RL-TR-96-203
Final Technicai Report
December 1996

SEMICONDUCTOR LASER
LOW FREQUENCY NOISE
CHARACTERIZATION

National . .eronautics and Space Administration

Dr. Lute Maleki and Or. Ronald T. Logan

{pr30 QUALITY IM9PTICTED &

APPROVED FOR PUIBLIC RELEASE, DISTRIBUTION UNLIMITED.

19970218 050

Rome Laboratory
Air Force Materiel Commangd
Rome, iNew York




This report has been reviewed by the Rome [.aboratory Public Affairs Office
(PA) and is releasable to the Natioral Technical Information Service (NTIS). At NTIS
it will be releasable to the general publs, including foreign nations.

RL-TR-96:203 has been revicwed and is approved for publication.

APPROVED: 7 prWQM I:

NORMAN BERNSTEIN
Project Engineer

/]
FOR THE COMMANDER:

DONAI D W. HANSON, Director
Surveillance & Photonics Directorate

It your address has changed or it you wish to be removed from the Rome Laboratory
mailing list, or if the addressec is no longer employed by your organization, please
notify RIJOCPC, 25 Elcctronic Pky. Rome, NY 13441-4514. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specitic
document require that it be retumed.



REPORT DOCUMENTATION PAGE | Gwg o b7gaores

Fudie reptaing busdan ftr s cellestion of Ffornalion b estrated 1 how e e for ratnatiors, daty

ORI € iy the s e ] COTOAG e revoing ¥ okt Y VerTaLn B SrTTarts reguing Fie Eur o BTt 0w o Sapect o e
colection of Iformution, Ichalng sUgpskye for red.aing this buden 0 Wsshington Hesdouertere Sevioss, Dlrecicsase i ormation Opsrations srgRepons 1725 . sMeson
Sevie Highwey, $u8e 1304 Adngson WA 222084302 &S t e Oise of Meragerurt end Buxioet, Papsework Rech athon Profect (70401 0. Washirgton, OC 2003

1. AGENCY USE ONLY (Leave Blani) 2 REPORT DATE Is. REPORT TYPE AND DATES COVERED
December 1996 Final Nov 91 - Jun 93
4. TITLE AND SUBTITLE |5 FUNDING NUMBERS
C = FAB75040013
SEMICONDUCTOR LASER T.0W FREQUENCY NOISE CHARACTERIZATION PF - 63726F
PR - 2863
6. AUTHOR
) 1A ~ 92
Dr. Lute Maleki and Dr. Ronald T. Logan Wi - 50
7. PERF ORMING ORGANIZATION NAME (8) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION_
National Aeronautfcs and Spare Administration REPORT NUMBER
Jet Propulsion Laboratory
Time and Frequency Systems Research Group
4800 0ak Grove Drive, Pasadena CA 91109-8099 N/A
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES) 10. SPONSORINCYMONITORING
AGENCY REI’ORT NUMBER
Lome laboratory/OCPC
25 Electronic Pky RL-TR-96--203
Rome NY 13441-4514 J

11. SUPPLEMENTAHRY NOTES

Ri. Project Engineer: Norman P. Bernstein/OCPC/(315) 130-3147

12a. DISTRIBUTION/AVALLABILITYY STATEMENT [1 2b. DISTRBUTION CODE
|

Approved for Public Release; Distribution Unlimited f

13. ABSTRACT (Mudmumn 200 worcm)

This work summarizes the efforts in identifying the fundamental noise ilimit in semi-
conductor optical sources {lasers) to determine the source of 1/F noise and it's
asscocioted behavior. 1In addition, the study also addresses the eftects of this 1l/F
noise on RF phased arrays. lhe study showed that the 1/F nolse in semiconductor lasers
has an ultimate physical limit based upon similar factors to fundamental noise generated
in other semicenductor and solid ntate devices., The study also showed that both
additive and multiplicative nolse can be a significant detriment to the performance of
R¥ phased arrays especially in regard to very low sidelobc perforrmance and ultirate
bzam steexring accuracy. The finul result 18 that a nois. power related term must be
included in a complete anilysis of the noise spectrum of any semiconductor device
including semiconductor lasers.

J-SUB‘ECY TEHMS_ '8 NLMBEF OF HAGES
lLamers, Optica, Phascd Arrays, Optical Bear Formation Lemmcecoce

17 SECURITY CLASSIFICATION  [15. SEGURITY CLASSIFICATION [12 §E CURTY CLASSIFICATION (20. UMITATION OF ABSTHACT
UNCLASBIFILD UNCLASSIFIED UNCLASSTHIFD INIIMTTED

T.OR 7350 > S8

10N e ko nlgﬁm A
R TE Iy R VA LT |
28107




TABLE OF CONTENTS

Section Title Page
L EXECUTIVE SUMMARY oo e 2
II. INTRODUCTION ... i 4
II1. PHASE NOISE IN PHOTONIC RF ARRAYS ... 5
IV. INFLUENCE OF MODULATION ON SEMICONDUCTOR
NOISE oottt et et bbb bbb e e 7
V. MULTIPLICATIVE NOISE AND LASER LINEWIDTH .......... 9

APPENDIX |

EFFECTS OF PHASE NOISE FROM ILASERS AND OTHER
SOURCES ON PHOTONIC RF PHASED-ARRAYS .............. A-1

APPENDIX 2

PARTIAL-WAVE ANALYSIS OF MULTIPLICATIVE NOISE
IN LASER AMPLIFIERS: APPLICATION TO LASER
LINDWIDTH i B-1




1. EXECUTIVE SUMMARY

The objective of this task was to study the origin of the phenomena
that contributz to the overall noise in photonic phased array systems. In
particular, the task included the study and the characterization of the
semiconductor laser low frequency noise and its 1/f behavior.

The approach adopted for this study included three parts. In the
first, a comprehensive study of the effect of phase noise from lasers and
other sources on photonic phased array systems was considered. This study
considered the influence of additive, as well as multiplicative noise in
photonic systems, and resulted in the important conclusion that the effect
of uncorrelated multiplicative phase noise in a phased array system is
diminished as the number of array elements is increased.  The study
further revealed that, by contrast, the additive phase noise of the array does
not diminish with the number of elements. Thus for an array with a large
number of elements, the overall signal-to-noise ratio will be independent of
the size of the array. Results of this segments of the study pointed to the
significance of including both the additive and multiplicative noise sources
in system designs of photonic phased array antennas.

In the second segment, the influence of modulation on the noisc of
semiconductor lasers was experimentally determined. In particular, the
dependence of the low-frequency noiseon injection-current modulation in
external cavity semiconductor lasers was examined. This noisc can limit the
performance of photonic sensors and phased array antenna systerns, and

can reduce the sensitivity of photonic and fiberoptic sensors.



The approach followed for the study of the 1/f noise in the spectrum
of semiconductor lasers was the consequence of the need to examine the
noise for a single mode laser, based on the findings of the second part of
the study. This approach included a model of the laser as a noise-driven
resonant amplifier. A dynamic partial wave model devised for this system
was then used to obtain the spectrum of the output field of the laser. This
model produced interesting and suggestive results, including a power-
independent term in the Schawlow-Townes formula for the linewidth of the
semiconductor laser, resulting from the multiplicative noise due to electron
density fluctuations in the gain mediun.. The model, however, failed to
directly account for the 1/f bchavior in the spectrum as a consequence of

the laser action.




2. INTRODUCTION

Noise is typically the limiting factor in the performance of photonic
RF systems. The influence of noise in the stability of fiber optic
distribution links, previously studied in detail at JPL, pointed to the need
for a comp-rehensive examination of the influence of the phase noise of
semiconductor lasers in  photonic multi-element  arrays. The
Semiconductor Laser Low Frequency Noise Characterization task was
aimed at addressing this problem.

The approach used in this task was devised to systematically consider
the influence of low frequency noise of semiconductor lasers, both
experimentally and analytically, and then develop a model for the origin of
the 1/f noise in the laser spectrum. In this final report results of the study
will be presented. The presentation is divided in three segments. In the
first part the effect of the phasc noise on the performance of phased arrays
is analyzed. In the second part, the influence of modulation on the laser
noise is reviewed, and cxperimental results are presented. The third
segment incluces the presentation of a model for the noise of the
semiconductor lasers which yields the influence of the multiplicative noisc
on the linewidth manifested as an additional term ‘o the Schawlow-Townes
formula.

While the study did not reveal the origin of 1/f noise in the spectrum
of semiconductor lasers, it laid important groundwork for future
cxamination of this topic, which is ditticult to analytically track, yet is of

fundamental importance in the performance of photonic based RF systems.
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3 Phase Noise in Photonic rf Arrays

The function of rf photonic phased arrays is fundamentally based on the
phase control of individual elements. Thus any noise due to individual com-
ponents in the system limit the system performance. Basically the total
noise in. the system is determined by the combination of both additive and
mul¢iplicative components. The additive term is produced by a variety of
sources including the thermal noise of dissipative elements, the shot noise of
the photodetectors, and the laser relative intensity noise (RIN). The additive
term is readily measured and. in most instances, is easy to calculate; so its
influence on the performance of the system is generally straightforward. The
additive noise is always present in a system. and can be determined indepen-
dent of the presence of any signal. The multiplicative noise originates from
low frequency gain and path length instabilitics, and is only Jresent when
the signal propagates in the system. This term usually has a 1/f* behavior
with frequency. end taus is typicallv dominant in frequency regimes close to
the carrier.

