Calcium-Dependent Protein Kinase Genes in Corn Roots

D. Takezawa, S. Patil, A. Bhatia, and B. W. Poovaiyah*

Laboratory of Plant Molecular Biology and Physiology, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA

Received February 1, 1996 • Accepted February 10, 1996

Summary

Two cDNAs encoding Ca\(^{2+}\)-dependent protein kinases (CDPKs), CRPK1 and CRPK2 (corn root protein kinase 1 and 2), were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKs, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca\(^{2+}\)-binding sites. Northern analysis revealed that CRPK1 mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPK1 mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca\(^{2+}\). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca\(^{2+}\)-dependent signal transduction process.

Key words: Calcium, corn, protein kinases.

Abbreviations: CDPK = Ca\(^{2+}\) dependent protein kinase; CRPK = corn root protein kinase.

Introduction

Calcium, a universal second messenger has been shown to mediate a number of signal transduction processes in plants (Poovaiah and Reddy, 1987, 1993; Gilroy and Trewavas, 1994). Signal-induced changes in cytosolic Ca\(^{2+}\) are sensed by a group of Ca\(^{2+}\)-binding proteins that are involved in the regulation of diverse cellular activities. Ca\(^{2+}\)-dependent protein kinases (CDPKs) are widely distributed in plants and are believed to be involved in various physiological processes (Roberts and Harmon, 1992). CDPK purified from different plants exhibits Ca\(^{2+}\)-dependent, but calmodulin-independent, kinase activity and efficiently phosphorylates H1 histone. CDPK also phosphorylates synthetic peptides which have a Basic-Xaa-Xaa-Ser/Thr motif such as peptides derived from glycogen synthase (Regia et al., 1989; Putnam-Evans et al., 1990; Harmon et al., 1994).

Several CDPK cDNAs have been isolated from higher plants (Harper et al., 1991; Suen and Choi, 1991; Poovaiah and Reddy, 1993). The predicted structure of the CDPK polypeptide is composed of three distinct domains: a serine/threonine kinase domain, a junction domain, and a Ca\(^{2+}\)-binding regulatory domain that resembles calmodulin (Roberts, 1993). It is suggested that the presence of the calmodulin-like domain makes CDPK exhibit similar biochemical characters to calmodulin. For instance, CDPK is known to bind to hydrophobic matrices such as phenyl-Sepharose in a Ca\(^{2+}\)-dependent manner. Its activity is inhibited by calmodulin antagonists such as W7 and trifluoperazine, possibly because of interactions of these drugs with the calmodulin-like domain. The junction domain between the kinase and calmodulin-like domains makes CDPK exhibit an autoinhibitory sequence which blocks binding of the substrates to the catalytic site of the kinase. Upon binding Ca\(^{2+}\), the calmodulin-like domain directly interacts with the sequence near the autoinhibitory domain and releases the catalytic site from the inhibition.
Primers were subcloned into pBluescriptII KS+ for nucleotide sequencing. The cDNA inserts were subcloned into a vector for nucleotide sequencing. The Sanger method (Sanger et al., 1977) was used to determine the amino acid sequences.

Different plant parts were excised and used for PCR amplification. PCR was performed using degenerate oligonucleotide primers corresponding to two conserved regions.

Materials and Methods

Plant materials

Corn (Zea mays L. cv. Merit) seeds were a gift from the Asgrow Seed Company, Kalamazoo, MI. Seeds were imbibed in water for 12 h and were germinated in the dark at room temperature for 3 or 4 days. Different plant parts were excised and immediately frozen in liquid nitrogen.

Polymerase chain reaction (PCR)

AgI1 and λZAP cDNA libraries were prepared from corn roots and used for PCR amplification. PCR was performed using degenerate oligonucleotide primers corresponding to two conserved regions.

cDNA library screening

Approximately 1 × 10^6 plaques were screened using 32P-random prime labeled DNA fragments as described by Sambrook et al. (1989). After three rounds of screening, hybridizing plaques were selected. The cDNA inserts were subcloned into pBluescriptII KS+ for nucleotide sequencing.

