Low-Temperature Rate Coefficients of C$_2$H with CH$_4$ and CD$_4$ from 154 to 359 K

Brian J. Opansky and Stephen R. Leone*

JILA, National Institute of Standards and Technology and University of Colorado, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440

Received: November 6, 1995; In Final Form: January 2, 1996

Rate coefficients for the reaction C$_2$H + CH$_4$ → C$_2$H$_2$ + CH$_3$ and C$_2$H + CD$_4$ → C$_2$HD + CD$_3$ are measured over the temperature range 154–359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C$_2$H$_2$ in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C$_2$H (X2Σ$^+$ (0,0,0)) in absorption. The rate coefficients for the reactions of C$_2$H with CH$_4$ and CD$_4$ both show a positive temperature dependence over the range 154–359 K, which can be expressed as $k_{CH_4} = (1.2 \pm 0.1) \times 10^{-11} \exp((-491 \pm 12)/T)$ and $k_{CD_4} = (8.7 \pm 1.8) \times 10^{-12} \exp((-650 \pm 61)/T)$ cm3 molecule$^{-1}$ s$^{-1}$, respectively. The reaction of C$_2$H + CH$_4$ exhibits a significant kinetic isotope effect at 300 K of $k_{CH_4}/k_{CD_4} = 2.5 \pm 0.2$. Temperature dependent rate constants for C$_2$H + C$_2$H$_2$ were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as $k_{C_2H_2} = 8.6 \times 10^{-10} T^{1.8} \exp((474 \pm 90)/T)$ cm3 molecule$^{-1}$ s$^{-1}$.

Introduction

This work is part of an ongoing project to measure, for the first time, low-temperature rate constants of the C$_2$H radical with various hydrocarbons present in Titan's atmosphere. In planetary atmospheres, such as Titan's, the ethynyl radical can catalyze the dissociation of CH$_4$ to form methyl radicals, CH$_3$.\(^1\)\(^2\)

\[
\text{C}_2\text{H}_2 + \text{hv} \rightarrow \text{C}_2\text{H} + \text{H} \tag{1}
\]

\[
\text{C}_2\text{H} + \text{CH}_4 \rightarrow \text{C}_2\text{H}_2 + \text{CH}_3 \tag{2}
\]

net \[\text{CH}_4 \rightarrow \text{CH}_3 + \text{H} \tag{3} \]

The recombination of two methyl radicals produces ethane, C$_2$H$_6$, which can be transported downward to the moon's surface. Hence, the reaction C$_2$H + CH$_4$ is of central importance in photochemical models of Titan to understand why ethane is so abundant in Titan's atmosphere.\(^1\)\(^2\)

This is the first low-temperature study of the reactions

\[
\text{C}_2\text{H} + \text{CH}_4(\text{CD}_4) \rightarrow \text{C}_2\text{H}_2(\text{C}_2\text{HD}) + \text{CH}_3(\text{CD}_3) \tag{4}
\]

over the temperature range 154–359 K. A complete study of the reaction C$_2$H + C$_2$H$_2$ from 170 to 350 K, another critical reaction in Titan's atmosphere, was already reported by this laboratory.\(^3\)\(^4\) here, these measurements have also been extended to 143–359 K. Low-temperature rate constants of reaction 4 will help decide which reaction schemes for ethane production are consistent with data from Voyager IRIS (infrared interferometer spectrometer) results.\(^4\)\(^5\) In addition, NASA plans to launch a mission called Cassini, which is intended to study Saturn and its moon Titan some time in 1996. The rate coefficients measured in this experiment will be used to model Titan's atmosphere to compare calculated gas densities with measured concentrations from the Cassini mission. In addition,
In this study we observe reactions from the ground state of C2H (X^2Σ^+ (0,0,0)) directly. For accurate measurements it is necessary that the electronic and vibrationally excited states of C2H be fully quenched. Work done by Glass et al. under similar conditions reports that relaxation of the C2H (X(0,0,1)) state occurs in approximately 1 μs. Therefore, if sufficient time has elapsed, complete vibrational and electronic relaxation should have occurred before any ground-state measurements are made. The data is fit only beginning with times a factor of 3 longer than the rise time to ensure complete relaxation of upper vibrational states of C2H. In previous studies SF6 was used as a vibrational quencher. Temperature dependent measurements with and without SF6 were taken, and the measured rate constants were found to be equal. Therefore, SF6 was not used for this study.

