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Interpretation of extinction in Gaussian-beam scattering
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The extinction efficiency for the interaction of a plane wave with a large nonabsorbing spherical particle is

approximately 2.0. When a Gaussian beam of half-width wo is incident upon a spherical particle of radius
a with wo/a < i,the extinctionefficiencyattainsunexpectedly high or low values,contraryto intuitive

expectations. The reason forthisisassociatedwith the so-calledcompensating term in the scatteredfield,
which cancelsthe fieldof the Gaussian beam behind the particle,thereby producingthe particle'sshadow.
I introducea decomposition of the totalexteriorfieldintoincoming and outgoing portionsthat are free
of compensating terms. Itis then shown thata suitablydefinedinteractionefSciencyhas the intuitively
expected asymptoticvalues of2.0 forwo/a >> I and 1.0 forwo/a << I.

1. INTRODUCTION

In Lorenz-Mie theory, extinctionisthe name given to the

energy lost by a plane wave during its interaction with

a single spherical particle,m The energy lostis said to

be either absorbed or scattered. The absorbed energy ex-

citesthe internal structure ofthe particle. The scattered

energy is carried away from the particleby the radially

outgoing electromagnetic waves created by the interac-
tion. The scattered waves are further subdivided into

diffracted waves created by the interaction of the plane

wave with the geometry of the particle(i.e.,the shape of

itsprojected area) and specularly reflectedand transmit-

ted waves created by the interaction with the particle's

composition (i.e.,the strength of the interaction is deter-

mined by the particle'srefractiveindex). Ifa plane wave

is incident instead upon an ensemble of randomly posi-

tioned particles,then, in the single-scatteringapproxi-

mation, extinction describes the exponential attenuation

of the undeflected portion of the plane wave as itpasses

through the ensemble, as

The purpose of this paper is to determine the physical

interpretation of extinction if a Gaussian beam of half-

width tOo is incident upon a single spherical particleof

radius a. If the particle is nonabsorbing, we intuitively

expect that the extinction efficiency_.xt(i.e.,the extinc-

tion divided by the incident energy striking the surface

of the particle)should behave in the followingway as the

width of the beam is varied. For plane-wave incidence

and in the large-particlelimit a >> A the extinctioneffi-

ciency is approximately s'72.0. Half of this value is due

to deflection of the geometrical rays that strike the par-

tide's surface, and half is due to diffractionof the rays

that graze its edge.s For a narrow beam incident upon

a large particle with tOo << a the geometrical rays that

strike the particle'ssurface are again deflected. But

since the portion of the beam that grazes the particle's

edge is exceedingly weak, diffractionis correspondingly
weakened. Thus the extinction efficiency should ap-

proach 1.0,being due solelyto the deflectedrays. When

the extinction efficiencyis computed for w0 << a, thisex-

pected reduction that is due to the weakening of diffrac-
tion does not occur. Rather, the extinction efficiencyas
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a function of the particlesizeparameter continues to os-

cillateabout 2.0. But the amplitude of the oscillations

increases dramatically as wo/a decreases.

The firstgoal of thispaper isto help us to understand

physically what extinctiondescribes for Gaussian-beam

scattering and why the amplitude of the oscillationsin

_extincreases as wo/a decreases. The second goal is to

construct another efficiencythat has the intuitive limits

of 2.0 for w0 >> a and 1.0 for wo << a. Our pursuit of

these goals proceeds in the following way. In Section 2

we brieflyreview the derivationof the extinctionefficiency

for a focused Gaussian beam striking a spherical particle

head on. We then compute the extinction efficiencyand

observe itsbehavior as a function of the particle size pa-

rameter forvarious values of wo/a. In Section 3 we show

that thisbehavior resultsfrom associating extinction with

the decomposition of the total electromagnetic fieldsex-

terior to the particle into a sum of two parts, the fo-

cused Gaussian beam in the absence of the target particle

plus the scatteredfieldproduced by the target'spresence.

This decomposition isa natural choice when the scattered

fieldonly weakly perturbs the beam for wo/a >> I. But

when wo/a < 1 and the particle blocks off a large por-

tion of the beam, the scattered fieldis no longer a weak

perturbation, and thisdecomposition leads to certain diffi-

cultiesin interpretation. In Section 4 we make an alter-

native decomposition of the electromagnetic fieldsinto a

sum of two other parts,a radiallyincoming part and a ra-

diallyoutgoing part. We definethe interaction efficiency

to be the energy carried by that portion of the outgoing

wave that isdistinguishablefrom the undeflected portion

of the beam, divided by the incoming energy that strikes

the particle'ssurface. We show that the interaction effi-

ciency behaves in a way consistent with our intuition in

both the tOo/a>> 1 and the wo/a << I limits.

