
NASA-CR-205011

Final Report

Contract NAS8-38609 D.O. 177

OPAD-EDIFIS Real-Time Processing

prepared for

NASA

by

// i"

/ _

- j

Dr. Constantine Katsinis

University of Alabama in Huntsville

Electrical and Computer Engineering

June 1997

ABSTRACT

The Optical Plume Anomaly Detection (OPAD) detects engine hardware degrada-

tion of flight vehicles through identification and quantification of elemental species found

in the plume by analyzing the plume emission spectra in a real-time mode. Real-time

performance of OPAD relies on extensive software which must report metal amounts in the

plume faster than once every 0.5 sec.
OPAD software previously written by NASA scientists performed most necessary

functions at speeds which were far below what is needed for real-time operation. The

research presented in this report improved the execution speed of the software by optimiz-

ing the code without changing the algorithms and converting it into a parallelized form
which is executed in a shared-memory muitiprocessor system. The resulting code was

subjected to extensive timing analysis. The report also provides suggestions for further

performance improvement by a) identifying areas of algorithm optimization, b) recommend-

ing commercially available multiprocessor architectures and operating systems to support
real-time execution and c) presenting an initial study of fault-tolerance requirements.

0. COPY OF TASKS AND DELIVERABLES STATEMENT iv

1. Introduction ... 1-1

2. The Host Multiprocessor System 2-1

3. Software Description ... 3-1
3.1. General Overview ... 3-1

3.1.1. Operating system abstraction 3-1
3.2. Shared memory data structures 3-2
3.3. Coordinator functions .. 3-4
3.4. Worker files and functions 3-6
3.5. Algorithm and Code Enhancements 3-7

.5.1. Absorp Algorithm Modifications 3-7
3.5.2. Modifications to the Convolution Algorithm 3-8

4. Timing results and analysis .. 4-1
4.1. Evolution of the Spectrum Software Modifcations 4-1

4.1.1. Version 1 ... 4-2
4.1.2. Version 2 ... 4-2
4.1.4. Version 4 ... 4-3
4.1.5. Version 5 .. 4-3
4.1.6. Version 6 ... 4-4

4.2. Observations and recommendations 4-8
4.2.1. Convolution ... 4-8
4.2.2 Element assignments and database scanning 4-8
4.2.3. Generation of the shape function 4-8

5. Multidimensional minimization .. 5-1
5.1. Downhill simplex method 5-1
5.2. CFSQP package .. 5-2

APPENDIX A. Makefiles for VxWorks and SUN-UNIX Aol

APPENDIX B. Shell Scripts ... B-1

APPENDIX C. VxWorks system calls C-1

APPENDIX D. Parts of common.h D-1

APPENDIX E. Command line options E-1

0. COPY OF TASKS AND DELIVERABLES STATEMENT

Tasks
1. Computational Module Code Conversion.
Two modules, the SPECTRA code and Neural Network code, shall be converted

from IDL to C language programs to produce code which is optimized for speed of
execution and to allow the software to be integrated with a real-time operating system
(most support C but not IDL). Other modules shall be converted from IDL to C language
as necessary to support the full implementation of SPECTRA and Neural Network code.

2. Code Enhancement.
The resulting C code along with the Optimization module Fortran code shall be

analyzed extensively to improve the algorithms and enhance the execution speed. After
conversion to multitasking form to take advantage of all available parallelism within the

software, the multitasking code shall be executed in a single CPU workstation and

extensive experiments shall be performed to accurately establish the speed and

performance of its components. After any necessary modifications, the multitasking code

shall be ported to a multiprocessor system (3-6 processors) currently in operation at UAH

and additional experiments shall be performed to verify earlier predictions of speed
enhancement.

3. Architecture/Real-Time Operating System Study.

In parallel, an extensive study shall be performed on commercially available

multiprocessor architectures and supporting real-time operating systems (RTOS) to select
and recommend an architecture-RTOS combination with sufficient processing power and
ease of use to allow real-time execution of combined software.

4. Fault-Tolerance Requirements Study.

An initial study shall be performed to assess the fault-tolerance requirements of the

system recommended in Task 3. This study shall produce recommendations on the type
of hardware and software enhancements that will be required to achieve various levels of
fault-tolerance.

Deliverables

1. Prototype multitasking code derived from Task I and Task 2. Code shall include

SPECTRA and Neural Network modules and other code necessary for full interface and

implementation among modules used during the performance of all tasks described herein.

2. A final report shall provide a) complete descriptions of all algorithm and code
enhancements which were included in the final parallel version of the software, b) results

of all timing experiments which characterize the software performance, c) detailed

recommendations of a muitiprocessor architecture and real-time operating system, and d)

preliminary recommendations on fault-tolerance requirements and possible enhancements.

iv

1. INTRODUCTION

The NASA OPAD spectrometer system relies heavily on extensive software which

repetitively extracts spectral information from the engine plume and reports the amounts

of metals which are present in the plume. New data from the spectrograph is generated
at a rate of once every 0.5 sec or faster. All processing must be completed within this

period of time to maintain real-time performance. The software in the OPAD system per-

forms this function by solving the inverse problem. It uses physics-based computational
models which receive amounts of metals as inputs to produce the spectral data that would

have been observed, had the same metal amounts been present in the engine plume.
During the experiment, for every spectrum that is observed, an initial approximation is

performed using neural networks to establish an initial metal composition which approxi-

mates as accurately as possible the real one. Then, using optimization techniques, the

SPECTRA code is repetitively used to produce a fit to the data, by adjusting the metal input
amounts until the produced spectrum matches the observed one to within a given level of
tolerance.

The original version of the SPECTRA code was written in IDL, a language which

facilitated analysis and visualization of results but did not seek to optimize execution
speed. In addition, the iterative nature of the processing further contributes to a relatively

long period of time to execute the software in a modern single-processor workstation.

The initial SPECTRA code performs a number of functions to calculate the spec-

trum. The initialization phase establishes basic parameter values for all metals of interest.
In the input phase a file is read containing the desired concentration and broadening

parameter values for the metals. Then for each element, the program reads a database

file and extracts the lines for the element that are in the region of the wavelength being

investigated, and then, for each line a procedure is called to compute emission due to this

line. Following the calculation of the spectrum, the code generates the instrument response

function and convolves it with the spectrum to produce two final arrays called the thick and

the thin spectra.
To improve the execution speed, the code was translated into the C language and

was modified to implement the following: 1) maintain all necessary database information

in memory, so that disk access is completely avoided after the initialization phase, 2) keep

in memory (cache) partial results produced by previous calculations, and 3) replace several
algorithms which performed specific processing tasks within the code with improved ver-

sions designed for higher execution speed.
The resulting C version of SPECTRA was converted to a parallel version to allow

further increases in execution speed. The code can be compiled in two different ways to

produce two parallel forms of SPECTRA which can be executed in two different but com-

patible environments. The first form is multiprocessing code executing in a standard UNIX

environment. It can easily be ported to other workstations allowing other researchers to

experiment with the code. The second form is muitiprocessor code, where different pro-
cesses are actually executed on different processors. This form was developed for execu-

tion on the shared-memory multiprocessor (six M68030 processors, VxWorks real-time

operating system) in operation at UAH. It allows the user to probe individual processors

and perform accurate measurements on the timing and progress of the code executing on

1-1

each processor.

