NASA-CR-204443 | S LA

Technical Report ey

Investigation of the Use of Erasures in a Concatenated Coding Scheme

Submitted to:

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:
Dr. S. C. Kwatra, Principal Investigator
Philip J. Marriott, Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
University of Toledo
Toledo, Ohio 43606

Report No. DTVI-53
June 1997

Technical Report

Investigation of the Use of Erasures in a Concatenated Coding Scheme

Submitted to:

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:
Dr. S. C. Kwatra, Principal Investigator
Philip J. Marriott, Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
University of Toledo
Toledo, Ohio 43606

Report No. DTVI-53
June 1997

e Y RS A . . - ¢

This report contains part of the work performed under NASA grant NAG3-1718
during the period September 1994 to June 1997. The research was performed as part of

the Master’s thesis requirement of Mr. Philip J. Marriott.

S. C. Kwatra

Principal Investigator

An Abstract of

Investigation of the use of erasures in a concatenated

coding scheme
by
Philip J. Marriott
Submitted in partial fulfillment of the .requirements for the Master of Science degree in

Electrical Engineering

University of Toledo

June 1997

A new method for declaring erasures in a concatenated coding scheme is
investigated. This method is used with the rate 1/2 K = 7 convolutional code and the
(255, 223) Reed Solomon code. Errors and erasures Reed Solomon decoding is used.
The erasure method proposed use a soft output Viterbi algorithm and information
provided by decoded Reed Solomon codewords in a deinterleaving frame. The results

show that a gain of 0.3 dB is possible using a minimum amount of decoding trials.

ACKNOWLEDGMENTS

I would like to express my appreciation and indebtedness to my advisor Dr.
Subhash Kwatra, for his guidance, support, and extreme patience throughout my masters
program and research. I would also like to thank Dr. Junghwan Kim and Mr. R. E. Jones
of NASA Lewis Research Center for serving on my committee. Pat Konwinski was also
very helpful during the time I spent at this University. My thanks also go out to the
colleagues in the Communications Lab, especially Tingfang Ji, Ping An, and Superna
Metha for the many helpful suggestions while conducting my research.

Finally, I would like to thank my family and friends for their emotional support

and constant encouragement. This research could not have been completed without it.

Table of Contents

ADSITACE oo ettt b ettt e e ene 1
ACKNOWIEAZIMENLS ..ottt ettt ii
Table Of CONLENLS cc.oiuivieiiiiitieieeeeestee ettt eae e e e esaeneens 1ii
List of Figures Lttt R e bt bt et ee e s et e et e aa b e e bt e erbeetbeearesereeerreanreas vi
LISt Of TADIES ...veciiriiiiiiiee ettt ettt ettt er et X
Chapter 1 Introduction . 1
1.1 Proposed reSEarchcccoeoiiiomirisieiieeecieeee e 4
Chapter 2 Backgroundcoeevecveereevenreesessnssessaesseseens . 6
2.1 Reed SOlomon COAEScovurueiirieinireiniei et 6

2.1.1 Galois fieldsccocvviiiiiiiiiice e 7
2.1.2 Generating Reed Solomon codesocoovvveviivioviveeoreeeeenn 10
2.1.3 Decoding of Reed Solomon codesccooevvveiiiiceiiiniene, 14

2.1.3.1 Berlekamp-Massey algorithmccccoovvvvvinrcnnnne. 18

2.1.3.2 Errors and erasures RS decoderccocccvvvivinneenn., 22
2.1.3.3 Berlekamp-Massey algorithm for errors and erasures ... 22

2.2 Block iNerleavingocccoveiiviiiiiiieieeceeeee ettt s r s 26

iii

2.3 Convolutional COAEScciviimimiriiiiieneeieee ettt ve s 33
2.3.1 Convolutional encoderccocemviiniiiiiiiiiicecce e, 33

2.3.2 Decoding of convolutional codescc.ccocoviiiiiiiiccieeincnnn, 36

2.3.2.1 State diagramcccoceeceviniieiierinieeeieee e 36

2.3.2.2 Trellis diagramcoceecevinvviiieiineece e 38

2.3.2.3 The Viterbi algorithmc.ccoovviviiiiiiiiiceeeeee, 41

2.3.2.4 Hard decision decodingccceeeeevreeriiieiiieeieenn. 41

2.3.2.5 Soft decision decodingccccoviniiniiiiee 44

2.3.2.6 Truncation lengthcccoooviviiiiiic e, 46

2.3.3 Soft output Viterbi algorithmc..cccoevvvviviiriiiiicc, 49
Chapter 3 Simulation TecChNIQUESccccecviereicenernsrecsecsnersesaessessessessessassassasss 54
3.1 Random number generators et see e 55
3.1.1 Uniform random number generatorcccccoevvvuvevivecneenennnns 56

3.1.2 Gaussian random number eneratorocowwvovvevvererrerrnnn.. 57

3.2 Sampling bbbt bt st s b e e b e e et e e b te e taaebe e aeenreeas 58
.3.3 FIHETS oo eeere e e rr————aaaetreeaanes 58
3.3.1 Intersymbol interferenceccccoovevieveeviivieieiiiieeeeeees 58

3.3.2 Digital filterscocevvrvvrvirvieiereerinen. et 61

iv

3.3.3 FIR filter design of transmit filteroooweeorrervveerrrrsrrrrrooo 62

3.4 AdAING NOISE ..eviieriiiiiiiietere ettt et 67
3.4.1 Noise equivalent bandwidth ... s 68

3.4.2 Calculating the nOiSe VArianCeccceccmiiinieinresivesiieesneennnens 69

3.4.3 Ideal channel modelccccooociniiniiiniiiii e 73

3.5 Simulation results ... e 74
Chapter 4 Erasure Methods and Simulation Results . vevessssestesanssontssens 76
4.1 Concatenated system simulaﬁon TESUILS ..ot 76
4.2 Erasure Method 1cccoiveivininiiieneseeeiee et 84
4.2.1 Procedure for erasure decoding using Method 1 85

4.2.2. Simulation results for Method 1c.occooviiviiiiiiieeee. 86

4.3 Erasure Method 2cccooooiiiimiiieiiciiececeeec ettt 90
4.3.1 Procedure for updating the flags (UFP)c.ccocovvevvcceveeinenn, 95

4.3.2 Procedure for updating the reliabilit‘y t.ables 96

4.3.3 Procedure for decoding using Method 2cccvevvvviiciicvenanene. 97

4.3.4 An example of erasure decoding using Method 2 97

4.3.5 Results for erasure Method 2cccvvvivveiiiiiiiiiieeeieeeeen. 102

4.4 Erasure Method 3ccoooiiiiiuiiieeeieeee e e 105
4.4.1 An example of erasure decodiﬁg using erasure Method 3 106

Chapter 5 Conclusions- . 118

5.1 FULUTE RESEAICH . rvvvvecerereeeeeeeeseeeeveoneesseesessessssssseseseeseseeseeseernseseesse e 119
Appendix A Simulation Flow Charts ceresssssssssseresrenas . 123
Appendix B Program Listing teeressessessnsieisenssssaresssntssennasssnsasssnsesssnsasnens 127

B.1 Memory allocation fUnCtionScc..ccecceviiiriiiiiiiirerieesr e 127

B.2 Random nurﬁber ZENETALOIS ..eiiuriieiiieiiiieiiteritreerteesier e sttt e s sbeessiaeesaaae e 128

B3 FIHET oottt e 130

B.4 Modulator/Demodulatorcccceecveiiiiiinievienniiniesieeeieesree s sneeensen,. 131

B.5 Calculate POWETc.cciviriieiieiieienienteseite sttt eae e 132

B.6 Interleaver and deinterleaver NS 133

B.7 Convolutional encoder and decodersc.cccocvevriiniennieniinieie e, 134

B.8 Reed Solomon encoder and decodersccccocevimniniecieneeieciereen, 146

B.9 Main program for real system using erasure Method 1ccccee.. 193

B.10 Main program for ideal system using erasure Method 2cccccovnnn. 198

References ; 206

vi

List of Figures

1.1 A concatenated coding system using inner convolutional code with Viterbi

decoding and an outer Reed Solomon codecc.cocveviiiciiniiininiiciinieenn 2
2.1 Encoding circuit for t-error correcting RS codecccoceiviiiiiiniiiiniiniiininiene, 12
2.2 Encoding circuit for t=2 error correcting (7, 3) RS code ..o 13
2.3 LFSR interpretation of (2.7) ..ottt 17
2.4 Typical deinterleaving framec.ccoceevereninienierrnr e 28
2.5 Typical burst error in a deinterleaving framecccoevveeeevieiierivienee e, 29
2.6 An example of a double sided erasure declarationccccoceeevvivvenviericeinneennnn. 30
2.7 An example of a single sided erasure declarationccccceceeviveieinvieiieniceerenennen, 31
2.8 A (2, 1, 2) convolutional encoding circuit 34
2.9 State transition diagram for the encoder in Figure 2.8cccooooiiiiiiiiiiinn, 37
2.10 Trellis diagram (based on the encoder in Figure 2.8)ccccevveviieiiiciiviiie, 38
2.11 Convolutional cOding SYSIEIMcccovuerueierieririisineeree et ee et st 39
2.12 Binary symmetric channel modelcoccceeeiieiienineiiceceeee e 42
2.13 Hard decision Viterbi decoding of r= (110100 10 100001 11) ..covevvevvenvenennnen. 43
2.14 Hard decision Viterbi decoding of r= (11 1100100000 11 11) .ovcvvvvennr.... 44
2.15 DMC channel model for Q=41eVelS oo 45
2.16 Soft decision Viterbi decoding of
r= (1,1, 0,1, 0,0, 1,1,1,0, 0,0, 0,0,0,0,) .eceoiriiriiniieeereeer, 47
2.17 Shift register contents for the soft decision decoding in Figure 2.16 48

vii

2.18 Example of the SOVA ..o 51
3.1 Simulation system modelcocioiiiiiiiniini e 55
3.2 Frequency responses for different rolloff factors ..., 60

3.3 Square root raised cosine filter with x/sin(x) equalization and rolloff factor

o =0.45 (Rg= 1) (normalized freqUENCY) ..coooivveiiniiiiiii e, 64
3.4 Transmit filter transfer function (normalized frequency)c..cccovvecvnieniieiiinnn, 65
3.5 Filter iMPUISE TESPONSEoiviriirisirisisieeseesenseeetetreseesetesesesesetessssesssessssssesesesesesesessens 65
3.6 Non-causal impulse rESPONSEc.cuciuiiimiiiiiiiieiiie e . 66
3.7 Causal IMPUISE TESPONSEeiriieiiiriiiiieitteereeneerteenite sttt e str e ssbeeraeeetreesraeerbeerrea 66
3.8 Hamming window functionccccecceeimiinieninieniereneseeiee et 67

3.9 FIR frequency response vs. analog filter response for a square root

Raised Cosine filter with x/sin(x) equalizationcccecvevveiiivicnrieeiieriiineen, 68
3.10 (2) ReCEIVE FIItBI ..ocvviiiieiiieiieciecectere ettt 69
3.10 (b) Noise equivalent bandwidthccccooeiiiiiiiiiiii e 69
3.11 Power spectral density of AWGN ..ottt 70
3.12 (a) Filter transfer fUNCLIONccveeviiviieeiieiie ettt st 71
3.12 (b) Bandlimmited AWGN before filteringcccoovvvrvemveminenciiiecieceee e 71
3.13 Results of the BPSK simulation for different values of filter rolloff e 15
4.1 Simulation results for the concatenated system with no interleaver 78
4.2 Simulation results for the concatenated system with interleaver depthI=6 80
4.3 Simulation results for the concatenated system with interleaver depthI=8 81
4.4 Simulation results for system 5 using various interleaving depths 82

viii

4.5 Simulation results for Method 1 with no interleaveroveeeeeeeeececee, 87

4.6 Simulation results for Method 1 with interleaver depthI=6ccoecvvrerennnne. 88
4.7 Simulation results for Method 1 with interleaver depth I = 8 e 89
4.8 Uﬁdating of the symbol reliabilities in the SOVA ..o 91
4.9 Interleaving frame with reliability informationccccoooviiiiiciiiicice e, 94
4.10 An example of a deinterleaving frame with reliability valuesccccocenne... 99
4.11 The reliability table for the first iterationcccccooeevviviviieeiiiieececeeeee e, 100
4.12 The reliability table for the second iterationccocveveveeieveeceeiviciccesen. 101
4.13 The reliability table for the third iterationccocoeieiviviiecieeeeeeee s 102
4.14 The reliability table after RSW(1) sﬁccessfully decodescoocovviiiiiiiiiiiee, 109
4.15 The reliability table after RSW(2) successfully decodescocoeccvvvrervennnnn.. 110
4.16 The reliability table after RSW(3) successfully decodescoooveeeeveveenennn... 111
4.17 The reliability table after RSW(4) successfully decodescccocecvvvvvevnnennnn... 112
4.18 The reliability table after RSW(7) successfully decodescocovvevvvreeevenn... 113
4.19 The reliability table after RSW(8) successfully decodesccoeevvvereeervnennn... 114
4.20 The reliability table after RSW(5) successfully decodesooovevervvevenennnn.. 115

4.21 Simulation results of the concatenated system using various erasure methods ... 117

A.1 Flow chart for erasure Method 1 e 123
- A.2 Flow chart for erasure Method 2ccocoooevivieiiieiriccccccee e 124
A.3 Flow chart for the real SIMUIAtionocceovieiievnninieeise e, e 125
A.4 Flow chart for the ideal SIMUIAtON ...coccovveiiiieieeceeeeecc e 126

List of Tables

2.1 List of primitive polynomials form=31t09ccoiiiiiii 8
2.2 Three representations for the elements of GF(8) generated by 1 + x + x* 9
2.3 Shift register contents for the encoding of u = [0t 00° 07] covoivieeieieeivceiece, 14

2.4 Results of the computations for each iteration of the
Berlekamp-Massey algorithm ... 21

2.5 Results of the computations for each iteration of the errors and erasures

Berlekamp-Massey algorithm ... 25
2.6 Encoding of the information sequence u=(101101) ..o, 36
2.7 Development of the state diagramccoceeinierieniiniiccceres e 37
2.8 Conditional probabilities for BSCcccocoiiiiiiiiiccec e 42
2.9 Metric table for BSC i, 43
2.10 Conditional probabilities for DMC ... 46
2.11 Metric table for DMOC ...ttt e 46
4.1 Various systems simulatedcccoivioiniiiiini s vy
4.2 Simulation results using Method 2 with interleaving depth I=8 103
4.3 Simulation results usihg Method 3 with interleaving depth I=8c.. 116

Chapter 1

Introduction

Concatenated coding systems are often used for forward error correction to obtain
large coding gains when transmitting information over unreliable channels. One of the
most popular concatenated coding systems is illustrated in Figure 1.1. This concatenated
system uses a convolutional code with Viterbi decoding for the inner code, and a Reed
Solomon code as the outer code. This is effective for a number of reasons.
Convolutional codes provide sufficient random error correction, but tend to generate burst
errors for low signal to noise ratio at the decoder output. Reed Solomon (RS) codes have
significant burst error correcting capacity, but do not handle random errors very well. In
this concatenated system, the inner convolutional code is used to correct the random
errors, and although the Viterbi decoder will produce short burst errors at its output, the
outer Reed Solomon code will be able to correct these bursts. The effects of these burst
errors can further be reduced by using an interleaver between the inner and outer
decoders. In addition, the Viterbi decoder can further improve the performance by
accepting soft decisions from the receiver.

The use of erasures is one way to increase the pérformance of Reed Solomon
codes. Erasure decoding can be thought of as the simplest form of soft decision. An

erasure indicates the reception of a signal whose corresponding symbol value is in doubt.

In some cases it is better to erase the symbol than to force a decision that may be
incorrect. Erasing a position gives information to the decoder as to the location of a

possible error. A block code with minimum distance d,;, can correct v errors and p

n

erasures as long as the inequality 2-v + p < d,;, is satisfied. Therefore, it is possible

for a t-error correcting RS code to correct more than t errors if errors are transformed into

crasures.

Information Reed Solomon N .| Convolutional
P Interleaver ' g
Source Encoder Encoder

Channel

L Reed Soiomon . Viterbi
Destination ' < Deinterleaver |«
Decoder Decoder

Figure 1.1 A concatenated coding system using inner convolutional code with Viterbi
decoding and an outer Reed Solomon code

In the concatenated system in Figure 1.1, the Viterbi decoder produces hard
outputs for input to the Reed Solomon decoder. The full capability of the concatenated
system is not fully realized because no reliability information is exchanged between the
inner and outer decoders. If the Viterbi decoder could be modified to generate reliability
information about its output, this information could be used to declare erasureé at the

input to the Reed Solomon decoder, thus improving the performance. One method that

can be used to accomplish this is the Soft Output Viterbi Algorithm (SOVA). The
method proposed by Hagenauer and Hoeher [4] uses information provided by the path
metrics in the Viterbi decoder to determine a reliability value associated with each
outgoing bit.

One application where this gain could be potentially useful is in NASA deep
space missions. The transmission of data over large distances, combined with limited
transmission power, results in low signal to noise ratio at the receiving end. This,

coupled with the fact that the data being transmitted is in the form of compressed images

where the required probability of error is 107>, leads to the need for a powerful coding
system [16]. The NASA standard for deep space communications is the (255, 223) 16
error correcting RS code as the outer code, and the rate 1/2 convolutional code with
constraint length K = 7. Interleaver depths of I = 2 to 8 have been used. The use of a
SOVA and an errors and erasures RS decoder can provide additional gains with no need
to modify the transmitting end. This enables erasure decoding to be used in existing
missions. This is particularly helpful for missions where unforeseen problems occur.
The Galelaio mission where the main antenna failed is one such instance. Every tenth of
a decibel gain that can be obtained in this instance is extremely helpful [15].

One method used to improve the NASA standard for deep space communications
through the use of erasures has been investigated by Paaske [7]. This method uses the
deinterleaver to provide information concerning the probable locations of errors in non-
decoded Reed Solomon codewords in an interleaving frame. In an deinterleaving frame

there are I Reed Solomon codewords, where I is the interleaving depth. If after

attempting to decode the frame, some of the RS codewords fail to decode, redecoding is
used. Erasures are declared using information prdvided by the error positions in the
successfully decoded RS codewords. Because the Viterbi decoder produces burst of
errors at it’s output, and the data is fed into the deinterleaver by row and output by
column to the Reed Solomon decoder, the bursts occur at the same symbols in
neighboring Reed Solomon words in the deinterleaver frame. If some but not all of the
~Reed Solomon words in the deinterleaving frame have been successfully decoded, the
positions of the errors in the decoded words are known. The knowledge of the error
positions can be used to declare erasures in the same positions in neighboring, yet to be

decoded Reed Solomon codewords.

11 Probosed research

The purpose of this report is to investigate the performance of the use of a Soft
Output Viterbi Algorithm used in a concatenated coding scheme with an errors and
erasures RS decoder. The reliability information provided by the SOVA will be
converted into Reed Solomon symbol erasures for the RS decoder. A table of least
reliable symbols will be compiled for each RS codeword, and systematically erased. In
addition, another method loosely based upon Paaske’s method will be investigated. This
method combines the SOVA output with a deinterleaver. The table of least reliable
symbols can be modified using additional information provided by the deinterleaver. If
-after the first decoding of a deinterleaving frame, there are less than I successful decoding

of RS codewords, redecoding is attempted. It turns out that not only does the SOVA

output produce burst errors, but the reliabilities for these error symbols are identical. This
information is used to modify the table of smallest reliabilities. The performance of these
codes will be obtained through the use of a computer simulation written in C computer
language. The convolutional code developed for use in this simulation is capable of
handling any code rate and constraint length. The Reed Solomon code, likewise, can
handle any symbol size and number of symbol errors corrected. The Reed Solomon
- decoder is an errors and erasures decoder. Although the codes developed are capable of
handling any size code, the NASA standard coding system will be investigated with
various interleaving depths. The simulation will be performed over a AWGN channel
using BPSK modulation and Raised Cosine FIR filters. The coding systems will also be
simulated over an ideal BPSK channel.

The structure of this report is as follows. Chapter 2 contains all of the background
information. Chapter 3 wili contain the details of the computer simulation. Chapter 4
will contain the strategy for declaring RS symbol erasures from the reliability information
generated by the SOVA, and the strategy for using the SOVA with the deinterleaver for
redecoding. Chapter 4 will also present the results of the simulation for both methods
investigated. Chapter 5 will contain conclusions, and ideas for possible future research.
The simulation flow charts are found in Appendix A and the C language source code used

to perform the simulations can be found in Appendix B.

Chapter 2

Background

Before discussing the two methods for erasure declaration presented in this report,
it is helpful to become familiar with some of the basic concepts of error control codes.
This chapter will contain lall of the background necessary to understand the various
elements used in the concatenated system. Encoding and decoding of Reed Solomon and
convolutional codes will be reviewed. In addition, the method used for errors and
erasures decoding in the Reed Solomon decoder will be discussed, as well as the method
used for generating the soft outputs in the Viterbi decoder. Block interleaving will be

briefly discussed, in addition to the redecoding method proposed by Paaske.

2.1 Reed Solomon codes

Bose-Chadhuri-Hocquenghem (BCH) codes are a powerful class of cyclic codes
which outperform all other block codes with the same block length and code length [9].
These codes are a generalization of Hamming codes to allow multiple error correction.
Reed Solomon (RS) codes are special subclass of BCH codes which utilize non-binary
symbols. The non-binary symbols used in RS codes are formed using finite field
arithmetic. Finite fields are sometimes called Galois fields and are denoted by GF(p),

where p is the number of elements in the field, and is a prime number.

2.1.1 Galois fields

A field is a set of elements in which we can do addition, subtraction,
multiplication, and division without leaving the set. Subtraction and division are defined
by the additive inverse and the multiplicative inverse. Additién and multiplication must
also satisfy the commutative, associative, and distributive laws. A field with a finite
number of elements is called a finite field. For example, GF(7) = {0, 1,2, 3,4, 5, 6} is a
field under modulo 7 addition and multiplication. Reed Solomon codes are codes with

symbols from the field GF2™), where GF2™) = {0,1,0,a?,...,0% "2}. The field

GF(2™) is an extension of the ground field GF(2), and the elements in this field can be

represented by an ordered sequence of m components, (a,, a,,a,,...,a,,), Or an m-

tuple. Each of the components are from the ground field GF(2). The 2™ elements of the
field GF(2™) are defined by an irreducible polynomial, or a primitive polynomial P(x).
Each element will satisfy the condition P(o) = 0. The primitive polynomials that define

the elements for m = 3 to 9 are as in Table 2.1. For example, the elements in GF(2") are

3

defined using the primitive polynomial 1 + x + x°. The elements either are the zero

element ‘0’, the identity element ‘1’, or some power of the base element . The element
o’ is derived from the primitive polynomial and the relationship P(at) = 0.
Po= o' +a+1 =0
3

or o =o+ 1.

All other elements are simply generated by multiplication by . The table repeats after

a™? (ie. 0o = 1, a’ a® = o etc.). The elements for GF(2") are as follows.

lraa = o
oo = o?
1 +a

3 _ 2
aa = o-(o+h)= o+
o-ot = oc-(oc+oc2)= l+o+0?
oo’= o (+o+a’) = 1+02

Table 2.1: List of primitive polynomials for m =3 to 9

P(X)

1 +x + x°

1 +x + x*

1 +x% +x°

1 +x + x°

1+ x* + x’

1+ x% +x7 +x* +x°

m
3
4
5
6
7
8
9

1+x* +x°

It is useful to represent these elements in a number of ways. The polynomial

representation is given by a, + a,a + a,0’ + ... + a_, 0™

m-

1

and the m-tuple

representation is given by (a,, a,, a,, ..., a_,). The elements and the various

representations for GF(8) are given in Table 2.2.

Table 2.2 Three representations for the elements of GF(8)
generated by 1 + x + x’

Power Polynomial 3-tuple
Representation | Representation | Representation
0 0 000)
1 1 (100)
o o 010)
o’ o’ 001)
o’ 1+« (110
o «+ol | O
o’ 1+ o + o (11D
o’ 1+ a? (101)

Multiplication and addition follow the rules of finite field algebra. Multiplication

of two elements is accomplished by adding the powers of the two elements modulo 2™ -1.

@rsmed? — 52 For addition of two elements in a

For example, in GF(8), a*-a’ = o
field, it is useful to use the m-tuple representation of an element. Consider a =

(a,, a;, a,, ..., a,,)andb=(b,, b,, b,, ..., b_,). The addition of a and b is simply

the addition of each component in the m-tuple representation,

namely(a, + b,,a, + b,,a, + b,, ..., a,, + b_,). Because each component of the

m-1

m-tuple is from GF(2), binary addition is used.

2.1.2 Generating Reed Solomon codes

A t-error correcting Reed Solomon code with symbols from GF(2™) has the

following parameters:

Block Length n=2"_1
Number of information symbols k =n-2t
Minimum Distance dpin=2t+1

The generator polynomial of a t-error correcting Reed Solomon code is:

g(x) =(X+0) - (x+0?)(x + o)

where g(x) has all of its roots and coefficients from GF(2™). The code generated from
g(x) is a (n, n - 2t) cyclic code. The code words are generated by:

c=u-G
Where G is the generator matrix in systematic form. Let us design a t = 2 error correcting

Reed Solomon code using symbols from GF(23) = GF(8). We know that:

Block length n=23-1 n=7
Information symbols k =n -2t k=3
The generator polynomial for this (7, 3) Reed Solomon code is given by:

gX)=(x+0)-(x+a®)- x+a’) (x+a*)
or

gx)=o' +o-x + x*+a’ x> +x*

= [aal o]

10

The generator matrix in non-systematic form is:

oc3ocloc10

GX)=10 o a 1 o 1

0 0 o o 1 o 1
To get the matrix into systematic form, we must convert the last three columns into an
identity matrix. This is accomplished by row operations. The result after doing so is:

(x3oc10(3100
GX) = |a® o® 1 a2 0 1 0

o> ot 1 a* 0 0 1
The information bits to be transmitted are u = [010 011 110]. From Table 2.2 we
know that these bits correspond to the symbols u = [a o’ o*] in GF(8). Using

¢=1-G, we obtain the code vector

or

c=[010 110 O11 O11 010 011 110]

The encoding of Reed Solomon codes can be also accomplished using a shift

register circuit. For a t-error correcting RS code, the generator polynomial is given by:

g(x) =(x+a)- (x+0?)(x +a?)

11

2t-1 2t

2
=gy *+ gX + g,X" + ...+ gy X + X

where g(x) has all of its roots and has coefficients from GF(2™). The generator
polynomial g(x) has been chosen so that it and codewords generated by it have zeros for

2 -t consecutive powers of o
gla') =0 forj=1,2,..2-t
The code generated from g(x) is a (n, n - 2t) cyclic code. The encoding of a non-binary
cyclic code is similar to the encoding of a binary cyclic code. Let
uX)=uy + WX + u,x> + o+ ou, x>
be the message to be encoded. In systematic form, the 2t parity check symbols are the

2t-1

coefficients of the remainder b(x)=b, + b,x + b,x> + --- + b, x which is
obtained by dividing the message polynomial u(x) by the generator polynomial g(x). In
hardware, this is accomplished by using the shift register circuit of Figure 2.1. The

encoder circuit works as follows. The k information symbols are first loaded into the

circuit. At the same time, the k information symbols are transferred directly to the output.

4 GATE

+
Message x2' - u(x) ﬁ“\}_}

7/
‘ .~ Code Word
Parity Check Digits

A

Figure 2.1 Encoding circuit for t error correcting RS code

12

When all of the information symbols have been read in, the 2t parity symbols are present
in the 2t registers denoted b,, b,, ..., b, |, gnd are then transferred to the output, thus
completing the systematic code word. This process can best be illustrated with an
example. Consider thé t = 2 error correcting (7, 3) Reed Solomon code. The generator
polynomial is

gx)=(x+0)- x+o?)-(x+ao*)-(x+a)

=o' +o-x + x> +a’ x* +x*
and it’s corresponding encoding circuit is given in Figure 2.2. The encoding of the

information symbols u = [o’ o’] is given in Table 2.3. The information symbols

@ (@ @)
by %[, ()l ()b (o

Message x2'-u(x) —

/’l,
Parity Check Digits

Figure 2.2 Encoding circuit for t = 2 error correcting (7, 3) RS code

are fed directly to the output to the encoding circuit. At t = 1, the first information
symbol ‘is fed into the encoding circuit, and the register contents are modified.
Information symbols are fed into the encoder until t = 3. At this time, the 4 parity

symbols are present in the registers b,, b,, b,, b,, and are sent to the output of the

encoding circuit. The encoded vector is equal to ¢ = [b, b, b, b, u, u, u,] or

Table 2.3 Shift register contents for the encoding of u = [a o’ o’]

t | Input Symbols Gate b, | b, | b, | b,
0 - - 0 0 0 0
1 u, = o’ o’ a° | ot | a | af
2 u, =a’ a’+at=0 |a*| 1 |a®]|af
3 u, = 0o o+a’=c’ | @ [’ | ot |a

2.1.3 Decoding of Reed Solomon Codes

Let r(x) = 1, + r,x + ... + r,,x"" be a received polynomial which is equal to
a codeword c¢(x) =c, +¢,X + ... +c_x""' corrupted by an error pattern
0 1 a-1 p y p
ex) =e, +ex + ... +e_x""

r(x) = c(x) + e(x)
The syndrome of the received polynomial is obtained by evaluating r(x) at the 2 -t zeros.
S; = r@’) = c(@) + e(@)) j=1,2,.., 2t
Any codeword c(x) will have zeros for these 2 -t powers of o, and thus, have a syndrome

'equal to zero. Therefore, the syndrome of the received word is equivalent to the syndrome

of the error pattern.

14

n-1
S, =)= e(@’) = D e (@) j=1,2,.,2-t (2.1)
k=0

i
If there are v errors in positions i,, i,, ..., i, , (2.1) can be expressed as

Sj = z eil(aj)iy
=1

=e 0" + e 0+ ... +ea” j=12..,2¢t
1 2 v

(2.2)

To reduce the notational complexity of (2.2), the error locations will be defined as

X, = o', and the error magnitudes as Y, = e, Wherel=1,2, .., v.(2.2) then becomes
Sl = YIXI + Y2X2 + ... + YVXV
S; = V,XP + X0 + ...+ Y, X3 (2.3)
S2t = YIXIZt + Yz)(zzt + ... + Yv)(\,2t

The error locator polynomial A(x) is defined as

A(x)

(1 - xX)(1 - xX,) - (1 - xX,)

L+ Ax +Ax> + .+ A x"7 + A X

v

(2.4)

where the roots of A(x) are the error locations X, X,, ..., X,. The coefficients of the
error location polynomial A, 1 =0, I, ..., v are related to the error locations by the

following equations

A, =1

A =X +X,+.. +X,, +X,

A, = XX, + XX, + .0+ XX, + XX, 55
A, = XXX, + XXX, + 0+ X LXK X, + X LX X (23)
AV = XIXZX? X\‘-IXV

15

(2.3) and (2.5) are related by Newton’s identities [11]
S] + Al - O

S3 + A]Sz + A281 .+ 3A3 = 0

(2.6)
SV + AISV_I + Azs\,_z + ... + AV_ISI + VAV = O

Syrl +ASy + A8, + ..+ A5, =0

Szt + AI.SZI—I + A282t—2 + ...+ AVS2[-—V = 0
(2.6) can be solved directly to obtain the coefficients of the error locator polynomial, but

such methods require a number of computations proportional to t* [2]. This makes a
direct solution of (2.6) not practical, especially for RS codes that need to correct a large
amount of errors. Berlekamp’s algorithip is much more computationally efficient method
of correcting RS codes. The complexity increases linearly with t, so codes correcting

large numbers of errors can be implemented [11]. Berlekamp’s algorithm first finds a
minimum degree polynomial A"’ (x) whose coefficients satisfy Newton’s first identity. -
This polynomial is tested whether the second Newton identity is also satisfied. If it does,

then A? (x) = A®(x). If not, then a correction term, or discrepancy is added to A (x)
~ to form A®(x) such that A®(x) satisfies the first two Newton’s identities. | Next
A®(x) is tested whether it satisfies the third Newton’s identity, etc. This process
continues until A®”(x) is obtained. Then A(x) = A®"(x). If there are less than t errors,

A(x) produces the error pattern.

