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I. INTRODUCTION

This Final Report covers the period from August 1993 to December 1996.

During this time three Master's degrees were awarded to the students who
were supported by the NASA Grant. A fourth student who was supported
partially by this Grant will be submitting his Master's Thesis by April 1997.

A visiting Professor from China was awarded a Post Doctoral Fellowship
under this Grant for two years. One of the Master's degree holders has
completed all course requirements for his Ph.D. and is working toward his
Dissertation. This dissertation is expected to be submitted to the Graduate

School at Howard University by March 1998. This student was also given
financial help under this Grant.

Five papers were sent for publication. One of these was published in the
IEEE - MTT's Proceedings and three were published in the International
Journal of Electronics. The fifth one was sent to reviewers for evaluation.

The lists of Master's Theses, their headings and their Abstracts are given in
the following pages. Also are given the lists of Publications and their copies.






I1I. List of Master's Theses

1. "Coupling single-mode fiber to uniform an dtapered thin-film Waveguide"
Gadi Jagannath, December 1994.

2. "A weakly guiding approximation for the propagation characteristic of single
and double-clad optical fibers".
Trevor Correia, August 1994.

3. "Rectangular patch microstrip antenna - analysis and design"
James Wesley Hall, July 1994.

A fourth Master's Thesis will be submitted in April 1997.

A Ph.D. Dissertation will be submitted in March 1998.






III. Headings and copies of abstracts of the Master's theses.
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ABSTRACT

Theoretical derivations, computer analysis and test data are provided to demonstrate
that the cavity model is a feasible one to analyze thin-substrate, rectangular-patch microstrip
antennas. Seven separate antennas were tested .

Most of the antennas were designed to resonate at L-band frequencies (1-2 GHz).
One antenna was designed to resonate at an S-band (2-4 GHz) frequency of 2.025 GHz.
All dielectric substrates were made of Duroid, and were of varying thicknesses and relative
dielectric constant values.

Theoretical derivations to calculate radiated free space electromagnetic fields and
antenna input impedance were performed. MATHEMATICA 2.2 software was used to
generate Smith Chart input impedance plots, normalized relative power radiation plots and
to perform other numerical manipulations. Network Analyzer tests were used to verify the
data from the computer programming (such as input impedance and VSWR) . Finally, tests
were performed in an anechoic chamber to measure receive-mode polar power patterns in the
E and H planes.

Agreement between computer analysis and test data is presented . The antenna with
the thickest substrate (e, = 2.33 , 62 mils thick) showed the worst match to theoretical
impedance data. This is anticipated due to the fact that the cavity model generally loses
accuracy when the dielectric substrate thickness exceeds 5% of the antenna's free space
wavelength [ 1,2, 3] . A method of reducing computer execution time for impedance

calculations is also presented.
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ABSTRACT

Recent advances in optical fiber technology have made it possible to develop optical
communication systems with very large bandwidths and very low loss. Optical systems are
routinely tested and installed with repeaterless spacings of several hundred kilometers, a fact
that attests to the very low loss inherent to the transmission media. Although there is a
manufacturing capability for producing high performance optical fibers, there is no concise
method of accurately predicting their propagation characteristics. For the simplest form of
fiber, the standard single-clad step-index profile, relatively simple analytical procedures give
accurate results. However, for the high performance modified structures, exact analytical
solutions do not exist so their analysis relies on approximate solutions. Because of the rigors
associated with accurately analyzing optical fibers with modified characteristics, new
mathematical procedures are constantly being developed to simplify the analysis, and, when

all else fails, the procedures turn to empirical methods.

In this Thesis, an approximation method, known as the weakly guiding approximation,
is utilized to find the propagation characteristics of single and double-clad optical fibers.
Using a combination of numerical and graphical éolutions, data are provided to compare the
results from this method with those achieved by other methods. It is shown here that, without

the complexities associated with other procedures, this method gives fairly accurate results.
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ABSTRACT

Theoretical derivations, computer analysis and test data are provided to demonstrate
that the cavity model is a feasible one to analyze thin-substrate, rectangular-patch microstrip
antennas. Seven separate antennas were tested .

Most of the antennas were designed to resonate at L-band frequencies (1-2 GHz).
One antenna was designed to resonate at an S-band (2-4 GHz) frequency of 2.025 GHz.
All dielectric substrates were made of Duroid, and were of varying thicknesses and relative
dielectric constant values.

Theoretical derivations to calculate radiated free space electromagnetic fields and
antenna input impedance were performed. MATHEMATICA 2.2 software was used to
generate Smith Chart input impedance plots, normalized relative power radiation plots and
to perform other numerical manipulations. Network Analyzer tests were used to verify the
data from the computer programming (such as input impedance and VSWR) . Finally, tests
were performed in an anechoic chamber to measure receive-mode polar power patterns in the
E and H planes.

Agreement between computer analysis and test data is presented . The antenna with
the thickest substrate (e, = 2.33 , 62 mils thick) showed the worst match to theoretical
impedance data. This is anticipated due to the fact that the cavity model generally loses
accuracy when the dielectric substrate thickness exceeds 5% of the antenna's free space
wavelength [ 1, 2, 3] . A method of reducing computer execution time for impedance

calculations is also presented.
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COUPLING SINGLE-MODE FIBER TO UNIFORM AND SYMMETRICALLY
TAPERED THIN-FILM WAVEGUIDE STRUCTURES USING GADOLINIUM
GALLIUM GARNET

Jagannath Gadi, Raj Yalamanchili and Mohammad Shahid _
Howard University
Department of Electrical Engineening
2300, 6th Street, NW
Washington, DC 20059

Abstract

The need for high efficiency components has grown significantly due to the expanding role of fiber opuc
communications for various applications. Integrated optics is in a state of metamorphosis and there are many
problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of
coupling single-mode fibers to thin-film devices for integrated optics. In this paper. optical coupling between a
single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel

tapered structure presented in this paper is shown to produce perfect match for power transfer.

1. INTRODUCTION

Integrated Optics has come a long way since early 1970's. It is poised at the threshold of making a big
impact in everyday world. Integrated optics has drawn into several disciplines. such as computers and
microwave integrated circuit technology resulting in new fabrication technologies. The field is now in a state of
flux and there are still many problems awaiting solutions. One of the main problems being the lack of a simple
and efficient method of coupling optical fiber to thin-film devices for integratcd opucs. Although a number of
connectors are available in the market. the efficiency and reproducibility are low. In this paper. a novel uniform

and symmetrically tapered structure are analyzed mathematically and the results presented.

There are certain papers published by researchers in the area of thin-film couplers that are worthy of note. in that
they provide the background for the development of the proposed work and point towards issues raised by
shortcomings of the previous work. Louisell [1] investigated broadband bi-directional couplers in which he showed
that the phase constants and coupling coefficients vary with distance along two coupled transmission lines.
Ulrich 2] has shown by analysis how light can be coupled into a thin-film by means of a prism-film coupler. Akira
Thaya [3] presented a mathematical model of a thin-film optical directional coupler consisting of a three-layered
deposited glass films on the substrate. with coupling occurring between the first and the third film. Wilson and
Teh{4] have shown a mathematical modeling of a tapered velocity directional coupler. Nelson [5] has theoretically

0-7803-2674-1/95/34.00 © 1995 IEEE. 926 SBMO/EEE MTT-S IMOC’95 Proceedings



examined the coupling of single-mode optical waveguides through the use of expanding and contracting tapers
Juichi Noda et al.{6] have shown a connection between single mode fiber coupler to a Ti diffused LiNo; strip
waveguide. The authors Y.Cai et al.[7].. have analyzed the coupling characteristics of a uniform structure.

2. THEORETICAL BACKGROUND

In this paper. we present a novel method of coupling light from a single mode fiber 16 two structures : Uniform
and symmetrically tapered thin-film couplers. The model presented is an improved version of the uniform five
layered structure presented by Y. Cai et al [7]. If a fiber is directly connected to the thin-film. as shown by Y.Cai et
al [7].. it leads to a large mismatch of the field profiles at the interface and as a result. leads to loss of optical
power. To overcome this optical reflection and radiation losses. they proposed a five layered structure which is
shown in Figure 1. This consists of a coupling waveguide. buffer layers. thin-film layer and the substrate. To avoid
mismatch of the fiber core and the coupling waveguide field profiles at the interface. the coupling wﬁvcguide
dimensions are designed as 2aX2a. where "a’ is the radius of the fiber core. Guttmann et al(8].. have shown that
the field distributions of the fundamental mode of the cylindrical fiber core and the garnet material waveguide
differ slightly if the refractive index differences are smalier. Solgel solution is used at the interface such that any
slight refractive index mismatch between the fiber core and the coupling waveguide is minimized. The buffer layer
serves the purpose of coupling optical power to the thin-film waveguide of lower refractive index. Gadolinium
Gallium Garnet material was used as the thin-film material because of the properties exhibited by the matenal.
The buffer layers and the coupling waveguide are silica doped materials. The required refractive index of buffer
and coupling waveguides is obtained by doping TiO. with SiO; .

The eigen mode equations of the five layered structure developed ( Figure 1 ) can be obtained by solving with
w=g=2a, where : w= the height of the coupling waveguidé. a= radius of the fiber core. ti,=mfracﬁve index of the
coupling waveguide ( Garnet matenial ). n,=refractive index of the buffer layer. n, = refractive index of the thin-
film material. A=wavelength of the wave ( 1.3um ) and W1= height of the thin-film coupling waveguide. The
eigenmode equations developed by Y.Cai et al[9]..are :

g, = ang, tan(K,,‘W/Z) — (1)

0, =N @r/AY (n, -n)-K,, — (2)

kg {1+ Juan* (@ Kp)+ 1)
s tan(gK )

Q,="(2/T/A)2(nz. ‘":)“‘K:y —wana (4)

— (3)
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The parameters kg. Q, and kg Q. are the x and v components of the wavenumbers. Kg and K, represent the
sinusoidal variation in the x and y directions. The propagation constant of the coupling waveguide can be
determined by solving equations ( 1t0 4 ).

p =o'y, €, njg—K;,—K:y — (5)
The propagation constant Bw of the thin-film waveguide is obtained by replacing Ng with n,. w with W1 and
Be with Bw in equations( 1to5 ). The value of W1 for the thin-film is so chosen such that highest power
coupling occurs between the coupling waveguide and the thin-film at this value. The optimum value W1 is chosen

such that B, = PBw for no mismatch. The thickness of the buffer layer has a direct bearing on the power coupled

from the coupling waveguide to the thin-film waveguide and an optimum value is chosen such that there is a
maximum power transfer from the coupling waveguide to the thin-film waveguide. The propagation constant of

thé thin-film varies because of the change in value of w along the z direction. Therefore the mismatch. M depends

= B (2)
on the propagation constant difference given by M) = E“—z—gu—— ——(6)
and the maximum fraction of power transferred between the coupling waveguide and the thin-film waveguide with
a fixed mismatch M. is givenby F2 =(1+M*)" —_—(7)

Application of the theory developed by Snyder et al{10] and Snyder {11]. to the model analyzed in Figure 1. gives

the power coupled into the thin-film for a uniform coupler as
P =PF:Sin:I(C/F)dz ----- (8)
0

where P is the total power introduced. C the coupling coefficient between the center of the coupling waveguide
and the center of the thin-film waveguide. In this paper. we present a novel uniform and symmetrically tapered
structure ( Figure 2 ) where the modes of a Mom waveguide form a complete set and can propagate
' independently from one another. while the iapered modes are coupled together and adjust their characteristics to
suit the varying transverse propertics of the guiding structure as they are moving along the taper. During the
process of coupling the light from the uniform coupling waveguide to the thin-film waveguide, the wave is kept in
the lowest order mode. For the shape shown in this paper.( Winn and Harris {12]).the power coupled at the

narrow endisgivcnbyP°=P‘(l-Fzsin:j(C/F)dz) —(9)

0
In this paper while analyzing the theoretical model of the uniform and tapered coupler we made the assumption
that the materials used are lossless and therefore there are no Fresnel's reflections at the interfaces and that there

are no lossess at the interface of the fiber core and the coupling waveguide.
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3. RESULTS AND DISCUSSION

The material used for the analysis of uniform and tapered couplers is Gadolinium Gallium Garnet (GGG). The
coupling waveguide material used is GGG. Buffer layer material is spun silica which is doped with TiO2. Thin-
film material is polymerized solgel solution of SiO; and TiO:. The refractive index of coupling waveguide. Ng =
1.9389 @ » = 1.3um. The refractive index of the buffer layers is chosen. as n, = 1.9340 and the refractive index
of the thin-film material. n, = 1.9450. Figure 3 shows the plot of C versus d. where C is the coupling coefficient
and d is the distance from the center of the coupling waveguide to the center of the thin-film. This equation given
by-Sn,vder f11].1s

_(KA'jm‘d—ex ~Vd’ (10)
27/ p’ P 4p

The refractive index of GGG versus wavelength is shown in Figure 4. The expression used to calculate the

refractive index is 1~ —1-2’4'/_ ) - (11)

where A, and L, are the selimeier coefficients.given by Wood and Nassau [13].

By solving the equations (1to5) with w=2a=g. the propagation constant B = 9.3253804 um™' was obtained.

Figure 5 shows the propagation constant for the thin-film as a function of the film thickness W1. The propagation
constant of the thin-film equals the propagation constant of the coupling waveguide when the thickness
W1=0.886um. The maximum coupling power is attained at Py = Bw =9.3253804 um” . Figure 6 shows the
plot of coupled power versus the propagation distance for the uniform coupler of different d's for perfectly
matching constants Bg = Pw at thickness of thin-film w=0.886 um. Figure 7 shows the power coupled for
uniform and tapered couplers with respect to the distance z and the taper starts at length Ll1= 700|,|.!ﬁ. with
slopes (K) of the symmetrical taper at 0.0001. 0.00009 and 0.00002. Figure 8 shows the cffect of the thickness of
the thin-film and the role played by the taper in the power outpixl.

4. CONCLUSION

The novel structure (Figure 2) exhibits broad-bandwidth coupling characteristics and it is easy to manufacture
since it does not put serious constraints on the accuracy of the coupling length of the coupler. The taper has the
distinctive advantage of confining the power within the taper such that the output stays approximately near the
value of the power introduced at the start of the taper. The outstanding feature of the taper is the higher efficiency

as compared to the more conventional devices.
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Figure 1. Schematic diagram of Singie-mode fiber to
thin-film waveguide using a coupling waveguide
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Rectangular waveguides with two conventional and two
superconducting walls

RAJ YALAMANCHILIt, ZHENG AN QUIft and
YEN-CHU WANGt

The propagation properties of TE”™ modes and their dispersion relations in
rectangular waveguides with two conventional and two superconducting walls,
derived by using the Meissner boundary conditions on the superconducting walls,
are presented. In addition to recovering some previously known results, some
novel results have been obtained: the cut-off wavelength of the dominant TE'®
mode is greater than that of the conventional TE,, mode, and the tangential
electric field and normal magnetic field for the dominant mode TE!? exist on the
superconducting surfaces. Expressions for electromagnetic components, surface
currents, attenuation coefficient, maximum transmitted power, dispersion and
wave impedance are also presented.

