.13 3.15 3.05
f4 (per rev) (flap) 6.76 6.50 6.90 6.87 6.89 6.90
f5 (per rev) (flap) 9.28 9.25 9.50 9.38 9.49 9.50
fe (per rev) (lead-lag) 12.63 12.50 12.75 12.75 12.68 12.75
Al (Ib-ft2) 19.75 19.75 - 20.30  22.53 19.75

W (Ib) 3.41 - 3.41 3.39 3.41 3.41

3/rev fr (Ib) 2.71 - 2.81 2.65 2.285 2.35
3/rev my (Ib -ft) 0.69 - 0.69 0.69 0.59 0.43
3/revmg (Ib -ft) 0.24 - 0.24 0.24 0.21 0.22
4/rev mz (Ib -ft) 0.63 - 0.63 0.58 0.49 0.42

Thrust, T (Ib-ft) 297.10 297.10 297.10 297.10 297.10

B1 0.10 0.0005 0.1050 - 0.0074
B2 0.10 0.0005 0.1050 - 0.0377 -
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Table 2 Summary of Multiobjective Design Variables

~Reference Optimum
Global Min ZB K-S
Elxx, (bft2)  10277.0 10277.0 10605.9 8563.0
Elzz, (Ib-ft2) 354.0 354.0 326.5 290.7
GJ; (Ib-ft2) 261.0 261.0 332.6 299.6
ke (Ib-ft2) 0.27 0.16 0.17 0.11
X 1.00 1.00 1.04 1.33
cr (ft) 0.45 0.45 0.43 0.35
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Figure 2 Centrifugal stress distribution

The bending stiffness Elxx is plotted, along the blade radius, for the reference and the

optimum blades in Figure 3. The figure shows a significant increase in the Elxx value
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towards blade tip for the optimum blade in the K-S case due to the increased tip chord. It is

of interest to note that there is a substantial increase in the value of the root torsional

stiffness, GJr, both in the Min Zf case (27.4 percent) and the K-S function case (14.8

percent).
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Figure 3 Lead-lag bending stiffness distribution

Figure 4 presents the nonstructural weight distributions of the reference and the
optimum blades showing a significant change in these distributions. In the Global Criteria

approach, the nonstructural weights of the optimum blade are lower (significantly towards

blade inboard) than those of the reference throughout the entire span. In the Min X} case,
the nonstructural weights are greatly reduced towards blade inboard, but increase

significantly towards outboard (50 - 90 percent of blade radius). This is due to the
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autorotational inertia constraint which requires the total mass to be sufficient towards blade
outboard. The corresponding distribution is significantly different in the K-S case, with
greatly increased values at blade tip and significant reductions towards blade outboard. A
possible explanation of this significant decrease towards blade outboard, is the relative
increase in the blade structural weight towards outboard caused by the significant increase
in the value of c, in the K-S case. This causes a reduction in the nonstructural weights at
those locations to satisfy the constraint on the total weight. The nonstructural weight at the

tip is larger than that of the reference only in the K-S case.
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Figure 4 Nonstructural weight distribution
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Figure 5 presents comparisons of the objective functions of the reference and the
optimum blades. The most significant reductions in both the 4/rev vertical shear f, (16.8
percent) and the 3/rev inplane shear fx (16.5 percent) are achieved by using the K-S
approach. The reduction in f; is 10.9 percent in the Global Criteria case and 7.2 percent in
the Min Xf case. The situation is reversed with fx, the reduction being 4.10 percent in the

Global Criteria case and 13.8 percent in the Min Xf3.
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Figure 5 Comparison of individual objective functions

The convergence characteristics of the individual design objectives, f; and fy, are
presented in Figures 6 and 7. Although the value of f; is increased significantly (from the
reference value) initially (Fig. 6), the convergence to the local minimum is achieved faster

in the K-S function case than in the Min X case. This shows that the problem is well
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formulated and the optimizer is working well to satisfy the constraints. When the

constraints are all satisfied, the value of f; is reduced significantly from the reference blade

as well as the optimum value obtained from the Min X formulation. Similar observations

are made on the second objective function, fx (Fig. 7). It is to be noted that the individual

objective functions do not exhibit the usual convergence expected from single objective

function optimization, due to the fact that the optimization is based upon their combined

convergence requirement.
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Figure 6 4/rev vertical shear iteration history
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The convergence history of the overall objective functions, corresponding to the two

new approaches presented in this paper, the Min Zf and the K-S function approaches, are

presented in Figure 8. The figure indicates a faster convergence in the K-S approach.
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Figure 8 Objective function iteration history

Conclusions

The application of three different multiple objective optimization procedures are
investigated for optimum design of helicopter rotor blades with the couplings of
aerodynamics and dynamics. The 4/rev vertical and the 3/rev inplane root shears are
minimized with constraints on remaining critical vibratory forces and moments,
frequencies, autorotational inertia, and rotor thrust. The results obtained using the

modified Global Criteria approach, the Min Zf3 approach, and the K-S function approach
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are compared with a reference blade design. The following conclusions are made from this

problem.

1)

2)

3)

All of the three optimization formulation procedures used, provided significant
reductions in the objective function values, with the maximum reductions obtained
by using the K-S function approach. The results obtained must, however, be
treated within the context of the problem formulation and particularly the constraints
imposed.