Massey’s shift register based interpretation of Berlekamp’s algorithm is known as
the Berlekamp-Massey algorithm {2, 11]. The Newton’s Identities in (2.6) can be

expressed in an alternate form
S;= - X AS;; j=v+lL v+, ., 2y, 2.7

Massey [17] recognized that (2.7) can be represented physically using a linear feedback

shift register (LFSR) as shown in Figure 2.3.

N

AN
w»n
|

Sj-v Sj—v+1 Sj—v+2 1

A0 A A2 A X) -AH(XB

NN N S,
(D) (D (D> A D———

Figure 2.3 LFSR interpretation of (2.7)

The output of the LFSR will be the 2t syndromes S|, S,, ..., S,,, and the register taps
are the coefficients of the error correction polynomial A(x). The LFSR can be designed
to generate the known sequence of syndromes such that A(x) is of the smallest degree.
The procedure for finding the taps of the LFSR is similar to Berlekamp’s algorithm. First
a connection polynomial T(x) = 1 + Ajx + ... + AL_le_l + ALxL is forfned

whose coefficients are the taps of a length L LFSR. The Berlekamp-Massey algorithm

first finds T(x) of length L = 1 such that the first output of the LFSR is the first syndrome

17

S;. The second output of the LFSR is compared to the second syndrome, and if the two
are not equal then the connection polynomial is modified using a discrepancy term. If the
two are equal the taps remain the same. The third output of the LFSR is compared to the
third syndrome, and if they are not equal, the taps of the connection polynomial are
modified. This process continues for 2t iterations. At the end of the 2t iterations, the taps

of the LFSR specify the coefficients of the error correction polynomial A(x). The details

of the algorithm are presented below.

2.1.3.1 Berlekamp-Massey Algorithm [2]
1. Compute the syndrome of the received codeword S; = r(o)) .
2. Initialize the following variables
Error locator polynomial A(x) = 1 N
Index r=0
Temporary storage B(x) =1
Shift register length L =0
3. Setr=r+ 1.

4. Compute the r th discrepancy, which is the error in the next syndrome
L
A, = DAS,_,
j=0

5. If A, = 0,set B(x)= x-B(x) and go to step 11.
6. Compute the new connection polynomial

T(x) = A(x) - A, -x-B(x)

18

7.1f 2-L > r - 1,set B(x) = x-B(x) and go to step 10.
8. Store old shift register after normalizing
B(x) = A, "'A(x)
9. Update shift register length L =r- L.
10. Update the shift register
A(x) =T(x)

11. Ifr< 2-t, go to step 3.
12. If deg A(x) # L, there are more than t errors. Stop.
13. Determine the roots of A(x). The inverses of these roots are the error locations
X, X, n X,
14. Determine the corresponding error values Y,, Y,, ..., Y, .

The simplest method to find the roots of A(x) in step 13 is by using a process
known as a Chien Search. This is a trial and error approach which computes A(o.’) for j

=0,1,..2™-2. If A(a’) = 0, then o’ is a root of A(x). The error magnitudes can be

calculated by using the Forney algorithm[3, 11]. First, compute a syndrome polynomial

S(x) from the 2 -t syndromes.
2-t)
S(x) =1+ » Sx 2.7)
j=1

The error evaluator polynomial €(x) can be computed by the product of the syndrome
polynomial S(x) and the error locator polynomial A(x).

Q(x) = SX)- A(x) mod x** (2.8)

19

Next, compute the derivative of the error locator polynomial A’(x).

Ax) = Y X JTA - xX) (2.9)
i=1 j=i
The error magnitudes Y,, Y,, ..., Y, can then be calculated using the Forney Algorithm.
X, "X,
Y, = —‘—(—]‘—) I=1,2,..,v (2.10)
A(X,)

For example, let r(x) = o + alx + otx? + atx? + a’x* + a’x® + o’x® be a

code word corrupted by an error pattern e(x). The first step in decoding is to compute the

syndrome of the received polynomial.

wn
H

r@) = o + oo + oo’ + ot + afat + oo’ + ofol
S, =1

S, =r@?) = a+ a’a’ + a‘a’ + o*a’ + ool + o’ + oo’
2

S, = a

S, =r(@’) = a + a’a’® + a*a® + o'a’ + afa? + o’a’® + ale'®

S, =1

S, =re®) = a + oot + o' + afa'? + afa' + o’o® + ofa

S, = af

The syndrome polynomial is

2-t
Sx) =1+ 2Sx'=1+x+a?+x" +a’x’. (2.11)
ji=1

Next, the Berlekamp-Massey algorithm is used to find the érror locator polynomial A(x).

The results of the computations for each iteration of the algorithm are given in Table 2.4.

20

Table 2.4 Results of the computations for each iteration of the
Berlekamp-Massey algorithm

T A, T B(x) A L
0 - - 1 1 0
11 L+x 1 1+x . 1
2 o 1 + o’x X 1 + a’x 1

3 0 l+a’x+a’x? a?+oa'x +o’x+a’x? 2

4 0 1+ o’x + o’x o> +0o*'x 1+o’x+a’x? 2

The error locator polynomial is found to be A(x) = 1 + o’x + o’x%. The roots of
A(x) are o° and o, and the inverses of these roots give the error locations X, = a and
X, = o*. The error evaluator polynomial is
Q(x) = SMWAX) = (1 + x + o’x* + x> + o’xH)(1 + o’x + a’x?)
=1+ a’x + o’x’
and the derivative of the error location polynomial is A’(x) = . The error values can

be calculated using (2.10)

a(l + a’a’® + o’a'?) ol + o’ +ab) S
Yl = = = QO

o’ o’
_a'd+ofa’ +0’a’) at+oal+at)
Y2 -) - 3 =0
o o

21

The error polynomial is e(x) = o.°x + o’x*, and the corrected polynomial is
rx) +e(x) = (o + o’x + a*x? + a*x? + afx* + a’x’ + a’x®) + (a’x + a’xh)

=o + o’x + a*x? + o*x? + oax* + o’ + o’x°

2.1.3.2 Errors and erasures RS decoder
In order to correct both errors and erasures, certain modifications to the
Berlekamp-Massey algorithm will need to be made. Suppose that a received polynomial

r(x) contains v errors in locations i, i,, ..., i and p erasures in locations
ji» Ja» «++» J,- An errors and erasures Reed Solomon code can correct v errors and p
erasures as long as 2-p + v < d,_ . where d__ is the minimum distance of the code.
The error locations are given by X, = a'* k =1, 2, ..., v and the erasure locations are
givenby U, = a”" 1=1,2,..,p. The erased positions are known at the beginning of

the decoding operation, and are filled with zeros before the decoding begins.

2.1.3.3 Berlekamp-Massey algorithm for errors and erasures [2]

1. Substitute zeros into the erased positions in the received word.
2. Compute the syndrome of the received codeword S i = r(dj) :
3. Initialize the following variables

Errors and erasures locator polynomial A(x) = 1

Index r=0

Temporary Storage B(x) =1

22

Shift register length L =0

4, Setr=r+ 1.

W

@)

~J

. Ifr>p gotostep 10
CAX) = AX)-(1 - U, -x)

. B(x) = A(x)

8. L=L+1

* 9. Gotostep 4

10. Compute the r th discrepancy, which is the error in the next syndrome

I1.
12.
13.

14.

15.

16.

17.

18.

A = iAJ’Sr—j
j=0

If A, = 0,set B(x) = x-B(x) and go to step 11.
Compute the new connection polynomial T(x) = A(X) - A, -x-B(x)
If 2.L >r + p - 1,set B(x) = x-B(x) and go to step 16.
Store old shift register after normalizing

B(x) = A,7'A(X)
Update shift register length L =1 - L'+ p.
Update the shift register

A(X) = T(x)

Ifr<2-t,gotostep 4.

Ifdeg AX)#L,2p+v>d,, . Stop.

23

19. Determine the roots of A(x). The inverses of these roots give the error locations
X, X, ..., X, and the erasure locations U,, U,, ..., U_.
20. Compute the error evaluator polynomial

Q(x) = S(x)- A(x) mod x***!

21. Use the Forney Algorithm to compute the error values

X X, !
Y, = —k—(f—l) i=1,2,..,v (2.13)
A X
and the erasure values
U, QU, !
Y, = —‘—-(—‘1—) i=L2,..p (2.14)
' AU,

For example, let r(x) = o + o’x + £x2 + o*x3 + afx? + x5 + a’x® be a code

word corrupted by an unknown error pattern e(x) and a erasure pattern
f(x) = fx* + fx* with known positions and unknown values denoted by ‘. The first

step in decoding is to insert zeros into the erased positions and compute the syndrome of

the received polynomial.

o) = o + a’e + oo’ + alat + ool

S, =

S, =«

S, =r@®) = a+ o’a’ + ‘o’ + ool + ola'?
- 6

2 - a

S, =r@’) =a +a’a’ + a‘c’+ afa? + a’a’®

S, =r(*) = a + ot + a*a” + o't + oo

24

The syndrome polynomial is

21
Sx) =1+ XSx =1+ ax + a’x* + a'x’ .
Iy

Next, the modified Berlekamp-Massey algorithm is used to find the error locator
| polynomial A(x). The contents of the variables for each iteration of the algorithm are

given in Table 2.5.

Table 2.5 Results of the computations for each iteration of the errors
and erasures Berlekamp-Massey algorithm

r A, T(x) B(x) A(X) L

0 - - 1 1 0
- - 1 + o’x I+ o’x 1
2 - - 1 + o’x + x2 1 +o'x + x? 2
3 o 1 + ox* + o’x® ot + x + a‘x? 1+ a’x? +a’x® 3
4 o 1 + afx + o*x® a*x + x* +a*x’ 1 +oafx +a'x? 3

The error locator polynomial is found to be A(x) = 1 + a’x + a*x®. The roots of

A(x) are o, o’, and o’. The inverses of these roots give the error location X, = a*

and the erasure locations U, = o’ and U, = o’ , which were known at the beginning
of the decoding operation. The error connection polynomial is

Q(x) = SMAX) = (I + ax + ox? + a’x*)1 + a’x + a*x?)

25

=1+ a’x + o’x? + o’x’
and the derivative of the error location polynomial is A’(x) = o® + o*x?. The error

value can be calculated using (2.13)

o'(1 +o’o’ + o0’ + a’x’) o'l +a+ o+ a) .

Y =
: of + ato’ af + o

and the erasure values by using (2.14)

v - (I +o’a’ + o’a® + a’x”) a1+ o'+’ +at) o
: a® + oo’ of + 1

y - L +o’a’ +a’ef +a’x) U +1+at v _ o
= = =

a® + ool a® + o

The error and erasure polynomials are e(x) = o’x* and f(x) = a*x> + o’x® and the
corrected polynomial is

r(x) +e(x) +f(x) = (ot + o’x + a*x’ + a®x* + a’x®)+(a’x) +(a*x? + o’x’)

=+ o’x + a*x? + oa*x® + obx* + x5 + a’x

6
2.2 Block Interleaving

Interleaving is commonly used to break up correlated errors into random errors by
rearranging the symbols. This is done because most block and convolutional codes are
optimal for random errors. Interleaving causes correlated errors to be spread out over
time, and then the coding system can handle the errors as if they were random. There are
two major types of interleaving, block and convolutional. Block interleavers are used in

conjunction with the concatenated systems in Figure 1.1, and will be the only method

26

discussed here. Because the interleaver is to be used in conjunction with the symbol
based Reed Solomon encoder and decoder, the interleaving will be done on a symbol
level, rather than on a bit level. Block interleavers can be implemented using an MxN
matrix. The symbols are fed into the matrix by column, and fed out by rows. At the
deinterleaving stage, the symbols are fed into the matrix by row, and output by column.
Consider this simple example. The sequence {0, 1, 2, 3, ..., 11} will be fed into a 3x4
block interleaver by column

0 36 9

1 4 7 10

2 5 8 11
The interleaver then outputs the data by row. The output sequence is {0, 3, 6,9, 1, 4, 7,

10, 2,5, 8, 11}. The deinterleaving is accomplished by entering the sequence by row, and

outputting by column. The deinterleaved sequence is {0, 1, 2, 3, ..., 11}.

2.2.1 Redecoding of deinterleaving frame using erasure

Paaske [7] has developed a strategy to declare Reed Solomon symbol erasures
using information provided by the deinterleaver. In order to understand the erasure
declaring procedure discussed later in the report, and for comparison purposes, an
overview of Paaske’s metﬁod is presented below.

Because the Viterbi decoder produces burst errors at it’s output, and the
deinterleaver spreads these bursts over several codewords, it is highly likely that the burst
errors will occur at identical positions in neighboring Reed Solomon codewords (RSW)

in each deinterleaving frame. The output of the Viterbi decoder is fed into the

27

deinterleaver by row, and then the columns are fed to the RS decoder as in Figure 2.4.
Each column of the deinterleaver makes up a Reed Solomon codeword. Assume after
errors only decoding of each of the RSW, that some of the codewords in the deinterleaver
frame were decoded correctly (< 16 errors in the codeword) and some were undecodable
(> 16 errors in the codeword). Because a RSW with v errors and p erasures can be
corrected if 2-v + p < d,,, declaring erasures and redecoding the deinterleaving
frame may provide improvement. Th}is improvement is highly dependent upon if the
declared erasure hits an error. Erasures that hit errors will be called good erasures (GE)

and ones that do not hit an error will be called bad erasures (BE).

From Viterbi decoder

\ 4

A4

To R|R|[R |R R
RS decoder | g S |S S) S 255 RS
WiIWwI[W w W | symbols

—
—s
~—
—
o
—
—_——~
wo
~—
~_~
~
~—
—~—
P
~—

K— Interleaving depth [——

Figure 2.4 Typical deinterleaving frame

28

Paaske’s method for declaring erasures in the de-interleaving frame makes use of
the bursty nature of the Viterbi decoder output. Because the data is fed into the
deinterleaver by row, the bursts will span over many RSW as in Figure 2.5. Let RSW(i)
denote the i th codeword in an interleaving frame. It should be noted that a burst of
length 1 at symbol k starting at RSW(i;) will affect symbol k in RSW(i, +j) for i; +j<I
and symbol k + 1 in RSW(il +j-I) for i; +j>1I. If codeword RSW(i) has been correctly
decoded, the positions where errors have occurred will be known. It is highly probable
that the same symbols in the neighboring codewords will also be errors. Paaske
developed 4 erasure declaring procedures (EP1-EP4), three of which declare erasures in
the non-decoded RSW using information provided by the decoded RSW in the

deinterleaving frame. A brief description of the procedures is presented below.

Symbol
Number

k+1

RSW(i) RSW(i,)

= Symbol error

Figure 2.5 Typical burst error in a deinterleaving frame

EP1: Assume that two RSW have been decoded, and both contain errors in

position k. Let RSW(i;) and RSW(i,) be two correctly decoded RSW with an error in

29

position k in both as shown in Figure 2.6. Also assume that RSW(i, +1) to RSW(i,-1)
have not been decoded. It is highly probable that position k is an error in these
undecoded words, and is erased. These erasures are classified as double sided erasures
(DSE) and the probability that a DSE is a GE is 0.96 [7]. An example of a DSE is shown
in Figure 2.6.

EP2: Assume that a codeword RSW(i) has been successfully decoded and that
RSW(i - 1) and RSW(i + 1) have not been decoded. For all error positions in RSW(i)
erase the same positions in RSW(i - 1) and RSW(i + 1). These are called single sided
erasures (SSE) and are GE with a probability of 0.60 [7]. An example of SSE declaration
is given in Figure 2.7 where RSW(i) is the decoded word with errors in positions k;, k,,

k3, and k4. Note that the SSE declared in RSW(i + 1) at positionk, and RSW(i - 1) at

position k5 do not hit symbol errors, and are therefore BE.

Symbol
Number

il il +1 i2-1 i2
RSW

= Symbol Error . DSE = Double sided E = Error corrected ir
erasure decoded word

Figure 2.6 An example of a double sided erasure declaration

30

EP3: Assume that RSW(i) has been decoded and contains e errors, and RSW(i - 1)
and RSW(i + 1) have not been decoded. Also assume that s; DSE can be obtained if EP1
is used. The s; DSE are combined with s, SSE chosen from the e - s; possible SSE.

The optimal choice for the number of SSE s, is treated in [7].

Symbol
Number

k+1p b}

ks, SSE

i-1 i 1+ 1

RSW

= Symbol Error SSE = Single sided E = Error corrected in
erasure decoded word

Figure 2.7 An example of single sided erasure declaration

31

EP4: This procedure assumes that one of the non-decoded RSW has 17 errors.
Two symbols are selected and make erasures. If there are 17 errors, the probability that
an erasure 1S a good erasure is 1/15.

The erasure declaring procedure proposed by Paaske [7] involves the following
steps:
1) Try decoding each RSW in the deinterleaving frame using errors only decoding.

2) Set iy equal to the number of successfully decoded RSW.
3) If iy =1, go tostep 9.

4) If iy =0, go to step 8.

5) Attempt to decode each non-decoded RSW using EP1.

6) Attempt to decode each non-decoded RSW using EP2.

7) Attempt to decode each non-decoded RSW using EP3.

8) Attempt to decode each non-decoded RSW using EP4.

9) Stop.

For steps 5) through 8), decoding is attempted on the first non-decoded RSW
using the EP specified in the step. If this decoding attempt is successful, then proceed to
step 2). If not successful, then try the next non-decoded RSW using the EP specified in
the step. This continues until either one of the non-decoded RSW is successfully
decoded, or all non-decoded RSW have been tried and none are successful. If all non-
decoded RSW have been attempted using the given EP, and there are no succéssfully

decoded RSW, then proceed to the next step. Erasure procedures EP3 and EP4 involve

32

selecting erasures in a systematic way. This step is repeated on each codeword until

either a successful decoding of the codeword, or a maximum number of trials T,,, has

been attempted. In the simulations conducted by Paaske, T,,, = 500 trials.

2.3 Convolutional codes

Convolutional codes are fundamentally different than block codes. Block codes
* divide the information sequence into segments of length k, and map these k bits onto a
codeword of length n. Convolutional codes on the other hand convert the entire data
stream into one code word, regardless of the length of the information sequence. A (n, k,
m) convolutional encoder has k inputs and n outputs, where k < n and both k and n are
small integers. The memory order m should be made large in order to achieve a high

degree of error correcting capability [6].

2.3.1 Convolutional encoder

Convolutional codes are implemented using a linear feed forward shift register
circuit. A typical encoding circuit is giveh in Figure 2.8, and will be used as a model for
discussing convolutional encoders and the Viterbi decoder. The information sequence
u = (uy, u,, u,, ...) is fed into encoder circuit k bits at a time. The memory elements
afe tapped and the bits contained in memory are added together using modulo-2 adders to

| ©

obtain a pair of output data streams v© = (v, v,® v,?) and

(

D _ gy (1 ((
v o= (v, P, v,

, V, D ...). These output sequences are combined to create the final

codeword v = (v, v, v,Ov,

33

The constraint length K is defined as the maximum number of output bits that can
be affected by any input bit. Since each information bit stays in the encoder for m + 1
time units, and during each time interval the encoder produces n output bits, the

constraint length is definedas K=n-(m+1).

Figure 2.8 A (2, 1, 2) convolutional encoding circuit

The structure of convolutional encoders can be expressed in a number of ways.
One of these ways is using the impulse response of the encoder. The impulse response of

the encoding circuit is obtained by letting the input u = (1000 ...) and observing the

output sequences as u enters the encoding circuit. An encoder with memory m generates

an impulse response of length m + 1. The impulse response, also known as the generator

) 0)

sequence, is written in the form g = (g, g,, g,, ..., g,) and

g” = (g,", &, 8", ... g,"). For the encoder in Figure 2.8 the generator

sequences are g = (101) and g™ = (1 11). The two encoder output sequences can

34

be thought of as a linear convolution of the information sequence with the impulse
response. The encoding equations can be written as

(0)

v® = ux* g@ (2.15a)
vl = ux g® (2.15b)
where * denotes discrete convolution using modulo-2 operations. The output at time t =1

can be written as
. m .
v, = zutéi - gy
i=0 -

=u gV +u_-gV+u_,-gY+ ... +u__-g @ (2.16)
For the encoder of Figure 2.5, (2.15) reduces to

v, =u, @ u,, (2.17a)

T

v =u ®u._, ®u_, (2.17b)

T

where @ denotes modulo-2 addition. The encoding of the information sequence
u=(101101) is illustrated in Table 2.6. At time = 0, the contents of memory are

initially set to zero. At time = 1, the first information bit is fed into the encoder, and the
output of the encoder is obtained by using (2.17). This process continues until all of the
information bits have entered into the encoder. At this point, information bits are still
contained in memory. Two more clock cycles are needed to move the last bits through
the encoder. (k- m) zeros are fed into the input to move the last information bits through

the encoding circuit. The encoded sequence is v=(11 01 00 10 100001 11).

35

2.3.2 Decoding of Convolutional codes
The Viterbi algorithm is a widely used method for the decoding of convolutional
codes. The algorithm was developed by A. J. Viterbi in 1967 [6], and is a maximum

likelihood decoder.

Table 2.6 Encoding of the information sequence u = (101101)

Time | Input | m | m, | v | y®
0 - 0 0 - -
. 1 1 0 1 1
2 0 0 1 0 1
3 1 1 0 0 0
4 1 1 1 1 0
5 0 0 1 1 0
6 1 1 0 0 0
7 - 0 1 0 1
8 - 0 0 1 1

2.3.2.1 State Diagram

For every encoding circuit, there will be a corresponding state diagram. An

encoder with memory m will have 2™ possible states, illustrating the contents of the shift
ry p g

registers in the encoding circuit. There are k binary inputs to the encoder for each clock

cycle, which results in 2% branches entefing and exiting each state. The process details

used to create the state diagram are given in Table 2.7. For the encoding circuit of Figure

36

2.8, there will be 4 states, and 2 branches entering and exiting each state.

diagram for the circuit in Figure 2.8 is given in Figure 2.9.

Table 2.7 Development of the state diagram

Initial State | m, m, |[Input u | Outputv | New State
S, 0 0 0 00 S,
S, 0 0 1 11 S,
S 1 0 0 01 S,
S, 1 0 1 10 S,
S, 0 1 0 11 S,
S, 0 1 1 00 S,
S, 1 1 0 10 S,
S, 1 1 1 01 S,

Figure 2.9 State transition diagram for the encoder in Figure 2.8

37

The state

2.3.2.2 Trellis Diagram

A trellis diagram is a state diagram extended to include the passage of time. The
encoding of a sequence of data corresponds to a unique path through the trellis diagram.
The trellis diagram for the state diagram in Figure 2.8 is shown in Figure 2.10. If an
information sequence of length k- L bits is fed through an encoding circuit, where L is
the total number of k bit codewords, the resulting codeword will be of length

N = n-(L +m)bits. Each of the 2 code words of length N is represented by a unique

path through the trellis.

1/01 KSLI/(H /s\ 1701 fs\ 1701 KS\ 1701
3 3 3 ;

0/01

Figure 2.10 Trellis diagram (based on the encoder in Figure 2.8)

The convolutional coding problem is shown in Figure 2.11. Assume an information

sequence u=(ug, Uy, ..., uy) of length k-L bits is encoded into a code word

38

Y=¢> ¥Yi» -+ » Yiams) Of length N = n-(L +m) bits. A noise-corrupted version of

the transmitted sequence r is received where r and y have the following form

— (- (O (n-1)
r=(r,", 1, .., I ,

(n-1)
O B s s T)

(0 n)

y = (}’0 > yO 22 yO(n_l)’ yl ’ YI“)’ ey YL+m-l(n-l)) .
4 y r y’
Convolutional ’O Convolutional
Encoder i Decoder —>
Noise

Figure 2.11 Convolutional coding system

The Viterbi algorithm generates the estimate y’ of the transmitted sequence r which
maximizes the conditional probability p(r!y). Assuming the channel is memoryless,

each received bit will be independent of the noise process affecting all of the other bits.

Therefore p(r! y) can be expressed as

L+m-1

priy) = [T0p@®1y, @) per 1y, - p(r, "1y, "))

i=0

L+m-1 n-!
= H (H p(ri(“ | yim) (2.18)
i=0 =0
The log-likelihood function is obtained by taking the logarithm of each side of (2.18).
L+m-1 n-l)]
logp(rly) = Y, Y logp@¥1y,?) (2.19)
: i=0 j=0

39

This is done because it is, in general, easier to implement summations rather than
multiplication in hardware. The log likelihood function, log p(rly), is called the Path
Metric associated with the path y and is denoted M(r | y). The terms log p(r,” ly,?) are
called Bit Metrics
M5 1y,9) = log p(r,? 1y, %) (2.20)
In the hardware implementation of the Viterbi decoder, it is more convenient to use
positive integers for the metric values rather than the actual bit metrics. This can be
accomplished by using
M50 1y;9) = a-[log p(r;? 1y; D) + b] @21
where a and b are chosen to obtain small, positive integer values for the metrics which

can be implemented easier in hardware.. The path metric for a codeword y is then

calculated as

L+m-1 n-1{

Mriy) = Y D Mr2ly,?). (2.22)

i=0 j=0

The k th branch metric for a codeword y is defined as the sum of the bit metrics

n-1
M@, ly,) = Y Mr P 1y, D). (2.23)

=0
The k th partial metric for a path is obtained by summing all of the branch metrics for the

first k branches the path follows.

k-1
M(rly) = 3 M ly;) (2.24)
i=0 '
k-1 n-i))
=Y Y M1 1y,?). (2.25)
i=0 j=0

40

The Viterbi Algorithm finds the path through the trellis with the largest path metric,

which is the maximum likelihood estimate y’ of the received word r. At each time

interval the algorithm, computes the partial metrics entering each state. The largest
metric is chosen as the surviving path at each state, and all other paths entering that state
are discarded. This process is continued until the end of the trellis is reached. The final

surviving path is the maximum likelihood estimate y of the codeword.

2.3.2.3 The Viterbi Algorithm [6]

1. At time t = m, compute the partial metric for the single path entering each
state. Store the value of this metric at eaéh state.

2. Increase t by 1. Compute the partial metric for the path entering each state.
This will be equal to the branch metric entering the state plus the surviving metric from
the previous state. Out of the 2* paths entering each state, the path with the largest metric
is chosen and the remaining paths are discarded. The metric of the surviving path is
stored at each state.

3. If t <L + m, repeat step 2. If not, stop. At time t = L + m, all paths have
returned to the all zero state. There will be only one path remaining, and this path is the

maximum likelihood estimate y’.

2.3.2.4 Hard Decision Decoding
In hard decision decoding, the receiver determines whether a zero or ohe was

transmitted. These zeros and ones are the input to the Viterbi decoder. If the channel is

4]

memoryless and if the probability of a bit error is independent of the transmitted bit, then
the channel is said to be a binary symmetric channel (BSC). The BSC is shown in Figure
2.12 where p is the probability that a bit is in error. The conditional probabilities for the

BSC are given in Table 2.8.

1-p
0 2 1
Transmitted Received
Symbol p p Symbol
1 3 0
I-p

Figure 2.12 Binary symmetric channel model

Table 2.8 Conditional probabilities for BSC

p(ri(j) | yi(j)) yi(j) =0 yi(j) =1
¥ =0 1-p P

1

Y =1 p 1-‘p.

For the BSC, choosing a=[log, p - log,(1-p)]"" and b=-log,(1-p) in
(2.21) yields the bit metrics in Table 2.9 [6]. The maximizing of the bit metrics
M(r, 1y,9) coincides with the minimization of the Hamming distance. For the BSC

case, the path metric is simply the Hamming distance d(r, y), and the Viterbi algorithm

will choose the surviving paths as the ones that have the minimum partial path metrics.

42

Table 2.9 Metric table for BSC

M(rA(j) [y'(.i)) y_(j) =0 y.(j) =1
r=0 0 1
r=1 11 0

Consider the information sequence u = (10110 1) that was encoded using the (2, 1,

2) convolutional encoder in Figure 2.8. The encoded sequence is y = (11 01 00 10 10 00
- 01 11). If this sequence is transmitted on a BSC, and no errors occur in the transmission,
r =y. The decoding of this received sequence is illustrated in Figure 2.13. Note that the
final path has a path metric value of 0. The decoded sequence is (1 0 1 1 0 1) which is
obtained by tracing back the maximum likelihood path noting the input bit associated

with each branch.

3 0 2 3
1701 fs'\ 1/01y, 2 fs\ 1701 fS\
N 3 3

~ ’@

P

0/10

r= 11" 01 00 10 10 00 01 11

Figure 2.13 Hard decision Viterbi decoding
of r=(11010010100001 11)

43

If the same sequence y = (11 01 00 10 10 00 01 11) is transmitted and the received
sequence is r= (11 1100100000 T1 11) where the erroneous bits are denoted with

the bar over the bit, the decoding is illustrated in Figure 2.14. The decoded sequence is (1
0 110 1), which is identical to the information sequence. The decoder corrected the

three errors in the received sequence.

Figure 2.14 Hard decision Viterbi decoding
of r= (111100100000 11 11)

2.3.2.5 Soft Decision Decoding

Hard decision decoding simply assigns a zero or a one at the receiver, utilizing
only two decision regions. Soft decision decoding makes use of g-bit quantization which
Vresults in multiple decision regions ranging from a “strong-one” to a “strong-zero”.
Using soft decisions results in approximately 2 dB gain over hard decision Viterbi

decoding [9]. A discrete memoryless channel (DMC) is shown in Figure 2.15. The

44

DMC is completely described by a set of transition probabilities between a zero or a one

being transmitted and one of Q = 29 levels at the receiving end. It has been found that

p(0,10)

Transmitted Received

Symbol Symbol

>

Figure 2.15 DMC channel model for Q = 4 levels

using 8-level quantization results in only a 0.25 dB loss when compared with using
infinitely fine quantization [11]. Consider the transition probabilities given in Table 2.10.
The modified metric table is given in Table 2.11, and is obtained by using (2.21) with b
=l and a=17.3. In choosing a and b, a is typically chosen to obtain a metric value equal
to zero for the smallest metric value. The metric values obtained by using (2.20) are, in
. general, real valued. Simply rounding these values off to the nearest integer may lead to
round off errors. The scaling factor b in (2.21) is chosen to make the metrics as close as
possible to being integer values, while keeping the values as low as possible. This will

reduce some of the error that may occur when rounding off the metric values.

45

If the same codeword y = (11 01 00 10 10 00 Ol 11) is transmitted over the
channel, and the received sequence is r= (1,1, 0,1, 0,0, 1,1, 1,0, 0,0, 0,0,0,0,),
then the decoding process using soft decision Viterbi decoding is illustrated in Figure
2.16. T he decoded sequence isu = (1 01 10 1), which is identical to the information

sequence that was transmitted.