2. EXTINCTION EFFICIENCY FOR
GAUSSIAN-BEAM SCATTERING

A. Beam When No Target Particle Is Present

Consider a focused Gaussian beam propagating along the

z axis of a coordinate system. This is called an on-axis
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beam. The time dependence of itselectricand magnetic

fieldsis exp(-ia_t),which willhereafter be omitted. The

beam has wavelength A. It is focused by a lens to the

half-width w0 at the origin. One description of the elec-

tricand magnetic fieldsof the beam isgiven by the Davis

first-orderapproximation s

Eo exp(ikz) f -(x2 + y2)/wo21E_,m = 1 + 2isz/wo exp 1 + 2isz/wo

( 2isx/w° I× u" I + 2isz/wo fi" '

(Eo/c)exp(ikz) [-(x' + y2)/Wo ' ]Bb_,m ffi 1 + 2isz/wo exp 1 + 2isz/wo

( 2isy/wo )× uY- l+2isz/wo _" ' (1)

where the wave number is

2_r
k ffi -- (2)

A

and the beam confinement parameter is

1
s ffi -- • (3)

kwo

The plane-wave limit is obtained by setting Wo -- _ and

s = 0 in Eqs. (1).
The beam fields have the partial-wave expansion 1°

jdkr)E_o_ = - iE0(cos _)fi, it(2l + 1)gt _ (sin 0)lrt(0)
l-t

+ Eo(cos _)% _ il 21+ i {i-i l(l+ I--'-_g: h(kr)_rl(0)

__ it 2l + 1 {Eo(sin
t=t _ g:, jt(kr)vdO)

__ jt(kr)-iEo (sin ¢)ar iq2l + 1)gt -_r (sin 0)1rd8)B_am = C _=t

+_(sin_b)fio_- it 2/+1 [t-t _ gt jt(kr)_'t(O)

c l-t _ gt Jt(kr)1"l(8)

In these expressions the jt(kr) are spherical Bessel time-

tions, and the angular functions _rdO) and rAO) are related

to associated Legendre polynomials by

Ptllcos O) rt(O)ffi d pit(cos 0). (5),r,(e)= sin-------o- '

The shape of the beam is determined by the coefficients

gt, which are weighting factorsfor the individual partial

waves. Alternatively, these beam shape coefficients may

be obtained from the beam profiles by z_

gt = _0 _t
(-i) :-t kr 1 sin 2 OdOf(kr, 0)

2 jt(kr) l(l -_ 1)

x exp(ihr cos 0)P:l(cos 0), (6)

where the radialcomponents of the electricand magnetic

fieldsof the on-axis beam assume the forms

Eradla! = E_cam sin 0 cos & + E_._ cos 0beam

ffi Eo exp(ikr cos O)f(kr, O)sin 0 cos ¢,

Bradi.I ffi B_.m sin 0 sin ab + B_a = cos 0l_am

ffi E....ooexp(ikr cos O)f(kr, 0)sin 0 sin &. (7)
c

For an on-axis Gaussian beam focused at the origin the

beam shape coefficients are approximated to a high degree

of accuracy n by the localized beam model 12

g: = exp[-s2(/+ I/2)_]. (8)

The partial-wave expansion of a plane wave is obtained

in the limit s ffi0 and gt ffiI.

B. Scattered Wave Produced by the

Beam-Particle Interaction

Consider now that the Gaussian beam approximated by

Eqs. (1) or relation (8) substituted into Eqs. (4) is inci-

dent upon a spherical particle of radius a and refrac-
tive index n whose center is at the origin of coordinates.

The standard method for solving for this electromagnetic

boundary-value problem begins with the decomposition of

the electric and magnetic fields exterior to the particle

into a sum of two parts13-15:

Etotat = Ebeam ÷ E,tattered, Btoml = Bbeam + Bscattered •

(9)

The fields Et_,m and Bt_ are the electromagnetic fields

of the beam in the absence of the particle as given in

Eqs. (4), and E_m_ and B_t,,_ represent the change

in the total fields that is due to placing the target particle

in the beam's path. Specifically, the decomposition of

Eqs. (9) givesm

h_tl)(kr)
E_.tter_ ffi iEo(cos 4Da, _ it(21 + 1)g:at _ (sin 0)

l-I

x _'t(O) - E0(cos _b)fiw_ it
21 + i

t-t l(l+ 1)

x gt{ b,h'tU(kr)_'t(O) -iat[ h_,(hr)

t h,tn(hr)lrt(O)l÷ Eo(sin ,)t2.
kr J l

× __ it 21 + 1 [b_h,:_(kr)rt(O)
,., l(-T--_+1}g_l

o!
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• h_tl,{kr)
B,c.tte.d ffi iEo (sin _b)zL _ it(21 + 1)g_bt _ (sin 0)

C t-I

x lrt(0) - Eo (sin _b)_, _ i t 21 + 1c . l(l + 1)

x gt{ aihltn(krDrt(O) - ib_[ hlt_,(kr)

ll)(kr)] }E°(cosqb),',._i'k," h_ _t(O) - _ t-1

2l+1 [

x l(-yT-_g_ l a_gtl)(kr)_t(o)

-ibt[h_t_,(kr)- :-rhttn(kr)]_rt(O) } , (10)

where the h_ll)(kr) are spherical Hankel functions of the

first type and at and bt are the partial-wave scattering

amplitudes of plane-wave Lorenz-Mie theory.