The multiprocessor software has been written in such a way that conversion to a
different parallel environment will require a
small effort, mostly adjusting the form of
system calls. In fact, the first parallel form #ifdef VXWORKS
of SPECTRA (for the UNIX multitasking #include "parallel_vx.c"
environment) is simply a derivative of the #endif
second (multiprocessor) form. This was #ifdef UNIX
accomplished by concentrating all the sys- #include "parallel_sun.c"
tem specific functions in separate files and #-endif
using defined variables in makefiles to
specify which functions are compiled for Figure 1-1. File parallel.c
each version. An example of such a file is

parallel.c which is shown in Figure 1-1.

The makefiles for the two forms mentioned above appear in Appendix A.

This report concentrates on the multiprocessor form of SPECTRA. The processors
are separated in two groups. The first group contains one processor, called the coordina-
tor. The second group contains the remaining processors, called the workers. Each worker

processor executes a copy of the same process, which repetitively receives input values
for the work assigned to it and calculates the contribution to the spectrum. The coordinator

processor controls the activities of the worker processors. Work can be assigned to the
worker processors either statically or dynamically. Since the research reported here was

more concerned with the timing optimization of the SPECTRA code, work assignment in

a rather static fashion was adequate. Future versions will take advantage of more sophisti-
cated scheduling procedures which dynamically distribute the work optimally over all

worker processors. The coordinator processor may calculate the convolution of the spec-
trum with the instrument response. It also executes the fitting (optimization) code which
drives the operation of the system by specifying the input values.

The purpose of the fitting code is to treat the absolute value of the difference be-

tween the actual and the calculated spectra as a function of independent variables (the

concentration and broadening parameter values of the metals of interest) and attempt to
minimize this function by selecting the proper values of the these variables. Our studies

have shown that as the value of any independent variable diverges from the correct one,

the absolute difference of the spectra increases monotonically, and therefore the local

minimum is the global one. This research has examined two different types of fitting code.
One is the downhill simplex method in multiple dimensions to transform a multi-dimensional

geometrical simplex through a sequence of reflections in such a way that a local minimum
is approached. The second optimization is using the CFSQP V 2.4 code, available from

the University of Maryland, which is designed to solve constrained nonlinear optimization
problems.

1-2

2. The Host Multiprocessor System

After initial conversion to the C language and some optimization in a conventional
single-processor computer, futher development and timing analysis of the SPECTRA code
took place using the multiprocessor system which we have assembled at UAH. To allow
easy porting of the code to other systems, only common features of the UAH
multiprocessor where used.

The multiprocessor system used to test the multitasking version of SPECTRA

consists of a SUN workstation, a VMEbus chassis (which can accomodate up to 12 VME
boards), and a set of six (and possibly more) MVME147 single board computers (SBC).
Each board is connected via Ethernet to the SUN workstation that contains the files ac-
cessed by the boards. The components of the MVME147 boards include: an MC68030

microprocessor, a Floating-point Coprocessor (MC68882), Dual-ported DRAM (4 Mbytes),
an Ethernet transceiver interface, and four 32-pin ROM sockets. Each SBC contains a

unique number (a processor number) within its ROM, which allows the same program to
be developed for a group of SBCs with the capability to take different actions for each

individual SBC as necessary. Figure 2-1 shows the system organization.

VMEbus Multi-computer

_m Ethernet

SUN

Wokrstatlon

OPR=DUAL-PORTEDRAM

VHEbus

Figure 2-1.

The whole system operates under the control of VxWorks and the UNIX operating
system. VxWorks is a real-time operating system acting as a partner to UNIX. The two
operating systems cooperate by allowing the program development (editing, compiling,

2-1

kinkingand storing of real-time code) to occur on the UNIX system and the actual execution
and debugging of the software to occur on the VxWorks system. Once the development
cycle is complete, the software can run standalone either in ROM or disk-based or can
continue to be downloaded from the network.

The VxWorks bootstrap code is placed in ROM. When the SBCs power-up, they
performsome initialization of the on-board hardware, log on to the SUN system and down-
load the VxWorks operating system. It is possible to specify a shell script that is to be
executed after the boards have finished booting up. The shell script contains a list of
commands exactly as the user would enter them at the command prompt of the terminal
attached to the SBC. Shell scripts are used to run the software on both the coordinator and

worker processors. This prevents the user from repeatedly having to type in the command
with all of the command line arguments and file names in all of the SBCs every time the
software is executed.

The present form of the software contains the additional functionality which allows
the user to conveniently specify repetitive executions of the software (possibly different
versions) with different input parameter values. These features will continue to be very
useful in the development of the software and are described in detail in this report.

The use of shell scripts provides the means to completely automate the running of
all versions, of the software with differing number of processors. Two types of scripts are
used, one for the coordinator and one for all the workers. SBC processor numbers are

used to cause a program to take different actions when necessary. The two types are very
similar, with the major difference being that the coordinator script causes all processors to
be reset at the end of the software execution in preparation for the next execution. The
scripts call programs which read data files (called "job description" files) with information
specifying which executable code to load into the processors and which parameter values
must be passed to the code at the beginning of the execution.

A job description file contains the command lines to be passed to the software for
each test. The shell script runs a program which examines the job description file, removes
the next job and invokes the SPECTRA software with the retrieved command line parame-
ters. When the software terminates, the coordiantor script causes all the processors to be
reset. When the SBCs finish rebooting, they examine the job description file and ran the
next test. This continues until the job description file has been emptied, at which point the
boards wait for input from the command line. Detailed descriptions of the shell scripts, job
description files, and job retrieval programs are shown in Appendix B.

The description above illustrates why the CreateWorkerProcess0 for VxWorks does
nothing. VxWorks task spawning functions do not provide a way to specify a particular CPU
that the task (or process) is to be executed on. To simplify matters, Worker processes are
created when the system boots up by commands from a shell script. The Worker does not
get ahead of the Coordinator because it must wait for the Coordinator to create the shared
data structures before the Workers can open them.

VxWorks supports shared-memory objects between processes running on separate
processors. The memory to be used for all of the shared memory objects is allocated from
the Coordinator's dual-ported DRAM. The Coordinator handles the creating of all shared
data structures while the workers merely open the data structures for use. The calls to
open the shared data structures are blocking. The worker processors perform some initial-

2-2

ization and then attempt to open the shared message queues. If the Coordinator has not

created the message queues, the worker process blocks until the message queues are
created. This is true for all of the shared data structures.

The library functions which provide the VxWorks system calls for the shared mem-

ory objects are placed in the files parallel_vxoc and parallel_vx.h.

A description of the system calls used in this library is placed in Appendix C.

2-3

3. Software Description

3.1. General Overview

The code has been written in such a way that it can be executed on the SUN
workstations (UNIX) or on the VMEbus single board computers (VxWorks) without modifi-
cation. There are two makefiles that handle
the compilation of the code: makefile.vx
and makefile.sun (these files are shown in
Appendix A). In order to run the code on a
specific architecture, the user can simply
recompile the code using the appropriate
makefile.

