
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. C5, PAGES 10,573-10,584, MAY 15, 1997

NASA-CR-Z04802

Adaptation of a fast optimal interpolation algorithm

to the mapping of oceanographic data

Dimitris Menemenlis, 1 Paul Fieguth, 2 Carl Wunsch, a and Alan Willsky a

Abstract. A fast, recently developed, multiscale optimal interpolation algorithm

has been adapted to the mapping of hydrographic and other oceanographi c data.

This algorithm produces solution and error estimates which are consistent with

those obtained from exact least squares methods, but at a small fraction of the

computational cost. Problems whose solution would be completely impractical

using exact least squares, that is, problems with tens or hundreds of thousands

of measurements and estimation grid points, can easily be solved on a small

workstation using the multiscale algorithm. In contrast to methods previously

proposed for solving large least squares problems, our approach provides estimation

error statistics while permitting long-range correlations, using all measurements,

and permitting arbitrary measurement locations. The multiscale algorithm itself,

published elsewhere, is not the focus of this paper. However, the algorithm requires

statistical models having a very particular multiscale structure; it is the development

of a class of multiscale statistical models, appropriate for oceanographic mapping

problems, with which we concern ourselves in this paper. The approach is illustrated

by mapping temperature in the northeastern Pacific. The number of hydrographic

stations is kept deliberately small to show that multiscale and exact least squares

results are comparable. A portion of the data were not used in the analysis; these

data serve to test the multiscale estimates. A major advantage of the present

approach is the ability to repeat the estimation procedure a large number of times

for sensitivity studies, parameter estimation, and model testing. We have made

available by anonymous Ftp a set of MATLAB-callable routines which implement

the multiscale algorithm and the statistical models developed in this paper.

1. Introduction

As the hydrographic component of the World Ocean

Circulation Experiment (WOCE) nears completion, a

large number of new hydrographic observations are be-

coming available. These observations are typical of sev-

eral modern, global-scale data sets which are commonly

used in gridded form in combination with dynamical

models in a process sometimes known as "synthesis,"

"assimilation," or "fusion." With such global-scale data

sets, the problems faced by the data analyst are daunt-

ing: they include the large number of measurements,

the enormous number of estimation grid points, the ir-

regular sampling and varying spatial quality of the mea-

surements, and the lack of spatial stationarity of the ob-
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served fields. In this paper we address these difficulties

by introducing a scheme which permits the production

of maps and error estimates at a very modest compu-

tational cost.

The oceanographic community has come to rely heav-

ily upon gridded fields of tracer properties (e.g., heat,

salinity, oxygen, nitrogen, etc.) for obtaining quantita-

tive estimates of various aspects of the oceanic general

circulation. For example, gridded fields are routinely

used in numerical ocean modeling for initial and bound-

ary conditions [e.g., Semtner and Chervin, 1992] and for

comparisons [e.g., Stammer et al., 1996]. Gridded fields

are also used to make diagnostic calculations of the gen-

eral circulation [e.g., Bogden et al., 1993; Marotzke and

Wunsch, 1993; Schiller and Willebrand, 1995]; to under-

stand the production, transformation, spreading, and

associated forcing mechanisms of water masses [e.g.,

Worthington, 1981]; to plan experimental surveys [e.g.,

Bretherton et al., 1976]; etc. Most of these applications

require, in addition to the estimates, a quantitative de-

scription of the spatially varying reliability of the grid-

ded fields.

Gridded hydrographic fields are typically produced

either by ad hoc interpolation methods or, preferably,

through objective mapping (or optimal interpolation

(OI)) [e.g., Gandin, 1965; Bretherton et al., 1976; Thid-

bauz and Pedder, 1987; Daley, 1991]. One important
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advantage of OI over ad hoc interpolation is that OI
provides uncertainty estimates. OI estimates can be
obtained by solving an equivalent least squares mini-
mization problem, but for the very large data and grid

sizes in the global ocean the requisite brute-force ma-
trix inversion is impractical. In practice, OI estimates
are often produced with very restricted subsets of the

data (thus throwing away useful information), or with-
out error estimates, or both.

