GLOBAL SURVEY OF THE RELATIONSHIP BETWEEN CLOUD DROPLET SIZE AND ALBEDO USING ISCCP

Qingyuan Han1*, William B. Rossow2, Joyce Chou1 and Ronald M. Welch1

1Institute of Atmospheric Sciences
South Dakota School of Mines and Technology
2NASA Goddard Institute for Space Studies

1. INTRODUCTION

Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of cloud condensation nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992).

The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density (liquid water content, LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.

For processes which take place over a long period, as compared to the formation of ship tracks, clouds seem to adjust their optical thickness or LWP in response to droplet size changes. Both in situ measurements (Nakajima and King 1990) and satellite observations (Han et al. 1994, Nakajima and Nakajima, 1995) show that cloud optical thickness (r) or albedo (\(\alpha\)) increases with increasing droplet sizes when \(r\) is small (\(r \leq 20\)) and decreases when \(r\) is large (\(r \geq 20\)). Regional studies show that LWP changes with cloud droplet in two different ways: i.e., LWP may either decrease or increase as cloud droplet size becomes smaller (Twomey et al. 1995, Albrecht et al. 1995). Twomey et al. (1995) found that the difference in visible reflectances is negligible between polluted cloud and unpolluted stratiform clouds within 300 km west of the northern California coast, even though droplet sizes differed by a factor of two in these two clouds. They attributed this to the differences in LWP in these two cases; i.e., LWP is twice as small in polluted clouds as in unpolluted clouds. On the other hand, Albrecht et al. (1995) found a case that cloud in continental air masses was remarkably brighter than cloud in maritime cloud during the ASTEX experiment. The continental air mass cloud had a smaller droplet size (by 5 pm) but a larger liquid water content (by a factor of two). With all of these apparently contradictory results, we need to examine large-scale and long-term relationships between cloud microphysics and albedo on regional and global scales. We examine the possible indirect aerosol effect on climate in two ways. First, we check the spatial relationship between cloud droplet radii and cloud albedo in different areas where aerosol concentrations are known to differ significantly (e.g., land versus ocean, northern versus southern hemisphere) to determine if this indirect aerosol effect shows up regionally. Second, and more relevant to climate change, we explore the temporal relationship between \(r\) and cloud albedo for each 2.5°x2.5° grid box to reveal in which regions of the globe the variations of cloud albedo are correlated with changes in \(r\) consistent with the indirect aerosol effect hypothesis.

2. RESULTS

2.1 Spatial Correlation Coefficient of \(r\) and \(\alpha\)

Two different spatial correlations are examined to answer the question: do clouds become brighter when they have smaller droplet sizes? The first test is to divide the globe into 2.5°x2.5° grid boxes. For each grid box, a monthly mean \(r\) and an \(\alpha\) value are derived.
from the satellite data. The results are presented in a 2-D scatter plot to examine the relationship between \(r_e \) and \(\alpha \). Figure 1 shows a sample of these scatter plots for Jan., 1988. In general, there is little correlation between \(r_e \) and \(\alpha \). This is contrary to the behavior expected for constant LWP. However, because LWP changes dramatically between different climate zones, one may argue that within a smaller region, we may expect smaller LWP variations within the same climate zone and thus more chance to observe a negative relation between \(r_e \) and \(\alpha \).

"susceptible" to an indirect aerosol effect as proposed. Several scenarios of correlation between \(r_e \) and \(\alpha \) exist on the earth. For example, some regions (e.g., in the southern hemisphere oceans) may have relatively steady cloud LWP all year round with very small seasonal changes; thus a change of \(r_e \) would affect the cloud albedo inversely and lead to a negative correlation between \(r_e \) and \(\alpha \). However, in most regions, cloud LWP usually shows significant seasonal variations: higher in summer and lower in winter.

Figure 3 shows the global temporal correlation coefficient between cloud droplet sizes and albedo. The \(r_e \) and \(\alpha \) values are averaged over each 2.5° \(\times \) 2.5° grid box for each month. Then the correlation coefficients are derived for each grid box for the four years of data. There are both positively and negatively correlated areas on the earth. Regions showing positive correlations between \(r_e \) and \(\alpha \) are in the tropics, subtropics and northern mid-latitude oceans. For negatively correlated values of \(r_e-\alpha \), there are two different regions: southern midlatitude oceans and areas around several northern continents: eastern U.S.A, Europe, and East China. In order to better understand the cause of the \(r_e-\alpha \) relationship for these different regions, we select several typical regional areas to further investigate the behavior of temporal variations of \(r_e \) and LWP.

