QM"{:‘ B

RIS

ﬁ;

AX >

b

Human intervention will rearrange figures and type as appropriate.

NASA-CR-204820

O-Q%Lha. 51187
L0 ”f’c'b > g
paﬂ""‘" —n'b—%qg,’{l@ '

Ray scattering by an arbitrarily oriented spheroid:
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Transmission of an arbitrarily polariz!r; plane wave by an arbitrarily oriented spheroid in the "i“:
!

short-wavelength {imit is considered of ray theory. The transmitted electric field is added to
the diffracted plus reflected ray-theory electric ficld that was previously derived to obtain an approxima-< 4 /]

. tion to. the far-zone scattered intensity in the forward hemisphere. Two different types of cross-
polarization effects are found. These are (a) a rotation of the polarization state of the transmitted rays
from when they are referenced with respect to their entrance into the spheroid to when they are
referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted
rays when they are referenced with respect to the polarization state of the diffracted plus reflected

rays.

1. Introduction

A number of optical particle-sizing instruments, such
as the phase-Doppler particle analyzer, measure the
diameter of small particles by analyzing certain fea-
tures of their forward-hemisphere light-scattering
signature.!? For particles much larger than the
wavelength of light, forward-hemisphere scattering is
well approximated by ray theory, which considers the
diffracted, reflected, and transmitted rays that reach
the detector. For scattering by a sphere, the ray-
theory far-zone scattered intensity closely matches
the results of Lorenz-Mie theory3+ for particle-size
parameters as low as 30 and for scattering angles as
large as 50°.  As a result of this close match, phase-
Doppler particle analyzer calibration curves have
been based almost entirely on ray theory.!-256

A basic assumption underlying the calculation of
optical sizing-instrument calibration curves is that
the particles being sized are spherical. A necessary
first step in evaluating the response of these instru-
ments to nonspherical particles is to have an accurate
and easily implemented theory of light scattering by
such particles. Because the simplest nonspherical
particle is a spheroid, understanding scattering by a
spheroid should be helpful in determining the impor-
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tant features of scattering by nonspherical particles
in general.
There are a number of different methods for ex-

actly solving the electromagnetic boundary-value prob-

lem of a plane wave scattered by a spheroidal par-
ticle.™™!! The numerical implementation of these
methods, however, suffers from ill conditioning for
size parameters greater than approximately 35 and
for large spheroid eccentricities.®!112 The ray-
theory model of spheroid scattering is an attractive
alternative because it is expected to provide a reason-
able approximation to the solution of the exact wave-
scattering problem for particle-size parameters begin-
ning approximately where the numerical imple-
mentation of the exact methods starts becoming ill
conditioned. Ray scattering by a spheroid has al-
ready been applied to the analysis of the generalized
rainbow caustic in the backward hemisphere, which
is caused by the confluence of a number of rays
making one internal reflection within the spheroid
before exiting.'>-'* Ray-tracing programs for scatter-
ing by an arbitrarily shaped particie have also been
developed for certain specialized applications.202!
The purpose of this paper, along with a companion
paper®? that is hereafter designated as part I, is to
describe scattering in the forward hemisphere of an
arbitrarily polarized plane wave by an arbitrarily
oriented dielectric spheroid by the use of ray theory.
In part I diffraction and specular reflection were
considered. In this paper transmission, which is the
third of the physical processes expected to dominate
scattering in the forward hemisphere, is considered.
Diffraction plus reflection was exactly soluble in the
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sense that the magnitude, phase, and polarization of Ei. = Eg(cos xi, + sin Xx&,)exp(ikz — iwt).

the electric field of the outgoing rays were directly
> expressible in terms of the scattering angies 6 and ®.
This is not the case for transmission because of the
complexity of both the refraction geometry and the
spheroid shape. If the plane wave is not incident
parallel to the spheroid major axis, another complex-
ity occurs as well. For this case the plane of inci-
dence of a ray at its point of entrance on the lit side of
the spheroid does not coincide with the plane of
incidence at its point of exit. This leads to cross-
polarization effects that do not occur for scattering by
a dielectric sphere.?% For example, a transmitted
ray that was incident upon the spheroid with the
transverse electric (TE) polarization will exit it ellipti-
cally polarized, i.e., with a mixture of TE and trans-
verse magnetic (TM) polarizations. Similarly, the
TE polarization directions of the transmitted and
reflected rays reaching an observer at the scattering
angles ©, ® are rotated- with respect to each other.
The transmitted ray is additionally elliptically polar-
ized when referenced with respect to the TE and TM
polarization directions of the reflected ray.
Cross-polarization effects also occur for scattering
by a nonspherical particle much smaller than the
wavelength of light because of differences in the
particle’s polarizability in different directions.26:27
Similar effects also occur for an optically active
particle.?8
solely from the geometry of the particle also occur for
scattering by a dielectric cylinder at diagonal inci-
dence.?® For scattering by a spheroid, the cross-
polarization intensity has been computed with the
exact solution to the wave-scattering problem.3
Our purpose here is to demonstrate clearly and
explicitly the geometric origin of the cross-polariza-
tion effects { the context of ray theory.

v of this paper proceeds as follows. Sec-
tion 2 presents a brief review of both the notation and
the spheroid geometry that were described in detail in
part I. In Subsections 3.A.-3.C. the magnitude,
phase, and polarization vector of the transmitted
electric field are obtained. In Section 4 these results,
are combined with the diffracted plus reflected elec-
tric field obtained in part I, and the cross- polarlzatxon
effects are examined. Last, in Section 3 the rumeri-
calcomputationofthe diffracted plus reflected plus
transmitted far-zone intensity and-eompare-eur re-
sults with those obtained by the use of other methods.