The Min ZP and the K-S function approaches were computationally more efficient
since they did not require optimization of the individual objective functions.

The three approaches converged to three different local minima. The optimum
blade was closer to the reference blade design in the Global Criteria approach and
differed most significantly from it in the K-S function approach. The importance of
properly selecting a multiobjective formulation technique is seen by examining the

three radically different results.

4) The active constraints that influence the optimization most heavily in the Min Xf3

5)

6)

approach are the stress, the thrust and the lagging moment. These constraints
remain active or nearly active through the entire optimization process. The driver
constraint in the K-S function approach is the thrust.

Very small move limits were required in the Global Criteria approach (Ref. 24) and
also in the Min X} case due to the nonlinearities of the functions involved.

The K-S function approach was less judgmental and provided the fastest
convergence. It did not require single objective optimizations as required by the
Global Criteria approach, or specific target values of the objectives, as required by

the Min XP approach. Several values of the K-S factor p were tested and the value

of p =200 proved to be most effective in obtaining convergence.



V. Integrated Helicopter Rotor Blade Optimization

Problem Definition

In order to extend the state of the art in multiobjective optimization of helicopter rotor
blades, the original problem of Ref. [24] is reformulated with additional design criteria
using more realistic nonlinear chord and twist distributions. Also, a detailed structural
model consisting of a two-celled box beam configuration (Fig. 9) is used to model the
principal load-carrying members of the blade. The beam dimensions are used to replace the
“generic” design variables used in Ref. [24]. The four-bladed modified Growth Black
Hawk rotor blade is once again used as the reference rotor. The objective is to develop a
fully integrated design procedure with the coupling of dynamic, aerodynamic, structural

and aeroelastic design criteria. The Min Zf} and the K-S function approaches are used to

formulate the multiple design objective problem.

AZ nonstructural weights

honeycomb

- c(y) >

Figure 9 Double-celled box beam configuration
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Blade Model
The load carrying structure of the rotor is modeled as a double-celled box beam that is
symmetric about the x-axis (Fig. 9). The outer dimensions of the box beam are fixed
percentages of the blade chord. The individual thicknesses of the webs and the flanges are

linearly varied with the chord such that

ti(y) = tir%rl) i=1,2,.., NMEM (19)

where t;, is the wall thickness of the ith member of the box beam at the blade root.

The normalized chord distribution, c(y), is defined to have spanwise chord variation as
follows

o) = D= (5 A- 1+ 1(1- 5 (20)

where A is again the inverse taper ratio. The tip shape parameter, denoted p, defines the
blade shape at the tip and the tip length parameter, denoted «., defines the amount of tip
taper. Both of these parameters are defined to be strictly positive and their physical
significance is illustrated in Figs. 10 and 11 where it is seen that when p = 0.0, the blade
has a rectangular planform (Fig. 10) and when p = 1.0, A = 1.0 and o = 1.0 the blade is
triangular (Fig. 11). The mean chord is calculated using Eqn. 8.

The blade twist angle, 8(y), normalized with respect to the root twist O, is defined to

have the following spanwise variation

= 0(y)
0(y)=—2=
67) o

=1 +3%:-1) @1

In the above equation, T is the twist ratio, given by T = 0¢ /0y, where 64 is the tip twist and
0 is the twist shape parameter which is defined to be positive. The physical significance of
d is shown in Fig. 12 which indicates that when 0 < 8 < 1 the twist is concave and when

& > 1 the twist is convex. The limiting case of 8 =1 indicates linear twist.
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Figure 12 Variation of blade twist with changes in tip shape parameter, J, (T = 0.0)

In this problem, nonstructural tuning masses are placed at both the center of the

rectangular cell, wg, and at the leading edge, wt (see Fig. 9). The total nonstructural

weight is then defined as

We. + W, Wi, + Wy
wnSi - L1|:( Cj > C1+l}+( 1 > i+1 J:| (22)

where wc; and wy; are nonstructural weights per unit length. The blade nonstructural

weight, wpg;, and the total blade weight, W, are calculated using Eqns. 11 & 14,

respectively. The calculation of the autorotational inertia and centrifugal stresses follow

Eqns. 15 and 16, respectively.
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In the present problem, both vibratory and centrifugal stresses are considered and the

total blade stress, G, is calculated as

G = Ocent + Ovib (23)

where Gcent is centrifugal stress component and Oyjp, is vibratory stress component. The
vibratory stress is calculated at each of the six corners of the beam as follows.

f m,z
Ovib = ————=

(24)
IXX IZZ

where f; is the 3/rev radial shear, my is the 3/rev flapping moment and m, is the 4/rev

lagging moment. The variables x and z are the respective distances to each of the six

corners (see Fig. 9) from the box beam shear center.

Optimization

Objective Functions: For the particular four-bladed articulated rotor considered, it was
found that the 4/rev lagging moment, m,, is more critical than the 3/rev inplane shear force.
Therefore, the 4/rev vertical shear (f;) and the 4/rev lagging moment (m;) are used as

objective functions.