Prior to measuring rate coefficients for the reaction C2H + CH4 (CD4), an accurate temperature dependence investigation of the rate constant for

$$\text{C}_2\text{H} + \text{C}_2\text{H}_2 \rightarrow \text{C}_2\text{H}_2 + \text{H}$$

had to be completed. Earlier measurements could only be made down to 170 K, and here it was desired to extend the results to at least 143 K. The experiments were done under pseudo-first-order conditions where [C2H2] ≫ [C2H] by a factor of 500-1500. The rate equation for reaction 5 integrates to

$$[\text{C}_2\text{H}] = [\text{C}_2\text{H}_2]_0 \exp(-k_{\text{obs}} t)$$

where

$$k_{\text{obs}} = k_{\text{C}_2\text{H}_2}[\text{C}_2\text{H}]$$

The observed rate coefficients, k_{\text{obs}} are calculated by fitting the observed decay traces to a single-exponential decay plus a constant, eq 8, to fit the zero level of the base line

$$y = A \exp(-k_{\text{obs}} t) + \text{constant}$$
where A is the pre-exponential factor, t is the time, and k_{obs} is the observed rate coefficient; see Figure 2. The fits for k_{obs} are then plotted against their respective [C$_2$H$_2$] concentrations, and the gradient is k_{C_2H}; see Figure 3. The uncertainty in k_{C_2H} is calculated by combining the accumulated uncertainties in fitting k_{obs}, measuring [C$_2$H$_2$], and measuring the temperature. This leads to relative errors in k_{C_2H} of 10–13%, depending on the temperature.

Table 1 is a summary of the rate constants measured for C$_2$H + C$_2$H$_2$ down to 143 K. The data from ref 3 and the new data were taken at 155 K, and k_{C_2H} for this plot is $(1.6 \pm 0.2) \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$.

![Figure 3. Plot of observed C$_2$H removal coefficient k_{obs} versus C$_2$H$_2$ concentration. These data were taken at 155 K, and k_{C_2H} for this plot is $(1.6 \pm 0.2) \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$.

Figure 4. Arrhenius plot of the experimental data for C$_2$H + C$_2$H$_2$: (●) this work; (○) data taken from ref 2. The fit to all the data is given by $8.6 \times 10^{-16} \exp((-491/7)T)$ cm3 molecule$^{-1}$ s$^{-1}$; see Figure 4.

All experiments involving methane were performed under pseudo-first-order conditions in which [CH$_4$], [CD$_4$], and [C$_2$H$_2$] ≫ [C$_2$H]. The rate of change of [C$_2$H] can be expressed as

$$\frac{d[C_2H]}{dt} = -[C_2H](k_{CX_4}[CX_4] + k_{C_2H}(2C_2H))$$ \hspace{1cm} (9)

where $CX_4 = CH_4$ or CD$_4$. After integration

$$[C_2H]_t = [C_2H]_0 \exp(-k_{obs}t)$$ \hspace{1cm} (6')

$$k_{obs} = k_{CX_4}[CX_4] + k_{C_2H}(2C_2H)$$ \hspace{1cm} (10)

$$k_{obs} - k_{C_2H}(2C_2H) = k_{CX_4}[CX_4] = k'_{CX_4}$$ \hspace{1cm} (11)

The observed decay rates, k_{obs}, are obtained by fitting the observed traces to eq 8. They are then corrected for the contribution of the C$_2$H$_2$ precursor reacting with C$_2$H using both previous measurements and new measurements down to 143 K, as noted in eq 11. Since C$_2$H reacts 100 times faster with C$_2$H$_2$ than it does with CX$_4$, the contribution to k_{obs} from C$_2$H$_2$ + C$_2$H is kept below 40%. The values of k'_{CX_4} are plotted against their respective CX$_4$ concentrations, and a linear least squares fit is used to determine k_{CX_4}; see Figure 5. The uncertainty in k_{CX_4} is calculated by combining the accumulated uncertainties in the corrected decay fits, which include errors in k_{C_2H}, with the uncertainties in temperature and the measurement of [CX$_4$]. The error in k_{CX_4} is typically 10–20%.