The total exterior field is illustrated in Fig. 1 for the

case in which the beam is wide and the particle is small.

At most locations in space the total fields strongly re-

semble the original beam, E_at_.d and B_m_.d repre-

sent only a small perturbation, and the decomposition of

Eqs. (9) makes good physical sense. An exception, how-

ever, is provided by the deep-shadow region immediately

behind the particle, where the particle blocks off the ori-

ginal beam./6a7 The deep-shadow region is denoted by S

in Fig. 1. In spite of the particle's blocking off the inci-

dent beam in the deep-shadow region, the total field there

is not necessarily small if the particle is transparent. In

particular, surface waves associated with reflection pass

through this region (see Fig. 46 of Ref. 8), and the trans-

mitted waves form a spherical aberration caustic there.

The term deep-shadow region refers instead to the fact

that the waves diffracted by the particle only gradually

spread to fill the space behind it (see Fig. 14 of Ref. 17).

Similarly, the term block off means that, although the

fields in the deep-shadow region are nonzero, they do not
at all resemble the incident beam. The incident beam

has been totally removed and replaced by the reflection

surface waves and transmitted waves. As a result, in the

deep-shadow region the scattered fields must assume the
form _s

E_attered _ Eeoml_nutmg + Eresidual,

B_cattered = Beompensating + Bresidual, (11)

where

E_ml_nsating == -Ebeam, Beom_n,atin¢ = -Bb.-. (12)

The compensating term in the scattered field cancels the

beam field and thereby mathematically ensures its re-

moval from the deep-shadow region. The residual fields

are the transmitted waves and the reflection surface

waves present in the deep-shadow region if the particle is

transparent. If it is opaque, the residual fields are only
the reflection surface waves. 17

C. Extinction Efficiency

Using the decomposition of Eqs. (9), we can define the ab-

sorption, scattering, and extinction cross sections as 2"_°'_s

--C

ffi sin 0d0 d_b Re(E_o,. I x Bto.-I),
Citb_rption _o 2 JO JO

(13)

C_attering : _o 2 sin 0d0 [ d_bJO JO

X Re(E_catt,nd X B_tt_d)

k2 (2l + 1)[gtl2tlat[ 2 + Ibtl 2)
t-1

(14)

C,,,_=_o, ffi _-c .oasin 0de.o[ d_

X Re(Eb,= x B_aer_d + E_attered × B_=)

: h_ (2/+ l)[g_l 2 Re(at + hi), (15)
l-t

respectively. They reduce to the usual Lorenz-Mie ex-

pressions in the plane-wave limit gt -- 1. Since the

beam's angle-integrated Poynting vector vanishes, i.e.,

sin 0d0 d¢ Re(E_,,.. x Bb,,m) : 0 {16)
Eo 2

the absorption, scattering, and extinction cross sectmns

are related to one another by

Cextinctien "= Cscattermg "" Cabsorptmn • (17)

Equation (17) describes conservation of energy for the

beam-particle system. The absorption, scattering,

and extinction efficiencies are obtained by dividing

/
f

t

\

/

%

$-

f_ \\

Fig.1. Scatteringof a plane wave by a sphericalparticle
The small region S to the right of the particledenotes the

deep-shadow region,where the plane wave has been removed
by the particlein the near-forwarddirectionand in the near
zone and replaced by the transmittedwave and the reflection
surfacewaves.

S
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Eqs. (13)-(15) by the cross section for radiation strik-

ing the particle surface,

f:"= - sin 0d0 d_b
Cinciden_ Eo 2 /2

x [Re(E_.=x Bb..=)•_,].... (18)

giving, for example,

Cex ti.¢tio......._..
_eztmction =ffi Cincident

(19)

In the Davis first-order beam approximation the incident

cross section is

Cincid,,, ffi 27ra2 1 + --_02)

I -2aZ(1- uZ)/wo ' ]l exp "_+ 4s--'-2a2u2/wo-----_f
× | udu " (20)

Jo (1 + 4s2aZuZ / woZ) 2

In the plane-wave limit s- 0, Eq. (20) reduces to

Cmclden t -_- ,fig 2.

The behavior of the extinction efficiencyof Eq. (19) as

the width of the beam is varied is illustratedin the fol-

lowing example. Consider a spherical water droplet of

radius a ffi 50/_m and n = 1.333 illuminated on axis by a

Gaussian beam focused at the origin with 0.57/_m -<- A -<

0.64/_m and 0.1 <- wo/a < 100. These values of wo are

well within the region of applicability of both the Davis

first-order beam approximation of Eqs. (1} and the local-

ized model for the beam shape coefficients of relation (8).