Ar2 hen uw‘pwu.i\mlr‘i L s (c-n?nk“.l, Uy

2. Spheroid Geometry
Consider a plane wave of wavelength \, wave number

[y .

k=T' (1)

b

and angular frequency w propagating along the posi-
tive z axis of an xyz coordinate system fixed in the lab
;ef’erence frame. The electric field of the plane wave
is
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Cross-polarization effects originating

The plane wave is scattered by an arbitrarily oriented
spheroid. The transmitted contribution to the out-
going electric field in the far zone at the scattermg
angles ©, ® is of the form

Ly kR -
iR exp(z

x e‘{p[lotnns e (D lelrlns e CD

trans(e (D) iwt)strlm(er (D)

In Eq. (3) R is the distance from the center of the
spheroid at the origin of coordinates to the observer;
Serans 15 the magnitude of the transmitted electric
field, ignoring the Fresnel coefficients at the spheroid
surface; 3y.ans is the phase of the transmitted electric
field with respect to that of the reference ray of
Subsection 3.D. of part [; and €4y, is the polarization
vector of the transmitted electric field and contains
the Fresnel coefficients. The dielectric spheroid has
the real refractive index n > 1. There is no other
restriction on the numerical value of n. The surface
of the spheroid is given by
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where the x"y"z" axes are attached to the spheroid.

The spheroxd " axis lies in the 8, & direction with
respect to the xyz lab coordinate system, where 0 g

8 < w/2 and 0 £ & < 2w The description of.
scattering by the spheroid is simplified considerably if
we use a second lab coordinate system x'y’z’ rotated
with respect to the xyz lab system by the angle ¢
about the z = 2" axis. In this new coordinate system
the equation of the lit (i.e., lower) and the shadowed
(i.e., upper) spheroid surface is

Zy cr' b
i } T-rn (s)

1]

wAr' cos &' = Y

ZlovIer‘
where
. b2 - a2
w =sindcos 9 — (6)
A = (b%sin® 8 + a? cos? 9)!'? (7)
B =g, (8)

and where the elliptical coordinate ' and &' are
defined by

x' = Ar cos &,

y =Br'sin¢, (9)
with0 <r < land0 5 ¢ < 2=. Theoutward unit
normal to a point on the lit surface of the spheroid,

m’, and the outward unit normal to a point on the
shadowed surface, A, are shown in figure 4 of part [,

(3) Pf‘q
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Fig. 1. Geometry of the transmitted ray. The unit normal g’ to
the surface at the point of entrance is in the = - ‘W4, g direction
W, with respect to the x’, y’, 2’ rotated lab coordinate system. The
portion of the ray inside the spheroid has length sq; and is in the

L Pq‘{ o1, nor direction. The unit normal A’ to the surface at the point
v ’7'_&\, of exit on the shadowed side of the spheroid is in the W, n
j%uv"nﬁ direction.
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and their equations are given by equations 14 and 15
of part .

A.  Magnitude of the Transmitted Electric Field

The trajectory of a ray transmitted through the

Fﬁ ! arbitrarily oriented spheroid is shown in Fig. 1. All
quantities pertaining to the ray as it enters the
spheroid on the lit surface have the subscript 0, all
quantities pertaining to the ray inside the spheroid
have the subscripts 01, and all quantities pertaining
to the ray’s exit from the spheroid have the subscript
1. An incident ray is parameterized by the rotated
lab frame coordinates ry’ and &’'. The unit wave
vector of an incident ray is

kig = ;. (10)
The unit normal iy’ to the lit surface at the point of
entrance of the ray has the spherical angles = ~ ¥y, ng

[

with respect to the x'y'z’ axes, i.e.,

Mg = sin ‘' cos mait,” + sin W sin Mott,” — cos Wy,
(11)

Using Eq. (14) of part I and Eq. (5) above, we obtain <47

ab .
ag do sing
tanng = ab ! (12)
;_;qo' cos &' +w
X ab , (e 2
tan¥= - ¥,) = ;:;qo cos&' +w| + T5q0 singy’ |,
(13)
with
o
TR R (14)

T

These results are analogous to equations 21, 23, and
24 of part I for the normal to the lit surface at the
point of incidence of the reflected ray.

After transmission into the spheroid, the ray propa-
gates in the ¥, n,, direction with respect to the
x'y’z" axes. The unit transmitted wave vector is
given by

}5,9 = sin Wy, cos ng d,’ + sin ¥, sin o,
+ cos Vi, . (15)
[t may also be written as3t

cos 8;,

. 1. ’
/Z:Q = ; k,‘a + ( - COS 0(0)ff10,, (16)

- where

8.0 = W (17)

is the angle of incidence of the ray at the lit surface.
The angle of refract_ion 8.0 is given by Snell’s law

n sin B,y = sin . (18)

A comparison of Eqgs. (15) and (16) allows us to relate
the angles of &, to the angles of m,’. We obtain

Wor = Wy = 8,
TNar = Mg + 7. (19)

The relation between n4, and Mo 1S expected on
physical grounds. The plane of incidence containing
ki and My’ makes an angle n, with respect to the x’'
axis, o &, must also lie in this plane. Furthermore,
Fig. 1 suggests that rizy” and %, lie on opposite sides of
the z' axis in the m, plane accounting {or the differ-
ence of = between 1, and n,.

The trajectory of the ray inside the spheroid is
given by
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' = xy" — 5q; sin ¥y, cos Mg,

¥ =o' — so; sin ¥y, sin mg,

z = Zo' + So1 COS \‘FOI, (20)
where so; > 0. The transmitted ray exits the spher-
oid on either its shadowed or its lit surface. By
combining Egs. (5) and (20) we find that the distance
of travel of the ray inside the spheroid for either
possibility is

ab

soi{cos Wy, + w sin ¥y, cos mg) - Y (1 = ry'Ht2

ab .
= - ';(1 - r?)V2 (26)

Thus the sign of the left-hand side of Egs. (25) and
(26) may be used as an indicator as to which side of
the spheroid the transmitted ray exists.