Design Variables: Both aerodynamic and structural design variables are used.
Following, is a description of the design variables used.
(i)  Chord distribution parameters; c, A, o and p
(i)  Twist distribution parameters; 6y, T and 8
(iii)  Box beam wall thicknesses at the root; tj; i=1,2,..., NMEM

(iv)  Nonstructural weights; Wy and wes =12, ..,NSEG

Dynamic Criteria: To avoid any degradation of the remaining vibratory loads, not

selected as objective functions, upper bound constraints are imposed on these forces and
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moments. In the previous problem24, “windows” were placed on the blade natural
frequencies to avoid resonance. However, it was determined that these constraints are
included implicitly through the constraints on the vibratory loads. Therefore, in this
problem, the frequency constraints are deleted from the constraint vector. The dynamic
constraints are summarized below.

(i)  3/rev radial shear; f; <fq;
(1)  3/rev inplane shear; fx < fy
(i)  4/rev flapping moments; my < myy

(iv)  4/rev torsional moments; m¢ < mgyy

Aerodynamic Criteria: The rotor power required is a measure of economic efficiency.
Therefore, it is important to ensure that the power required for the optimum blade is no
greater than the reference blade. This constraint is imposed by placing an upper bound on
the total power coefficient Cp. A lower bound is also imposed on the total rotor thrust to
satisfy the thrust carrying capability of the rotor. These constraints are formulated as
follows.

(v) Cp< Cpy

vi) T 2T,

Structural Criteria: The problem was formulated to include upper bound constraints on
the total stress at each blade segment. However, during initial stages of the optimization, it
was found that these constraints were never critical. Therefore, they are eliminated from
the final optimization constraint vector. The stresses are however monitored throughout the
optimization process to ensure that they are well below the allowable levels. The structural
constraints are summarized below.

(vii) W< Wy

(vii)  AI> Al
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where W is the total blade weight and Al is the autorotational inertia.

Aeroelastic Criteria: Since an articulated rotor is used as a baseline design, a simple

constraint on the offset between the shear center and the center of mass of the blade, xe,
can prevent classical bending-torsion flutter. In order to ensure that the optimized blade is

aeroelastically stable, a constraint is imposed on this shear center offset as follows.

(ix) xe20; i=1,2,..,NSEG
This ensures that the center of mass is always located forward of the shear center

throughout the blade span.

Analysis

Dynamic, Aerodynamic and Aeroelastic Analyses: The program CAMRAD is used for
both blade dynamic and aerodynamic analyses. The rotor is trimmed, as before, using a
wind tunnel trim option. However, in the previous problem, the rotor was trimmed to a
Ct/0 value equal to that of the reference rotor during optimization. This, coupled with the
constraint on the total thrust coefficient, Ct, fixed the solidity of the optimum rotor to that

of the reference (Gref) rotor. To avoid this indirect constraint on the solidity, the following

trim procedure is implemented in this problem.
(CT/O)tim = (CT/O)e X (Gper/0) (25)

where G denotes the current value of the solidity corresponding to the particular cycle. This

allows for the optimum blade to be trimmed to a different value of C1/G at each cycle.

Structural Analysis: The detailed structural analysis of the rotor blade is performed
using an inhouse code that was recently developed specifically for these applications. The
code models a simple two cell homogeneous box beam with one rectangular cell and one
trapezoidal cell (Fig. 9). The structural properties are calculated using the thin wall

theory34 and the assumption of a homogeneous isotropic material. The beam is symmetric
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about the x-axis and is assumed to be the sole load-carrying member within the rotor. It is
also assumed that the flatwise, chordwise and torsional stiffnesses of the blade are

provided only by the box beam.

Optimization Implementation

The optimization problem is formulated using the Min X and the K-S function
approaches as discussed earlier. The same optimization algorithm (CONMIN) is used and
the sensitivity analysis is performed using forward finite difference. A first order linear
Taylor series-based approximation procedure is used for the approximate analysis

(discussed in detail in Chapter III).

Results and Discussions

A wind tunnel model of the Growth Black Hack rotor blade (R = 4.685 ft., Q2 = 639.5
RPM) is used as the reference design. Optimization is performed in the forward flight
condition with an advance ratio, L = 0.3. For this problem, the rotor blade is discretized
into 10 segments (NSEG = 10) and the value of five wall thicknesses of the box beam are
used as independent design variables, i.e. NMEM = 5 (see Fig. 9). The total number of
design variables used is 32 for the K-S function approach and 34 for the Min X3
approach, which includes the two pseudo design variables B; and 2.

The optimum results are summarized in Tables 3 and 4 and Figs. 13 - 20. Table 3
presents a summary of the important results. Substantial reductions are obtained in the
objective function values. The 4/rev vertical shear (f) is reduced by 17.6 percent in the
K-S function approach and by 14.9 percent in the Min Zf approach. The 4/rev lagging
moment (m;) is reduced by 4.4 and 2.1 percent for Min Xp and K-S function approaches,
respectively (Table 3). The constraints are all satisfied in both cases. It is important to
note that the coefficient of total power (Cp) is reduced by 4.3 percent in both cases. This

represents a significant increase in the economic efficiency in the optimum rotor. The
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thrust (T) is slightly increased (less than 1 percent) in the K-S function approach and is at
the prescribed lower bound in the Min X3 approach thus guaranteeing equivalent lifting
capability as the reference rotor. The situation is reversed for the autorotational inertia (AI),
with the Min Zf case yielding a slight increase (less than 1 percent) and the constraint
being critical in the K-S function case. For the Min X case, the 3/rev radial shear (f), the
3/rev inplane shear (fx) and the 3/rev flapping moment (my) are all reduced by nearly 4
percent and the 3/rev torsional moment, mg, is critical. In the K-S function approach, fy is
held at its upper bound, and f; and my are reduced by 5.6 and 5.4 percent, respectively.