James A. Lock

The incident cross section ofEq. (20)was computed by nu-

merical integration with a 5001-point grid. The result-

ing extinctionefficiencyof Eq. (19)isshown as a function

of the particlesize parameter

2_ra
x = -- (21)

A

for wo/a == 20.0, 1.0,0.2,and 0.1 in Figs. 2(a),2(b),2(c),

and 2(d), respectively, and as a function of wo/a for

a - 0.6328 #m in Fig. 3. For wo/a >> 1 we find that

e,,t - 2.0, in agreement with the plane-wave limit. This

result is interpreted as being an amount 1.0 that is due

to scattering plus another 1.0 that is due to diffraction. _

In addition, the extinction efficiency as a function of size

parameter possesses oscillations, known as the inter-

ference structure, that are due to interference between

the diffracted and transmitted fields. 19_° The efficiency

also exhibits the so-called ripple structure that is due to

morphology-dependent resonances. 21 For wo/a < 0.5 the

extinction efficiency as a function of size parameter con-
tinues to oscillate about 2.0. But the amplitude of the in-

terference structure increases dramatically. The ripple

structure is now absent, since the Gaussian beam no

longer extends out to the edges of the particle,where

morphology-dependent resonances are most efficiently

excited._ The increase in the amplitude of the inter-

ference structure is contrary to our expectation that the

diffractioncontribution to the extinction efficiencyshould

decrease because a progressively weaker portion of the

beam grazes the edge of the particle. In Section 3 below

we demonstrate that the large-amplitude interference

structure for wo/a << 1 results from the interference of

the transmitted fieldwith the compensating field.

Z.E

Z.84

Z.el

2

2.1

_2.S5

2

,, 1.SS

$1ze P*r_Jr

(a)

$izm Par_um, tar

3-

(b)
Fig. 2. Extinction efficiency of Eq. (19) as a function of the particle size parameter for (a) kw0 - 104, (b) hwo - 500, (c) kwo - 100,
and (d) hwo - 50, corresponding to wo/a " 20.0, 1.0. 0,2. and 0.1, respectively.
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1 I

1 10 100

wo/i

Extinction efficiency of Eq. (19) as a function of the
half-width of the beam divided by the particle radius for a beam

wavelength of A ,- 0.6328 _m, a particle radius of a ffi 50/_m,
and a refractive index of n - 1.333.

Fig. 4. Scattering of a narrow beam by a spherical particle.
The region B to the right of the particle and extending to the far
zone denotes the region where the beam has been removed by the
particle and replaced by the transmitted and reflected waves.

3. COMPENSATING FIELD IN

GAUSSIAN-BEAM SCATrERING

Figure 4 illustrates the interaction of a narrow beam with

a large particle. The particle blocks offmost of the beam,

preventing its continued propagation to z _ "_. Again the

term block off means that the beam behind the particle

has been removed and replaced by the transmitted and

reflected waves. On the other hand, the decomposition

of the total fields in Eqs. (9) contains Eb,m and Bb,,_,

which in fact are not present behind the particle. Thus

E,c_tt_r_dand B_,atm_ in the near-forward directionand in

both the near zone and the far zone must be of the form

of Eqs. (11) so that the compensating fieldcan cancel the

beam fieldand thereby ensure the beam's absence behind

the particle, is

The compensating field is easily identified in numerical

computations of the far-zone scattered intensity. Con-

sider a focused on-axis Gaussian beam with Wo = 10 #m

and A = 0.6204 #m incident upon a spherical water drop-

let with a = 50/zm and n = 1.333. This wavelength is

equivalent to the size parameter x - 506.38 and corre-

sponds to the first maximum of the extinction efficiency

graph of Fig. 2(c), where e, xt _ 2.734. The far-zone scat-

Vol.12,No. 5/May 1995/J.Opt.Soc.Am. A 933

tered intensity

l_tt,_._(O, _)z2, ffi lira Re(E*_t_,d x B_t_red) (22)

is graphed in Fig. 5(a) for -180" < 0 -< 180" and _b ffi

90". The scattering is dominated in the forward hemi-

sphere by transmission and in the backward hemisphere

by specular reflection and transmission following one in-
ternal reflection, n Since wo/a << I, diffraction in the

near-forward direction is minimal. In Fig. 5(a) there is
a large peak at -1.5" -< 0 _ 1.5" that is not observed in

experiments, z554 I claim that this peak is the intensity

corresponding to the compensating field. The inset of

Fig. 5(a) shows the scattered intensity for 0" -< 0 -< 5", il-

lustrating the constructive interference between the com-
pensating field (C) and the transmitted field (T) for A =

0.6204 _m. Since the scattered intensity for -5" < 8 <

5" is orders of magnitude larger than at any other scatter-

ing angle, integrating over this constructive interference

produces the increased extinction efficiency e,xt ffi 2.734

shown in Fig. 2(c).

Similarly, the far-zone scattered intensity for A =

0.6261 /zm is shown in Fig. 5(b). This wavelength is

equivalent to x ffi 501.77 and corresponds to the first

minimum of the extinction efficiency graph of Fig. 2(c),

where eex_ ffi 1.271. The inset of Fig. 5(b) illustrates

the destructive interference between the compensating

field (C) and the transmitted field (T) for A ffi 0.6261/_m.

Integrating over this destructive interference produces

the decreased extinction efficiency of e,_t ffi 1.271. A de-

tailed physical model of the oscillations in the extinction

efficiency as a function of size parameter for wo/a << i

based on compensating field-transmission field interfer-
ence will be given elsewhere.