Qur model for the additive and multiplicative noise terms deals with the
uncorrelated componen-s. The model is given in detail in Appendix 1 and
cssentially generalizes the case of noise for a single elernent with unity gain
to the case of a phased array ~ith M elements. The analysis leads to the
conclusion that for uncorriiated white (Gaussian noise. the SNR for an M

clement array is given by.




(| Eo |®)

SNR= 5 . (1)
LeellBeld 1 N (1) ) ’

where SNR is the signal-to-noise ratio of the M element array, E, is the
amplitude of the input signal. §¢(¢) is the multiplicative phase noise, and
N(t) is the additive noise term. In the above expression () represent time
averaging.

From the above equation it is readily concluded that the additive term
in the SNR remains constant, independent of the number of elements in the
array. The multiplicative term, by contrast. does depend on the number of
arrays. and is reduced by factor M. As M increases, the multiplicative noise
term reduces to a negligible factor, and the noise performance of the array
is determined by the additive noise contribution, only.

As mentioned above, laser RIN is a multiplicative noise source. Thus
in designing photonic rf arrays the 1:se of the above equation permits the
determination of the type of the laser best suited for the particular system.
Since the RIN for the injection current modulated lasers is generally much
larger than that of the solid state YAG lasers. the combination of the additive
noise level and the number of elements required will dictate which type will

produce the highest performance in a given array.



4 Influence of Modulation on Semiconduc-

tor Laser Noise

In this task, the dependence of the low frequency intensity noise on injection-
current modulation was studied. The results of an extensive literature search
were employed to determine the most advantageous manner in which to pro-
ceed. It has been shown previously that low frequency intensity noise (0 -
1 GHz) in injection modulated semiconductor lasers is upconverted to the
vicinity of an RF modulation signal. The heart of the problem, therefore, lies
in determining the origin of the low frequency fluctuations in the laser diode,
and how the low frequency noise is affected by injection current modulation.

Two competing views exist regarding the origin of the low frequency
fluctuations in semiconductor lasers. One camp contends that low frequency
intensity fluctuations are due to trapping of carriers in the semiconductor
medium with a 1/f power law frequency spectrum, while the other view holds
that competition between longitudinal modes of the laser diode causes an
enhancement of low frequenc ." ‘ctuations. The initial approach we adopted
was to control the amount of coupling between longitudinal nodes of the
laser, and to observe the effect on the low-frequency fluctuations and close-
to-carrier RF phase noise.

To inveatigate the cffects of mode coupling, an external cavity semicon-
ductor laser diode was constructed. The external cavity has the desirable
effect of reducing the longitudinal mode frequency separation froin approxi-

mately 450 GHz to 1 GHz, within the range of injection current inodnlation
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frequencies. Then. the mode-coupling can be affected by injection currens
modulation at appropriate frequencies corresponding to the round trip light
time of the cavity and its harmonics.

Testing of the external cavity semiconductor laser was performed under
various: conditions of bias current and modulation. Preliminary results em-
ploying mode-locking with a strong sinusoidal modulation at 1 GHz caused
a reduction in the low frequency intensity noise of the laser diode in ex-
ternal cavity by approximately 10 dB. The cause of the noise reduction is
presumed to be the reduction of competition between the lasing modes of
the laser when mode-locked. However, an unexpected result was obtained
when the 1/2 sub-harmonic of the mode-locking frequency (ie.. 500 MHz)
was employed: the low frequency intensity noise was reduced by another 10
dB for frequencies above 5 kHz. These results were presented at the Third
Annual DARPA Symposium on Photonics Systems for Antenna Applications
(PSAA-III), on January 20th 1994 in Monterey California, in a paper enti-
tled: "influence of Modulation on Noise in Semiconductor Lasers,” by R.T.

Logan Jr. and L. Maleki.

5 Multiplicative Noise and Laser Linewidth

A theoretical model for the mode-competition noise reduction in a multi-
mode laser was developed ard computer simulations were performed. The
model is based on a Fabry-Perot. cavity containing a medium with a time-
varying index of refraction. Tn the simulation. the center frequency and

atnplitude of the dominant mode wus tracked to estimnate the frequency and



intensity fluctuation power spectra. The compnter random-number gencra-
tor was used to simnulate index of refraction variations with a white power-
spectral-density; the model appeared to generate 1/{* -type noise similar to
that observed in the laser. and proportional to the noisc amplitude.

This initial theoretical result served as tentative confirmation of the mode-
competition hypothesis. Theoretically, then, the 1/f noise should disappear
completely if mode- competition was completely suppressed by perfect mode-
locking. It should also disappear in the case of a purely single-mode laser.
However, further searching of the literature, and experience revealed that a
residual level of 1/f noise is often observed even in single-mode distributed-
feedback laser diodes. The computer model was applied to the single-mode
laser diode again, incorporating index of refraction variations with a white
power-spectral- density. Again, 1/f-type frequency and intensity fluctuations
wer¢ observed in the simulated output.

To verify the computer result, an analytic solution was derived for the
problemn of the fluctuations of the transmission of a resonant cavity due to
variations in the feedback parameters. The analvtic model is an extension
of a linear feedback system model that includes the effects of time-variation
of the feedback components. In this lincar model, the transmitted wave at
any timne instant is compriserl of a sumination of "partial waves” that have
existed in the cavity for various lengths of time. In the case of no feedback
fluctuations, the partial waves may be sumnied analytically. and the familiar
Fabry-Perot cavity result is obtained. As the Q of the cavity is increased,
more partial waves are stored in the cavity. However, when the feedback

parameter is Huctuating. the output wave is a summation of many partial
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waves that have sampled the feedback fluctuations over increasing lengths of
time. It is seen through this analysis that in a high-Q cavity, the Aluctuations
of the cavity are amplified by the fact that many partial waves make up the
output wave at any instant, and each partial wave carries a history of the
cavity fluctuations with it.

The unalytic model results serve to confirm and explain the computer sim-
ulation results. The fluctuations of the output wave due to rcfractive index
variations with white power spectral density acquire a 1/f* power spectral
density at frequencies above the -3 dB point of the cavity, but remain white
at frequencies within the cavity bandwidth. This rcise enhancement effect
may explain why high-Q cavities typically have relatively poor long- term
stability.

The linear model is not sufficient to model an oscillator, such as a laser.
However, it provides interesting new insights into the effects of noise in res-
onators and resonant amplifiers. In the next phase of work, the time-varying
feedback end partial wave model was incorporated into a non-linear analysis
of the resonant cavity above the oscillation threshold. This forualism en-
tailed modeling the laser as a noise driven resonant optical amplifier that has
random gain and phase fluctuations. The model yields an additional power
independent term in the Schawh w-Townes expression for the linewidth of
the laser. As the power is increased, the .aodel predicts a re-broadening of
the linewidth, as generally observed in the case of semiconductor lasers.

The study also included an analysis of electron density fluctuations in
the laser gain medium. from which the spectral power density of noise due

to these fluctuations was obtained. Finally. the results were used to obtain
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an estimate of the mirimum linewidth of the semiconductor laser.

This segment of the work is the basis for the dissertation of R. T. Logan,
which will be submitted in the future in partial fulfillment for the Ph. D. de-
gree in Electrical Engineering, Electro-Physics at the University of Scuthern
California. The portion of the dissertation supported in the task is presented

in Appendix II.
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EFFECTS OF PHASE NOISE
FROM LASERS AND OTHER SOURCES
ON PHOTONIC RF PHASED-ARRAY'S

Ronald T. Logan Jr. and Lute Maleki

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109

ABSTRACT

The beam pattern of a linear phased-array antenna system employing a photonic
feed network is analyzed using a model for the individual feed element noise
including both additive and multiplicative equivalent noise generators. It is
shown that uncorrelated multiplicative noise power of the individual feeds is
reduced by a factor of N in the output of an N-element linear array. However, the
uncorrelated additive noise of the individual feed paths is not mitigated, and
therefore will determine the minimum noi.. floor of a large phased-array
antenna.

1. INTRODUCTION

In phased-array antennas, the beam pattern depends critically on the phase
control of the signals at the individual antenna elements. The ability to feed and
adjust the phase of the microwave signals to the individual radiating elements
using optical fiber and photonic components offers-ebvious advantages in size,
weight, mechanical flexibility, and cross-talk, compared to metallic waveguides
and phase-shifters Various phased-array antenna system architectures with
photonic feed networks have been proposed, however, the issues of phase
stability and signal purity are not typically addressed in these proposals.
Therefore, determination of the acceptable phase noise contribution of the
individual active feed components has been problematic. In this paper, the
general factors contributing to the phase stability of an array feed network are
outlined, with particular attention paid to the type of noise encountered in
photonic feed elements. It is shown that the analysis of array phase stability must
consider both additive and multiplicative noise generation processes, and that
the additive noise of the active feed components will limit the phase stability of a
large phased-array.

2. PHASED-ARRAY SYSTEM MODEL
The general architecture of a phased-array antenna system comprised of M

elements is depicted schematically in Figure 1. In this analysis, the phase noise
contribution due to the array feed and antenna elements only is calculated. The

A=2
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effects of the source phase noise will be common to all elements, and may be
treated in the usual manner for a single antenna elernent.