(cos Wo; + w sin Wy, cos ) +

ab B
- ——= g sin in &’ sin + —cos &' co
Ag Jo s pOI(Sl S0 Mo + 7 COS €’ cos Tlo)

2190 2
a%h?
‘ ; 2 L2 o2 g
(cos Wy, + w sin Wy cos mg)? + iipe sin ‘I’OI(sm Mo + e cos T]g)

(21)

The coordinates of the ray at its point of exit from the
spheroid are found by combining Egs. (20) and (21) to
give :

xl’ = XQI = Sp1 sin \[‘,01 COS Mg = Arl' cos Ell,

Y1 =¥o' = so1 sin W, sinmy = Bry' sin¢,’,

2y = zy' + 591 cos Wy, (22)
which is equivalent to

2ry”
"

r1'=r012"‘T3015inq’01
: L B ,
X |sin &' sin g —:-Zcos &' cos mg

9 2
Sor” . s B s
+ ——sin? ‘I'm(sm- Mo + = cos? no) , (23)

BZ
B W si
g sSIn §y — g sin ¥y S1n No
tan §,' = . : (24)
a1

ro' cos &' -~ e sin Wg, cos n,

For most commonly encountered values of 6/a and
n, the transmitted ray exits the spheroid on its
shadowed side. For this case, combining Egs. (5)
and {22) gives

ab
soi(cos Wy, + w sin Wy, cos ng) - —A._(l -yt

Py

But for a spheroid with high eccentricity and large
refractive index, the point of exit of the transmitted
ray sometimes occurs on the lit surface. For this
case, combining Egs. (5) and (22) gives

4 APPLIED OPTICS / Vol. 35, No. 00 / 20 Month 1996

Let us assume for the moment that the ray exits on
the upper or shadowed side. The unit normal A,’ to
the spheroid at the point of exit has the spherical
angles ', 1, with respect to the x'y’z" axes, i.e.,

iy =sin ¥, cos ma," + sin ¥, sin mu, + cos Wa,’,
(27)

Using equation 15 of part [ and Eq. (5) above, we then
obtain

ab ,
2891 sing;
tan n, =ab 4 (28)
Ig'ql cos & —w

. ab * [ab : ?
tan® W, = ;ql cos &’ —w! + A—Bql’sm ',

(29)
: al 30
q = (l _ rl.g)l/z ( )

We next determine the angles of incidence and
refraction of the ray at its point of exit. The incidenc-
unit wave vector at the point of exit is

kiy =l (31)

Its explicit form is given by Eqs. (15) and (19). The
angle of incidence §;, for exit on the upper surface is
given by

cos 8;; =, - li,l
= cos Wy, cos W - sin Wy, sin ¥, cos(ng — 7).
(32)

The transmitted angle 8,, is again given by Sneil’s law






(33)

sin 8,, = n sin 8;.

If n sin 8;, > 1, the ray is incident upon this interface
past the critical angle for total internal reflection and
transmission does not occur in ray theory. In actual-
ity, light waves are transmitted and are described by a
Fock transition. This effect is not modeled in this
paper.

For n sin 8;; < 1, the ray is transmitted out of the
spheroid and its final outgoing unit wave vector is

k., = sin © cos(® — ¢)d;" + sin © sin(® —- ¢)a,’
+ cos O, . (34)
which may also be written as
ky = nky + (cos 8, — ncos 8.~ (35)

Comparing Egs. (34) and (35), we find that the
scattering angles 8, ® are given by

cos 6

= n cos ¥y, + (cos 8,; — n cos 8;;)cos ¥y, (36)

tan @
(cos 8,; — . cos 8;)sin ¥, sinm; — n sin ¥y, sinme
~ {cos 8, — 7 cos 8;;)sin W, cosm; — 72 sin Wy, cos Mg

37 -

Thus given the coordinates ry" and &' of an incident
ray, its scattering angles © and $ are obtained by
combining Egs. (12)-{14), (18) and (19), (21), (23) and
(24), (28)~(30), (32) and (33), and (36) and (37).

If the transmitted ray exits on the lower or lit side
of the spheroid, the unit normal 72’ is taken to have
the spherical angles = — ¥, n; with respect to the
x'y’z" axes. For this case, the factors of ~w in Egs.
(28) and (29) should be replaced by +w, and the
factors of cos ¥, in Egs. (32) and (36) should be
replaced by —-cos ¥,.

These expressions for the scattering angles are
complicated because of the cumbersomeness of the
spheroid geometry and the cumbersomeness of the
geometry of refraction, and because the orientation of
the spheroid is arbitrary. For arbitrary incidence it
is easily shown that the planes of incidence at the
ray’s point of entrance into and exit from the spher-
oid do not coincide. Specifically, the first plane of
incidence makes an angles no with respect to the x’
axis. But the second surface normal 7" makes an
angle m; with respect to the x’ axis. I[f no = my, the
two planes of incidence are not coincident.

If no = m,, the two planes coincide and the entire
trajectory of any given ray lies in a single piane.
Comparing Egs. (12), (24), and (28), one can see that
this occurs only for w = 0 and A = B corresponding to
end-on incidence, where the z” spheroid major axis
lies in the propagation direction of the incident plane
wave. For the end-on geometry

0'=n0=§1,=ﬂx=(p"‘(b—'u'. (38)

T

Equation (13) then simplifies to

tan ¥o = ~qq, (39)
Eq. (21) simplifies to
b RS
cos \[/01 + = qO’ sin ‘y(n
a
So1 T 2b(1 - r0'2)l/2 Py 4 (40) Aﬂ

cos? \yﬂl + = sinz \[,01
a2

Eq. (23) simplifies to

r o= {ro"Z -

27‘0’301

Sot” b
Sln \VOK + Ny Sinz ‘[’0]_
al

= lro’ = Zhsin W, (41)
Eq. (29) simplifies to
tan ¥, = =g/, (42)
Eq. (32) simplifies to
8 = Vo + ¥y, (43)
and Eq. (36) simplifies to
6 =28,—-¥,. (44)

Unfortunately, Egs. (19) and (39)—(44) are still suffi-
ciently complicated that they cannot be analytically
inverted to obtain r,’ as a function of ©.

The inability to obtain ry’ and &' as functions of ©
and ® prevents us from analytically evaluating the
magnitude of the transmitted electric fleld,

s 6 kZA.Bro')"'2 _
C =
lrnns( ' b) A Sin 8 ’ (43)
in terms of © and & alone, where
30 40
ary’ &
A= so edl (46)
ary’ 9y’ oK
(See equations 17 and 18 of part I). In Section 4 the < (4 3

—

numerical evaluation of Egs. (45) and (46) is dis-
cussed.