Southern analysis

Corn genomic DNA (10μg) was digested with different restriction enzymes and separated on a 0.8% agarose gel. The digested DNA was transferred onto a nylon membrane and hybridized with 32P-labeled CDPK cDNA probes as described by Reddy et al. (1993).

Northern analysis

Total RNA was isolated by phenol-SDS method (Verwoerd et al., 1989) and poly(A)^+ RNA was purified by oligo(dT) cellulose column chromatography (Sambrook et al., 1989). Northern analysis was performed using 32P-labeled antisense RNA probe as described by Takezawa et al. (1995).

In situ hybridization

Four day-old corn roots were fixed and dehydrated as described by Cox and Goldberg (1988). The tissues were embedded in a paraffin block and sections were sectioned at 5 μm thickness with a microtome. The sections were treated with 1 μg/mL proteinase K for 30 min at 37°C, followed by washing with 2× SSC. The cDNA probe was labeled with digoxigenin (Boehringer Mannheim) and Klenow enzyme for 12 h at 37°C. Prehybridization and hybridization were performed as described by Cox and Goldberg (1988). After washing with 0.1× SSC, the sections were incubated with anti-DIG antibody (1:500) in TBST containing 1% BSA for 3 h in a moist chamber. The hybridization signals were detected by Protein G Gold (1:100) (Sigma Chemical) and silver enhancement reagents (Pharmacia LKB Biotech.).

Partial purification of corn root CDPK

Corn root CDPK was partially purified by ammonium sulfate precipitation and phenyl-Sepharose column chromatography as described by Guo and Roux (1990). Root tissues were homogenized in a buffer containing 50 mmol/L Tris-Cl (pH 7.5), 2 mmol/L EDTA, 1 mmol/L DTT, 0.1% Triton X-100 and 0.5 mmol/L PMSF, and the homogenate was centrifuged at 10,000 g, for 10 min at 4°C. The supernatant was further centrifuged at 40,000 g, for 1 h at 4°C to obtain soluble proteins. Solid ammonium sulfate was added to the supernatant to 50% saturation and incubated on ice for 2 h. The mixture was centrifuged at 10,000 g, for 30 min and the pellet was dissolved in the loading buffer containing 25 mmol/L Tris-Cl (pH 7.5), 1 mmol/L DTT and 1 mmol/L CaCl2. After removal of insoluble materials by centrifugation at 10,000 g, for 10 min, the proteins were loaded onto a phenyl-Sepharose CL-4B column. The column was extensively washed with the buffer containing 25 mmol/L Tris-Cl (pH 7.5), 1 mmol/L DTT 0.5 M NaCl and 1 mmol/L CaCl2, and the proteins were eluted by buffer containing 25 mmol/L Tris-Cl (pH 7.5), 1 mmol/L DTT and 2 mmol/L EGTA. Active fractions were collected, and concentrated using Centricon-30 (Amicon Inc.) to remove small molecular weight proteins. Glycerol was added to 20% and the enzyme was stored at 70°C until use.

Protein kinase assays

CDPK assays were performed by measuring incorporation of 32P into a synthetic peptide syntide-2 (Hashimoto and Soderling, 1987), which is efficiently phosphorylated by most plant CDPKs. The 20 μL reaction mixture contained 50 mmol/L Hepes (pH 7.5), 10 mmol/L magnesium acetate, 2 μL enzyme, 1 mmol/L [γ-32P] ATP (100–200 cpm/pmol), 100 μmol/L tyrosine-2, and either 0.5 mmol/L CaCl2 or 2 mmol/L EGTA. The reaction was carried out for 10 min at 30°C. The reaction mixture was spotted onto P-81 phosphocellulose-
Confound paper disc and 32P incorporation was determined by measuring radioactivity in scintillation liquid.