540 N

LYY X
o
Q
-3

w1 N, Additive Noise Generators

8¢.: Multiplicative Noise Cenerators
N M1 n P

Figure 1. Noise Sourres in M-Element Phased-Array Feed System

The feed system is driven by a common source oscillator whose power output is
divided M ways. The phase delays required to point the antenna beam are
generated in the separate feeds. To study the effect of noise on the elements, we
assurne a simple case in this model: the signals acquire equal delays in the feeds,
and are then recombined in a second M-way power combiner. Thus, the output
signal amplitude is scaled to be equal to the input signal amplitude, to facilitate
comparison between a single-element antenna system and an array.

3. NOISE PROPERTIES OF PHOTONIC FEEDS

The photonic feed elements contain active components such as laser diodes,
photodiodes, and amplifiers. The phase noise contribution of a microwave fiber
optic feed system is therefore comprised of an additive noise term and a
multiplicative noise term. Laser relative intensity noise (RIN), shot noise, and
thermal (Johnson) noise are additive noise sources which are present at all times
independent of signal level. Low frequency gain or path-length instabilities that
modulate the microwave signal amplitude and phase are multiplicative noise
sources that are only observed when a signal is present. As shown in Figure 2,
additive noise usually determines the noise floor at higher offsets from the carrier

frequency, but multiplicative noise often has a 1/f®* power law characteristic,
1<a<?, so is typically dominar.t close to the microwave carrier frequency (1],

H=3
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Figure 2. Typia! Phase Noise of Photonic Feed Systern at 10 CH2

Additive noise sources due to thermal and shot processes or laser RIN are
independent random processes and therefore car. be assumed uncorrelated
between the feed elements. Multiplicative noise may or may not be uncorrelated
between elements, depending on its origin. For example, thermal expansion or
vibration of all the optical fibers in the feed network may produce a phase
modulation that is common to all elements, whereas, laser or amplifier-induced
1/f gain fluctuations will be uncorrelated beti2en elements. Noise that is
common to all the elements may be referred to the sourc- scillator and treated
as if the array were a cingle element. In the analysis that follows, all of the noise
sources in the individual feed elements are assumed to arise from independent
random processes, so can be treated as uncorrelated sources.

It is noted that the multiplicative noise is not detectable by a standard noise
figure measurement in the microwave signal frequency baad. In fact, it is
difficult in practice to predict the amount of multiplicative noise in an amplifier
or laser diode, because the noise level may itself be a function of the modulation
signal frequency or amplitude. Therefore, the amount of multiplicative phase
noise is usually determined empirically.

4. ANALYSIS

We now proceed to calculate the effect of the noise added by the feed elements
on the total array performance. Consider first a unity gain single feed element
consisting of a fiber optic link and electronic amplifiers, with a microwave input
signal E,(t)= E,e/ of constant amplitude E, at microwave frequency m,. The
output signal ampli*de for a single feed element may be written

E . (t)e* = E,e™e™" + N(t) (1

where N'(t) represents an additive Gaussian noise process with a white power
spectral density from dc to well above w,, and d¢(t) is a small multiplicative
phase noise term. The multiplicative noise term can, in general, be complex and
thus also represent gain fluctuations. Factoring out the sinusoidal variation at ,
yields the slow time-variation of the output field aroind the microwave carrier

A-4
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E.()=E ™" + N'(t)e > @
=E %" + N(t)

Limiting the analysis to a band of frequencies Sw in width around w,, the
additive noise term can be written as a random phasor:
N(t) = N'(t)e™ ™" = 8r(t) + jéi(t), where |5i(t)=|6r(t), and are assumed to be
independent Gaussian noise processes with white power spectral density from
dc to dw /2. Note that as the input signal amplitude E, is decreased to zero in
Equation (2), the multiplicative noise term vanishes, but the additive noise term
N(t) is unchanged.

The total array noise is now calculated by using the M individual feed element
expressions from Equation (2) in the standard calculation (2] of the array output
field. For a linear array at a steering angle ¢, the field distribution in the far field

of the array as a function of observation angle @ may be expressed as
M=-1

En,(0,¢,t)= 2(;&-8'“""e’""“""+ N"(t)). (3)

nul

Figure 3 is the calculated radiation pattern for a linear array of ten antennas vs.
observation angle 6 when the steering angle ¢ = 0.

Relative
Intensity,

dB -20 /\

-40 T T T
0 50 100 150
Observation Angle, 9 (degrees)

Figure 3. Calculated radiation pattern vs. observation angle for a 10-element linear array.

We wish to investigate the magnitude of the amplitude and phase fluctuations of
the main lobe versus the number of elements in the array. If the noise sources in
the feeds are uncorrelated, the statistics of the time-variation of the amplitude
and phase of the main-lobe peak will be independent of the steering angle ¢.

A-5




Therefore, for the purposes of this noise analysis, the array can be modeled
simply as M eq: al-length feed systems sandwiched between two back-to-back
ideal M-way power splitters, as depicted in Figure 1. Now, the output field
amplitude is equal to the input field amplitude, independent of the number of
elements M.

At the main lobe peak, 7mcos@ = ¢, and the signal amplitude at the output of the
M-way coupler in Figure 1 corresponds to the main lobe peak amplitude of the
antenna pattern, divided by VM. For small-angle phase noise 8¢(t) << 1 radian,
the time variation of the output field can be written

Ena()= 7—2(7:-(1+i6¢,(:))+ N,,(t)). @

First consider the output of an "array" comprised of only one feed element with
unity gain. In the above equation, this corresponds to the case of M=1. The
output field is then given by

E,.(t)=E, + j6¢()E, + N(1). (5)
which is just the sai..: as the expression for a single feed given earlier in Equation
(2), as required. The signal and noise power are proportional to the time-average
of the squared-magnitude of the output voltage:

(EE")+{E,(jsoYE)+(EN")
P, | +{jS0EE, )+ (jBOE,(j5¢) E,) +(j6EN") (6)
+(NE,"} +(N(j8¢)'E, ) +(NN")
-where the angle-brackets ( ) denote the time-average of the enclosed quantity,

and the explicit time-dependence of the random functions has been dropped for
clarity. For independent zero-mean noise processes, the time-average of products
of the constant and randor * terms are zero, because we have assumed zero-mean
random noise processes. Also, the average of the product of two uncorrelated

terms, such as (N (j69)°), is zero. But the time-average of the square of any signal

or noise term is non-zero. Thus, the ratio of signal to noise power (SNR) for one
feed is

2\
SNR|,_ g = ; <|E" / : 7
e isew ) + (N
Similarly, for the case of M parallcl feeds with independent equal-amplitude
multiplicative and additive noise sources, the output field is given by

E

1 . E, (.
E.(t)= W(W(l-ﬁ;ﬁ%(t)% No(t)+ m(l + /60, (1) + N (t)+ )

E,, . . No(t) | N
=E,+ﬁ-(;5¢o(t)+;5¢,(m-~)+ +\/M

(8)

A-6
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The individual powers of equal-amplitude, independent (therefore uncon <¢lated)
noise sources may be added linearly. Thus, the equivalent noise voltage due to

the sum of M uncorrelated equal-amplitude noise sources is just ¥M times the
amplitude of a single noise source. Since all cross-terms between uncorrelated
noise sources averase to zero, we can write the output field for an M-element
array in terms of a single multiplicative noise source §¢(t) and a single additive

noise source N(t)
_ E_ jé¢(t)
EO‘O)— Eo+—£$-p’r—+N(t). (9)

Now, the ratio of signal to noise power in the combined output of an M-element
array is

2
SNR|,, (ES) (10)

e el
LT-> + <]N () >

The multiplicative noise power is thus mitigated by a factor of M in the
combined output of an M-element array, whereas the signal power and additive
noise power are unchanged from the single-element case. Figure 4 illustrates
thes= results for an array of ten elements compared to a single element.

-70
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Figure 4. Comparison of Single-element and 10-element Phase Noise

The close-to-carrier 1/f* multiplicative noise of the combined array output is
reduced by 10 dB compared to the noise of an individual element. The white
additive noise power further from the carrier is unchanged from the single-
element case. This behavior is analogous to the improved frequency stability
obtained from an ensemble of oscillators, compared to the stability of a single
oscillator. This property may therefore make phased-array antennas more
desirable than single-element antennas for applications in which high levels of
long-term phase stability are required. Alternatively, this property relaxes the
requirements on multiplicative phase noise for the elements of a large phase

array. It is emphasized that the additive noise requirements are not relaxed,
however.