Table 2.10 Conditional probabilities for DMC

p(ri(j) [yi(j)) yi(j) =0 Yi(j) =1

ri‘“ = 0] 4 1
Y =0, 3 2
V=1, 2 3
.9 = 1l 1 4

Table 2.11 Metric Table for DMC

M(tP1y,9) |y®=0]y® =1
r =0, 10 0
r=0, 8 5

r=1, 5 8

r=1, 0 10

2.3.2.6 Truncation length
In practice, information sequences are very long. It is not practical to wait until
the entire sequence is received to begin decoding. This would result in long delays and

require large amounts of storage. It has been found that a decision can be made on the k

46

information bits that were received (t - 8) time units before, where 8 is called the decision

depth, or truncation length. If the truncation length is made 4 to 5 times the constraint

length, there will be very little loss in performance [10].

]

0/00 16

Figure 2.16 Soft decision Viterbi decoding of
r= (1,1, 0,1, 0,0, 1,1, 1,0, 0,0, 0,0,0,0,)

The implementation of the truncated Viterbi decoder makes use of 2™ shift
registers, each of length k-8. At any time t, there are 2™ surviving paths, with one
surviving path terminating in each of the 2™ states. For each surviving path, the only
information that needs to be stored are the information bits associated with that path. No
information about the route the path took is necessary, just the information (output) bits
associated with that path. At time t, n bits are input into the decoder. The branch metric
is calculated, and the surviving path is chosen as the path with the largest metric, as in the

standard Viterbi decoder. The path information for each state at time t is equal to the

47

previous state at time (t - 1) shifted k bits to the left. The k information bits associated
with the surviving branch at time t are then shifted into the register. Consider the Viterbi
soft decoding example given in Figure 2.16. For a decoding depth of & = 5, the shift
registers, surviving branches, and metric values are shown in Figure 2.17. At time t = 0,
the shift registers are empty. At each time interval, the survivor branch is chosen, and the
contents of the shift register at the pervious state are copied to the new state, shifted to the
left, and the information bit associated with the branch is inserted into the register. This
process continues until the register is full (i. e. t 2 §). At this point, the path with the
highest metric is chosen as the surviving path. Only one bit is output at a time, so this

corresponds to the leftmost position in the shift register, which was the information bit

18 33 69 74 92
S, “ ! m m I YRR DIt
0
38 30 69 87 99
S, : [- 10] [--011] l 10110 01110
0
i
|
18 15 56 59 84 105
S <01 Lotol 01101
n] ERIH SR W BTN 1001] “ |
1 | |
0 5 . 15 43 53 177 95
S, [----- 0 {0} y {---nnl m v ‘1|o|on]—"-{o|uoo]
t=0 t=1 t=2 t=13 t=4 t=S5 t=6

Figure 2.17 Shift register contents for the soft decision decoding
in Figure 2.16

48

inserted t - & time units before. ‘In Figure 2.17 at t = 5 = §, the path with the highest

metric has a path metric of 87, and terminates in state S,. The leftmost bit in the shift
register is equal to 1, and is the output for this time interval. Now, since t > §, the

decoder can take in n bits, compute the path metric and determine the surviving path for
each state. The decoder then chooses the path with the maximum metric, and outputs the
leftmost bit. At time t = 6 in Figure 2.17, the path with the highest metric has a path

metric equal to 105, and terminates in state S,. The leftmost bit in that shift register is 0,

and is the output bit. This process continues for the remainder of the decoding operation.

2.3.3 Soft Output Viterbi Algorithm

The Viterbi algorithm can be modified to give either a reliability value or a
probability that a given bit is correct. The method used to implement the Soft Output
Viterbi Algorithm (SOVA) is based upon Hagenauer‘and Hoeher’s method [4]. For
simplicity, this discussion will only consider convolutional codes where k = 1. The

reliability of a binary random variable can be defined in terms of a log-likelihood value

Prob(u=1)
= log—r2u=1) 26
Lu) = log o a=0) (2.26)

where the sign of L(u) corresponds to the hard decision (i.e. if L(u) >0,u =1 and if L(u)
< 0, u = 0) and the magnitude IL(u)l is the reliability of this decision. The larger the

magnitude, the greater the reliability of the decision.

49

At each of the 2™ states at time t, the Viterbi decoder selects the survivor path as
the one with the largest path metric. The accumulated path metric and the path
probability are related by

t nel
M(rly) = log, p(rly) = Z log p(r,) 1y, 0y, (2.27)
i=l j '

=

—
)]
<O

If the bit metrics are given by M(ri@ lyi(i)) = a-[log, p(ri(j) Iyi(j)) + b], then the
path probability is

MM(rl y) - ntb

pirly)=e 2 (2.28)
Each state Sy (k =0, 1, ..., 2™-1) will have two entering paths, a survivor path with
metric M, and a competing path with metric M, (M, > M,). The probability of

choosing the wrong path is given by

ps. = Prob(path 2) (2.29)
k Prob(path 2) + Prob(path 1)
MM2 - nkb
= ¢’ (2.30)
lrl—2M2 - nkb EMl - nkb '
e + e 2
= ! 5 where A = 1{1_2(M1 - M,) (2.31)
1 +e a

With this probability the Viterbi decoder has made an error in the path it has chosen as

the survivor path. Consider the two paths merging in state S, at time t in Figure 2.18.
The all zero path is the survivor path with metric M, and the other is the competing path
with metric M,. The two paths are the same up to time t - § , (8, = 6 in this case). At

this point, the paths diverge and there are three differing information bits between the two

50

/ N
AN
l// \\\
® ©) ® /,@\ ® / ® &))
0/’ \\1 /, \\
Vel \ // \\
e \\ / X
® ©® © & ©® ® O 0 \6
l//, \\A/Ml
’ \
7 \
t-7 t—8m t-5 t—4 t-3 t-2 t-1 T t
M2

Figure 2.18 Example of the SOVA

paths at times t-2, t-3, and t-5. Using the probability of selecting the wrong path given in

(2.31), the probability associated with each bit p j can be modified for all bits u; for

timesj=t, t-1,..,t- 8, [4].

pj = pj if u;, = uy, (2.32a)

J
pj = pjl-ps) + (1-ppps, if vy #uy : (2.32b)

where uy, and uy, are the output bits at time j on paths 1 and 2 respectively. “The first

case can be neglected because choosing path 2 instead of path 1 would result in no error
. for the j th bit. Because the case in (3.32a) can be neglected, there is only a need to check

Uy # Uy, for times t-m, t-m-1, ..., -8, +1. This is because in order to terminate in any

given state at time t, the m input bits prior to time t must be equal in order to create the

51

given state, Sy . The probability in (2.32b) can be transformed into a bit reliability. From

(2.26), the log-likelihood for the j th bit can be expressed as

l - p, .
L, = log B (2.33)
P;

This can be combined with (2.31) and (2.32) to obtain an expression for updating the

likelihood function.

o I-p;(I-py) + (1-p;)ps

L;= ,
pj(l-py) + (1-pj)ps
et 1
l-p(——-—) - (-p.
~ log pJ(IA+ eA) (pJ)1 1+ e’
(——) + (1-p.
P o) Y P %
1 - p.
A A I + pJeA
p; +e” - pje P;
= log 3 = log i
pje” + 1 - p; oA 4 - Pj
P;
1 + eLJ+A A)
e” +e

A good approximation of this expression is to simply take the minimum of L j and A as
the new reliability [4].
L; = min(L;, A) (2.35)

For register exchange mode with truncation depth §, each state S, will have a shift

register of §-q bits where -1 bits represent the magnitude of the likelihood value L i

52

and one bit for the sign of L;, which corresponds to the output bit u;. The procedure

can be summarized as follows. For every state at time t, compute the path metrics for the

two paths entering state Sy . Choose the path with the higher metric as the survivor path

and update the path information in the register for S, . The reliability at time t, L, is

L . L In2 -)

initially set to co. Compute the metric difference A = — (M, - M,). Forj=t-m,t-
a

m- 1, ..., t- §,, compare the information of the two paths. If up, # Uy, then update the

new reliability using (2.35). After the surviving paths in each state have been determined,

and the reliability information has been updated for each state, the state with the highest
path metric is determined and the reliability and output bit at t - § are the output for the

decoder for time t.

53

Chapter 3

Simulation Techniques

Computer simulation plays an important role in the design and testing of
communications systems [5]. The results obtained from simulation can give a good
indication of how an aciual system will perform under a variety of conditibns.
Performance evaluation of complex communication systems using analytical techniques
can be difficult, if not impossible. Testing of the concatenated coding schemes presented
in this report using computer simulation will give an estimate of how these codes perform
under realistic conditions. In addition, the codes will be simulated using an “ideal”
AWGN channel to test how the coding systems Will perform under ideal conditions.
Monte Carlo techniques were used to obtain the results for both sirhulations. Monte
Carlo techniques are relatively simple to implement. Data is generated at the input to the
simulation. This data is then run through the system being simulated. The data at the
output of the simulation is compared to the data at the input to determine the number of
errors. The probability of an error is simply the number of errors divided by the total
number of simulation points. To be statistically confident in the results, the simulation
should produce at least 50 errors [S]. For small values of bit error rate, a large ﬁumber of
bits will be needed, which results in longer processing times. This large amount of

processing time is one of the drawbacks of using Monte Carlo techniques. The first step

54

in simulating a communications system is to describe the system in block diagram form,
where each block represents a signal processing operation. The model used for this

simulation is given in Figure 3.1.

Ralr;(iitom Coding Sample BPSK Transmit
Systems P Modulator Filter
Generator
AWGN +>
Error Decoding BPSK Receive
Counter Systems Demodulator Filter

Figure 3.1: Simulation system model

Simulation can either be done at baseband or bandpass. Baseband simulations
have no carrier frequency. This reduces the complexity of the system models such as the
filters. Bandpass simulations require a higher sampling frequency than baseband, and
therefore, more computational time. Bandpass simulations are necéssary when studying
upconversions, downconvérsions, and the effects of adjacent channel interferenée. Most
simulations that involve a single information signal can be done at baseband [13]. The

simulation used in this report was performed at baseband.

3.1 Random Number Generators

55

The various signals that exist in communication systems are random in nature.
The information signals found in communication systems typically use random voltage or
current waveforms to transmit information from one place to another. Noise is an
unwanted random signal, and causes errors in the information being sent. In order to
represent the random signals found in communication systems, a random number
generator (RNG) will be needed. Random number generators do not produce truly
random numbers, but a sequence of ~“pseudo” random numbers which repeat after a
period of time. These sequences should be stationary and uncorrelated. The mean,
variance, and other parameters computed for different segments of the RNG sequence
should be equal for a RNG to be considered stationary [5]. Having a RNG with a period
less than the simulation length will cause correlation in the RNG sequence. Choosing a

RNG with a large period is desirable to avoid correlation.

3.1.1 Uniform Random Number Generator

Uniform RNG generate equiprobbile numbers within a given interval, typically
between zero and one. Uniform RNG can be generated using the following multiplicative
congruential algorithm

Ij+1 = a-Ij (modulus m) 3.1

where a and m are integer constants. If a and m are chosen carefully, (3.1) will produce a
sequence of random numbers with a maximum period of m. The random number

generator used in this simulation can be found in [8] and has a very long period of

~ 23x 10! Thisis accomplished by combining two RNG sequences with

56

m; = 2147483563

a; = 40014

m, = 2147483399

a, = 40692.

In addition to a long period, this RNG passes all of the relevant statistical tests [8].
Assuming the probability of a ‘0" and a ‘1’ are equal, the random bit stream can be
obtained by using a uniform random number with the following conversion

by =1if I; >05

3.1.2 Gaussian Random Number Generator

There are situations that call for random numbers with different distributions, and
are typically generated by performing a transform of a uniform deviate. The generation of
Additive Gaussian White Noise (AWGN) in simulations calls for a sequence of normally
distributed random numbers. This normally distributed sequence can be generated by

using the Box Muller Method {5, 8]. If X; and X, are two independent variables with

uniform distribution between 0 and 1, then

Yy = U+ 0-4-2-In(X;) cos(2--X5) (3.2a)
and
Y, = 0+ 02 (X)) -sin2-7-X,) (3.2b)

are independent Gaussian variables with mean |1 and standard deviation G.

57

3.2 Sampling

In order to represent the signal in the simulation, the signals will need to be
sampled. The Nyquist rate of 2-B is the minimum sampiing rate for bandlimited signals
of bandwidth B. For simulations, the sampling rate needs to be much higher to accurately
represent the analog signal and to reduce the affects of aliasing. The number of samples
per symbol should be. an even integer between 8 and 16. Having the number of samples

per symbol greater than 16 is not necessary for most simulations [13].

3.3 Filters
In Communication systems, filters are needed for the purposes of bandlimiting
signals and rejecting out of band noise. The filtering in the process can produce

something known as intersymbol interference.

3.3.1 Intersymbol Interference

Consider the effects of passing a series of impulses spaced T, seconds apart
through a low pass filter. Each impulse produces its own output from the filter. The

output from one pulse extends into the output of pulse that starts T}, seconds later. This

is known as Intersymbol Interference (ISI) and it can produce errors at the receiver.
The effects of ISI can be avoided by an appropriate choice of a low pass filter.
Nyquist proposed a technique that theoretically produces zero ISL. This is accomplished

by creating in the receiver a pulse that resembles the sin x/x shape, crossing the axis at

58

intervals of T}, . The receiver samples the incoming wave at intervals of Ty, so at the

sampling instant, the tails of the preceding outputs are crossing the axis, and are therefore
zero. The only non-zero component is the pulse to be sampled, which solves the problem
of interference from other symbols. The filter proposed by Nyquist is the “Raised

Cosine” filter and theoretically produces zero ISI. The transfer function for this filter is

1.0 for |f| < f,
(f-f
HEE) = | cos? 20y for g <] < 2B, -,
4.-(By -1))
0 for |f| > 2-Bg-f

R .
where By = Tb is the filter bandwidth, o is the rolloff factor. The frequency f; and

the bandwidth By, are related by

oc=1-f—1 0
B

[¢]

IN
R
IN

The frequency response for different rolloff factors is given in Figure 3.2. The minimum

bandwidth value of Bj = % is obtained when o = 0.0. This value of rolloff is not

obtainable in practice. Practical filters use rolloff values ranging from 0.2 to 1.0 [12].

In some applications, the filtering operation to produce zero ISI needs to be split
between two filters, with one at the transmitter and one at the receiver. The optimum
partition in the sense of optimizing the signal to noise ratio is to divide the filter transfer

function equally between transmit and receive filter [5, 18].

HTransmit(f) = HReceive(f) = VH(f)

59

This is known as a Square Root Raised Cosine filter.

a=1.0
H(f)
05|~ -
o=0.5
0 | l I]
0 0.2 0.4 0.6 0.8 1

Figure 3.2: Frequency responses for different rolloff factors

The Raised Cosine filter produces zero ISI only when driven by an impulse. If the

filter is not driven by an impulse, then the transfer function of the filter must be divided

by the Fourier transform of the input signal. For a NRZ (Non-Return Zero) square pulse

train, the Fourier transform has a spectrum with a sin x/x shape. The transfer function

then becomes

n-f-T,

H(f) = | n-f-T,

0

sin(m- - T,)

— = cos? (
sin(r-f-T,)

60

n-(f-1))
4.-(By —f1))

for |f| < f,
) for f, < |f| <2-Bg-f, (3.3)

for |f| > 2-By-f

where T is the symbol period. Note that the raised cosine filter is bandlimited to
%—S— ‘(1+a),and at f = Ry, x/sin x goes to infinity. Therefore, for this system to work, o

must be less than 1.0 [12].

3.3.2 Digital Filters

In this simulatioh, filters will be needed for the purpose of band limiting signals,
producing zero intersymbol interference (ISI), and rejecting out of band noise. Because
this simulation is in discrete time, digital filters will be needed to accomplish the above
objectives. There are two major types of digital filter design methods: Infinite Impulse
Response (IIR), and Finite Impulse Response (FIR). Both have advantages and
disadvantages, and neither is best for all situations. The‘ optimal filter design method
must be determined by analyzing the requirements and objectives of the appliéation.

The IIR method uses the widely available filter functions from analog filter
theory. This method starts with an analog filter transfer function, and then translates this
analog function in such a way that makes it suitable for discrete-time systems. Filters
designed using the IR method will be recﬁrsive in nature (the output of the filter depends
on previous filter outputs, as well as past and current values of the input), and the filter’s
iﬁlpulse response will be infinite. IIR filters require fewer coefficients than FIR filters,
and have a closed form design technique that does not require iteration. Some of the

“disadvantages of IIR filters include non-linear phase response, and the use of feedback in

the implementation that can cause instability if not carefully implemented.

61

The FIR method does not rely on analog filter theory. Instead the frequency
response of the desired filter is used to detgrmine the digital filter coefficients. This
design method is non-recursive in nature, and the impulse response has a finite number of
terms. Filters designed using the FIR method are always stable, and have a linear phase.
FIR filters need a high number of coefficients to adequately describe the impulse response
of the filter. This large; number of filter coefficients results in longer processing times,
. and can be a great disadvantage if used in real time applications. In addition, the design
procedure may need to be performed numerous times to find the optimum number of
coefficients to meet the requirements of the application.

For this simulation, Square Root Raised Cosine filters will be used on the
transmitting and receiving end of the system. These filters are defined by the frequency
response in Equation 3.3. Using FIR filter design, the filter can be designed directly from
the filter response, whereas in IIR design, an appropriate analog filter containing poles
and zeros is needed to begin the design. In addition, Raised Cosine filters need linear
phase to achieve zero ISI [12]. Using FIR filters, linear phase can be achieved. The only
drawback to the design of Square Root Raised Cosine filter using FIR method is the large
number of coefficients needed to achieve an accurate magnitude response. For this
simulation FIR filter design method will be used to design the Square Root Raised Cosine

filter. The filter coefficients were generated using a program written in Mathcad.

- 3.3.3 FIR Filter Design of Transmit Filter

62

For illustration, the design procedure for obtaining the FIR filter coefficients for

the transmit filter will be demonstrated below. The procedure for obtaining the receive

filter coefficients is exactly the same, the only difference being the filter transfer function.

" FIR filter design can either be done using the filter transfer function or the filter

impulse response. The square root raised cosine filter is both specified in the frequency

domain and in the time domain. The transmit filter needs to be cascaded with x/sin(x) in

order to obtain zero ISI for a NRZ input, so it is more convenient to start in the frequency

domain. The transfer function for the transmit filter is

H(f) =

(1T
_n——s———- for |f| < f
sin(re-f-T)
f-T ' (f-f
P B0 Es os (UMD g < < 2By -f, (34
sin(m - T,) 4-(Bg - ;)
0 for |f| > 2-Bgy-f;

\

and is shown in Figure 3.3. The impulse response is obtained by taking the inverse fast

Fourier transform of the filter transfer function. This analog transfer function first needs

to be sampled. The signals in the simulation have a symbol rate R, and symbol period

of T. In the time domain, the signal waveform is sampled at 16 samples/symbol (N =

16). The sampling frequency is given by f;= R - N, Hz, and the spacing between

63

i —
0.8~ =
H(f) \

0.6 =

\

\

\
04 7
0.2 =

0 | 1 \\ |

0 0.2 04 0.6 0.8 1

Figure 3.3: Square root raised cosine filter with
x/sin(x) equalization and rolloff factor ot = 0.45 (Rg= I)(normalized frequency)

TS

samples is At = seconds. In the frequency domain, the filter response is periodic

S8

in f; (see Figure 3.4). The total frequency span is f; - N, and for a FFT of length N, the

fs 'Nss

frequency spacing is Af = . After the filter transfer function has been sampled

with freqﬁency spacing Af, the impulse response of the filter is obtained by taking the
inverse FFT (IFFT). The impulse response of the square root raised cosine filter is shown
in Figure 3.5. The impulse response of this filter is infinitely long. Truncation of the
impulse response will allow us to have a finite number of coefficients in our FIR filter.

The impulse response should be truncated at a point where the response has sufficiently

64

died down. In this case we will chose the number of one-sided coefficients (M) to be

100.

H(f)

0 20 40 60 80 100

Figure 3.5: Filter impulse response

The impulse response is actually two sided (see Figure 3.6). Because there is filter output
before t = 0, the filter is ﬁon-causa]. In order to correct this, a delay will be introduced to
make it causal. This is done by shifting the impulse response M coefficients to the right
(see Figure 3.7). In order to improve the design of this filter, windowing techniques will

be used. Instead of abruptly cutting off the coefficients at £M, window functions

smoothly reduce the filter coefficients to zero. For this filter, a Hamming window is used

65

to accomplish this (See Figure 3.8). The filter coefficients are ‘windowed’ by the

equation:

h(n) = hjgey- wn) n=01...2-M
where the window function for a Hamming window is given by:

T-n
= 054 - 046 —_—
w(n) cos([)

0.1 T | 1 T l T I
0.05| -
h(n)
0
0,03 | | | | ! n | 1 |
100 80 60 -40 -20 0 20 40 60 80 100
n
Figure 3.6: Non-causal impulse response
0.1 T
0.05{ -
h(n)
0
00 1 ! 1 1 | L l | |
0 20 40 60 80 100 120 140 160 180 200
n

Figure 3.7: Causal impulse response

66

The resulting filter coefficienis are used to filter a signal x(n) using the following
equation:
2*M
y@ = D h(k)-x(n-k)
k=0
The output y(n) of the filter is dependent on the current input x(n), and the 2-M previous

inputs. There is no feedback involved, so the filter is always stable. The magnitude

response of the filter as compared to the original filter is given in Figure 3.9.

| | L
0 50 100 150 200

i

Figure 3.8: Hamming window function

By using more filter coefficients, the response of the FIR filter will be closer to the

original transfer function of the filter.

3.4 Adding noise

In order to make the simulation as realistic as possible, the channel model is

chosen to be the Additive Gaussian White Noise (AWGN) channel. The noise signal can

67

be generated by producing a Gaussian, or normal sequence with standard deviation o

using (3.2).

1.2 T I]

1f- PR -
/ Desired Response
0.8)- T
H(f) 0.6~ I
FIR filter response
0.4]- i
0.2~ —
] | -

Figure 3.9: FIR frequency response vs. analog filter response
for a square root Raised Cosine filter with x/sin(x) equalization

3.4.1 Noise Equivalent Bandwidth

The noise equivalent bandwidth By will have to be calculated in order to add the

correct amount of noise to the simulation. Consider the lowpass filter in Figure 3.10 a)

with transfer function H(f).

68

H(f)

¢ > |
B B
a)
Hy(f)
N
€ >
By By
b)

Figure 3.10 (a) Receive filter (b) Noise equivalent bandwidth filter

N
If white noise with a power spectral density —29— is applied at the input to the filter, the

total noise power at the output is

= N0 g2
P_L2|wmdf (3.4)
= No [[H(f)]* dr = (3.5)
0

3.4.2 Calculating the noise variance

Now consider an ideal filter H(f) with single sided bandwidth By as in Figure

3.10 b). If the same white noise signal is applied to the input of the ideal filter, the total

noise power at the output of the filter is

69

Bn

N

Pigeal = f _2Q"|H1(f)|2 df (3.6)
-By

= NBy|H(0)? | » (3.7)

The bandwidth of the ideal filter can be chosen so that the total noise power at the output
of the ideal filter is equal to the total noise power at the output of the real filter. Equating

(3.5) and (3.7) and solving for By yields

T|H(f)| 2df

By = 2 3.8

White noise has a constant PSD for all frequencies

SNN(f)=—N§Q for -0 < f < oo

Snn (D)

)

Ng /2

Figure 3.11: Power spectral density of AWGN

Unfortunately, this signal take an infinite amount of power to produce. For simulation
purposes, we will be working with a system that has a finite bandwidth. The receive filter

has a bandwidth B. The sampling frequency f is chosen to be greater than 2B. If we use

bandlimmited white Gaussian noise with a constant PSD over the simulation bandwidth,

70

N f. f
S fy= -0 for -5 <fg 8
NN (D)= 2 2

the response of the system will be the same whether Sy (f) or SNSNS (f) is used [5].

N

™ !v;ln T
0 ™ 4

a)

SNst(f)

N

Ng/2

)
—

v

-

,
ol
0 f

b)

Figure 3.12: a) Filter transfer function b) Bandlimited AWGN before filtering

The total power for the bandlimited AWGN is equal to

N f
6,2 = 98 (3.9)

* 2
After AWGN is passed through a filter with noise equivalent bandwidth By, the total

noise power is equal to

(3.10)

71

where P is the total signal power and SNR is the signal to noise ratio. Combining (3.9)

and (3.10) and solving for G, ?

(3.11)

G, 2 is the total noise power that is to be added to the channel before the Rx filter. The
noise can be generated by using (3.2) to create a sequence of Gaussian random variables
. withp=0and 6 = o,.

Sometimes it is convenient to express the probability of a bit error P.as a

E
function of p = N—b where Ey is the bit energy and N, is the noise density. The noise
0

variance will be expressed differently than (3.11).

Ep
Letp = N In terms of Ny,

0
E
Ny = —2 (3.12)
p
The signal power P is equal to
E, Ep-k |
p= =8 = b (3.13)
TS TS
where k is the number of bits per symbol. From (3.13), the energy per bit is
P-T
E = —= 3.14
b= (3.14)
. . . . 2 NOfS . .
- The total noise power before filtering is equal to 0,* = from Figure 3 b).

Combining this with (3.12) and (3.14) yields

72

s P.T

Gx™ = 2pk (3.15)
The sampling frequency is defined as
f = Rg N (3.16)
50 (3.16) can be rewritten as
oy’ = 12)::.5& (3.17)

The noise can be generated by using (3.2) to create a sequence of Gaussian random

variables with =0 and ¢ = o,.

3.4.3 Ideal Channel model

An ideal channel can be used to obtain results that are not degraded by the filters.
There is no need to simulate the analog signal, and modulate, filter, and add noise. The
binary data can have Gaussian noise added directly to the data bits, and then these bits

can either be soft or hard decoded. For each binary bit u j» the noise corrupted bit can be
obtained by using (3.2) with = 1 for u; =1, and u=-1for u; =0. The variance of the
noise is

o L
2p

where p is the signal to noise ratio. For hard decisions v;, if the noise corrupted u i is

greater than zero, then v i = 1. Otherwise, v j= 0. Using this method, ideal BPSK is

obtained.

73

3.5 Simulation Results
The simulation was run without coding systems to verify the simulation was
working properly. The results were compared to the theoretical BPSK results, which are

given zby

The results of the simulation are shown in Figure 3.13. Looking at the results of the

simulation, two observations can be made. First, for greater values of E, /N, the

simulation results deviate from the theoretical curve. This can be attributed to the effects
of filtering. Second, for higher values of rolloff, the performance of the simulation
becomes closer to the theoretical. This can be attributed to the increase in bandwidth

which comes from an increase in the rolloff value.

74

Pe

| T | T
107! -
a=07
Theoretical
1072 BPSK -
Ideal simulation
o=09

1073 | —
1074 | 1 | !

2 0 2 4 6 8

Figure 3.13 Results of the BPSK simulation for different values of filter rolloff.

75

Chapter 4

Erasure Methods and Simulation Results

The purpose of this chapter is to investigate the performance of the concatenated
system given in Figure 1.1, and to discuss and propose methods of declaring RS symbol
erasures to improve performance. It is the goal of these methods to recognize symbols
that are in error and erase them, thus utilizing the full capacity of the errors and erasures
Reed Solomon decoder. The success of these methods is highly dependent on being able
to successfully identify the errors in each Reed Solomon codeword (RSW). The
performance of the concatenated system without erasures was tested. In addition, a basic
method for erasure declaration using the reliability information provided by the SOVA
was implemented. This method is basedvon [14]. Two new procedures for declaring
erasures are proposed. Botﬁ use the reliability information from the SOVA in addition to
information provided by successfully decoded RSW in the deinterleaving frame.‘ The

results of these two methods are presented and compared to Paaske’s [7] method.

4.1 Concatenated system simulation results
The performance of the concatenated system presented in Figure 1.1 was
investigated. More specifically, the concatenated system used by NASA for deep space

communication has been simulated. This system uses a rate 1/2, K = 7 convolutional

76

code with Viterbi decoding as the inner code and a (255, 223) Reed Solomon code as the
outer code. This coding system was tested using a real system containing square root

raised cosine FIR filters using a rolloff value of o = 0.5, and an ideal system. The
performance evaluation studied the effects of using no interleaving, and interleaving

depths I =2, 6, 8. In addition, the effect of increaéing the truncation lengths from 6 = 32
to & = 100, and soft depision levels from L = 8 to L = 64 were simulated.

Five systems have been developed to study the effects of varying the truncation
length and number of soft decision levels, and are presented in Table 4.1. These systems

will be simulated for no interleaving, and for interleaving depths I = 6 and 8. For the

following results, the gain is measured at a bit error rate of 1073,

Table 4.1 Various systems simulated

Real/Ideal | Truncation | Soft decision
length 8 levels L
System 1 Real 32 8
System 2 Ideal 32 8
System 3 Ideal 32 64
System 4 Ideal 100 8
System 5 Ideal 100 64

Figure 4.1 contains the simulation results for the concatenated coding system with

no interleaving used. It is shown that the real system with § =32 and 8 level soft decision

77

0.1 T T T T T T T
0.01 -
System 1
0.001{ - / -
Systemn 2
Pe System 3
System 4
104 - System 5 =
1107 |- -
1166 | I ! ! ! ! |
2.2 24 2.6 2.8 3 3.2 34

Figure 4.1 Simulation results for the concatenated system with no interleaver

78

Viterbi decoding (system 1) results in a loss of about 0.3 dB when compared with the
ideal system with the same truncation length and soft decision levels (system 2). There is
approximately a gain of 0.2 dB when the decision depth & is increased from 6 =32 t0 6 =
100. This can be illustrated in Figure 4.1 by comparing the difference in performance
between system 2 (8 = 32, L = 8) and system 4 (8 = 100, L = 8). Likewise, there is also a
0.2 dB gain when the decision depth in system 3 is increased from 6 = 32 to 8 = 100 to

form system 5. When the number of soft decision levels is increased from L = 8 in
system 2 to L. = 64 in system 4, the result is about a 0.15 dB gain. Likewise, the increase
in soft decision levels from system 3 to system 5 results in roughly 0.15 dB gain. The

combined use of & = 100 and L = 64 results in about 0.35 dB gain over the ideal system

using & = 32 and L = 8. These gains are consistent for interleaving depths I = 6 (Figure
4.2) and I = 8 (Figure 4.3).

The benefits of using an interleaver is demonstrated in Figure 4.4, where the
simulation results for system 5 using no interleaving, and depths I = 2, 6, and 8 are
presented. It has been shown that the use of interlqa\(ing depth I = 2 can provide
approximately 0.2 dB gain over the system using no interleaving. When the interleaving
depth is increased from I = 2 to [= 6, there is an additional gain of slightly more than 0.2
dB, for a total of roughly 0.4 dB ovef the system using no interleaving. The use of an
interleaver with depth I = 8 provided a minor gain over the system using I = 6. The total
gain of using I = 8 when compared to the non-interleaved system is approximately 0.45
dB. It should also be noted that the concatenated coding system using interleavingldepths

greater than 8 resulted in little or no improvement over the system using depth [= 8.