Results

Cloning and sequence analysis

Degenerate oligonucleotide primers corresponding to the highly conserved regions, GGELFD and DLKPEN were used in PCR to amplify CDPK cDNA fragments. Two DNA fragments of 141 bp long, were cloned and sequenced. The sequence comparison revealed that the deduced amino acid sequences of both the clones share high homology with other plant CDPKs and animal Ca$^{2+}$/calmodulin-dependent protein kinases. Two cDNA clones (CRPK1 and CRPK2) were obtained by screening corn root cDNA libraries using these 141 bp fragments as probes. The CRPK1 (1527 bp) encodes a 480 amino acid polypeptide (Poovaiah and Reddy, 1993); whereas the CRPK2 cDNA encodes a 513 amino acid polypeptide (Fig. 1).

Primary amino acid sequences of both the clones contain all eleven subdomains conserved in eukaryotic serine/threonine protein kinases (Hanks et al., 1988). Sequence analysis revealed that this kinase domain has high homology to plant CDPKs. Both CRPK1 and CRPK2 also have a putative junction domain and the calmodulin-like domain with four Ca$^{2+}$-binding sites (Fig. 1).

Southern analysis of CRPK1 and CRPK2

To determine the approximate copy number of CRPK1 and CRPK2, Southern blot analyses were carried out (Fig. 2). Corn genomic DNA digested with BamHI, EcoRI or HindIII was hybridized with 32P-labeled CRPK1 and CRPK2 cDNAs as probes. Despite that CRPK1 and CRPK2 share 60% identity at the nucleotide level, these clones showed distinct patterns of hybridizing bands in each digest, when the hybridization and washing were carried out at high stringent condition. The results indicated that these clones are coded by a few copies in the genome.

Highest expression of CRPK1 mRNA in the root tip

Northern analyses were carried out using 5μg total RNA to study the expression of CRPK1 and CRPK2 mRNAs in

Fig. 1: Deduced amino acid sequence of CRPK1 and CRPK2. Subdomains I to XI for serine/threonine protein kinase are marked. The junction domain is underlined with a large dotted line (-----). Four EF-hand motifs are underlined (solid lines).
leaves and roots from 8 day-old seedlings. CRPK1 mRNA (~2 kb) is expressed in roots but the expression was very low in leaves (Fig. 3 A). The size of the hybridizing signal appeared in a similar position when root poly (A) + RNA was used instead of total RNA. The amount of CRPK1 mRNA in roots from 8 day-old seedlings and 3 day-old roots germinated in the dark, were similar. We also compared the CRPK1 mRNA expression in the root tip and root base. Several independent experiments indicated that the root tip accumulates high amounts of CRPK1 mRNA as compared to the root base. Results from a typical experiment are shown in Fig. 3 B. These results suggest that there is a gradient of the accumulation of CRPK1 transcript in different parts of roots. We did not detect CRPK2 mRNA by northern analysis, probably because the amount of mRNA expression is very low. When we performed RNase protection assay, a more sensitive RNA detection method, the signal indicating CRPK2 mRNA expression in roots was detected, but the expression level was much lower than CRPK1. Therefore, we did not study CRPK2 mRNA expression further.

In situ localization of CRPK1 mRNA

To study the abundance of the CRPK1 transcript in different regions of root tissues, in situ hybridization experiments were carried out. The CRPK1 mRNA was not uniformly expressed; the apical portion of the root accumulated high levels of CRPK1 mRNA; whereas, the transcript level was reduced in the quiescent center and the prevascular and pericortical regions (Fig. 4).