3.1.1. Operating system abstraction

Initialization:vxmain,main,spectra,assign,load,
reade,readt

Spectrum:spectrb,worker,voi,wav,abs,nrutil
Multiprocessing:parallel,parallelvx,parallel_sun
Timingfunctions:event,event_vx,event1
Otherfunctions:func,mtest,sprit,amoeba

Figure 3-1. C files that make up SPECTRA

Figure 3-1 shows the C files that make up the SPECTRA code. The lowest level
operating system specific routines, used to create, delete and access shared data struc-

tures, are kept in separate library files (parallel_vx.c, parallel_sun.c, event_vx, event SGI

etc). The interface to the library routines is kept consistent by using the same function

names and number of parameters for all operating systems. This approach keeps the

operating system specific calls hidden at the lowest level of the code and greatly simplifies
the task of porting the software to new operating systems. The user can simply create a

version of the library fires that handles the system calls of the new operating system and

create a makefile that defines the appropriate flags (-DVXWORKS, -DUNIX for example)
which will cause the proper library files to be used when building the executable.

In UNIX, shared memory objects are identified by keys (unique integers) and in

VxWorks shared memory objects are identified by names (strings). In order to access the
shared object the user must know the object's ID (whether it is a key or a name). These

details are hidden from the user by implementing the functions with respect to a particular

data structure. An example of this is the set of functions that provide access to the

FIXED_GLOBALS structure: CreateFxGIobals0, OpenFxGIobals0, DeleteFxGIobals0. The
structure's ID (key or name) is used only inside the library file. This approach makes the

code easy to port to other operating systems and much easier to work with from the pro-
grammer's perspective.

When using VxWorks, the worker processors start executing the worker code on
boot up. In UNIX, the worker processes are forked as part of the initialization in specinit0.

For this reason, CreateWorkerProcess0 actually forks the worker processes when using
the UNIX system but does nothing when using VxWorks.

3.1.2. Communication description

Communication between the coordinator and the workers is implemented by mes-
sages. There are four message types currently being used: INIT, READY, START, and
FINISH.

The main purpose of the INIT message is to let the workers know that the

Fx_globals and datn_array data structures have been initialized. The number of processors

3-]

that will be used for this run is sent in the INIT message. The INIT message is sent to all
processors in the system. The worker process decides whether he should participate in this
run by comparing his processor number with the number of processors in the INIT mes-
sage. If the worker's processornumber is greater than the number of processors participat-
ing, he exits. For this reason, the INIT message is sent to all processors in the system but
the remaining messages are sent only to participating processors.

The READY message is sent from each worker process to the coordinator process
to indicate that the worker process has finished it's initialization and is ready to begin the
calculations.

The START message is sent to the worker processes after new input has been
received (new metal concentrations and/or spectrap) and the relatedglobal data structures
have been updated. The START message contains parameters that are related to the
spectrap structure. The values include Ilimit, range, temp, length and press. Since all of the
workers required these parameters, iswas faster to send them as part of the message than
to have the workers trying to read them from shared memory at the same time.

The FINISH message sent from the worker processes to the coordinator contains
the processor number of the worker process that sent the message. The coordinator waits
until it receives messages from all of the processors participating in the calculations before
continuing. Since the spectra calculations can be performed a number of times, the worker
processes complete there calculations and wait for the next message. The coordinator
process sends a FINISH message to the workers when there are no more calculations to
do. This signals the worker processes to
exit.

3.1.3. Program operation
The input for the program is in the

form of data files containing parameters for
the elements involved in the spectrum cal-
culations. The information is kept in data
structures in shared memory so it can be
accessed by all of processors. After the
initializationof the global variables is com-
plete, each of the processors is assigned
the element(s) on which it will perform the
calculations. The processors can be as-
signed single elements, groups of ele-
ments or portions of elements in order to

IUIII_iNIIO OATATYPE

clmldlIB _

dmlilie

dmalIile slIhI

dmJIlI slInI_

ckm_

clt_ itls¢

cllar NnIMAX E1.EM_NAM E1

DATATYP_ dam

DATATYPE dam

dmlli_ bmeden

dmlbie m

EI.IIIDII" ell

IMsIII

dm_e "d_alll

IM ellhN_llq

ELIMINT

©hat Mme(1041

doglzie r.m_

char in

doullz_ Iz_l_edp

!

Figure 3-2. ELEM_INFO Structure

achieve effective load balancing. After each processor has finished determining the local

spectrum for the assigned element(s), a global sum operation is done to combine the

separate local spectra into the final spectrum containing the contributions made by all of
the elements. A series of checks is performed on the data and then the global spectrum

is convolved with the instrument response to provide the final spectrum output.

3.2. Shared memory data structures

All information between processes is passed through data structures and message

3-2

queues in shared memory. The definitions
of these data structures are located in the
common.h header file, parts of which are
shown in Appendix Y for reference.

Array elem_info contains structures
of type ELEM_INFO, one for each ele-
ment. Figure 3-2 shows the information of
this and related structures. Each structure
contains the element parameters from the
element.lst file and an array of pointers to
arrays containing the element database
information. Initialization of this structure is
performed by the functions Ioad_specl0
[load.c] and read_elements0 [reade.c].
The element database is written into
sharedmemory by the function read_bin0
[readt.c] and the pointers to these arrays
are updated in the elem info structure. In
addition the element concentrations and
broadening parameters are stored here
and updated from the comp.lst file by the
Ioad_spec20 [load.c] function.

Array Fx_globals contains a struc-
ture of type FIXED_GLOBALS of global
read_onlyvariables, mainly command op-
tions and the array of structures containing
the element assignments for the workers.
Figure 3-3 shows the information of this
and related structures.

FIXED_O LO BAJL8

Int doevo_t

Int nomin

Int a_msk

IM mpook_

ASmGN_ELIZM a.._GW_]

AJNMON _z=u a_l]

AaMk_N_ELeM m._p_

ASWGN_ELEM

ELEM_OLK ek_m__Jk_]

ELEM_OLK ,kmLblks(O]

ELEM_BLK *lem_l_ks(MEl_

Int num_okml_bllul

1114Ilollll_Un N

ELEM_BLK

In! elem

i

' lat met Hne

MNPmMAX_NUM_PROC.1 i
I IM Mm_UMe

MIm,.MAX_ELEM OLKS-I !

Figure 3-3. FIXED_GLOBALS Structure

_'IARID OLOIIAM= SPL'C'mAP

$PL_'I_ =pecmmp

di_

d_Jm 0mm_

da/mm

_ ,m,q'n_moU

mmq'rR,_SOgM1

-- Idom_ pe_

ek.d_ Weu

Figure 3-4. SHARED_GLOBALS Structure

Array Sh_globals contains a structure of type SHARED_GLOBALS which groups
together a number dynamic and read-write variables. These variables are obtained from

the comp.lst file in the function Ioad_spec20 [load.c]. Figure 3-4 shows the information of
this and related structures.