1. Introduction

Over several years there has been considerable progress in the development of
superconducting devices in the microwave and millimetre wave bands, for example,
low- and high-temperature superconducting microwave filters, resonators, antennas,
phase shifters, etc. Many superconducting electronic devices have been sought at
liquid nitrogen temperatures (Nisenoff 1988, Van Duzer and Tuner 1981). The
discovery of high-T, superconductors (HTS) has fundamentally changed the pro-
spects of superconductive electronics. The low surface resistance of superconducting
materials makes possible microwave devices and circuits with very high @, low insert
loss and dispersion. Superconducting waveguides have been studied as low T,
superconductors ( < 18 K) (Alaux and Wybouw 1976, Rohner 1978, Zepp e al. 1977.
Fabre er al. 1981). Experimental and theoretical results have shown that HTS
waveguides and transmission lines exhibit significantly better performance than that
of their identical metallic counterparts (Wang et al. 1994, Yalamanchili e al. 1992).

The propagation properties of transverse electric (TE) modes in high-T,
(T.> 30 K) superconductor rectangular waveguides have recently been studied using
HTS electromagnetic theory and Meissner boundary conditions which are consistent
with the two-fluid model (Wang et al. 1994). The new boundary conditions give rise
to different field solutions, hence new waveguide characteristics. This paper describes
the propagation properties of TE modes in rectangular waveguides with two
conventional and two superconducting walls (WGCSW) based on the theory
established by Wang et al. (1994). This kind of waveguide has different character-
istics from either HTS waveguides or conventional waveguides. The attenuation and
dispersion are smaller than that of conventional waveguides. The dominant mode in
the WGCSW is the TE'® mode, which is the same as conventional waveguides. An
interesting property is that the cut-off wavelength of the dominant mode is greater

Received 18 June 1994; accepted 27 October 1994.
tDepartment of Electrical Engineering, Howard University, Washington, DC 20059,
US.A.
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2 R. Yalamanchili et al.

than that of conventional waveguides. Therefore, it is easier to excite the dominant
mode in the WGCSW. Since the WGCSW has two conventional broad walls and
two superconducting walls (two simply-connected superconductors), it is easier to
fabricate than a four-wall superconducting waveguide.

In section 2, the most important dispersion relation of WGCSW is derived along
the x-direction from the wave equation and the Meissner boundary conditions on
two walls (x=0, x=a). Expressions for electromagnetic field components and
surface currents, including the surface superconducting current J,, and the surface
normal current J,,, based on two-fluid theory are given. Various parameters of the
WGCSW are analysed and compared with conventional waveguides.

2. Theory
2.1. Wave equation and numerical solutions of cut-off wavelength

This section analyses a WGCSW with two narrow superconducting walls (x=0
and x=a) and two broad perfect or good conductor walls (y =0 and y=2>), as shown
in Fig. 1. A rigorous formulation based on Maxwell's equations and Meissner
boundary conditions is used to obtain the new electromagnetic field properties in the
WGCSW,

The governing wave equation (Helmholtz equation) and the Meissner boundary
conditions for the longitudinal magnetic field H, of the TE mode in an air-filled
WGCSW are:

ViH.+kIH, =0 )
JH. 1
?”——Z H.=0 atx=0,x=gqg (2a)
oH,
W—O aly-—O.y-b (2b)

where the operator V2 js the Laplacian operator in the transverse plane (i.e.
xy-plane). Propagation in the :-direction is assumed. The parameters g and b are the

2

Figure I. WGCSW with two narrow superconducting walls (x=0, x=a) and two broad
perfect or good conductor walls (=0, y=b).



Rectangular waveguides with two superconducting walls 3

width and height of the WGCSW, respectively, &, is the cut-off wavenumber, and 4
is London penetration depth is for HTS this value varies from 10" ®*m t0 10~ " m
(Burns 1992). Equation (2 a) is the Meissner boundary condition; (2b) is the
boundary condition for the conventional wall. The important Meissner effect is that
the fields do not vanish abruptly from the surface of a bulk superconductor, rather,
they decay exponentially into the bulk. The penetration depth 4, is the characteristic
decay length of the magnetic field into a superconductor. It is obvious that when
A — 0, the second term of the Meissner boundary condition approaches zero, (2a)
reduces to the boundary condition (°H./’n)=0 for the conventional waveguide.
Therefore, the first term of (2a) is related to the properties of the WGCSW. Thus,
the Meissner boundary conditions are relevant to the two-fluid superconducting
model.
It is assumed that the general solution of the governing equation is

H.=(C, sin k,x+C, sin k.x) cos k,y 3

where C, and C, are unknown coefficients; both cannot be equal to zero at the same
time; k, and k, are the uknown wavenumbers along the x and y axes, respectively.
Substituting (3) into (2 a) and (2 b) obtains two sets of equations for k, and k,:

kysinka— 0K o ky cos kya+ 3058\ ¢ _ (45)
A s
1
—Cy~k,C;=0 45)
AL
and
k=C" m=0,1,2,3,... 5

y b *

For non-trivial solution conditions, the determinant of the cocfficient matrix of (4 q)
and (45) has to be equal to zero:

1
- -k,
42
=0 (6)
k in k
k, sin k,a—coj d —k, cos k,,a—sm 4
"L L

Therefore, the one important dispersion relation in the transcendental equation is
obtained from the above determinant as

2k,
(ki) -1

The non-integer roots of this equation describe the dispersion relations along the
x-axis as a function of London penetration depth and the dimensions of the
WGCSW. A graphical method is used for the solution, as shown in Fig. 2, from
which the cut-off features are obtained.

tan k. a= )]
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Figure 2. Graphical method of solving (7) to obtain the cut-off features (p=1 is the

first root).
Substituting (44) into (3),
1
H.=C, (cos k,x+k i sin k,x) cos k,y (8)
x~L
or
H_ =C,(k, 4, cos k x +sin k.x) cos k,y 9)

It is obvious from (9) that k,#0, otherwise the solution becomes trivial. It is worth
noting that owing to the non-integral nature, the mode indexes are determined by
solving (7), which is derived from the Meissner boundary conditions on the two
walls.

To avoid risk of confusion with the commonly used TE,,, the superscripts pm
(the index p is related to the superconducting walls) are used to designate the modes
in the WGCSW. In this case, the dominant mode is designated TE'® (p=1 does not
mean integer index along the x-axis, instead it is the first root of (7)). The above
formula, however, does cover conventional waveguides in which H_xcosk_xcos k,y
when 4, — o0, as is evident from (8). There are no TE®™ modes in the WGCSW, in
which property it is quite different from conventional waveguides.

Substituting (3) into (),

kl=k?+k? : (10)
Therefore, the cut-off wavelength /_ is obtained as

. _Zn

he=1 Iy

<

The numerical results of cut-off wavelengths for some TE”™ modes are listed in the
Table. These results demonstrate that the cut-off wavelength of the dominant mode
in the WGCSW (4!°x4-06 mm for a=2mm) is greater than that of TE,, in a
conventional waveguide with the same dimensions by a factor of 1:013, and the
bandwidth is greater than an octave.
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2.2. Field components and surface current distributions

Field component expressions for the TE mode can be determined from the axial
magnetic field H. by means of the relations between the transverse and axial

components as follows.
From (9), let Bo=k 4, and H,=C, for simplicity. Then the axial magnetic field

component H, becomes
H, = H (B, cos k,x +sin k,x) cos k,y (12)

where H, is an unknown coefficient depending on excitations, B, is a proportion-
ality parameter which varies for different modes and penetration depths. The wave
factor in the form of exp (jwr—yz) is assumed. The real part x of the propagation
constant 7 is the attenuation constant, the imaginary part § is the phase constant and
w is the angular frequency. Other field components can be expressed as

Bk,

H, ==~ i Hy(By sin k,x —cos k,x) cos k,y (13a)

y= kz o(Bo cos k,x +sin k.x) sin k,y (13d)
Jwﬂoky

E,=—s3"t 3 H(By cos k,x +sin k,x) sin k,y (13¢)
Jopok,

E = v Ho(B, sin k,x—cos k,x) cos k,y (134)

where u, is the permeability of the material, assumed to be that of free space.
The wave impedance Z, of the WGCSW is defined as

E__E ok (14)

Cut-off wavelength (mm)

Modes a=1 a=2 a=4 a=38

TE!° 2:05 (2-0)** 4-06 (4-0) 807 (8-0) 16-09 (16:0)
TE?° 1-02 (1-0) 2:04 (2:0) 407 (4-0) 8-04 (8-0)
TE! 0-90 (0-89) 179 (1-78) 3-58 (3-58) 7-16 (7-15)
TE?2! 0-70 (0-70) 1-42 (1-41) 2-83 (2-82) 566 (5-65)
TE?° 0-67 (0-48) 1-34 (0:97) 2-67 (1-94) 534 (3-88)
TE3! 0:56 (0-44) 1-11 (0-89) 222 (1-79) 4-44 (3-58)

*For /= 10"%m there is little difference in values.
**Values in parentheses are the corresponding cut-off wavelengths for the first six TE,, modes in

conventional waveguides.

Cut-off wavelengths for some TE®™ modes (»,=10""m, a=2b)".

= m——— .
.
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The instantaneous field expressions for the dominant TE'® mode in the WGCSW
can be obtained as:

H_.=Hy(B, cos k. x +sin k,x) cos (wt — B2) (15a)
Bk,

H. = kz H (B sin k, x—cos k,x) sin (wr— f2) (158)
WHk . . .

E = & Ho(— By sin k x +cos k_x) sin (wi — fz) (15¢)

where, f=2n/i  is the phase constant of the TE!® mode, and 4g is the waveguide
wavelength of the TE'® mode. There are three field components m the WGCSW, as
in conventional waveguides. Note that the superscript ‘10’ for the dominant mode is
omitted from here on unless otherwise stated.

From the above discussion, (15 c) demonstrates clearly that, due to B, being very
small, the space distribution of the electric field E, of the TE'® mode is proportional,
significantly, to cosk,x along the x-direction. This means that tangential electric
fields exist on the superconducting surfaces (x=0 and x=a) of the WGCSW. This
novel property is completely different from that of a perfectly conducting conven-
tional waveguide since, for H.#0 and for a finite surface impedance at microwave
and millimetre wavelengths, the tangential components of E on the superconducting
walls are finite. The space distribution along the p-direction is the same as for
conventional waveguides. For details of the field distributions see Fig. 3.

Equation (15b) demonstrates that the space distribution of the magnetic field H,
is largely proportional to cos k,x, which means that normal magnetic fields exist on
the surfaces (x=0 and x=a) (see Fig. 3). The above results demonstrate that the
magnetic field lines are not continuous in the WGCSW (Orlando and Delin 1991),
which is in agreement with the Meissner effect, but the magnetic flux density B is
continuous in and out of the WGCSW walls because B=u,(H+M) (M is the
magnetization density in the walls and is not equal to zero). This also is a new
property in the WGCSW, which does not exist in conventional waveguides.

\\ //

(@ b

Figure 3. (a) Distribution of the electric field E,; () distribution of the magnetic field H,,
for the TE'® mode.
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London’s equations and the two-fluid model are used to investigate the current
distribution on the surfaces (x=0 and x=a). The total conduction current density
consists of the superconducting current density J, and the normal electron density J,
based on the two-fluid model. This model assumes that the conducting electrons in
the WGCSW walls are divided into two categories. We use a different method to
describe their distribution. The surface superconducting current J,, due to super-
electrons is calculated based on the London relation and appropriate boundary
condition first. Then the normal surface current J,, due to normal electrons and the
losses is calculated using the approximate resistive boundary condition and the
perturbation approach.

Ti.: superconducting current J, in two isolated walls in which each wall is
considered as a simply-connected superconductor using a thin-film substrate is given

as

J=——4 (16)

1
A

This is London’s relation, where A =ugd?, and 4 (in Tm) is the vector potential in
the WGCSW. Let the vector potential inside the air-filled hollow region in the
waveguide be A, (subscript a indicates the air-filled WGCSW). This satisfies the
following equations:

V+A4,=B (17)
kA, +VV-A
. (18)
JWHoE

where ¢, is the permittivity of the material.

Thus, the London relation guarantees that the vector potential is a ‘real field’
that is completely specified. Equation (18) is called Lorentz's gauge, which gives rise
to the relation between the electric field £ and the vector potential A4, in the air
region.

Before solving the current distribution problem, it is important to determine the
boundary condition at 2 boundary between the two media (here, the superconduct-
ing medium and air for walls x=0 and x=a; the perfect conductor and air for walls
y=0 and y=»5). The boundary condition on the tangential components of fields (J;
and A,) for the simply-conneccted superconductor is

1

Ju="'z’4n (19)

where the subscript ‘at’ denotes the component tangential to the boundary in the air
or the applied field region; ‘st’ denotes the component of supercurrent density
tangential to the boundary in the HTS. Note that J,, is the bulk current. Once 4, is
known, the current density J,, and the surface supercurrent density J,,, are readily
calculated. The solution satisfying (17) and (18) is obtained from B as follows:
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A,. = Ao(By sin kx +cos k,x) sin k,y (20 a)

Ak
,4u=J—--§—’ Ho(B, cos kx—sin k,x) sin k,y

k
—HOY Ho(By cos k,x+sin k,x) sin &,y (20 )

kZ
jAk
A"=J—El (Bo sin k,x+cos k,x) cos k,p

k
+ -’-‘i:—' H (B sin kox—cos k,x) cos k,y (20¢)

The surface supercurrent distributions on the isolated walls (x=0and x=a) are
obtained from (19) as follows:

(x=0 plane)

J!’l = J“)a’ + Juza:

. K . .
z% [#sz H, cos k,y-JA;k’ cos k,y] a,—% sin k ya. 2la)
(x=a plane)
"ul = Jslyay + Jss:a:
j k jA AgA
z% [% H, cos k,y_J ;k’ cos k,y] a,+ —/;): sin k,ya. (215)

where J,, and J,,. are the surface supercurrent magnitudes on the walls along the y-
and :-directions, respectively. Consider, here, that the superconducting current
decays exponentially in the walls, so the current is mainly carried by the supercon-
ductor surface adjacent to the air in the WGCSW. It is easy to see the' the surface
supercurrent and bulk current are very large because the amplitude of J,, is
proportional to 1//; (A =py/%). which is of the order of 10.