5. SUMMARY

It was shown that as the number of array elements M is increased, the effect of
uncorrelated multiplicative phase noise of the feed elements on the total array
stability is diminished. However, the uncorrelated additive noise of the feed
elements is not diminished, so that the signal-to-noise ratio becomes independeit
of array size for large enough M. It is therefore important to quantify both the
additive and multiplicative noise of the feed elements to correctly predict the
total array phase stability.
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Abstract

A general formalism is developed for analyzing the output field
fluctuations of a resonant optical amplifier that has random gain and
phase fluctuations by a modification of the partial wave model. The
partial wave rnoclel provides an intuitive physical picture for the effect
of multiplicative noise in the optical resonant amplifier. Then, by mod-
elling a laser as a noise-driven resonant optical amplifier, it is shown
that multiplicative noise generates an additional power-independent
term in the Schawlow-Townes formula for the linewidth of the laser,
and a re-broadening of the linewidth at high output power levels, as is
typically observed in single-mode semiconductor lasers at high power
levels. Time-varying complex gain constitutes a mulitiplicative gain
and phase noise source that is transformed to the output field in a
different way from additive noise sources, such as apontm'eous emis-
sion. The formalism developed allows calculation of the transmitted
field power spectra of amplitude and phase fluctuations due to multi-
plicative noise. [t is shown that the effect of multiplicative noiss on
the transmitted optical field is enhanced as the net round-tn'p gain in
the resonator is increased, so that the multiplicative naoise ultimately
determines the minimum linewidth for the resonant amplifier in the
bigh-gain limit. A detailed analysis of electron density Auctuations in
a semiconductor laser gain medium is also performed, from which the
power spectral density of multiplicative phase noise due to electron
numbet-density fluctuations in the gain medium is obtained. This re-
sult is then used in the multiplicative laser noise model to obtain an

estirnate of the minimum linewidth of a semiconductor laser. Although
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the multiplicative noise analysis is applied to a resonant optical ampli-
fier, the formalism is general and should be applicable to the analysis
of other types of feedback systems perturbed by multiplicative noise.




1 Introduction and Overview

A formalism is developed for analyzing the cutput field fluctuations of a
resonant optical amplifier with & time-verying complex gain medium, by a
modified partial-wave model. A linear model of a laser as a noise-driven res-
onant optical arnplifier is then modified using the results of the time-varying
partial wave analysis. This new laser model provides an intuitive picture of a
mechanism for power-independent linewidth and linewidth rebroadening in
semiconductor lasers.

in a resonant amplifier, time-varying phase and gain constitute muiti-
plicative noise sources whose effects are transformed to the output field in a
different way from additive noise sources, which are typically treated as ad-
ditional inputs to the system. The inclusion of multiplicative gain and phase
fluctuations in a partial-wave analysis of an optical resonant amplifier is the
principal novelty of this work. The partial wave model provides a simple
physical picture for the effect of multiplicative noise in the optical resonant.
amplifier. The resonant amplifier is modeled as a delay-type feedback system
(Figure 1) with input. output, and net round-trip loop gain less than unity,
as shown in Figure 1. The output field at any time istant is comprised as
a sum of partial waves; the “oldest” partiil waves have travelled more tirmes
around the loop, so that the “mmemory” of the cav.ty extends further back in
time. When no multiplicative noise is present, the width of the cavity reso-
nance peak decreases as the net gain, end hence the cavity memory time. is
increased. However, in the presence of maltiplicative noise, the older partial

waves accumulate progressively larger random phase Ructuations, leading to
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increasing output field fluctuations. For high enough net round-trip gain,
the multiplicative noise-induced fluctuations will dominate the output field
fluctustions, and the linewidth will not derease with further increases in net
gain. Eventually, as the gain is increased further, the later partial waves
accumulate 8o much phase that they begin to destructively interfere with
the earlier partial waves, leading to large output fluctuations. and increasing
linewidth.

By viewing the laser as a noise-driven re: snant amplifier, and including
the results of the partial-wave analysis, a model is ohtained for the behavior
of the laser with multiplicative noise as the net round-trip gain is varied. Tt
is shown that multiplicative noise leads to an additional power-independent
regime in the Schawlow-Townes formula for the linewidth of s lase: at in-
termediate power levels, followed by linewidth rebroadening.as the power is
increased further. FYomn this result, an estimated value of 120 Hz for the
minimum power-independent linewidth of a typical single-mode DFB semi-
conductor laser due to electron number-density fluctuations is obtained.

Multiplicative noise arises in an optical feedback system when a multi-
plicative factor affecting the field, such as gain or rcund-trip phase. fluctuates
in time. Additive noise arises frorn photons which are added randomly to
the field, such as by spontaneous emission. In addition to the fundamen-
tal addtive noise due to spontaneous emission, sources of multiplicative gain
snd phase fluctustion will always be present in the components of a lascr
svstemn at. some level. Tt has been shown {12} that statistical Auctuetions in
temperature and density can have significant effect on the optical phase of

s wave passing through an optical fiber at a coustant temperature T For
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examnple, in a fiber laser, this source of fluctuation constitutes a furdamental
source of rnultiplicative phase noise thet arises from the same thermodyvamic
considerations responsible for the unavoidable Johnson noise in electronic
components, and is a basic consequence of the Fluctuation-Dissipation The-
orem [16]. In other laser systems. the net gain and optical length of the laser
cavity can fluctuate due to dye-stream width fluctuations, mirror vibrations.
pump power fluctuations, or other technical factors. In tvpical laser systems,
it is these technical sources of multiplicative noise that determine the actual
observed linewidth [1], and not fundamental additive quanturn noise die to
spontaneous emission, as predicted by the well-known modified Schawlow-
Townes formula {19], [21].

Tue Schawlow-Townes formnla for laser linewidth predicts an inverse de-

pendence on the output power given as

bv = (ﬁvc)2n%<$¥m (1)
where év, is the ‘“cold cavity” linewidth determined by the losses. h is
Planck’s constant, v is the oscillation frequency, P is the output power.
and NV;. V) are the populations of the upper and lower states of the atomic
transition responsible for the optical gain. For large-scale gas lasers with
high-reflectivity mirrors, equation (1) predicts linewidths on the order of
several hertz for output powers in the milliwatt range. In real lasers. the
observed linewidth typically several orders of magnitude larger than this

quantum linewidth prediction. due to technical sources of noise.

A notable exception is the semiconductor laser. The combined effects
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of large output coupling (i.e., low Q cavity) and amplitude-phase coupling
through the carrier dexsity [2]. [3] vield a predicted fundamental quantum
linewidth in the kHz to 160 MHz range for typical power levels. The pre-
diction of the appropriately modified linewidth equation (2] for typical facet
reflectivity of 32 percent yields an estimated linewidth of approximately 30
MHz at a power level of 10 milliwatts, and experiments are typically in good
agreement with theory for lower power levels. However, a power-independent
linewidth of several MHz [11], ‘22] and linewidth rebroadening [6], (5] in
single-mode semiconiductor lasers is typically observed at high cutput power.
which is not predicted by the modified Schawlow-Townes relation. The excess
linewidth is detrimental to applications requiring a high degree of coherence,
such as atomic spectroscopy and ¢oherent cornmunications systems.

The origin of the excess linewidth in semiconductor lasers is not so clear
as in the case of large-scale lasers, since the typical macroscopic technical
sources cf noise, such as mirror vibrations. dye stream fluctuations, and the
like are absent. Early work on the power-independent linewidth attributed
it to fundamental multiplicative refractive index fluctuations due to electron
number-density fluctuations [11]. 1 that work. the transformation of refrac-
tive index variations én to fluctuations of the laser frequency év was derived

from the phenomenological relation

v An
>z (2)
14 n

The refractive index fluctuations were included in a root-mean-square sense,

werived from thermodvnamic consid.rations regarding the number-density
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fluctuations of the electrons contained in the active medium. However, this
model can not explain the onset of linewidth rebroadening. In later work,
various other mechanisms have been advanced to explain the origin of the
power-independent linewidth, such as 1/f noise [22], and spatially-dependent
temperature and carcier fluctuations (24]. Linewidth rebroadening has been
explained in terms of excess carrier density in the confinement regions of
quanturn well lasers {5}, and spatial hole burning [6]. These or other mech-
anisms. such as injection-current fluctuations, may be operative in various
combinations in any particular lager. At present, however, there appears to
be no uniform explanation of a mechenism responsible for both the power-
independent linewidth and linewidth rebroadening in single-rnode semicon-
ductor lasers.

The dissertation is organized as follows: In Chapter 2, a discrete-time for-
mula for the slowly-varying complex envelope of the output field is obtained,
equation (16). Two regimes of the output fluctuations are examined: small-
angle and large-angle. The small-angle approximation yields equation (30),
which has the form of a finite-impulse-response filter acting on the multi-
plicative and input noise processes to produce the output fluctuations. From
this expression, the impulse responses and frequency responses of the reso-
nant amplifier for multiplicative and inpur fluctuations are obtained. finally
yielding the output noise power spectrum, equatiou (46). In the hmit of high
net round-trip gain, this becomes equation (47), and the output fluctuation
power spectrum is dominated by multiplicative noise. This is the 1 vchanism
for the power-independent linewidth. Numerical simnlation results for the

large-angle regime illustrate increasing amplitnde and phase fluctuations due
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to the random-walking phase and gain of the partial waves Figures 2 -
19, With increasing net gain, the probability distribution of the output in-
tensity in the large angle regime moves to lower values asin 17 - 2] and the
power spectrum broadens, (22 - 26 {This is the mechanism for the linewidth
rebroadening.