B. Phase of the Transmitted Eiectric Field

The trajectories of both the transmitted ray and the .
f hown in Fig. 2 Fg 4
reference ray are shown in Fig. 2. Thereferenceray I~ f
is described in detail in part I. Briefly, it propagates
along the z axis to the origin as il the spheroid were
absent. It then turns to the O, ¢ direction and
propagates in that direction to the far zone. The
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Trajectories of the transmitted ray and the reference

Fig. 2
ray. The spheroid entrance plane is UU’, and the spheroid exit
planeis VV'.

distance ag from the spheroid entrance plane UU’ to
the origin is

ap = Zminlv (47)
where z.;,' is the lowest point on the spheroid
surface. The distance from the origin to the spher-
oid exit plane VV' is (equation 41 of part I)

A? v
Bp = {—-n [cos © — w sin B cos(® - &) - 2
a*b? a
., .|cosqD — o) sinH{D - ) {2
L sin 9[ yE + 57 J . (48)

The optical path length of the transmitted ray
between the spheroid entrance and exit planes is o +
nsq, + By, where a is the distance from the entrance
plane to the ray’s point of entrance on the spheroid’s
lit surface and B, is the distance from the ray's point
of exit on either the spheroid’s shadowed or lit surface
to the exit plane. From Fig. 2, the distance o4 is
given by

A =ag + 29'(ry’, &o')- (49)

The distance B, is determined as it was for reflection

inpart [. Theequation of the outgoing reference ray
is

x' = g sin O cos(<b - &),

= Bg sin O sin(< - &),

2z’ = Bpcos O {50)

for B > 0. Theequation of the plane normal to this
line at the point B given by Eq. (48) may now be
constructed. This is the exit plane VV' of Fig. 2.

8 APPLIED OPTICS / Val. 35, No. 00 / 20 Month 1996

The intersection of this plane with the outgoing
transmitted ray

x" = Ar/ cos §’  + B, sin © cos(d - o),
y' = Br/sin &’ + B, sin 8 sin(d - o),

2 =z"'(r, E') + Bycos O (51)
for By = Ois then determined, giving
B, = Br — Ar, cos &' sin © cos(d - ¢)
- Br{'sing,'sinBsin(® - ¢) ~z,'cos O. (52)

The optical path length of the transmitted ray with
respect to that of the reference ray is then

—_ roy
L:rnns = BR =25 T NS

- Br/’

z," cos O,

ag + s + By —ag -
— Ar,’ cos £’ sin © cos(® - o)

X sin £, sin © sin{® - ¢) — (53)
independent of whether z,’ is on the shadowed or lit
side of the spheroid.

Each ray transmitted through a spherical particle
participates in two [ocusing caustics®-%: (i) a spheri-
cal aberration cusp of revolution, which is also known
as the tangentiai caustic, and (ii) an axial spike caustic
on the cusp axis, which is also known as the sagittal
caustic. The cusp of revolution has its apex at the
paraxial focal point and it extends through the sphere
surface to its interior.3* The axial spike caustic

meets the cusp of revolution at the paraxial focal’

point. Using van de Hulst’s rule for equating the
number of —=/2 jumps in the phase of a ray to the
number of caustic participations?® and including an-

other factor of ——/‘7 to compensate for the overall
factor oUn Eg. (3), we obtain
27 3=
(’ Strnns = T Ltmns - ? (54)

PRV
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as the phase of the transmitted ray.

For an arbitrary spheroid eccentricity and orienta-
tion the situation is considerably more complicated.
Nye's analysis of the one-internal-reflection rays for
side-on incidence!? gives a hint as to the complexity of
the focusing caustics of spheriods. We have not yet
fully solved the caustic problem for transmission
through an arbitrarily oriented spheroid. But in the
remainder of this section the complete solution for
end-on incidence is given first and then a few com-
ments concerning the case of arbitrary orientation
are made. In Fig. 3 we show the evolution of the
transmission caustics as 6/a is increased from 1.0 for
the specific example of n = 1.333. Figure 3(a) corre-
sponds to transmission through a sphere, where the
cusp caustic of revolution points outward [rom the
sphere. Figure 3(b) corresponds to b/a = 1.33.
The cusp caustic begins to retract into the spheroid
whxlecontmumﬂto point outward. Figure 3(c) corre-
sponds to

7731
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Fig. 3 continued.
b2 n? . third focusing caustic for this case. For 52/a? only
(33) slightly larger than n/(n - 1), the rays with small ry’

@® nf-o1’
where all the incident rays focus at the point36.37
z' = (b% — g¥)V/?, (56)

independent of ry’ and &'. In Figs. 3(d)-3(h) the
interior cusp caustic of revolution points inward
toward the center of the spheroid. Thus the se-
quence in Figs. 3(a}~3(d) may be interpreted as
turning the cusp of revolution inside out through its
contraction to a point focus in Fig. 3(c).

Figure 3(e) corresponds to33

b2 n

’ -7
a2 n~-1 (D )

where the paraxial rays cross the z’ axis at the origin
and exit the spheroid with the scattering angle € =
0°, giving a forward glory. The forward glory is a

exit the spheroid with a negative scattering angle.
As ry’ is increased, the scattering angle further
decreases, reaches a relative minimum,® and then
increases, reaching © = 0° when

b2 2
nz(; - l) 52

9 a - ’58}
b%/a® a* \

For yet larger values of ry, the scattering angle then
becomes positive. The rays between ry" = 0 and the
value of ry’ corresponding to the relative minimum of
O (i.e., rg'™") form a third and fourth focusing caustic.
These rays-are a new cusp of revolution far outside
the spheroid and pointing inward and a new axial
spike caustic. The new cusp caustic evolves into a
far-zone transmission rainbow® at the minimum
scattering angle O, corresponding to ry'™n. For ry’
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Fig. 3. Raystransmitted through a spheroid forn = 1.333. (a)b/a = | carresponding to a sphere.  The caustics are a cusp of revolution
pointing outward and an axial spike caustic. (b)6/a = 1.33. The cusp starts to retract into the spheroid. (c}b/a = 1.5123. All the rays

focus at a singie point. (d) b/a = 1.67. The caustics are a cusp of revelution pointing inward and an axial spike caustic. (e} d/a = 2.0.

Paraxial rays have a scattering angle of © = 0" corresponding to a forward glory. () 8/a = 2.25.

The paraxial rays form a butterfly of

revolution caustic and a second axial spike caustic. (g) Butterfly caustic of (I) magnified by a factor of 11.67. The caustic begins at

tocation 1 and then continues in order to the locations 2, 3, 4, 5.
of 7y’ there are twa critical angles for total internai reflection.

between ro'™® and the value implicitly given in Eq.
(58) only the new axial spike caustic is formed. It
extends {rom beyond the second cusp point out to
infinity, where it evolves into the forward glory.