Other global variables include spec
trum[], spectrum21] which contain the thick

and thin global spectrum values, and the
data arrays used to hold the element data-

base. Figure 3-5 shows the complete orga-

nization of the shared memory.
In addition, shared memory contains

data structures used for multitasking such

as semaphores for spectra, data arrays,

and the linst variable, and message
queues for the coordinator and worker pro-

cesses. Figure 3-6 shows the organization

$p_m,m{ZPECS_EI

spumm_u_cs_.l

P_EO_GLOSA_ Fzj_ob_e

8HAItED_GLOBAL8 Ah_gk)ba_

_l ma_lNFO elem Jnh:{0_t II]

dam__u/O

Sm_,_me

MmM,OQ

W_t_thqp_I0--N_PROCl

Figure 3-5. Shared memory structure

3-3

of message queues and their function-
ality in shared memory.

3.3. Coordinator functions
The individualfiles and functions

of the coordinator are described below.
Figure 3-7 shows a basic flowchart of
the coordinator operation.

Vxmain.c
The file vxmain.c is used when

compiling for VxWorks. It was neces-
sary because VxWorks tasks are

INn"
STAR
IF1NISH

a

CoordMagQ ql

READ
IqNISH

COORDINATOR

WORKER

WorkerMsgQ[0]

WorkerMsgQ[1]

ma_x_i_.m__mx= I WorkerMsgQ[MNP-l] I

Figure 3-6. Coordinator and Worker Queues

spawned using the function sp(funcname, argl, arg2, arg3, arg4, arg5, arg6, arg7, arg8,

arg9). The main function in vxmain.c (called start()) receives a string containing the com-

mand line to be passed to the main() function in main.c. Start() handles converting the

string into the typical main(ant argc, char *argv[]) arguments used in UNIX. This approach
keeps the main() function in main.c the same for both operating systems. The only differ-
ence in the two versions is that in

VxWorks a command line string is

passed to start() which then calls the

main(ant argc, char *argv[]) with the typ-

ical arguments.
Main.c

The function main() sets the

global command parameters according
to the command line arguments. A set

of timing routines is provided in the file

event.c. Function event_a0 initializes

the data structures used by the timing
routines. Initialization of the global data
structures that are used in the determi-

nation of the spectrum is handled in the

routines specinit0 [spectra.c] and
Ioad_spec20 [load.c]. The determina-

tion of the spectrum and the convolu-

tion with the instrument response takes
place in the function spectra()

[spectrb.c]. In order to run the code

multiple times with different element
concentrations, the function mtest0

[mtest.c] is used. Mtest0 contains a

loop which reads the new comp.lst file,
calls Ioad_spec20 and then calls spec-

tra0. Event_P0 handles the printing of

the timing information gathered during

INITIAUZATION

Allocate end Initialize global structures
Read date from files into global memory
Assign olomonte to worker processors
Send INIT meseego to worker
Walt for READY mossago from workor

GET ELEMENT CONCENTRATIONS
Get spectrap end spectrafit Information
Update global variables

_PECTRUM

I Send START message to worker

L Welt for FINISH message from worker

q

PROCESS SPECTRUM INFORMATION

Perform checks and reporting]Convolve wlth Instrument Response

Figure 3-7. Coordinator Processor Flowchart

3-4

the program's execution.
Input data files
The input to the spectrum software is located in the following files:
element.lst: provides partition data for each of the elements. The entries for each

of the elements contains the name of the file which contains the element database and
other parameters associated with the element (partf, nist, mass, sigH2, sigH20).

*.bn3: The original files containing the element database are ASCII files. The infor-
mation from these files were read and then written to binary files. The binary files contain

the same name as the ASCII files but with a different extension, (*.bn3). The element
database files contain data organized in 6 parallel arrays containing wavelength values and

limits. All 6 arrays of a single metal have the same number of data points but the number
of data points in the arrays can differ from element to element.

comp.lst: This file contains the concentration of the various metals as well as Spec-
tra parameters (spectrap data structure) and Spectra fitting parameters such as wave-

length shift and response magnification parameters (spectrafit data structure).

Data from the element.lst and element database files does not change for different

iterations of the program. Element concentration data from the comp.lst file can change
with each iteration of the program.

Spectra.c: specinit0

The routine specinit0 allocates and initializes the global data structures in shared

memory. It then creates message queues for the worker processors and distributes the

elements among them. In the UNIX version of the code, the processes are created at this

point but in the VxWorks version, the processes are created at system startup and the
CreateMinorProcess0 function does nothing. At this point an INIT message is sent to each

of the processors indicating that the global variables have been set up and are ready to be
retrieved. The coordinator process then waits for the worker processes to send a READY

message indicating that they have finished their initialization and are ready to perform the
calculations.

Load.c: Ioad_spec20

The function Ioad_spec20 reads the data from the comp.lst file and stores the conc

and broadp values for each of the elements in the elem info structure. Load_spec20 also
fills in the spectrap and spectrafit structures with the parameters in comp.lst.

assign.c: AssignByElem0, AssignByLines0

These functions handle the distribution of elements to the worker processes. The
assignment decisions are based on the number of lines that will be used from each of the

elements. The number of lines used from the elements is determined by the parameters
in the spectrap structure which is updated from the comp.lst file.

Currently two methods of assignment have been examined. Assigning whole ele-
ments and assigning portions of elements. The difference in the number of lines used for

the different metals is so drastic, 1 or 2 lines for some and over 200 lines for other metals,

that balancing the amount of work performed by each of the processors is very difficult.
This topic will be discussed further in the section on timing analysis.

If the spectrap structure is the same for all of the iterations then this method of

assignment is acceptable. If the spectrap structure changes with each iteration, the number

of lines that are considered from the elements will change every time. In order to maintain

3-5

a good load balance between the
worker processes, new assignments
would need to be made each iteration.
This will affect the execution time and
will be examined further in the section
on timing analysis.

Spectrb.c: spectra()
Spectra() contains the major

portion of the code executed by the
coordinator process. After initializing
variables with the information received
from Ioad_spec20, the coordinator
sends a START message to the worker
processes. The worker processes cal-
culate their portions of the spectrum
and then combine the results to obtain
the final spectrum. After sending the
START message, the coordinatorwaits
until receiving the FINISH message
from the worker processes.

The coordinator performs some
checks to verify an assumption made in
the absorp0 [abs.c] function and then
performs a convolution with the instru-
ment response function to obtain the
final output (specthick and specthin).
The function doresp0 [spectra.c] deter-

INITIALIZATION
n global data structures
for INIT message

Read global variables
Send READY message to coordinator
Read element database

I WAIT FOR COORDINATOR MESSAGE
If message-START calculate spectrum
If messegemFlNISH exit

S,ARTF I

message I FINISH
message

r

CALCULATE NEW SPECTRUM

For each assigned element:
Get number of lines of element
For each line:

Calculatl spectrum contMbutJon
Update the global spectrum

_EXJT

F

SEND FINISH MESSAGE

Figure 3-8. Worker Processors Flowchart

mines the response function to be used in the convolution and depends on the variables

associated with determining the range of wavelengths to be considered in the spectrum
(spectrap and spectrafit structures).

At this point the convolution is performed.
The original version of the convolution resulted

in 83% of its calculations involving a data point

of the spectrum that was zero. A modification of
the algorithm resulting in a 50% decrease in the

time used to perform the convolution by only
considering non-zero spectrum entries.