All high-T, materials are type II superconductors. In the Meissner phase, it is
assumed that the critical field H., ~7-7 to 385Am ™! (depending on temperature)
for a HTS sample of YBa,Cu,0, (88-2K, H: axis) (Wu and Sridhar 1990), so if
Hox~13 to 660Am™", then the theoretical values of supercurrent density are
estimated to be about 10%-® A cm ™2 which is in excellent agreement with other data
(Burns 1992, Heinen er al. 1991, Miranda er al. 1991, Levenson er al. 1991). The
distributions of surface supercurrent and normal current on the y=0 and x=a

..
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planes of the WGCSW are shown in Fig. 4. (Note that the distributions of the real

and imaginary parts of the surface supercurrent of the WGCSW are the same.)
The surface normal current distribution at its boundaries can be obtained using

the approximate resistive boundary condition n x H=1J,, (Senior 1975) as given by

(on the y=0 plane)
J!l'l = meax + mea:

iBk
= H(By cos k.x +sin k,x)a, —-Ji = Ho(B, sin k, x—cos k.x)a, (22a)

(on the y=b plane)
"sn = ']snxax + Jlnla3
= —H, cos k,b(B, cos k x +sin k. x)a,

iBk
1Bk, Hy cos k,b(B, sin k, x—cos k.x)a. (22b)

+‘
ki

(on the x=0 plane)

ik
% 4.8, sin k,ya. (22¢)

Joa=dina,+J, 0, = H B, cos k,ya,— =

(on the x=a plane)
Jlﬂ = anyay + sza:
= —Ho(B, cos k,a+sin k_a) cos k,ya,

+‘% Ho(B, cos k.a—sin k. a) sin k,ya. (224d)
where J,,, and J,,. are the surface normal current magnitudes on the walls along the
y- and z-directions, respectively. It is easy to see that the distributions of the surface
normal currents on the walls x=0 and x=g are the same as those of the surface
Supercurrents on the walls, which is the result of the two-fluid model. But the
distributions of current on the y=0 and y=a surfaces differ from conventional
waveguides due to different electromagnetic field distributions. The losses of the
WGCSW come from the surface normal current flowing through the small surface

/
Jy O 10'3,, Jee OF 10"T00e /

b4
Ty OF 1073,., Juy or 1077,

(@) )

Figure 4. Distribution of surface supercurrent and surface normal current for the TE!'©
mode on the walls (a) x=0, b) x=a.
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impedance. It is predictable that the losses are small because B, is very small. The
distributions of surface current on the WGCSW planes y=0 and y=»5 are shown in
Fig. S.

2.3. Attenuation coefficient

The attenuation caused by two superconducting walls and two conventional
walls can be calculated by the perturbation technique as given approximately by

2
e (5 2]
2'0x3-07x 1077 dBkm™! (23)

| fc 271172

-7

where f. is the cut-off frequency of the TE'® mode, R, and R, are the surface
resistances of HTS and metal walls, respectively, and 4, is in millimetres. Note that
the attenuation is not only proportional to f3 because R,cf? (Romanofsky and
Bhasin 1992), but also proportional to 4} (R,ocf'/?). The curve of attenuation
coefficient a versus frequency f is shown in Fig. 6 in which R,x50x107%%/2Q,
R,x2:6x1077fY2Q (Cu), and a=2b=2mm. As far as the attenuation is con-
cerned, it is greater than that of high-T, superconducting waveguides, but smaller
than that of conventional waveguides.

Losses in the WGCSW are generated from three sources: superconductor loss,
metal loss and dielectric loss. A typical superconducting waveguide used in micro-
wave and millimetre-wave circuits uses low-loss dielectrics or free space, so the
dominant loss mechanisms are the superconductor loss and metal loss.

The superconductor loss is caused by the current of normal electrons in the
superconducting walls based on the two-fluid model theory. The paired supercon-
ducting electrons are dissipationless because they cannot be scattered without
breaking pairs. The microwave surface resistance of superconducting films has been
found to be as low as a few microohms. These surface resistance values are lower
than those for copper at the same temperature by a factor of several tens. Such a
surface resistance gives a small power loss. If the penetration depth 4 =3-6 x 10~ "m
for the case of conduction along the c-axis and the surface resistance is equal to
10-3mQ (60 K) at 14-567 GHz (How et al. 1992), the attenuation coefficient is found
to be about 0-9dBm~! for R,~30mQ. The metal loss is the same as for
conventional waveguides.

%

Tve

Jaa

N

(a) (b)
Figure 5. Distribution of surface current for the TE'® mode on the walls (a) y=0, (b) y=b.
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1

10°

|

CWG

a=mininum at f=2.41f, tor CWG
a=minimum at f=1.65f, for WGCSW

10%a
1" weesw

Attenuationls[(£./106H2)A)) (aB/ km)
S

: L

1 1.2 1.4 1.6 l.8 2

Frequency (£/t.)

Figure 6. Attenuation due to wall losses versus frequency (i =10~ "m). CWG, conventional
waveguide; WGCSW, waveguide with two conventional and two superconducting
walls,

2.4. Phase velocity, group velocity and phase dispersion

Superconductors have a frequency-independent penetration depth in the tera-
hertz range, which determines field penetration into the material, rather than a
frequency-dependent skin depth as for normal conductors. This means that super-
conductors introduce practically no dispersion into a microwave circuit. Dispersion
in the WGCSW, if any, is due to the frequency dependence of the attenuation caused
by the two broad walls. ispersion caused by the frequency dependence of the phase
velocity is almost the same as for conventional waveguides. The phase velocity v,

and the group velocity v, of the TE'® mode can be shown to be given by

c

"p=§=[l_(£)z]uz (24)
f .
etac(1- (4] -

where ¢ is the speed of light in free space.

Our work shows that the phase velocity (group velocity) of the WGCSW for the
dominant TE!° mode is smaller (greater) (by about 1-4%) than that of conventional
waveguides with the same dimensions and frequency because J. is smaller than that
for conventional waveguides. Therefore, the dispersion produced for the same
geometry is small. In summary, the signal distortion due to dispersion in the
WGCSW is reduced dramatically by two superconducting walls.
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2.5. Maximum transmitted power (dominant mode)
The maximum transmitted power in the WGCSW is given by

ab fc 271172
Pmax=4T°|Emn‘[l_(7) :] (26)

where 7, is the intrinsic impedance of the medium inside the waveguide, and the
mangitude of the electric field intensity |E,,,| is given from (15¢) as

| Enusl = [Hol 2 @7

<

In the Meissner phase, the maximum electric field intensity and power in the
WGCSW are smaller than that of conventional waveguides (29kVcem ™! and 11 kW)
because H, is very small. For example, they are about 60 Vem ™! and 26 mW for
Hyx=77mAcm™, and 3kVem ™, 64 W for H_, ~3-85A cm™!, respectively. It is
clear from (26) and (27) that the transmitted power and maximum electric field are
dependent on the London penetration depth (k.oc1/4.). The larger the London
penetration depth, the larger is the transmitted power and maximum electric field. It
should be noted that the penetration depth also increases with temperature, which
means that more power is carried by the WGCSW.

3. Conclusions

A theoretical analysis for a waveguide with two conventional and two supercon-
ducting walls has been presented. It is based on high-T, superconducting electro-
magnetic theory and Meissner boundary conditions. The important implications of
this paper are:

(a) the bandwidth of the WGCSW is greater than that of conventional metallic
waveguides with the same dimensions;

(b) the tangential electric field and normal magnetic field of the TE'® mode are
finite on the inner surfaces of the walls (x=0 and x=a), which is in
agreement with Wang er al. (1994);

(c) the magnetic field lines are not continuous in the WGCSW, which is the
result of Meissner effect;

(d) the surface supercurrents are very large and the surface normal currents are
very small, so the attenuation coefficient of the WGCSW is smaller than that
of conventional waveguides by about 10? to 10* times for different surface
resistance and penetration depth—the main loss mechanism is metal loss due
to the two broad walls;

(e) in the Meissner phase, the maximum electric field intensity and transmitted
power are smaller than those of conventional waveguides because the critical
field H_, is very small;

(/) dispersion is small compared with conventional waveguides;

(9) the wave impedance Z, of the WGCSW has the same expression as for
conventional waveguides.
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Scattering by the transition junction between a conventional and a
high-temperature superconducting waveguide

RAJ. YALAMANCHILI*. ZHENG AN QIUt
and YEN-CHU WANGH

TE,, mode scattering during the transition from a con entional to a superconduct-
ing rectangular waveguide is invesugated based on the Meissner model. The
reflection coefficient. input impedance and equivalent inductance are calculated in
cm-wave bands when the TE,, mode is incident on the discontinuity from the
conventional (or non-superconducting) waveguide.

1. Introduction

Recently there has been considerable progress in the development of supercon-
ducting devices in the microwave and millimetre-wave band. for example. low- and
high-temperature superconducting microwave filters. resonators, antennas. phase
shifters etc. The transmission properties of high-T, superconductor waveguide
(HTSWG) have been studied recently (Wang er al. 1994). In that paper. the
propagating TE modes in HTSWG are obtained based on Meissner boundary
condition (i.e. éH./én—H_'i, =0 on the walls, where H. is the axial component of
magnetic field. 4 is the London penetration depth).

Since a HTSWG must be connected to its external world. it is important to
investigate the EM transition from a conventional waveguide (CWG) to HTSWG.
The physical configuration of the problem under study is shown in Fig. 1. It ts
assumed that the incident wave is the dominant mode. namely. TE o mode.

Yy
CWG % | HTSWG
|

incident wave TE, mode L— transmitted wave TE'" mode
N

reflected wave TE,, mode
cut-off modes/ cut-off modes
A l

0

Figure 1. Wave scattering from a rectangular CWG and HTSWG junction at z=0.
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travelling from the CWG (- <0) to its HTSWG transition interface (at z=0), in the
positive z-direction with exp (jwr) time dependence. Although the dimensions of the
CWG and HTSWG are the same, the higher-orders mode TE?(p> 1,92 1) (Wang
et al. 1994) are excited near the transition interface in the HTSWG section (z>0)
because of the different waveguides. The CWG dominant mode TE,, is reflected and
the higher modes TE,, (m#1.n#0) are excited in the CWG as a result of the
different charucteristic impedances of the dominant modes in the HTSWG and
CWG. Analysis of HTSWG is given brieflv in §2. In § 3. we consider the reflection
coefficient. characteristic impedance and equivalent inductance due to the HTSWG
transition when one, two, three or four modes exist in the HTSWG.

2. Analysis of high-T,. SC waveguides

A theoretical analysis for HTSWG has been presented by Wang er al. (1994)
in details based on HTSC electromagnetic theory and the Meissner boundarv
condition. It can be shown that the field component expressions for the dominant
mode TE'! in HTSWG are given as follows:

H.=H(B, cos k,x+sin k x)(Cq cos A} +sin A1) (1)
H P H (B, sin k k x)(C k.v+sin kv 2
=7z ol By sin k,x—cos k x)(C, cos kv +sin k) (2)
H P H,(B k in k,x)(Cq sin kv k.y 3
=T ol By cos kx +sin k,x)(Cy sin K,y —cos k,y) (3)
jwpek, . .
E, =Jw;:;——'3 H (B cos k,x +sin k,x)(C, sin k,v—cos k,y) 4)
jopok, ) .
Ey=w~%’— H (B sin kx+cos k,x)(C, cos k,y+sin k,y) (5

where u, 1s the permeability of the material which is assumed to be that of free
space; H, is an unknown coefficient depending on excitations; B,=k.4, and
Co=k,4, are proportionality parameters, but they are different for different modes
and penetration depth. The wave factor in the form of exp (Jwt —y:) is assumed; &, is
the cut-off wavenumber, the real part a of the propagation constant y is the
attenuation constant, the imaginary part f=2n/4, is the phase constant, 4, is the
waveguide wave length and w is the angular frequency: &, and k, are the
wavenumbers of the TE!! mode along the x and y axes, respectively. Note that the
superscripts 11 for the dominant mode in the HTSWG have been suppressed in these
and following expressions for convenience. unless stated otherwise. It is worth
noting that when considering the HTSWG, because the non-integer mode indexes
are determined by solving two transcendental equations of dispersion relations
(Wang et al. 1994) which are derived from the Meissner boundary condition on the
four walls, in order to avoid any risk of confusion with the commonly used TE,,,, we
use superscripts to designate the modes in HTSWG. i.e. TE??. Here the pair 9 bears
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no relationshin to the wavenumbers. We choose p=1.¢= | for the dominant mode
only for convenience.

The wave impedance Z% of the TE? mode in the HTSWG is defined as

E. E. wiy

Zr = "= v (Kall]
H, H. B”™
where
2n
}3""=—,qu(k;—{(ki’“)'v«(kf“r]l' - (T
/.
9
3. Reflection coefficient and characteristic impedance
For convenience. the transition interface is assumed to be located at o=0

Conditions are imposed such that all the waveguide modes except the TE , mode
(-<0)and TE'! mode (z>0) are below cut-off by suitably choosing some aperating
frequency. The cut-off modes required for matching the boundary conditions at 2 =4
are TE,, modes in the CWG. An mcdent TEy, wave of unit amphiude
considered. Its reflected wave has amplitude T and all the higher-order modes are ~et
up by the transition interface. A transmitted wave TE!! of unknown amplitude att
is set-up by the interface in the HTSWG on the right-hand side. Theretore. based on
the mode-matching technique. the boundary conditions 1o be satisfied at the
junction or transition interface are as follows: the tengential electric field E, and
magnetic field H, must be both continuous. 1.€.

a . =« x X' mn _omz nm
(1+T)=sin - x+ 3 S —r G Sin X COS Y
n a m=1n=0 akcmn a h
k‘gq p4 1 P4 pPq pq pPe 1 Pq <
=(k”“)l aPi( — B, sin kf* x +¢0s kP9 x)(C§? cos kP% v +sin ktvy (%)
[y
Bioa . T x x' mnp . mn nm
(T=1) =2 sin - x+ Y — 5™ Gy SIN —— X €OS 7 ¥
n a m=1n=0 akcmn a b
BPngq
_ X 4P4 P4 oy Pqy __ -Pq pPq P4y 1 -Pq g,
= U a( B2 sin k§?x —cos kPx)(C§ cos kPdy +sin kPeyv) (9
[4

where T’ means that when m=1 and n=0, the unknown coefficient @, =0 or
a,o=0.aand b are the waveguide width and height. respectively. Subscripts 10 and
mn denote the quantities of CWG and superscripts % refer to quantities of HTSWG.