Because the solution of large, two-dimensional, least
squares problems is of considerable interest to data ana-

lysts in the wider physical sciences, a number of efficient
least squares solution methods have been previously
proposed. Each of these methods, however, has some
limitation which is too restrictive in the context of our

hydrographic example. Among known algorithms, (1)
fast Fourier transform (FFT) methods [e.g., Chellappa
and Kashyap, 1982] require that the measurements be

densely sampled on a regular grid; (2) local methods

[e.g., Thidbau_ and Pedder, 1987, section 2.4] use mea-
surements only in the local vicinity of the estimate; con-
sequently any long-range correlations in the prior model

are ignored and information is lost; and (3) hierarchi-

cal methods, such as multigrid [e.g., Hackbusch, 1995;
McCormick, 1989], and simple iterative methods, such

as conjugate gradient or successive overrelaxation [e.g.,
Dahlquist and Bjorck, 1974], cannot supply estimation

error statistics (except by brute force). Other efficient
methods for dealing with large oceanographic problems

in multidimensional spaces have been proposed [e.g.,
Bennett, 1992, section 1.7; Wunsch, 1996, section 5.3,

and references therein], but these methods do not di-
rectly address the gridding problem.

Here we describe an estimation scheme which pro-

vides results comparable to those obtained from ex-
act OI, but at a fraction of the computational cost.

The scheme is based on a "multiscale" algorithm sim-
ilar to that used by Fieguth et al. [1995] for the anal-

ysis of TOPEX/POSEIDON satellite altimetry data.
The term "multiscale" here refers to a hierarchical de-

scription of the statistical process under study. Fieguth

e_ al. [1995] chose a scalar description for each state and
picked model parameters to match the observed spectral
characteristics of the altimeter data. We have adapted

their algorithm for use with hydrographic data by devel-

oping a totally different statistical model which, while
remaining consistent with the multiscale structure, al-
lows the specification of arbitrary correlation functions.

The speed of this new approach makes possible sensi-
tivity studies, parameter estimation, and model testing,

all of which require a large number of repetitions of the
estimation algorithm.

The approach is illustrated by mapping recent hy-
drographic data in the region of the Pacific Ocean de-

picted on Figure 1. The choice of this particular re-
gion is motivated by an ongoing effort to study oceanic
climate and climate drift using acoustic tomography

(the Acoustic Thermometry of Ocean Climate (ATOC)
project). Specifically, our goal is to obtain estimates
of the mean and covariance of the sound speed field for

comparison with ATOC results and for initializing time-
dependent estimation studies [Menemenlis and Wun-
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Figure 1. Location of hydrographic stations relative to bathymetry in the northeastern Pacific
Ocean. The solid dots indicate stations which were used in the OI analysis, while the open
circles are stations which were left out of the analysis to be used for oceanographic model testing.
Bathymetric contour intervals are in meters.
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sch,1997].Temperature,whichis of more immediate
oceanographic interest, is used as a proxy for sound

speed [Munk et al., 1995].
The remainder of this paper is organized as follows.

Section 2 is a discussion of statistical models and the

standard OI algorithm. The multiscale approach is de-

scribed in general terms in section 3, with an empha-
sis on algorithmic differences from the approach used

by Fieguth e_ al. [1995]. Section 4 provides a hydro-
graphic mapping example: three-dimensional tempera-

ture maps are obtained using the multiscale approach,
multiscale and exact OI results are compared, and the
multiscale estimates are checked against an independent
data set. A discussion of the relative merits and limita-

tions of the multiscale approach follows. Finally, a set
of MATLAB-callable multiscale OI routines which im-

plement the algorithm discussed in the manuscript are

described in Appendix A. These routines are available
on an anonymous Ftp server for the convenience of the

oceanographic community.