3.4. Worker files and functions

The individual functions of the worker are

described below. Figure 3-8 shows the flowchart

of the worker operation.
Worker.c

The worker process must first open the

global message queues and data structures cre-

double absorp ()
(
range - l ine(drange, broaden,shape):. .
for (i-O:i<range: 1_) kl ine[i]-mag*snapeLi]/dop:
SUm- 0:
for (i - 0: i < range: i++)
sum 1.0 - exp(-i kline[i] length/100.0):

return(tauint-sum * 0.1 * dop):
}

1ine (drange. a. shape)
double drange, a:
FLOAT *shape:

{tot - 0. :
for (i - 0: i < range: i4-,)
tot +- (shape[i] = voigt(a.x[i])):

tot *- 0.1:
for (i - O: i • range: i++) shape[i] /- tot:

return(range) :
}

Figure 3-9. Original absorp() cocle

3-6

ated by the coordinator process. When the pro-
cess receives the INIT message, it makes a lo-
cal copy of the static global variables and data
structures. At this point the worker process
sends the coordinator a READY message and
then goes into a loop receiving and processing
messages from the coordinator until a FINISH
message is received at which
point the worker exits.

When the worker process receives the
START message it makes a local copy of the
dynamic global variables and then proceeds to
perform the calculations for the metals that were

assigned to it. The main body of the calculation

consists of an outer loop that is done for each
element and an inner loop that is done for each

line in the specified range of the element.
First the element database is scanned to

retrieve the data lines that fall within the speci-
fied range. The function that calculates the emis-

sion value for the line is absorp0 [abs.c]. This

double absorp()

{myj = (range - I) / 2:
new2 = (myj + i) - qgaus(klinefunc.O..myj):
tauint = 2. * new2 * 0.i * dop:
return(tauint):

_}uble qgaus(func.a.D)
double a.b.double (*func)();

static double x[]_0.0.0.14887433890 4333953941
0.6794095682.0._b'506336660.973906523.
static double w[]-{O.O 0.29152422470 _g2667193
0.2190863625.0.1494513491.0.06667_34}:
xm-g.5*(b+a):
xr-O.5*(b-a):
s-O:
for (j-l:j<-5:j++)

(dx-xr*x_j];
s +-w[J]*((*func)(xm+dx)+(*func)(xm.dx)).
} ,
return s - xr;

}_lble klinefunc(x)
double x:

{int il. i2;
double temp. dx:
return(exp(-multip * shape[(int) x]));

}

Figure 3-10. New integration in absorp

function was responsible for 99% of the execution time of the original version of the code.

Several optimizations of this function have drastically reduced the time taken by this func-

tion. Specific details of these optimizations will be discussed in timing analysis section of
this report.

The emission values are stored in a local spectrum array. When all of the elements

assigned to the worker have been processed, the global spectrum is updated with the
values from the local spectrums from each of the processors. The worker then sends a

FINISH message to the coordinator and waits for the next message.

3.5. Algorithm and Code Enhancements

3.5.1. Absorp Algorithm Modifications

An analysis of the original version of the
software indicated that almost all of the execu-

tion time was due to the absorp0 routine. There

were two major areas that required changes:
the determination of the shape[] array for each
line and the integration. The modifications made
to these sections of the code are described be-

low. The orginal code, shown in Figure 3-9,
called function line(), which returned data in ar-

ray shape[], which was used to creat array
klinel]. An exponential function of this array was
then integrated, using an approximation to the

Simpson's-rule method, to produce a value of

Calculation from orlginal algorithm:

iwav - userealwav[jj]FACTOR + su_set[i]:

subset[i] is determined by the following loop

for(l - O: i < respsize: i++)

subset[i]- i - respsize/2.0:

Placing this value directly into the calculation:

iwav - userealwav[jj]FACTOR + i - respsize/2.0:

Yielding the final equation:

i - iwav + respsize/2.0 - usereaiwav[jj]FACTOR:

Value of i is used as the index to the response

array.

Figure 3-11.

3-?

variable tauint which was returned.
Experiments revealed that the data returned by line() in array shape[] is used more

than once, through successive calls to function absorP0. A software cache was added in
function line() which maintained previously calculated data, so that when the function is
called with previously used arguments, the data is simply retieved rather than calculated
again.

Further experiments revealed that the integration in the original version of absorp0
resulted in a very large number of calls to function exp0, which is relatively expensive
computationally. Itwas replaced by new code implementing the Gauss-Legendre integra-
tion algorithm.A description of this algorithm can be found in the book "Numerical Recipes
in C", by W.H. Press et.al., Cambridge University Press. Figure 3-10 show the relevant
segments of the new code. The use of the function pointer, func, which points always to
function klinefunc0 was left unchanged because it is convenient and intuitive.

3.5.2. Modifications to the Convolution Algorithm
The original convolution algorithm consisted of nested loops which performed

calculations on a range of wavelengths (loop iterations = respsize) for every value in the
userealwav array (loop iterations =

realwavsize). Of the total loop itera-

tions (which is respsize * realwavsize)

approximately 83% of the calculations

were useless because they involved a
spectrum value of zero.

The purpose of the original al

gorithm was to use data from a range

of wavelengths surrounding the wave-

length contained in userealwav[jj] to

calculate the value for specthick[jj].
This means that any one wavelength
affects several elements of

specthick[]. The number of

specthick[] elements affected by a
specific wavelength depends on the

range of wavelengths taken into ac-
count (respsize) and the number of

wavelengths between consecutive

elements in userealwav[].

The new algorithm approaches

the problem in another way. It scans
the wavelengths in the range indi-

cated by userealwav[] and searches

for wavelengths where

iwav dlff - (userealwav[realwavsize - 1]
- - userealwav[0]) / realwavsize

start = usereaiwav[O]FAcTOR +subset[O];
end - userealwav[realwavsize- 1] FACTOR

+ subset[respsize- i];
overlap = (respslze/2.0)/ (iwav dlff FACTOR):
for (iwav -start : iwav < ena: i_av_-_)

{if(spectrum[iwav]!- O.O)

{temp2 = spectrum[iwav]* dimsize:
/* calculate the index corresponding to this wavelength */
my_jj = (((double)(iwav)/lO.O)

- userealwav[O]) / iwav_diff:
/*
fill in all values of specthlck[] that are affected by
thls wavelength the number of values depends on
1) step-sizeof userealwav 2) respsize
*/
for(jj -my_jj - overlap; jj <- my_lj + overlap: jj++)
i
_/* don't try to access values out of our range */
if((j3 >- O) && (jj < reaiwavslze))

{/.
get the index of the response function that should be
used for each of these points: this calculationwas
generatedby substituting the equation for subset_]
into the equation trom the original algorithm useo
to generate 1way
*i
i = (double)iwav + (double)respsize/2.0

- userealwav{jj] FACTOR + I:
if((l >- O) && (I • respsize)) _ .
specthick[jj]+- telap2* responseLiJ;

}
}

}

Figure 3-12.

spectrum[wavelength] is not equal to zero. Once a contributing wavelength is found, the

index of userealwav[] containing the range of wavelengths into which this one would fall

is determined. This index will be the "central index" of specthick[] that will be affected by

3-8

this wavelength. The respsize and step-size of userealwav[] are used to determine sur-

rounding specthick[] elements that will be affected by this wavelength. The next step is to

determine which response[] element should be used to calculate each of the specthick[]

elements. The equation used to get the response element index was taken from the origi-
nal algorithm's calculation to determine iwav, as shown in Figure 3-11. This algorithm

makes two assumptions: 1) the userealwav[] array has a constant step-size or wavelength
range, and 2) the userealwav[] array contains elements in increasing order. The code used
to implement this algorithm is shown in Figure 3-12.