Activity of partially purified corn root CDPK

Results of northern and in situ hybridizations indicated that the root tip contains higher levels of CDPK message than other parts of roots. CDPK was partially purified from corn root tip by ammonium sulfate precipitation and Ca2+-dependent phenyl-Sepharose column chromatography. The partially purified root tips CDPK phosphorylated syntide-2 and the phosphorylation was stimulated about 7-fold by Ca2+ (Fig. 5A). The enzyme also phosphorylates H1 histone in a Ca2+-dependent manner (data not shown). To study the Ca2+-dependent phosphorylation, syntide-2 phosphorylation was compared between the root tip and the root base. The results shown in Fig. 5 indicate that the root tip has higher CDPK activity than the root base.

Discussion

The results presented here show that corn root expresses two genes encoding different isoforms of CDPK. Both CRPK1 and CRPK2 encode a protein that is structurally similar to other plant CDPKs with conserved catalytic and regulatory domains (Fig. 1). The calmodulin-like domain of CRPK1 and CRPK2 contains four intact EF-hand motifs with conserved Ca2+-ligating amino acids at x, y, z, −y, −x, and −z positions (Roberts, 1993). This suggests that the calmodulin-like domain of CRPK1 and CRPK2 undergoes conformational changes upon binding Ca2+, similar to calmodulin.
Southern analysis at high stringent condition revealed that these clones are coded by a small number of genes (Fig. 2). However, several bands were detected when we performed the Southern hybridization at low stringent condition. Considering that other plant CDPKs belong to a gene family (Urao et al., 1994), it is likely that corn also has other CDPKs.
isoforms. Although northern analysis indicated that CRPK1 mRNA is preferentially expressed in root tips (Fig. 3), it is likely that corn has other CDPK isoforms which are expressed in other organs (Estruch et al., 1994). The root tip is likely to be involved in the perception and transduction of external stimuli such as light and gravity (Scolum and Roux, 1983; Poovaiah and Reddy, 1987). Ca2+- and Ca2+/calmodulin-dependent phosphorylation is postulated to play a role in transducing gravity stimulus and inducing asymmetric growth of specific cells leading to a gravitropic response (Friedmann and Poovaiah, 1991). CRPK1, whose mRNA is highly expressed in the root tip (Fig. 3 B), may be one of the components involved in the mediation of the gravitropic response. We also attempted to study CRPK1 mRNA expression during the light-dependent gravitropic curvature. Dark grown corn roots, after exposure to light, showed a detectable increase in CRPK1 mRNA (data not shown). In contrast to CRPK1, CRPK2 mRNA expression was much lower in the root tissue. CRPK2 may be expressed in other cell types or tissues that were not tested during this investigation, or the expression may be induced in a signal-responsive manner.

Studies using the partially purified CDPK from corn roots, revealed that CDPK activity in the root tip was higher than the root base (Fig. 5 B). Even though CRPK1 expression was very high in the root tips, the increase in kinase activity was not correlated to the CRPK1 mRNA level. This could be due to the presence of other isoforms that have not been cloned yet. It should also be noted that a certain amount of CDPKs may be expressed in other organs (Estruch et al., 1994). The root tip is likely to be involved in the perception and transduction of gravity stimulus. It is important to identify target genes where CDPK isoforms are localized and furthermore, it is also important to resolve the subcellular localization of these isoforms using isoform-specific antibodies. The protein extract used in this study may contain a substantial amount of Ca2+/calmodulin-dependent protein kinase that can also phosphorylate syntide-2. This is unlikely since we used phenyl-Sepharose affinity column for partial purification of the CDPK. Furthermore, the CDPK activity in corn roots was not inhibited by 100 μmol/L KN-93, a specific inhibitor for Ca2+/calmodulin-dependent protein kinase II (Sumi et al., 1991; Lu et al., 1993). CDPK isoforms are known to exist in plants, but it is not clear how these isoforms are involved in cellular regulation. Some CDPK isoforms recognize a broad range of substrates while others have a narrow substrate specificity (DasGupta, 1994). CDPK isoforms may have specific targets in different organs and may control cellular functions such as proton pumping (Sussman, 1994) or regulate the activity of metabolic enzymes (Huber et al., 1994).