2. Optimal Interpolation

Consider a set of noisy measurements, represented by

a column vector y, which are linearly related to some

random process, column vector x, so that

y -- Hx + n. (1)

The matrix H is the measurement model and n is the

measurement error. Without loss of generality, we con-
sider the case where known biases and correlations of x

and n have been removed, that is,

(x) = (n)-- <xn T)=0. (2)

The second moments of x and n are specified by covari-
ance matrices

S = (xxT), R---- (nnT), (3)

respectively. Optimal interpolation is commonly de-

J _--xTS-lx + nTR-ln, (9)

produces the same value of _ as does OI. For Gaussian
fields, _ is the maximum likelihood solution as well.

Solutions (5)-(6) or (7)-(8) can be used interchange-
ably depending on their respective computational cost

(which is a function of the relative dimensions of x and
y). Nevertheless, both forms require the inversion or
multiplication of matrices that have dimensions of the
number of measurements, or of the number of estimates,

or both.

The current generation of desktop workstations can

routinely invert matrices with dimensions of a few thou-
sand. For example, the storage of a dense 2000 by

2000 matrix, i.e., the uncertainty matrix of a 45 by

45 estimation grid, requires 32 Mbytes and the con-
ventional inversion of such a matrix requires on the

order of 16 Gflops, or 1.5 hours processing time on a

SPARC-2 workstation. Storage requirements grow as
the matrix dimension squared and the floating point

operations grow as the matrix dimension cubed. For
the basin-scale mapping studies which are of interest

here, one needs to map tens of thousands of measure-
ments onto tens of thousands of grid points, and the
brute-force solution of the exact OI equations, (5)-(8),

is impractical.

3. Multiscale Method

The multiscale approach is based on a stochastic pro-

cess z(s), modeled on a tree, which satisfies the statis-
tical recursion

z(s) = A(s)z(sq)+B(s)w(s), (10)

y(s) = C(s)z(s)+v(s). (11)

Here s indexes the nodes of the multiscale tree as in Fig-

ure 2, s'_ represents the parent node of s, w(s) and v(s)

fined [Daley, 1991, section 4.2] as the interpolation
which produces the minimum variance solution, 9, i.e.,
the solution that minimizes the individual diagonal el-
ements of the uncertainty matrix,

P - ((_ - x)(_ - x)T).

One form of the solution is

: PHTR- ly

with

p _-(S -1 + HTR-1H) -1. (6)

An alternate form is

= SHT(HSHT +R)-ly, (7)
P : S- SHT(HSH T + R)-IHS. (S)

It is readily shown [e.g., Wunsch, 1996] that least squares
minimization of the objective function,

Scaems0 s.
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Figure 2. Illustration of a hierarchical stochastic pro-
cess, i.e., a process defined on a tree. The nodes of the
tree are indexed by s, s'_ represents the parent node
of s, and scq,..., sa4 are the children of s. The scale
of each node s on the tree is written re(s), where the
scale counts from zero at the root node, m(0) = 0, and
increases to finer scales. As discussed in the text, very

fast estimation algorithms exist for such processes.
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arewhite-noiseprocesseswithcovarianceI andR(s),
respectively,y(s) representsthemeasurementprocess,
andA(s), B(s), andC(s)arematricesto bedefined
later. Eachnodes on the tree is associated with tree

level re(s), where the level counts from zero at the

root node rn(0) -- 0 and increases to finer scales. The
stochastic process z(s) also satisfies

(z(0)) = 0, (z(0)z(0) T) = Po, (12)

at the root (or coarsest) node of the tree. Each par-
ent node has four "children," sal,..., sa4, so that each

successive level on the tree has 4 times as many nodes
as the previous level.