As interesting as these large-amplitude oscillations in

eext for wo/a << 1 appear to be, they are not observable.

Figures 5(c) and 5(d) graph the far-zone intensity associ-

ated with the total field exterior to the particle, 25

It_l(O, _)'_, ffi lira Re(E_o_l x Bto,.j), (23)
e---z

for -180" -<0 <- 180" and @ --90" for A = 0.6204 _m and

A = 0.6261 _m, respectively. Figures 5(c) and 5(d) are

identicalto Figs.5(a)and 5(b)except that the beam fields

have canceled the compensating portion of the scattered

fieldsand have eliminated the spurious peak in Figs. 5(a)

and 5(b). This cancellation verifiesmy earlierclaim of

having properly identifiedthe compensating fieldpeak in

Figs. 5(a) and 5(b). It also affects the physical meaning

of the extinction efficiency. Since the large-amplitude in-

terference structure in _txt was produced by the interfer-

ence between the compensating field and the transmitted

field and since only the total field is observed in experi-

ments, the compensating field-transmission field inter-

ference is not observable. If another efficiency based on

the total field were to be constructed, the cancellation of

the beam by the compensating field would prevent the

large-amplitude interference structure in the other effi-

ciency from occurring.

The compensating term in the scattered field in the

near-forward directionfor wo/a <_ I can also be demon-

strafed analytically. For small 8 the angular functions

of Eqs. (5) are approximated by2s

,rt(O) _ rl(0)_ l(l + 1____._}Jo[(/+ 1/2)0]. (24)
2



934 J. Opt. Soc. Am. A/Vol. 12, No. 5/May 1995 James _ Lock

188

185

104

i le 2

dz

m s

Scat_cer Ing J_g le

(a)

m

,.' ::

101

_3

-18_ -140 -18e -61 -28 28 SO le6 14s 198

_--ttar I.u _io

(¢)

ZS ms

S I I t 41 , " .
1N 110 I Z 3 • S

Isl

_3

_a_._r iug _le

(b)

8

IB s

18 3

181

_3

A ":t T . .

Sc, t'l:'cm"f_II _la

(d)

Fig. 5. Scattered intensity as a function of the scattering angle 8 for _b = 90" for a beam of half-width wo - I0 _m and wavelength

(a) A = 0.6261/_m and (b) A = 0.6204/zm incident upon a spherical particleof radius a - 50 _m and refractiveindex n - 1.333. The

insets in (a) and (b) show the intensity for 0° < 8 < 5". The region C is dominated by the compensating field,and the region T is

dominated by the transmitted field. Also shown is the totalintensity as a function of the scattering angle e for _b - 90" and the

same beam and particle parameters for (c) A - 0.6261/_m and (d) A - 0.6204 _m. The compensating fieldpeak evident in (a) and

(b) is now absent because of its cancellation by the beam field. The insets in (c) and (d) again show the intensity for 0 ° < 8 < 5 °,

where transmission is the largest contribution to the total intensity.

The partial-waveexpansion forthe beam electricfieldin
the far-zonelimitr --= then becomes

On the otherhand, thescatteredelectricfieldofEqs. (10)

under the same assumptionsofsmall8 and r-- = is

Sbemm _

rage 0

fly.
exp(ikr)_= __ (l + 1/2)gJo[(l + 1/2)e],kr

l-I

(25)

/Eo lm=

E___t_ : _ exp(ikr),',, __ (l + 1/2)g_(a_ + b_)

x Jo[(/+ 1/2)8], (29)

where we have used

lim_j_(kr): -_r sin kr-

a, _ (cos_)a, - (sin_)a_

(26)

(27)

where

_m h_"(kr)= (-i)t+_ exp(ikr), (30)
,--4 kr

l_ - 2 + ]ca + 4.3(ka) _ . (31)

for 8 - 0". Converting the sum over partial waves to
an integral over an associated impact parameter u in an
approximate way and substituting relations (8), we then
obtainr_s

f0 _
-lEo exp(ikr)_ udu exp(-s2u2)Jo(u_)

Eb.=- k--7-

-lEo exp(ikr)fi_1
= k--_ _ exp(-O_/4s_). (28)

In the large-particlelimitka >> 1 Eq. (31)becomes ap-

proximately

lmffi " ka. (32)

We now show that,for Gaussian-beam scattering,the

compensatingfieldofEqs.(11)iscontainedinthe portion

ofthe partial-wavescatteringamplitudes at and b_ that

one usuallyassociateswithdiffraction.The Debye-series

_=_
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expansion of the plane-wave Mie theory partial-wave scat-

tering amplitudes is_J

b, = 7 1 - RF - T_'[R{')'-_T, L2 , (33)
p-I

where the first term (1) denotes diffraction, the second

term (-R_) denotes specular reflection, and the third

term [-T2'(R:')p-'T/2] denotes transmission following

p - I internal reflections. The diffractedportion of the

scattered fieldis then

Ediff iEo ka
_,t_,_d " _ exp(ikr)?_, __ (l + 1/2)gtJo[(l + 1/2)8].