The 3/rev vibratory torsional moment (mg) is reduced by 2.9 percent in the K-S function

case and is equal to the reference blade value in the Min Zf approach. The total weight
(W) is also slightly reduced in both cases (less than 1 percent in the Min X case and 1.4
percent in the K-S function case). It is interesting to note from Table 3, that the solidity, G,
of both the optimum rotors is close to the reference rotor (very marginal decrease) although
the solidity was allowed to vary during optimization. Therefore, the value of C1/G for both
the optimum and reference rotors remains almost the same (the optimum rotors have a
slightly higher value) indicating that the rotor aerodynamic efficiency is maintained after
optimization. Figure 13 more clearly depicts the significant reductions in the normalized
objective functions, f; and m, and the total power coefficient, Cp. The large reductions in
Cp can be attributed to the inclusion of aerodynamic design variables.

Table 4 and Figs 15 and 16 present the design variables, before and after optimization.
Table 4 shows that in both cases the optimum blade has a larger root chord, cy, and is
slightly tapered ( A = 0.96 and 0.94 for the Min ZB and K-S function cases, respectively).
The chord shape parameters o and p are nearly equal to the reference values in the Min X3
approach, whereas in the K-S function approach, o experiences a 14 percent increase and
p reduces by 12 percent. In the Min ZB approach, the root twist, 0;, is reduced by 1.7

percent and the twist ratio, T, is increased by 7.8 percent (from reference blade) and the
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twist distribution is nearly linear with a shape parameter 8 = 0.957 (see Fig. 12). As
indicated in Table 4, the K-S function approach produces very similar results, however in
this case Oy is increased by 1.5 percent and T is reduced by 5.7 percent. The twist
distribution is again very nearly linear with 8 = 0.963 (Fig. 12). The box beam wall
thicknesses demonstrate significantly different trends for the two cases. In the Min Xf3
approach, the thicknesses are increased for the upper and lower walls (t4) and (t5) by 4.2
percent and 6.1 percent respectively. In the K-S function case t4 is reduced by 6.6 percent
and t5 experiences a substantial reduction of 23.4 percent. Similarly, the vertical member
nearest to the leading edge, t|, is decreased by 2.9 percent using the Min X3 approach and
is increased by 2.3 percent using the K-S function approach. The centrally located vertical
member, ty, is marginally reduced in the Min X approach (less than 1.0 percent) and is
increased slightly (2.0 percent) in the K-S function approach. The thickness, t3, of the aft
vertical member is increased in both cases, although more dramatically in K-S function
case (11.8 percent). Overall, the stiffness of the optimum blade in the K-S function case is
greater than the optimum blade in the Min X case. This indicates convergence to
significantly different local minima in the two cases. The root stiffnesses of both of the

optimum blades are greater than the reference blade as indicated in Fig. 14.



Table 3 Summary of Integrated Helicopter Rotor Blade Optimization Results

Reference Bounds Optimum
blade lower upper Min Zf K-S
Objective
Functions
4/rev f7 (Ib) 0.201 - - 0.171 0.166
4/rev mz (Ib -ft) 1.43 - - 1.37 1.40
Constraints
Al (Ib-ft2) 18.4 18.4 - 18.5 18.4
W (Ib) 3.18 - 3.18 3.17 3.13
3/rev fr (Ib) 0.515 - 0.515 0.496 0.486
3/rev fx (Ib) 0.331 - 0.331 0.325 0.331
3/rev m¢ (Ib -ft) 0.119 - 0.119 0.119 0.116
3/rev my (Ib -ft) 1.12 - 1.12 1.07 1.06
T (Ib) 282 282 - 282 283
Cp 0.00105 - 0.00105 0.00100 0.00100
Xeq 0.0137 0.0 - 0.0138 0.0182
Xey 0.0137 0.0 - 0.0149 0.0136
Xe3 0.0137 0.0 - 0.0143 0.0143
Xey4 0.0137 0.0 - 0.0151 0.0144
Xes 0.0137 0.0 - 0.0159 0.0159
B 0.100 0.005 0.105 0.058 -
B, 0.100 0.005 0.105 0.056 -
Solidity
o 0.116 - - 0.115 0.114
Trim
0.0591 - - 0.0593 0.0592

Cr/o
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Table 4 Summary of Integrated Helicopter Rotor Blade Optimization Design Variables