Using the well-known orthogonality property of the wave functions for the
CWG, by multiplying the CWG wave functions and integrating on both sides of
each of the two equations we obtain from egns (8) and (9)

ho(1 + 1)+ h(mn)apm, = Yy ¥ aPF(mn, pq) (10)

p=1q=l

ho(C=1) A = = a"
_o_(____)+ (mn)am:_z Y %F(mn.pq) (1
p=14q=1~

1o mn
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For the HTSWG. when using a similar orthogonality property (see the Appendix
for the proof). one can obtain from eqns (8) and (9) by muluplying the HTSWG
wave functions and integrating on both sides of each of the two equations

[

golpg(1+T)+ Y angtmn. pg)=a?f(pg) (1)
1 n=0

[}

m

(pgI' =1 = & a,,. d,, .
QL+ YOS Tyimnopg)= - fipg) (13)

~10 m=1n=0 ~mn

where z,, is the wave impedance of dominant mode TE,,. -, and a,, are the wave
impedances and amplitudes of higher-order modes in the CWG: -*? and 4 are the
wave impedance and amplitude of mode TE? in the HTSWG. respectively. Other
quantities are known and given below

h
hO :aT (14’
nbm
h(mn):ztk_2 s,
I 1 +(— 1)™(B& sin k?%a— cos k"a)
a
I +(— D(CE sin k2% —cos k2%)
PR : (16)
(k20 < ”
1+C kpq —BPq Sn kpq .
_n 0s xf 0 ATy _cos k2% + C8¥ sin k2%
T (E) ~ ke’ K (a7
a
mmk?? 1 +cos kf%a— BE® sin kf%a
—_ ¥y 3
T (?) (k2
I —cos k2% + CB? sin k;qb
nm\? (18)
abk??

In order to solve (10)-(13) for input impedance and reflection coefficient, etc., we
use the iteration method according to the order of one, two, three or four modes in
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the HTSWG. Here. only the expressions of one mode are given at the transition
interface = =0 (see Fig. 1). The input impedance is

Z,=— (2

and the reflection coefficient 18

r="—2° (21

where Z'! is the wave impedance of the dominant mode TE'! in the HTSWG. The
magnitude and argument of the complex reflection coefficient [, with incidence from
the CWG. are plotted in Fig. 2 as functions of frequency when one. two. three or
four modes are considered. All magnitude and argument curves show simlar
behaviour. Note that the reflection coetficient magnitude T approaches unity when
the frequency approaches the cut-off frequency. Above the cut-ofl frequency u
decreasing value of [ implies a real power flow into the HTSWG. As more modes in
the HTSWG are considered. [T, and LT converge to the dashed curves. Since the
characteristic impedances in the two different waveguides are quite different. this

.8 —
Ry

.7

.6 .
x one mode Sl T
® two modes -
® three modes

.54 ¥ four modes — 10°

— 50
P e
2 1 i I o°
1.92 1.94 1.96 1.98 2.00
£/t

Figure 2. Magnitude and argument of reflection coefficient " as a function of frequency.
(a=2b=229cm. 4, =36x107"m. f,=0655GHz f"=12:6 GHz. BW =605GHz.)
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type of variation of I is similar to that described by Safaui-Naina and Macphire
(1982). In Fig. 3. Z,, is plotted against the frequency. Tt should be noted that Z,, and
[ are both real quantities when only one mode is considered in the HTSWG.
Similarly, the dashed curves are the results when sufficient modes in the HTSWG are
considered. It is estimated that 20 modes in the HTSWG will give exact results.

As shown in Fig. 4. the equivalent inductance decreases with frequency. This is
due to the superconducting nature of the HTSWG and is independent of the
dimension-variation type of discontinuities.

In conclusion. it is found that the transition from a conventional to supercon-
ducting wavegwide gives rise to large reflection { 09 near /|, and decreasing almost
linearly with frequency). It 1s suggested that transformers or other devices for
matching are required.

Appendix
Proof of orthogonality of the HTSWG wave functions

Let u and v (u#r) be arbitrary eigenfunctions in the HTSWG obeyving the
Helmholtz equation and the Meissner boundary conditions. We obtain

1.2
— 1.1
~ 1.0
- Lo
29
R, x10'! - 0.9
Zo
1.0~ — 0.8
.
x one mode
e two modes
0.8+ s three modes - 0.7
v four modes
0.6~ -
0.4 -
0.2
s
s
0 ]

/€,

Figure 3. Input impedance Z,,=R,,+jX,, as function of frequency. (a=2b=2-29cm,
AL=36x10""m. f,,=65GHz. f"=12-6GHz, BW =6-05GHz.)
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e two modes
three modes
v four mcdes

-
.
[ DR
.

¥
o
L

|
Y | . : ‘ ; £/80

Figure 4. Input inductance us function of Irequency. (w=2h=2729cm. s =36107 m

f14=6-55GHz. /" =126GHz. BW =6:03GHz)

Viu+kiu=0 (A D
cu 1
———u=0 atx=0.x=a:y=0.y=b (A2)
én Ay

Viv+kir=0 (A3)
cv 1
———0v=0 atx=0 x=ay=0,v=0b (A4
én A

then

Uéu o +(k}—kD “(° dx dy=0 AS
—_— U — - L= + d. [
. on on ¢ 0 om v (A3)

By using Green’s theorem. it follows that
a (*b
j J. (V3 +kDu—u(Vi+ki]dxdy=0 (A6)
0 JO
From the Meissner boundary condition. we obtain the following relation:
vy uv\ , , fe ¢t
§ (—_——,— d1+(k;—k;)J J ur dxdy=0 (A7)
AL AL 0 Jo

that is
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1kf—k§)i.J wr dx di=0 (A8)
Q

v
Generally speaking. k. #A,. and we obviously have

a b
[ ur dxdy=0 (A9)

v JO

hence the modal wave functions for the HTSWG are orthogonal.
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Meissner model of superconducting rectangular waveguides

YEN-CHU WANG+, ZHENG AN QIU* and
RAJ YALAMANCHILIT

The propagation properties of the TE? mode and their dispersion relations tn 4
high temperature superconductor {HTS) rectangular waveguide using the Meissner
hounduary conditions on all four superconducting walls are presented. In addition
to recovering some previously known results, we have obtained some unique and
novel results: the dominant mode for HTSWG is the TE'' mode (instead of the
conventional TE,, mode) and the tangential electnie field and normal magnetic
field for the dominant mode TE'! exist on the surfaces. The expressions for
electromagnetic components, surface current. attenuation coefficient. the maxi-
mum transmitted power, dispersion and wave impedance are also presented. The
attenuation is found to be much smaller than that of the convenuonal waveguides
and the dispersion 1s negligible. The Meissner model presented here has been
proved to be valid and powerful for analysis of superconducting waveguides. For
the first time, we have shown that the Meassner boundary condition i1s a key
element in boundary value problems for superconductor electromagnetics.

1. [Introduction

Since the advent of high temperature superconductors (HTS), many supercon-
ducting electronic devices have been sought at liquid nitrogen temperatures (Nis-
enoff 1985, Van Duzer and Turner 1981). Incorporating HTS materials in guided
wave systems at microwave and millimetre wavebands is very promising for high
speed digital (Hilbert ez al. 1989), high frequency analogue (Hammond er al. 1990),
waveguide and transmission line applications in microwave and millimetre-wave
devices and circuits (Richard er al. 1992, Winters and Rose 1991, Pond and Krowne
1988). Some novel applications of HTSC transmission lines and devices have been
given by Yalamanchili er al. (1992) and Heinen ez al. (1991).

The advantages of using HTS at high frequencies include: firstly, very smail
losses, which means low-attenuation and low-noise; secondly, very small dispersion
up to frequencies of several tens of GHz (Kown er al. 1987); thirdly, smaller device
dimension; and finally the propagation delay time can be greatly reduced because of
the smaller size and the shorter interconnects (El-Ghazaly er al. 1992).

Experimental and theoretical results have shown that HTS waveguides
(HTSWG) and transmission lines exhibit significantly better performance than their
identical metallic counterparts. This is because metal transmission systems have
ohmic losses at microwave and millimetre-wave bands at which the conventional
waveguides (CWG) have extremely high signal attenuation (10*dBkm™' at
200 GHz (Microwave System Design's Handbook 1987)), and therefore are not
practical for transmission except over very short distances. The attenuation problem
can be virtually eliminated through the use of HTSWG and superconducting
transmission lines.

Received 18 October 1993; accepted 12 November 1993.
+Department of Electrical Engineering, Howard University. Washington, DC 20059,
USA.
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The superconducting waveguides have been studied previously for low T,
superconductors (< ¥ Kj (Alaux and Wybouw 1976, Rohner 1978, Zepp ef al. 1977,
Fabre er al. 1981). The modelling of the propagation process in HTS transmission
lines has been dealt with by many authors, using both the two-fluid model and the
Matus-Bardeen theory (Dykaar ez af. 1988, Lee er ul. 1988. Lam eral. 1992, Lee and
Barfknecht 1992). High-T, (T.>30K» superconductors have different properties
from low-T. superconductors. This paper describes the propagation properties of
transverse electric (TE) modes in HTSWG based on HTS electromagnetic theory
and the Meissner boundary condition consistent with the two-fluid model. We will
describe a direct approach for obtaining the general electromagnetic ficld component
expressions. surface current distribution. maximum transmitted power, critical
current and electrical field for breakdown, attenuation coefficient. dispersion proper-
ties. and wave impedance and compare them with the CWG. wherever possible. Our
research confirms that the dominant mode in HTSWG is the TE'! (sce below) mode
instead of the TE,, mode. Another new property of HTSWG is that the tangential
electric field and normal magnetic field of the TE!! mode are non-zero on the
surfaces of walls. This property is quite different from the idealized CWG in which
the tangential £ and normal H on the surfaces ure equal to zero.

So far the applied physics and engineering researchers’ main interest in the high
frequency electromagnetic properties of high T, superconductors has been the very
low attenuation of the EM waves and they have rarely been interested in other,
usually more intrinsic. EM properties. This research opens up a new chapter by
emphasizing one of the most important EM properties of the superconductors. i.e.
the Meissner effect. It can be shown that the well-known boundary conditions for
good or perfect conductors are no longer valid and they have to be modified to
account for the Meissner effect or the diamagnetic property. The new boundary
condition (called the Meissner boundary condition) gives rise to different field
solutions hence new waveguide characteristics such as bandwidth, attenuation,
current distributions, and others. This model is not only applicable to the waveguide
but also to all microwave and millimetre wave engineering problems as long as
superconductors. instead of normal metals, are used.

In §2. the most important dispersion relation of HTSWG is derived from the
wave equation and the Meissner boundary condition. Expressions for electromag-
netic field components and surface currents including the surface superconducting
current J,, and the surface normal current J,, based on two-fluid theory are given.
Various parameters of HTSWG are analysed and compared with CWG. The
conclusions are given in § 3. Finally detailed derivations of some formulae are given
in the Appendices.

2. Theory
2.1. Wave equation and numerical solutions of cut-off wavelength

In this section, we analyse a HTS rectangular waveguide with all four walls
superconducting. A rigorous formulation based on Maxwell's equations and the
Meissner boundary condition is used to obtain the unique electromagnetic field
properties in the HTS superconducting waveguide.

The governing wave equation (Helmholtz equation) and the Meissner boundary
condition for the longitudinal magnetic field H. of the TE mode in an air-filled
HTSWG are as follows:
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s

ViH.+kIH, =0 (h

cH. |
o —H.=0 at x=0.x=a v=0,1y=5 ()
vn Ay

where the operator Vi is the Laplacian operator in the transverse plane (i.e. xy-plane),
Propagation in the = direction is assumed. The parameters « and b are the HTSWG
width and height, respectively. &, is the cut-off wavenumber. 4, is the London
penetration depth. for HTS, its values vary from 107 %mto 10” " m(Burns 1992). This
parameter. which is a measure of the distance of magnetic field penetration into the
superconductor, is very important not only because it can provide information about
the fundamental mechanisms for superconductivity in materials but also because of its
sensitivity to the quality of the superconductor near its surface. We call (2) the
Meissner boundary condition. It accounts for the important Meissner etfect in which
the fields do not vanish abruptly from the surface of a bulk superconductor. rather.
they decay exponentially into the bulk. The penetration depth /., 1s the charactenstic
decay length of the magnetic field into a superconductor. [t is obvious that when
s — x. the second term of the Meissner boundary condition approaches zero. the
above equations reduce to the boundary condition (CH. ¢n)=0 for the CWG.
Therefore. the first term of (2) is related to the properties of the idealized CWG and the
secondary term is related to the properties of the HTSWG. Thus the Meissner
boundary condition can be taken to be of relevance to the two-fluid SC model.
We assume that the general solution of the governing equation is as follows:

H.=(Ag sin k. x+ A, sin k,x)(A; cos k,y+ Ay sin k,)) (3
where Ay, A;. A,. A, are the unknown coefficients and none of them are equal to
zero. The k, and k, are the unknown wavenumbers along the x and v axes. respectively.

Substituting (3) into the Meissner boundary conditions, we obtain two sets of

equations for k, and k,

1

-—Ao—kxAI.:O (4‘1)
A,
k in k
(k, sin k,a—co—s,—“-'> Ao—(k, cos ka+ ‘a> 4,=0 (4b)
AL AL
|
— Ay —k,A,=0 (5a)
AL
k in k
(k, sin kyb_M> 4, —(k). cos k,b+ ‘“) 4,=0 (56)
Ar AL

For non-trivial solution condition. the two determinants of coetficient matrix
have to be equal to zero
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bl
= -k
LML
} =) (6a)
cos k sin k|
k. sin /\;u—io——rf—u —k cos "\}J"bl . "d
E 13 [
l
P -k,
| /‘.L
=0 {6h)
os k b sin A A
k, sin k)b—t(ib:f - —k,cos "'vb’b’l' -
Ay ' L

Therefore. the two important dispersion relations in two trunscendental equa-
tions are obtained from the above determinants as

e ks ]

MR = it 1 o
2.k,

tan /\)b = (EST;T (8H

The roots of these two equations describe the dispersion relations as a function of
the London penetration depth and dimensions for HTSWG. A graphical method is
used for solution as shown in Fig. | from which the cut-off features will be obtained.

Substituting (4 «) and (5 a) into (3). we have (see Appendix A)

1 l
H.=AyA4, (cos ko x+-——sin kx| {cos k,y+—sink,y (9a)
\ k.ry kyiy ¥
or
H.= A, Ak, 2y oS k X +5in k X)(k Ay COS K) +5InKL¥) (9h)

[tis obvious thatk, #0and k, #0 from (9 ). otherwise the solution becomes trivial.
Our dominant mode is designated to be TE!!. Thus the dominant mode is no longer the
TE,, mode. This important conclusion is completely different from that of CWG in
which the TE,, mode is dominant. The above formula. however, does cover that of
CWG in which H.=H, cos k,x cos k1 when 2, — x as evident from (9 a).