79

0.1 l | | 1 T
g
q
p
0.01 -
System 1
0.001 —
System 2
Pe
System 1
0t —
110 \
\ ‘\
\ \
System 2
- System 3
1107 Y -
1166 L ! 1 | | |
1.8 2 22 24 2.6 2.8 3

Figure 4.2 Simulation results for the concatenated system with interleaver depth I = 6

80

g = Yidop IoABI[IIUI YIIM WRISAS POJRUSIBOUOD BY) 0] SI[NSaI Uone[OWIS ¢4 2Ing]

N/
€ 8T 97 ve [[4 81
T T T T T T 9.0t
\
L ~ ot
G WIISAS
% il
B $ WAISAS = p Ot
°d
/ € WoIsAg
\
- 1000
T WAISAG
= | waIskg 10°0
b
l ! l | o

¢8

syidop Su1AeaIoIUl SNOLIBA)M G WIR)SAS JOJ S}NSAI UOHR[NWIS ' oInSi]

0l.1

3 »\ - oo

O

i

i

-{100°0

O

SuraespIoju] oN //,

-|100

As was expected, gains can be obtained in the concatenated coding system by
increasing the truncation length and the number of soft decision levels used. The use of
an interleaver between the convolutional code and the Reed Solomon code also provided
gain over the system using no interleaving. The gains obtained through these
improvements do not require any additional coding or bandwidth expansion, only
additional hardware size and complexity.

Another way gain can be obtained without the use of additional coding or
bandwidth expansion is through the use of erasures. A Reed Solomon code with

minimum distance d ;. can correct v errors and p erasures as long as the inequality -

dpin € 2v + p is satisfied. Clearly, if errors are transformed into erasures,

performance can be improved. Because the error positions are not known ahead of the
decoding process, it is necessary to find methods that can identify unreliable Reed
Solomon symbols. Once these symbols are identified, they can be erased. There is the
possibility that correct symbols may be erased, however. For the performance to be
improved, the erasure method must erase more errors than correct symbols.

For the concatenated system in Figure 1.1, the Viterbi decoder produces hard

output u; € {0, 1}. Tt has been shown in section 2.3.3 that the soft output Viterbi

algorithm produces a reliability value L; associated with each outgoing bit u jﬁ This

reliability information can give an indication to which Reed Solomon symbols are in
error. In the first method investigated, bit reliabilities are transformed into RS symbol

reliabilities. A table of the least reliable symbols for each RS codeword can then be

83

compiled, and the least reliable symbols can be erased. The first method for declaring

erasures in presented in greater detail below.

4.2 Erasure Method 1

The first method for declaring RS symbol erasures is based on the method found
in [14]. The SOVA is used to obtain the reliabilities of each output bit from the Viterbi
decoder. The output of the SOVA is quantized using q+1 bits, where g bits represent the
magnitude of the decision (the reliability), and 1 bit represents the hard decision. In
general, these reliabilities are real valued, and have a range between 0 and infinity. .It is
not necessary to quantize the reliability values between O to infinity, but rather between 0

and some value L. . The reliability values produced by the SOVA will be assigned one

of 29 levels between 0 and L, . If a reliability is greater than L ., then the

reliability level is set to 29 (i.e. the maximum level). For this simulation q = 8 and

L ax = 8 were used. From here on out, the “reliability value” L j for a bit will refer to

the g-bit quantized level.

Before declaring RS symbol erasures, the bit reliabilities from the output of the
SOVA need to be converted to RS symbol reliabilities. This can be accomplished by
simply using the minimum bit reliability in a symbol as the symbol reliability. This can
be rationalized as follows. If a bit has a small reliability, and is in error, the symbol will
be in error also. Therefore, the best information contained in the symbol reliébility is
contained in the minimum bit reliability. For each RS codeword (RSW), a reliability

table (RT) is formed. The RT has m, positions, where m, is the maximum number of

84

erasures allowed. If the least reliable symbols in the RSW occur at positions k j» Where i

=1, 2, .., mg, then RT(j) = k;.

RT(1) contains the least reliable position, RT(2)
contains the 2nd least reliable symbol, etc. The RS decoder will first attempt to decode
without declaring erasures. If this is a successful decoding, stop. If not, the two symbolS
with the smallest reliabilities are erased (RT(1) and RT(2)), and decoding is attempted
again. If successful, decoding stops. If unsuccessful, the four least likely symbols are
erased (RT(1) through RT(4)) and deéoding is attempted again. For each unsuccessful

decoding, two more erasures are declared until either a successful decoding is achieved,

or the maximum number of erasures m,, is reached. This maximum number is chosen to

be 16 erasures. Using more than 16 erasures gave poorer results due to the fact that the
symbols reliabilities at the output of the SOVA hit more correct symbols than errors. In
addition, the probability of a decoding error is also increased. A decoding error occurs
when a codeword contains more than t errors, and fails to notice that it does. The decoder
claims that there are less than t errors. This is different than a decoding failure. A
decoding failure happens when there are more than t errors, and the decoder detects that it
contains more than t errors. For a t error correcting RS code, the probability -of a
decoding error is 1/t! [7, 14, 19]. The procedure for erasure decoding using Method 1 is

presented below.

4.2.1 Procedure for erasure decoding using Method 1
The decoding of each RS codeword involves the following steps:

1. Set the number of erasures n, = 0.

85

2. Attempt to decode the RS codeword using errors only decoding. If successful, stop.

3. Set n, =n, +2.
4. Erase the n, least reliable symbols as determined by the reliability table, and attempt

error and erasures decoding. If successful, stop.

5. If n, = m,(the maximum number of erasures allowed), then stop.

6. Go to step 3.

7. Stop.

4.2.2 Simulation Results for Method 1

The results of the simulation for Method 1 are presented in Figures 4.5 through
4.7. These figures contain the results using system 1, 2, and 5 for no interleaving (Figure
4.5), and interleaving depths I = 6 (Figure 4.6) and I = 8 (Figure 4.7). The results of the
corresponding concatenated code using no erasures is also presented for comparison
purposes. From these figures, it is evident that the use of erasure Method 1 results in
approximately 0.1 dB gain over the non-erasure concatenated system. This result was
consistent regardless of the truncation length, number of soft decision levels, and
interleaving depth used by the concatenated system. It should be noted that the gains
obtained by using different interleaving depths with erasure Method 1 were identical to
the gains obtained when using different interleaving depths in the standard concatenated
system. In addition, it should also be noted that increasing the decision depth and number
of soft decision levels for the systems simulated using erasure Method 1 were consistent

with the results for the concatenated system presented in section 4.1.

86

0.1 T — T T T T T T
O—————a No erasures
x—x Erasure Method 1
0.01
System 1
System 2
0.001
\
Pe
104 /
System 5
10° \ \\ \T
116 ! | ! | 1 ! | !
1.8 2 2.2 24 2.6 2.8 3 32 34
Ep/No

Figure 4.5 Simulation results for Method 1 with no interleaver

87

0.1 T — T T T T

O———0o No erasures

%~ Erasure Method 1

0.01] -
System 1

System 2

0.001f -

Pe
-4 | .
110 System 5

\‘.

1167 \ S
b
166 | | | ! | |
1.8 2 2.2 2.4 26 2.8 3
Ep/No

Figure 4.6 Simulation results for Method 1 with interleaver depth I = 6

88

0.1 T T T T T]

o No erasures

x——_ Erasure Method |

)

0.01 -1
. . System 1
i ystem 2
0.001 -
Pe 2
\
. \\ \
10 \ \ —
System 5
110° _ -
\
\t \\
1166 ! | | L | |
1.8 2 2.2 24 2.6 2.8 3
Ep/No

Figure 4.7 Simulation results for Method 1 With interleaver depth I = 8

It has been shown that the use of erasure Method 1 results in approximately 0.1

dB gain over the concatenated system using no erasures. The reason that the performance

89

is not greatly increased is because the erasure declaring process is not optimal. In general,
when erasing two symbols at a time, gain is only achieved when both erased symbols are
errors (GE). If only 1 erasure is a GE, the capacity of the code stays the same, and if
neither erasure is a GE, then capacity of the code actually decreases. Method 1 uses the
reliability information generated from the SOVA, and the symbols with the smallest
reliabilities are systematically erased. A symbol with a small reliability does not

guarantee a GE. For example, the smallest reliability value (L i = 0) occurs when there is

a metric difference A = 0. Because the path metrics are equally likely, the probability the

wrong path has been chosen is 0.5. This is why a small reliability value does not
guarantee a wrong path has been taken. The reliability table used in Method 1 can be
modified to give more reliable information. This can be accomplished by using decoded
Reed Solomon codewords in the deinterleaving frame to provide information to the non-
decoded Reed Solomon codewords. This information can bev used to construct a
reliability table with more accurate information, and then the unreliable symbols can be
converted into RS symbol erasures. The second method for declaring erasures is

presented below.

4.3 Erasure Method 2
It has been found that the burst errors at the output of the SOVA .contain the same

reliabilities within the burst. Consider the two paths merging in state S, at time t in

Figure 4.8. The survivor path has metric M, and the competing path has metric Mz.

90

Competing Path
Metric M,

Survivor Path

Metric M,
t—3,,

Bit Reliabilities AA4LjAljlia ALjAALjALjA ALJLjALJLjALjALjAALjLiL{Lj ¢

~ Symbol
Reliabilities

Figure 4.8 The updating of symbol reliabilities in the SOVA

The reliabilities L; on the surviving path in the SOVA are updated by selecting the
minimum between L; and A, where A is the difference between the two paths merged in

state S, . When the bit reliabilities are converted to symbol reliabilities, the minimum bit

reliability is chosen as the symbol reliability. Assuming that A is the minimum and this
is part of the surviving path, then consecutive symbols in the surviving path have
identical reliabilities. In the standard Viterbi decoder, error events occur when at time t
the decoder chooses the wrong path. This is also what happens in the SOVA. If the path
with the maximum metric is the wrong path, then all of the reliabilities for the differing
bits will be equal to A. If this is the path selected by the SOVA as the output of the
decoder, then the reliability will be equal for the length of the burst. It is apparent from
- Figure 4.8 that all symbol reliabilities in the erroneous path are equivalent. | This

information can be used to distinguish error paths and declare erasures, and can be

91

accomplished by using a method similar to the one proposed by Paaske. Assume that
after an initial decoding attempt of a deinterleaving frame, some of the RSW have been
successfully decoded, while others have not. The error positions in the successfully
decoded codewords are known. Using the above observation, if a neighboring symbol in
an undecoded RSW has an identical reliability value as the corrected symbol in a decoded
RSW, it is highly probable that that symbol is also an error and can be erased.

As mentioned previously, a symbol with a low reliability value does not
necessarily denote a symbol error. From Figure 4.8, it can be seen that if A is small, then
it may be contained in the reliability table for a non-decoded RSW. Assume that a RSW
is decoded and the error positions are known. The correct positions are also known.
These correct positions can be used to eliminate other correct symbols from being
included in the reliability table for non-decoded RSW. If the neighboring positions of a
correct symbol have the same reliability, then it is highly probable that this symbol is
correct also. The procedure for erasure decoding using Method 2 is summarized below.

A deinterleaving frame with interleaving depth I contains I RSW. Decoding of
each RSW in the frame is first attempted using Method 1. For each RSW, a table of the
least reliable symbols is compiled, and for each unsuccessful decoding attempt, two
additional symbols are erased, and decoding is attempted again. This process continues
until either a successful decoding occurs, or a maximum amount of erasures has been
reached. If less than I codewords are successfully decoded, redecoding is attempted. The
* RT used in Method 1 contains the least reliable symbols as determined by the output of

the SOVA. The reliability table can be modified using information provided by the

92

decoded RSW in the deinterleaving framg. Let RSW, (i) denote the k-th symbol of the i-
th RSW in the deinterleaving frame, and let L, (i) be the reliability associated with
RSW, (i) as determined by the SOVA. For convenience, if i +j > I, then RSW, (i + j)
corresponds to RSW, ,;(i+j-I) and if i + j <1, RSW, (i—j) corresponds to
RSW,_;(i—j+1I). To simplify notation, RSW, (i % j) will be used even if the position
isatk + 1. Inladdition, each symbol will have a flag associated with it. Let F, (i) be the
flag for the k-th symbol in the i-th RSW. There are three possible values for F, (i):

Fy (i‘) =0 Unknown

F, (1) =1 Possible Good Erasure (PGE)

F, (1) =2 Possible Bad Erasure (PBE)

Using the already decoded RSW in the deinterleaving frame, the flags for all the symbols
in the undecoded RSW will be updated. The table of least reliable symbols can be

modified using the symbols that are flagged as a PGE (F, (i) = 1) as the least reliable.
The remainder of the table is filled with the symbols flagged as unknown (F, (i) = 0) -

with the minimum reliabilities. Symbols that are presumed to be correct are flagged as a
PBE (F, (1) =2) to avoid being used in the RT. It was found through simulation that the
probabiliiy that a symbol flagged as a PGE is a GE is 0.93 and the probability that a
symbol flagged as a PBE is a BE is 0.99.

Figure 4.9 shows a partial deinferleaving frame, two bursts, and the réliability

values associated with each symbol. Note that the reliability in each of the burst errors is

93

identical. Assume that RSW(i) has been_successfully decoded in the deinterleaving frame
of Figure 4.9. After the decoding, the error positions in RSW(i) are known. The error at

position k has a reliability of L, (i) = 2. Erasure Method 2 checks the reliability at
positfon k in RSW(i-1). If the two have equal reliabilities (i.e. L (i-1) = L, (i)), then
RSW(i-1) position k is flagged as a PGE (F (i—1) = 1). If the two are not equal,
searching in this direction stops, and searching in the other direction begins. Position k in
RSW(i+1) is éhecked for equal reliabilities, and if so, position k in RSW(i+1) is flagged a
PGE. Searching RSW(itj) continues in both directions until either L (%)) # Ly (D),

or j = I-1. The later condition can be reasoned by noting that position k in RSW(i+]) is

simply position k+1 in RSW(i).

Symbol

Number 17 e | 256 | 256 | 206 | 208 | 200 | 0 | 30
k 80§ 3§ . i 2
il | onr [ar 66
ke2 | 11 | 1 161
ke3 | 161 | 161 256
ked | 256 | 188 212
202 | 212 93
-1 i i+l
= Symbol Error RSW

Figure 4.9 Deinterleaving frame with reliability information

Assume that the two least reliable symbols contained in the RT for the first

decoding try (Method 1) are symbol k with reliability L, = 2 and symbol k + 2 with

94

reliability L,,., = l1. If two erasures are declared, position k would be a GE and
position k + 2 would be a BE. After decoding RSW(i), it has been found that position k +
2 is correct. Because L, is a small reliability, it is most likely contained in the RT for
each RSW that has L, , = 11. The same method used to flag PGE can be used to flag

PBE. After doing so, position k+2 will not be in the RT for the next iteration of
decoding. The procedure used to update the flags (UFP) in the undecoded RSW using

information in decoded word RSW(i) is as follows:

4.3.1 Procedure for updating the flags (UFP)

1. Setk=0
2. If RSW, (i) is an error set F, (i) =1 (PGE). Else, set F (i) =2 (PBE).
3. If L, (1) 2 L, gotostep 13
3. Initialize j = 1.
Start looping backwards. RSW, (i-j) j=1,2,..,1-1.
4. If L, (i-j) # Ly (i), goto step 8.
5.1 Ly(i-j) = L (i) set
Fe(-j) = B (1)
j=j+1
6. Ifj=1-1,gotostep8.
7. Go to step 4.

Start looping forwards. RSW, (i+j) j=1,2,..,1-1.

95

8. Initialize j = 1.
9. If Ly(i+]j) # L, (i), gotostep 13.
10. If L, (i+j) = L (i) set

F (i+)) = F. ()

j=j+1
I1. Ifj=1-1, gotostep 13.
12. Gotostep 9.
13. k=k+1.
14 If k=254, Stop else go to step 2.
After the flags have been updated using the information provided by the
successfully decoded RSW, the RT for each of the yet to be decoded RSW needs to be

updated. The procedure for updating the RT (URTP) is presented below.

4.3.2 Procedure for updating the reliability table (URTP):

1. Determine the number of PGE (npgg) in RSW(i) by checking the symbol flag F, (i).
These GE occur in positions k; , j=1,2, ..., npgg -

2. Fill the first ngg positions of the reliability table with the positions where a GE has
been flagged. RT(j) = ij forj=1,2, .., ngg

3. If npgg< m,, fill the remainder of the RT with the symbols with the minimum
reliabilities determined by the SOVA output. Out of all the symbols that have F, (i) =0,

determine the m, - ngg minimum symbol reliabilities. These minimum values occur in

96

positions k,, £ =1,2, ..., m.- npgg. Fill the remaining m- npgp positions in RT

with the symbols with the minimum reliabilities. RT(ngg +1)=k,, £ =1,2,..., m-

NpGE -

The procedure for decoding using Method 2 is presented below.

4.3.3 Procedure for decoding busing Method 2
1. Attempt initial decoding using Method 1.

2. Set iy = number of correctly decoded RSW.
3. If iy =1, gotostep 9.
4. If iy =0, goto step 9.

5. For each decoded codeword, declare flags in the undecoded RSW using UFP,
6. For each non decoded codeword, update the reliability table using URTP.

7. Attempt decoding using Method 1 with the updated RT.

8. If step 7 yields at least one successfully decoded RSW, go to step 2.

9. Stop.

4.3.4 An example of erasure decoding using Erasure Method 2
As an example, consider the deinterleaving frame in Figure 4.10. This frame was

simulated at a signal to noise value of E, / Ny = 1.9 dB. The error positions are denoted

by the shaded areas, and the reliability values are given. This frame contains 8 RSW with
a total of 161 symbol errors. It should be noted that each RSW in the deinterleaving

frame contains more than 16 errors. If no erasure information was used, every RSW in

97

the frame would fail to decode. The reliability table for each RSW in the frame for the
first iteration is presented in Figure 4.1 1, where the reliability value and symbol position

are given (L, k). In addition, the number of decoding trials for each codeword is also

shown. The RT is initially formed by using the minimum reliabilities generated by the
SOVA. For the first iteration, decoding of each RSW is attempted using Method 1.
" RSW(1) successfully decodes after 6 decoding trials using 10 erasures. RSW(3) is
successfully decoded after declaring 4 erasures (3 decoding trials), and RSW(8) decodes
using 2 erasures (2 decoding trials). All other RSW fail to decode after 9 decoding trials
apiece. Now, the RT is modified by updating the flags using UFP, and the updated RT is
compiled using URTP giving the symbols with flag = 1 (PBE) the highest priority in the
table. The modified RT is in Figure 4.12. Decoding is attempted again using Method 1
with the updated RT. For this iteration, RSW(2) decoded successfully using 14 erasures
(8 decoding trials), RSW(4) using 12 erasures (7 trials), and RSW(7) using 8 erasures (5
trials). Decoding attempts for RSW(5) and RSW(6) are once again unsuccessful. The
flags for RSW(5) and RSW(6) are updated using the information provided by RSW(2),
RSW(4), and RSW(7). The updated RT is generated using the updated flags, and is
presented in Figure 4.13. Decoding is attempted again using Method 1. RSW(5) is
decoded using 16 erasures (9 decoding trials), and RSW(6) is decoded using 14 erasures
(8 decoding trials). Erasure Method 2 required a total of 111 decoding trials to
successfully decode this frame. This results in an average of 13.9 decoding trials per

RSW.

98

R R R R R R R R R R R R R R R R
S S S N N S § S § N S s S N S S
k w w wiwitw |w | w/|w k w v lw | w wolw |w i w
() (2) [®)] 4) {5y &) (N (8) (I} 2) 3 4 (5) 6y N (8}
BB EIR R Tan | 230 | 2se 125 | 256 | 231 J 256 | 256 | 30 { 30 2102
- 126 | 30 [ase {256 & 2% 2 R B
1o] 256 {256 | 256 { 256 =390] 39 127 J oo |2z Jasr faas | ase | 256 256 § 256
- 128 | eso foron Joaor Foor Lo oo iae foas
oot oo Lo] oo] to [ase | oase -
17 | 256 | 254 | 254 | 256 | 256 | 256 | 256 | 207 142 o7 J o7 e Eoa F 9afvo- | s | e
18 fros | 20 Jwos fuse [isa 32 821 -
TN BECEE BEEN BEE BEE iR B i 144 | 256 [189 f a7 [177 [252 §05 § o5
27 Jia0 [a0 Jra0] 74 | 74 2 149 § 256 § 256 | 256 § 193 | 256 | 256 | 19 i 19
- 150 $:18 819 0] 1 BEREREEE
33 | 166 ¢ 166 | 166 { 237 | 256] 256 | 256 -
34 | 122 F2ts 256 | 256 | 256 | 256 | 256 | 256 157 s by i] e] iso| 256
35 | ase | 256 03 o 122 | 256 | 256 -
- 160 256 | 256 | 256 | 256 | 256] 126
42 169 | 256 | 203 | 203 | 256 161 67: 8 E 69 §6y
52 245 §oase | oase | 256 | 256 164 | 25t | aws | ugs | ass | 222] 2se | 256 | 81
- 165 | 81 g 137 207|256] 97 | ve $:38
se [190 | 256 | 256 | 256 | 256 § 256 § 178 | u7s 166 | 86 | vy Jaos aso]oar Juse [ase [1
57 1256 | 256 § 190§ Yok o) 1)3 2 -
58 256 5 5 170 f 256 | 193 Lastap st §sE 97 § 256
59 3 72 {231 -
- 176 | n 77 {77] 16y | 200 | 256
06 ES 169 1 256 -
67 | 256 | 256 | 256 | 256 | 256 | 256 | 256 | 126 179 § 256 | 256 | 172 | 2s6 | 124 Foagigon] s
68 | 194 | 194 | 210 | 256 | 256 %:ide T 180 | $ 174 | 256 | 256 | 256 § 256 | 256 | 256
184 | 127 | 127 §ig 108] 244 | 244 | 256
189 | 256 F 256 §256 § 96 § 33] 33 | 256 | 256
190 |ty porin §os7 | st iy] 2ss | oase | 201
191 | ats § 256 §o2se] 256 | 256 | 256 §ix :
14 |1
194 | 119 146 | 256
206 § 256] 256] 256 136 § 169] 169 Fo162 | 114
w1 | 6 6 6 6 21] 256 256 | 256
212 | 256 | 256 | 66
97 145 F 145 | 165 | res | 256 | 256 218] 256 | 256 | 256 | 256 256 | 11 T K
98 168 | 168 | 168 | 234 | 256 | 256 -
99 53 | s3 | 53 | 163 | 247|247 229 256
- 230 174
103 | 256 | 256 | 256 i 256 231
249 | 249 | 249 | 256 | 256 249 | 256 | 256 | 256 | 185 | 185 { 225 | 256
109 | 256 256 | 254 256 | 256 32 253 1256 J 256] 256 200
110 $ZRES rkiann] es | 68] 203] 256 #
111 | 256] 256 1 of 118122 17122123123(19]17
112) l) 256 Errors

Figure 4.10 An example of a deinterleaving frame with reliability values

99

O ool]| N wvil W |

.,_
<o

11

12

13 11,55

14 [1,218 | 18,13

17, 133 1 1
18,13

15 {30,125

16

#
of 6 9 3 9 9 9 9 2

Trials

Indicates an erasure hits an error (GE)

Figure 4.11 The reliability table for the first iteration

100

i {RSW(1)|[RSW(2)] RSW(3)|RSW(4) _RSW(S) RSW(6) [RSW(7) | RSW(8)

8 | poE, 10

POE, 43

. PGE, 52

PGE, 66

?GE‘ 35

' PGE, 89 PGE, 126 [pGE, 126] POE, 89 |

PGE, 90 pGEm;

{PGE, |

CCloofl]l &]w o

._.
(=)

PGE, 157

—_—

——
[

pGE, 161

._.
o

—_—
PN

.._.
wn

=
)
S 3
o

of 6 17 3 16 18 18 14 2

Trials

Indicates an erasure hits an error (GE)

Figure 4.12 The reliability table for the second iteration

101

i [RSW(1) |RSW(2) |[RSW(3) [RSW(4) [RSW(5)|RSW(6) |[RSW(7) | RSW(8)
1 PGE, 10/} PGE; 19

2 PGE, 3§ PGE 18

3 pGE, §9| PGE, 27

; : -

5

6

7

8

9

10

1

12

13

14

15

16

#

of 6 17 3 16 27 26 14 2
Trials

Indicates an erasure hits an error (GE)

Figure 4.13 The reliability table for the third iteration

4.3.5 Results for Erasure Method 2

The statistics for Method 2 are presented in Table 4.2. The RS symbol error rate
at the éutput of the Viterbi decoder is given. The percentage of frame failures and RSW
failures after errors only RS decoding gives an indication how the standard concatenated

system performs. The percentage of frames failures and the percentage of RSW failures

102

using Method 2 are also compiled for various values of Ey /N,. The number of

decoding trials per RSW is also given.

Table 4.2 Simulation results using Method 2 with interleaving depth I = 8

Without Erasures Using Method 2

Byte Rate % Frames % RSW | % Frames | % RSW | # of trials

Ey, /Ny '] after VD in error in error in error in error per RSW
1.7 0.093 100.0 952 92.0 75.6 13.6
1.75 0.086 | 998 89.7 81.9 57.3 143
1.8 0.079 99.4 79.9 61.1 36.6 13.2
185 0.072 97.0 66.1 - 38.1 18.1 10.8
1.9 0.066 91.6 52.3 20.2 8.3 7.7
1.95 0.061 81.6 373 11.6 42 5.23
2.0 0.055 66.8 249 44 1.12 3.36
2.05 0.050 46.9 14.9 1.7 04 2.18
2.1 0.046 32.7 8.5 03 0.0 1.56
2.15 0.042 19.4 4.4 0.0 0.0 1.27
22 0.038 10.1 1.9 0.0 0.0 1.09
23 0.031 1.0 0.2 0.0 0.0 1.01
24 0.025 02 0.0 0.0 0.0 1.0

When the results in Table 4.2 are compared to Paaske’s results, the first difference
that is noticed is the difference in the RS symbol error rate at the output of the Viterbi

decoder. The symbol error rate given in Table 4.2 is obtained using system 5 (5 = 100

and L = 64). This symbol error rate is approximately 3 - 107 lower than the symbol error

rate in Paaske’s results. The better performance at the output of the Viterbi decoder is

103

most likely due to the increased soft decision levels (L = 64) as compared to the 8 level
soft decision used by Paaske. This slightly smaller RS symbol error rate translates into
slightly better results for the errors only decoding. The frame error rate and RSW error
rate iﬁ Table 4.2 are typically 2% or 3% smaller than the results that Paaske obtained.

The results obtained using Method 2 are better than Paaske’s results in three

regards. The percentage of RSWs and frames in error is lower. For example, at E, / N

= 1.9 dB, the 'percentage of frames and RSWs in error using Paaske’s method are 26.8%
and 16.3%, compared to 20.2% and 8.3% using Method 2. Method 2 also obtains these
results using considerably less decoding trials. Paaske’s method requires an average of
112.4 decoding trials per RSW to obtain the reduction. Method 2 requires an average of
7.7 decoding trials per RSW. The third improvement is in the ability to obtain

improvement for lower values of E, /N,. The results in [7] indicate that no
improvement is obtained at E, / Ny= 1.8 dB. Using Method 2, the percentage of frames

in error was reduced from 99.4% to 61.1% and the percentage of RSW in error was
reduced from 79.9% to 36.6%. The average number of decoding trials per RSW needed
to accomplish this is 13.2. Error reductions were obtained for values of E, / N, as low
as 1.7 dB. Both Method 2 and Paaske’s method obtained 0.3 dB gain over the system
using no Verasures.

The yeduction in average number of RSW trials as compared to Paaske’s method
can be attributed to the ability to use erasures in the first decoding attempt. This is useful
for decoding RSW that contain more than 16 errors, as in the example in Figure 4.10.

Each RSW in the frame contains more than 16 errors. Paaske’s method would obtain no

104

successful decoding in the first iteration, and would have to resort to using EP4 to obtain
the first successful decoding. EP4 randomly erases two symbols and attempts decoding.

This repeats until a successful decoding or this has been attempted T, ., times. It can

X
easily be seen that this frame would require a large amount of decoding trials. In
addition, Paaske’s method requires two successfully decoded RSW with errors in the
identical positions in order to use EP1. Erasures declared using EP1 have a probability of
0.96 of being a GE. If not, a less reliable procedure must be used (EP2-EP4). Erasure
Method 2 only requires 1 RSW to be able to declare erasures with a probability of 0.93 of
being a GE. It can be seen that erasure Method 2 converges on the erasures quicker than

Paaske’s method, and thus, requires less decoding trials per RSW.

4.4 Erasure Method 3

Method 2 can be modified to reduce the number of decoding trials per RSW by
making a few observations. In Method 1, erasures were erased two at a time until eithér a
decoding shccess was obtained, or a maximum number of erasures were declared. This
was done because symbols with low reliabilities were not guaranteed to be GE. Erasing
more than two at a time may cause the decoding capability of the code to be decreased.
This occurs if the number of BE is greater than the number of GE. In Method 2, when a
PGE is declared, it is highly probable that this is a GE (0.93). Instead of erasing two
symbols from the RT at a time, all symbols flagged as PGE are automatically erased. If,
after decoding with these symbols erased it is still not successful, then two more symbols

are erased until the maximum allowable erasures is reached.

105

A second modification updates the flags after a RSW has been decoded correctly,
rather than after all of the RSW in the frame have been attempted. This allows for the
possibility for the highly reliable PGE to be declared in the first decoding pass. Both of
these modifications reduce the average number of RS decoding trials when compared to
Method 2, with very little effect on the performance. The procedure can best be

demonstrated with an example.

4.4.1 An example of erasure decoding using Erasure Method 3

Consider the deinterleaving frame in Figure 4.10. The reliability table before the
first decoding attempt is given in Figure 4.11. Much like Method 2, decoding of RSW(1)
is first attempted using erasure Method 1 (i.e. decoding is attempted using no erasures,
and decoding is repeated until either a successful decoding or a maximum number of
erasures has been reached). RSW(1) is finally decoded after 6 decoding trials and 10
erasures. In Method 2, the next step would be to attempt decoding of RSW(2) ﬁsing
Method 1. Method 3 instead updates the flags immediately after RSW(1) has been
successfully decoded. This results in 13 PGE being declared in RSW(2), 12 of whigh are
GE. This modified reliability table is given in Figure 4.14. At this point, RSW(2) is
ready to be decoded. Instead of erasing two symbols at a time as with Method 2, all PGE
are erased and decoding is attempted. For RSW(2), this still does not yield a successful
decoding, but as can be seen from Figure 4.14, erasing two at a time would achieve the
same results, but with more decoding trials. Because the number of PGE are less than the

maximum number of erasures allowed, two more symbols are erased, and decoding is

106

attempted. RSW(2) finally ‘decodes once 16 erasures have been declared. This is
accomplished in 3 decoding trials, as compared the 17 trials needed to decode RSW(2)
using Method 2. The flags are now updated using the information provided by RSW(2),
and the resulting reliability table is given in Figure 4.15. The flags declared from
RSW(1) and RSW(2) yield 10 PGEs in RSW(3), 8 of which are GE. It should also be
noted that the PBE that were declared removed potential BE from the table. Symbols at
positions 207 and 112 would have been included in the reliability table. These would
have resulted in BE if used. The decoding of RSW(3) is accomplished by erasing the 10
PGE in the table. This resulted in a decoding success in only 1 decoding trial. The flags
are modified using the information provided by RSW(3), and the resulting reliability table
is given in Figure 4.16. There are 11 PGE in RSW(4), and all are GE. This RSW
requires all 16 erasures for a successful decoding, and is accomplished with 4 decoding
trials. The flags are updated and the resulting reliability table is shown in Figure 4.17.
There are 15 PGE in RSW(5) and 14 are GE. The codeword contains 23 errors, and
cannot be decoded with the 16 erasures in the table. This codeword will require 15 out of
16 erasures to be GE for a decoding success. Two decoding trials were attempted on this
codeword. Decoding of RSW(6) is attempted by declaring erasures at the positions where
the 9 PGE have been flagged. This does not yield a successful decoding, so erasures are
declared 2 at a time until the maximum is reached, at which point a decoding success has
not been obtained. This required 5 decoding trials. RSW(7) is successfully decoded by
erasing all 12 positions with PGE flags, and decoding. RSW(7) required only 1 decoding

trial to decode successfully. The flags are updated, and the resulting reliability table is

107

given in Figure 4.18. RSW(8) contains 16 PGE, and 13 are GE. There are only 17 errors
in RSW(7), and is easily decoded in one trial by declaring 16 erasures. The flags are once
again updated and the resulting reliability table is given in Figure 4.19. Decoding of
RSW(5) is attempted a second time. New information has been provided by RSW(7) and
RSW(8). There are 17 PGE in RSW(5), and all are erased in the first decoding attempt.
In Method 3, more than 16 erasures can be declared if all are PGE. RSW(5) successfully
decodes and the updéted reliability table is given in Figure 4.20. RSW(6) has 20 PGE,
with 19 of these being GE. All 20 symbols are erased, and the word is successfully
decoded. The total number of trials for this frame is 25, which corresponds to an average
number of trials per RSW of 3.13. This is significantly less than the number of trials
required for erasure Method 2 to decode the same frame. The results of the simulation are

given in Table 4.3. It can be seen from the table that a gain of 0.25 dB is obtainable.