Design Variables Reference Optimum

s Min I K-S
tr; (in) 0.0312 0.0303 0.0319
wall thickness try (in) 0.0312 0.0311 0.0320
at the root try (in) 0.0312 0.0316 0.0349
try (in) 0.0312 0.0325 0.0292
trg (in) 0.0312 0.0331 0.0386

root chord cr (ft) 0.450 0.458 0.462

chord shape Y 1.00 0.956 0.943
parameters a 0.0100 0.0101 0.0114
p 0.0100 0.00984 0.00882

root twist or (deg) 30.0 29.5 304
twist shape T - 0.333 - 0.359 -0.314

parameters s 1.00 0.957 0.963

Figure 15 presents comparisons of the nonstructural weight distributions wy (located at
the leading edge) and w¢ (located at 35 percent chord). Using both multiobjective
formulation procedures, similar trends are obtained in the wy and w, distributions. All of
these distributions display reductions at inboard locations and increases towards blade
outboard. However, the changes are more significant in the K-S function approach,
particularly in the case of w¢. The trend can be explained as follows. In an effort to satisfy
the autorotational inertia constraint in addition to the constraint on the blade weight, the
optimizer redistributes the weight such that the overall weight decreases whereas the
outboard weights, which have larger effects on the blade autorotational inertia, increase.
The large increases in the outboard nonstructural weights in the K-S function approach
allow for similarly large decreases at blade inboard. This leads to a greater overall

reduction in weight, as indicated in Table 3.
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Figure 15 Blade nonstructural weight distributions

The chord distributions of the reference and the optimum rotors are presented in
Figure 16. This figure shows that the optimum blades, in both cases have slightly
increased root chords and slightly tapered planforms. As indicated in the figure, the chord
values at the tip are nearly identical to the reference blade despite the fact that in the K-S
function approach there are significant changes in the tip shape parameters. This indicates
that the root chord and taper ratio have more control on the blade planform than the tip

shape parameters, & and p.
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Figure 16 Chord distribution

Figure 17 presents the spanwise distribution of the center of gravity offset from the
elastic axis, Xe. The figure illustrates satisfactory values of xe throughout the blade span in
both cases. The center of gravity offsets are directly related to the distributions of the
nonstructural weights. In the Min I approach, the reductions in w, are greater than the
reductions in w; at inboard and mid span locations which shifts the center of gravity
forward thereby increasing X. At the tip where changes in the nonstructural weights have
less effect (due to the smaller chord length), the increase in w, is greater than the increase in
wt. This tends to shift the center of gravity aftward and reduces X.. In the K-S function
case, the changes in w, are much greater than the corresponding changes in wy and Xe is

therefore primarily driven by w¢. As indicated in Figs. 15 and 17, reductions in w¢ lead to
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increased values of X and vice versa except at a few inboard locations. At these locations,

reductions in w; (from reference values) are large and x remains close to the reference.
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Figure 17 Blade center of gravity offset distribution

Figure 18 displays the convergence history of the individual objective function, 4/rev
vertical shear (f;) and demonstrates substantial increases using both multiobjective
formulation approaches. The objective function oscillates before converging to the final
solution. Similar observations are made on the 4/rev lagging moment, m; (Fig. 19). The
oscillatory behavior is attributed to the highly nonlinear nature of the objective functions
and the use of the approximate analysis technique (first order linear Taylor series

expansion).
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Figure 20 displays the convergence history of the compound objective functions used
in the Min ZPB and K-S function cases. The figure indicates a smooth convergence, that is
achieved in 15 cycles, in the Min X approach. This is expected since the objective
function is strictly linear (F(®) = B; + B2). However, in the K-S function approach, the
objective function is highly oscillatory. This can be explained by noting that the value of
the K-S function (Eqn. 6) is driven primarily by the largest violated constraint, fmax, which
for this problem corresponds to gmax. Therefore in an attempt to reduce the objective
function, the optimizer tries to satisfy this constraint more vigorously than the others. This
in turn, in the next cycle, produces a new constraint as the maximum violated constraint

(gmax) Which due to the nonlinearities of the rotor blade problem is often violated to same
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degree as the previous gmax had been. Therefore the objective function is discontinuous

from one cycle to the next.
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Figure 20 Objective function convergence history
Conclusions

This problem addresses the coupling of rotor dynamic, aerodynamic, structural and
aeroelastic issues within a closed-loop optimization procedure. Blade root 4/rev vertical
shear and 4/rev lagging moments are reduced with constraints imposed on the remaining
critical vibratory forces and moments, rotor thrust, total power coefficient, autorotational
inertia, blade weight and the center of gravity - elastic axis offset. A two-celled box beam

is designed as the principal load-carrying member inside the airfoil. Design variables
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include wall thicknesses of the box beam, magnitudes of the nonstructural weights located

at the leading edge and at 35 percent chord (inside the box beam), chord and twist

distributions. A Minimum Sum Beta (Min Zf) and a Kreisselmeier - Steinhauser (K-S)

function approach are used to formulate the multiobjective design problem. An existing

blade model is used as a reference or baseline design. Optimum designs, obtained using

both cases, are compared to the reference design. The following important observations

are made.

1))

2)
3)

4)

5)

Significant reductions were obtained in both the objective functions (4/rev vertical
shear, 14.9 and 17.6 percent, and lagging moment, 4.4 and 2.1 percent,
respectively for the Min Zf and K-S function cases). The remaining constraints
were well satisfied.

Resuits obtained indicated convergence to two different local optimum points.

The nonstructural weights, located at both leading edge and at 35 percent chord
locations, demonstrated similar trends of reductions at blade inboard locations and
increases towards outboard. This was the result of the weight and the
autorotational inertia constraint which are conflicting in nature.