As b%/a? is further increased, the new inward-
pointing cusp also begins to turn itself inside out by
progressing through a butterfly of revolution caus-
tic,% as is shown in Fig. 3(f) and greatly magnified in
Fig. 3(g). Finally, if 62/a? is sufficiently large, the
evolution of the butterfly caustic reaches completion,
and it becomes an outward-pointing cusp of revolu-
tion, as in Fig. 3(h). Although Figs. 3(a)-3(h) de-
scribe n = 1.333, the same evolution of the caustics
was observed for all the other refractive indices
examined {or the end-on spheroid geometry.
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(h)6/a = 2.45. The second-cusp caustic points outward. As a function

As aresult, depending on the values of n, 2/a?, and
ro" for end-on incidence, a transmitted ray partici-
pates in either 2, 3, or 4 focusing caustics and
acquires a transmitted phase of either —3w/2, -2,
or —3+/2, respectively [including an additional factor
of —=/2 to compensate for the overall factor of i in
Eq. (3)]. The number of caustic participations is
illustrated in the phase diagram of Fig. 4. The case
of an oblate end-on spheroid presents no special
problem because the rays transmitted through it
resemble the rays transmitted through a thick lens.
Each ray participates in only 2 caustics, a spherical
aberration cusp of revolution and its associated axial
spike caustic.®d

[f the 2" axis of the spheroid is now tilted with

-~

f

4]






PROLATE

a

A e = —

b/a

Fig. 4. Phase-space diagram for the caustics produced by the
transmitted rays when ry’ and 6/a are varied while the refractive
index n is held fixed. In region A there are two caustics, a cusp of
revolution pointing outward and an axiat spike. Along the line a&
corresponding to Eq. (53) these caustics contract to a point
focus. [n region B there are two caustics, a cusp of revolution
pointing inward and an axial spike. In region C there are three
caustics, a cusp of revolution pointing inward and two axial
spikes. Inregions D, E, F, there are four caustics. [n D they are
two cusps pointing inward and two axial spikes. In E they are an
inward-pointing cusp, a butterfly, and two axial spikes. [nF they
are an inward-pointing and an outward-pointing cusp, and two
axial spikes. The line 3@ corresponds to the forward glory given
by Eq. (38), and the line 85 is the transmission rainbow. The
cross-hatched regions denote the absence of transmitted rays as a
result of total internal reflection as in Eq. (33).

respect to the lab z axis for 6%/a® < n/(n - 1), the
rotational symmetry that produced the degeneracy of
the axial spike caustic is lost and it deforms into a
four-cusped astroid caustic.*® The cusp caustic also
loses its rotational symmetry.** The combination of
the distorted cusp and astroid has an astigmatic
focusing character, and sections through the compos-
ite caustic resemble the evolution shown in appendix
2 of Ref. 39. For b2/a? > n/(n — 1) the new cusp
and axial spike caustics deform into a second compos-
ite astigmatic focusing caustic as in appendix 2 of Ref.
39. For yet larger values of &/a, the butterfly of
revolution caustic evolves into a complicated struc-
ture that we do not yet fully understand. Butin any
event, as long as the spheroid eccentricity satisfles
62/a® < n/{n — 1), each ray participates in two
focusing caustics, and the transmitted phase shift for
an arbitrary spheroid orientation is given by Eq. (54).

C. Polarization of the Transmitted Electric Field

The incident plane wave is polarized so that its
electric field makes an angle x with the x axis. The
polarization vector of the incident plane wave with
respect to the x'y’z’ rotated lab axes is then (equation
48 of part [)

&ine = COS(x — ®)i;” + sin(x — é)a,".

(39)

[n part I, the unit vectors in the TE and TM

M,
T“M ‘o ™ ine
TEIQ TE(I‘\C
Fig. 3. TE and TM poiarization directions for the reflected ray

and the transmitted ray of Eq. (60) and Egs. (61)—<64), respectively.

polarization directions were taken to be (equations 49
and 50 of part [)

ﬁ m' % kinc
fne = sin ainc I
— }E‘nc X (m' x }Ein
TEipe = — .( 2 (60)
sin B,

When considering the transmitted ray we define the
TE and TM polarization unit vectors to be the
negative of Eq. (60). The reason for this is as
follows. For scattering by a sphere, an observer in
the 8, ® direction will intercept a reflected and a
transmitted ray that originated on opposite sides of
the sphere. This is shown in Fig. 5. These re-
flected and transmitted fields are added together to
form the total field at the observer. The addition is
most simply performed if each of the two individual
fields is decomposed into components in the same
directions; i.e., the outgoing TE and TM directions for
reflection are the same as the outgoing TE and TM
directions for transmission. This is ensured for ray
scattering by a sphere if the TE and TM directions for
reflection are given by Eq. (60) and the TE and TM
directions for transmission are given by

— Rig X My’
Eamey /;'rO X (}ErO X n.LO')
™, = - » 61
Y sin By 61
o g X g’
=0 sin 930
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— , 0
™ sin 8,9 (62)
" 15,1 X A,

TEq sin 0,

o kg X (kg X dy)

kg XA,

TEqy = sin 8,

kg X (kg x A))

™, = sin 8y, ’ (64)

as is shown in Fig. 3. ‘

For scattering by a spheroid, the rays reflected and
transmitted in the 8, ® direction again in general
originate on opposite ends of the lit side of the
spheroid. As a result,” we use the TE and TM
polarization directions of Egs. {61)~(64) for spheroid
scatteringas well. For an arbitrary spheroid  orienta-
tion with ny = m;, the two TE unit vectors TE,, and

TE;,, which describe the ray inside the spheroid
referenced with respect to the 0 interface and the 1
interface, respectively, do not coincide. This is the
source of the first of the cross-polarization effects in
the transmitted intensity. We derive this effect as
follows. The incident-ray polarization vector of Eq.
(59) may be decomposed into the TE and TM compo-
nents of Eq. (61), giving

&inc = COS Yoﬁio + sin voTM,, (65)

wherea

(66)

[T ]

Yo=X—¢ =My —

After transmission into the spheroid, the polarization
vector of the ray becomes

&0 = tre? cos voTEq + try sin v TM,,  (67)

where ¢7g%0;) and ¢1y%8,) are the Fresnel coeffi-
cients for transmission corresponding to the angle of

incidence 8. As mentioned above, the TE,, T"D\/I,O

and the TE;, ’fl\\/In polarization vectors are rotated
with respect to each other because the 0-interface and
the l-interface planes of incidence do not coincide.
Specifically, by substituting Eqs. (11), (15), and (27)
into Eqgs. (62) and (63) we obtain

ﬁgg = CO0s Aolﬁfl + sin .’.\Olmu,

’I"IVI,O = —sin 3, TE,, + cos AOI’ITL\\II“, (68)

where

sin W, sin(ng = )
sin W g cos W, + cos W,y sin W, cos{ng ~— m,)

tan ;.\01 =
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v
TE,,
E trans -
L v ™,
™,
+ +
TE T
'l sindy,, Ml cos Qo

Fig. 6. Contributions to the transmitted electric field. The
contributions proportional to cos Aq; are the polarization terms
that describe transmission by a sphere or end-on spheroid. The
contributions proportional to sin Ag, are the first type of cross-
polarization terms.