108

i [RSW(1) |RSW(2) {RSW(3) [RSW(4) | RSW(5) RSW(8)
| PGE, 16 | PGE, 16 | PGE, 16 | pGE, 16 PGE, 58
2 : PGE, 66 PGE, 75
3 1 paE, 197 |
4

5

6

7

8

9

10

1 15,158

12 1,55 -

" 3,203 |39, 229 1 22, 207

5 3 149,231 32,7 [30,125 | 25, 144 __

16 51,178 | 33,61 |31, 458 {30,125 [11,218 | 18,13
ff 6 3

Trials

Indicates an erasure hits an error (GE)

Figure 4.14 Reliability table after RSW(1) successfully decodes

109

i [RSW(1) [RSW(2) |RSW(3) [RSW(4) | RSW(5) [RSW(6) [RSW(7)

I PGE, 16 | PGE, 16 | PGE, 16 | PGE, 16 | PGE, 58

2 PGE, 66 | PGE, 66 | #GE, 66 | PGE, 89 | PGE, 75

3 PGE. 78 | PGE, 192] PGk, 192{ PoE, 194 PGE, 89 |

4 PGE, 97 {pGE, 194] 1,72 |pGE, 109
5 oE, 118 1,72 | 1,85 }rcE, 149]pGE, 149
6 PGE, 4 ¢} 185 | 2,18 lpoE, 191 [PGE, 19T
7 PGE, 97 2,21 } 337 568, 2
8

9

10

i

12

13

15 11,55
16 15,249
ﬁf 6 3 1
Trials

Indicates an erasure hits an error (GE)

Figure 4.15 Reliability table after RSW(2) successfully decodes

110

i JRSW(1){RSW(2)|RSW(3) RSW(7) | RSW(8)
l £, 89 | poE, 58 | PGE, 58
2 $| pGE, 75 | PGE, 75
3 PGE, 89 | PGE, 89
4 81pcE, 109

5 PGE, 149

7

8

9

10

11

12

13

14

15

16

ff 6 3 1 4

Trials

Indicates an erasure hits an error (GE)

Figure 4.16 Reliability table after RSW(3) successfully decodes

111

43!

$9POORP A[[yssa00ns () MSY 19)e 9[qel Aijiqeray L]y omSig

(D) 10113 ue $11Y 2INSLID UB SIIBOIPU]

U

I g 4 4 l £ 9 Jo

#

91

$1

A

€l

4

1

01

6

8

L

g i I 4

6b1 ‘30a} 641 504} 1 4} 65 ‘304 .
§01 ‘90d} 601 ‘04| pe7 ‘apa] € 394 b
68 '30d | 68 ‘40d [191 '30d}p6y ‘904 £
GL ‘a9d | ¢, ‘99d . i [4
96 ‘d0d | 8¢ ‘90d I
(8)MSA} (LIMSY (PMsI[(O)MSA [(TImsa| (DMSA| !

el

$9pooap A[nyssa0ons (L) MSY Jo1e d[qe AN[Iqenoy 8]y dmSKy

(40) 10112 ue $11Y 2INSLIS UL SAIBIIPU]

sjeuL
] I S 4 14 I € 9 jo
#
91
S1
pl
¢l
7l
¥
71 a0y ‘, v,;;j;'zs 304 01
gZi‘%ﬁ 217 ‘avd) 78 A94 : 6
111 304 451 304 08 "'Va'ov&j 8
131 ‘404 7#1°304}04] 304 L
— s s 9
0€7 ‘394 | s
161 d0d 857 “0d y
51 a0d 19180 f
501 ‘900, 261 '304] 761 ‘204 z
68 ‘304 68 *30d | 99 ‘aDd 1
($)MSY | (DMSA[(OMSA|(IMSY | (1) mSA| (ST | (2)msE| (DMsH| 1

i [RSW(l)|RSW(2)|RSW(3)|RSW(4) [RSW(5){RSW(6) |[RSW(T7) [RSW(8)
, PGE, 66 } #GE, 8%

2 BGE, 192 [PGE, 194

3 PGE, 194] POE, 161

: vor, 35 |PGE, 230

6

7

8

9

10

1

12

13

14

15

16

17

#
Tr?afls 6 3 I 4 3 5 1 I

Indicates an erasure hits an error (GE)

Figure 4.19 Reliability table after RSW(8) successfully decodes

114

i TRsw(n) [Rsw(2) [RsW(3) [RSW(4) | RSW(5) |RSW(6) [RSW(7) | RSW(8)
1 PGE, 89
2 |paE, 194
3 PGE, 161
4 PGE, 230
° PGE, l41
i PGE, 126
! PGE, 141
i PGE, 156
’ PGE, 212
- PGE, 18
H pGE, 27
- oz, 6
& BGE, T4
14 2GE, 144
3 PGE, 253
16 _PGE, 85
al) PGE, 57
'8 POE, 90
19 PGE, 103
#

of 6 3. 1 4 3 6 | l
Trials

Indicates an erasure hits an error (GE)

Figure 4.20 Reliability table after RSW(5) successfully decodes

115

Table 4.3 Simulation results using Method 3 with interleaving depth I = 8

Without Erasures Using Method 3

Byte Rate % Frames % RSW | % Frames % RSW | # of trials

Ey, /N after VD in error in error in error in error per RSW
1.7 0.093 100.0 95.2 94.7 78.1 9.7
1.75 0.086 99.8 89.7 83.1 59.2 8.56
1.8 0.079 99.4 79.9 64.1 37.7 6.68
1.85 0.072 97.0 66.1 42.8 205 4.54
1.9 0.066 91.6 52.3 23.6 9.6 3.03
1.95 0.061 81.6 37.3 13.2 4.6 2.19
2.0 0.055 66.8 24.9 6.7 1.9 1.51
2.05 0.05 46.9 14.9 2.8 0.6 1.27
2.1 0.046 32.7 8.5 0.6 0.08 1.13
2.15 0.042 19.4 4.4 0.2 0.0 1.07
2.2 0.038 10.1 1.9 0.0 0.0 1.03
23 0.031 1.0 0.2 0.0 0.0 1.0
24 0.025 0.2 0.0 0.0 0.0 1.0

As can bee seen comparing the results of the two methods in Tables 4.2 and 4.3,
the significant difference is the reduction in the average number of decoding trials needed
per RSW when using Method 3. The tradeoff in this reduction in the average number of
decoding trials is a slight increase in the percentage of frame and word errors using
Method 3. Method 2 outperforms Method 3 by a few percent. The BER curves for
Method 2 and Method 3 are given in Figure 4.21. Using erasure Method 2 and Method 3

resulted in approximately 0.3 dB and 0.25 dB gain respectively over the concatenated

system using no erasurcs.

116

0.1 T r | 1 |

0.01

No erasures

0.001

Erasure
Method 1

Pe Erasure
Method 2
104 - -
Erasure
Method 3
10> -
\(
1 10*6 | | | |] | 1
1.7 1.8 1.9 2 2.1 2.2 2.3 24 25

Figure 4.21 Simulation results of the concatenated system using
various erasure methods

117

Chapter 5

Conclusions

Performance of the concatenated coding system through the use of RS symbol
erasures has been demonstrated.' The first method investigated uses reliability
information generated by a modified Viterbi decoder. This information is derived from
the metric difference of two paths merging in each state. The reliability for the bits along
the surviving path are updated using this metric difference. This method yielded about a
0.1 dB improvement over the concatenated system using no erasures. This gain was
independent of the truncation length, interleaving depth, and number of soft decision
levels.

In the second method proposed, the reliability table is refined using information
provided by the decoded RSW in the deinterleaving frame. The error positions are
known in the decoded word, and the method searches for equal reliabilities in
neighboring, non-decoded RSW. If the reliabilities are the same, then symbols are
erased. This method yielded approximately 0.3 dB gain over the standard concatenated
system. The average number of decoding trials per RSW is substantially less than the
results presented by Paaske [7]. Using Method 3, the number of trials per RSW is

reduced even further. In addition, Methods 2 and 3 perform reasonably well at very low

118

values of Eb/No (i.e. < 1.9 dB). The cost is the increased complexity of having to use the
SOVA in place of the standard Viterbi decoder.

It has been shown that the use of convolutional code as the inner code and a Reed
Solomon code as the outer code provide considerable gains. The rate 1/2 K = 7
convolutional code concatenated with a (255, 223) t = 16 error correcting Reed Solomon
code yielded about 8 dB gain over uncoded BPSK and approximately 9 dB with an
interleaving depth of I = 8. The use of an interleaver with depth I = 8 gives a gain of
approximately 0.5 dB as compared to the same system using no interleaver. It has been
demonstrated that the use of a real system results in approximately a 0.3 dB loss when
compared to the ideal system using the same truncation length and number of soft
decision levels. It has been shown that a 0.15 dB improvement can be obtained by
increasing the number of soft decisions used from L. = 8 to L = 64. A gain of 0.2 dB is

attainable if the truncation length in the Viterbi decoder is increased from § = 32 to § =

100. These gains were obtained regardless of the interleaving depth used.

5.1 Future Research

Erasure method 1 declares RS symbol erasures by using reliability information
provided by the SOVA. This method could be improved by using the maximum a
posterori (MAP) algorithm in place of the SOVA. The MAP algorithm is an alternate
method for decoding convolutional codes. The Viterbi decoder finds the maximum a
posterori probability for the entire path through the trellis. The MAP algorithm, on the

other hand, finds the maximum a posterori probability for each outgoing bit. The MAP

119

Algorithm was designed to minimize the word error probability rather than the sequence
error probability as the Viterbi algorithm does. This algorithm is more complex than the
Viterbi, but easily provides log-likelihood (reliability) values at its output. The reliability
values generated by the MAP algorithm yield superior results when compared to the
SOVA, but is very complex. The Map algorithm could be used in place of the SOVA in
the concatenated coding system presented here.

The performance of Method 2 could also be improved upon. The special case
where GE are flagged BE, and vise versa, might be able to be detected and solved.
Several methods were tried unsuccessfully to fix the problem. Performance
improvements could be obtained by incorporating some of the elements used in Paaske’s
method, such as EP1, EP3, and EP4. In Paaske’s method, when the highly reliable
methods (EP1 and EP2) can nét decode some of the RSW in the frame, the backup
methods are used to exhaustively try and decode, which results in a high average number
of decoding trials per RSW. But if through the use of this exhaustive search, a previously
undecodable RSW is now correctly decoded, then this RSW can possibly help in the
decoding of other non-decoded RSW in the frame. This is where a large number of
decoding trials may be justifiable. When Methods 2 and 3 fail to decode a frame, there is
no backup method that might provide improvement. The lack of a backup procedure, is
one of the reasons that the number of trials is low compared to Paaske’s method. This
lack of a backup procedure is somewhat justified. In Paaske’s method, EP4 is used to
- systematically guess the positions of the errors. This guessing is effective when the

number of errors is not much larger than 18 or 19. For Methods 1 and 2, most RSW with

120

18 or 19 errors can be decoded using the initial decoding using Method 1. The SOVA
output provides the decoder with enough useful information to decode some of the RSW
that Paaske’s method would require EP4 to decode. For example, in section 4.5, there is
an example RS frame decoded using Method 2. Every RSW in the frame contains more
than 16 errors. If Paaske’s method was used to decode this frame, then EP4 would have
to be used to obtain the first decoded RSW. Using Method 2, three RSW were
successfully decoded .on the first trial, and the others were successfully decoded using
information provided by these decoded RSW.

Another possible improvement is the use of iterative decoding. Iterative decoding
takes the output of the Reed Solomon decoder and feeds this to the input to the Viterbi
decoder. Paaske [7] used iterative decoding in his paper. If there are still undecodable
RSW in the deinterleaving frame, the corrected codewords are sent back to the input to
the Viterbi decoder. The corrected bits give the Viterbi decoder some of the states that
the correct path took. Forcing the Viterbi decoder through these known states may help
the Viterbi decoder in a better estimate of the correct path. The error rate at the output
will be reduced, which will result in more RSW being decoded on the second trial.
Iterative decoding could be used with Methods 2 and 3 presented in this report. There is
the potential for larger gains using this repeated Viterbi decoding because the first
iteration will have corrected some of the RSW, and provide the second Viterbi trial with
additional information. It should be noted that this repeated Viterbi decoding is effective
only when the output of the RS decoder contains some corréctly decoded RSW. Methods

2 and 3 allow for a reduction in RSW failure for Eb/No values at as low as 1.7 dB SNR.

121

Even though the reduction at the very low values of Eb/No is not very large, this little bit
of reduction would help greatly if used in repeated Viterbi decoding trials.

The systems investigated in this report could be simulated using SPW. SPW is a
useful tool for modeling of communication systems. Many signal processing blocks such
as filters, modulators, and channel models are contained in SPW’s library for use in the
design of larger, complex systems. The SOVA and the errors and erasures RS decoder
are currently not in any of the libraries found in SPW. SPW does allow for “custom
coded blocks”. This tool can take C code, and create an SPW block based on this code.
This custom coded SPW block can then be used in combination with other SPW biocks
in the design of communication systems. ‘

The SOVA could be implemented in a single chip design. The method presented

by Hagenauer and Hoeher could be used, or another method presented in [2].

122

Appendix A

Simulation Flow Charts

Convert bit reliabilities
into RS symbol
reliabilities

Compile a table of the
16 least reliable RS
symbols

Set the number of
erasures = 0
(Ne = 0)

Attempt RS decoding
using Ne erasures

Successful Yes

decoding?

Is Ne = Max #
of erasures?

Set Ne = Ne + 2 Stop

Figure A.1 Flow chart for erasure Method 1

123

5| Attempt to decode using

Fill deinler]eaving‘frame

erasure Method |

Set id = # of decoded
RSW

Yes
[sid=17?

Yes

Update flags using UFP

Compile reliability table

using URTP

Stop

Figure A.2 Flow chart for erasure Method 2

124

Generate data

Convolutional
Encode data

h 4

Interleave 1

Reed Solomon
encode data

Sample/modulate
data

Tx filter data

Add noise to data

Rx filter data

Demodulate

Viterbi or SOVA
decode

Deinterleave

RS decode using no
erasure method or
method 1, 2, or 3

Compare to
origional data and
count the number of
errors

125

Figure A.3 Flow chart for the real simulation

e e s = —— o~ — . e e — ———_—— . ——— ———— —— — — —— — — o — — -]

F Generate data

Convolutional
Encode data

l Interleave -

Reed Solomon
encode data

Add noise sample
to data

A4

Viterbi or SOVA
decode

Deinterleave

A 4

RS decode using no
erasure method or
method 1, 2, or 3

Y

Compare to
origional data and
count the number of
errors

126

Figure A.4 Flow chart for the ideal simulation

Appendix B

Program Listing

B.1 Memory allocation functions

int *ivector(long nh)

{

int *v;

v = (int *)calloc(nh, sizeof(int));
return v;

void free_2d_int_matrix(int row, int **a)

{

int 1;

for(i=0;i<row;i++)
free(*a);
free(a);

}

int **int_matrix_2d(int row, int col)
{

int i;

int **a;

a = (int **)calloc(row, sizeof(int *));
for(i=0;i<row;i++) {

a[i] = (int *)calloc(col, sizeof(int));
}

return a;

}

double **double_matrix_2d(int row, int col)

{
inti;
double **a;

a = (double **)calloc(row, sizeof(double *));
for(i=0;i<row;i++) {
a[i] = (double *)calloc(col, sizeof(double));

}

return a;

}

void free_2d_double_matrix(int row, double **a)

{

127

int 1;
for(i=0;i<row;i++)

free(*a);
free(a);

double *dvector(long nh)
{

double *v;

v = (double *)calloc(nh, sizeof(double));
return v,

B.2 Random number generators

double ran2(long *idum)

/* Ran2 is a long period randum number generator (> 2*10218). Returns */

/* a uniform random deviate between 0.0 and 1.0. Call with idum a */
/* negative integer to initialize; thereafter, do idum between successive */
[* deviates in a sequence. This subroutine is taken from the book */
/* "Numerical recipies in C" by Saul A. Teukolsky, William T. Vetterling, */
/* and Brian P. Flannery. */
{

int j;

long k;

static long idum2 = 123456789;
static long iy = 0;

static long iv[NTAB];

double temp;

if (*idum <= 0)
{
if (-(*idum) < 1) *idum=1;
else *idum = -(*idum);
idum2 = (*idum);
for (j=NTAB+7; j>=0; j--)-
{
k = (*idum)/1IQ1;
*idum=IA 1 *(*idum - k*IQ1) - k*IR1;
if (*idum < 0) *idum += IM1;
if < NTAB) iv[j} = *idum;
}
1y = iv([0];
}
k = (*idum)/IQI;
idum = IA1(*idum - k*IQ1) - k*IR1;
if (*idum < 0) *idum += IM1;
k = idum2/1Q2;

128

idum2 = [A2*(idum?2 - k*IQ2) - k*IR2;
if (idum2 < 0) idum?2 += IM2;

j=ly/NDIV;

}

iy = iv[j] - idum?2;

iv[j] = *idum;

if (iy < 1) iy += IMM;

if ((temp = AM¥*iy) > RNMX) return RNMX;
else return temp;

float gasdev2(long *idum)

/*
*
[*
/*
/*
{

This function returns a normally distributed deviate with zero mean and unit variance */
This function is more computationally efficient than gasdev| because there are no trig */

function calls and the funtion saves the exira deviate for the next funtion call. This */
subroutine is taken from the book "Numerical recipies in C" by Saul A. Teukolsky, */
William T. Vetterling, and Brian P. Flannery. */

static int iset = 0;
static float gset;
float fac, rsq, v1, v2;

if(iset == 0)
{
do
{
vl = 2.0*ran2(idum) - 1.0;
v2 = 2.0*ran2(idum) - 1.0;
rsq = vI*vi4+v2*v2;
} while (rsq >= 1.0 ll rsq == 0.0);
fac = sqrt(-2.0*log(rsq)/rsq);

/* Now make the Box-Muller transformation to get two normal deviates. */
/* Return one and save the other for the next call */

gset = v1*fac;
iset = 1; /* Set flag */
return v2*fac;

}

else

{

. /* We have an extra deviate handy. Unset the flag and return it */

}

in

{

iset=0;
return gset;

}

t bitgen(long *idum)

double a;
int bit;

a =ran2(idum);

129

if (a >= 0.5)

bit =1,
else

bit =0;
return bit;

}

void add_noise(long *idum, double *data, double nn, double sigpow, double EbNo,
double gain)
{

int i;
double var, sd, A;

A = gain*pow(10.0, (EbNo/10.0));
var = sigpow*Nss/(2*A);
sd = sqrt(var);

for (i=0; i<nn; i++)
data[i] += sd*gasdev2(idum);

}
B.3 Filter

void filter(double *data, int M, double *h, double *x, long nn)
{

int i, j;
double sum, *x;

X = dvector(2*M+1);

for(i=0; i<=2*M; i++) x[i] = 0.0;
x[2*M-1] = data[0];
x[2*M] = data[1];

for(i=2; i<nn+2*M; i++)
{
sum = 0.0;
for(j=0; j<2*M; j++)
{
sum += x[j]*h[jI;
x[j] = x[+11;
}
x[2*M] = data[i];
data[i-2] = sum;
}
free(x);

}

130

B.4 Modulator/Demodulator

void modulate (double *data, int *v , long N)

{
int i, j;
double A;

A = sqrt(2.0*Eb/Tb);

for(i=0;i<N;i++)
{
if(v{i]==0)
{
for(j=0;j<Nss;j++)
data[i*Nss + j] = -A;
}

else

{
for(j=0;j<Nss;j++)
data[i*Nss + j] = A;
}
1

}
void demod(double *data, int *out, long N)
{

int i;

double I;

for(i=0;i<N;i++)

{

I= data[i*Nss+Nss/2 -1] + data[i*Nss+Nss/2];

if(I >= 0.0) out[i] = I;
else outfi] = 0;

}
void demodsoft(double *data, int *out, long N, int **soft_metric, int Q, int a)
{

inti, j, level, **num_bits_per_level;

double I, b, amp, *prob;

amp = 2.0;

num_bits_per_level = int_matrix_2d(2, Q);
prob = dvector(Q);

131

for(i=0; i<2; i++)
{
for(j=0; j<Q; j++)
num_bits_per_level[i]{j] = 0;

}

for(i=0;i<N;i++)
{
I= (data[i*Nss+Nss/2 -1] + data[i*Nss+Nss/2])/2.0,

for(j=0; j<Q; j++)
if(I>=amp*(2*j-Q)/Q && I<= amp*(2*(j+1)-Q)/Q)
level = j;

if(I >= amp) level = Q-1;
if(I <= -amp) level =0;

num_bits_per_level[out[i]][level] += 1;

outfi] = level;

for(i=0; i<Q; i++)
prob[i] = (double)(num_bits_per_level[0][i] + num_bits_per_level[11[Q-i-1] + 1)/(2*N+Q);

b = -log(prob[Q-1])/log(2.0);

for(i=0; i<Q; i++)
{ v
soft_metric[0][i] = (int)(floor)(a*(log(prob[i])/log(2.0) + b));
soft_metric{1]{Q-i-1] = soft_metric[0][i];

}

free_2d_int_matrix(2, num_bits_per_level);
free(prob);

B.5 Calculate power

double calc_power(double *data, long nn)

{
int1;
double sum, P;
sum = 0.0;
for(i=0; i<nn; i++)

sum += pow(data[i], 2);

P = sum/(nn);

132

return P;

}

B.6 Interleaver and deinterleaver

void interleave(int *v, int rows, int rs_n, int rs_m, int I, int num)

{

/* rows =rs_m*rs_n, [= interleaving depth */
int ii, i, j, I, **matrix;

matrix = int_matrix_2d(rows, I);

/* Fill matrix by column */

for (1i=0; li<num; ii++)
{
for(i=0; i< I; i++)
for(j=0; j<rows; j++)
matrix[jl{i} = v{ii*rows*I + i*rows +jl;

/* Exit matrix by row */
for (i=0; i<rs_n; i++)
for(j=0; j<I; j++)
for(1=0; l<rs_m; I++)

v[ii*rows*I + I*I*rs_m +j*rs_m + 1] = matrix[i*rs_m-+1][j];

}
free_2d_int_matrix(rows, matrix);
}

void deinterleave(int *v, int rows, int rs_n, int rs_m, int I, int num)

/* rows =rs_m*rs_n, I = interleaving depth */
int ii, 1, j, [, **matrix;

matrix = int_matrix_2d(rows, I);

/* Fill matrix by row */

for (ii=0; ii<num,; ii++)
{
for (i=0; i<rs_n; i++)
for(j=0; j<I; j++)
for(1=0; l<rs_m; |++)
matrix[i*rs_m+1](j] = v[ii*rows*I + i*[*rs_m +j*rs_m + 1] ;

/* Exit matrix by column */

133

for (i=0; i<I; i++)
for(j=0; j<rows; j++)
v{ii*rows*I + i*rows +j] = matrix[j][i];

}

free_2d_int_matrix(rows, matrix);

B.7 Convolutional encoder and decoders

int bin2dec(int *temp, int a)

{

int 1, sum;

sum = 0;
for(i=0; i<a; i++) sum += temp[i]*pow(2, a-i-1);
return sum;

}

void dec2bin(int *temp, int dec, int a)

{

int i, sum, c;
sum = dec;
for(i=0; i<a; i++)
{
c = pow(2, a-1-i);
if (sum >= ¢)
{
temp[i] = 1; .
sum -= ¢;
)

else temp[i] = 0;
}
1

void conv_encode(int *u, int n, int k, int m, int num)
{ ‘int ii, 1, j, |, K, trunc_length, **g, **mem, *out;
-FILE *gen;
gen= fépen("kln2m6.dat","r");

K=m+l; /* The constraint length */
trunc_length = 100;

g = int_matrix_2d(n, k*K);

mem = int_matrix_2d(k, K);
out = ivector(n*num-+trunc_length);

134

/* Obtain the generator matrix */

for(i=0; i<n; i++)
for(j=0; j<K*k; j++)
fscanf(gen, "%d", &glil(j]);

for(ii=0; ii<num-+trunc_length; ii++)
{
/* Shift the contents of memory */
for(i=0; i<k; i++)
for(j= K-2; j>=0; j--)
mem[i][j+1] = mem[i][j];

/* Insert new bits intd the encoder */
for(i=0; i<k; i++) mem{i][0] = u[ii*k + i];

/* Begin encoding process */
for(i=0; i<n; i++)
{
out[ii*n +i] = 0;
for(j=0; j<k; j++)
for(1=0; I<K; 1++)
out[ii*n +i] *= glil(j*K + 1] & mem(j}[1];

)
for(i=0; i<n*num; i++) u[i] = out{i];

free(out);
free_2d_int_matrix(n, g);
free_2d_int_matrix(k, mem);
fclose(gen),

int conv_decode(int *v, int n, int k, int m, int num, int **soft_metric)

{

int iii, ii, i, j, 1, a, 1, K;

int starting_state, part_metric, old_state, flag;

int max_metric, max_state, min_metric, num_states, num_inputs;
int **g, **mem, **path, **path_next;

int **prev_state, **branch_out, *counter, **branch_in;

int *metric, *prev_metric, *out, *state;

int *input, *new_state, *r, trunc_length;

FILE *gen;
trunc_length = 32;

K=m+l; /* The constraint length */

135

num_states = pow(2, m*k);
num_inputs = pow(2, k);

prev_state = int_matrix_2d(num_states, num_inputs);
branch_in = int_matrix_2d(num_states, num_inputs);
branch_out = int_matrix_2d(num_states, num_inputs);
path = int_matrix_2d(num_states, trunc_length);
path_next = int_matrix_2d(num_states, trunc_length);

g = int_matrix_2d(n, k*K);

mem = int_matrix_2d(k, K);
metric = ivector(num_states);
prev_metric = ivector(num_states);
counter = ivector(num_states);
input = ivector(k);

out = ivector(k);

state = ivector(k*m);

new_state = ivector(k*K);

r = ivector(n);

gen = fopen("k1n2mé6.dat","r");
/* Obtain the generator matrix */

for(i=0; i<n; i++)
for(j=0; j<K*k; j++)
{

fscanf(gen, "%d", &glil[j1);

}

fclose(gen);
for(i=0; i<num_states; i++) counter{i] = 0;

for(iii=0; ili< num_states; iii++)
{
for(ii=0; ii< num_inputs; ii++)
{ .
/* Obtain the binary representation of the state of the encoder */
dec2bin(state, iii, k*m);

/* Initialize the encoder memory to the current state */
for(11=0; li<k; ll++)
for(1=0; l<m; I++)
mem[1l]}[1] = state{li*m + 1];

/* Shift the contents of memory */
for(i=0; i<k; i++)
for(j= K-2; j>=0; j--)
mem[i][j+1] = mem{i][j];

136

/* Obtain the binary representation of the encoder input */
dec2bin(input, ii, k);

/* Insert new bits into the encoder */
for(i=0; i<k; i++) memli][0] = input[i];

/* Begin encoding process */
for(i=0; i<n; i++)
{

out[i] = 0;

for(j=0; j<k; j++)

for(1=0; I<K; 1++)
out[i] *= glill[j*K + 1] & mem([j][l];

}

/* Find out the new state of the encoder */
for(11=0; lI<k; 1l++)
for(1=0; I<m; 1++)
new_state[l1*m+1] = mem[l1}[1];

a = bin2dec(new_state, k*m);

prev_state{a][counter[a]] = iii;
branch_out[a][counter[a]] = bin2dec(out,n);

branch_in[iii][ii] = a;
++counterfal;

}

} /* End obtaining the decoder information */
starting_state = 0;

for(i=0; i< num_states; i++) prev_metric[i] = -99;
prev_metric[starting_state] = 0,

for(iii=0; ili<num+ trunc_length; iii++)

{
/* Input the latest word */
for(i=0; i<n; i++) r[i] = v[iii*n+i];

for(i=0; i< num_states; i++)

{

metric[i] = -99;
for(j=0; j< num_inputs; j++)
{
part_metric = prev_metric{prev_state[i][j]];
for(1=0; I<n; 14++)
part_metric += soft_metric[((branch_out[i]{j] >> D& 1)][r[n-1-1]];

if(part_metric > metric[i])

137

{
metric[i] = part_metric;
old_state = prev_state[i][j];
}
t

/* Now we have the old state and the metric, update the path info */
/* shift the path information */

for (1=0; I< trunc_length -1; 1++)
path_next[i][1] = path[old_state][1+1];

/* Insert the new branch input into the path */

for(1=0; l<num_inputs; 4++)
if(branch_in[old_state][l] == i)
{
path_next[i][trunc_length-1] = 1;
}

}

/* Obtain the output for this iteration if trunc_length bits have entered the buffer */

if(iii >= trunc_length-1)
{

max_metric = 0;
/* Determine the path with the maximum metric */
flag = 0;

for(i=0; i< num_states; i++)
{
if(metric{i] > max_metricy
{
max_metric = metric{i];
max_state = i;
if(max_metric > 100000) flag = 1;
))
}

if(flag)
{
min_metric = max_metric;
for(i=0; i< num_states; i++)
{
if(metric[i] < min_metric)
{
min_metric = metric[i];
}
}
for(i=0; i<num_states; i++) metric[i] -= min_metric;

}

138

/* Obtain the output from the path with the maximum metric */

for(i=0; i<k; i++) v[(iii-trunc_length+2)*k-i-1] = ((path_next[max_state]{0]>>i)&1);
}

for(i=0; i< num_states; i++) prev_metric[i] = metric[i];

for(i=0; i<num_states; i++)
for(j=0; j<trunc_length; j++)
path[i](j] = path_next[i][j];

free_2d_int_matrix(num_states, prev_state);
free_2d_int_matrix(num_states, branch_in);
free_2d_int_matrix(num_states, branch_out);
free_2d_int_matrix(num_states, path);
free_2d_int_matrix(num_states, path_next);
free_2d_int_matrix(n, g);
free_2d_int_matrix(k, mem);

free(metric);

free(prev_metric);

free(counter);

free(input);

free(state);

free(new_state);

free(r);

free(out);

return(0);

int SOVA(int *v, int n, int k, int m, int num, int **soft_metric, int al)