In Chapter 3, for the small-angle regime, the output field power spectrum
of the resonant amplifier is found to have a Lorentzian lineshape, that has
width. given by equation (52) for a multiplicative noise source that has white
power spectrum. This result has the same form as the phenomenological
result of equation (2). In the large-angle regime, the linewidth is predicted
to broaden, which is not predicted by aquation (2). The resonant ampli-
fier analysis is finally applied to the laser by modelling it as a noise-driven
resonant arnplifier. The linewidth of the laser has & power-independent. min-
imum for the small-angle regime, and rebroadens following the onset of the
large-angle regime. A minimum linewidth for a typical semiconductor laser

is estimated to be 120 Hz due to electron density fluctuations.
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2 General Analysis of Resonant Feedback
System with Multiplicative Noise

In this Chapter, the standard linear analysis of a delav-type feedback sys-
tem is generalized to treat time-varying gain and phase perturbations of the
components in the feedback system. The gain and phase coefficients multi-
ply the complex amplitude of the field as it passes through the amplifying
medium, so that gain and phase fluctuatic=: constitute sources of multiplica-
trve notse. First, to frame the discussion and define terminology, the basic
analysis of a linear delay-type feedback system without multiplicative noise
will be reviewed, and applied to the case of a resonant optical emplifier. The
gain medium is treated as a linear arnplifier operating below saturation. This
amounts to a review of the standard treatment {4] of a resonant optical ampli-
fier, from which the familiar Airy formula is obtained. Next, a discrete-time
formalism, valid for a single oscillation mode at a cavity resonance frequerncy.
is developed including multiplicative phase and gain fluctuations of the am-
plifying medium between the cavity mirrors.

In the standard analysis of a resonant cavity, the transmitted output
field is computed from an infinite sum of partially-reflected fields inside the
cavity, or “partial waves.” Cavity resonances occur at discrete frequencies
when all of the partial waves add constructively. For a perfectly stable cavity
with net round-trip gain less than unity, an analytic form for this summation
obtains. However. in the presence of multiplicative noise, the partial waves in

the resonator will have randomly-varying phase and amplitnde, so the usual
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analytic summation is not applicable. Therefore. in the present analysis, the
output field is computed as a randorn phasor summation of all the partial
waves contained in fue cavity at discrete instants of time. The case of an
ideal noiseless input field is examined first to appreciate the effect of the
multiplicative noise on the transmitted field. Then the more realistic case of
an input field with phase and amplitude noise is treated.

Two regimes are examined: a small-angle linear regime, and a large-
angle regime. In the small-angle regime, the fluctuating complex phase of
the partial waves is less than 0.1 radians about the mean. In this regime,
expressions for the output field amplitude and phase are analytically derived
in terms of the power spectra of the multiplicative gain fluctuations and ad-
ditive input fluctuations. and the net round-trip gain. But it is seen that
the multiplicative noise is enhanced by the round-trip net gain, and that the
resonant amplifier system acts like a linear finite-impulse-response filter in
rransforming the multiplicative fluctuations and the input field fluctuations
to the output field. The impulse responses of the resonant amplifier for both
multiplicative noise and input field noise are found to decay cxponentially,
leading to Lorentzian terms in the outpur feld power spectrum. The fa-
miliar filtering characteristics of the Fabry-Perot cavity are obtained for the
input additive fluctuations. The response for the multiplicative fluctuations
is enhanced as the gain is increased, whereas the response for the input field
fluctuations decreases with increasing gain. For large enough gain, the mul-
tiplicative noise dominates the output field fluctuations. It is shown that
the enhancement. of the multiplicative fluctnations limits the output power

speetrum to a minimum width determined by the net round-trip gain and the
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multiplicative noise strength, in contrast to the prediction of the standard
analvsis.

For the case of large-amplitude multiplicative noise exceeding the limits
of the small-angle approximation, numerical simulations are performed using
simulated noise time series. In this regime, the power transmission of the
cavity with multiplicative phase fluctuations grows progressively more erratic
with increasing net gain. For large enough net-gain. the phase of the output
field “wraps around” mecre than 27 radians, causing discontinuous jumps
of the output phase. and fast, spiky output amplitude Auctuations on time
scales much faster than the cavity photon lifetime. Also, the probability
distribution of the output intensity becomes more like that of a thermal
source, and the power spectrum bhecomes broadened. In this regime, the
impulse response is no longer exponentially decaying, but becomes erratic
and enhanced at large times, resulting in enhancement of the low-frequency
portion of the output field power spectrum.

Finally, it is noted that although the primary concern of this analvsis is
the optical resonant amplifier, the resuls of this analysis should be applicable

to noise in other types of feedback systems.

2.1 Review of Standard Linear Feedback Theory

To begin the development. the standard analvsis of a simple delav-type feed-
back svstem with linear, time-invariant components will be reviewed, and
then applied to o resonant optical amplificr similar to the approach found in

Sicgman (4]. Consider the feedback system model of an optical cavity illus-
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trated in Figure 1. The input. output, and internal states are electric fields
with sinusoidal time dependence. The input field R incident from the left of

Figure 1 is assumed to be a sinusoid of frequency w and amplitude Ap,

R(w) = Ag e™*. (3)

The output field C(w) exiting to the right also has the same sinusoidal depen-
dence. It is desired to compute the transfer characteristics of the feedback
system from the input state R{w) to the output state C'(w).

The system has an input coupler 1 on the left of Figure 1, and an output
coupler 2 on the right. These couplers have branching ratio py 3 for the
reflected amplitude, and ~;, for the transinitted amplitude. The couplers
are assumed to be lossless. so that ~2, + p?, = 1. The system has complex
forward gain coefficient G(w) and reverse gain coefficient H(w). A crucial
sssumption is that the gains G(w) and H{(w) are linear. so that the output
field can be computed as a vector addition of partial waves. If the gain is
non-linear. then mixing products will be gencrated at new frequencies. We
will assume that the cavity behaves as a linear resonant amplifier. with the
output field amplitude lincarly related to the input field amplitude.

Throughout the rernainder of the analysis, the explicit sinusoidal time
dependerice of R(w). C(w) etc.. will be understood. and R, C etc. will be
used instead. For a pure sinusoidal input field R that has been applied for an
infinite time, the steady-state output. field C is the summation of an infinite

nurnber of partial waves which may be written
C = (nm)GR+ (mn)(0ip)G*HR + (nma)(mm)*G*HAR
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+(Mn) () G H*R+ -+
= (v1%)GR[L + pipGH + (imGHY + (p1pGH) + -] (1)

The term outside the square brackets represents the transmission of the input
and output couplers ¥¥;. and the forward gain G for first one-way pass
through the cavity. The terms inside the brackets represent the successive
feedback terms which experience a net round-trip gain p; 0,GH on each trip
through the cavity. For net gain p;p,GH < 1, the quantity inside the square

brackets may be analytically summed, so that the output mav be written

C= (mn)GR
1 - (ppGH)
Equation (5) has the form of the Airy formula obtained via the standard

(5)

treatment of a resonant optical arnplifier found in optics texts (4]. Identi-
fying p1, po and vy,-2 as the mirror amplitude reflection and trensmission
coefficients, respectively. and setting G = H = G,e~"™!/¢ ag the gain and
phase experienced by a field for a one-way pass through the cavity of length
{ and index of refraction n, with ¢ the speed of light in vacuum, the familiar

transmission characteristic for a Fabry-Perot resonant amplifier is obtained:

C _ _nmaGee ™ (6)
—_ = X )
-1. u’ly'
R 1 - plpgcge 12nwd 'c
The power transmission function is the inagnitude-squared of this expression:
p : 1

T(w) =

Pout(“}) = (7172G0)2
Poalw) 1+ (mpa3)? = 2p10,G2 cos(2wnl/c)
The resonant amplifier power transmission function is plotted in Figure

(7)

2 for facet reflectivities py = ;o = 0.9 and G, = 1. The systern is resonant
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at frequencies corresponding to integer multiples m = 1.2.--- of the inverse

round-trip time through the cavity 7 = 2nl/c:

27m
W =

(8)

Equation (5) is the general form of the input-to-output transfer function

T

for a delay-type feedback system as a function of frequency. This expres-
sion. is valid for a system with no muitiplicative noise, acting on sinusoidal
input fields. As the feedback fraction is increased, the widths of the trans-
mission peaks given by equation (7) decrease. The half-power amplification
bandwidth of a resonance peak is (4]

1 - mpaGo 1

X — ) 9
o ppGE 7T )

So, as the net round-trip gain approaches unity, the bandwidth of the reso-

nant amplifier approahes zero.

2.2 Linear Feedback System Analysis with Multi-

plicative Noise

In this section, a general formalisin will be developed for deriving the sys-
tem output field C for the resonant amplifier of Figure 1 when the forward
and reverse gains are perturbed by multiplicative noise. The multiplicative
noise may be fundamental or technical in origin. as discussed previously. In
the general case that G and H have non-negligible gain and phase fluctua-
tions. the closed-form summation leading to equation (5) can not be applied.

Instead, the partial waves must be explicitly sutnmed to obtain tiie output
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at each desired time instant ¢, and the amplitude and phase of the output
field at the optical frequency wm, will fluctuate in time. This analysis will
compute the slowly-rvarying complex envelope of the cutput field at & cavity
resonance wpy, ot C{wmn,t).

It is desired to analyze the fluctuations of the output amplitude and phase
of C(wmm, t) on time scales that are long compared to the period of the optical
frequency wpm. As will be described, this can be conveniently done by moving
to a discrete-time picture of the system, breaking up time into discrete incre-
ments equal to the time delay for one round-trip through the cavity, 7. Afte.
the completion of this work, a similar approach was discovered in Reference
[7) in which Z-donain techniques from digital systems theory were used to
obtain the transmission and reflection characteristics of Fabry-Perot etalons
versus the optical input frequency. However, in that work, no time-variation
of the feedback coefficients was considered. Instead, the Z-domain analysis
was used to simplify the difficult problem of computing the transmission and
reflection characteristics of complicated multi-layer structures. In the present
work, a similar discrete-time approach is used on a simple two-mirror Fabry-
Perot structure, but extended to the case of time-varying gain coefficients to
compute the noise properties of ‘the output field.