Acknowledgements

We are thankful to Dr. Vincent R. Franceschi for his suggestions on in situ hybridization experiments and Dr. Zhihua Liu for her help with the Southern analysis. The support of the National Science Foundation (Grant DCE 9015500), the National Aeronautics and Space Administration (Grant NAG-10-0061), and the Agricultural Experiment Station (Project 0321) is gratefully acknowledged.

References

Transport, Cytoplasmic Accumulation and Mechanism of Action of the Toxin Eutypine in Vitis vinifera Cells

CORINE DESWARTE1, HERVÉ CANUT2, ALAIN KLAEBE3, JEAN-PAUL ROUSTAN1, and JEAN FALLOT1

1 Ecole Nationale Supérieure Agronomique, 145 avenue de Muret, F-31076 Toulouse Cedex, France
2 Centre de Physiologie Végétale, Université Paul Sabatier, URA CNRS 1941, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
3 Laboratoire Synthèse, Structure et Réactivité de Molécules Phosphorées, Université Paul Sabatier, URA CNRS 454, 118 Route de Narbonne, F-31062 Toulouse Cedex, France

Received November 20, 1995 • Accepted February 8, 1996

Summary

The mechanism of the toxic action of eutypine, 4-hydroxy-3-(3-methyl-3-butene-1-ynyl) benzaldehyde, a toxin produced by the fungus Eutypa lata, the agent of dying arm disease of the grapevine, was investigated with cell suspension cultures of Vitis vinifera cv. Gamay and 14C-labelled eutypine. The study of the chemical characteristics of eutypine revealed that the toxin is a weak acid (pKa = 6.2), which also has a lipophilic character (water/octanol partition coefficient of 86). Eutypine was rapidly taken up by the cells and accumulated against a concentration gradient. Uptake showed no saturation at high eutypine concentration, and neither structural analogues of eutypine nor protein modifying reagents had an inhibitory effect on eutypine uptake. These data suggest a mechanism of passive diffusion for eutypine uptake. The eutypine accumulation observed in cells can be partly explained by an ion trapping mechanism related to the ionization state of the toxin. It has been demonstrated that some eutypine molecules insert into cellular lipids, i.e. cell membranes. Such partition of eutypine in the cells might play a major role in the expression of its toxicity. Eutypine seems to affect the functioning of mitochondria by an uncoupling effect or by inhibiting succinate dehydrogenase activity. These results suggest that eutypine has the same properties as the uncoupling agents that act as mobile proton carriers. The reduction of the energetic charge following eutypine action could explain the symptoms observed in diseased plants.

Key words: Uptake, transport, uncoupling, grapevine, eutypine, toxin, Eutypa lata, Vitis vinifera.

Abbreviations: CCCP = carbonylcyanide m-chlorophenylhydrazone; DIDS = 4,4'-diisothiocyanato-2,2'-stilbenedisulfonate; DMO = 5,5-dimethyloxazolidine-2,4-dione; MES = 2-(N-morpholino)ethanesulfonic acid; pCMB = p-chloromercuribenzoic acid; SDH = succinate dehydrogenase; TLC = thin layer chromatography; TRIS = Tris-(hydroxymethyl) amino methane.

Introduction

Eutypine, 4-hydroxy-3-(3-methyl-3-butene-1-ynyl) benzaldehyde, is a toxic compound secreted by Eutypa lata (Pers. : Fr.) Tul., the fungus responsible for Eutypa dieback of the grapevine (Renaud et al., 1989; Tey-Rulh et al., 1991). This disease is currently causing a large-scale economic problem throughout the world by reducing the yield and vegetative growth of grapevines (Munkvold et al., 1994). Through pruning wounds, ascospores of the fungus infect and colonize first the xylem tissue, then the cambium and phloem in the vine trunk and arms (Moller and Kasimatis, 1978). After an incubation period of 3 years or more a canker forms around the infected wound and the symptoms appear on the herba-