Table 1: Summary of Rate Constants for C$_2$H + C$_2$H$_2$ from 143 to 359 K

<table>
<thead>
<tr>
<th>temp (K)</th>
<th>k_{C_2H} (cm3 molecule$^{-1}$ s$^{-1}$)</th>
<th>temp (K)</th>
<th>k_{C_2H} (cm3 molecule$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>359a</td>
<td>$(1.3 \pm 0.1) \times 10^{-10}$</td>
<td>350a</td>
<td>$(1.3 \pm 0.2) \times 10^{-10}$</td>
</tr>
<tr>
<td>350a</td>
<td>$(1.4 \pm 0.2) \times 10^{-10}$</td>
<td>290a</td>
<td>$(1.3 \pm 0.2) \times 10^{-10}$</td>
</tr>
<tr>
<td>295a</td>
<td>$(1.2 \pm 0.2) \times 10^{-10}$</td>
<td>213a</td>
<td>$(1.2 \pm 0.2) \times 10^{-10}$</td>
</tr>
<tr>
<td>233a</td>
<td>$(1.3 \pm 0.2) \times 10^{-10}$</td>
<td>123a</td>
<td>$(1.4 \pm 0.2) \times 10^{-10}$</td>
</tr>
</tbody>
</table>

a Measurements in this work. b Measurements made in a previous study.

![Figure 4. Arrhenius plot of the experimental data for C$_2$H + C$_2$H$_2$: (●) this work; (○) data taken from ref 2. The fit to all the data is given by $8.6 \times 10^{-16} \exp((-491/7)T)$ cm3 molecule$^{-1}$ s$^{-1}$.

Discussion

Previous measurements of the reaction C$_2$H + CH$_4$ were performed at room temperature and are summarized in Tab 3. Rendlund et al. monitored the CH (A-X) product chemiluminescence from the C$_2$H + O$_2$ reaction with and without CH$_4$. They measured a room temperature value of $k_{CH_4} = (4.8 \pm 1.0) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. Okabe photolyzed C$_2$H$_4$ at 14 nm and determined a ratio of $k_{CH_4}/k_{C_2H_2} = 0.032 \pm 0.001$. Using the present value of k_{C_2H} at room temperature of $(1.3 \pm 0.2) \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$, one obtains a value for k_{C_2H} of 4.2×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$. Lauffer photolyzed...
Low-Temperature Rate Coefficients of C\textsubscript{2}H with CH\textsubscript{4} and CD\textsubscript{4}

Figure 5. Plot of k_{CX} versus [CX\textsubscript{4}] at 359 K: (O) C\textsubscript{2}H + CH\textsubscript{4}; (O) C\textsubscript{2}H + CD\textsubscript{4}. The rate constants k_{CH} and k_{CD} are given by $(3.1 \pm 0.4) \times 10^{-12}$ and $(1.5 \pm 0.2) \times 10^{-12}$ cm3 molecule-1 s-1, respectively.

Figure 6. Arrhenius plot of C\textsubscript{2}H + CX\textsubscript{4}: (O) C\textsubscript{2}H + CH\textsubscript{4}; (O) C\textsubscript{2}H + CD\textsubscript{4}. The Arrhenius fits for k_{CH} and k_{CD} are given by $(1.2 \pm 0.1) \times 10^{-11} \exp[(-491 \pm 12)/T]$ and $(8.7 \pm 1.8) \times 10^{-12} \exp[(-650 \pm 61)/T]$ cm3 molecule-1 s-1, respectively.

TABLE 2: Summary of Rate Constants for C\textsubscript{2}H + CH\textsubscript{4} (CD\textsubscript{4}) from 154 to 359 K

<table>
<thead>
<tr>
<th>temp (K)</th>
<th>k_{CH} (cm3 molecule-1 s-1)</th>
<th>temp (K)</th>
<th>k_{CD} (cm3 molecule-1 s-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>359</td>
<td>$(3.1 \pm 0.4) \times 10^{-12}$</td>
<td>359</td>
<td>$(1.5 \pm 0.2) \times 10^{-12}$</td>
</tr>
<tr>
<td>300</td>
<td>$(2.3 \pm 0.1) \times 10^{-12}$</td>
<td>300</td>
<td>$(0.9 \pm 0.1) \times 10^{-12}$</td>
</tr>
<tr>
<td>226</td>
<td>$(1.2 \pm 0.1) \times 10^{-12}$</td>
<td>226</td>
<td>$(5.2 \pm 0.1) \times 10^{-13}$</td>
</tr>
<tr>
<td>190</td>
<td>$(8.7 \pm 0.2) \times 10^{-13}$</td>
<td>190</td>
<td>$(2.8 \pm 0.6) \times 10^{-13}$</td>
</tr>
<tr>
<td>157</td>
<td>$(5.2 \pm 0.6) \times 10^{-13}$</td>
<td>157</td>
<td>$(4.7 \pm 1.0) \times 10^{-13}$</td>
</tr>
<tr>
<td>154</td>
<td>$(5.5 \pm 1.0) \times 10^{-13}$</td>
<td>154</td>
<td>$(4.7 \pm 1.0) \times 10^{-13}$</td>
</tr>
</tbody>
</table>