(69)

if the ray exits the spheroid on its shadowed side.
[fit exits on the lit side, the factor of cos ¥, in Eq.(69)
is replaced by —cos ¥,. The polarization vector of

the ray incident at the point of exit on either the

shadowed or lit side of the spheroid is then

&1 = (trg” €os vg €OS 2g; = ¢1y” sin vg sin 44 )TE,
Cjupaasiwpt
+ (trg® cos vg sin Ag; + tyy) Sin vo cOs 3 ) TM,,.

{70)

Finally, the polarization vector of the outgoing ray
after it exits the spheroid is

~ ’L "\W‘W\AI\L\.L

&1 = (trgtrg' cos vocos 8¢) — fmofﬂ_@sm Yosin 3, )TE,,
+ (tre¥tTy' €OS vo sin dg,
C@ A€ ruwinod o —
+ trytrnsin vq cos 4, )TM,,, (71)

where f‘rg*(e,'l) and ¢py(0;;) are the Fresnel coeffi-
cients for transmission corresponding to the angle of
incidence 8;;. Again, §;, must be less than the critical
angle for total internal reflection in order for the ray
to exat the spheroid.

Wbt
4. Cross-Polarization Effects

A pictorial representation of Eq. (71)/—"e}é;d. is given
in Fig. 6. For scattering by a sphere, the only
possibilities are TE polarization in producing TE
polarization out and TM polarization in producing
TM polarization out. For scattering by an arbi-
trarily oriented spheroid, these two possibilities are
weighted by cos 3. The cross-polarization possibili-
ties of TE polarization in producing TM polarization

i ..
Cx‘w‘xw Fo-c

¥

i
1%

d
~

RS

Fpc ]

: \///w/

2357011 Lo ©K

PR N






¥ TE.
E ’ = TE,. =
ref «
trans / {

™,
TE et
v
# sind g,

¥ TE . v ™,

+ ™ ot -+ T™ o
v v
$in A, cos Ag,

Fig. 7. Contributions to the reflected plus transmitted electric
field. The contributions proportional to cos dp; are the poiariza-
tion terms that describe scattering by a sphere or end-on spheroid.
The contributions proportional to sin &pg; are the second type of
cross-polarization terms.

out and TM polarization in producing TE polariza-
tion out are weighted by =sin Ag,. For scattering by
a spheroid with end-on incidence, ng = m; and 8¢, = 0,
which eliminates this cross-polarization effect.

The second cross-polarization effect in forward-
hemisphere scattering by a transparent spheroid is
due to the fact that TE., TM of equations éiand
55 of part I are rotated with respect to TE,;, TM,, of
Eq.(64).. This may be shown as follows. Substitut-
ing for k&, and A, in Eq. (64) and comparing with
equations 54 and 33 of part I gives

ﬁ,l = Cos /_\.RI'I"I\S_.,,- + sin '_\mﬁin;, n
’m“ = —sin f.\m'ﬁ,,( + cos Ammmf, (,?6')
where
tan dp,

sin W, sin{®® — & — m)
"~ sin © cos WV, — cos O sin W,cos(P - & — 1) '
7
if the ray exits the spheroid on its shadowed side.

Ifit exits on the lit side, the factor of cos ¥, in Eq. (?1)_,
This cross-polarization ef-'-

is replaced by —cos W,.
fect is pictorially represented in Fig. 7. For end-on
incidence Eq. (38) gives ® — & — m; = wand 45 = 0,
eliminating this cross-polarization effect as well. 1=
At this point we may combine Egs. (3} and (787 with
equation 31 of part [ to obtain the diffracted plus
reflected plus transmitted electric field in ray theory.
We relate this electric field to the amplitude-scatter-

ing matrix*2-+3
S. 3
S, S

defined by

(B, ) 1S, S,
Egifr-rofstmans = k_- exp(lkR - lwt) S. S,

sin v

cos v| -
, (72
il T4

) the incident-field column vector

sin v

cos vy
is referenced with respect to the TM polarization
component (i.e., sin v) and the TE polarization compo-
nent (i.e., cosvy) of the incident ray that will be

reflected into the ©, & direction. The angle v is
given by equation 533 of part [, i.e.,

J 3

t

InEq.(

y=x-¢-n-75=x-®-5
The scattered-field column vector

S,siny + Sjcosy

S,siny + S, cos v

is referenced with respect to the polarization direc-

tions TM,,;and TE... But the polarization vector of

the transmitted ray was calculated in Subsection 3.C.

with respect to the ray’s own TE and TM polarization

directions of Egs. (63) and (64) rather than with
respect to the reflected ray’s TE and TM polarization

directions. The transformation of the incident direc-

tions of Eqgs. (60) and (61} is

ﬁ:’o = CO0S Qﬁinc - Sln Qﬂinc!