This particular structure (10)-(12) is motivated by
the fact that it admits a very fast sequential estima-
tion algorithm. Readers familiar with the Kalman filter

will recognize in (10)-(12) the state-space description
of a linear system, but now written in terms of scale

rather than time. The noise processes w(s) and v(s)
are analogous to the Kalman system noise and mea-

surement noise, respectively. The estimation algorithm
can therefore be implemented in two sweeps of the mul-
tiscale tree. First, a fine-to-coarse recursion, a general-
ization of the Kalman filter, results in the calculation at

each node s of the best linear estimate of z(s) based on
all the data in the subtree below s. Next a coarse-to-fine

recursion, a generalization of the Rauch-Tung-Striebel

(RTS) smoother [Rauch et al., 1965], produces the best
estimate, _(s), and error covariance,

P(s) -- ([_(s) - z(s)][_(s) - z(s)]T>, (13)

at each node of the tree based on all of the measure-

ments on the tree. Our algorithm differs from the
standard Kalman filter and RTS smoother in that our

generalization of the Kalman filter is initialized at the

finest scale whereas the model, (10)-(12), is defined
from coarse to fine scales. Details are given by Chou

e_ hi. [1994] or in the software (Appendix A). Briefly,
the algorithm has the following properties: the compu-
tational effort per tree node is proportional to the cube

of the dimension of z(s), and the resulting estimates

are exact; that is, the estimation problem (10)-(12) is
solved exactly. The covariance of the entire process, i.e.,
all terms of the form

- - ,(sj)]T>, (14)

is not automatically computed, but specific terms of in-

terest can be calculated efficiently [Luet_gen and Will-
sky, 1995].

We represent the hydrographic process, x, at the
finest scale of the tree: the finest scale defines an N x N

grid, and each measurement is associated with the near-

est grid point. Therefore the measurement matrix C(s)
in (11), which relates the state vector z(s) to observa-
tions y(s), is a sparse matrix with C(s) -- 1 at those
grid points where measurements are available. The fun-

damental challenge then is the selection of appropriate
matrices A(s) and B(s) in (10) such that nodes at the

finest scale of the tree possess the desired (or close to
the desired) statistical covariance S in (3).

Multiscale processes (10)-(11) were first applied to
oceanographic estimation problems by Fiegu$h e_ al.

[1995], who used a class of relatively simple 1/f-like
models in which coarse-scale nodes essentially repre-
sent coarse averages of the fine-scale process of interest.

These 1/f-like models do not, however, generalize to the
types of prior models of interest here, so we propose an

alternative class of models motivated by the method of

canonical correlations [Irving et al., 1994; Irving, 1995],
leading to models in which coarse-scale nodes possess

abstract interpretations, serving primarily to produce
the desired fine-scale statistics.

Specifically, we propose a model in which the state

z(s), at each node s, equals a subset of the process x

sampled along the perimeters of the children of s (as
illustrated in Figure 3). That is,

z(s) ----W(s) x, (15)

where W(s) is a matrix, sampling every k th pixel of x

along the perimeters of the children of s, where k = l/p:

l is the correlation length of x and p is a parameter un-

der user control. In the limit where W(s) samples every
pixel of z along the boundaries of the children of node

s, only first-order Markov processes can be expected to

be modeled exactly; however, we have found that the
choice of multiscale model outlined above gives excellent

results for a variety of monotonic correlation functions,

as long as the samples W(s) x are spaced by somewhat
less than the correlation length of the prior statistics S.

Although z(s) is a hierarchical process, from (15) and
Figure 3 it is clear that z(s) does not contain a mul-

tiresolution representation of x; that is, z(s) does not
model the process x of interest at multiple resolutions.

Once W(s) has been chosen for each tree node, the

multiscale model follows immediately:

A(s) : [W(s)SWT(s_)] [W(szf)sWT(s_¢)]-1, (16)

B(s)BT(s) -- <z(s)zT(s)> -- A(s) <7.(sy)zT(s?)> AT(s). (17)

This class of models leads to the following trade-off,
under explicit control of the user via parameter p: the

more densely W(s) samples x along the perimeters of
the children of s, i.e., the larger the value of p and the