CF\textsubscript{3}C\textsubscript{2}H in the presence of CH\textsubscript{4}, and the product [C\textsubscript{3}H\textsubscript{2}] was monitored by absorption at 152 nm over time.13 Lauer obtained a $k_{CH} = (1.2 \pm 0.2) \times 10^{-12}$ cm3 molecule-1 s-1. Finally, Lander et al. used a diode laser to measure the transient depletion of C\textsubscript{2}H (X $2\Sigma^+$ (0,0,0)) in absorption.14 They measured a $k_{CH} = (3.0 \pm 0.3) \times 10^{-12}$ cm3 molecule-1 s-1 at 300 K.

The present rate coefficient measurements for C\textsubscript{2}H + CH\textsubscript{4} at 300 K and from 154 to 359 K are $k_{CH} = (2.3 \pm 0.1) \times 10^{-12}$ and $k_{CH} = (1.2 \pm 0.1) \times 10^{-12}$ exp[(−491 ± 12)/T] cm3 molecule-1 s-1, respectively. From the Arrhenius fit, the energy of activation for C\textsubscript{2}H + CH\textsubscript{4} is equal to 4.3 ± 0.1 kJ mol-1. Rate coefficient measurements for C\textsubscript{2}H + CD\textsubscript{4} at 300 K and from 227 to 359 K result in $k_{CD} = (9.0 \pm 0.1) \times 10^{-12}$ and $k_{CD} = (8.7 \pm 1.8) \times 10^{-12}$ exp[(−650 ± 61)/T] cm3 molecule-1 s-1, respectively. The energy of activation for C\textsubscript{2}H + CD\textsubscript{4} from 227 to 359 K is equal to 5.4 ± 0.5 kJ mol-1. No pressure dependence was found for k_{CH} at 300 K over the experimental range (0.4-2.4) × 1018 cm-3. Over this number density $k_{CH} = (2.4 \pm 0.2) \times 10^{-12}$ cm3 molecules-1 s-1. Both of these reactions, C\textsubscript{2}H + CH\textsubscript{4} (CD\textsubscript{4}), show a positive temperature dependence, consistent with reactions involving a hydrogen abstraction as the rate-determining step and a positive activation energy.

Our results are most consistent with those of Lander et al. Both experiments monitor the direct disappearance of C\textsubscript{2}H. The difference in k_{CH} at 300 K between this work and the work by Lander et al. can be attributed to experimental error in determining number density and error in fitting the observed signal. In the experiment by Renlund et al. the chemiluminescence of CH (A $^2\Pi$) produced by the reaction C\textsubscript{2}H + O\textsubscript{2} was used to monitor [C\textsubscript{2}H]. They were able to measure k_{CH} by keeping the concentration of O\textsubscript{2} constant while varying the concentration of C\textsubscript{2}H. Renlund et al. measured a value for k_{CH} at 300 K that is a factor of 2 greater than the rate constant reported in this work. They reported in a later publication that the reason for the larger k_{CH} was due to vibrationally and electronically excited C\textsubscript{2}H producing the CH (A $^2\Pi$) emission.15 Okabe measured k_{CH}/k_{CD} to be 0.032 ± 0.0018. This leads to a value of k_{CD}, that is ~2 times faster at room temperature than the k_{CH} reported in this work when using (1.3 ± 0.2) × 10−10 cm3 molecule-1 s-1 for k_{CD}. However, Okabe’s result involved measuring ϕ_{C3H}/ϕ_{C3H}, which is the quantum yield ratio of diacetylene without (ϕ_{C3H}) and with (ϕ_{C3H}) CH\textsubscript{4} in the mixture and not a direct measurement of the reaction of C\textsubscript{2}H with CH\textsubscript{4}.