— — — To
TM,’O = sin QTEinc -+ COos QTMinc: (—7’4—)

where \(IJ
Q=y-vy=vs+n-mp=v+0-b-7, (7’27
e 17

For end-on incidence, Eq. (38) gives (1 = 0.
The scattering matrix of Eg. (:rl/‘Z_‘) may then be
<

written as
s, s, L0 [FTM 0
[S‘ 51} = de“'[o l} ¥ Ser exp(zom-)~ 0 rre
cos dpy  sin Apy
- S any ~- 2 ran 1
teans 2XD(i3, ‘)[—-sm Agy  <OS Apy

ftT,,,‘ 0 H cos g, SIN _\01]
x |

[ 0 trgt|l—sindg cos ‘-\01J

ltr® 0 J[cos  sinQ o
X ' 7

)_ 0 ¢trg?){—sinQ cos O \7§

(5}
The various terms in Eq. (76) have the following
interpretations. Reflection is diagonal in the re-
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flected-ray TE and TM polarization basis while diffrac-
tion is diagonal in any polarization basis. For trans-
mission, the rightmost matrix converts the incident
reflected-ray-polarization basis to the incident trans-
mitted-ray polarization basis, and the leftmost matrix
converts the final transmitted-ray polarization basis
back to the final reflected-ray polarization basis.
Transmission at each interface is diagonal in the
transmitted-ray TE and TM polarization basis, and
the middle matrix converts the 0-interface transmit-
ted-ray polarization basis to the l-interface transmit-
ted-ray polarization basis. Explicitly, the compo-
nents of the scattering matrix are

Sl(er (b) = Sdiﬂ' + Sref exp(isml‘)rTE + Slrnns
X eXP(i8yrans)(Erz tre’ COS Agy COS 4g; cos
- tTEOtTMl sin ARI sin AOI cos () — tTMOtTEl

X cos Ag; Sin Agq sin' Q) — trytry’ sin Agy

()
T

X €os ¢ sin Q),

S0, @) = Sy + Srer eXP(iBrar et + Steans
X eXD(i8,pns) (i i COS Ag) COS Ag; cos
— topltre! sin A, sin A, cos Q = gyt
X cOS Agy Sin Ag; sin Q — tpeltrg! sin Agy
X cos Ag; sin 2),

30

Sa(©, ®) = Sirans eXP(iBrrana)(try’trai’ COS Ay €OS Ag
X sin O + tpeltry! cos Apy sin Ag, cos O
+ tpgtog! sin Ag, cos 4y, cos 0

- fTMOtTEl sin Ay sin AOI sin .Q.), (Ff"g)

£)
S4B, D) = Sirans eXD(iBsrans)(—Lreltre! cOS Ay COS Qg
X.sin (3 — tpp gt cos Mgy sin Agy cos {)
— toyCtrot Sin Agy cos Agp cos O 31
(80)

For a spheroid that is tilted away from end-on
incidence by only a small amount, the first transmit-
ted terms of Sy and S, are comparable to the dif-
fracted and the reflected terms, and the last three
transmitted terms are second-order corrections; i.e.,
they have two terms in the sine of a smail angle.
Similarly the first three terms of S; and S, are first
order in the sine of a small angle, and the last term is
of the third order.

Finally we obtain the yay-theory scattered intensity
by multiplying Eq. (#2) By its complex conjugate after
inserting Eq. (.7'61.' The resulting expression is rather
long. But using the shorthand notation,

+ trg’try! sin Ag; sin Aq sin Q).

Dg = Sygcos v,

Dy = Sggsiny,
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(8)

Rg = Seere COS Y,

RM = SrefrTM sin Y

Tz = Secanstre’trz' €OS Vo,
Tem = SuranstTe T’ COS Yoo

— 1 o1
Tye = Smnsf'r.\xofrs Sin vy,

33
Tyst = Seranstr’tTid! SiD vo, (8T)
we obtain
Idiﬁ'+ref+t.—ans(ev (D)
Eoz l 92 92 9
= Tneg o S’ * BT+ R b

+ (Tzg? + Tuu*)eos® dq

+ 2(ReDg + RyDy)cos deer
+ 9(TesDs +
+ 2ATeeRz + TyumBylcos gy
Brer)

+ (Tyg® + Tau®)sin? 3

umD)COS Agy COS Agy COS Birans

X oS Ag; OS(ygns —

+ AT yuTzye = TeeTyue)cos Aq, sin Ay,
+ 2(TzgRy — TumRelsin Agy

X cos Agy cos(azmns - Bre(')
+ Q(TEMRM - TMERE)COS ARI
X sin Ay cos(strnns - 6rel')

— 2ATyeRy + Teullelsin Ap,

X sin Agq c0S(Sirans — Orer)

+ 2T zeDy = TumDz)sin Mg, cos Mgy €OS Birang
+ 2TeuDy = TyeDz)cos Agy sin Agy COS dyrans
= 2(TyeDy + TemDr)

J cand drd (2]

The various terms in Eq. (82) ha\&e the. following
physical interpretations. The second line ;g)tihe indi-
vidual diffracted, reflected, and transmitfed intensi-
ties for scattering by a sphere or an end-on spheroid.
The reflected and transmitted intensities in the 8, ¢

L . [
direction depend on the polarization state (E or M T
the incident beam. The tht { Ines are

the diffraction-reflection interference, the diffraction-
transmission interference, and the reflection=trans:
mission interference for scattering by a sphere or
end-on spheroid. The ffthlineis the cross-polariza-
tion contribution to the transmitted intensity, wkysh

is due solely to the rotation of the TE, and TE;
polarization directions. For scattering in the near-
forward direction by a spheroid tilted a small amount
from end-on incidence these two terms are second-
order corrections because sin Jg, is small and because
the TE and TM Fresnel coefficients are nearly equal

sin Apy sin Ag cOS Szmns]' L

-
ivlans

E{L‘}r\f’f\
Ane™

Tinas
= ANrc

T






A

Lhoad

y ﬁzi“w\ <

lgnHn /
for small angles of incidence.** The sieth through

d~ ~~Righth lines are the cross-polarization contribution to

the reflection-transmissioh interference. The minth
through eteventh lines are the cross-polarization
contribution to the diffraction—transmission interfer-
ence. For scattering in the near-forward direction
by a spheroid tilted a small amount from end-on
incidence these are also second-order corrections,
either because of sine-squared factors or because of a
single sine factor and the near equality of the TE and
TM Fresnel coefficients. Because diffraction and
reflection are both diagonal in the reflected-ray basis
(see Eq. (787]"here is no cross-polarized diffraction—
reflection interfergnce. The cross-polarized contribu-
tions to Eq. (82 Yecome comparable to the second

lines for a highly eccentric spheroid

/_ch?_géﬁﬂ*&
L tilted substantially away from end-on incidence and

Sevim #n

-

for rays with large angles of incidence at the points of
entrance to and exit from the spheroid.