3-9

4. Timing results and analysis

4.1. Evolution of the Spectrum Software Modifications
This section describes the timing analysis of the software through different stages

of modification. The figures in this section of the report use event numbers to identify the
portions of the code for which the execution time was measured. Table 1 shows the event
numbers and their corresponding code sections in the coordinator program. Similarly,
Table 2 shows the events of the worker program.

Table 1. Coordinator Events
Event Code Sections

1
2
3
4
6
7

spectra()
initialization of spectrum[] and spectrum2[]
major FOR loop for each metal
save spectrum to file
do_resp0
convolution

8 save specthick and specthin to a file
9 code executed when nocolor = 0

10
11

12

save optot colors to file (*.emw)

scale specthick and specthin done if source > 0
code executed when check = 1

13 code executed when cross = 1

Table 2. Worker Events

Event Code Sections

0

1

3

4

6

9

worker main body

all code not accounted for by the other event

scan element data base to get lines in the appropriate range

absorp0

update local and 91obal copies of spectrum[] and spectrum2[]
code executed when nocolor = 0

12 code executed when check = 1

As improvements to the code were made, significant differences in the execution

time were observed when some of the options were selected (check = 1, for example). For
this reasons, two versions of the code are discussed, the real-time version of the code

which is the version used during the actual measurement phase and the debug version
which is used in the test phase. The debug version is characterized by variables check and
nocolor having a value of 1. The value of SPECSIZE was reduced to half of the original

4-1

value due to the memory limitationson the
single board computers used in the experi-
ments.

4.1.1. Version 1
This is the starting point for the soft

ware modification. It has all of the original
algorithms from the IDL Version of the
code translated into the C language. The
chart below shows the execution time for
the events described above. Figure 4-1
shows that practically all of the execution
time occurs during the calculation of the
spectrum and more specifically inside the
absorP0routine. This clearly was the place
to start looking for areas of the code that
could be optimized.

4.1.2. Version 2

Figure 4-2 shows the speed im

provement after the implementation of the
software cache to hold a number of the

shape functions (line() in abs.c) so they

could be reused instead of regenerated. A
discussion of this modification can be

found in the Algorithm Description section
of this report. This modification allowed the
real-time Version to run 79% faster and the

debug Version to run 77% faster.

4.1.3. Version 3

Figure 4-3 shows the speed im

provement after the implementation of the
Gauss-Legendre integration algorithm over

the shape array for every line. A change in
the algorithm that determines the value for

the integration resulted in a 92% perfor-
mance increase for the real time Version.

The debug Version exhibited a 30% perfor-
mance increase. The reason for this is the

array assignment that occurs for every line
when check = 1.

From this point on, this report con-
centrates on the real-time Version of the

code since that is the Version that must

400000

350000 ,_

300000

250000

200000 ,--150000

100000

50000

0

123

Figure 4-1. Version 1

jo._

4 6 7 8 9 10 11 12 13
event

• Spectra Timing

100000

80000

60000

E 40000

20000

0

1

-- m --

-- m

2 3

i=.-,

4 6 7 8 9 10 11 12 13
event

Figure 4-2. Version 2: Spectra timing

100000

80000

60000

E 40000

20000

o 1
1 2 3

i=-,

6 7 8

event

9 10 11 12 13

Figure 4-3. Version 3: Spectra timing

4-2

ultimately meet the timing requirements.
Figure 4-4 shows the timing of the real-
time SPECTRA. It is apparent that the con-
volution in function absorp0 (event number
7) is making a significant contribution to
the execution time.

4.5. Version 4
Experiments have demonstrated

that most of the calculations of the convo-
lution in function absorp0 were involving
zero values. A restructuring of this part of
the code made it more efficient by only

considering non-zero values. A more de-

tailed explanation of this modification can
be found in the Algorithm Description sec-

tion of this report. Figure 4-5 shows the

timing with the new convolution algorithm.
This modification provided an additional

28% increase in performance.

The remaining modifications in

voived converting the software to a

multi-tasking Version and distributing the
spectrum calculations (specifically the ma-

jor FOR loop done for each of the ele-

ments) across multiple processors. In this

configuration there is one coordinator and
the remaining processors are the workers.
The coordinator receives the metal con-

centrations, updated global variables and

signales the workers to begin the calcula-
tion of the spectrum.

4.6. Version 5

In this Version of the code, the ele

ments are allocated to each of the proces-

sors for analysis. The time required to cal-

culate the spectrum is directly related to
the number of lines used from the ele-

ments. In order to efficiently use all of the

processors, it is important to assign the
elements so that each of the processors

ends up with the same number of lines (or
as close as possible). Figure 4-6 shows the

execution times for the spectra function

5000 --

(/)

E

4000

3000

2000

1000

0

!

1 2 3 4 6 7 8 9 10 11 12 13

event

Figure 4-4. Version 3: Real-time Spectra

3500

3000

2500

2000 ,_

E 1500

1000 :

500

0

"7
I

i

1 2 3 4 6 7 8 9 10 11 12 13
event

Figure 4-5. Version 4: Real-time Spectra

3500

3000

2500

2000

E 1500

1000

500

0

\
\

.... Nr m

2 3 4

number of processors

Figure 4-6. Version 5: Real-time Spectra

4-3

and for the portion of the spectra() function
that is performed in parallel by the worker
processors. The flattening of the curve be-
tween 4 and 5 processors is apparent.

Figure 4-7 shows a breakdown of
the execution times for code sections in
the spectra() function. Each of the data
series representsthe time for that event for
the sequentialVersion and the multitasking
Version for 1,2,3,4, and 5 processors. It is
apparent that event 3 (the code executed
by the worker processors) shows the same
execution time for both 4-processor and
5-processorsystems.The reason for this is
the approach of distributing entire ele-
ments to the processors.

For the wavelength range indicated
by the spectrap structure in the comp.lst
file, the elements have a widely differing
number of lines, some have less that 10
while others have close to 300. The un-
even distribution of the number of lines per
processor prevents a good load balancing
for more that 4 processors since in each of
these cases, the largest elements (iron:
271 lines and molybdenum: 220 lines) are
allocated separately to a single processor
each and the remaining processors finish
their elements and remain idle while iron
and molybdenum are still being analyzed.
To further improve the performance, it is
necessary to divide the larger elements
between several processors to provide
better load balancing and eliminate any
idle time.

4.1.6. Version 6

This Version of the code allows an

element to be divided between several pro-
cessors in an attempt to improve the load

balancing. Figures 4-8 and 4-9 show the

timing breakdown for 5 processors and a

comparison between Version 5 and 6 for
the execution time for SPECTRA. In this

Version, an increase in performance for

4000 I_ - - _ -, []-, I

2500

2000
1500

1000

500

0

1 2 3 4 6 7
event

Figure 4-7. Version 5: Multiprocessor Spectra

4000 I _ -- 1 "' • ,.,,

350031_ =_"= 3 -_; _=_-'

3000 -lk _......2500

2000
1500

1000

50O

1 2 3 4 6 7

event

Figure 4-8. Version 6: Multiprocessor Spectra

4000

3500

3000

2500

2000
E

1500

1000

500

0

• ---

2 3 4

number of processors

Figure 4-9. Comparison of versions 5 and 6

4-4

more that 4 processors can be seen.
The amount of speed up that can be

gained by adding more processors to the
system depends on the interaction be-
tween the different components of the
worker code. Some components increase
with increasing number of processors and
some components decrease with increas-
ing number of processors while others re-
main the same regardless of the number of
processors. Figure 4-10 shows a break-
down of the worker components.