For the special case of a feedback system operated near resonance, such
as a Fabry-Perot optical cavity, the throughput is only appreciable in narrow
bands of frequencies near the cavity resonances which occur at frequencies
wm, a8 seen in the previous section. All other frequencies are heavily attenu-
ated . In many practical applications, such as the

laser, the fluctuations of the cavity trensfer function near a resonance fre-
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quency are of primary interest, since they determine the long-term stability
of the laser frequency. Also, the system operates at & single cavity resonance,
so0 a full frequency domain analysis is not really necessary, and it is sufficient
to analyze the effect of the geain coefficient fluctuations on the behavior of
the cavity uear the resonance frequency of interest.

Now, the resonant amplifier of Figure 1 will be analyzed near a single
resonsnce frequency when the gain coefficients G and H are perturbed by
noise. To keep the analysis simple and the results transparent, initially it
will be assumed that the input state R is a pure sinusoid coincident with a
resonance frequency, w,. with constant amplitude Ag, as defined in equation
(3). Later, the more realistic case of an input field with additive noise will be
treated. The input and output couplers 1 and 2 are assumed to be identical,
so that o, = p, = pand 71 = v = 7. It is assumed that the cavity
length { is time-invariant, as is the nominal refractive index n. All phase
or gain fluctuations are described by complex zero-mean random variables
89(t) and £h(t). The time-varying forward and reverse gain coefficients due

to multiplicative noise are then modcled as

G’(w,,,,t) = Go e—ivwm[‘/ce-zbg(t] — Go e—.vu.v,.,l/c G(t). (10)
H(wm.t) — H,, e-mu-,,l/ce—u‘h(ﬂ - Ho e-muml/c I!(t) (ll)

where G,. H, represent the static forward and reverse loss or gain, e~'™wn!/¢
is the static one-way phase shift added to a signal at frequency wy, passing
through the cavity. At a loop resonance wyy,. the static phase shift will satisfy

the condition nwml/c == 2rm radians, with m an integer. ég(t) and bh(t) are
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complex random variables representing the time-varying phase and gain at

frequency wy,. These may be written

by(t) =bg'(t) + i69"(t) (12)
Sh(t) = 6R'(t) + i8h"(t) (13)

where the real parts 8g'(t) and 8h'(t) represent phase fluctuations, and the
imagiuary parts 8g”(¢) and 6h”(t) represent gain fluctuations. The statistical
description and any correlation of the real and imaginary parts will depend
in detail on the physics of the gain medium,

The transformation from a continuous-titne representation to the discrete-
time representation is accomplished by considering the static phase shifts
e~ meml/€ g5 delay elements of duration /2. as illustrated in Figure 3. and rep-
reseating the continuous-time gain variations of G'(t) and H(2) as a discrete-
time random sequence of cornplex values G, and H, with dc gain G, and
H,:

Gt = Go 6-‘6‘0' = Go Gg. (14)

!]l == }{0 (’,-Mh‘ = HO Hg. (15)

separated by time-intervals 7. (Throughout the rest of the anelysis. discrete-
time variables will be denoted with e subscripted time index, e.g., X, to
distinguish thern from continuous-time quantities: X(#)). In this discrete-

time picture. Clw,,. t) is assnmed to be a pure sinusoid at, loop resonance
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frequency wpy, with slowly-varving amplitude and phase fluctuations. which
will be referred to as C,.

Now. we apply this discrete-time definition of the gain to the linear anal-
ysis of the previous section to obtain an expression for the output field C..
At time increment ¢, the forward gain coefficient is G, the reverse gain is Hy,
and the input state is R,. For notatioual clarity, it is understood throughout
that time index t — j refers to time ¢t — 7, since time has been quantized in

units of the round-trip time in the cavity 7. The output state is then written

C, = ~*G.Ri+~p*CHe1Gi Ry
+720' G e G- Hy-aGroReca + - -
= 2GR, + p*H,_,Gy_1Rec
+p Hy Gy Hy 2GR g + -] (16)

It is assumed that the dc forward and reverse gains and static phase are
identical, so that G, = H,. This assumption is equivalent to requiring the
loss (or gain) and time-of-flight to be equal for both directions of propagation
in the optical cavity. This is a good assumption for a Fabry-Perct cavity.
since the light passes through the same physical medium in both dirnctions.
but may not be valid for other cavity geometries. It is further assumed that
the gain fluctuation rate is slow compared to the time-of-flight 7 for a round-
trip in the cavity. Then, it is valid to assume the forward and reverse gain
fluctuations are equal over any ronnd-trip time interval r, so the round-trip
gain may be written G, H, = H2. Theun. defining the time-varying net round-

trip gain to be p*H} = K,. the output field at time t is given by the infinite




series:

C= ‘Ysz[Rt + Ki-1Rey + Koy KiaRy_p + ). (17)

To analyze the characteristics of the gain coefficient fluctuations on the
output field, first the case of an ideal noiseless input field will be examined.
The input state is taken to be a constant R, = R for all times ¢, so it may
be factored out of equation {(17). Then. the output field C, is expressible as

an infinite sum of partial waves in the cavity at any given time instant ¢

Ce = "IQHzR[l 4+ Ko + (Ko Keca) + (K K2 Kog) + -], (18)

This infinite series will be truncated to a finite number of M terms, as
follows. If the gain fluctuations are small, then the amplitudes of the succes-
sive terms are deterrnined by increasing powers of the static net round-trip
gain coefficient, so that the j — lst term is proportional to K?. When the
mean value of the net round-trip gain is less than unity, K, = p?H? < 1. the
infinite sum of KJ is equal to 1/(1— K,), as was used previously to derive the
Airy formula. if a finite number of terms nre used instead, the summation
of KI from j = 0 to j = M is given by
Iy M4l
K= l—l‘:lfk | (19)

=0

The value of M is determined by requiring the difference hetween the infinite
sum and the finite sum of M + 1 terms to be less than a simall fraction ¢ of

the value of the full infinite sum. This condition is written
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1 1-K)
(T-—K_a) ” (1—?.?) < ‘(1-1{0)‘ (20)
Then, solving for the required number of terms M vields
En(e)
A — - ]
1 > (KD 1 (21)

We shall require ¢ <2 0.01. or the difference between the finite sum and the
infinite sum of less than 1 percent. For example, if K, = 0.9, then from
equation (21) we obtain M > 43. The time interval M~ is proportional to
the memory of the feedback system, and increases as the net round-trij gain
K approaches vnity. However, it will be seen later that the value of M just
derived is only valid in the case of small gain fluctuations.

The output field av any time ¢ is a random phasor sum of the M + 1
partial waves. This expression may be cast in a more illuminating form by
substituting the full form of the discrete gain coefficients for the K, terms

given by equation (15). Doing this and simplifying yields:

Ct

‘-,”IHO e-x(dh.)R[l + pQHg e 2i(8he-y) + p4HO1 6—21(6h‘_14.6h¢-3)

I 'f‘p?MIIgM e-2t(6h;_l¢«éh‘-:-~-¢6h|..M]]. (22)

Each successive terrn of this expression represents an individual partial wave
that has travelled an increasing number of times through the cavity, and has
thus experienced the gain and phase fluctuations dh, over an increasing tirne
span. For the case of no gain or phase fluctuations, (i.e.. &hy = 0 for all ¢,)

this expression may be summed analvtically, and collapses to the well-known
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Airy formula for the Fabry-Perot transmission derived previously. But in the
present. form, each. partial wave has a different random gain and phase, due
to the multiplicative comnplex fluctuations &h,.

From equation (22) it is seen that the phases of the successive partial
waves are cumulative sums of the multiplicative noise process &h, over in-
creasing times. If dh, is a white Gaussian complex noise process with zero
mean and variance of, then the complex phases of the successive terms
represent a random walk process. The variance of a random-walk process
grows linearly with time, so the complex phase of the Mth partial wave.
2(6hy-y + She_g + - - + Shy_yr), will have variance 02, = 2Ma?.

There are two regimes which we may identify with respect to the phase-
spreading of the partial waves in the output field summation of equation (22),
which we shall denote as the small-angle and large-angle regimes. The small-
angle regime corresponds to relatively weak multiplicative noise and/or low
net round-trip gain, stich that the root-mean-square complex phase of the last
(i.e., (M +1)st) partial wave is less than 0.1. In this case, the eiponent,ials in
equation (22) may be lincarized by the small-angle approximation, and the
summation for C, may be obtained analytically, as will be shown.

The large-angle regime corresponds to the case when the the rms com-
plex phase variance of the older partiel waves exceeds (.1. In this case, the
small-angle approximation does not obtain, and the full phasor exp:ession
of equation (22) must be used to compute the output field €, at each time
increment ¢ For & large multiplicative noise variance ¢f, and/or high net
round-trip gain K, — 1, the random-walking phase fluctuations of the later

partial waves may become large enotigh to cause destructive interference with

B-24

- EE—



the earlier partial waves, causing large fluctuations of the output field am-
plitude and phase. Also, the random-walking gain fluctuations of the later
partial waves will eventually cause significant. deviations from the exponen-
tial decay of the partial waves given by K2. This causes the value of M to
increase, which leads to enhanced low-frequency fluctuations of the output
field.