The optimum chord distributions were tapered and the twist distributions were
almost linear for both optimization formulation approaches.

The influence of the aerodynamic design variables (twist in particular) was
demonstrated through the significant reductions in the total power coefficient (Cp)

which was reduced significantly (4.4 percent for both the Min ZP and the K-S

function approaches).



V. Integrated High-Speed Proprotor Optimization

Problem Definition

A multidisciplinary, multiobjective optimization procedure is developed for the design
of high-speed proprotors. The objectives are to maximize propulsive efficiency in high-
speed cruise without sacrificing rotor figure of merit in hover. Constraints are imposed on
rotor blade aeroelastic stability in cruise and on total blade weight. The Min Zp and the

K-S function approaches are used to formulate the two-objective optimization problem.

Blade Model

The rotor used for the integrated high-speed proprotor optimization is a wind tunnel
model of the XV-15 proprotor4?, which is a three bladed rotor with a rigid hub. The load
carrying structural member is modeled using a two-celled box beam as used in the
helicopter rotor blade optimization problem described in Chapter IV. One difference,
however, is that the only nonstructural weights used in this problem are those that are
located at the leading edge of the airfoil [Fig. 9]. Also, the weights for the blade skin and
honeycomb components are estimated and included in the calculations for the blade total

weight and the center of gravity. The total nonstructural weight is calculated as follows.

W, +W,. Whe. + Whe. W + Wei.
WnSi =Ll|:( ti 5 tl+l)+( h("’l > th’l)_'_( Skl 5 Skl+1 ]} (26)

where wy; is the nonstructural weight per unit length at the leading edge of the airfoil and

wgk; and Wc; represent the weight per unit length of the blade skin and honeycomb,
respectively. It is important to note that although the structural model used is the same as in
the helicopter rotor blade optimization problem, the geometric parameters such as the angle
of the trapezoid and the outer dimensions of the beam are different in the two problems

since they depend upon the airfoil shape.
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Cubic variations are assumed for the chord and twist distributions to model the blade

aerodynamics,
o) = co+c1(y - 0.75) + ca(§ - 0.75)% + c3(¥ - 0.75)3 27
8(§) = 0o+ 01(¥ - 0.75) + 02(¥ - 0.75)2 + 03(y - 0.75)3 (28)

Note that, in the above equations, c, represents the chord and 6, the twist at the 75 percent

radius, respectively. A quadratic lifting line is used and is defined as follows.

x=f(y) =e1y + €2y2 (29)
where €], € are constants that determine the curvature, and are defined such that

lgil <& (30)

where ; is a prescribed bound for the curvature parameters. These bounds allow for either
forward or backward in-plane curvatures. When €1 and €3 are equal to zero the lifting line
will be a straight line. The blade sweep, based upon this lifting line distribution, assumes

the following form

AG) —1§9tan“(d—")

4 dy
= l—igtan_l(el +2¢€,7) (31)

where ¥ is the nondimensional radial location and A(y) is the sweep distribution, in

degrees, defined to be positive aft of the straight lifting line.
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Figure 21 Swept blade planform

Optimization
Objective Functions: The multiobjective optimization procedure is used to

simultaneously maximize the rotor propulsive efficiency, Nax, at high-speed cruise and the

hover figure of merit, FOM.

Design Variables: Both aerodynamic and structural design variables are used. The
aerodynamic design variables include chord, twist and sweep distributions. The structural
design variables comprise root values of the thicknesses of the several walls of the two-cell
box beam and magnitudes of the nonstructural weights distributed spanwise. These design
variables are summarized as below.

(i)  Chord distribution coefficients; c, - 3
(ii)  Twist distribution coefficients; 6, - 03
(iii)  Sweep parameters; €1 and €3
(iv)  Box beam wall thicknesses at the root; ti; i=1and 4

(v)  Nonstructural weights at the leading edge; w3 j=1,2,...,NSEG
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Dynamic Criteria: To avoid the possible occurrences of air and/or ground resonance,
associated with a soft inplane rotor, it is important to maintain the value of the lowest
natural frequency in hover (f1) above 1/rev. Therefore the following constraint is imposed.

i) fy> lrev

Aeroelastic Criteria: It is important to impose aeroelastic stability constraints to prevent
any degradation of the rotor stability in high-speed cruise. This is all the more important
when the blade mass and stiffness are altered during optimization. The stability constraints

are expressed as follows.

(i) o < -vk k=12,..,K

where K represents the total number of modes considered and i is the real part of the

stability root. The quantity vk denotes the minimum allowable blade damping and is

defined to be a small positive number.

Structural Criteria: to avoid incorporation of weight penalties, after optimization, the
total blade weight is constrained as follows.
(ivy W<Wy
As in the case of the helicopter rotor blade problem, it was found that the rotor centrifugal
stresses remain well below the critical values. Therefore, they are not included in the

constraint vector, but are monitored during the optimization procedure.

