SBUV/2 Long-Term Measurements of Solar Spectral Variability

Matthew T. DeLand, Richard P. Cebula

Hughes STX Corporation
Greenbelt, MD

presented at the 1997 Spring American Geophysical Union Meeting,
Baltimore, MD
30 May 1997

supported by NASA Grant NASW-4864
The NOAA-11 SBUV/2 spectral solar data have been corrected for long-term instrument changes to produce a 5.5 year data record during solar cycle 22 (December 1988 - October 1994). Residual drifts in the data at long wavelengths are ±1% or less. At 200-205 nm, where solar variations drive stratospheric photochemistry, these data indicate long-term solar changes of 5-7% from the maximum of Cycle 22 in April 1991 through the end of the NOAA-11 data record. Comparisons of NOAA-11 data with UARS SUSIM and SOLSTICE for the period October 1991 - October 1994, when all 3 instruments were operating simultaneously, show that the observed long-term variations in 200-205 nm irradiance agree to within 2%. This result is consistent with predictions from the Mg II proxy index.

The SBUV/2 instruments represent a valuable resource for long-term solar UV activity studies because of their overlapping data records. In addition to the NOAA-11 data presented here, the NOAA-9 SBUV/2 instrument began taking data in March 1985 and is still operating, providing a complete record of Cycle 22 behavior from a single instrument. Three additional SBUV/2 instruments are scheduled to be launched between 1997 and 2003, which should permit full coverage of solar cycle 23.

On-board calibration system corrects for diffuser reflectivity change only.

Coincident observations with SSBUV flights used to characterize long-term instrument throughput changes as functions of time, wavelength.

NOAA-11 irradiance data show long-term drift ≤ 1% for λ > 300 nm; This is consistent with expectation of little/no solar activity, indicates accuracy of corrections.

Shorter wavelengths show regular rotational modulation (up to 5-6% at 200-208 nm, 2-3% at 240-250 nm) during maximum and decline of Cycle 22; Periods of 13-day variability in Fall 1991, late 1992 also present.

NOAA-11 Solar Irradiance Results
NOAA-11 IRRADIANCE Data: 380–390 nm

Normalized Irradiance

NOAA-11 IRRADIANCE Data: 330–340 nm

Normalized Irradiance

NOAA-11 IRRADIANCE Data: 240–250 nm

27-day average

NOAA-11 IRRADIANCE Data: 200–208 nm

27-day average
Plot of all data in 10 nm bands (81-day average) shows $\Delta F < \pm 1\%$ [darker green] for $\lambda > 270$ nm, more long-term change shortward of Mg edge at 210-250 nm [lighter green], largest change below Al edge at $\lambda < 210$ nm [yellow, orange]; End of Cycle 22 maximum in Spring 1992 visible at $\lambda < 270$ nm.

Long-term changes at short wavelengths determined from smoothed data are approximately 6% at 200-208 nm, 3-3.5% at 240-250 nm; How can we evaluate instrument drift at these wavelengths?
Solar irradiance variations modeled using NOAA-11 Mg II index, scale factors; NOAA-11 Mg II agrees with NOAA-9 Mg II, SUSIM Mg II to within 1% during overlap periods.

"Desolarized" NOAA-11 irradiance data has long-term drift of +2% at 200-208 nm, < 1% at 240-250 nm.

If (Mg II + scale factor) result is correct for long-term change, $\Delta F_{\text{solar}} \approx -(6-7)\%$ at 200-208 nm, -(3-4)% at 240-250 nm during 1989-1994; Compare with other instruments for validation.
NOAA-11 CLASSICAL DISCRETE Mg II Index

Mg II Index [core-to-wing ratio]

UARS data

Mg II Scale Factors

Sensitivity to ΔMgII [percent]

Wavelength [nm]
NOAA-11 DESOLARIZED Data: 240–250 nm

NOAA-11 DESOLARIZED Data: 200–208 nm
NOAA-11 data overlap UARS solar instruments (SUSIM, SOLSTICE) during Oct 1991 - Oct 1994; Results shown here use SUSIM V19 data, SOLSTICE V8 data

Long wavelengths ($\lambda > 300$ nm) generally have $\Delta F < \pm 1\%$; Raw data at short wavelengths ($\lambda < 260$ nm) show similar rotational activity, long-term decrease

Evaluate drift at short wavelengths by removing predicted solar change from all data; Results good to 1-2\% for selected bands; No indication of long-term bias in Mg II-based solar change values

Comparisons with UARS Irradiiances
Solar Irradiance Data at 380–390 nm

NOAA-11

SUSIM [V19]

SOLSTICE [V8]
Solar Irradiance Data at 330–340 nm

NOAA-11

SUSIM [V19]

SOLSTICE [V8]

DATE

Jan 1992
Jan 1993
Jan 1994
Jan 1995
Solar Irradiance Data at 240–250 nm

NOAA-11

SUSIM [V19]

SOLSTICE [V8]

DATE
Solar Irradiance Data at 200–208 nm

NOAA-11

SUSIM [V19]

SOLSTICE [V8]

DATE

Irradiance Data at 240–250 nm
PREDICTED SOLAR CHANGE Removed

NOAA–11

SUSIM [V19]

SOLSTICE [V8]
Irradiance Data at 200–208 nm
PREDICTED SOLAR CHANGE Removed

NOAA–11

SUSIM [V19]

SOLSTICE [V8]
For full comparison, remove predicted solar change from all 10 nm bands and plot together

- **NOAA-11** data mostly within ±1% range, with drift of +1-2% at $\lambda < 200$ nm [*light green*]; These data represent later part of NOAA-11 data record

- **SUSIM** data fall in ±1% range, except for early dip at $\lambda < 230$ nm [*yellow*] and additional drift at 170-190 nm

- **SOLSTICE** data good to ~1% at 300-380, 220-260 nm; Drifts of -2% or more present in 260-300 nm region, particularly 290 nm [*yellow*]; Data for $\lambda < 210$ nm have positive drift, reaching $\Delta F = 3-4\%$ at 180-190 nm [*blue*]
NOAA-11 solar spectral irradiance data [170-400 nm, December 1988 - October 1994] have been processed with full corrections based on SSBUV coincident data.

Results have long-term accuracy of ±1% at most wavelengths; Solar change from late 1989 (maximum of Cycle 22) to October 1994 (close to minimum) ≈ -(6-7)% at 200-208 nm, -(3-4)% at 240-250 nm.

NOAA-11, NOAA-9 discrete Mg II index data and Mg II scale factors now available at anonymous FTP site [ssbuv.gsfc.nasa.gov]; NOAA-11 spectral irradiance data will be available on-line in Summer 1997.

CONCLUSIONS