{

int iii, i, i, j, 1, a, Il, K, si, s2, m2;

int starting_state, part_metric[2], old_state[2], flag;

long max_metric, max_state, min_metric, num_states, num_inputs;
int **g, **mem, **path, **path_next,**prev_state;

int **branch_out, *conv_counter, **branch_in, *metric;

int *prev_metric, *out, *state, *input, *new_state, *r;

double c, delta, **L, **¥L_next;

int L_Q, L_max, nlevels, trunc_length;

139

FILE *gen;
gen = fopen("k1n2mé6.dat","r");
K=m+1; /* The constraint length */

L.Q=8;

L_max = 8;

trunc_length = 32;
num_states = pow(2, m*k);
num_inputs = pow(2,k);
nlevels = pow(2, L_Q);

g = int_matrix_2d(n, k*K);

mem = int_matrix_2d(k, K);

metric = ivector(num_states);

prev_metric = ivector(num_states);

conv_counter = ivector(num_states);

input = ivector(k);

out = ivector(n);

state = ivector(k*m);

new_state = ivector(k*K);

r = ivector(n);

prev_state = int_matrix_2d(num_states, num_inputs);
branch_in = int_matrix_2d(num_states, num_inputs);
branch_out = int_matrix_2d(num_states, num_inputs);
path = int_matrix_2d(num_states, trunc_length);
path_next = int_matrix_2d(num_states, trunc_length);
L. = double_matrix_2d(num_states, trunc_length);
L_next = double_matrix_2d(num_states, trunc_length);

/* Obtain the generator matrix */
for(i=0; i<n; i++)

for(j=0; j<K*k; j++)
{

fscanf(gen, "%d", &g[il[j]);
}
fclose(gen);

num_states = pow(2, m*k);
num_inputs = pow(2, k);

¢ = log(2.0)/(double)(al);

for(i=0; i<num_states; i++) conv_counter{i] = 0;
for(iii=0; iii< num_states; iii++)

{

for(ii=0; ii< num_inputs; ii++)

{

140

/* Obtain the binary representation of the state of the encoder */
dec2bin(state, iii, k*m);

/* Initialize the encoder memory to the current state */
for(11=0; li<k; ll++)

for(1=0; l<m; l++)

" mem[ll][1] = state[Il*m + 1];

/* Shift the contents of memory */
for(i=0; i<k; i++)
for(j= K-2; j>=0; j--)
mem[i]{j+1] = mem[i}[j];

/* Obtain the binary representation of the encoder input */
dec2bin(input, ii, k);

/* Insert new bits into the encoder */
for(i=0; i<k; i++) mem[i]{0] = inputfil;

/* Begin encoding process */
for(i=0; i<n; i++)
{

out[i} = 0;

for(j=0; j<k; j++)

for(1=0; I<K; 1++)
out[i] A= g[i]j*K + 1] & mem(j][1];

}

/* Find out the new state of the encoder */
for(11=0; ll<k; H++)
for(1=0; I<m; I++)
new_state[11*m+1] = mem(ll]{1];

a = bin2dec(new_state, k*m);

prev_state[a]{conv_counter{a]] = iii;
branch_out[a}{conv_counter{a]} = bin2dec(out,n);
branch_in[iii][ii] = a;

++conv_counter[a];

}

} /* End obtaining the decoder information */
starting_state = 0;

for(i=0; i< num_states; i++) prev_metric[i] = -99;
prev_metric[starting_state] = 0;

for(i=0; i<num_states; i++)

for(j=0;j<trunc_length; j++)
L[i]{j]1 = 99999.0;

141

for(iii=0; iii<num+trunc_length; iii++)

{
/* Input the latest word */
for(i=0; i<n; i++) r[i] = v[iii*n+i];

for(i=0; i< num_states; i++)

{
metricli] = -99;
m2 = -99;
for(j=0; j< num_inputs; j++)
{

old_state[j] = prev_state[i]{j];
part_metric[j] = prev_metric[old_state[j]];
for(1=0; I<n; 1++)
part_metric[j] += soft_metric[((branch_out[i][j] >> D& 1)][r[n-I-11];

}

/* Determine the maximum metric and the second maximum metric */

for(j=0; j<num_inputs; j++)
{
if(part_metric[j] >= metric[i])
{
sl = old_state[j];
metric[i] = part_metric[j];
a=j;
}
}

for(j=0; j<num_inputs; j++)
{
if (j==a) continue;
if(part_metric[j] >= m2)
{
s2 = old_state[j];
m2 = part_metric[j];
}
}

/* Now we have the old state and the metric, update the path info */
/* Calculate delta */

delta = (double)c*(metric[i] - m2);

/* Update the reliability information */

for(j=1; j<=trunc_length-m+1; j++)

{
if(path[s1][j] != path[s2][j])

142

{
if(L[s1](j] >= delta)

L_next[i}{j-1] = delta;
else

L_next[i]{j-1] = L[s1][j];
}

else
L_next[i](j-1] = L{s1][jI;

}

for(j=trunc_length-m+2; j<trunc_length; j++)
L_next[i][j-1] = L{s1][j];

/* shift the path information */

for (1=0; I<trunc_length-1; 1++)
path_next[i][1] = path[s1]{1+1];

/* Insert the new branch input into the path */

for(1=0; l<num_inputs; [++)
if(branch_in[s1]{1] ==1)
{

}
L_next[i]{trunc_length-1] = 10000.0;

}

path_next[i][trunc_length-1] = ;

/* Obtain the output for this iteration if trunc_length bits have entered the buffer */

if(L_DEBUG)
{

printf("\nReliabilities\n");

for(1=0; l<num_states; I++)

{
printf("\n");

for(i=0; i<trunc_length; i++)

{

}
}

printf("%3.31f ", L_next{1}[i]);

if(PAUSE) getchar();
printf("\nbits in paths\n");

for(1=0; l<num_states; ++)
{
printf("\n");

143

for(i=0; i<trunc_length; i++)

{
printf("%d ", path_next[1][i]);
}
}
if(PAUSE) getchar();

}

if(iii >= trunc_length-1)

{

if((iii-trunc_length+1)%8 == 0)
{ .

max_metric = 0;
/* Determine the path with the maximum metric */
flag = 0;

for(i=0; i< num_states; i++)
{
if(metric[i] > max_metric)
{
max_metric = metric[i];
max_state = i;
if(max_metric > 1000000) flag = 1,
}
}

if(flag)

{
min_metric = max_metric;
for(i=0; i< num_states; i++)

{
if(metric[i] < min_metric)
{
min_metric = metric{i];
}
}

for(i=0; i<num_states; i++) metric[i] -= min_metric;

}

/* Obtain the output from the path with the maximum metric */

for(j=0; j<8; j++)
{

for(i=1; i<= nlevels; i++)
{
if((L_next[max_state][j] >= (double)(i*L_max/nlevels)) &&
(L_next[max_state]{j] < (double)((i+1)*L_max)/nlevels))
{

if(path_next[max_state][j] == 1) vl[iii-trunc_length+1+j] = i;

144

else v[iii-trunc_length+1+j] = -i;

break;

}

}

if(L_next[max_state][j] > [._max)

{
if(path_next{max_state]{j] == 1) v[iii-trunc_length+1+j] = nlevels;
else v[iii-trunc_length+1+j] = -nlevels;

}

if(L_next[max_state][j] < L_max/nlevels)

{
if(path_next{max_state]{j] == 1) vl[iii-trunc_length+1+j] = 1;
else vl[iii-trunc_length+1+j] =-1;

}

}
}
}

for(i=0; i< num_states; i++) prev_metric[i] = metric[i];

for(i=0; i<num_states; i++)
for(j=0; j<trunc_length; j++)
{
path[i][j] = path_next[i][j];
L[i}{j] = L_next[i][j];
}
}

free(metric);

free(prev_metric);

free(conv_counter);

free(input);

free(out);

free(state);

free(new_state);

free(r);

free_2d_int_matrix(n, g);
free_2d_int_matrix(k, mem);
free_2d_int_matrix(num_states, prev_state);
free_2d_int_matrix(num_states, branch_in);
free_2d_int_matrix(num_states, branch_out);
free_2d_int_matrix(num_states, path);
free_2d_int_matrix(num_states, path_next);
free_2d_double_matrix(num_states, L);
free_2d_double_matrix(num_states, I,_next);

return(0);

145

B.8 Reed Solomon encoders and decoders

void make_GF_table(int m, int *GF_table, int *dec_table, int GF_poly)

/* This procedure generates the Galois Field GF(2*m). Information */

/* is stored in two lookup tables (dec_table and GF_table). */
/* */
/* GF_table[i] = base ten number, where 'I' is the power of alpha */

/* dec_table[i] = power of alpha, where 'i' is the base ten repersentation. */
/* */
/* For Example: In GF(16) */
/* */
/# a*6 = 0011 = 3 (Base ten, decimal equivalent) */
/% : */
* is the same as */
/* */
/* GF_talble[6] =3 or dec_table[3]1=6 */
* ' */
/* These two tables are used to transform a number back and fourth */
/* between the two representations (GF and decimal). */
/* This is done in order to perform Galois Field arithmatic. When */
/* adding, it is easier to use the decimal representation, because adding */
/* two numbers, a and b, is a”b, where ' is exclusive-or. */
/* If a and b were in GF powers of alpha representation, then adding ~ */
/* the two numbers becomes: */
r* */
/* GF_table{a] ~ GF _table[b] =c¢ */
r* */
/* Multiplying two numbers is easier to use the powers of alpha */
/* representation. For example, in GF(16) */
* alpha”4 x alpha”5 = alpha”9 */
/* Multiplication is acheived by simply adding the powers of alpha (4+5)*/
/* This addition is modulus g-1. */
/* alpha”14 x alpha”7 = alpha*21 mod (15) = alpha7 */
/* Due to the fact that the element zero is not represented in the */
/* GF_table because in the powers of alpha representation, 0 is actually */
/* equal to alpha®0 = 1. So the GF representation for the element 0 is -1 */
/* Care has to be taken when multiplying two elements. The multiplying */
/* can only take place if a or b is not equal to -1. Else the result is equal */
/* tozero. So dec_table[0] =-1, but GF_table[-1] does not equal */
/* zero. This returns an error because indixes of arrays can not have */
/* negative values. */
/* */
/* GF_poly is the irriducable (or primitave) polynomial that is used to ~ */
/* generate the field. For example, for m = 4, the irriducable */
/* polynomial is: - */
* */
/* XM+ X+1=0 or XM =X+1 = 1100 = 12 */
* */
/* The X" =12 is the way GF_poly is stored. The field is created by ~ */
/* repeated right shifts (multiplication by alpha). If a'l' is right shifted */
/* from the right most position (corresponding to alpha*3), we will have */
/* alpha™4. But alpha™4 is equal to alpha + | (1100 =12), s0 12 is */

146

/* 'x-or' ed with the result. */

{

inti, q;

GF_table[0] = pow(2, (m-1));
q = pow(2, m);

for(i=1; i<qg-1; 1++)
{
if (GF_table[i-11& 1 ==1)
{
GF_table[i] = GF_table[i-1] >> 1;
GF_table[i] = GF_table[i] » GF_poly;
}
else GF_table[i] = GF_table[i-1] >> [;
}
for(i=0; i<q-1; i++) dec_table[GF _table[i]] =1;
dec_table[0] = -1;
}

void rs_encode (int *data, int n, int k, int m, int num)

/* The following procedure encodes a data vector using a Reed Solomon */

/* code. The parameters are defined as follows: */
* */
/* m = number of data bits per symbol */
/* q=2"m. specifies the field GF(q) = GF(2*m) */
/* n=q-1 the block length */
/* t= maximum number of errors that can be corrected */
/* k=n-2* the number of information bits per block */
/* num = the total number of blocks to be encoded */
/* data = the uncoded data vector */
r* */

/* The field is first generated by calling the procedure 'make_GF_table'. */
/* Then the systematic encoding is accomplished by using feedback shift */
/* registers to generate the parity symbols. The connections are specified */
/* by the generator polynomial g[]. */

{

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576};
inti, i, j, I, c1, t, sum;
int *u, *vv, *g *datal, *GF_table, *dec_table;

t= (n-k)/2;

GF_table = ivector(n+1);
dec_table = ivector(n+1);
g = ivector{n-k+1);

u = ivector(k);

vv = ivector(n);

datal = ivector(n*m*num);

147

make_GF_table (m, GF_table, dec_table, GF_poly[m]);
for (i=0; i<= n-k; i++) g[i] = 0;

g[0] = GF _table[1];
g[1] = GF __table[0];

/* Create the generator polynomial g(X) */
for (i=2; i<= n-k; i++)
{
gli] = GF_table[0];
for (j=i-1; j>0; j--)
if (g(j] '=0) glj] = glj-1] » GF_table[(dec_table[g[j]] + i) % n];
else g[j] =glj-11;
g[0] = GF_table[(dec_table[g[0]] + 1) % n];
}

/* Change g to GF representation */
for(i=0; i<= n-k; i++) g[i] = dec_table[g[i]];

for (ii = 0; ii <num; ii++)
{
for(j = 0;j <k; j++)
{
ufjl=0;
for (1=0;1<m;l++)
ufj} += data[it*k*m + j*m +l]*pow(2, m-1-1);
} .
for (i=0; i< n-k; i++) v{i] = 0;
for (i=k-1; i>=0; i--)
{
¢l = dec_tablefu[i}*vv{2*t-1]];
if (cl !=-1)
{
for(j=2*t-1; j>0; j--)
if (g[j] !=-1) vv[j] = vv[}-1]"GF_table[(g[j]+c1)%n];
else vv[j] = vv[j-11;
vv[0] = GF_table[(g[0] + c1)%n];
}
else
{ .
for (j= n-k-1; j>0; j--)
vv[jl = vv[j-11;
vv[0] =0;
}
}

for(i=0; i<k; i++) vv[i+n-k] = u[i];

for(i=0; i<n; i++)
{
sum = vvl[i];
for (j=0; j<m; j++)
{
cl = pow(2, m-j-1);

148

}

if (sum >=c¢1)

{
datal [ii*n*m +i*m +j] = I;
sum -=cl;

}

else datal [ii*n*m + i*m +j] = 0;

}
}
}

for (i=0; i<n*m*num; i++) data[i] = datal[i];

free(datal);
free(GF_table);
free(dec_table);
free(vv);
free(g);

free(u);

void rs_decode(int *data, int *counter, int n, int k, int g, int m, int num)

[*
/*
/*
/*
/*
/*
/*
/*
/*
[*
J*
/*
/*
/*
/*
/*
/*
/*
/*
/*

(

The following procedure decodes a Reed Solomon encoded data */
vector. This RS decoder has been modified to handle erasures. An ~ */

erased position is denoted -2'. The code can correct e errors and f */
erasures if 2*e + f <= dmin where dmin is equal to n - k or 2*t. */
The parameters are defined as follows: */
*/
m = number of data bits per symbol */
q =2"m specifies the field GF(q) = GF(2"m) */
n=q-1 the block length */
t = maximum number of errors that can be corrected */
k=n-2*% the number of information bits per block */
num = the total number of blocks to be encoded */
data = the uncoded data vector */
lambda = The error locator polynomial : */
S = The syndrome polynomial ' */
*/
The decoding is done using the Berlekamp-Massey algorithm. Details */

of the algorithm can be found in "Theory and Practice of Error Control */
Codes" by Richard E. Blahut. This procedure can handle non-erasure */
decoding also. */

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576}:

int i, ii, j, 1, t, rr, sum, L, c1, deg_lambda, num_erasure, delta_r;
int erasure, error, decode_flag, num_errors, numer, den;

int *GF_table, *dec_table, *r, *U, *S, *lambda, *omega,;

int *B, *T, *tmp, *beta;

t = (n-k)/2;

149

GF_table = tvector(q);
dec_table = ivector(q);
beta = ivector(n);

r = ivector(n);

U = ivector(n);

S = ivector(n);

T = ivector(n);

B = ivector(n);

tmp = ivector(n);
lambda = ivector(n);
omega = ivector(2*t+1);

/* Create GF(2"m) field */

make_GF_table (m, GF_table, dec_table, GF_poly[m});

for (ii = 0; ii < num; ii ++)

{

decode_flag = 0;
num_erasure = (;
for(j =0;j <n; j++)
{
fjl=0;
sum = 0;
erasure = 0;
for (1=0;1<m; l++)
{
if (data[ii*n*m + j*m +1] == -2) /* Erased bit */
{
Ulnum_erasure] = j;
if (erasure == 0)
{
num_erasure++;
erasure = 1;
}
il =-1;
data[ii*n*m + j*m +1] = 0;
break;
}
else sum += data[ii*n*m + j*m +1]*pow(2, m-1-1);
}
if (t[j] 1=-1) r[j] = dec_table[sum];
}

error = 0;

/* Compute the syndrome */
for(i=1; i<= n-k; i++)
{
S[i] =0;
for(j=0; j<n; j++)
if(r[j] '=-1)
S[i] *= GF_table[(r{j] + 1*j) % n];

150

if (S{i] !=0) error = 1; /* If nonzero syndrome, there is an error*/

)
S[0] = 0;

/* Convert to GF representation */
for(i=1,; i<=n-k; i++) S[i] = dec_table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */
{
for(i=0; i < n; i++)
{
lambda[i] = 0;
B[i] =-1;
Tli]=0;
}

lambda[0] = GF_table[0]; /* =1 */
L=0; .
deg_lambda = 0,

B[0]=0;, /=1 %

for(tr=1; rr <= 2*t; rr++)
{
if (rr <= num_erasure)
{
for (i=1; i <= deg_lambda+1; i++)
{
if (lambda[i-1] = 0)
tmp[i] = GF_table[(U[rr-1] + dec_table[lambda[i-1]]) % n];
else tmp{i] = 0;
}
for (j=1I; j <= deg_lambda+1; j++) lambda[j] A= tmp[j];
deg_lambda++;
for(j=0; j<= deg_lambda; j++) B[j] = dec_table[lambdal[j]];
L ++; ~

}

else

{

/* Compute the discrepancy */
delta_r=0;
for(j=0; j<=rr; j++)
if (lambda[j] =0 && S[rr-j] !=-1)
delta_r *= GF_table[(dec_table[lambdal[j]] + S[rr-j]) % n};
delta_r = dec_table{delta_r];

if (delta_r '=-1)

{
/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=1; j <= deg_lambda +1; j++)
if B[j-1]!=-1)
T{j] = lambda[j] ~GF_table{ (delta_r + B[j-1]) % n};
T[0] = lambda[0],

151

++deg_lambda ;

if 2*L <=rr + num_erasure -1)
{

L =rr - L. + num_erasure;

/¥ B(x) <--- B(x)/ delta_r */
for(j=0; j<= deg_lambda; j++)
if(lambda[j] != 0)
B[j] = (n-delta_r + dec_table[lambda[j]]) % n ;
else B[j]=-1;

/* lambda(x) <---- T(x) */
for(j=0; j<=deg_lambda+1; j++) lambda[j] = T[j];

}

else
{
/* lambda(x) <---- T(x) */
for(j=0; j<n-k; j++) lambdal[j] = T(j];

/* B(x) <----- x *B(x) */

tmp[0] = -1;

for(j=1; j<=n-k; j++) tmp{j] = B[j-1];
for(j=0; j<=n-k; j++) B[] =tmp[j};

/* B(x) <----- X *B(x) *
tmp[0] = -1;
for(j=1; j<=n-k; j++) tmp[j] = B[j-1};
for(j=0; j<=n-k; j++) B[j] = tmp{j];
}
}
}

/* Change lambda(x) to GF representation */
for(i=0; i<n; i++) lambda[i] = dec_table[lambdal[i]];

/* Compute the degree of lambda(x) */
deg_lambda = n;
for(i=n-1; i>=0; i--)
if (lambda[i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */
{

/* Comupte omega(X) = [1+S(X)] * lambda(X) */
for(i=0; i<=n-k; i++) omega[i] = 0;
for (i=0; i<=n-k; i++)

{
for (j=0; j<=n-k; j++)

152

{
if ((i+j) >= n-k+1) continue;
if (S[i] !=-1 && lambda(j] !=-1)
omegali+j] *= GF_table[(S[i] + lambda[j]) % n |;
}
}

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dec_table[omegal[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the */
/* location of the errors. */

num_errors = 0;
for (i=0; i<g-1; i++)
{
sum = (;
for (j=0; j<2*t; j++)
if (lambda[j] !=-1)
sum *= GF_table[(lambda[j] + i*j) % (q-1) 1;
if (sum == 0)
{
beta[num_errors] = (n-i)%n;
nUM_Errors++;
}
}

if((2*(num_errors-num_erasure) + num_erasure) <= 2*t)
{
if (num_errors == deg_lambda)

{

/* Convert r to base 10 representation */

for(i=0; i<n; i++)
if (r[i] !=-1) r{i] = GF_table[r[i]];
else r[i] = 0;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)

{
/* Calculate the denominator */
den =0;

for (j=0; j<=2*t; j++)
{
if %2 ==0) continue;
if (lambda[j] !=-1)
{
cl = GF_table{ ((g-1-beta[i]y*(j-1) + lambda[j}) % n];
den *=cl;
}
}

153

den = dec_table[den];

/* Calculate the numerator */
numer = (;
for (j=0; j<=2*t; j++)
if (omegal[j] '=-1) numer ~= GF_table[((q-1-beta[i])*j + omega[j})%n I;

numer = dec_table[numer];

/* Correct the erroneous value */
if(numer '=-1)
r{beta[i]] = GF_table{ (n + numer + betali] - den) % n];

}

/* Change r back into the GF representation */
for(i=0; i<n; i++) rfi] = dec_table[r[i]];

} /* endif (num_errors == deg_lambda) */
else
{
decode_flag = 1;
counter[3] += 1;
*printf("\n3");
*/
}
} /* end if (num_erasure + num errors <= dmin) */
else
{
decode_flag = 1;
counter{2] +=1;
Fprintf("\n2");
*/

}
} /* endif (deg_lambda <= 2*t) */
else
{

decode_flag = 1;

counter[1] += 1;

[eprintf("\nl");

*/

}
} /* end if (error) */
else
{
decode_flag = 0;
counter[0] +=1;
/printf("\n1");
*/

}
if (decode_flag)

154

counter{5] +=1;
[*printf("\n5");
*/

for(j=0; j<k; j++)
{
for(1=0; l<m; I++)
data[ii*k*m + j*m + 1] = datafii*n*m + (n-k+j)*m + 1];
}
)
else
{
counter{4] += 1;
[*printf("\n4");
*/

for(j=0 ; j<k; j++)
{
if (r{n-k+j] == -1) sum =0;
else sum = GF_table[r[n-k+j]l;
for (I=0; I<m; 1++)
{
cl = pow(2, m-I-1);
if (sum >=c1)
{
data [ii*k*m + j*m + 1] = [;
sum -=cl;
}
else data [li*k*m + j*m + 1} = 0;
}
}
}

}

free(GF_table);
free(dec_table);
free(beta);
free(r);

free(U);
free(S);
free(T);
free(B);
free(tmp);
free(lambda);
free(omega);

void rs_decode_erasure_method_1(int *data, int n, int k, int q, int m, int num,
int *erasure_counter, int *counter)

/* The Reed Solomon deocder is modified to use erasure Method 1. This is to be */

155

/¥
/¥
/*
/*
/*
/*
/*

used with the SOVA. The bit reliabilities are first converted into symbol
reliabilities. A table of the least reliabile symbols are compiled for each
codeword. Decoding is attempted using no erasures. If successful, decoding
stops. If unsuccessful, then decoding is reattemped using 2 erasures. For each
unsuccessful decoding trial, two more erasures are added until either a
successful decoding takes place, or a maximum number of erasures has been
reached (16 for this simulation)

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576},
int i, 1, j, 1, t, rr, sum, L, c1, deg_lambda, delta_r;

int error, decode_flag, num_errors, numer, den;

int num_erasures, temp, max_eras, *reliability;

int *GF_table, *dec_table, *r, *U, *S§;

int *lambda, *omega, *B, *T, *tmp, *beta, *min,

t = (n-k)/2;

max_eras = t;

GF_table = ivector(n+1);
dec_table = ivector(n+1);
beta = ivector(n);

r = ivector(n);

U = ivector(2*t);

S = ivector(n);

T = ivector(n);

B = ivector(n);

tmp = ivector(n);

lambda = ivector(n);
omega = ivector(2*t+1);
reliability = ivector(n);
min = ivector(2*t),;

/* Create GF(2”m) field */

make_GF_table (m, GF_table, dec_table, GF_poly[m));

for (il = 0; ii < num; ii ++)

{

for(j=0; j < n; j++)

{
rj]1=0;
reliability[j] = 500;
sum = 0;
for 1=0; 1 <m; [++)
{

if(reliability([j} > abs(data[ii*n*m + j*m +]))
reliability[j] = abs(datalii*n*m + j*m +1]);

if(datafii*n*m + j*m +1] <= 0)

156

*/
*/
*/
*/
*/
*/
*/

datafit*n*m + j*m +1] = 0;
else
data[ii*n*m + j*m +1] = [;
sum += data[ii*n*m + j*m +1]*pow(2, m-1-1);
}

r[j] = dec_table[sum];
}
/* Find the minimum reliabilities */

for(i=0; i<max_eras; i++)
{
min(i] = reliability[i];
Ulil=1;
}

/* Do the initial sorting. Place the minimum in min{0] and the */
/* maximum in min[max_eras - 1] */

for(i=0; i<max_eras; i++)
{
for(j=0; j<max_eras -1; j++)
{
if(min[j] > min{j+1])
{
temp = min[j];
min(j] = min[j+1];
min[j+1] = temp;
temp = U[j];
U[j] = Ufj+1];
Ufj+1] = temp;

for(i=max_eras; i<n; i++)

{

if(reliability[i] < min{max_eras - 1])

{ .
min[max_eras-1] = reliability[i];
Ulmax_eras-1] =1;
for(j=max_eras-1; j>=1; j--)

{

if(min(j] < min{j-1])

{
temp = min[j];
min[j] = min[j-1];
min[j-1] = temp;
temp = U[j];
Ulj] = UG-15
U[j-1] = temp;

}

157

else break;

}

}
}

/* The symbols with the minimum reliabilities are in positions */

/* U[0] ... Ulnum_erasures-1]. These symbols will be erased. */
/* Set these symbols equal to 0 before computing the syndrome */

decode_flag = I;

for(num_erasures=0; num_erasures <= max_eras; num_erasures +=2)

{

if(decode_flag)
{

for(i=0; i<num_erasures; i++) r{U[i]} =-1; /* =0 */
error = 0;

/* Compute the syndrome */
for(i=1; i<= n-k; i++)

{

S[i] = 0;

for(j=0; j<n; j++)

if(rjl 1= -1)
S[i] ~= GF_table[(r{j] + i*j) % n};

if (S[i] '=0) error = 1; /* If nonzero syndrome, there is an error*/
}
S[0]=0;

/* Convert to GF representation */
for(i=1; i<=n-k; i++) S[i] = dec_table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */

{
for(i=0; i < n; i++)
{
lambda[i] = 0;
Bli]=-1;
T} =0,
}
lambda[0] = GF_tablef0];, /* =1 */
L=0;

deg_lambda = 0;
B[0]=0; /* =1 *

for(rr=1; rr <= 2%t rr++)

{

if (rr <= num_erasures)

T ’ 158

{

for (i=1; i <= deg_lambda-+1; i++)
{
if (lambda[i-1] = 0)
tmp(i] = GF_table[(U[rr-1]+dec_table[lambda[i- 1]])%n];
else tmp[i] = 0;
}
for (j=1; j <= deg_lambda+1; j++) lambdal[j] "= tmp{j];
deg_lambda++;
for(j=0; j<= deg_lambda; j++) B[j] = dec_table[lambda(j]};
L ++;

}

else
{
/* Compute the discrepancy */
delta_r=0;
for(j=0; j<=rr; j++)
if (lambdal[j] '=0 && S[rr-j] !I=-1)
delta_r *= GF_table[(dec_table[lambda[j}]+S[rt-j])%n];
delta_r = dec_table[delta_r];

if (delta_r !=-1)

{
/* T(x)<--- lambda(x) + delta_r * x * B(x) */

for (j=1; j <= deg_lambda +1; j++)
if (B[j-1]!=-1)
T[i] = lambda[j] *GF_table{ (delta_r + B{j-1]) % n];
T[0] = lambda[0];
++deg_lambda;

if (2*L <= rr + num_erasures-1)

{

L =r1r - L. + num_erasures;

/* B(x) <--- B(x)/ delta_r */
for(j=0; j<= deg_lambda; j++)
if(lambda[j] '=0)
B[j] = (n-delta_r+dec_table[lambda[j]])%n;
else B[j]l=-1;

/* lambda(x) <---- T(x) */
for(j=0; j<=deg_lambda+1; j++) lambdalj] = T(j];

}

else
{
/* lambda(x) <---- T(x) */
for(j=0; j<n-k; j++) lambda(j] = T[j];

/* B(x) <----- X *B(x) *

tmp[0] = -1;

for(j=1; j<=n-k; j++) tmp{j] = B[j-1];
for(j=0; j<=n-k; j++) B[j] = tmp[j];

159

/* B(x) <----- X *B(x) */
tmp[0] = -1;
for(j=1; j<=n-k; j++) tmp[j] = B[j-1];
for(j=0; j<=n-k; j++) B[j] = tmp[j];
}
}
}

/* Change lambda(x) to GF representation */
for(i=0; i<n; i++) lambda(i] = dec_table[lambda[i}];

/* Compute the degree of lambda(x) */
deg_lambda = n;
for(i=n-1; i>=0; i--)
if (lambda(i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the éapacity of the code */
{

/¥ Comupte omega(X) = [1+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omegalil = 0,
for (i=0; i<=n-k; i++)
{
for (j=0; j<=n-k; j++)
{
if ((i+j) >= n-k+1) continue;
if (S[i] != -1 && lambdafj] !=-1)
omega[i+j] *= GF_table[(S[i] + lambdal[j]) % n |;
}
}

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dec_table[omegal[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the

/* location of the errors.

num_errors = 0;
for (i=0; i<q-1; i++)
{
sum = 0;
for (j=0; j<2*t; j++)
if (lambdafj] !=-1)
sum ~= GF_table[(lambdal[j] + i*}) % (q-1) J;
if (sum == 0)
{
beta[num_errors] = (n-i)%n;
num_errors++;

}

160

}

if((2*(num_errors-num_erasures) + num_ erasures) <= 2*t)

{

if (num_errors == deg_lambda)

{

/* Correct Decoding. record the umber of erasures required */
erasure_counter[num_erasures] += 1;

decode_flag = 0;

/* Convert r to base 10 representation */

for(i=0; i<n; i++)
if (¢[i] !=-1) r{i] = GF_table[r{i]];
else r{i] = 0;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)

{

/* Calculate the denominator */
den =0;

for (j=0; j<=2*t; j++)
{
if (j%2 == 0) continue;
if (lambda[j] !'=-1)
{
cl = GF_table[((g-1-beta[i])}*(j-1) + lambda[j]) % n];
den *=cl;
}
}

den = dec_table[den];
/* Calculate the numerator */
numer = 0,
for (j=0; j<=2*t; j++)
if (omega[j] !=-1) numer A= GF_table[((g-1-beta[i])*j + omega[j])%n];
numer = dec_table[numer];
/* Correct the erroneous value */
if(numer !=-1)
r{beta[i]] *= GF_table[(n+numer+beta[i]-den)%n];
}

/* Change r back into the GF representation */

for(i=0; i<n; 1++) r[i} = dec_table[r[i]];

161

} /* endif (num_errors == deg_lambda) */
else
{
decode_flag = 1, .
if(num_erasures == max_eras) counter[3] += 1;