The most significant components
are described below. In each figure, the
x-axis represents the number of proces-
sors and each of the data series is the time
it took to perform the code for that event in
each of the processors, referred to as
vine02, vme03, vine04, vme05, vme06
(vme01 is the coordinator). Figure 4-11
shows the timing for event 1which is asso-
ciated with the code sections not included
by Events 3, 4 and 6. The code sections
included in Event 1 that were significant
are shown below.

Figure 4-12 shows event 1.3 which
is the time taken to update the linst vari-
able. This is significant because it requires
taking a semaphore, updating a location in
shared memory and releasing the sema-
phore. This is done for every line.

Figure 4-13 shows event 1.5 which
is the portion of code that calculates the
variables this emiss and this othin from
the wavelength and the value returned
from the absorpO routine. This portion of
the code is strictly computational and is
executed once for every line. It should de-
crease as the number of processors in-
creases.

Figure 4-14 shows event 3 which is
the part of the code where the element
database is scanned to determine which
lines are in the appropriate range to be
used for the calculations. This portion of

1200

1000

800

600

400 ;I

200

0

0

I

1 3 4 6
event

Figure 4-10. Version 6: workers

ooo !_ooOO,=1
=" 4oo

200

0

1 2 3 4 5

number of processors

Figure 4-11. Version 6: Event 1

160

140

120

100

_ 8o
60

4(1

20

q '-i -----

i :

- 1 2 3 4 5

number of processors

Figure 4-12. Version 6: Event #1,3

4-5

450 I _ _ q ,..02 • ,_ 200 I -- _ £ _ []

150 J -360

18o

90 50

1 i._

0 0

1 2 3 4 5 1 2 3 4 5

number of processors number of processors

Figure 4-13. Version 6: Event #1,5 Figure 4-14. Version 6: event 3

the code must be done every time the

spectrap structure is updated since the

fields in this structure affect the range of

wavelength that will be examined. The time

it takes to perform the scanning is deter-
mined by the number of data points in the
element s database and the number of

elements for which the scanning must be
done. In Version 5, an entire element is

assigned to a processor so only one pro-

cessor performs the scan for a particular
element. In Version 6, an element can be

distributed among several processors

requiring that each processor perform the
scan for that element.

Event #6 is the time required for the

code sections dealing with updating the

local and global spectra. Figure 4-15

shows event 6,1 which is the time spent
updating the local spectrum. Figure 4-16

shows event 6,2 which is the time spent

updating the global spectrum. The time for
Event #6,1 will decrease as the number of

processors increases since it is related to
the number of lines. The time for Event

#6,2 will increase as the number of proces-
sors increases because this step must be

done serially. Each processor takes a

semaphore, updates the global spectrum
for each of its non-zero local spectrum val-

'°°lrl 1

0

1 2 3 4 5

Number of processors

Figure 4-15. Version 6: event 6,1

30

25

20

10

5

0

1 2 3 4 5

number of processors

Figure 4-16. Version6: event 6,2

4-6

ues, and then releases the semaphore.
Updatingthe global spectrum takes longer
when the load balance is good because all
of the processors are trying to update the
spectrum at the same time and therefore
must wait for each other.

Figure 4-17 shows event 4 which is
the time used by the absorpO routine. It is
called once for every line in the element.
For an increasing number of processors,
the absorpOfunction decreases, but not as
much as would be expected.

In order to understand why the exe-
cution time for Event #.4does not drop as
much as one would expect, the following
diagrams show the execution times for the
major components of the absorpO routine.
Figure 4-18 shows event #4,1, the time
required to calculate the range variable.
Figure 4-19 shows event #4,2, the time
required to perform the integration. Figure
4-20 shows event #4,3, the time required
to obtain the shape function to be used for
the line. Clearly the problem is with the
time that is takes to obtain the shape func-
tion. This part of code was optimized using
the software cache. The optimization pre-
vents the shape function from being gener-
ated for each line. The problem is that it

2000

1500

Iooo
E

5OO

2 3 4

number of processors

Figure 4-17. Version 6: event 4

7OO

600

500

40O

300

200

100

0

2 3 4

number of processors

Figure 4-18. Version 6: event 4,1

700 - i
600

500

400

300 -._ ,'_ .--

200 -- i _
100

0

1 2 3 4 5

number of processors

Figure 4-19. Version 6: event 4,2

700

600

500

400

E 300

200

100

0
2 3 4

number of processors

Figure 4-20. Version 6: event 4,3

4-7

takes close to 300 ms to generate the shape function. This automatically puts a bound on
the amount of speedup that is possible regardless of the number of processors that are
used. If the spectrap structure parameters are such that more that one shape function
must be generated, the results would drastically affect the overall execution time of the
program.

4.2. Observations and recommendations
4.2.1. Convolution
The time requiredto perform the convolutionwas reduced by the new algorithm, but

it stills is a significant contributor to the overall execution time of the spectra() function.
Additional speedup could be achieved by parallelizing the convolution code.

4.2.2 Element assignments and database scanning
The changes that should be made for the next Version of the software depend on

which input parameters are expected to change each time a new spectrum is generated.
The parameters in the spectrap structure
affect the wavelength range that is being
analyzed. If these valuesdo not change for 2500 __

\ Plmlllll

a particular test run. then the code for -, ,,,,,.,
Event #3 can be moved to the initialization 2000 .

part of the program. This will save a lot of "',
the overhead being observed in the worker o 15oo - - ,.

process. It also allows the assignment of =_looo ""
elements (or lines) to be done once at ini- -

tialization time. 5oo

If the spectrap structure is expected

to change each time a new spectrum is 0
generated, then not only must Event #3 2 3 4 5

number of processors
remain in the worker part of the code, but
the elements (or lines) will have to be reas-

Figure 4-21. Version 6: Performance limits
signed each time. In the experiments per-
formed above, the assignments were done
at initialization. A possible approach for saving time should the spectrap structure change

for each generation of the spectrum would be to reorganizing the element database so that
the lines that will be used in any range are uniformly distributed throughout the database.

This would enable each processor to only scan a portion of the database and use the lines

that it finds in that section. In addition to reducing the overhead of every processor scan-

ning the entire database, it also simplifies the scheduling problem.
4.2.3. Generation of the shape function

The voigt0 function that generates the shape function depends ultimately on three
variables: mass (element.lst), temp (spectrap structure of comp.lst), and broaden (broaden-

ing parameter from comp.lst). If these three variables either 1) do not change or 2) can be
determined ahead of time, the voigt0 function can be used to generate a table of shape

functions during initialization. This would change the code in the line function so that the

shape function is retrieved from a table rather than generated in real-time.
This enhancement would undoubtedly have the biggest effect on the performance

4-8

of the software. If this portion of the software is not optimized the performance of the
program will be limited by the time taken to generate the shape function(s). Figure 4-21
shows the execution time for the worker part of the code alongwith the execution time for
the serial Version using the same number of elements and lines as the multi-tasking
Version. In addition, the time taken for the worker part of the calculations when only one
element with one line is being analyzed. This illustratesthe best possible performance with
the current algorithms. From the information gained from this timing analysis it is apparent
that 7 or 8 processors can utilize most available parallelism in SPECTRA.