5. Computation of the Scattered Intensity

It has already been shown in part [ that the diffracted
plus reflected electric field is directly expressible in
terms of © and ®. But because of the complexity of
both the spheroid shape and the refraction geometry,
the transmitted electric field is not directly express-
ible in terms of © and ®. This suggests the following
strategy for computing the ray-theory intensity of Eq.

$4(82). We first generate a dense grid of ry’ and &'

Es

values, i.e., Ary’ = 0.005 and A& = 1°. Then for
each ry, &', we compute the scattering angles © and
@®. We then numerically perform the derivatives in
Eq. (46) and obtain the magnitude, phase, and polar-
ization direction of the transmitted ray. For each
ro', &' we also check whether the ray is totally
internally reflected by the use of Eq. (33). Ifitis not
totally internaily reflected, we test whether it exits on
the shadowed or the lit side of the spheroid with Egs.
(25) and (26). Knowing © and @ for each transmit-
ted ray, we then calculate the reflected and diffracted
electric fields for those scattering angles, and finally
we compute the scattered intensity of Eq. (82744

In order to test our numerical procedure, firstb =a
was set in the computer program, and the results
were compared against ray scattering by a sphere as
given by the analytical formulas in Refs. 3 and 4.
The results matched exactly. For scattering by a
sphere or an end-on spheroid, Eq. (46) reduces to

30

ary

39
(88)

The agreement between our computer program and
the numerical implementation of the analytical formu-
las for sphere scattering in Refs. 3 and 4 verifies that
we have chosen our grid of ry’ values ta be fine enoug
to perform the numerical derivative in Eq. (
accurately. Our computed result for b6 = a = 10.07
uwm also closely approximates\;\‘{@ theory, as is shown
in Fig. 8. Also shown in Fig. 8 is the generalized
eikonal approximation.*S The etkonal approxima-
tion has been shown to be an accurate approximation

L\
! NI - t\/\ll‘:

5

ﬂg;,-*un.’ln

in the short-wavelength limit. It has the feature
that it slightly underestimates the peak intensity of
the reflection—-transmission interference structure for
20° £ © < 50°forn = 1.33.

We next considered the end-on spheroid case \ =
0.6328 um,n = 1.33,6/a = 1.5,a = 10.0 um, x = 90°,
and 8 = 0° and compared our results with those in
figure 8 of Ref. 21, in which the ray-theory intensity
was calculated with another method. Again the
results matched exactly.*®* We also compared our
results with the generalized eikonal approximation
fora = 10.07 pm.¥" The comparison is shown in Fig.
9(a). For © < 30° ray theory and the generalized
eikonal approximation give similar results, with the
generalized eikonal approximation again slightly un-
derestimating the reflection~transmission interfer-
ence for © > 10°. The critical angle for total inter-
nal reflection occurs at a scattering angle of
approximately © = 38°. Thus ray theory is expected
to be inaccurate for © > 33° because of our neglect of
the Fock transition*® in the transmitted electric field.
This neglect may be the cause of ray theory becoming
out of phase with the etkonal approximation for © >
25°.

In Fig. 9(b), ray theory is compared with the
generalized eikonal approximation for side-on inci-
dence with A = 0.6328 um, 7 = 1.333,6/a = 1.5,a =
10.071 wm, 8 = 90°, & = 0°, and x = 90° for scattering
in the ® = 0° plane. The cross section of the
spheroid in the xz plane (i.e.,, ® = 0°) resembles an
oblate spheroid with b/a =
incidence configuration. For this configuration and
® = 0° each transmitted ray participates in two
focusing caustics. Again ray theory and the general-
ized eikonal approximation give similar results, with
the generalized eikonal approximation slightly under-
estimating the reflection-transmission interference
for 15° < © < 40°. The critical angle for total
internal reflection occurs at a scattering angle of
approximately © = 53°. Thus our neglect of the
Fock transition causes ray theory to be inaccurate for
© > 50°

In Fig. 10 ray theory is compared with the exact
solution of the plane-wave-spheroid problem with
the method of Ref. 49. The comparison was made
for end-on [Fig. 10(a)] and side-on [Fig. 10(b}| inci-
dence for A = 0.6328 um, n = 1.333,6/a = 1.5,a =
3.021 um, and x = 90° {or scattering in the ® = 0°
plane. This corresponds to a spheroid-size param-
eter of 2=/\ = 30.0, which is at the lower end of the
region of applicability of ray theory. InFig. 10(a)the
comparison is good for & < 30° and in Fig. 10(b)
the comparison is good for © < 50°. We consider the
general agreement between our results and the gener-
alized eikonal model for 2wa/A = 100 and the exact
solution for 2wa/\ = 30 as an additional check of the
correctness of our method.

It is of great interest to compute the cross-
polarization contributions to the scattered intensity
of Ea. (82737 Unfortunately, this cannot be done
reliably until a complete solution to the problem of
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Fig. 8. Intensity as a function of the scattering angie 8 with ® = 0° for a plane wave with A\ = 0.6328 um and x = 90° incident upon a
sphere witha = 10.071 umandn = 1.333. Thesolid curveis the Midtheory result, the dashed curve is Eq. (827, and the dotted curve is the

generalized eikonal approximation of Ref. 45. !

the number of caustic participations of an arbitrary
transmitted ray is obtained. This problem is cur-
rently under study. It is aiso of great interest to
compare our results with experimental data.
Although much experimental spheroid scattering data
concerning the generalized rainbow in the backward
hemisphere exists,!8.5-53 experimental spheroid scat-
tering data in the near-forward direction appear to be
sparse.54

Last, it has been pointed out by a number of
authors®!%12 that both the T-matrix solution and the
spheroidal wave-function solution of the problem of
scattering a plane wave by an arbitrarily oriented
spheroid possess numerical difficulties for prolate
spheroids with large 6/a ratios.. In ray theory, we
have found that a number of alternatives occur for
rays transmitted through large 5/a prolate spheroids.
These include the point of exit of the ray being on
either the shadowed or the lit side of the spheroid, a
complicated caustic structure that dictates the phase
of the transmitted electric field, and the existence of
more than one Fock transition of the transmitted
electric field as a function of scattering angle [see Fig.
3(h), for example]. It would be of interest to deter-
mine whether any of these complexities for eccentric
prolate spheroids are related to the difficulties in
computation {or the associated wave-scattering prob-
lem.
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