Substituting (3) into (1). we have

kl=ki+k; ‘ (10)
therefore, the cut-off wavelength /. is obtained as follows

. 2n
ro=

. H

<
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Modes u=1mm a=2mm a=4mm a=8mm
TE' 0393 (2nt 1790 (4 0) 3379 (8, 7-138 (16-0)
TE-! 0708 (1) 4132 2829 (4 3639 (80)
TE?! 0-353 (-394 UL (1789 2219 3:57%) 4428 (7155
TE'- 0-4%6 (0-70T) 971 (141D i 941 (2-¥2%) 3882 (5637)
TE:: )443 10-485) 0895 1097 1790 (1-940) 3137912381
TE'? 0-329 10447 0633 110394 1 ‘Ih (1-789) 26311357

* The Boures on parentheses are the corresponding cut-otl wavelengths tor the first six TE,, modes in
CWG
Cut-off wavelengths for some TE? modes 15, =10~ m. a=2h: for s, = 107" m. there i5 little
difference between the values).

220 Field components und surtace current distributions

The field component expressions for the TE mode can be determined from the
axial magnetic field H, by means of the relations between the transverse and axial
components as follows.

From (96). let By=4k,. Co=7,k, and Hy= A4 4; for simplicity. Then the
magnetic field axial component H. becomes (see Appendix A)

H.=HyB, cos k x~sin kA x)(C, cos kv +sin kv) {(12)

where H, is an unknown coefficient depending on excitations, By and C, are
proportionality parameters, but they are different for different modes and penetra-
tion depth. The wave factor in the form of exp (joe —72) is assumed. The real part x
of the propagation constant ; is the attenuation constant. the imaginary part f is the
phase constant and w is the angular frequency.

Other field components can be expressed as

k,

H,.= Ji H (B, sin k,.x —cos k,x)(C, cos kv +sin k,p) (13a)
1 =% 4 (B, cos k k x)(C, sin k, k, 134
= o( By €05 kx +sin & x)(Cy sin k,y —cos K3) (135)

jUﬂoky
E‘=—P—H ol By cos kx +sin k x)(C, sin k,y—cos k1) (13¢)
Jwopoks & v +sin K,y 3d
E = 3 Hy(— By sin k x +¢os K x){C, cos k,y+sin K,1)) (134d)

where g is the permeability of the material. assumed to be that of free space.
The wave impedance Z£? of HTSWG 1s defined as

qu...g_—_ﬁ"—“)'uo (14)

H=-= H, p°
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Modes u=lmm a=2mm g=4mm g=8mm
TE'" 0-895 (2t [-790 (4:0) 3579 (80)) 7158 (16:0y
TE! 0-708 (1-0) 1-415¢2:0) 2829 (41 5-659 (80)
TE*! (0-335 (-394 L (1789 2219 (3-378) 1438 (7-133)
TE!'? 0-486 (0-707) 0971 (1414 1941 (28284 3882 (3-65T)
TE-=: 0-448 (0-38%) 0-893 {0:970) L7790 (1940 3579 (3-881)
TE!? 0329 (0-447) 06358 (1894 1-316 (1-789) 2631 (3:378)

+ The tiaures in parentheses are the corresponding cut-off wavelengths for the first six TE,. modes in
WG
Cut-olf wavelengths for some TE? modes (4, =107 "m. a=2h:for 7, =107 m. there is little
difference between the values).

2.2, Field components and surtace current distributions

The field component expressions for the TE mode can be determined from the
axial magnetic field H. by means of the relations between the transverse and axial
components as follows.

From (95h). let By=4.k,. Co=4k, and Hy=A,A; for simplicity. Then the
magnetic field axial component H, becomes (see Appendix A)

H.=H,(B, cos k x+sin k x)C,cos k v +sin ky) {12}
where H, is an unknown coefficient depending on excitations. B, and C, are
proportionality parameters, but they are different for ditferent modes and penetra-
tion depth. The wave factor in the form of exp (jwr—y2) is assumed. The real part x
of the propagation constant y is the attenuation constant. the imaginary part f§ is the
phase constant and w is the angular frequency.

Other field components can be expressed as

H, =J% Hy(B, sin k x—cos k,x)(C, cos k1 +sin k) (13a)
H,=J% H (By cos k ¢ +sin k_x)(C, sin k,y —cos k,) (13b)
E,:j“’::;k’ H,( B, cos k x +sin kx)(Cy sin k,y —cos k,y) (13¢)
E,=jﬂl‘<i§k—-‘ Hy{ — B, sin kx +cos kx)(Cycos k,y +sink,y)  (13d)

<

where y, is the permeability of the material. assumed to be that of free space.
The wave impedance ZZ¢ of HTSWG is defined as

E E

w
qu x _ Ko

=_t= = 14
* TH, H, p (9
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Figure 2. Distribution of electric field £, and E, for TE'' mode in a cross-section. (u) E..
(h E,.

The instantancous field expressions for the dominant mode TE'' in HTSWG can
be obtained as

H.=Hy(B, cos k X +sin k.x) (Cy cOS K,y +sin k1) cos (wit = f2) {13a)
k

Hx=%f H,(B, sin k,x —cos k,x)(Cg cos k¥ +sin k,v) sin (wr—f2) (15h)
B, o . | .

H, = -7 H (B, cos kx+sin & x)(Cg sin k,v—cos k,y) sin (wt—pf2) (15¢)

Wik, . . .

E.=— e H,(B, cos k. x +sin k x)(Cy sin kv —cos k,y) sin (wr—pz) (15d)
Wik . . : -

E,= k_f Ho(— By sin k x +cos k. X)(Cq €Os k) +sin kyy)sin(we—=B2) (13¢)

2n
B=- (16)

where k., B, and 4, are the cut-off wavenumber, the phase constant, and the waveguide
wavelength of the TE*! mode, respectively. k and k, are the wavenumbers of the TE*!
mode along the x and y axes, respectively. Note that the superscripts LI for the
dominant mode have been suppressed here and below unless otherwise stated.

The above equations (15 d) and (15e) demonstrate obviously that due to B, and
C, being very small, the space distribution of the electric field E, of the TE'! mode is
proportional significantly to cos k. xsink,y, which means that the tangential electric
fields exist on the surfaces (x=0 and x=a) of HTSWG and has maximum at y<h-2.
The space distribution of the electric field E, is proportional mainly to
sink xcosk,y, which also means that the tangential electric fields exist on the
surfaces (y =0 and y=»5) of HTSWG and are a maximum at x > a/2. The unique and
novel property of the finite electric field tangential components on the surfaces of
HTSWG was obtained first, which is completely different from that of a perfectly
conducting CWG since, for H,#0 and for a finite surface impedance at microwave
and millimetre wavelength, the tangential components of E on the walls are finite.
For details of the field distributions see Fig. 2.
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Figure 3. Distribution of magnetic field H_. H  and H_ for TE!' mode in a cross-section.

(a) Heo (b Hy (o) H..

The above equations (154a), (154) and (15¢) demonstrate obviously that as B,
and C, are very small, the space distribution of the magnetic field H, of TE'' mode
is significantly proportional to sink,xcosk,y. which means that the tangential
magnetic field is very small on the surfaces (x=0 and x=a) of HTSWG and normal
magnetic fields exist at surfaces of y=0 and y=5. The space distribution of the
magnetic field H, is proportional mainly to cosk, xsink,y, which means that the
tangential magnetic field is also very small on the surfaces of y=0 and y=54 of
HTSWG and the normal magnetic field exists on the surfaces of x=0and x=4. On
the other hand, due to H.xsink,csink,y. the magnitudes of the tangential
magnetic fields are negligible on all four surfaces. Details of field distributions are
given in Fig. 3. The above results demonstrate that the magnetic field lines are not
continuous in HTSWG (Orlando and Delin 1991), which is in agreement with the
Meissner effect. but the magnetic flux density B is continuous in and out of HTSWG
walls because B = y,(H + M) (M is the magnetization density in the walls and is not
equal to zero). This also is a unique property in HTSWG, which does not exist in
CWG.

The London equations and the two-fluid model are used to investigate the
current distribution. The total conduction current density consists of the supercon-
ducting current density J, and the normal electron density J, based on the two-fluid
model. This model assumes that the conducting electrons in the HTSWG walls are
divided into two categories. We use a different method to describe their distribution.
The 'surface superconducting current ), due to superelectrons is calculated based on
the London relation and appropriate boundary condition first. Then the normal
surface current J,, due to normal electrons and the losses are calculated using the
approximate resistive boundary condition and the perturbation approach.
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The superconducting current J, in four isolated walls model in which each wall is
considered as a simplv-connected superconductor using thin film substrate and cun
be given as

J,=—-A (17w

This equation 1s called the London relation. where A =u,/7. A in units of
Te<ua-meter. is the vector potential in HTSWG. Let the vector potential inside the
ur-tiled hollow region in the waveguide be A, It satisfies the following equations.

VxA,=B (17 h)

JOILGE

Thus London relation guarantees that the vector potential is a real field) that s
definitely specified. Equation (17¢) is called the Lorentz gauge. which gives nise to
the relation between electric field E and vector potential A, in the alr region.

Before solving the current distribution problem, it is important to determine the
boundary conditions at a boundary between the two media (here the superconduct-
ing medium and the air). The boundary condition on the tangential components of
fields (), and A,) for the simply-connected SC is

]\l':_‘x Adl (18)

where the subscript ‘af’” denotes the component tangential to the boundary in the air
or the applied field region, the subscript “st’ denotes the component of supercurrent
density tangential to the boundary in the HTS. Note that J,, is the bulk current.
Once A, is known, the current density K,,. and surface supercurrent density J,, are
readily calculated. The solution satisfying (175) and (17¢) is obtained from B as
follows

A,.=Ay(By sin k x +cos k XN Cysin kv +cos k,v) (19 a)

Ak .
A S0 (B, cos kx—sin k x)(Co sin k) +c0s k.y)

B

_Ho%s g (B, cos kox +sin k,x)(Cy sin K,y —cos k,v) (19 5)

>~

AgK .
Aay =j—%——y (B sin kx +cos k XN C; cos K,y —sin k)

K
+/'i‘i: * Ho(Bg sin kx —cos K x)(Cq cOs ky+sin k) (19¢)

<

The surface supercurrent distributions on the isolated walls are obtained (see
Appendix B) as follows
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y=0 plane:

Jo=J a2+ /A

$5X

Hok /40kx :
A e Hy(By cos k x+sin K, x)+ ; (B, cos kx—sink.x) |a,
A2y )
e (B, sin k x+cos k x)a. (20 4a)
v=54 plane:

js:l_'] a +Jsra'

55X

z/—'f L Hy(By cos k x+sin k \)4-}—0!\1(3 COs kK x —sin k_x)
A /q 0 B N
Agry
+ T_(BO sin kv +¢os K x)a. (20 h)
i
x=0 plane:

Jou=Ja,+J, .a,

ssy @y

k, JAok
’\'“I:—uzz O(CocosA\+51nk1)+ ; 2 (Cq cos kv — sinkvy)]a
I c )

Agry

A

(Cosink y+cosk,yla, (20 ¢)

x=a plane:

Ju=Ja,+J 2

35yTy

i Hok JAok,
sA[ kc Hy(Cy cos k,y+sin k,y) +—— 3

Aot
A

(Cy cos k,y—sin kyy)] a

(Co sink,y +cos k,yla. (204d)

where J.. J,, and J,,, are surface supercurrent magnitudes on the walls along the
x, v and : directions, respectively. We consider here that the superconducting current
decays exponentially in the walls, therefore the current is mainly carried by the
superconductor surface adjacent to the air in the HTSWG. [t is easy to see that the
surface supercurrent and bulk current are very large because the amplitude of J,, is
proportional to /4, (A = puyi}) which is about the order of 107, All high-T, materials
are type Il superconductors. In the Meissner phase, we assume that the critical field
H., =77 to 385Am~! (depending on temperature) for HTS sample
YBa,Cu,0,(88:2k, H-¢ axis) (Wu and Sridhar 1990), therefore Hyx13 to
660 Am ™!, then the theoretical values of supercurrent density are estimated to be
about 10°~8 Acm ™2 which is in excellent agreement with other data (Burns 1992,
Heinen er al. 1990, Miranda et al. 1991, Levenson er al. 1991). The distribution of
surface supercurrent of HTSWG is shown in Fig. 4. (It should be noted that the
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Figure 4. Distnibution of surface supercurrent and normal current on walls for TE'! mode
in 1 cross-section: (¢) x=0 plane: (h) x=a planei (¢} ) =0 plane: (d) v=h plane.

distributions of the real and imaginary parts of the surface supercurrent of HTSWG
are same.)

The surface normal current distribution at its boundaries can be obtained using
approximate resistive boundary condition n x H =), (Senior 1973) as given by

on the v =0 plane:
lel = 'IS’l:a: + JS'IXa!

Bk
= “jizx HoCo(By sin kx—cos kx)a,+ HoColBy cos kv +sin kxja, (zta)

<

on the y =5 plane:
’Sll = ‘]Vl:a': + ‘lmxax

1HS
=j%:_" o( By sin kx —cos k. x)(C, cos kb +sin kb)a.

<

— Hy(Bg cos kx +5sin k,x)(Co cos kb + sin k,h)a, (21h

on the x=0 plane:

Jm = an:a: + anyay

Bk A
= —j%:—* HyBy(Cy sin k,y —cos kypa. + H,By(C,cos ky+sin Kyia, (21

<
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on the x =a plane:
,SNZJSH:a:+J a

sny=y
—jBk”HB cos K sin & ink v—cos kv
== ol By cos k a—sin k a)(C, sin kv —cos &, 1)a.

c

— Hy(Bg cos k.a+sin ka)(Cqy cos Ay +sin kova, Q2ld

where J,.. J,,, and J,,. are the surface normal current magnitudes on the walls
along the x. v and - directions, respectively. It is easy to see that the distribution is
the same as that of the surface supercurrents. The losses of HTSWG come from the
surface normal currrent flowing through the small surface impedance. It is predict-
able that the losses are very small because factors B, and C, are very small. The
distribution of surface normal current of HTSWG is shown in Fig. 4.

2.3, Autenuation coefficient

The attenuation (caused by the surface normal current) based on the two-fluid
model in HTSWG walls can be calculated by the perturbation technique as given by
(see Appendix C)

PUE) _ g IKIKIBT KUK 4+ 2K5)
2Pm : bw“ol}ké

%P9

For the TE!' mode. a=2mm, b=1mm. k,=2140017 mm, k,=2r,2:001 mm.
k.=2r 179 mm, substituting into (22), we have approximately

N2
I [0-36+(7‘)j
< 104RZ b 4B km-~ ! 23)

)

where f. is the cut-off frequency of the TE'! mode. R, is the surface resistance of the
HTSWG walls in ohms. The unit of 4 is the millimetre. Note that the attenuation is
not only proportional to f? because R,xf? (Romanofsky and Bhasin 1991), but is
also proportional to 4. The relation curve of the attenuation coefficient x versus the
frequency f is shown in Fig. 5 where R,=50x 107282 and a=2b=2mm.