0 0 0 0 ° 0 0 0 0 0

Node sT .__f o o/_

_j _ o o o o _ o o o o

,/_ o o o o o°_/'o _ o "_ /
// / /
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Figure 3. An illustration of the definition for the state
at each tree node: the state at each node s is made up
of pixels (small circles) sampled along the boundaries
of the children of node s.
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higher the dimension of z(s), the greater the statistical
fidelity of the resulting estimates and posterior error,
but the greater the computational burden. Statistical
fidelity here refers to the degree to which the multiscale
model is a faithful approximation of the desired prior
model S. Thus in the event that S were only approx-

imate, the user might opt for a relatively small state

dimension (i.e., low value of p) for rapid estimation.
The next section will illustrate the application of this

multiscale approach for Gaussian correlation functions
and will compare the accuracy of the multiscale ap-

proach to exact least squares methods.

4. Hydrographic Example

We illustrate and compare the two mapping algo-
rithms discussed in sections 2 and 3 by constructing a

recent temperature climatology in the Pacific Ocean,

175°-250°E, 5°-50°N. The data are from 976 high-
resolution vertical temperature profiles obtained within

the last 10 years (Figure 1). The profiles retained are of
known and consistent quality and span the water col-

umn in regions where the ocean depth is greater than
1600 dbar. There is further discussion of the data and

data sources in Appendix B.

4.1. Methodology

Our approach is similar to that used by Fukumori

and Wunsch [1991] and by Bindoff and Wunsch [1992]
in that we make use of singular value decomposition

to obtain a set of vertical empirical orthogonal func-

tions (EOFs). The EOF decomposition reduces the
three-dimensional problem to a two-dimensional map-

ping exercise for each vertical EOF. We start by pro-

jecting temperature onto 35 standard depths (0:50:300,
400:100:1500, 1750:250:5000, 5500, 6000 dbar). The

first depth is assigned the shallowest measurement of
each cast. The remaining samples are obtained by av-

eraging the high-resolution profiles 20 dbar above and
below each standard depth. The resulting temperature

profiles are normalized by subtracting the mean and di-
viding by the standard deviation at each depth (Figure

4). Unless otherwise noted, potential temperature is
reported, and depths are in units of pressure.

A matrix D is then constructed so that each column

corresponds to a particular hydrographic station and
each row to a standard depth. Standard depths below
the bottom are padded with zeros to make all columns

of identical length. (By construction, D has zero mean

at each depth, so this corresponds to replacing values
below the bottom with the mean value at that depth.

Possible problems of this approach, with suggested so-
lutions, are discussed by Fukumori and Wunsch [1991]).

By the singular value decomposition, D is decomposed
as D = UAV T, where A is a diagonal matrix and the
columns of U and of V are the vertical and the hori-

zontal EOFs of the hydrographic data set, respectively.

The diagonal elements of A are called singular values
and their square measures the contribution of each cor-

responding pair of EOFs to the variance of D. The
EOFs are ordered so that each successive EOF explains

less variance than the preceding one. The singular val-
ues and the cumulative explained variance are displayed

on Figure 5. Note the rapid drop-off of the singular val-
ues; for example, the first five EOFs explain more than
95% of the variance of D. The first 13 vertical EOFs are

displayed on Figure 6, and, in general, the higher modes
are seen to be associated with progressively higher ver-
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Figure 4. Mean and standard deviation of the temperature profiles. The series of lines on the
right of the figure indicate the 35 standard depths used to subsample the temperature profiles.
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Figure 5. Singular values (circles) of a matrix whose columns consist of temperature profiles at

the locations indicated by dots on Figure 1 and sampled at the 35 standard depths of Figure 4.

(Before the computation, the mean temperature was removed and the resulting perturbation was

divided by the standard deviation at each depth.) The singular value decomposition also provides

a set of empirical orthogonal functions (EOFs), and the associated cumulative explained variance
is indicated in percent (asterisks).

tical wavenumbers. The statistics of each EOF are un-

correlated and therefore horizontal maps for the coeffi-

cients of each vertical EOF can be computed in parallel.