We have examined temporal variations of LWP and \(r_e \) for the 1) Central Pacific Ocean (LAT -20° to 20°; LON -170° to 170°); 2) Southern midlatitude ocean (LAT -50° to -20°; LON -170° to 170°); 3) East U.S.A (LAT 15° to 40°, LON -60° to -100°); 4) Europe (LAT 20° to 50°, LON -25° to 160°), and 5) east China (LAT 20° to 25°, LON 105° to 125°). For the Central Pacific Ocean area, the tropics and the Atlantic Ocean area, LWP and \(r_e \) change synchronously in the same direction with peak values in July and April. Because the rate of LWP variation is higher than that of \(r_e \), it results in a positive correlation between \(r_e \) and \(\alpha \). These are areas with little pollution; CCN number densities are low (about 60 cm\(^{-3}\), see Hoppel 1988, Penner et al. 1992). The cloud water content determined by air-sea interaction seems to regulate cloud droplet sizes, as concluded by many in situ observations (e.g., Aufm Kampe 1950). These regions do not appear to be susceptible to the indirect aerosol effect.

The Southern midlatitude ocean shows a negative correlation between \(r_e \) and \(\alpha \); that is \(r_e \) changes its pattern while LWP has peak values in April and July. The cloud droplet size reverses direction in July 1987 and April and July 1988, no longer being regulated by cloud LWP. The reason for this is not yet clear.

Other places showing negative correlations between \(r_e \) and \(\alpha \) are the Gulf of Mexico, Europe and
Fig. 2. Spatial Correlation Coefficient Between Re and Albedo (April 1987, NOAA-09)

Fig. 3. Temporal Correlation Coefficient Between Re and Albedo (1985-1988, NOAA-09)
East China. All three regions show minimum LWP values around July and maximum values around January, with the droplet size r_d changing inversely. This behavior is suggestive of the indirect aerosol effect occurring in these highly polluted locations. The rich water sources and higher freezing levels in the warm season make for larger cloud droplets and enhance the precipitation efficiency, leading to smaller cloud LWP. During cold seasons, less water content and increased CCN number densities make for smaller cloud droplets and lower precipitation efficiencies, resulting in larger LWPs. In remote ocean areas, lower aerosol concentrations and thus fewer CCNs are available. The variations of LWP and r_d are synchronized (i.e., LWP increases by increasing r_d) and the change rate of LWP is larger than r_d, which leads to positive correlation between α and r_d. In other words, the changes in droplet number density do not offset the effects of changing r_d on LWP and α. The droplet radii are relatively large ($\geq 12 \mu m$ as a 2.5°x2.5° grid box monthly mean). For polluted areas, abundant CCNs and less cloud water content in cold seasons prevent droplets growing large ($\leq 10 \mu m$) and thus retaining larger quantities of liquid water in clouds, making LWP higher in these cases. In warm seasons, cloud droplets grow larger and precipitate, reducing the LWP. This leads to a negative correlation between α and r_d.

We have estimated to what extent clouds currently appear to behave consistently with the indirect aerosol effect. Although the large scale spatial variations of r_d appear to reflect an aerosol influence, only about 20% of the earth is covered by low clouds that exhibit negative temporal correlations of r_d and α changes (Fig. 4), consistent with the indirect aerosol effect hypothesis. Most clouds (50%), in fact, exhibit positive temporal correlations of r_d and α changes, indicating that variations of LWP are predominant in determining cloud albedo variations.

Acknowledgments. This research was supported by NASA contract No. NAS1-19077, NAGW-3788, and NAGW-3922; was partially funded by the U.S. Department of Energy’s (DOE) National Institute for Global Environmental Change (NIGEC) through the NIGEC Great Plains Regional Center at the University of Nebraska-Lincoln (DOE Cooperative Agreement No. DEFC03-90ER61010). Financial support does not constitute an endorsement by DOE of the views expressed in this paper. This research was also supported by the NASA Climate Program managed by Dr. Bob Curran; the ISCCP international manager is Dr. Robert A. Schiffer. The ISCCP is part of the World Climate Research Program supported by the efforts of several nations.

![Figure 4. Histogram of temporal correlation coefficient between r_d and α.](image)

5. REFERENCES