The losses in HTS waveguides are generated from two sources: superconductor
loss and dielectric loss. Typical superconducting waveguides used in microwave and
millimetre-wave circuits use low-loss dielectrics or free space, so the dominant loss
mechanism is the superconductor loss. This kind of loss is caused by the current of
normal electrons in superconducting bulk based on the two-fluid model theory. The
paired superconducting electrons are dissipationless because they cannot be scat-
tered without breaking pairs. The microwave surface resistance of superconducting
films has been found to be as low as the order of micro-ohms. These surface
resistance values are lower than those for Cu at the same temperature by a factor of
several tens. Such a surface resistance gives a small power loss. For example,
R,=116mQ (77k) at 58-6 GHz (Heinen er al. 1990). A, =10"7m, the attenuation
coefficients are found to be about 1'1 x 107*dBkm ™", which is much smaller than
that of CWG (see Fig. 5). If the penetration depth 4, =36 x 10~ " m for the case of

=
u
(9]
(3]
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conduction along the c¢-axis and the surface resistance is equal to 10-3mQ (60k) at
14367 GHz (How er al. 1992), the aticnuauon coefficient 1s tound to be 93
x 107 dBkm ™"

3.3, Phuse velocity. group velocity and phase dispersion

Superconductors have a frequency-independent penetration depth o the tera-
hertz range that determines field penetration into the matertal rather than a
frequency-dependent skin depth as for normal conductors. This meuns that super-
conductars introduce practically no dispersion into a microwave cireuit. Dispersion
in HTSWG. if any. is due to the frequency dependence in attenuation which has
been shown to be negligible because of the very small attenuation coetficient. The
dispersion caused by frequency dependence of the phase velocity is almost the sume
15 for the CWG. The phase velocity v, and the group velocity r, of the TE!! mode
cun be shown to be given by

phase velocity

T 124

group velocity

where ¢ is the speed of light in free space.

Our work shows that the phase velocty v, of the HTS waveguide for the
dominant TE!! is slightly smaller (about 0-1%) than that of conventional wave-
guides with the same dimensions and frequency because f_ is smaller than that of the
CWG. Therefore, the dispersion produced for the same geometry is practically the

- ! j |
a | <102 ‘
x i
> | !
3 ! | \ i
= .8 } . | |
- \ ! |
< \ j ‘ cucl
~ 3
2 e — ‘
3 \\ a=minlaum at £=2.41f, for CWG
:} \\ geminizus at f=1.47f, for HTSWG
"E A ! 4 - " ‘
e l ] ‘ HTSWG!
9 . : !
3.2 y
s 1 \
- l ‘ 1
< | B
i
Q
1 1.2 1.4 1.6 1.8 2

Frequancy (€/f;)

Figure 5. Attenuation due to wall losses versus {requency. A =10""m.
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same. In summary, the signal distortion due to dispersion in the HTS waveguide is
reduced dramatically because it has no dispersion due to attenuation.

2.5 Maximum transmitted power ( dominant mode,

The maximum transmitted power in HTS waveguide 1s given by (see Appendix

D}
ab JAGALE
m.u=—'“w[Em.u’ - _‘ ) (26)
P 8 l( (1>

where n, is the intrinsic impedance of the medium inside the waveguide and ' E ,,!.
the magnitude of the electric field intensity 1s given by

. (W, .
lEm.al": Hl)iv/;" (:/)

<

In the Meissner phase. the maximum electric field intensity and power in
HTSWG are smaller than that of CWG (29kVem and [ kW), For example, they
are about 60Vem, 13mW for H,,x77mAcm~! and 3kVem™!, 32W for H,,
= 3-85Acm ™!, respectively. It is clear from eqns (26) and (27) that the transmitted
power and maximum E are dependent on the London penetration depth (k. <1 4.).
The larger the London penetration depth, the larger is the transmitted power and
maximum E. It should be noted that the penetration depth also increases with
temperature. which means that more power is carried by the HTS waveguide.

3. Conclusions

A theoretical analysis for the HTS rectangular waveguide is presented. It 1s based
on HTS electromagnetic theory and the Meissner boundary condition. The import-
ant implications of this paper are: firstly, the bandwidth of the HTS rectangular
waveguide is only 1-27:1 which is less than that of a conventional metallic waveguide
with the same dimensions; secondly, the tangential electric field and normal
magnetic field of the TE'! mode are finite on the inner surfaces of walls, which
demonstrate another quite different property between the HTSWG and the idealized
CWG:; thirdly, the magnetic field lines are not continuous in HTSWG, which is the
result of the Meissner effect; fourthly, because the surface supercurrents are very
large and the surface normal currents are very small (the attenuation is very small),
the attenuation coefficient of the HTSWG is smaller than that of the CWG by about
10*-10" times for different surface resistance and penetration depth. Also, the
dispersion caused by attenuation is negligible. This is also quite different from the
CWG: fifthly, in the Meissner phase, the maximum electrical field intensity and
transmitted power are smaller than that of the CWG because the critical field H, | is
very small; sixthly, the dispersion is negligible compared with the conventional
waveguide, as there is no dispersion due to attenuation; and finally, the wave
impedance ZE* has the same expression as the CWG.

Superconducting waveguides distinguish themselves from normal metal wave-
guides in the microwave and millimetre-wave bands. Firstly, much lower surface
resistance can be obtained with superconductors, giving rise to much lower loss.
Secondly, the superconductors have a frequency-independent penetration depth that
determines the field penetration into the material rather than the frequency-
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same. [n summary, the signal distortion duc to dispersion in the HTS waveguide 15
reducad dramatically because 1t has no dispersion due to attenuation.

250 Maximwm transmizted povwer - dominant mode

The maximum transmitted power in HTS wuveguide is given by tsee Appendix

D
ab £ | _/L 22 A
.nrn.u - 8)][) max ( {f) ) (-6)
wherz 1, is the intrinsic impedance of the medium inside the wavegurde and £ .

the magnitude of the electric field intensity s given by

_ I,
Fow = Hy, (27)

A
[n the Meissner phase. the maximum eiectric Beld intemsity and power in
HTSWG are smaller than that of CWG (29kVem and 11kW). For example, they
are about 60Vcem, 13mW for H,,x77mAcm ™! and 3kVem ™', 32W for H,,
x383Acm L respectively, [tis clear from egns (26) and (27) that the trunsmitted
power and maximum E are dependent on the London penetration depth (A, <l 4;).
The larger the London penetration depth. the larger 1s the transmitted power and
maximum E. It should be noted that the penetration depth also increases with

temperature. which means that more power is carried by the HTS waveguide.

3. Conclusions

A theoretical analysis for the HTS rectangular waveguide 1s presented. [t is based
on HTS electromagnetic theory and the Meissner boundary condition. The import-
ant implications of this paper are: firstly. the bandwidth of the HTS rectangular
waveguide is only 1-27:1 which is less than that of a conventional metallic waveguide
with the same dimensions: secondly. the tangential electric field and normal
magnetic field of the TE'' mode are finite on the inner surfaces of walls. which
demonstrate another quite different property between the HTSWG and the idealized
CWG: thirdly, the magnetic field lines are not continuous in HTSWG, which is the
result of the Meissner effect: fourthly. because the surface supercurrents are very
large and the surface normal currents are very small (the attenuation is very small),
the attenuation coefficient of the HTSWG is smaller thian that of the CWG by about
10*-10" times for different surface resistance and penetration depth. Also. the
dispersion caused by attenuation is negligible. This is also quite different from the
CWG: fifthly. in the Meissner phase. the maximum electrical field intensity and
transmitted power are smaller than that of the CWG because the critical field H, | is
very small; sixthly, the dispersion is negligible compared with the conventional
waveguide. as there is no dispersion due to attenuation: and finally. the wave
impedance Z§? has the same expression as the CWG.

Superconducting waveguides distinguish themselves tfrom normal metal wave-
guides in the microwave and millimetre-wave bands. Firstly, much lower surface
resistance can be obtained with superconductors. giving rise to much lower loss.
Secondlyv. the superconductors have a frequency-independent penetration depth that
determines the field penetration into the material rather than the frequency-
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dependent skin depth charactenizing normal conductors. This means that supercon-
ductors introduce no dispersion into a microwave and millimetre-wave system.
Based on these unique characteristics, the HTS waveguide is reasonably attractive
for several applications.

This paper has reported that the Meissner mode! presented here has been proved
to be valid and powerful for a more rigorous analysis of superconducting electro-
magnetic waveguides than those previously attempted which only considered the
surface resistance. It should be noted that the Meissner condition has fully
accounted for the EM property of an SC surface in the microwave and millimetre-
wave bands although it 15 only indirectly related to the attenuation or surface
impedance which is due to the presence of both superconducting and normal
electrons, as in the two-fluid model. This is the first successful attempt to model the
propagation characteristics of HTSWG using the Meissner boundary condition. We
have shown that the Meissner boundary condition is a key element in boundary
value problems in superconductor electromagnetics without which its intrinsic
electromagnetic properties will not be complete.

This paper has discussed only the case of four isolated SC walls (thus four simply
connected SCs) in order to simplify the calculation of the surface current. In the
future the case of doubly connected SC waveguide with all four walls as one piece of
SC will be considered wherein the surface current will be seen to depend on the
magnetic flux quanta passing through the waveguide. Also he anisotropic resistivity
effect on the SC waveguide propagation as well as the scattering properties will be
presented.

Appendix A
Axial magnetic field H,

From (44a) and (5 a), two relations can be obtained as follows
Ao=k i A, (Ala)
Az=k’A..LA3 (Alb)

Substituting above two equations into the general solution (3), we have

H, (Ao cos k,x+kxh sin k,x) (Az cos k,y + k,}. sin k,y)

1
= —sink — s
AgA, (cos k.x+ % Jz. sin t) (cos k,y+ i sin k,y)

= A A;(dck, cos k x +sin k,x)(ik, cos k y+sin k)
= H (B, cos k,x +sin k, x)(Cq cos k,y +sin k) (A2)
WhCI’C HO=A1A3' BO=kXA‘L' C0=kyll'_.

Appendix B
Calculation of surface superconducting current

y=0 plane:
From (18), we have
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(B L)

Therefore. the surfuce currents can be obtained based on the Meissner effect as
follows
"O
J o= Jooexp o2 dy
T =0
\‘ JHBocosk x+sink o) ' (Cosin kv —cos hkyyexp (v 2 )dy

A

I

Ak : = _ )
- i {B, cos A x —sin A x) (C,sin kv +cos ka)exp (v 20 dy
uk‘ . .. ;'C,.A.:l\"
=" U H (B, cos k x +sin kx) SR
Ax: 1 =(r, k)"
10k, —Cyrik
) \)" (B, cos kX —sin &, \J[/’*“,’;’)_} (B2
45 : 0 . .
J,.= - (Bg sin k x+cos &, x) ’ (CO sin k3 +cos k) exp (v 4.) dy
Aq sy —Cor
=—-2(B,sin k, s k L TOoTL B3
( 0>1n X+cCo UI:H‘(’L/‘ )- (B3)

Because C,, and 4, are very small. we have

- _l‘1)k\~)-L JAGK AL

. v H, (B, cos k x+sin k x)+ v (B, cos k¢ —sin k_x) (B4)
q4./
Js:z—--—-r(Bo sin A x +cops K .x) (B3)
I
y=»5 plane:

Js.u = ./sx eXp { '—(."_ b) ’L) d)‘
vh

-~

k z .
#\ok Y Hy(By cos k. x+sink r)J (Co sin ky—cos k3)exp (—(—b)i4L) dy
[¢]

Ak . = . .
/ \)13 : cos k x—sin kxx)j (Co sin kv +cos ky)exp (—(y—b) A.) dy
' (B6)
ok, ’ _ (CO/,_+/,_/\ ) sin kb +(Coitk, —Ay) cOs k)b
= Ak Ho(Bg cos k. x+sin &k .x) [ TR

A = ]
Jor=— KQ (B, sin kX +COS K .X) ‘. (Co sin kv +cos k) exp (—(y—b),4)dy (B 7

wb

Ay C /\ /\b+C k., + cos kb
—_-—T(Bosmk x+cos k_ r)[( O/L Ak,) sin (_i'i_._/.‘L_S ]

l+{/LA )?
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Because C, and 4, are very small, and cos kb= —1, then

pok AL A JAok AL :

Jour X Akyf H (B, cos k x+sin k x) + AB (B cos k x —sin k_x) (B8)
Agr

Jo= j\’L (B, sin k¢ +cos k) (B9)

Similarly, we have J,,, and J,, on the x=0 and x=a planes,

x=0 plane:
.uka - BO;'ikx+;'L
=== Hy(C / oy
J sy AR olCg cos k,y +sin k,v) [ T+ 0k
J“o y ‘L Bo;Lk .
C K, k
3 (Cq cos k3 —sin \)[H-(/ kx) (B 10)
A , i+ Boitk,
J“z— X(Co Sin kyy+COS ky})[m:—l‘ (B‘l)
Because B, and 4, are very small, we have
kA Aok
Joy = “?\kzl‘ Hy(Cy cos k,y+sin k,y)—j 0/\/; 2 (Co cos k,y—sin k,y) (B12)
Jy = AO"[C sin k,y +cos k,y) (B13)
sz ™™ Aﬁ 0 b2
x=a plane:
k (A ok, A
Jy = — #?\k,f,_ Hy(C, cos k,y +sin k,y) +j?\—/;l"' (Co cos k,y—sin k,y) (B14)
A
J,,,::—/:—;f(co sin k,y +cos k,y) (B15)
Appendix C

Calculation of attenuation coefficient

Using the commonly accepted formula for power in waveguide electromagnetic
theory, it is easy to show that transmitted power or the time-average power flowing
through a cross-section of HTSWG for the TE?” mode may be expressed as:
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szi R. .J ‘“‘E «<H* a dudy

=; R.Z: | \.htHlH:~H\H:‘) ddy

ﬁ:"\.l - a "k ) . ) .
=,,, H, 27 ‘ (B, sin & x —cos & .0)7C, cos kv +sin k37 dudy

- ,/:4' H, 2 . ‘ (B, cos kx +sin k,x)7(C,sin k,p —cos k,1)7 dedy
B v v 0
—l: H “(kl all-—B:)‘*-l—B‘:)iinﬂ/\’tl-—B')Sin:kzz
TSR A Tk, Tk :

r" 4 l—C.Z . Cw Y
[,(1«(’:)~ ST Zk,h—r,r)SIn'l\i_h-\
2 4K, K 1

4k

x

. 1-B: B, ..,
4—/\';{ 1+ B3 —- % sin lk;U‘/\jo sm'k‘a}
.

h 1-C3 C s

5 (1 +C— 2 sin 2k,b+ - sint kb | ZR (Ch
4k, k, -

In order to calculate the time-average power loss caused by the surface normal

current in the walls per unit length, we must consider all four walls. Owing to

J. =0 = =] (r=h ) x=0)= -] (x=a), the total power loss is then double the
sum of the losses in the walls at x=0 and y=0. We have