t-I

(34)

Again converting the sum over partial waves to an inte-

gral over an associated impact parameter u, we obtain

Ediff i Eo f o_°_¢,,,md _ -_r exp(ikr)fz_ udu exp(-s2u2)Jo(uS),

(35)

where 3o--_2

general present at a given point in space, they are distin-

guishable because the wave fronts of the outgoing beam

are fiatand itsamplitude is constant, whereas the wave

frontsof the scattered wave are spherical and its ampli-

tude fallsas 1/r (seeFig. 1). For a narrow beam incident

upon a large particlewith wo/a << 1 the beam and the

scattered parts are not individually observable, since the

particle has removed the beam in the near-forward di-

rection and replaced itby the transmitted and reflected

waves. The removal of the beam is not evidenced in ei-

ther E_ or E_t_r_d taken individuallybut is seen only

when they are added together to form Etot_l. In experi-

ments, however, only the total field is observed. The

extinction efficiencyexhibits interference between the

compensating and transmitted portions of the scat-

tored fieldthat cannot be observed because of the beam

field-compensating fieldcancellation.

4. ALTERNATIVE DECOMPOSITION
OF THE TOTAL FIELD

Since the spherical Bessel function jt(kr) in Eqs. (4) may

be written as

f0 _a
udu exp(-s2u2)Jo(uS)=

1 __ (2a2 _n J_(kaS)
_s2 exp(-a2/w°2) n-t x _ ] (kaS)----------_ , wo >- a

1 1 -wo

_s 2 exp(-O2/4s 2) - _s 2 exp(-a2/wo 2) _ (kaS)nJ_(kaS), Wo <- a

(36)

For a wide beam incident upon a small particle with

wo/a >> 1 the diffracted electric field is approximately

Ediff lEo Jl (kaS )
_" _r exp(ihr)_t exp(-a2/wo2)(ka)2--_ •_att_r_d

(37)

This is the usual state of affairs in plane-wave Mie

theory. But for w0 << a a comparison of relation (28)

with relation (35) and Eq. (36) leads us to identify the

firstterm in the second line of Eq. (36) substituted into

relation (35) as the compensating field. After the can-

ceUation of the compensating fieldand the beam fieldthe

remaining part of Edi_t_, given by

Ediff. remamder -iEo exp(ikr)f_, 1,c,tto,_(t :" kr _s 2 exp(-a2/w°2)

x Jo(kaS), (38)

describes the weak diffraction produced by the tail of the

beam grazing the edge of the particle. A qualitative and

intuitive derivation of relation (38) is given in Appendix A

below.

It is now clear what extinction in Gaussian-beam scat-

tering describes and why the extinction efficiency of

Eq. (19) behaves in a counterintuitive way for wo/a < I.

Extinction isbased on the decomposition ofthe totalfields

exterior to the particleinto the sum of a beam part and a

scattered part as in Eqs. (9) and on the implicitassump-,

tion that each part individually is observable. For a

wide beam incident upon a small particlewith wo/a >> I

this is indeed the case. Although both the undeflected

portion of the original beam and the scattered wave are in

jt(kr) = l/2hlt"(kr) _" 1/ahlt2l(kr), (39)

where hltl_(kr) describes radially outgoing waves and

h_12_(kr) describes radially incoming waves, _ by substi-

tuting Eq. (39) into Eqs. (4) we may decompose the total

field into the sum of an incoming part and an outgoing

part,

Etotal = Eoutgoing d- Eincommg,

Btom! ffi Soutgomg ...r Bincommg. (40)

The fields E_i_z and Bo_tg_i_z contain all the h'tX*{kr)

terms, and the fields E,._g and Bi_i_g contain all

the h_2_(kr) terms. The partial-wave expansion of the

outgoing fields is identical to Eqs. (10) except that at and

bt are replaced by

At = at - 1/2, Bt "= b_ - 1/2, (41)

respectively. Similarly, the partial-wave expansion of

the incoming fields is identical to Eqs. (4) except that

jt(]er) is replaced by _/_h't2_(kr).

In a number of respects the incoming and outgoing

fields have a pleasing physical interpretation. First, the

Debye-series expansion of the incoming and outgoing

partial-wave amplitudes is sensible. For the incoming

fields, using a shorthand notation, we have

t- I l-ka+ 1

In the large-particle limit relation (42) reflects the fact

that the incoming beam consists of geometrical light rays
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that willstrike the particle(firstterm) and rays that will

miss it(second term). For the outgoing fieldswe have

Soutgo=w :: + + - • (43)
1-I _l l-Ila*l bl l-ka*l

Relation (43) reflectsthe factthat the outgoing radiation

consists of geometrical rays that have struck the particle

and have been either reflectedor transmitted following

p - 1 internal reflections(firstterm), rays that were

incident at the edge of the particle and participated in

tunneling reflectionor tunneling transmission following

p - 1 internal reflections8"_ (second term), and diffracted

rays plus the outgoing portion of the original beam that

missed the particle (third term). In the large-particle

limit the third term in relation (43)may be written as

Ethird _r= ffi exp(ikr)_: _ (l + 1/2)g:(-1)
iE_...2o

outgoing kr
/ -lmz

x Jo[(/+ 1/2)0]

" -iE-"'-_°exp(i/cr)_'f,2uduexp(-s2u2)J°(uO)kr

-iE------2°exp(ikr)_,[ f " udu exp(- s2u 2)
kr LJo

;/" ]x Jo(uO) - udu exp(-s2u2)Jo(uO) .