First. the small-angle regime will be analyzed. In this regime, the phase
Auctuations of the output fleld due to multiplicative phase noise are cn-
hanced as the net round-trip gain is increased. Then, the large-angle regime
will be examined by computing the full phasor expression of equation (22)
for constant multiplicative phase noise variance while progressively increas-
ing the net round-trip gain. The transition from the small-angle to large
angle regimes is marked by the ornset of rapid, large fluctuations of the out-
put field arnplitude and phase, and a decrease in the average output power.
The results obtained will be used to calculate the linewidth of the resonant
amplifier in each regime. In the small-angle regime, it is found that the mul-
tiplicative phase noise lcads to an output-power-independent contribution to
the linewidth of the output field power spectrum. In the large-angle regime,
the linewidth increases with increasing net gain. Both of these results are
counter to the decreasing linewidth with increasing net gain expected from

equation (9) for the standard analysis without multiplicative noise.
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2.3 Small-angle multiplicative noise regime: linear
approximation

In this section. the case of relatively weak mmultiplicative noise will be treated

using a linear approximation. The last term of equation (22) represents the

“oldest” partial wave that has travelled M + 1 round-trips in the cavity. The

complex phase of this wave is an M + 1-step random walk. The small-angle

regime is defined as the case when the standard deviation of the complex

phase for the M + 1st partial wave i3 less than 0.1, or

V2Ma, < 0.1 (23)

where M is defined by equation (21). Then, the stnall-angle approximation
for the exponential (e* &~ 1 + r) can be used to linearize the expression for

the fluctuating output field so that equation (22) may be rewritten:

Ce = ~*H,(141(6h))R(1 4 p*H? (1 + 2i(8hy.r)) + p*H} (1 + 2(8hyoy + he2))
+ooo+ AMHM (14 2(8hey + 6hy 2+ -+ + Shey))). (24)

Substituting K, = p?H? into this expression yields:

Cp = ”12['10(] + l(éhg))R[l + KU {l -+ 21(6}11_])) +- I\: (1 +- '2’.(6’11_1 + 6’7:_2))
4o b KM (14 2(8heoy + 8heg + -+ Bl )] (25)

Expanding this expression will yield many terms of O(8h?), like (6h28h,_x),

which are small compared to Q(h), and so may be discarded. leaving
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i . a I

Ci = YVHR(I+Ko+ K2+ + K+ (1+ Ko+ K2+ - + KM (i6hy)
(Ko + K24+ KM (26hye)) + (K2 + K2 + -+ + KM)(2i6h, _5)
4o+ KM(2i6h,_ag)). (26)

The term proportional to éh, is due to the phase fluctuation encountered
in the first “half round-trip” through the cavity. All other terms represent
“full round-trips” through the cavity. hence the factors of 2 appear in terms
Ehy_1.8hy 4, etc.

The summations of powers of K, may be performed analytically using
equation (19). The coefficients in equation (26) are then designated as a,

where the coefficient of the first term is ag, defined as

(M+1)=) 1= K.‘U-—-l
== K] = —-—-i——,
2o J;O 2] [ Ko (27)

and subsequent terms ay, k >> 1 may be written

k-1
a% = ao- Y. KI
=0

1- KM+1 1 - ch
- — [«] .- 2]
T 11—k, 1- K,
k _ geM-t
_ KKy 2
1-K,
As A — 0. a, converges to
Ak
Pl S a0
G = T K. (29)
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Now. substituting the coefficients a, into equation (26), for the present

special case of a noiseless input R, the output field at any time instant t'is
seen to be a weighted summation of the multiplicative noise samples &, over

the time interval ¢ — M to ¢t

Cg = ‘12H,,R[ar, + aoi&ht + a|i26hg-.] + 4 aM'l;Zéht_,\v[]
M

ao(l+ ibhe) + Y ax i26R,-s
k=1

= ~2H,R . (30)

Finally, the factor 1/(1 = K,) may be factored out of this expression to vield

Coom =2 [+ b + 1Ko26hey + iK26heog + - + 1K3"26he-u] .
(31)
This expression represents the transformation of the multiplicative phase
and gain fluctuations to the output field at every time instant ¢. The first
termn is the static gain of the resonant amplifier as given from the standard
analysis leading to equation (5). Recall from equation (13) that éh, is &
complex-valued random series whose real and imaginary parts represent the
time-varying gain and phase, respectively, of the amplifying medium. Phys-
ically, the real-valued coefficients a, determine the contribution of the mul-
tiplicative phase and gain fluctuation at the previous time increment ¢ ~ k
to the output at time increment t. It is apparent from equation (31) that
for IK,| < 1, the a; magnitudes decrease exponentially with increasing k.
Thus, noise events further removed in time from the time increment ¢t have

a diminishing effect on the ontput state. In this small-angle approximation.

B-25

L rrE——



noise events occurring at tirnes prior to t -- M have no effect on the output.
which is just an analytic statement of the finite memory time of the system.

In the analysis thus far. fluctuations of the input field R were not consid-
ered. In general, the input R == R, may also have a time-varying arnplitude
and phase. To treat this possibility. the input state is now defined in the
continuous-time picture as a sinusoid with mean frequency coincident with
a cavity resonance w,,, perturbed by amplitude noise 6 A(t) and phase noise
8 (t)

R(t) = (Ag = SA(t)) elwmttéel®), (32)

Assuming §¢, <« 0.1 radian, the small-angle approximation can again be
employed, and the time-varying input field R(t) may be manipulated into

the discrete-time form:

Rt ~ (AH + 6At) (l - 6é')€‘u“‘
= (Ap = tARbd + 6 A + 16 Ab0, ) e ™!
x Ap (1 + 16¢ + é-é) plam!
Ar

= Age™ (1 + &Ry)
R = R,{1+&R,). (33)

where the term of O(8A}(f®) was neglected. since it is small compared to
the terms of O(6A) and O(#¢), and the noise sources A4 and d¢ are assumed
to be uacorrelated.

Now, this expression for the fluctuating input field is inserted into the full
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form of equation (22) to obtain the output at every time increment t due to

both input field fluctuations and multiplicative gain fluctuations:

C: = +*GiR, ++*p*GH,_\Gi_1 Ry
+Y*0'GH - |G\ Hi2Gro2 Ry + -+ -
= ~'G,R + p*Hi-1Gi_ 1 Ry,
0 Hy Gy 1 Hy 2Gy aRy o 4]
= YGiRi + KiciReer + Kot Ky2Rea + -+, (34)

Using manipulations similar to those used to derive equation (31) (the de-
tailed algebra is relegated to an Appendix) a simplified expression for the

complex output field amplitude is obtained:

H.R
© = 1R

+(1 - K,) (éﬂ, + Ko Ry + KR 2 + K2R3+ -+ KM m,_,(,ap)

[1 + iéhg + h'0126’13_1K3i25’l!..2 +oee K’o’w'llQ&ht_(Af_”

The powers of K, multiplying the éR terms may be defined as a set of

coefficients by:

be = K. (36)

The full expression for the output field can now be written more compactly as
suinmations of the two noise processes &h, and 4R, in terms of the coefficients

ar and bg:
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M M
C, = *H,R [ao(l +6hy) = (Z au‘?éh,_k) + (Z bkéﬁt_k)] - (37)

k=1 k=0
This expression rep.esents a linear approximation to the full form of equation
(22) for the slowly-varying complex envelope of the output field C; including
both input field fluctuations and multiplicative phase and gain fluctuations.
This linear approximation is valid in the small-angle regime as defined by
equation (23).

Now, the power spectrum of the output field in the small-angle regime
will be calculated. Equation (37) has the form of a finite-impnlse-response
filter operating on “input” processes éh, and 6R,. For linear systems in
general, the Fourier transform of the time impulse-response yields the output
frequency response of the system 8). For an input field noise source modeled
by a Gaussian-distributed random process, the power spectrum of the output
field is the product of the input noise power spectrum and the magnitude-
squared of the system frequency response [?]. So, if the impulse responses,
net round-trip gain K,. and the analvtical form of the power spectra of the
multiplicative fluctuations S,(f) and the input field fluctuations Sg(f) are
known, then the output power spectrum S¢.(f) may be obtained analytically.

The impulse-responses of the resonant amplifier output to a delta-function
of multiplicative noise 6k, or input noise &R, are defined to be 6C  and 6Cgr,
respectively The multiplicative impulse-response 6C)y ; is the decaying out-
put field respouse given by equation (37) due to a delta-function multiplica-

tive impulse in 8k, applied to the system at time t = 0
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EChe = ‘."QHoR 2ay uy
2y*H,R .
= ((1-1@)) Ko
2'\'2HOR Tt
(l - Ko) ‘ Ut

where the decay constant, and u, is the unit step function, with u, = 0 for

(38)

t <0, and u = 1 for t > 0, and it is assumed that ¢ takes only integer
values (i.e., time is normalized to increments of 7). The first half-round-trip
{k = 0 term) was taken to be equal to a full round-trip. For M > 100
corresponding to K, > 0.95. this introduces a small error of less than a 1
percent in the output sum. The response to an input field impulse in R,
is obtained similarly as the response of cquation (37) to a delta-function

impulse in SR, applied to the system at timne ¢ =: 0;

’SCR,z = ’72H0R be
v*H,R K! u,
Y H,R ey, (39)

The Fourier transforms of the impulse responses 6C'y and §Cg, yield the
corresponding frequency responses Fy(f) and Fyp(f), where f is the Fourier
frequency. Both impulse responses represent decaying exponentials, leading

ro Lorentzian frequency responses given by

.2
2+*H,R ) l (40)

!ah(f):((l_‘KU)r l_._l_;:’_'[
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and

Fp(f) = ("zg"R) Hll.guﬂ (41)
where w, == ['/7 is the rolloff frequency of the Lorentzian response.