P (5)=2[Pu] =0+ AP =0 (€Y
where

1 :
[Pul=)y=0=3 J (=0 dx
=Jo

k-
=R, ( [Bk |Hy1*C LBy sin k,x —cos k X7

4

+ 1Hy|*C3(Bg cos kx +sin k,x)*] dx

b

2k 1 - Bj; B,
R, H,l* 2Cé jﬁ [ (1+Bo)+"4k —%in 2% a+;—sm ku]

X

[P TR =Y

1-B: . B, . .,
[ (l+BO)—..4.k_Esm 2kxa—7\_—° sin~ k,a]} (C3)

x X
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-~

1 [e .
(Puamo= J Jx=0)I dy
0

I a [ Bk} . , i
=5 R, J. [ﬁ > |Hol?B3(Cy sin kyy ~cos ky)°

oL K
+ 1 Hyi?B3(Cqcos k,y +sin k,)');l dy

1 L (BKITh . 1=CE . Co . .
=3 R, H,|"B; {p’ [~(I+C5)+——OsmZk)‘b+k—°sm'kyb]

k12 3, S
b .. 1-C Co . » ]
- ey 2 “ — 2 - L )
+{2 (1+C3 i, sin 2k,b k sin® kb f (C4)

Owing to sin2k.a. sin®k u. sin2kb. sin® kb, B, and C, being very small. the

higher small terms are ignored and we have
NN 2
(-G))
Sy i (CH

kcz ) {Holno "‘(fc-
i)
where Z7? is the wave impedance of TE?? mode.
Substituting (C 3) and (C4) into (C2) and omitting the higher small terms, we
have

RS PALLE

!
2

22 1 22
aR,({Ho| Co)® (l +Bk">+§ bR,(|Ho|B,)? (l +Bkg)

S (R (A R

Therefore the attentuation constant of TE? mode can be obtained as follows
(a=2b):

P (c)=

Ipq_PL(:)

_ o B ke + 265)
2p, ot bano Pk

(C7)

For the dominant TE'' mode, a=2mm, b=!mm. k,=271/4-0017mm, k,
=2mr/2-001 mm, k.=2r/1-79 mm, substituting into (C 7), we have approximately

f. o-36+(ff.=)z

)

where 4, is the London penetration depth in millimetres.

i1 . -4 22
2 P22 2x 107*R4

(C8)
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Appendix D
Culcwdation of muaximum power
- o L fouy L eyt
Ernu T = Er‘~+;Ev = Hf):— |:k:( /\.2)) *’!‘.‘( /\23) } ‘Dl)
N [ </
SR
=i ()
where F. . is the muximum clectric feld for breakdown.
From (D 1) we huve
)
. I ) ,) .
HH—= EmJ‘_ i = Em'“- 2 (D_’
{Capty) "y
Substitutton ol (D 2} into (C 3) yields
u'«”’ ’r' P
P X R 3
max 8)]‘) max ',\ ( f /‘l (D)
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Using the cavity model and Green's functions, equations are derived to express the input
impedance of a rectangular patch microstrip antenna as a sum over a single integer index.
It is shown that the computer execution time for calculating the input impedance is greatly
reduced using the single sum approach rather than the popular double sum approach , without
sacrificing accuracy. Double sum solutions were found to take at least twice as long to

perform as those of the single sum solutions. The validity of the theoretical results was

verified by comparing them with experimental results.

Notation

X, x-coordinate of probe location

Yo y-coordinate of probe location

\ transverse Laplacian operator

k, free space wavenumber

k rectangular-patch (cavity) wavenumber

Koun cavity modal wavenumber

NGV

E z-directed electric field confined within the cavity
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Using the cavity model and Green's functions, equations are derived to express the input
impedance of a rectangular patch microstrip antenna as a sum over a single integer index.
It is shown that the computer execution time for calculating the input impedance is greatly
reduced using the single sum approach rather than the popular double sum approach , without
sacrificing accuracy. Double sum solutions were found to take at least twice as long to

perform as those of the single sum solutions. The validity of the theoretical results was

verified by comparing them with experimental results.

Notation

X, x-coordinate of probe location

Yp y-coordinate of probe location

A transverse Laplacian operator

k, free space wavenumber

k rectangular-patch (cavity) wavenumber
Koo cavity modal wavenumber

j -n”

E, z-directed electric field confined within the cavity



single-sum cavity electric field fory 2 y,

E, single-sum cavity electric field fory < y,
J probe (source) current density

J, z-directed probe (source) current density
w cavity angular frequency

©pn modal cavity angular frequency

M, permeability of free space

Amplitude of z-directed current density (source)
8(x-x,) Dirac-delta function used to model x-directed current density contribution at probe location

8(y-y,) Dirac-delta function used to model y-directed current density contribution at probe location

A, complex modal constant associated with the z-directed electric field
Y e modal function associated with the z-directed electric field

a patch length

b patch width

e(m) Neumann number (=1 if m=0, =2ifm= 0)

e(n) Neumann number (=1 if n=0, =2ifn= 0)

V4 probe impedance

Zps double-sum cavity impedance

Zg single-sum cavity impedance

Z.,s  double-sum cavity input impedance at probe location

Zuss  double-sum cavity input impedance at probe location
f£(x)  x-dependent single-sum electric field modal function
g.(x) x-dependent single-sum electric field modal function

B, complex constants associated with £,(x)
m p



§ real constant associated with f,(x)
H magnetic field intensity
H, x-component of magnetic field intensity

f.(y) single-sum sinusoidal function fory >y,
f(y) single-sum sinusoidal function fory<y,
C_, D, complex constants associated with f.(y)

m»

E.F

m? m

complex constants associated with f.(y)
A_, A/, complex constants associated with g.(y)
¥(= ¥, single-sum propagation constant

x-directed unit vector

Ll

inward-directed unit vector normal to cavity wall

Xy

Q ohms

1. Introduction

Several authors have produced fine work concerning microstrip antennas and their various properties, such
as input impedance, Q-losses, radiation, etc. (Carver and Mink 1981, Howell 1975, Pozar 1982, Agrawal
and Bailey 1977, Dereyd and Lind 1979, Deshpande and Bailey 1982, Watkins 1973, Lo, et al. 1977).
Many previous works (James and Hall 1981, Lo et al. 1979, and Richards ef al. 1981) have used the cavity -
model analysis to derive the electric field and input impedance of various microstrip antenna configurations.
Usually, the plane of the microstrip is viewed as one geometric region, with length a and width b. This
approach provides quantities which depend on double-summation solutions summed over two integer indices.
Other authors (Chadha, ef al. 1981, Alhargan ef al. 1991) have used reduced single summation techniques
to find Green's functions for microstrip circular disk and annular ring configurations. In this paper, the ~

rectangular-patch microstrip antenna is analyzed and theoretical and experimental data are directly compared.
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By viewing the plane of the microstrip patch as being two separate regions, I and II, bordered by the

ordinate of the antenna's thin-probe coordinate, y = y,, the electric field and the input impedance can be
expressed in terms of solutions which are summed over only one integer index. This single-sum approach
greatly reduces execution time, as compared to the double sum approach.

The execution times are compared, and the efficiency of the single-sum approach is demonstrated.

2. Theory

2.1. The cavity model

Authors Lo, Solomon, Richards and Harrison (1979, 1981) developed an analysis of microstrip antennas
by modelling them using a lossy cavity bounded by electric walls on the top and bottom, with magnetic walls
on the sides.

Figure 1 is the physical representation of a cavity model. The model applies to thin-substrate microstrip
antennas whose substrate thickness is s 1% of a free space wavelength. Fields underneath the top conductor
(patch) and above the ground plane are determined by the cavity model such that the electric fields in the
antenna structure and the input impedance at the probe position can be determined.

The cavity model assumes that the magnitudes of the tangential magnetic field components at the edges
of the patch are negligible, implying a high-impedance condition at the boundary. This condition is equivalent
to modelling the perimeter of the patch with magnetic walls. The electromagnetic field components within
the cavity are obtained by solving the appropriate Maxwell's Equations within the cavity, subject to the
appropriate boundary conditions. It is assumed that the electric fields within the patch are z-directed and

invariant with respect to z, due to the presence of a thin substrate.

2.2. Double-sum approach

2.2.1. Electric field derivation

The z-directed electric fields under the patch due to a z-directed current source (probe) must obey the
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inhomogeneous Helmholtz Equation :
(VP + k2YE, -jop (T 2)jon,J, (1)

where, J, is the z-directed current density on the probe. Since such probes are usually very thin with respect

to the excitation frequency, delta functions have to be used to describe the current density :
J, = 1 b(x-xp) b(y-yp ) ()

where, (X,, ¥,) is the coordinate of the probe position on the patch. Assuming E, can be expanded in terms

of a Generalized Fourier Series,
E,-Y Y a ¥, (. )]
m-0 a0

where, a_isaconstant, and ¥, (x,y) = E, Cos(m= x/a) Cos(nny/b), such that E,=V,/d is constant,
d = substrate thickness , and the ¥ 's represent modal solutions to the homogeneous form of (1).

Substituting (3) into (1),

T Y a_(k? -k D¥, - JORBE-X) 803 @

where , k2 = (mmnx/a)’ + (nnx/b)’ . Multiplying both sides by ¥..*(xy) and integrating from x =0
tox=a and y=0 toy=b, over dS=dxdy, the z-directed double-sum form of the electric field under the

patch becomes :

mnx nn
4

mnx

Yy e(m ) e(n)

. . Cos( > )

jord, a
E -
0 ab ) Z;o §) (k*- k)

) Cos ( ) Cos (l'?) Cos (

The Neumann numbers e(m) and e(n) are, in general , represented as :



e()=[1,p=0; 2,u#0],and kK’=Kk’ €(1-j8) . The amplitude coefficient from (4) is
n

Joul J,, ¥ 0
L] (*',1,'>(k2_k”2)

a

Here , the inner product is defined as :

( fixy) , gxy) ) = [] flxy) g'(xy) dS
S

and <¥,_,, P> = (ab)/ (e(m)e(n)).

2.2.2. Input impedance

Since E, is assumed to be invariant to z , the impedance at the probe position is :

(6)

)

®

where, I, is the probe current. However, the effect of the probe reactance, X;, must be accounted for in

order to obtain the overall input impedance at the probe position :

Mo
X, = = tan /e, &, 1]

where t is the probe thickness and 7, is the free space impedance.

Evaluating E, atx=x, ,y =Y,, from (5) gives

6]



mnRx
oy - - cos (TR 2yoos (%2 )cos (~ '>e(m) e(n)

E - JOrd, Ty a a b (10)

! b 2 _ 2

ab o w [kS - k]
Therefore,
o ("™ 008 (2008 (08 (2 2)e(m) ()

. lelodc E E a a b b (11)

5" " gbe, [, - (1 -J/Qp) ©]

where, kKX g=€( 1 - 8.q)k’and 8 = 8.4 =1/ Qror. Therefore, the input impedance seen at the probe is :

Z%s =2y v JX, (12)

where, "DS" refers to double sum.

2.3. Single-sum approach
2.3.1. Electric field derivation
Referring to figure 2, the patch is divided into two geometric regions: region I, where y >y, and region

II, where y <y, . Solutions, for the electric field must be obtained for each region, in accordance with the

inhomogeneous Helmholtz equation (equation (1) ). It is assumed that

E . fix) g0) = B 1. 2.0 (13)
D

where , f and g depend on the modal index m (m=0,1,2.), and

£, x) = A cos (Bx) + B_sin(ﬂx) (14)



A Arbitrary Probe Coordinate
(Patch) /
y=>bt
Region I (¥ > yp)
microstrip

Pateh
y =yp o
(xp. yP)
Region O (y <yp)

b 4
s xX=ga >
- - )}

Figure2  Two-Region, Single-Sum Patch Area



10
with A_ and B, being complex constants. The required boundary conditions are :

Ax H -0 (15)

Immculh

Enforcing the boundary conditions at x = 0 and at x = a gives :

mnx

E, - Y 4.0 (ZXX) g0 (16)
m-0

a

Substitution of (16) into (1) , after multiplying each side of the new equation by Cos(mmx/a) , and
integrating from x=0 to x=a , gives :
a2

2 mnx
- - (i”a—“) c k1] 2,0 - jon, ”(;") Cos(—5) 8 (¥ - %,) a”n

[
oy

The Green's functions solutions g_(y) in the y-direction are continuous at the y = y, boundary. However,
the derivatives at this boundary are not equal due to a jump condition from the probe excitation. From Felson

et al. 1993, the components of the Green's functions in regions I and II can be expressed as :

gy) A f(y)Sf(y,), yy, region I (18)

gy ) =A_J(y)Sf(y,). y<y, region I 19)

where, £.(y) and f(y) are functions belonging to regions I and I, respectively.

Assuming sinusoidal variation ,

1. = C Cos(vyy) + D Sin(yy) , yzy, (20)



1) = ECos(yy) + F Sin(yy) , y<y,

11

21)

for C,, D, ,E, and F,, ascomplex constants. Using the Maxwell equation, which relates the curl of the

electric field vector to the magnetic fields, gives :

m ﬂx) dg,0»)
a dy

-jop H_ = Y A_Cos(
m0

The boundary conditions

yield F, =0, and

. ) = E Cos(vy)

Letting A,' = ALE,, , and realizing from (23) that C, = Cos(yb) and D, = Sin(yb) , we have :

[, @) = Cos[y(r-b)D

Letting the Green's functions g,(y) = Gym(Y.Y,) , We have , for each respective patch region :

G, (¥.¥,) - ACos( vy, )Cos(YO-8)), y2, , region I

G, (y,,)-A4,Cos( vy )Cos(YU,~b ), ysy, region I

Note that (26) and (27) are equal at the y =y, boundary of regions I and IT .

(22)

23)

(24)

(25)

(26)

@7
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Following the procedure outlined in Felson ef al. 1993 to determine A,' , we have :

mmnx
Cos ( £y
e (m) a (28)

y Sin (vb)

Substituting (28) in (13), for the appropriate region , the single-index electric-field quantities of the microstrip

antenna are :

= Jop, 1e(m) mnx mx
E, - —— ——— Cos ( 2y Cos Cos Cos - Ly 2 29
1 ao aySin(yd) a ( a ) vy, ) (Y0o-y, ) yzy, | )
-~ jou, I, €(m) mux
E, - Y 2ot cos (BF5) Cos (—2) Cos (v) Cos (YO0 » ¥ =%, (30)
n % aySin(yb) a a

The only unknown parameter that has not been dealt with so far is Y = Y., the single-index propagation
constant. It is obtained from using either (26) or (27) for Gy(y.y,) and substituting it into the homogeneous

form of (1) :

62 mun . » 2 /
[ —- 2Ly + k? ] A4, /Cos (yy)Cos (y(y,~3)) = 0 (31)
ay a

For non-vanishing cosines,

Y5 ¥n s A k- ) (32)
a

where, k2 =€ 1 - 8,4)K% , as defined in section 2.2.1.
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2.3.2. Input impedance

Evaluating E, from (29) or (30) at the probe coordinate (x,, ;) and substituting into (8) , gives

mnx
2 4 -
, Joud < €(m) cos ( . ) cos (v,y,) co6 (Y, (0, - &) (33)
= a Z...A Y, sin (v, )

auss = Lss Ay (34)

where , X, is defined in equation (9).