(44)

For wo/a >> 1 the first term of the l_._t two lines of

Eq. (44) is the undeflected portion of the beam [see rela-

tion (28)], and the second term is the circular-aperture

Fraunhofer diffraction field of relation (3'/). For wo/a <

< i the lasttwo linesofEq. (44)contains only the remain-

der diffractionterm of relation(38). The outgoing fields

in relation (43)are thus freeof the unobservable compen-

sating term that was a necessary part of the scattered

fieldsfor wo/a < I in the decomposition of Eqs. (9).

The decomposition of the total fieldsinto a sum of

incoming and outgoing waves also provides a sensible

description of conservation of energy for scattering by a

single particle. Let us define the incoming and outgoing

cross sections as

:: --C f

4t

x Re(E___.t x B___. c)

= k-_ (l + 1/2)lgtl 2 , (45)

C fo 'r fo 2rCo.tfo.,t - _o 2 sin 0d0 dO

× Re(E_t_m c × Boat_mt)

- k2 (21 + 1)lgtl2OAtl 2 + ]Bt_2), (46)

respectively. Since the angle-integrated cross-term

Poynting vector vanishes, i.e.,

f/ /o"c_£_ sin 0d0 d_#
Eo 2

x Re(E_mmK x Bo_tg,_l + E_.tjomt x Bm_mc) - 0, (47)

the incoming, outgoing, and absorption cross sections are
related by

C,_om_g = Co,ttomc + C,b,o_tio, • (48)

The outgoing efficiency is defined as

C°utf°mg ,

eo.tfomg= Cm_d,= (49)

where Cm_d,_ is given by Eqs. (18) and (20).

The outgoing efficiency of Eq. (49) has a problemati-

cal behavior for wo >> a. But a redefinition of eo,tgomz

along the lines suggested more than 40 years ago by

Brillouin _ removes the problem. The problematical be-

havior of eo,_offi_ may be easily demonstrated by the

following example. Equation (49) was calculated for a fo-

cused on-axis Gaassian beam with A ffi 0.6328 #m and

0.I < wo/a < 10 incident upon a spherical water droplet

with a = 50/_m and n = 1.333. The results are shown

in Fig. 6. For tUo/a < I the outgoing efficiencyis 1.0,

being due almost entirelyto geometrical rays striking the

particlesurface and deflectedby it. Diffraction is negli-

gible. For tuo/a:, I the beam at the edge of the particle

is stronger,diffractionbecomes correspondingly stronger,

and eo=t_o==increases. This is sensible behavior. But

for wo/a > I the outgoing efficiency increases beyond

2.0,in disagreement with one's intuitiveexpectation of a

ma_mum value of approximately 2.0.

The problem is that for wo/a > I, in the near-forward

direction,the outgoing fieldsof relation (43) contain not

only the diffracted,reflected,and transmitted fields but

alsothe portion of the originalbeam that missed the par-

ticleand now is propagating undeflected toward z _ = as

in Fig. I. Ifwe wish to describe the efficiencyof the in-

teractionof the beam with the particle,this undeflected

fieldmust be subtracted from Soutgomg. I propose to do

this in the following way. The far-zone outgoing inten-

sityis constructed from the outgoing fieldsaccording to

leutComz(O, _)t_ : S_(S:utgom ¢ × Bo_tgom¢). (50)

Since the two largest contributions to the outgoing in-

tensity in the near-forward direction for wo/a >> 1 are

3.O

2.0

I.0

O,

0.I

I

1

w° l_

10

Fig.6. Outgoing efficiencyof Eq. (49) as a function of the
half.widthofthebeam dividedby the particleradius. The beam
and particleparametersare the same as thosein Fig.3.

=
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wo_

(b)
Fig.7. (a)Angleofthefirstminimum ofthe outgoingintensity
ofEq.(50)as a functionofthehalf-widthofthe beam divided
by the particleradius(solidcurve).The beam and particle
parametersarethesame asthoseinFig.3. The dashedcurve
istheapproximationofrelation(53).(b)Interactionefficiency
ofEq.(52)asa functionofthehalf-widthofthebeam dividedby
theparticleradius.The beam and particleparametersarethe
same asthoseinFig.3.

the undeflected original beam of relation (28) and the dif-
fracted wave of relation (37), the first relative minimum

oflo_zo_zas a functionofO,which we term 0=m, results
from the destructiveinterferenceofthe undeflectedbeam

with the diffractedfieldand isnearlyindependentof¢.