However, before applying the OI methods described in

sections 2 and 3, the second statistical moments of the

signal and the noise, S and R in (3), need to be speci-
fied.

4.2. Determination of a priori Statistics

Strictly speaking, a priori statistics must be obtained

independently from the data set used in the OI analysis.

In practice, however, independent a priori statistics are

seldom available and they must be determined from the

data using adaptive filter methods [e.g., Blancher et aL,

1997] or otherwise. Our approach here is one of trial

and error whereby we seek a simple set of statistical as-

sumptions which are consistent with the available data

and we use a small fraction of the available degrees of

freedom (3 out of 976) to estimate the signal variance,

the noise variance, and a correlation length scale. This

trial and error approach is made possible by the effi-

ciency of the multiscale interpolation algorithm which

allows the estimation procedure to be repeated a large
number of times.

The simplest model consistent with the available data

is that of a stationary field x with horizontally isotropic

Gaussian covariance,

Coy(x) = o-_exp[-(_/t)2], (18)

where r is the horizontal spatial separation, cr 2 is the

signal variance, and l is the correlation length scale.

This particular form is chosen to represent the corre-

lation structure both because the associated spectrum

is everywhere positive and because the resulting covari-

ance matrix, S in (3), is positive definite; that is, all

the eigenvalues of the covariance matrix are positive

(see discussion by Bretherton et al. [1976]). The mea-

surement noise is modeled as white and horizontally

homogeneous with variance n _. Signal and noise are

assumed uncorrelated so that the data covariance can

be written as the sum of the field and noise covariances,

Cov(y) = (72 exp[-(r/l) 2] + n 2, (19)

consistent with (1) and (2). These assumptions were

tested a posteriori to verify that they are consistent
with the data.

Estimates of a 2 and I were obtained by least squares

fit of (18) to the data for r > 0. The noise variance

is estimated as the difference between the measurement

variance and _2. Figure 7 displays the signal to noise

ratio and the correlation length scale associated with

vertical EOFs 1 through 15. Note that in genera] EOFs

with larger vertical scales have larger horizontal corre-

lation length scales. For the present analysis we have,

conservatively, chosen to consider EOFs greater than

13 as part of the noise. (13 EOFs explain more than

99% of the data variance, and the signal to noise ratio

and correlation length scales are both relatively small

for EOFs greater than 6.)
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4.3. Multiscale Optimal Interpolation

We can use the second-order priori statistics specified

above to compute OI estimates and uncertainty. Specif-

ically, the prior statistics determine S, which in turn de-

termines the multiscale model via (15)-(17), once the

sampling parameter p has been specified by the user.

We will map the coefficients of each of the 13 vertical

EOFs on a regular 256 by 256 grid; that is, our tree

has nine levels, and the coarsest (root) node on the tree

represents a 256 x 256 pixel or 750 x 750 area. We will

illustrate the trade-off between statistical fidelity and

computational burden, resulting from particular choices

of p, by comparing multiscale and exact OI results.

Since it is impossible to solve the exact OI equations,

(5)-(8), at all 65,000 grid locations, to directly com-

pare the multiscale and the exact OI algorithms, we

have deliberately limited the computation of estimates

to a small number of locations (along WOCE line P2, at

the locations marked by open circles on Figure 1). Fig-

a) Signal to Noise Ratio

4- " "
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b) Correlation Length Scale
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Figure 7. A priori signal and noise statistics for vertical EOFs 1 through 15. (a) Signal to noise

ratio, a2/n 2. (b) Characteristic correlation length scale, I.
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Figure 8. Comparison of multiscale and exact OI results for EOF 4 at the locations indicated

by open circles on Figure 1. (a) Estimates. (b) Standard deviation uncertainty. The multiscale

estimates were first computed on a 256 by 256 grid and then interpolated onto the section. The

sampling density parameter was set to p = 0.2 and the multiscale estimation required 56 Mflops,

or 40 s of processing time on a SPARC-2. Even at this low sampling density, the multiscale
estimates are mostly contained within the 95% confidence interval of the exact OI estimates.