The power spectrum of the output field is comprised of three terms: a
deit..-function term due to the sinusoidal input R, and terms due to the mul-*
tiplicative and input fluctuations. In the absence of multiplicative noise, and
for a pure sinusoidal input field R at a resonance frequency wy. the output
power spectrum Sc(f) is a pure sinusoid of frequency wy,, with magnitude

given by the constant term in equation (37). This may be written as

(v HoRao)" 8()
2 2
(328 o (42)

where the delta function is defined as 6(0) = 1 and é(x) = 0,z # 0, and

Sc(f)

is centersd on frequency wy,. The Fourier frequency f is the offset in V'
from the optical frequency wy,. This is equivalent to the power gain .
the peak of the resonant amplifier transmissicn = given by equation (7).
The noise processes by and &R, give rise to additional terins in the output
power spectrum. It is assumed that the noise orocesses dh, and 6R, are
uncorrelated, so the power spectra due to each process may be added. The
term due to multiplicative noise is the product of the multiplicative noise
power spectral density S,(f) and the magnitude-squared of the frequency

response Fy(f). Similarly. the termi due to the input noise is the product of
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the input field noise power spectrel density Sg(f) and the magnitude-squared
of the frequency response Fr(f). The addition of equation (42) and the two

noise terms yields the total output power spectrum:

Se(f) = ((%—fﬁ) ém) + IR(HP Su(f) + IFR(AI Salf)  (43)

Substituting for the frequency responses Fy(f) and Fr(f) and subsequent

sirnplification vields

A2H,R\? _
((I-K,,) é(f))
[ 2y*H,R 1 o v H,R 1
! ‘(<1~Ko)r) Ty ) (= v e

~AH,R\? TR o 1
(1—-7(.;) (5 f) 1 :‘?—)4‘_ Lh f) + +L2_'4L’ SR(f)) (44)

Consider the last term of this expression due to the input noise /2. For

Se(f)

low gain and/or low multiplicative noise, the signal-to-noise ratio inside the
amplifier bandwidth will be the same as the inon! signal-to-noise ratio. Phys-
ically, the last term implies that the output field phase and amplitude cxactly
follows the input field phase and amplitude Huctuations for rates less than
the cavity bandwidth w,, which is intuitively correct. For fluctuation rates
faster than we. the input field fluctuations arc rolled off as 1/f?, as expected,
since they lie outside the bandpass of the cavity As the net gain K, is
increased, w, decreases, and the integrated noise power due to the input fluc-

tuations decreases. impiying a decreased spectral width of the output field.
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The resonant amplifier therefore produces a narrowband output signal of
high spectral purity from a broadband noise input when the net round-trip
gain K, is high. This is the expected behavior of a resonant amplifier as
obtained from the standard analysis leading to equation (7). and is the basis
of the linear model of the las. . as a noise driven resonant amplifier [4], which
we will return to later.

Now consider the second term of equation (44) . It is seen that the second
tern due to multiplicative noise éh, is multiplied by the factor 1/(1 — K,,)?
compared to the last terrn due to the input field fluctuations 6R,. What
is significant about this is that as the net gain K, is increased, given fixed
levels of input fluctuations Sg(f) and multiplicative fluctuations Sy(f), even-
tually the outr:ut field power spectrurn S¢(f) will become dominated by the
multiplicative noise. After this happens, the signal-to-noise ratio for Fourier
frequencies less than w, will decrease with further increases in the net gain.

Making use of the fact that for K, = 1, I’ = |[fn(K,)| = (1 - K,), the
rolloff frequency may be approximated as w? ~ (1 — K,)/7. Making this

[

substitution in the second term of equation (44) yields

) 2
Sl koot = (l——”‘fi)

. 4 R 1 .
(5(f,' + M= K.+ (2r fr)? Sn(f) =+ BT 5'H(f04>’)

we
In the limit as K, — 1. the second term due to multiplicative noise over-

whelnis the last term. s0 the output power spectrum hecornes
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2 2
setf) = (T252) (61 + ey 540) (46)

In the limit as K, — 1, the integrated multiplicative noise power given by
the second term in equation (43) approaches a constant, value, which implies
that, the spectral width of the output signal also becomes constant. This is in
marked contrast to the prediction of the standard analysis {4] of equation (7),
which predicts decreasing linewidth with increasing gain. In summary, for
low net gain when the input field fluctuations are dominant. the width of the
output power spectrum decreases with increasing gain. But as the net gain
K, — 1, the multiplicative fluctuations eventually become dominant. and
the power spectrum of the resonant amplifier approaches a constant value.
Therefore, a mini:num linewidth should be expected for resonant amplifiers
operated at high gain in the presence of multiplicative noise. To the extent
that. the multiplicative fluctuations arise from fundamental thermodynamic

processes {12], this minimum linewidth will be a fundamental limit.

2.4 Large-angle multiplicative noise: numerical anal-
ysis

In this section, the full phasor form of the output field given by equation
(22) is analvzed in the large-angle regime, by numerical simulation using
computer-generated random time series to represent the multiplicative noise.
This approach is taken to investigate the behavior of the output field ampli-
tude and phase when the variance of the complex phase of the older partial

waves exceecls ().1 radians, so the small-angle approximation which permits
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the analvtic derivation of equation (23) no longer obtains. The output field
time series is computed for a noiseless input field R of unit amplitude at fixed
cavity resonance frequency wm, for various values of the net round-trip gain.
The calculations are performed for a 300um-long Fabry-Perot semiconduc-
tor laser cavity, at 1.3um wavelength, with equal facet power reflectivities
p* = 0.32.

The real and imaginary parts of 6h, 4re assumed to be corzelated, as is
the case for phase and gain fluctuations arising from electron-number fluc-
tuations in a semiconductor laser gain medium [10]. The real and imaginary
parts of 6k, are written in terms of a commen noise source én, representing

fluctuations of the refractive index:

Eh(t) SR'(t) + 16R"(t)

i wml -
(1 + ﬁ) ( - ) én(t) (47)

The constant ( relates the changes in the real and imaginary parts of the

L]

refractive index due to electron density fluctuations, and is a measure of
the amount of amplitucde-phase coupling for waves in the gain medium. it
was shown (2], (3] that /3 is responsible for broadening of the semiconductor
luser linewidth above the Schawlow-Townes prediction, and so 3 is typically
referred to as the linewidth enhancement factor. The refractive index in a
semiconductor laser gain mediurm is typically modeled as a linear function of
*he carrier density [?}. Thus. changes in the electron density due to injection
current noise, thermal fluctuations, or electr .n-hole recombination processes

cause correlated changes in the gain and phase of the amplifying medium via
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B.

Computer simulations were run for increasing net round-trip galns X, =
0.9, 0.95, 0.99, 0.995, and 0.999, which represents three orders of magnitude
change in the net gain. For each value of K, an N-element complex vector
of the fluctuating output field C:; is produced. For thess net gain values, the
total numbers M of partial-waves used in the sumamations were, respectively,
M = 50, 100, 500, 1000, and 5000. The complex multiplicative noise process
6h, is simulated by a computer-generated Gaussian-distributed zero-mean
random time series with standard deviation of oa = 0.1. This implies that
the system is in the large angle regims for all of the net gain values tested.
The computer produces a series of random values from a Gaussian distribu-
tion such that the rms value of an infinite number of such values would be
on.

The computed results for net round-trip gain of K, = 0.9, 0.95, 0.99,
0.995, and 0.999 are now discussed. To see the qualitative effect of the
increasing net gain on the output, the real and imaginary parts of the output
eloctric field C; are displayed parametrically in the complex plane in Fig 2
- 6, for incressing values of K,. In these plots, each of the N dots on the
complex plane represents the computed poeition of the tip of the output field
vector C;. Figure 2 {llustrates the case of net round-trip gain K, = 0.9. The
tip of the electric fisld vector describes at arc with maximum phase excursion
of approximately +/- 0.3 radians, but with relatively constant amplitude. As
the gain is increased to K, = 0.95, 0.99, 0.995, and 0.999, (Uustrateiin Fiq 2
- 6, the maximum phase excursion increases and the amplitude exhibita
progressively larger fluctuations which appear as a swirling pattern in the
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complex plane. If there were no multiplicative noise, all of the dots would
fall on one point on the real axis, determined by the static gain 1/ (1= K,).
The small-angle regime treated previously represents small excursions about
this point.

As the output field vector swicls around the complex plane, Figure 4e,
the rnagnitude and phase change drastically. The phase and instantaneous
intensity (magnitude-squared of the electric field) versus time for each value
of net gain are plotted in Figures 7 - 16. Asthe net gain increases, the
period and amplitude of both the intensity and phase fluctuations increase.
At the lower gain values, the mesn value of the intensity fluctuations is
close to the value expected without multiplicative noise. However, as the
gain is increased, the amplitude of the intensity fluctuations increase greatly.
The intensity becomes more deeply modulated, and the mean value of the
intensity moves to lower values