Following Ref.16, we claim that any scatteringcontri-
bution to the outgoing intensityin the angular region

0" < 0 < 0== and 0 < O < 2_r cannot be disentangled

from the undeflectedoriginalbeam, sincethey beth de-

creaseas 1/r. On the otherhand, the outgoingintensity
for 0mia_ 0 _ 180" iseasilyrecognizedas being due to

scattering,sinceitliesbeyond theangularintervalwithin
which the undefiectedbeam isconfined. When the out-

going intensityisintegratedover thisrange of0 and _,
the resultrepresentsthe energy lostfrom the forward-

propagatingand spreadingGaussian beam duringitsin-

teractionwith the particle.We definethis interaction

crosssectionand efficiencyto be

C=t,,=_io. = Eo 2 sin OdO d_blo._=o==(O,4'),

(51)

C=to,.ction (52)
_interaction =ffi Cincide nt

This subtraction procedure for the undeflected field was
numerically tested in the following way. The outgoing
intensity of Eq. (50) was computed for a focused on-axis

Gaussian beam with A = 0.6328/_m and 0.1 _<wo/a <-

I00 incidentupon a sphericalwater dropletwith a =

50 pm and n = 1.333. The angle 8== was numerically

determinedand isshown asa functionofwo/a inFig.7(a).

For wo/a >> 1,0== may be approximatelyobtained by
locatingthe angleofmaximal destructiveinterferenceof

the undeflectedoriginalbeam of relation(28) with the

diffractedfieldofrelation(37). The result,

0== ==_ L- L _ exp(-a2/wo2) , (53)

isshown as the dashedcurveinFig.7(a). As diffraction

weakens forwo/a < 1,the value of _min is determined

by the interferencebetween the originalbeam and the

transmittedfield,which isthenext-largestcontributionto

Em_ z. For wo/a << I,8m= decreasestozeroatthe size
parameters forwhich the beam fieldand the transmitted
fielddestructivelyinterfereasinFig.7(a). On the other

hand, atthe sizeparametersforwhich the beam fieldand

the transmitted field constructively interfere for wo/a <<
1, the value of #== levels out at a small nonzero value.

The interaction efficiency of Eq. (52) was computed
with a 7200-point grid for the 8 integration in C===ra¢=io,.
The results are shown in Fig. 7(b). For wo/a >> 1
the interaction efficiency is approximately 2.0. Of this
amount, approximately 1.0 is due to scattering and ap-
proximately 1.0 is due to diffraction. For wo/a _ 1
diffraction weakens, and the interaction efficiency corre-
spondingly decreases. For wo/a << 1 virtually no diffrac-
tion occurs, and the interaction efficiency is due almost

entirely to scattering. Similar results occur for other
wavelengths and particle sizes and are consistent with
our intuition about diffraction for both wide and narrow

beams. I claim that, for Gaussian-beam scattering, the

interaction cross section of Eq. (51) represents the best
measure of the energy lost by the incident beam resulting
from its interaction with a single spherical particle.

This entire development was for an on-axis Gaussian
beam. The extinction cross section for an off-axis Gauss-
Jan beam has been derived in Ref. 35. Although we have
not numerically analyzed this case, the extinction effi-

ciency presumably alsobehavesina counterintuitiveway

for wo/a < i,and a correspondinginteractionefficiency

may alsobe defined.

APPENDIX A

Consider diffractionofan incidentbeam by an aperture

in the Fresnel-Kirchhoffapproximation36

-ik /Ediff(z) == _ d2r'E=cid..t(r')A(r')exp(-ikfz. • r'),

(A1)

where r is the vector from the center of the aperture plane
to the position of the observer a distance z away, r' is the
vector from the center of the aperture plane to any point
in the aperture, E=,id, n_{r') is the incident electric field
in the aperture plane, and the aperture function A(r') is
defined by

I insidethe aperture (A2)A(r')= 0 outsidethe aperture"
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Let the incident beam be a focused on-axis Gaussian beam

whose electric field in the aperture plane is

Eincid, at(r') =' Eo exp(-r'2/wo2)fiz exp(ikz), (A3)

and let the aperture be the region exterior to a circleof

radius a. This isappropriate fordescribing diffractionby

a spherical obstacle. If the observer is at the scattering

angles (8, _b),Eq. (A1) becomes

-ikEo r'dr' d_ exp(-r'2/wo 2)
sdiff(z) 2_'z

X exp[-ikr' sin $ cos(_ - _b)]_, exp(ikz)

//= -ik_Eo _, r'dr' exp(-r'2/wo2)Jo(kr ' sin O)
Z

× exp(ikz). (A4)

The strength of the incident electric field at the edge of the

aperture is exp(-a2/wo2). It falls to 1/e of this value at

r' ffi a + At' _ a + w°---_2• (AS)
2a

The value of the last integral of Eq. (A4) is then crudely

approximated by

f r'dr'exp(-r'2/wo2)Jo(kr _ sm 8)

(_a) P(-a2/w°2)J°(ka ex aS), (A6)

-iEo _., , k2Wo 2
Edit(z) =" _-z exp(_z_--'_- exp(-a2/wo2)Jo(kaS)fz_,

(A7)

in agreement with relation(38).
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