}
} /* end if (num_erasures + num errors <= dmin) */
else
{

decode_flag = 1;

if(num_erasures == max_eras) counter[2] += 1;

}
} /* endif (deg_lambda <= 2*%t) */
“else

{
decode_flag = 1;
if(num_erasures == max_eras) counter[1] += 1;
}
} /* end if (error) */
else

{
erasure_counter[num_erasures] += 1;
decode_flag = 0;
counter[0] += 1;

}

} /* end if decode flag */
} /* end for num_erasures = 0 to max_eras */

if (decode_flag)
{

/* Incorrect decoding. */
counter{5] += 1;

for(j=0; j<k; j++)

{

for(1=0; l<m; I++)
data[ii*k*m + j*m + 1] = data[ii*n*m + (n-k+j)*m + 1];
}
}

else

{

cou.nter[4] +=1;
/* Correct decoding */

for(j=0 ; j<k; j++)

{
if (r[n-k+j] == -1) sum = 0;
else sum = GF_table[r[n-k+j]];
for (1=0; I<m; 1++)

162

= pow(2, m-l-1);

if (sum >=c¢l)

{
data [ii*k*m + j*m + 1} = [;
sum -=cl;

}

else data [ii*k*m + j*m + 1] = 0;

}

free(GF_table);
free(dec_table);
free(reliability);
free(min);
free(beta);
free(r);

free(U);
free(S);
free(T);
free(B);
free(tmp);
free(lambda);
free(omega);

void rs_decode_erasure_method_2(int *data, int *v2, int *counter, int n, int k, int q, int m, int num,
int *erasure_counter, int [, int *decoded_word,
int *frame_failure, int *error_statl, int *error_stat2)

/* Reed Solomon decoding is performed using erasure method 2. In this method, the deinterleaving */

/* frame is reconstructed. Decoding of each RSW is initially attempted using erasure method 1. */
/* The flags for each undecoded RSW are updated usmg mformatlon provided by the successfully */
/* decoded RSW in the frame. */

{
int GF_poly[11] ={0,0,0,6,12,20,48,72,184,272,576};
int i, ii, j, 1, I, t, rr, sum, sum2, L, c1, deg_lambda, delta_r;
int error, decode_flag, num_errors, numer, den, I_flag;
int num_erasures, temp, max_eras, max_erasl, cc, failure, ne;
int *r, *r2, *U, *§, *lambda, *omega, *B, *T, *tmp, *beta;

struct mat **RSM;

int j, kk, reli, GEBE, offset, GE_count, r_count, max_iter, id, id1;
int *GF _table, *dec_table;

GF_table = ivector(n+1);
dec_table = ivector(n+1);

t = (n-k)/2;

163

beta = ivector(n);
r = ivector(n);
r2 = ivector(n);

U = ivector(2*t);

S =ivector(n);

T = ivector(n);

B = ivector(n);

tmp = ivector(n);
lambda = ivector(n);
omega = ivector(2¥t+1);
counter = ivector(20);

max_erasl = 16;
max_iter =1;

/* Create GF(2”m) field */

make_GF_table (m, GF_table, dec_iable, GF_poly{m]);
RSM = (struct mat **)calloc(n*m, sizeof(struct mat *));
for(i=0;i<n*m;i++)

{
}

RSM[i] = (Struct mat *)calloc(l, sizeof(struct mat));

for (it = 0; 1l < num/I; ii ++)

{
/* Enter the data into the matrix */

counter[13] ++; /* Total number of frames */

I_flag=0;

for(i=0; i<I; i++)

{
id=0;
decoded_word[i] = 0;
ne = 0;

counter{Q]++; /* number of RSW */

for(j=0; j < n; j++)

{
RSM[j]li].r = 0;
RSM[jl[i].r2 = 0;
RSMIjl[i].reli = 500;
RSM[j](i].flag = 0;

sum = 0;

sum2 = 0;

for 1=0;1<m; l++)
{

if(RSM{j][i].reli > abs(data[ii*I*n*m + 1*n*m + j*m +1]))
RSMIjl[i].reli = abs(data[ii*I*n*m + i*n*m + j*m +l);

164

if(data[ii*I*n*m + i*n*m + j*m +1] <= 0)
data[ii*I*n*m + i*n*m + j*m +1] = 0;
else
data[ii*I*n*m + i*n*m + j*m +1] = [;

.sum += datafii*I*n*m + i*n*m + j*m +l]*pow(2, m-1-1;
sum? += v2[ii*I*n*m + i*n*m + j*m +1]*pow(2, m-1-1);

}

RSM[j][i].r = dec_table{sum];

RSM[j]lil.r2 = dec_tablefsum2];

++counter{11]; /* Total number of bytes */

tf(sum != sum?2)

{
++ne;
counter[12] ++; /* Number of byte errors */

}

!
if(ne >32) ne = 32;

if(ne <=16) ne = 16;
else I_flag=1;

++ error_stati[ne-16];

}

if(I_flag) counter{14] ++; /* Number of frame errors */

/* 1f GEN_STAT = 1, then the probability of flagging a BE given a GE */
/* and the probability of flagging a GE given a BE */

if(GEN_STAT)

{
for(i=0; i<I; i++)
{

for(j=0; j<n; j++)

reli = RSM[j][i].reli;
if(reli >= 255) continue;

if(RSM[j][i].r == RSM[j][i].r2) GEBE = 2;

else GEBE =1;
kk=j;
offset = 0;

/* loop forward looking for identical reliabilities */

for(1=0; I<I; I++)
{

165

if(i+I>=I && kk == n-1) break;
if(i+I>=I)
{
kk =j+1;
offset =1;
}
if(RSM[kk]{i+l-offset}.reli == reli)
{
if(GEBE == 1)
{
counter[6]++;
if(RSM[kk][i+l-offset].r == RSM[kk][i+]-offset].r2)
counter[5]++;
else counter[4]++;
}
if(GEBE == 2)
{
counter[9]++;
if(RSM[kk][i+]-offset].r == RSM[kk][i+l-offset].r2)
counter[7]++;
else counter[8]++;
}
)
else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(1=0; I<I; 1++)
{
if(i-1 < 0 && kk == 0) break;
if(i-1< 0)
{
kk = j-1;
offset =1,
}
if(RSM[kk][i-1+offset].reli == reli)
{
if(GEBE==1) .
{
counter[6]++;
if(RSM[kk][i-1+offset].r == RSM[kk][i-l+offset].r2)
counter[S}++;
else counter[4]++;
}
if(GEBE == 2)
{
counter[9]++;
if(RSM{kk][i-l+offset].r == RSM[kk][i-1+offset].r2)
counter[7]++;
else counter{8]++;

}

166

}

else break;

}
} /* end loopj=0ton*/
} /* endloopi=0tol™*
} /* end if(GEN_STAT) */

if(DEBUG_DUMP)
{
printf("\nDecoded Word\n\n");
for(i=0; i<I; i++) printf("%d\t",decoded_word[i]);

printf("\n");
for(i=0; i<n; i++)
{
printf("\n%d ".i);
for(j=0; j<I; j++)
{
if(RSMi][j}.r '= RSM{i]{j}.r2)
printf("(%d, GE)\t",RSM[i][j].reli);
else
printf("(%d, BE)\t",RSM[i][j].reli);
}

}
if(PAUSE) getchar();

}

if(DEBUG])
{

printf("\nReceived word\n");

for(i=0; i<I; i++)
{ printf("\n");

for(j=0; j<n; j++)

{ printf(" %d", RSM(j][i].r);
\ }

if(PAUSE) getchar();

printf("\nCorrect word\n");

for(i=0; i<I; i++)
{
printf("\n");
for(j=0; j<n; j++)
{
printf(" %d" . RSM[j][i].r2);
}

167

}

if(PAUSE) getchar();

printf("\nReliability\n");

for(i=0; i<I; i++)

{
printf("\n");
for(j=0; j<n; j++)
{

}
}

printf(" %d",RSM[j](i].reli);

if(PAUSE) getchar();

printf("\nError flag\n");

for(i=0; i<I; i++)
{ printf("\n");
for(j=0; j<n; j++)
printf(" %d",RSM[jli].flag);
} }

if(PAUSE) getchar();
} /* end if (DEBUGI) */

idl = 0;
id=2;

/* Attempt the iteritive decoding */

for(jj=0; jj<max_iter; jj++)

{

/* Obtain the reliability info from the enibhoring codewords from */
/* the interleaver and/or SOVA */

if(jj==0) max_eras = 16;
else max_eras = max_erasl;

if(id1==id) break;
id =idI;
if(DEBUG)

{
printf("\ndecoded word = ");

for(i=0; i<I; i++) printf("%d ", decoded_word[i]);

168

}
if(id == I) break;

for(i=0; i<I; i++)
{
if(decoded_word[i] != 1) continue;
for(j=0; j<n; j++)
{
reli = RSM[jl[i].reli;
if(reli >= 255) continue;

GEBE = RSM{j]{i].flag;

kk = j;
offset = 0;

/* loop forward looking for identical reliabilities */

for(1=0; I<I; 1++)

{
if(i+1>=I && kk == n-1) break;
if(i+1>=I)
{
kk = j+1;
offset =1;
} ,
if(RSM[kk][i+l-offset].reli == reli)
{
if(decoded_word[i+l-offset] == 0)
RSMIkk][i+l-offset].flag = GEBE;
}
else break;
}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(1=0; I<I; I++)
{
if(i-1 < 0 && kk == 0) break;
if(i-1 < 0)
{
kk =j-1;
offset = I,
}
if(RSM[kk][i-1+offset].reli == reli)
{
if(decoded_word[i-l+offset] == 0)
RSM{kk][i-I+offset].flag = GEBE,;

169

else break;

}
} /* endloopj=0ton*/

decoded_word[i] = 2; /* flag this word as already giving GEBE info */
} .

/* Done revising reliability info */
/* Start prioritising the reliability info, and then begin decoding */

for(ll = 0; li; ll++) /* Find good erasures (GE) first */

{
GE_count = 0;

if(DEBUG)
{

printf("\ndecoded word = ");
for(i=0; i<I; i++) printf("%d ", decoded_word[i});
}

if(decoded_word[ll] != 0) continue;

for(i=0; i<n; i++)
i
if(RSM[i][11].flag == 1)
{
U[GE_count] = i;
GE_count ++;
}
}

if(GE_count < max_eras)

{

r_count =0;
for(i=0; i<n; i++)
{
if(GE_count + r_count < max_eras)
{
if(RSM[i}[ll].flag == 0)
{
U[GE_count + r_count] =1i;
r_count++;
}
}

if(GE_count + r_count == max_eras)

{

for(j=GE_count; j<max_eras; j++)

{

for(I=GE_count; l<max_eras-1; |++)

{
if(RSM[U[1]]{11].reli > RSM[U{1+1]][11].reli)

{

170

temp = U[l];
Ull} = Ufl+17;
U[1+1] = temp;
}
}
}
r_count ++;

}

if(GE_count + r_count > max_eras)
{
if(RSM[U[max_eras-1]][I1].reli > RSM[i}{11].reli
&& RSM[i]{ll].flag == 0)
{

Ulmax_eras-1] =

for(j=max_eras-1; j>=GE_count+l; j--)
{
if(RSM[U[j1]{l1].reli < RSM[UJj-1]1[].reli)
{
temp = U[j];
U[j} = U[j-13;
U[j-1] = temp;
)

else break;
}
}

} /% End if(GE_count + r_count > max_eras) */

} /* Endloop i=0..n */
} /* End loop if(GE_count < max_eras) */

/* Now we have reliabilities try to decode */

if(DEBUG)
{
printf("\nMinimum reliabilities and positions\n");
for(i=0; i<max_eras; i++) printf("(%d, %d)",U[i], RSM[U[i]}{11].reli);
printf("\n"};
printf("\nnumber of GE = %d", GE_count);
cc=0;
for(i=0; i<n; i++)
{
if(RSMIi]{11].r = RSM[i][l1].r2)
{

cc+=1;

printf("\n%d error at %d Reliability = %d", cc, i, RSM[1][ll] reli);
for(j=0; j<max_eras; j++)
{
if(i == U[j]) printf(" min %d", j);
}
}

171

}

1

)
if(PAUSE) getchar();
/* end if (DEBUG) */

for(i=0; i<n; i++) r[i] = RSM[i][ll].r;

/*
/¥

/¥
/¥
/*

Begin decoding. Try with O erasures, and keep on adding 2 */
until decodes properly, or until maximum is reached */

The symbols with the minimum reliabilities are in positions */
U[0] ... U{num_erasures-1]. These symbols will be erased. */
Set these symbols equal to O before computing the syndrome ¥/

decode_flag = 1;

for(num_erasures=0; num_erasures <= max_eras; num_erasures +=2)

{

if(decode_flag)
{

counter[15] ++; /* Number of decoding trials */
for(i=0; i<num_erasures; i++) r[U[i]]=-1; /* =0 */
error = 0;
/* Compute the syndrome */

for(i=1; i<= n-k; i++)

{

Sli}=0;
for(j=0; j<n; j++)
if(efj] 1=-1)

S[i} *= GF_table[(rfj] + i*j) % n];
if (S[i] t=0) error = 1; /* If nonzero syndrome, there is an error*/

}
S0} =0;

/* Convert to GF representation */
for(i=1; i<=n-k; i++) S[i] = dec_table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */
{

for(i=0; i < n; i++)

{
lambda[i] = 0;
B[i] = -1;
T[] =0;
}
lambda[0] = GF_table{0], /* =1 */
L=0;

172

deg_lambda = 0O;
B[0]=0;, /* =1 %

for(rr=1; rr <= 2%*t; rr++)

{

if (rr <= num_erasures)

{

for (i=1; i <= deg_lambda+1; i++)

{
if (lambdali-1] '=0)
tmp[i] = GF_table[(U[rr-1]+dec_table[lambdali- L]])%n];
else tmpli] =0;

}
for (j=1; j <=deg_lambda+1; j++) lambdafj] *= tmpl[j];

deg_lambda++;
for(j=0; j<= deg_lambda; j++) B[j] = dec_table[lambda[j]];
L ++;

}

else

{

/* Compute the discrepancy */
delta_r = 0;
for(j=0; j<=rr; j++)
if (lambda[j] '=0 && S{rr-j] !=-1)
delta_r *= GF_table[(dec_table[lambda[j]]+S[rr-j])%n];
delta_r = dec_table[delta_r];

if (delta_r = -1)

{
/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=1; j <= deg_lambda +1; j++)
if (B[j-1] !=-1)
T{[j] = lambda[j] *GF_table[(delta_r + B[j-1]) % n];
T[0] = lambda[0];
++deg_lambda;

if (2*L, <= rr + num_erasures-1)

{

L =rr- L + num_erasures;

/* B(x) <--- B(x)/ delta_r */
for(j=0; j<= deg_lambda; j++)
if(lambda[j] != 0)
Blj] = (n-delta_r+dec_table[lambda[j]])%n;
else Bjl=-1;

/* lambda(x) <---- T(x) */
for(j=0; j<=deg_lambda+1; j++) lambdal[j] = T[j];

}

else

{
/* lambda(x) <---- T(x) */

173

for(j=0; j<n-k; j++) 1ambdaU] =Tik

/* B(x) <----- X *B(x) *

tmp[0] =-1;

for(j=1; j=n-k; j++) tmp[j] = B[j-1];
for(j=0; j<=n-k; j++) BI[j] = tmp[j];

/* B(x) <----- x*B(x) *
tmp[0] = -1;
for(j=1; j<=n-k; j++) tmp{j] = B[j-1];
-for(j=0; j<=n-k; j++) B[j] = tmp[j];
}
}
}

/* Change lambda(x) to GF representation */
for(i=0; i<n; i++) lambda[i] = dec_table[lambda[i]];

/* Compute the degree of lambda(x) */
deg_lambda = n;
for(i=n-1; i>=0; i--)
if (lambdali} != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */

{
/* Comupte omega(X) = [1+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omegali] = 0;
for (i=0; i<=n-k; i++)
{
for (j=0; j<=n-k; j++)
{
if ((i+j) >= n-k+1) continue;
if (S[i] != -1 && lambda[j] !=-1)
omegali+j] *= GF_table[(S[i] + lambda[j]) % n];
}
}

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dec_table[omega[i]l;

/* Find the roots of lambda(X). The inverses of the roots gives us the

/* location of the errors.

num_errors = 0;
for (i=0; i<q-1; i++)
{
sum = 0;
for (j=0; j<2*t; j++)
if (lambda(j] !=-1)

174

sum *= GF_table[(lambdalj] + i*j) % (q-1)];
if (sum == 0) ’
{
beta[num_errors] = (n-i)%n;
NUM_eIrors++;
}
}

if((2*(num_errors-num_erasures) + num_erasures) <= 2*t)

{

if (num_errors == deg_lambda)

{
/* Correct Decoding. record the umber of erasures required */
erasure_counter[num_erasures] += 1;
decode_flag = Q;
/* Convert r to base 10 representation */

for(i=0; i<n; i++)
if (r[i] '=-1) r[i] = GF_table[r[i]];
else r[il = 0;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)

{

/* Calculate the denominator */
den =0;

for (j=0; j<=2*t; j++)
{
if %2 == 0) continue;
if (lambda[j] !=-1)
{
¢l = GF_table[((g-1-beta[i])*(j-1) + lambda[j]) % n];
den A=cl,;
}
}

den = dec_table[den];
/* Calculate the numerator */
numer = 0;
for (j=0; j<=2*t; j++) :
if (omegal[j] !=-1) numer A= GF_table[((q-1-beta[i])*j + omega(j])%n];
numer = dec_table[numer];
/¥ Correct the erroneous value */

if(numer !'=-1)
r{beta[i]] A= GF_table[(n+numer+beta[i]-den)%n];

175

}

/* Change r back into the GF representation */
for(i=0; i<n; i++) r[i] = dec_table{r[i]];

} /* endif (num_errors == deg_lambda) */
else

{
decode_flag = {;

}

} /* end if (num_erasures + num errors <= dmin) */
else

{
decode_flag = 1;

}
} /¥ endif (deg_lambda <= 2*t) */
else

{
decode_flag = 1;

}
} /* endif (error) */
else

{

erasure_counter[num_erasures] += 1;
decode_flag = 0;

} /* end if decode flag */

} /* end for num_erasures = 0 to max_eras */

if (decode_flag)
{

/* Correct decoding. */

decoded_word{ll] = 1;
idl +=1;

for(i=0; i<n; i++)

{
if(RSM[i][11].r = RSM(i][11].r2) RSM[i](ll].flag = 1; /* GE */
else RSM(i][ll].flag = 2;

}

if(DEBUG)

{
printf("\nWord %d decoded correctly”, 11);

176

if(PAUSE) getchar();
}

failure = 0;
for(i=0; i<n; i++)
{
RSM[ij[l}.r = r{i];
if(RSM[i][11].r '= RSM[i]{l1].r2) failure = 1;

}

if(failure) counter[10]++;

}
} /4 Endll=0..1%
} /* Endjj=0. max_iter */

ne = 0;
for(jj=0; jj<I; jj++) if(decoded_word[jj]!=0) ++ne;

++frame_failure[ne];
/* Send the result to the output */

for(3j=0; jj<I; jj++)
{

if(decoded_word[jj] == 0)

{ A
++counter[2]; /* Number of incorrect RSW */
ne =0;
for(j=0; j<n; j++)

if(RSMIjIGi].r = RSMj1j].r2) ne++;
++error_stat2[ne-16];

}

else ++counter[1]; /* Number of correct RSW */
for(j=0 ; j<k; j++)

if (RSM{[n-k+jl[jjl.r ==-1) sum =0;
else sum = GF_table[RSM[n-k+j1[jjl.r};
for (I=0; l<m; I++)
{
¢l = pow(2, m-1-1);
if (sum >= cl)
{
data [ii*I*k*m + +jj*m*k + j*m + 1] = [;
sum -=cl;
}
else data [ii*I*k*m + +jj*m*k + j*m + 1] = 0;
}
}
}

177

for(i=0;i<n*m;i++)
free(*RSM);
free(RSM);

free(beta),
free(r);
free(r2);
free(U);
free(S);
free(T);
free(B);
free(tmp);
free(lambda);
free(omega);
free(counter);

void rs_decode_erasure_method_3(int *data, int *v2, int *counter, int n, int k, int g,
int m, int num, int *erasure_counter, int I, int *decoded_word,
int *frame_failure, int *error_statl, int *error_stat2)

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576};

int i, ii, j, 1, I, t, rr, sum, sum2, L, ¢1, deg_lambda, delta_r;

int error, decode_flag, num_errors, numer, den, I_flag;

int num_erasures, temp, max_eras, max_erasl, cc, failure, ne;

int *r, *r2, *U, *S, *lambda, *omega, *B, *T, *tmp, *beta;

int jj, kk, reli, GEBE, offset, GE_count, r_count, max_iter, id, id1;
int redecode_flag, new_info_flag;

int *GF_table, *dec_table;

struct mat **RSM;

GF_table = ivector(n+1);
dec_table = ivector(n+1);

t = (n-k)/2;

beta = ivector(n);

r = ivector(n);

r2 = ivector(n);

U = ivector(2*t);

S =ivector(n);

T = ivector(n);

B = ivector(n);

tmp = ivector(n);
lambda = ivector(n);
omega = ivector(2*t+1);

max_erasl = 16;
max_iter =1I;

178

/* Create GF(2*m) field */

make_GF_table (m, GF_table, dec_table, GF_poly[m]);

for (il = 0; ii < num/I; ii ++)

{

/* Enter the data into the matrix */
counter[13] ++; /* Total number of frames */
1_flag=0;

for(i=0; i<I; i++)
{
id=0;
decoded_word[i] = 0;
ne =0;
counter{O]++; /* number of RSW */

for(j = 0;j < n; j++)
{
RSM[ji{il.r = 0;
RSM(j][i].r2 = 0;
RSM[j]{i].reli = 500;
RSM[j][i].flag = 0;
sum = 0;
sum2 = 0;
for(1=0;1<m; l++)
{
if(RSM[jl[i].reli > abs(data[ii*I*n*m + i*n*m + j*m +1}))
RSMfj][i].reli = abs(datafii*I*n*m + i*n*m + j*m +1]);

if(data[ii*I*n*m + i*n*m + j*m +] <= 0)
data[ii*I*n*m + i*n*m + j*m +l] = 0;
else
data[it*I*n*m + i*n*m + j*m +l] = [;

sum += data[ii*I*n*m + i*n*m + j*m +{]*pow(2, m-1-I);
sum?2 += v2[ii*I*n*m + i*n*m + j*m +{*pow(2, m-1-1);
}
RSMJj][i].r = dec_table[sum];
RSM[j][i].r2 = dec_table{sum?2];

++counter[11]; /* Total number of bytes */

if(sum != sum2)

{
++ne;
counter[12] ++; /* Number of byte errors */

}
}

if(ne >trunc_length) ne = 32;

179

if(ne <=16) ne = 16;
else I_flag=1;

++ error_statl[ne-16];

}

if(I_flag) counter[14] ++; /* Number of frame errors */

/* If GEN_STAT = 1, then the probability of flagging a BE given a GE */
/* and the probability of flagging a GE given a BE */

if(GEN_STAT)
{ for(i=0; i<I; i++)
{for(j=0; j<n; j++)
{ reli = RSM{j][i].reli;
if(reli >= 255) continue;

if(RSM[j](i].r == RSM[j][i}.r2) GEBE = 2;
else GEBE = 1;

kk = J;
offset = 0;

/* loop forward looking for identical reliabilities */

for(1=0; 1<I; 1++)
{
if(i+I>=I && kk == n-1) break;
if(i+1>=I)
{
kk = j+1;
offset =1;
}
if(RSM[kk][i+l-offset].reli == reli)
{
if(GEBE == 1)
{
counter[6]++;
if(RSM[kk][i+l-offset].r == RSM[kk]}[i+l-offset].r2)
counter[5]++;
else counter[4]++;
}
if(GEBE == 2)
{
counter[9]++;
if(RSM[kk][i+l-offset].r == RSM[kKk][i+]-offset].r2)
counter[7]++;
else counter[8]++;

}

180

}

else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(1=0; I<I; 14++)
{
if(i-1 < 0 && kk == 0) break;
if(i-1 < 0)
{
kk =j-1;
offset=1;
}
if(RSM[kk][i-1+offset].reli == reli)
{
if(GEBE == 1)
{
counter[6]++;
if(RSM{kk][i-1+offset].r == RSM[kk][i-1+offset].r2)
counter[5]++;
else counter[4]++;
}
if(GEBE == 2)
{
counter[9]++;
if(RSM[kk][i-1+offset].r == RSM[kk][i-1+offset].r2)
counter[7]++;
else counter[8]++;

}
}

else break;

}
} /* endloopj=0ton*
} /* endloopi=0tol*/
} 7* end iff(GEN_STAT) */

if(DEBUG_DUMP)
{
printf("\nDecoded Word\n\n");
for(i=0; i<I; i++) printf("%d\t",decoded_word[i]);

printf("\n");
for(i=0; i<n; i++)
{

printf("\n%d ".i);

for(j=0; j<I; j++)

{

if(RSM(i][j].r != RSM{i][j].r2)
printf("(%d, GE\t",RSM(i][j].reli);

181

else

printf("(%d, BE)\t" ,RSM[i][j].reli);
}
}
if(PAUSE) getchar();
}

if(DEBUG1)
{

printf("\nReceived word\n");

for(i=0; i<I; i++)
{
printf("\n"};
for(j=0; j<n; j++)
{
printf(" %d",RSM[j][i].r);
}
}

if(PAUSE) getchar();

printf("\nCorrect word\n");

for(i=0; i<I; i++)
{
printf("\n");
for(j=0; j<n; j++)
{
printf(" %d",RSM([j][i].r2);
}
}

if(PAUSE) getchar();

printf("\nReliability\n");
for(i=0; i<I; i++)
{
printf("\n");
for(j=0; j<n; j++)
{
printf(" %d",RSM(j][i].reli);
}
}

if(PAUSE) getchar();

printf("\nError flag\n");

182

for(1=0; i<I; i++)
{
printf("\n");
for(j=0; j<n; j++)
{
printf(" %d",RSM[j][i].flag);
}
}

if(PAUSE) getchar();
) /* end if (DEBUGL1) */

idl =0;
id=2;

/* Attempt the iteritive decoding */

for(jj=0; jj<max_iter; jj++)

{

/* Obtain the reliability info from the enibhoring codewords from */
/* the interleaver and/or SOVA */

if(jj==0) max_eras = 16;
else max_eras = max_eras|;

if(id1==id) break;

id = id1;
if(DEBUG)
{

printf("\ndecoded word = ");
for(i=0; i<I; i++) printf("%d ", decoded_word[i]);
}

if(id == 1) break;

if(jj==0) redecode_flag = I;
else redecode_flag = 0;

for(i=I-1; i>=1; i--)
if(decoded_word[i] !=0 && decoded_word[i-1] == 0)
redecode_flag = I;
if(Iredecode_flag) break;
/* Start prioritising the reliability info, and then begin decoding */
for(ll = 0; ll<I; l1++) /* Find good erasures (GE) first */
{
GE_count =0;

if(DEBUG)
{

183

printf("\ndecoded word = ");
for(i=0; i<[; i++) printf("%d ", decoded word[x])

}
if(decoded_word(ll] != 0) continue;

for(i=0; i<n; i++)
{
if(RSM[i][ll].flag == 1)
{
U[GE_count] =i,
GE_count ++;
}
}

if(GE_count < max_eras)
{
r_count =0;
for(i=0; i<n; i++)
{
if(GE_count + r_count < max_eras)
{
if(RSM(i]{l1].flag == 0)
{
U[GE_count + r_count] =
r_count++;
}
}

if(GE_count + r_count == max_eras)
{
for(j=GE_count; j<max_eras; j++)
{
for(I=GE_count; l<max_eras-1; I++)
{
if(RSM[U{1].reli > RSM[U[1+1]][11].reli)
{
temp = U[l];
Ufl] = Ufl+1];
U[l+1] = temp;
}
}
}

r_count ++;

}

if(GE_count + r_count > max_eras)

{
if(RSM[U[max_eras-1]](li].reli > RSM[i][ll].reli
&& RSM[i][l1].flag == 0)
{

Ulmax_eras-1] =

184

for(j=max_eras-1; j>=GE_count+1; j--)
{ ,
IfRSM[U[j1(I].reli < RSM[U[j-1]][11].reli)
{
temp = U[j];
U] =UG-11;
U[j-1] = temp;
}
else break;
}
}

} /* End if(GE_count + r_count > max_eras) */

} /% Endloop i=0.n *
} /* End loop if(GE_count < max_eras) */

/* Now we have reliabilities try to decode */

if(DEBUG)
{
printf("Number of trials = %d\n\nMinimum reliabilities and positions\n”, counter[151);
for(i=0; i<max_eras; i++) printf("(%d, %d)",U[i], RSM[U[i]][11].reli);
printf("\n");
printf("\nnumber of GE = %d", GE_count);
cc=0;
for(i=0; i<n; i++)
{
if(RSMIi][1].r '= RSM[i][11].r2)
{
cc+=1;
printf("\n%d error at %d Reliability = %d", cc, i, RSM{i][!1].reli);
for(j=0; j<max_eras; j++)

{
if(i == U[j]) printf(" min %d", j);
)
if (RSM[i][11].flag == 1) printf(" GE").;
1
)
if(PAUSE) getchar();

} /* end if (DEBUG) */
for(i=0; i<n; i++) r[i] = RSM[i][ll].r;
decode_flag = 1;

if(GE_count >= max_eras1) max_eras = GE_count;
else max_eras = max_erasl;

for(num_erasures=GE_count; num_erasures <= max_eras; num_erasures +=2)

{

185

if(decode_flag)
{

counter[15] ++; /* Number of decoding trials */
for(i=0; i<num_erasures; i++) r[U[i]] =-1; /* =0 */
error = 0;

/* Compute the syndrome */
for(i=1; i<= n-k; i++)
{

S[i] = 0;

for(j=0; j<n; j++)

if(rj] !=-1) ,
S[i] ~= GF_table[(r[j] + i*}) % n];

if (S[i] = 0) error = 1; /* If nonzero syndrome, there is an error*/
}
S[0]=0;

/* Convert to GF representation */
for(i=1; i<=n-k; i++) S[i] = dec_table[S[i]};

if (error) /* If the syndrome is equal to zero, no decoding nessasary */

{
for(i=0; i < n; i++)
{
tambda[i] = 0;
Blil=-1;
T =0;
}
lambdaf0] = GF_table[0}; /* =1 */
L=0

deg_lambda = 0;
B[0]=0; /* =1 %

for(rr=1; rr <= 2*t; rr++)
{
if (ir <= num_erasures)
{
for (i=1; i <= deg_lambda+1; i++)
{
if (lambda[i-1] '=0)
tmpl[i] = GF_table[(U[rr-1]+dec_table[lambda{i-1]])%n];
else tmp[i] = 0;
}
for (j=1; j <= deg_lambda+1; j++) lambda[j] = tmp[j];
deg_lambda++;
for(j=0; j<= deg_lambda; j++) B(j] = dec_table[lambda[j]];
L ++;

}

else

{

186

/* Compute the discrepancy */
delta_r = 0;
for(j=0; j<=IT; j++)
if (lambdafj] =0 && Sfir-j] !I=-1)
delta_r = GF _table[(dec_table[lambda[j]]+S[rr-j])%n];
delta_r = dec_table[delta_r];

if (delta_r !'=-1)
{
/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=1; j <= deg_lambda +1; j++)
if (Bfj-1] 1=-1)
T[j] = lambda[j] ~GF _table[(delta_r + B[j-1]) % nl;
T[0] = lambda[0];
++deg_lambda;

if (2*L <= rr + num_erasures-1)

{

L =1r - L + num_erasures;

/* B(x) <--- B(x)/ delta_r */
for(j=0; j<= deg_lambda; j++)
if(lambda[j] != 0)
B[j] = (n-detta_r+dec_table[lambda(j]1)%n;
else Bfj]l=-1;

/* lambda(x) <---- T(x) */
for(j=0; j<=deg_lambda+1; j++) lambda[j] = T(j};

}

else
{
/* lambda(x) <---- T(x) */
for(j=0; j<n-k; j++) lambdal[j] = T[jI;

/* B(X) <---nn X *B(x) *

tmp[0] = -1;

for(j=1; j<=n-k; j++) tmp{j] = B{j-1];
for(j=0; j<=n-k; j++) B[j} = tmp{j};

/* B(X) <----- X *B(x) *
tmp[0] = -1;
for(j=1; j<=n-k; j++) tmp[j] = B[j-1];
for(j=0; j<=n-k: j++) B[j] = tmp{j];
}
}
}

/* Change lambda(x) to GF representation */
for(i=0; i<n; i++) lambda[i] = dec_table[lambda[i]];

187

/* Compute the degree of lambda(x) */
deg_lambda = n;
for(i=n-1; i>=0; i--)
if (lambda(i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */
{

/* Comupte omega(X) = [1+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omegali] = 0;
for (i=0; i<=n-k; i++)
{ .
for (j=0; j<=n-k; j++)
{

if ((i+j) >=n-k+1) continue;

if (S[i] !=-1 && lambda(j] !=-1)

omegafi+j] "= GF_table[(S[i] + lambda[j]) % n };
}
!