2.4. Comparison of the single-sum and double-sum input impedance expressions

Mathematica 2.2 software was used to calculate all computer data. Sample antenna parameters chosen
werea=2",b=127",t=20mils, € = 2.33, d = 62 mils, with a resonant frequency of 1.93 GHz. The
single sum input impedance for a probe position of x = 0.892", y =b/ 2" was simulated to six terms only,
and held fixed in that manner. One of the double sum terms was also held fixed at six terms, and the
remaining sum was separately computed by limiting the upper index to 5, 10, and 20 terms, respectively. This
was performed to demonstrate the congruency of the single and double sum solutions. Figures 3a-c
demonstrate this congruency on computer-generated Smith Charts. It is apparent that as the non-fixed
double sum term approaches 20, the two solutions begin to overlap. Therefore, the single sum solution can
serve as a replacement to the double sum solution, since it not only represents the double sum solution, but
it also is easier to calculate.

Table I is a computation of the execution times associated with the computer simulation of equations -

(12) and (34), for the antenna mentioned in the first paragraph of this section. The operating frequency
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Figure 3 Convergence of Single and Double-Sum Input Impedance Loci



16

¢ 18 paxy pjoy xapui wns saddn

wns 93uis - §S
wns jqnop - SA

10 =01 /1= ¥9=0 ZHD €6'1 =3 “uT90 =P ‘WT0 =1 '€€T = E]

00EST ez [+ 0Ty €L'8T [+ b0'TH w RT3 s 0s
b LL ceoz [+ 0Ty €L+ p0TH w €0'Ll s s€
0L'ST ez [+ b0ty 2657 [+ v0'TY w 59§ s 0z
€TL ce0z [+ 0Ty 6872 [+ v0'TY w 651 S 0t
€27 ez [+ 0Ty €£0Z [+ 40Ty w 6v°0 s S
SS/sa SS« sa SSs sd SS« | Ssa
OLLVY (v) (spuooas) LINIT
AWIL ADNVAIJINIT LNdNI AWLL NOLLADEXA | WS ¥AddN

SWLId I, wng J3utg pue Aqno g 10§ AW, UOHINNIXY sduepadwy ynduj - 1Iq8L




17
chosen was 1.93 GHz. A reference to Table I shows that the double sum solutions take from 2 to 153 times

as long to execute as compared to the single sum solutions. Again, the single sum solutions are desired for
their lower computational times . A graphical display of the congruency of double and single sum solutions
is shown in figure 4a. This is further evidence that the two methods provide congruent results. The same
simulation procedure mentioned above was performed for a second antenna with €, = 108,a=09",b=
0.6", d = 025", and a probe position of x = 0.54", y =b /2", at f=12 GHz. Results are shown in figure 4b,

and are commensurate with those discussed above.

3. Experimental verification of the data

A Wiltron 360B Network Analyzer was used to test the rectangular-patch microstrip antenna for input
impedance data, with respect to the S,, input port parameter. The Smith Chart frequencies were swept from
17 to 2.3 GHz. The test antenna was of patch dimensions a = 0.9, b=0.6", with €, = 10.8, and substrate
thickness of d = .025". The position of the probe was located at x = 0.54", y = b/2 ", relative to the bottom
left comer (coordinate origin) of the patch. The same antenna dimensions and dielectric constant data were
fed into the computer model to generate a Smith Chart. In the theoretical model, an operating frequency of
2 GHz was used, which was the marked frequency on the Network Analyzer.

Figures Sa and 5b are the theoretical and experimental versions, respectively. Usually, the main point of
interest on either plot is the point which intersects the real axis, i.e., the point closest to the perfect 50Q
probe-to-coax line matching point. At 2 GHz, the unnormalized impedances of the input impedances at the
probe location were (47.961 +j 1.891) Q and (47. 842 +j0.762) Q for the theoretical and experimental
data, respectively, when equation (9) was used to account for an approximation of the probe reactance.
However, when equation (9) was omitted from the theoretical model, the theoretical probe impedance was
equal to (47.961 + j 2.861), which is much better when compared to the experimental value. However, it
should be noted that neglecting the probe analysis in theoretical modelling provides reasonably accurate

values around the resonant frequency of the antenna, but it also moves the values of the theoretical input
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impedances in a capacitive direction toward the lower half of the Smith Chart when frequencies are further
away from the resonant frequency. The error associated with prediction of the imaginary part of the input
impedance can be directly attributed to the fact that an approximation was used to forecast the value of the
probe reactance. Only testing of the actual antenna provides the exact quantity. However, the use of
equation (9) allows one to predict a more accurate value of the antenna input impedance with respect to
predicting impedances over an entire given frequency span. The omission of equation (9) from the analysis
has been found to cause the Smith Chart impedance data to be shifted downward. This means that the probe
has a capacitive effect, which is not the actual case - its effect is an inductive one.

Both Smith Chart curves are quite similar, and the small difference in results can be attributed to the fact that
the theoretical model (cavity model) neglects consideration of surface waves and backlobe radiation (under
the ground plane) due to reflection caused by an input impedance mismatch. Furthermore, the theoretical
analysis views the ground plane as being infinite in transverse (to z) directions. However, good results were
still obtained, since it has been found (James and Hall 1981) that surface waves are negligible for thin-
substrate patch antennas. Since the matching is reasonably close to 50Q , reflection is minimal. Therefore,

the analysis used was adequate enough to predict the experimental results.

4. Conclusions

The single-summation approach used to obtain the input impedance was shown to drastically reduce
computational effort, when compared to similar double-summation calculations. The real value of this
_procedural economy is that the reduction in computation and cost does not sacrifice the accuracy needed.
Also, it should be emphasized that the double-summation approach required at least twice as much com - |
putation as that of the single-summation approach. When the double sum solutions are summed over 50
terms each, it was found that it took 153 times as long to execute as that of an equivalent single summed

term.
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Abstract

The need for high efficiency components has grown significantly due to the expanding role of fiber optic
communications for various applications. Integrated optics is in a state of metamorphosis and there are many
problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of
coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a
single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel

tapered structure presented in this paper is shown to produce perfect match for power transfer.

1. INTRODUCTION

Integrated Optics has come a long way since early 1970’s. It is poised at the threshold of making a big
impact in everyday world. Integrated optics has drawn into several disciplines, such as computers and
microwave integrated circuit technology resulting in new fabrication technologies. The field is now in a state of
flux and there are still many problems awaiting solutions. One of the main problems being the lack of a simple
and efficient method of coupling optical fiber to thin-film devices for integrated optics. Although a number of
connectors are available in the market, the efficiency and reproducibility are low. In this paper, a novel uniform

and symmetrically tapered structure are analyzed mathematically and the results presented.

There are certain papers published by researchers in the area of thin-film couplers that are worthy of note, in that
they provide the background for the development of the proposed work and point towards issues raised by
shortcomings of the previous work. Louisell [1] investigated broadband bi-directional couplers in which he showed
that the phase constants and coupling coefficients vary with distance along two coupled transmission lines.
Ulrich [2] has shown by analysis how light can be coupled into a thin-film by means of a prism-film coupler. Akira
Thaya [3] presented a mathematical model of a thin-film optical directional coupler consisting of a three-layered
deposited glass films on the substrate, with coupling occurring between the first and the third film. Wilson and

Teh[4] have shown a mathematical modeling of a tapered velocity directional coupler. Nelson 5] has theoretically



examined the coupling of single-mode optical waveguides through the use of expanding and contracting tapers.
Juichi Noda et al.[6] have shown a connection between single mode fiber coupler to a Ti diffused LiNo; strip

waveguide. The authors Y.Cai et al.[7]., have analyzed the coupling characteristics of a uniform structure.

2. THEORETICAL BACKGROUND

In this paper, we present a novel method of coupling light from a single mode fiber to two structures : Uniform
and symmetrically tapered thin-film couplers. The model presented is an improved version of the uniform five
layered structure presented by Y. Cai et al [7]. If a fiber is directly connected to the thin-film, as shown by Y.Cai et
al [7]., it leads to a large mismatch of the field profiles at the interface and as a result, leads to loss of optical
power. To overcome this optical reflection and radiation losses, they proposed a five layered structure which is
shown in Figure 1. This consists of a coupling waveguide, buffer layers, thin-film layer and the substrate. To avoid
mismatch of the fiber core and the coupling waveguide field profiles at the interface, the coupling waveguide
dimensions are designed as 2aX2a, where ‘a’ is the radius of the fiber core. Guttmann et al[8]., have shown that
the field distributions of the fundamental mode of the cylindrical fiber core and the garnet material waveguide
differ slightly if the refractive index differences are smaller. Solgel solution is used at the interface such that any
slight refractive index mismatch between the fiber core and the coupling waveguide is minimized. The buffer layer
serves the purpose of coupling optical power to the thin-film waveguide of lower refractive index. Gadolinium
Gallium Garnet material was used as the thin-film material because of the properties exhibited by the matenal.
The buffer layers and the coupling waveguide are silica doped materials. The required refractive index of buffer
and coupling waveguides is obtained by doping TiO, with SiO; .

The eigen mode equations of the five layered structure developed ( Figure 1 ) can be obtained by solving with
w=g=2a, where : w= the height of the coupling waveguide, a= radius of the fiber core, n=refractive index of the
coupling waveguide ( Garnet material ), n,=refractive index of the buffer layer, n,, = refractive index of the thin-

film material, A=wavelength of the wave ( 1.3um ) and WI1= height of the thin-film coupling waveguide. The
eigenmode equations developed by Y.Cai et al[9].,are :

0, = angx tan(K W /2) — (1)

Qa: V(zﬂ'/ﬂ,):(n;g—nj)"K;x B (2)

‘Kgy{—l + \[tanz (gK,)+ l}l
- tan(gK )

Q': ’(Zﬂ/l)z(ni —nz)_K;y _____ (4)

0



The parameters kg, Q, and kg, Q. are the x and y components of the wavenumbers. Kg and K, represent the
sinusoidal variation in the x and y directions. The propagation constant of the coupling waveguide can be

determined by solving equations ( 1 to 4),

2 2 2 2 2
fp=0'p, €N -K . -K, (5)

The propagation constant Bw of the thin-film waveguide is obtained by replacing ng; with n,, w with W1 and

B with Bw in equations( 1to5 ). The value of W1 for the thin-film is so chosen such that highest power
coupling occurs between the coupling waveguide and the thin-film at this value. The optimum value W1 is chosen
such that g = Pw for no mismatch. The thickness of the buffer layer has a direct bearing on the power coupled

from the coupling waveguide to the thin-film waveguide and an optimum value is chosen such that there is a
maximum power transfer from the coupling waveguide to the thin-film waveguide. The propagation constant of

the thin-film varies because of the change in value of w along the z direction. Therefore the mismatch, M depends

-B.(z
on the propagation constant difference givenby M(z) = ﬁLzzW—) —— (6)
and the maximum fraction of power transferred between the coupling waveguide and the thin-film waveguide with
a fixed mismatch M, is givenby F? =(1+MH)* e (7)

Application of the theory developed by Snyder et al[10] and Snyder [11], to the model analyzed in Figure 1, gives

the power coupled into the thin-film for a uniform coupler as
P =PFsin® [(C/F)dz —— (8)
0

where P is the total power introduced, C the coupling coefficient between the center of the coupling waveguide
and the center of the thin-film waveguide. In this paper, we present a novel uniform and symmetrically tapered
structure ( Figure 2 ) where the modes of a uniform waveguide form a complete set and can propagate
independently from one another, while the tapered modes are coupled together and adjust their characteristics to
suit the varying transverse properties of the guiding structure as they are moving along the taper. During the
process of coupling the light from the uniform coupling waveguide to the thin-film waveguide, the wave is kept in

the lowest order mode. For the shape shown in this paper,( Winn and Harris [12]),the power coupled at the

narrow end is given by P, =P’ (1-F° Sinzj(C/F)dz) ----- (9)

0
In this paper while analyzing the theoretical model of the uniform and tapered coupler we made the assumption
that the materials used are lossless and therefore there are no Fresnel’s reflections at the interfaces and that there

are no lossess at the interface of the fiber core and the coupling waveguide.



3. RESULTS AND DISCUSSION

The material used for the analysis of uniform and tapered couplers is Gadolinium Gallium Garnet (GGG). The
coupling waveguide material used is GGG. Buffer layer material is spun silica which is doped with TiO2. Thin-
film material is polymerized solgel solution of SiO; and TiO.. The refractive index of coupling waveguide. 1, =
1.9389 @ A = 1.3um. The refractive index of the buffer layers is chosen, as n, = 1.9340 and the refractive index

of the thin-film material, n,, = 1.9450. Figure 3 shows the plot of C versus d, where C is the coupling coefficient

and d is the distance from the center of the coupling waveguide to the center of the thin-film. This equation given
by Snyder {11], is

vaN"* d _[-vd?
C={7-] 7P - (10)
2z/ p 4p
The refractive index of GGG versus wavelength is shown in Figure 4. The expression used to calculate the
3 2
refractive index is #° —1= ZA’/{ ..... (11)

2 2
i= (l - L& )
where A, and L, are the sellmeier coefficients,given by Wood and Nassau [13].

By solving the equations (1to5) with w=2a=g, the propagation constant 3, = 9.3253804 um’ was obtained.

Figure 5 shows the propagation constant for the thin-film as a function of the film thickness W1. The propagation
constant of the thin-film equals the propagation constant of the coupling waveguide when the thickness
W1=0.886um. The maximum coupling power is attained at B = Pw =9.3253804 pm™ . Figure 6 shows the
plot of coupled power versus the propagation distance for the uniform coupler of different d’s for perfectly
matching constants B, = Pw at thickness of thin-film w=0.886 pm. Figure 7 shows the power coupled for
uniform and tapered couplers with respect to the distance z and the taper starts at length L1= 700pm, with

slopes (K) of the symmetrical taper at 0.0001, 0.00009 and 0.00002. Figure 8 shows the effect of the thickness of
the thin-film and the role played by the taper in the power output.

4. CONCLUSION

The novel structure (Figure 2) exhibits broad-bandwidth coupling characteristics and it is easy to manufacture
since it does not put serious constraints on the accuracy of the coupling length of the coupler. The taper has the
distinctive advantage of confining the power within the taper such that the output stays approximately near the
value of the power introduced at the start of the taper. The outstanding feature of the taper is the higher efficiency

as compared to the more conventional devices.
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