Analysis

Dynamic, Aerodynamic and Aeroelastic Analyses: The aerodynamic, dynamic and
aeroelastic analysis of the high-speed proprotor is performed using the code
CAMRAD/JA34. The code has the capability of analyzing both helicopter and tilting rotor
aircraft. Once again, wind tunnel trim options are used since the reference blade is a wind

tunnel model. In cruise, the blade is trimmed to specific rotor lift and drag coefficients
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using the rotor collective and cyclic pitch angles. A prescribed wake model, as
implemented in CAMRAD/JA, is used to model the aecrodynamics in hover and the rotor is
trimmed to a specific value of the coefficient of power. However, in axial flight, the
components of the induced velocity are negligible compared to the high forward speed of
the rotor. Therefore, uniform inflow conditions are used to model the acrodynamics in this
case. The aeroelastic stability analysis for the cruise case are analyzed with assumption of a
constant coefficient state model. Three bending degrees of freedom and one torsional

degree of freedom are used.

Structural Analysis: The two-celled box beam section is analyzed using thin wall
theory as before (Chapter IV).

Optimization Implementation

The optimization algorithm and the sensitivity analysis procedure are identical to those
described in Chapter III. However, a hybrid technique is used to improve the
approximation method since the problem is highly nonlinear and as noted in the previous
cases of helicopter optimizations, very small move limits were necessary to justify the
assumption of linearity imposed by the first order linear Taylor series expansion. To
overcome this, a two-point exponential approximation3 is used in this problem. The
technique takes its name from the fact that the exponent used in the expansion is based

upon gradient information from the previous design point and is formulated as follows.

NDV

Pn
F@) = F@,) + E {q‘)"—") ~1.0 %’l%‘—f—fﬁ (32)

n=l
where
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p, = + 1.0 (33)

The quantity @ refers to the design variable vector from the previous iteration and the
quantity @, denotes the current design vector. A similar expression is obtained for the
constraint vector. The exponent p, can be considered as a “goodness of fit” parameter,
which explicitly determines the trade-offs between traditional and reciprocal Taylor series
based expansions (also known as a hybrid approximation technique). It can be seen from
Eqn. 33 that in the limiting case of py = 1, the expansion is identical to the traditional first
order Taylor series and with pp = -1 the two-point exponential approximation assumes the
reciprocal expansion form. The exponent is therefore defined to lie within this interval,
such that if pp > 1, it is set identically equal to one, and if pp < -1, it is set equal to -1.
From Eqns. 32 and 33, it is obvious that singularities can arise while using this method,
therefore, care must be taken to avoid such points. When such singular points do arise, the

approximation method used is the linear first order Taylor series based method.

Results and Discussions

A wind tunnel model of an existing high-speed proprotor is used as a baseline design.
The optimization for this problem is performed with a cruise velocity of 400 knots and a
rotational velocity of Q = 375 RPM (tip speed of 491 ft/s) in axial flight. The operating
condition is 20,000 feet above sea level. In hover, a rotational velocity of 2 = 570 RPM
(tip speed of 746 ft/s) is used at sea-level conditions. The high forward flight speed of 400
knots represents the target cruise value for high-speed rotorcraft. The rotor RPM in cruise

is selected after performing a parametric study on the effect of forward speed and rotor
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RPM on propulsive efficiency. A value of C1/6 = 0.08 is used to trim the blade in forward
flight and a value of Cp/c = 0.0131 is used to trim the blade in hover. The blade radius is
12.5 feet, and the blade is discretized into 10 segments (NSEG = 10). In the K-S function
approach 22 design variables are used and, including the pseudo-design variables, 24
design variables are used in the Min Xf approach.

The optimum results for this problem are summarized in Tables 5 and 6 and
Figs. 22 - 32. From Table 5 and Fig. 22 it can be seen that there are substantial increases
in both the hover figure of merit (FOM) and the axial propulsive efficiency (Max) using both
multiobjective formulation techniques. A 21.7 percent increase in N4 and a 28.8 percent
increase in FOM are obtained in the Min Zf8 approach. More significant improvements are
obtained using the K-S function approach which yields a 24.6 percent increase in Max and a
41.3 percent increase in FOM. The constraints in both cases are all well satisfied, most
notably in the K-S function case, where the constraints are far from their respective limits.
In the Min X case, the first natural frequency in hover (f}) is the driver constraint, as it
remains active or nearly active throughout the optimization. It is of interest to note that the
mean chord (and correspondingly the blade solidity) is increased by 71 percent and 40
percent in the K-S function and Min Zf} approaches, respectively from the baseline value.
Two possible explanations exist for the large increases in the rotor solidity. First, in order
to satisfy the frequency constraint, the root chord is significantly increased to make the
stiffnesses larger, which in turn increases the solidity. Secondly, since FOM is being

maximized, G is being increased to increase the thrust margin of the rotor in hover.