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dec_table[omegal[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the */
/* location of the errors. *f

num_errors = 0;
for (i=0; i<g-1; i++)
{
sum = 0;
for (j=0; j<2*t; j++)
if (lambdafj]} !=-1)
sum A= GF_table[(lambda[j] + i*j) % (g-1) 1;
if (sum == 0)
{
beta[num_errors] = (n-1)%n;
num_errors++;

}
}
if((2*(num_errors-num_erasures) + num_erasures) <= 2*t)
{
if (num_errors == deg_lambda)
{
/* Correct Decoding. record the umber of erasures required */
erasure_counter[num_erasures] += 1;

decode_flag = 0;

/* Convert r to base 10 representation */

188

for(i=0; i<n; i++)
if (r[i} !=-1) rli] = GF_table[r[i]];
elser[i] =0;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)

{
/* Calculate the denominator */
den=0;

for (j=0; j<=2%*t; j++)
{
if (%2 == 0) continue;
if (lambda(j] !=-1)
{
cl = GF_tablef ((q-1-beta[i])*(j-1) + lambdalj]) % n];
den A=cl;
}
}

den = dec_table[den];

/* Calculate the numerator */
numer = 0;
for (j=0; j<=2*t; j++)
if (omega[j] !=-1) numer A= GF_table[((q-1-beta[i])*j + omega[j])%n];

numer = dec_table[numer];

/* Correct the erroneous value */
if(numer != -1)
r[beta[i]] *= GF_table[(n+numer+beta[i]-den)%n];

}
/* Change r back into the GF representation */
for(i=0; i<n; i++) r[i] = dec_table[r[i]};

} /* endif (num_errors == deg_lambda) */
else

{
decode_flag = 1;

} /* end if (num_erasures + num errors <= dmin) */
else

{
decode_flag = 1;

} .
} /* endif (deg_lambda <= 2*t) */
else

{

189

decode_flag = 1;
)
} /* end if (error) */
else

{
erasure_counter[num_erasures] += 1;
decode_flag = 0;
}

} /* end if decode flag */

} /* end for num_erasures = 0 to max_eras */

if (decode_flag)
{

/* Correct decoding. */

decoded_word[il] = 1;
id1 +=1;

for(i=0; i<n; i++)

{
if(RSM[iJ{H].r t= RSMIi][11).r2) RSM(i][li].flag = 1; /* GE */
else RSM[i][li].flag = 2; '

}

if(DEBUG)

{
printf("\nWord %d decoded correctly”, 11);
if(PAUSE) getchar();

}

failure = 0;
for(i=0; i<n; i++)
{
RSMIi][1]).r = r[i];
if(RSMIi]{l1].r '= RSM[i]{l1].r2) failure = 1;
}

if(failure) counter[10]++;
/* Begin updating the flags */
for(j=0; j<n; j++)
{
reli = RSM{j]{l1].reli;

if(reli >= 255) continue;
GEBE = RSM{j}{li].flag;

190

kk=j;
offset = 0;

/* loop forward looking for identical reliabilities */

for(1=0; I<I; 1++)
{
if(ll+1>=I && kk == n-1) break;
if(1+I>=I)
{
kk =j+1;
offset =1,
}
if(RSM[kk][l1+1-offset].reli == reli)
{
if(decoded_word[ll+]-offset] == 0)
RSM[kk][lI+l-offset].flag = GEBE,
}

else break;

}
/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(1=0; I<I; 1++)
{
if(11-1 < 0 && kk == 0) break;
if(11-1 < 0)
{
kk =j-1;
offset=1;
}
if(RSMIkk][1l-1+offset].reli == reli)
{
if(decoded_word[ll-1+offset] == 0)
RSM[kk][li-1+offset].flag = GEBE;

}
else break;
}
} /* endloopj=0ton*

decoded_word[i] =2; /* flag this word as already giving GEBE info */

/* Done revising reliability info */

}
} /4 Endll=0..1%
} /¥ Endjj=0. max_iter */

191

ne = 0;
for(jj=0; ji<I; jj++) if(decoded_word[jj]'=0) ++ne;

++frame_failure[ne];
/* Send the result to the output */

for(jj=0; jj<L; jj++)
{
if(decoded_word(jj] == 0)
{
++counter[2]; /* Number of incorrect RSW */
ne = 0; .
for(j=0; j<n; j++)
if(RSMIjlljj]r '= RSM[j]{jj].r2) ne++;
++error_stat2[ne-16];

}

else ++counter{1]; /* Number of correct RSW */

for(j=0 ; j<k; j++)
{
if (RSM[n-k+j1[jjl.r == -1) sum = 0;
else sum = GF_table[RSM[n-k+j](jj].r];
for (1=0; I<m; 1++)
{
cl = pow(2, m-I-1);
if (sum >=c1)
{
data [ii*I*k*m + +jj*m*k + P*m + 1] = [;
sum -=c¢l;
}
else data [ii*I*k*m + +jj*m*k + j*m + 1] = O;
}
}
}

}

for(i=0;i<n*m;i++)
free(*RSM);
free(RSM),

free(beta);
free(r);
free(r2);
free(U);
free(S);
free(T);
free(B);
free(tmp);
free(lambda);
free(omega);

192

B.8 Main program for real system using erasure Method 1

include <stdio.h>
include <math.h>
include <stdlib.h>
include <stddef.h>
include "mmt31.h"

define L_DEBUG 0
define PAUSE 0

define Nss 16 /* Number of samples per symbol */

" #define Rb1 /* The bit rate */

define Tb (1.0/Rb)
define Eb 1.0 /* The Energy per bit */

define Pi 3.14159265359
/* Defining the random number generator constants */

define IM1 2147483563
define IM2 2147483399
define AM (1.0/IM1)

define IMM1 (IM1-1)

define IA1 40014

define IA2 40692

define IQ1 53668

define 1Q2 52774

define IR1 12211

define IR2 3791

define NTAB 32

define NDIV (1+IMM1/NTAB)
define EPS 1.2e-7

define RNMX (1.0-EPS)

void main(int argc, char *argv[])
{
int *v, *u, i, ii, errors, M1, M2, Q;
-long *idum;
long idum_cell,;
long num_samples, num_bits, N, N_total;
int rs_m, rs_t, rs_n, rs_k, rs_q, rs_num;
int conv_k, conv_n, conv_m, conv_num;
double *data, *Tx, *Rx, Pe;
double Psig, EbNo, gain;
int max_repeat, I, rows, I_num, a;

double *x1, *¥x2;

193

FILE *inpf0, *inpfl, *inpf2, *inpf3, *outfO;

int **soft_metric, *erasure_counter, *rs_counter;
int num_erasures;
char cFilename[80];

idum=&idum_cell;

EbNo=atof(argv[1]);

N = atol(argv([2]);

I = atol(argv[3]);
max_repeat = atol(argv[4]);

sprintf(cFilename,"New_Real_M 1_erasure_%2.2fEbNo_%dI_32delta_8soft.output” ,EbNo,I);
inpfO = fopen("m1.dat","r");

inpfl = fopen("m2.dat","r");
inpf2 = fopen("tx.dat","r");

"ot

inpf3 = fopen("rx.dat","r");
/* obtain the number of single sided filter */
/* coefficents for Tx (M1) and Rx (M2) */

fscanf(inpf0, "%d", &M1);,
fscanf(inpfl, "%d", &M2);

Tx = dvector(2*M1);
Rx = dvector(2*M2);

x1 = dvector(2*M1i+1);
x2 = dvector(2*M2+1);

/* Read in the filter coefficients from data files */

for(i=0; i<2*M1; i++)
Escanf(inpf2, "If", &Tx[i]);

for(i=0; i<2*M2; i++)
fscanf(inpf3, "%If", &Rx[i]);

/* The Reed Solomon coding parameters */

rs_m = §;

rs_t=16;

1s_q = pow(2, rs_m);
rs_n=rs_qg-1;

rs_k =rs_n - 2*rs_t;

/* Interleaving parameters */

rows = rs_m*rs_n;

194

/* The Convolutional coding parameters */

conv_k=1;
conv_n=2,
conv_m =6,

Q= 85 /* Number of soft decision levels */

rs_num = N/(rs_k*rs_m);

if(N % (rs_k*rs_m) != 0)
{

++rs_num;

N = rs_num*rs_k*rs_m;

}

[_num = rs_nunvI;

if(rs_num%]I '= 0)
{
++ [_num,;
rs_num = I_num*I;
N = rs_num*rs_k*rs_m;

}

gain = (double)(conv_k*rs_k)/(conv_n*rs_n);

a=10.0;

conv_num = (rs_num*rs_n*rs_m + 50)/conv_k;
num_bits = conv_n*(conv_num + 100);

num_samples = num_bits*Nss;
errors = 0;

erasure_counter = ivector(2*rs_t);
rs_counter = ivector(rs_t);
soft_metric = int_matrix_2d(2, Q);
for(i=0; i<6; i++) rs_counter[i] = 0;
N_total = 0;

data = dvector(num_samples+3*M1);

v = ivector(num_bits);
u = ivector(N);

*idum = -10;

195

for(ii=0; ii<max_repeat; ii++)
{

for (i=0; i<num_bits; i++) v{i] = 0;

for (i=0; i<N; i++)

{
v[i] = bitgen(idum);
uli] = vlil;

rs_encode(v, rs_n, rs_k, rs_m, rs_num);
interleave(v, rows, rs_n, rs_m, I, [_num);
conv_encode(v, conv_n, conv_k, conv_m, conv_num);

modulate(data, v, num_bits);
filter(data, M1, Tx, x1, num_samples);

/* Adjust for delay introduced by filter */

for(i=0; i<num_samples; i++)
data[i] = data[i+M1];

Psig = calc_power(data, num_samples);

add_noise(idum, data, num_samples, Psig, EbNo, gain);
filter(data, M2, Rx, x2, num_samples);
/* Adjust for delay introduced by filter */

for(i=0; i<num_samples; i++)
datafi] = data[i+M2];

demodsoft(data, v, num_bits, soft_metric, Q, a);
conv_decode(v, conv_n, conv_k, conv_m, conv_num, soft_metric, a);
deinterleave(v, rows, rs_n, rs_m, I, I_num);
rs_decode(v, rs_n, rs_k, rs_q, rs_m, rs_nuin, erasure_counter, rs_counter);
for (i=0; i<N; i++)

if (v[i] != u[i])

{

errors += 1;

}

196

N_total += N;

outfO=fopen(cFilename,"at+");
for (i=0; i<=rs_t; i+=2)fprintf(outf0,"%de= %d ",i, erasure_counter[i]);

fprintf(outf0,\nnum = %d\n\nRS counter = ",rs_num);
for(i=0; i<6; i++) fprintf(outf0,” %d",rs_counter[il);

fprintf(outf0,"\n\nl. S =0. No Decoding\n2. deg_lambda > 2*t");
fprintf(outf0,"\n3. 2*e + f > 2*t\n4. num_errors != deg_lambda");
fprintf(outf0,"\nS. Correct decoding\n5. Incorrect Decoding”);

fprintf(outf0,"\n\nEb/No = %2.2f dB" ,EbNo);

fprintf(outf0,"\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);

fprintf(outf0, "\ninterleaving depth [= %d",I);

fprintf(outf0,"\n(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);
fprintf(outf0,"\niteration number = %d\n# errors = %d\n N total = %Id", ii+1, errors, N_total);
Pe = (float)errors/N_total; .

fprintf(outf0,"\nPe = %2.10f\n\n",Pe);

fclose(outf0);

}

outfO=fopen(cFilename,"at+");
fprintf(outf0,"\nerasure counter =);
for (i=0; i<=rs_t; i+=2) fprintf(outf0,"%de= %d ",i, erasure_counter[i]);

fprintf(outf0,"\nnum = %d\n\nRS counter = ",rs_num);
for(i=0; i<6; i++) fprintf(outf0," %d",rs_counter(i]);

fprintf(outf0,"\n\nl. S =0. No Decoding\n2. deg_lambda > 2*t");
fprintf(outf0,"\n3. 2*e + f > 2*t\n4. num_errors != deg_lambda");
fprintf(outf0,"\n5. Correct deccding\nS. Incorrect Decoding");

fprintf(outf0,"\n\nEb/No = %2.2f dB",EbNo);

fprintf(outf0,"\nNumber of erasures = %d", num_erasures);

fprintf(outf0,"\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);

fprintf(outfO, “\ninterleaving depth I = %d" I);

fprintf(outf0,"\n(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);

fprintf(outf0, \niteration number = %d\n# errors = %d\n N total = %Id", ii+1, errors, N_total);
Pe = (float)errors/N_total;

fprintf(outf0,"\nPe = %2.10f\n\n",Pe);

fclose(outf0);
fclose(inpfl);
fclose(inpf2);
fclose(inpf3);

free(x1);

free(x2);
free(data);

197

free(v);

free(u);

free(Rx);

free(Tx);

free_2d_int_matrix(2, soft_metric);

B.10 Main program for ideal system using erasure Method 2

include <stdio.h>
include <math.h>
include <stdlib.h>
include <stddef.h>
include "mmt33.h"

define FILE_PRINT 1 /* Prints either to file(1) or screen(0) */
/* Note: All DEBUG flags must be 0 */

define GEN_STAT 1

define PAUSE 0 /* uses getchar(); to pause the output displayed to the screen */

define L_DEBUG O /* prints out reliability values in SOVA */

define DEBUG 0

define DEBUGI1 0

define DEBUG_DUMP 0 /* Shows the whole deinterleaving frame with reliability values */

define Nss 16 /* Number of samples per symbol */
#define Rb 1 /* The bit rate */

define Tb (1.0/Rb)
define Eb 1.0 /* The Energy per bit */

struct mat
{ .
intr;
intr2;
int reli;
int flag;
b

/* Defining the random number generator constants */

define IM1 2147483563
define IM2 2147483399
define AM (1.0/IM1)

define IMM1 (IM1-1)

define IA1 40014

define IA2 40692

define IQ1 53668

define 1Q2 52774

define IR1 12211

define IR2 3791

define NTAB 32

198

define NDIV (1+IMM1/NTAB) .
define EPS 1.2e-7
define RNMX (1.0-EPS)

int main(int argc, char *argv())

{
int *v, *v2 *u, i, ii, j, errors, Q;
long *idum;
long idum_cell;
long num_bits, N, N_total;
intrs_m, rs_t, rs_n, rs_k, rs_q, rs_num;
int conv_k, conv_n, conv_m, conv_num;
double Pe, x, var, sd, A, amp, b, a;
double EbNo, gain, *prob;
int max_repeat, I, rows, I_num, level, frame_error;

FILE *outf0;

int **soft_metric;

int *erasure_counter, *counter, *dccoded_word;

int *frame_failure, *error_statl, *error_stat2, **num_bits_per_level,
char cFilename[80];

idum=&idum_cell;

EbNo=atof(argv[1]);

N = atol(argv[2]);

I = atol(argv[3]);
max_repeat = atol(argv{4]);

if(FILE_PRINT) sprintf(cFilename,"B_Method2_%?2.3fEbNo%dI.output",EbNo,I);

/* The Reed Solomon coding parameters */
rs_m=_§;

rs_t = 16;

rs_q = pow(2, rs_m);

rs_n=r1s_q-1;

rs_k=rs_n - 2%*rs_t;

/* Interleaving parameters */

rows = rs_m¥*rs_n;

/* The Convolutional coding parameters */

conv_k=1;
conv_n=2;
conv_m=6;

Q =256; /* Number of soft decision levels */

199

rs_num = N/(rs_k*rs_m);
if(N % (rs_k*rs_m) '=0)
{

++rs_num;
N = rs_num*rs_k*rs_m;

}

I_num = rs_num/I;
if(rs_num%]I != 0)
{

++ I_num;

rs_num = I_num*I;

N = rs_num*rs_k*rs_m;

}
gain = (double)(conv_k*rs_k)/(conv_n*rs_n);
a=10.0;
conv_num = (rs_num*rs_n*rs_m +50)/conv_k;
num_bits = conv_n*(conv_num + 100);
errors = 0;
soft_metric = int_matrix_2d(2, Q);
num_bits_per_level = int_matrix_2d(2, Q);
counter = ivector(7);
prob = dvector(Q);
/* stuff from RS encode */
frame_failure = ivector(I+1);
error_statl = ivector(32); /* Keeps track of how many RSW contain x number of errors */
error_stat2 = tvector(32);
decoded_word = ivector(l);
for(i=0; i<7; i++) counter[i]A= 0;
amp = 1.0;
N_total = 0;
v = ivector(num_bits);
u = ivector(N);
v2 = ivector(num_bits);

idum = -10; / Random number initial seed */

A = gain*pow(10.0, (EbNo/10.0));

200

var = 1.0/(2*A),

sd = sqrt(var);

for(ii=0; iicmax_repeat; ii++)

{ for (i=0; i<num_bits; i++) v[i] = 0;
for (i=0; i<N; i++)
{ v[i] = bitgen(idum);

uli] = v{i];
}

rs_encode(v, rs_n, rs_k, rs_m, rs_num);
for(i=0; i<num_bits; i++) v2[i] = v[i];
interleave(v, rows, rs_n, rs_m, I, I_num);
conv_encode(v, conv_n, conv_k, conv_m, conv_num);
for (i=0; i<num_bits; i++)
{ if(v[i] == 1) x = 1.0 + sd*gasdev2(idum);

else x =-1.0 + sd*gasdev2(idum);

/* Demod */

for(j=0; j<Q; j++)

if(x>=amp*(2*j-Q)/Q && x< amp*(2*(j+1)-Q)/Q)

level = j;

if(x >= amp) level = Q-1;
if(x <= -amp) level = 0;

num_bits_per_level[v[i]](level] +=1;

v{i] = level;

}

for(i=0; 1<Q; i++)
prob[i] = (double)(num_bits_per_level[0][i] + num_bits_per_level[1}1[Q-i-1] + 1)/(2*num_bits +Q);

b = -log(prob[Q-1])/1og(2.0);
for(i=0; i<Q; i++)
{
soft_metric[0][i] = (int)(floor)}{a*(log(prob[i])/log(2.0) + b));

soft_metric[1][Q-i-1] = soft_metric[0][i];
}

conv_decode(v, conv_n, conv_k, conv_m, conv_num, soft_metric, a);

201

deinterleave(v, rows, rs_n, rs_m, I, I_num);

rs_decode_erasure_method_2(v, v2, counter, rs_n, rs_k, rs_q, rs_m, rs_num,
erasure_counter, I, decoded_word, frame_failure, error_statl, error_stat2);

for (i=0; i<N; i++)
if (v(i} = u[i])

errors += 1;
N_total += N;

if({FILE_PRINT)
{

printf("\n\n");
printf("Erasure Counter\n");
for (i=0; i<=2*rs_t-4; i+=2) printf("%de= %d ",i, erasure_counter[i}]);

printf("\n\nError Counter | (number of times x amount of errors occoured)\n");

for(i=0; i<16; i++)
{

if(i==7) printf("\n");

printf("%derr = %d ", 16+i, error_stat1fi]);
}

printf("\n\nError Counter 2 (# of errors for non-decoded word)\n");

for(i=0; i<16; i++)
{

if(i==7) printf("\n");

printf("%derr = %d ", 16+i, error_stat2[i]);
}

printf("\n\nFrame decoded with x correct\n”);
for(i=0; i<=I; i++) printf("%dcct = %d ",i, frame_failure(i]);

if(GEN_STAT)
{
printf("\n\nNumber of GE flagged GE = %d Prob = %1.3f\n", counter[4],
(float)counter[4]/counter[6]);
printf("Number of GE flagged BE = %d Prob = %1.3f\n",
counter[5],(float)counter[5]/counter[6]);
printf("Total number of GE declaired = %d\n" ,counter{6]);

printf("\nNumber of BE flagged BE = %d Prob = %1.3f\n", counter[7]
(float)counter[7}/counter{9]);

printf("Number of BE flagged GE = %d Prob = %1.3f\n", counter[8]
(float)counter{8]/counter[9]);

printf("Total number of BE declaired = %d\n",counter[9]);

}

printf("\n\nBefore Decoding, no erasures used:\n");

202

printf("\nTotal number of bytes = %d", counter[11});
printf("\nNumber of byte errors = %d", counter[12]);
printf("\nProb of byte error = %2.51f",(double)counter[12}/counter([11]);

printf("\n\nTotal number of frames = %d", counter{13]);
printf("\nNumber of frames in error = %d", counter[14]);
printf("\nProb of frame error = %2.51f", (double)counter[14)/counter{13]);

printf("\n\nNumber of RSW = %d" counter[0]);

printf("\nNumber of RSW correct = %d" error_stat1[0]);

printf("\nNumber of RSW incorrect = %d", counter[0]-error_stat1[0]);

printf("\nProb of RSW incorrect = %2.51f",(double)(counter[0]-error_stat 1 [0])/counter[0]);

printf("\n\nAfter decoding:\n");

frame_error = 0;
for(i=0; i<I; i++) frame_error += frame_failure[i];

printf("\nTotal number of frames = %d", counter[13]);
printf("\nNumber of frames in error = %d", frame_error);
printf("\nProb of frame error = %2.51f" (double)frame_error/counter[13]);

printf("\n\nNumber of RSW = %d",counter{0]);

printf("\nNumber of RSW correct = %d",counter[1]);

printf("\nNumber of RSW incorrect = %d", counter{2]);

printf("\nProb of RSW incorrect = %2.51{" (double)counter(2]/counter[0]);

printf("\n\nTotal number of decoding trials = %d",counter[15]);
printf("\nAverage number of decoding trials = %3.31f", (double)counter{15]/counter[0]);

L}

printf("\nNumber of decoding failures = %d\n",counter{10}]);

printf("\n\nEb/No = %2.2f dB",EbNo);

printf("\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);

printf("\ninterleaving depth I = %d".I);

printf("\n(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);
printf("\niteration number = %d\n# errors = %d\n N total = %Id", ii+1, errors, N_total);
Pe = (float)errors/N_total;

printf("\nPe = %2.10f\n\n",Pe);

}

if(FILE_PRINT)
(o

outf0=fopen(cFilename,"at+");

fprintf(outf0,"\n\nErasure Counter\n");
for (i=0; i<=2*rs_t-2; i+=2) fprintf{outf0," %de= %d ",i, erasure_counter{i]);

fprintf(outf0,"\n\nError Counter 1 (number of times x amount of errors occoured)\n");

203

for(i=0; i<16; i++) fprintf(outf0," %derr = %d ", 16+i, error_stat1[i]);

for(i=0; i<16; i++)
{

if(i==7) fprintf(outf0,"\n"};

fprintf(outf0," %derr = %d ", 16+i, error_statl[i]);
}

fprintf(outf0,"\n\nError Counter 2 (# of errors for non-decoded word)\n");

for(1=0; i<16; i++)
{

if(i==7) fprintf(outf0,"\n");

fprintf(outf0," %derr = %d ", 16+i, error_stat2[i]);
}

fprintf(outf0,"\n\nFrame decoded with x correct\n");
for(i=0; i<=I; i++) fprintf(outfd," %dcct = %d " ,i, frame_failure[i]);

if(GEN_STAT)
{
fprintf(outf0,"\n\nNumber of GE flagged GE = %d Prob = %1.3f\n", counter[4],
(float)counter[4]/counter{6]);
fprintf(outfO,"Number of GE flagged BE = %d Prob = %1.3f\n",
counter[5],(float)counter[5}/counter[6]);
tprintf(outf0," Total number of GE declaired = %d\n",counter[6]);

fprintf(outf0,"\nNumber of BE flagged BE = %d Prob = %1.3f\n", counter[7],
(float)counter{7]/counter[9]);
fprintf(outfO,"Number of BE flagged GE = %d Prob = %1.3f\n", counter{8],
(float)counter{8]/counter[9]);
fprintf(outf0,"Total number of GE declaired = %d\n",counter[9]);
} .

fprintf(outf0, "\n\nBefore Decoding, no erasures used:\n");

fprintf(outf0,"\nTotal number of bytes = %d", counter[11]);
fprintf(outf0,"\nNumber of byte errors = %d", counter[12]);
fprintf(outf0,"\nProb of byte error = %2.51f" (double)counter[12]/counter[11]);
fprintf(outf0,"\n\nTotal number of frames = %d", counter[13]);
fprintf(outf0,\nNumber of frames in error = %d", counter{ 14]);
fprintf(outf0,"\nProb of frame error = %2.51", (double)counter[14]/counter[13]);
fprintf(outf0,"\n\nNumber of RSW = %d",counter{0});

fprintf(outf0,"\nNumber of RSW correct = %d" error_stat1[0]);

fprintf(outfO,"\nNumber of RSW incorrect = %d", counter[0]-error_stat1[0]);
fprintf(outf0,"\nProb of RSW incorrect = %2.51f",(double)(cournter{0]-error_stat1[0])/counter{0]);

fprintf(outf0, "\n\nAfter decoding:\n");

frame_error = 0;

204

for(i=0; i<I; i++) frame_error += frame_failure[i];

fprintf(outf0,\nTotal number of frames = %d", counter[13]);
fprintf(outf0, \nNumber of frames in error = %d", frame_error); _
fprintf(outf0,"\nProb of frame error = %2.5If" (double)frame_error/counter{ 13});

fprintf(outf0, "\n\nNumber of RSW = %d" counter[0]);

fprintf(outf0,"\nNumber of RSW correct = %d",counter(1]);
fprintf(outf0,"\nNumber of RSW incorrect = %d", counter{2]);
fprintf(outf0,"\nProb of RSW incorrect = %2.51f",(double)counter[2]/counter[0]);

fprintf(outf0,"\n\nTotal number of decoding trials = %d",counter{15]);
fprintf(outf0,"\nAverage number of decoding trials = %3.3If", (double)counter[15)/counter[0]);

fprintf(out.fO"'\nNumber of decoding failures = %d\n",counter[10]);

fprintf(outf0,"\n\nEb/No = %2.2f dB",EbNo);

fprintf(outf0,"\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);
fprintf(outf0,\ninterleaving depth I = %d",1);

fprintf(outf0,"\n(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);

fprintf(outf0, "\niteration number = %d\n# errors = %d\n N total = %Id", ii+1, errors, N_total);
Pe = (float)errors/N_total;

fprintf(outf0,"\nPe = %2.10f\n\n" ,Pe);

fclose(outf0);

free(v);

free(u);

free(v2);

free_2d_int_matrix(2, soft_metric);
free_2d_int_matrix(2, num_bits_per_level);
free(decoded_word);

free(frame_failure);

free(error_statl);

free(error_stat2);

205

(1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

References

Berrou, Claude., Adde, Patrick., Ettiboua., and Faudeil, Stephane., “A Low
Complexity Soft-Output Viterbi Decoder Architecture,”. Procedings ICC ‘93, pp.
737 -740. May 1993.

Blahut, R. E., Theory and Practice of Error Control Codes, Addison Wesley,
Reading Mass., 1984.

Forney, G. D., “On Decoding BCH Codes,” IEEE Transactions on Information
Theory, Volume IT-11, pp. 393-403, October 1965.

Hagenauer, J. and Hoeher, P., “A Viterbi Algorithm with Soft Outputs and Its
Applications,” Procedings of the IEEE Globecomm Conference, Dallas, Tex., pp.
47.1.1-47.1.7, November 1989.

Jeruchim, Michael C., Balaban, Philip., and Shanmugan, K. Sam., Simulation of
Communication Systems., Plentum Press, New York; NY., 1992.

Lin, S., and Costello, D. J., Ir., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ., 1983.

Paaske, Eric, “Improved Decoding for a Concatenated Coding System
Recomended by CCSDS,” IEEE Transactions on Communications, Volume
COM-38, pp. 1138-1144, August 1990.

Press, W. H., Teukolsky, S. A., Vettering, W. T., Flannery, B. P., Numerical

Recipies in C., Cambridge University Press., 1992.

206

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Sklar, Bernard, Digital Communications: Fundamentals and Applications,
Prentice Hall, Inc., Englewood Cliffs, NJ., 1988.

Viterbi, Andrew J., Omura, Jim K., Principles of Digital Communication and

Coding, McGraw-Hill, New York, NY., 1979.

Wicker, Stephen B., Error Control Systems for Digital Communication and
Storage, Prentice-Hall, Inc., Englewood Cliffs, NJ., 1995.

Pratt, Timothy., Bostian, Charles., Satellite Communications. John Willey and
Sons., New York, NY., 1976.

Palmer, Larry C., “Computer Modeling and Simulation of Communications
Satellite Channels,”. IEEE Journal on Selected Areas of Communications,
Volume SAC-2, No. 1, pp. 89-102, January 1984.

Hagenaurer, J., Offer, E., and Papke, L., “Matching Viterbi Decoders and Reed
Solomon Decoders in a Concatenated System,”. Reed Solomon Codes and their
Applications, Ch. 11, edited by Wicker, S., and Bhargava, V., IEEE Press, New
York, NY., 1994,

Wicker, S., and Bhargava, V., “An Introduction to Reed Solomon Codes,”. Reed
Solomon Codes and their Applications, Ch. 1, edited by Wicker, S., and
Bhargava, V., IEEE Press, New York, NY., 1994.

McEliece, Robert., Swanson, Liaf., “Reed Solomon Codes and the Exploration of
the Solar System,”. Reed Solomon Codes and their Applications, Ch. 3, edited by

Wicker, S., and Bhargava, V., IEEE Press, New York, NY., 1994.

207

[17] Massey, J. L., “Shift Register Synthesis and BCH Decoding,” IEEE Transactions
on Information Theory, Vol. IT-15, No. 1, pp. 122-127, Jan. 1969.

[18] Feher, Kamilo., Digital Communications Satellite/Earth Station Engineering.,
Prentice Hall, Englewood Cliffs, N. J. 1985.

[19] McEliece, Robert, and Swanson, Liaf., “On the decoder error probability of Reed-
Solomon codes,” IEEE Transactions on Information Theory, Vol. IT-32, pp 701-

703, Sept. 1986.

208