With increased computational effort, the discontinuities in the estimates can be reduced, as
shown on Figure 9.

ures 8 and 9 compare exact (i.e., by brute-force matrix

inversion) and multiscale OI results for the fourth ver-

tical EOF. (EOF 4 was chosen because it happens to be

particularly effective at illustrating the effect of varying

the sampling density parameter p.) The multiscale es-

timates of Figure 8 were obtained using a low sampling

0.08

0.06

0.04

0.02

0

-0.02

-0.04

density, p = 0.2, and required 56 Mflops, or 40 s of pro-

cessing time on a SPARC-2. Even at this low sampling

density, the multiscale estimates are mostly contained

within the 95% confidence interval of the exact OI esti-

mates. Figure 9 shows results for p = 0.8, 165 Mflops,

or 60 s on a SPARC-2. At this higher sampling den-
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Figure 9. Same as in Figure 8 but the multiscale estimates were obtained using a higher sampling
density, p = 0.8, which required 165 Mflops, or 60 s on a SPARC-2. For this particular choice of

p the multiscale estimates are almost indistinguishable from exact OI results.
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sity, the multiscale results are almost indistinguishable

from those of the exact OI algorithm. It must be em-
phasized that the computation times quoted here refer
to computing multiscale estimates and error statistics,

comparable in quality to exact OI, on the whole 65,000
point grid, not just the few samples shown in Figures 8
and 9.

4.4. Temperature Map and Uncertainty

After choosing appropriate values for the sampling

density parameters, p = 2.3 for EOF 1 and p = 0.8

for EOFs 2-13, we computed multiscale OI estimates
on a 256 by 256 grid for the first 13 vertical EOFs.

The gridded EOF coefficients were then combined to
obtain a three-dimensional temperature map and the

associated uncertainty variance. A horizontal slice at

400 dbar through the resulting fields is displayed on

Figure 10. The uncertainty map was obtained under
the assumption that the vertical EOFs are statistically
uncorrelated so that the total uncertainty variance at

a particular location is the sum of contributions from
each EOF.
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Figure 10. Multiscale OI maps of potential temperature and uncertainty at 400 dbar. (a)
Temperature contoured at 1°C intervals. (b) Standard deviation uncertainty contoured at 0.2°C
intervals. The maps represent sums of multiscale estimates and uncertainty variance of the first
13 vertical EOFs. The solid dots indicate the location of hydrographic data used in the analysis,

while the open circles indicate WOCE line P2 data used later for checking the oceanographic
model.
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Figure II. Comparison of multiscale OI estimates at 400 dbar with data from WOCE hy-

drographic section P2 which were not used in the analysis. The error bars represent the 95%

confidence (+2 standard deviations) of the measurement error.

4.5. Oceanographic Model Testing

There are many statistical models, e.g., (18), which
are consistent with the available data. The best we can

do is to show that our results are statistically consistent

with our assumptions and with data which were not

used in the analysis. We have compared the resulting

temperature estimates with data from the WOCE hy-

drographic section P2 at the locations marked by open

circles on Figure 10. These data were used neither dur-

ing the construction of the oceanographic model nor

during the OI analysis. Figure 11 compares the multi-
scale OI estimates with the test data. The estimates are

everywhere consistent with the data within 2 standard

deviations of the measurement error.

5. Summary and Concluding Remarks

The goal of the present paper was to demonstrate the

use of a new highly efficient multiscale OI algorithm for

the mapping of large hydrographic and other oceano-

graphic data sets. We have applied the multiscale algo-

rithm to a limited number of hydrographic profiles to

map temperature in the North Pacific region depicted

on Figure 1. We also solved the exact OI algorithm at a

small number of locations and showed that there is good
agreement between the multiscale approach and the ex-

act OI algorithm. The number of measurements used

in the present analysis was kept deliberately small to

make the above comparison possible. However, in con-

trast to the exact OI algorithm, the multiscale approach

can accommodate much larger data sets and estimation

grid points at little a_iditional computational cost.