The work presented here on C\textsubscript{2}H + C\textsubscript{2}H\textsubscript{3} further supports the reasoning that C\textsubscript{2}H\textsubscript{3} is formed via an addition mechanism with no barrier to formation. The short-lived intermediate then immediately dissociates to C\textsubscript{2}H2 + H. A previous study on C\textsubscript{2}H + C\textsubscript{2}H\textsubscript{3} by this lab reported that within experimental error there was no temperature dependence over 170–350 K.3 More recent results by Van Look et al. also showed no evidence for a temperature dependence from 295 to 450 K.16 They measured rate coefficients of the reaction C\textsubscript{2}H + O\textsubscript{2} by monitoring CH\textsubscript{3}(A $^2\Delta$ → X $^2\Sigma$) chemiluminescence. The rate coefficients for C\textsubscript{2}H with C\textsubscript{2}H\textsubscript{3} were taken from the y-intercepts of their plots. An Arrhenius fit to their data is reported as $k_{C2H} = (1.3 \pm 0.2) \times 10^{-10}$ exp[(0 ± 10)/T] cm3 molecule-1 s-1. Despite previous measurements for the rate coefficients of C\textsubscript{2}H + C\textsubscript{2}H\textsubscript{3}, which show no definite temperature dependence above room temperature,15,16,17 new data presented in this study

TABLE 3: Summary of Rate Constants for C\textsubscript{2}H + CH\textsubscript{4} at Room Temperature

<table>
<thead>
<tr>
<th>ref</th>
<th>k_{CH} (cm3 molecule-1 s-1)</th>
<th>temp (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td>$(2.3 \pm 0.1) \times 10^{-12}$</td>
<td>300</td>
</tr>
<tr>
<td>Renlund11</td>
<td>$(4.8 \pm 1.0) \times 10^{-12}$</td>
<td>297</td>
</tr>
<tr>
<td>Lauer13</td>
<td>$(1.2 \pm 0.2) \times 10^{-12}$</td>
<td>297</td>
</tr>
<tr>
<td>Okabe12</td>
<td>$(4.2 \pm 10^{-12}$</td>
<td>298</td>
</tr>
<tr>
<td>Lander14</td>
<td>$(3.0 \pm 0.3) \times 10^{-12}$</td>
<td>298</td>
</tr>
</tbody>
</table>

1Recalculated using the measured ratio and the present-day C\textsubscript{2}H + C\textsubscript{2}H\textsubscript{3} rate constant (1.3 ± 0.2) × 10−10 cm3 molecule-1 s-1.
does reveal a small negative temperature dependence in the rate coefficients for C\textsubscript{3}H + C\textsubscript{2}H\textsubscript{2}.

The measured kinetic isotope effect at 300 K is $k_{\text{CH}}/k_{\text{CD}} = 2.5 \pm 0.2$. Unfortunately, no transition-state calculations have been done on this reaction to be able to compare theory with experiment. Judging by the magnitude of the isotope effect and the reaction mechanism involved, the reaction C\textsubscript{3}H + CH\textsubscript{4} (CD\textsubscript{4}) exhibits a large primary isotope effect in which the main contribution is the difference in zero-point energies between the initial states and the transition states.18-20 Hopefully this research will encourage theoretical studies of C\textsubscript{3}H + CH\textsubscript{4} (CD\textsubscript{4}) for comparison.

In addition to the kinetic isotope effect, there is the possibility for tunneling to occur in this reaction between the H (D) atom of methane and the carbon atom of the C\textsubscript{3}H radical. Unfortunately, no curvature is detected in the Arrhenius plot over 154-359 K. This does not eliminate the possibility of tunneling taking place. If the experiment could be done over a larger temperature range, the possibility of detecting curvature in the Arrhenius plot would be more favorable.

Results based on the effect of reaction 2 on photochemical models of Titan are forthcoming. There is little question that this reaction plays a key role in determining the ethane concentration on Titan, but recent experiments by Mordaunt et al.21 have uncovered a new CH\textsubscript{4} photolysis channel that will affect current photochemical models. Mordaunt et al. have shown that the direct photodissociation of CH\textsubscript{4} to CH\textsubscript{3} + H is the main source of methyl radicals in Titan’s atmosphere. Both the discovery by Mordaunt et al. and the data in this work should help to clarify the production of ethane in Titan’s atmosphere. Updated versions2 of the Yung et al1 model and more low-temperature rate coefficients of pertinent reactions are needed to determine whether a complete analysis will match forthcoming spacecraft observations.

Acknowledgment. We gratefully acknowledge the National Aeronautics and Space Administration for support of this research and the Department of Energy for additional support.

References and Notes