Table 5 Summary of Integrated High-Speed Proprotor Optimization Results

Reference Bounds Optimum
blade lower upper Min 2B K-S
Objective
Functions
FOM 0.662 - - 0.853 0.936
MNax 0.647 - - 0.787 0.805
Constraints
W (Ib) 194 - 194 167 173
f1 (per rev) 0.812 1.00 - 1.01 1.34
o 0.096 - -0.001 -0.040 -1.529
o 0.096 - -0.001 -0.040 -1.529
o3 -0.697 - -0.001 -0.732 -0.169
ol -0.697 - -0.001 -0.732 -0.169
s -2.431 - -0.001 -2.443 -2.502
a6 -0.170 - -0.001 -0.265 -0.073
B 0.150 0.001 0.200 0.006 -
B, 0.150 0.001 0.200 0.010 -
Mean chord
Ce (ft) 1.48 - - 2.07 2.52
Solidity
o 0.113 - - 0.158 0.193
Trim

Crlo 0.110 - - 0.117 0.116
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Figure 22 Comparison of individual objective functions

A summary of the design variables is presented in Table 6, Fig. 23 and Figs. 25 - 29.
From Table 6 it can be seen that the thicknesses of all the structural elements in both the
Min X and K-S function approaches are reduced from the reference values. The largest
decrease is in the vertical member in the K-S function approach where there is a 77 percent

decrease from the reference value. The thickness of the horizontal member is reduced 25

percent from baseline. In the Min X approach the vertical and horizontal members are
reduced by 39 percent and 45 percent, respectively, from the reference values. This trend
can be explained by examining the chord distribution (Fig. 23). In an effort to satisfy the

rigid-inplane frequency constraint, the optimizer increases the root chord value to increase
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the torsional stiffness of the blade, which increases the total blade weight. Therefore, to
satisfy both the weight and the frequency constraints, the thicknesses of the structural
elements must reduce. Since a larger root chord leads to larger structural eccentricities from
the shear center, the stiffnesses are increased while the weight is maintained below the
reference value. The stiffness distributions for the optimized and reference blades are
shown in Figs. 24 - 26 and show significant increases throughout the blade span, from
reference to optimum. The large increase in the root chord in the K-S function approach
also explains the subsequently large decreases in the nonstructural weights at locations near
the root (Fig. 27). Due to the larger chord values, the effectiveness of the nonstructural
weights, at these locations, is magnified since they are further from the elastic axis and

therefore have more effect on the center of gravity travel.

Table 6 Summary of Integrated High-Speed Proprotor Optimization Design Variables

Design Variables Reference Optimum

Min = K-S

wall thickness tr; (in) 0.400 0.246 0.091
at the root try (in) 0.400 0.219 0.283
Co 0.121 0.165 0.185
chord shape c1 -0.152 -0.158 -0.096
parameters c2 -0.487 -0416 -0.213
c3 -0.461 -0.372 -0.451

0, (deg) 0.204 0.177 0.120
twist shape 8 (deg) -36.82 -25.40 -16.15
parameters 05 (deg) 7.43 11.72 36.30
93 (deg) -17.79 -18.85 -20.57
sweep €1 0.0349 0.0704 0.2680

parameters & 0.0707 0.2680 0.2533
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Figure 23 Chord distribution
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Figure 24 Flapwise bending stiffness distribution
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Figure 25 Lead-lag stiffness distribution
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Figure 26 Torsional bending stiffness distribution
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Figure 27 Nonstructural weight distribution
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The twist distributions for the optimum rotors and the reference rotor are presented in

Fig. 28. The figure indicates that in both the Min Zf and the K-S function approaches, the
magnitudes of the twist are reduced throughout the blade span from reference to optimum,
which is expected at the high forward speed used in cruise. The reductions are more
significant in the K-S function case. The distributions are also more nonlinear in nature

than the reference blade.
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Figure 28 Twist distribution
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Figure 30 Lifting line distribution

The iteration history of the individual objective functions are presented in Fig. 31.
Interestingly, the trends are very similar for the first few cycles in both multiobjective
function formulation techniques as the optimizer increases both the individual objective
function values in both cases while trying to satisfy the constraints. After that, in the K-S
function case, the optimizer increases the hover figure of merit (FOM) while the propulsive
efficiency in cruise (Nax) actually decreases. The hover figure of merit then tends to
oscillate and the optimizer focuses on increasing Tax. In the Min Zf approach, the hover
figure of merit starts oscillating quicker than in the K-S function approach (and at a lower

value), after which the optimizer steadily increases the propulsive efficiency.
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Figure 31 Individual objective function iteration history

The compound objective function iteration history for the Min Zf and K-S function
approaches is shown in Fig. 32. The figure indicates that the Min Zf} objective function
has smoother convergence to its optimum solution, whereas the objective function in the
K-S function case appears to be highly oscillatory in nature. This is expected since the
objective function is the Min Zf case is strictly linear (F(®) = B1 + B2) and the objective
function in the K-S function case is different at each iteration, since it is based upon the

largest value in the constraint vector for a given iteration (see Eqn. 29). Two different

values of the factor (p), 250 and 500, are used during the optimization.
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Conclusions

A formal multiobjective optimization procedure was developed to address the complex
and conflicting design requirements associated with high-speed prop-rotor design. The
objectives were to simultaneously maximize the propulsive efficiency in high-speed cruise
and the figure of merit in hover. Constraints were imposed on the aeroelastic stability in
axial flight, the first natural frequency in hover and the total blade weight. Both structural
and aerodynamic design variables were used. From this problem, the following

conclusions were made.



1)

2)

3)

4)

73
Both the high-speed propulsive efficiency and hover figure of merit are
substantially increased using the Min Xf and the K-S function approaches.
The optimum rotor solidity is significantly increased using both multiobjective
formulation techniques to satisfy the first natural frequency constraint in hover.
Both optimum blades are highly swept and have less total twist than the reference
blade.
The nonstructural tuning mass distribution differs significantly from the reference

values in the K-S function case.
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