The particular mapping example discussed in this pa-

per assumes isotropic, horizontally homogeneous prior

models, and local measurements with uniform uncorre-

lated measurement error. But the multiscale approach

itself is more general and can be applied to the solu-

tion of a wide variety of problems of the form (1)-

(9). The challenge lies in selecting appropriate matrices

A(s), B(s), and C(s) for the multiscale model (10)-

(11). Without further modifications, the multiscale

model-building routines which have been made avail-

able (see Appendix A) admit anisotropic prior models

and nonuniform measurement errors. The multiscale

mapping approach has also been applied to oceano-

graphic processes with inhomogeneous prior statistics

[Fieguth et al., 1995] and with correlated measurement

errors [Fiegu_h et al., 1997].

Finally, we have shown that the multiscale approach

provides estimates of uncertainty variance (the diago-

nal terms of the uncertainty matrix) which are con-

sistent with the exact OI uncertainty. Although the

computation of the full error covariance matrix remains

prohibitively expensive, the multiscale approach allows

the efficient calculation of specific off-diagonal terms

[Luet_gen and Willsky, 1995]. It is therefore possible to

selectively sample the uncertainty matrix and construct

a simplified model for the correlated error structures, a

step which is crucial to the production of dynamically

and observationally consistent analyses. An example

is the large-scale correlated errors in surface temper-

ature climatologies and surface buoyancy fluxes which

are often used in combination to drive general circula-

tion models. Data assimilation studies require that the
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differentcorrelatederrorsbeknownandusedin order
to achieveacceptablesolutions.

Appendix A: MATLAB-Callable

Optimal Interpolation Code

The implementation of the multiscale estimation al-

gorithm [Chou e_ al., 1994; Fieguth e_ al., 1995] in its full

generality is a rather complicated undertaking. In the

interest of promoting the use of this algorithm and en-

abling interested researchers to apply it to problems of

their own, we are making this code publicly available.

Two programs are provided, one of which is tailored

specifically to reproduce the results shown in section 4,

and the other of which is more general and permits re-

searchers to apply the multiscale estimation method of

this paper to problems of their own.

The code is written in MATLAB scripts and in C:

the front-end visible to the user is written in MATLAB,

and the multiscale computational engine is written in C.

No programming experience is needed to use the soft-

ware, although at least a rudimentary understanding of

MATLAB scripts would be required to customize our

programs for a different application.

Anyone interested in compiling and running our code

will require MATLAB 4.x software and an ANSI-com-

patible C compiler (precompiled versions of the code,

not requiring any compilation, are available for SPARC-

Solaris, SPARC-Sun OS, and SGI-4d platforms). Most

workstations should have ample computational power;

all of our results were computed on a Sun-SPARC 2

with 48 Mbytes of core memory. A large multiscale tree

requires a large amount of memory. At least 20 Mbytes

is required to run the programs for small test cases;

128 Mbytes or more is recommended for serious research

applications.

The programs may be obtained via anonymous Ftp

to lids.mit.edu (IP Address 18.78.0.101) from directory

pub/ssg/code/Hydrography. The file README de-

scribes the purpose of each program and how to get

started.

Appendix B: Hydrographic Data Set

Hydrographic data used in this paper include a sub-

set of WOCE lines P1, P2, P3, P4, P14, P16, and P17.

Additional data sources include the 1991-1993 INPOC

trans-Pacific lines, the 1986-1987 reciprocal tomogra-

phy experiment, and the 1984 North Pacific section

along 1750 W by the Woods Hole Oceanographic Insti-

tution conductivity-temperature-depth (CTD) group.

Most of the data, cruise reports, and other useful infor-

mation is available on anonymous Ftp nemo.ucsd.edu

and on the world-wide-web at www.cms.udel.edu. Pre-

liminary WOCE line P2 data were kindly made avail-

able to us by Hideki Kinoshita of the Japan Hydro-

graphic Office.
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