4-9

5. Multidimensional minimization

Although the SPECTRA code can be used to calculate a spectrum given the metal
parameters, in the present research it is required that the inverse proble be solved. The
spectrum is observed and the metal parameters must be extracted. One way to solve this
problem is to consider it as a minimization problem. A single-valued, multiple-variable
function is developed which indicates the degree of difference between the observed
spectrum and the one calculated by SPECTRA. The input metal parameter values (the
function variables) are changed in such a way that the resuitig difference is minimized. In
the present work, the sum of the absolutevalues of the differences between the observed
and calculated thick spectra is used as the measure of difference to be minimized. This
report presents two distinct algorithms that have been used in the process of the present
research, the downhill simplex method and CFSQP a package based on Sequential
Quadratic Programming.

5.1. Downhill simplex method
This method requiresonly function evaluations, not derivatives. It is not very efficient

in terms of the number of function evaluations that it requires. It is quite robust though, and
was used in this research to experiment with multiple calls to the SPECTRA code. This
method has a relatively simple geometrical interpretation. A simplex is the geometrical
figure consisting, in N dimensions, of N + 1 points (or vertices) and all their interconnecting
line segments and polygonal faces, which encloses a finite inner N-dimensional volume.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron. If any
point of a nondegenerate simplex is taken as the origin, then the N other points define
vector directions that span the N-dimensional vector space. In multidimensional
minimization, the algorithm is given a starting guess, that is an N-vector of independent
variables as the first point to try. The algorithm then moves downhill until it encounters a
minimum (possibly local). The downhill simplex method must be started not just with a
single point, but with N + 1 points, defining an initial simplex. One of these points is used
as the initial starting point P0and the other N points can be created using linearcobinations
of the N unit vectors. The downhill simplex method takes a series of steps, mostly moving
the point of the simplex where the function is largest through the opposite face of the
simplex to a lower point. In the present work, a function called amoeba() is used to
implement the algorithm. A description of this algorithm can be found in the book
"Numerical Recipes in C", by W.H. Press et.al., Cambridge University Press.

File spfit.c contains the necessary functions to use amoeba() for either all twenty
metalsor a smaller set of three metals: titanium, cobalt and nickel. Function sprit() creates

the information in all necessary data structures so that spectra may be called repetitively,

and initializes the arrays which are passed into the call to the amoeba function. One more

argument passed to amoeba() is the address of the function to be minimized called
f_func(). This function receives a vector of input parameters, which are the concentration

and broadening parameter values of the metals, calls spectra(), calculates the sum of the
absolute values of the differences between the observed and calculated thick spectra and

returns this value.

5-1

5.2. CFSQP package
CFSQP is a set of C functions for the minimization of the maximum of a set of

smooth objective functions (possibly a single one) subject to general smooth constraints.
If the initial guess provided by the user is infeasible for some inequality constraint or some
linear equality constraint, CFSQP first generates a feasible point for these constraints;
subsequently the successive iterates generated by CFSQP all satisfy these constraints.
CSFQP requires functions that define the objective functions and constraint functions and
may use used-supplied functions to compute the respective gradients or it can estimate
them by forward finite differences.

File sqfit.c contains similar functions as the ones described for the use of amoeba()
but it uses function cfsqp0 to perfrom the minimization. Although CFSQP supports
nonlinearcontraint functions, they are not used in the present work. Only linear contraint
values are used to identify the proper range of values for eac input variable.

Note: The CFSQP software has been aquired from its authors for use at UAH.
Further useoutside of UAH requires additional permission from its authors. Details are in
the User's Guide for CFSQP Version 2.4, by Craig T. Lawrence, Jian L. Zhou, and Andre
L. Tits, University of Maryland. College Park, Md 20742.

5-2

APPENDIX A. Makefiles for VxWorks and SUN-UNIX

FTLE maKef_'e.vx

compile for VXWORKS

#DEFINES = -ODOCACHE -DNEW CONVOLVE -OUSE LINES -3CROSS -OCHECK -DNOCOLOR -DREPORTS -DDEBUG

DEFINE I = -DDOCACHE -ONEW CONVOLVE -DUSE LINES -DCROSS -OCHECK -DNOCOLOR

DEFINE 2 = -DCPU=MC68030 -DVXWORKS -DFLOAT=double -DFACTOR=*IO -DSPECSIZE=50OO0

MYCC = cc68k -c $(DEFINE I] $(DEFINE 2) -[/holo2h/VXWorKs/h

MYLD = ld68k -o

LDOPTSl = -r

LDOPTS2 =

MAIN FILES : vxmain, main. wav. load. reade, readt, spectra, assign, spectrb, parallel.\

func. event.

MINOR FILES = abs. voi. worker, parallel, func, event.

a]l: main mlnor

maln : $(MAIN FILES:.:.o)

$(MYLD) ma]n $(LDOPTSl) $(MAIN FILES:.=.o) $(LDOPTS2)

cp maln main,VERSION6

minor : $(MINOR FILES:.=.o)

$(MYLD) minor $(LDOPTSI) $(MINOR FILES:.=,o) $(LDOPTS2)

cp minor minor. VERSION6

vxmain,o: vxmain.c

$(MYCC) vxmain,c

main.o : main.c spectra.h common.h parallel.h mtest.c nrutil.c amoeba.c sDfit.c
$(MYCC) main.c

asslgn.o: asslgn.c

$(MYCC) assign,c

wav,o : wav.c spectra.h common,h

$(MYCC) wav.c

load,o : load.c spectra.h common.h

$(MYCC) load.c

reade.o : reade.c spectra.n common.h

$(MYCC) reade.c

readt.o : readt.c spectra.h common.h

$(MYCC) readt.c

A-I

ads.- • aDs.c mlnor r

$(MYCC) aOs.c

func _ func.c

$(MYCC) func.c

VOl 0 I VOl. c mlnor.n

$(MYCC) ,to1.c

spectra.o ' spectra.c spectra.h common.h parallel.h

$(MYCC) spectra.c

spectrb.o ' spectrb,c spectra.h common.h parallel,h

$(MYCC) spectrb.c

worKer.o: worker.c mnor.h common.h parallel.h

$(MYCC) worker.c

minor.o • mlnor.c mlnor.h common.h parallel.h

$(MYCC) mlnor.c

parallel.o: parallel.c parallel.h parallel_sun.c parallel_sun.h parallel

$(MYCC) parallel.c

event.o . event.c eventl.c

$(MYCC) event.c

c Iean:

rm *.o

rm main

rm mi nor

vx.c parallel vx.h

A-2

-ILE maKefile.sun

= compile for Suns
#DEFINES = -ODOCACHE -CINEWCONVOLVE -DUSE LZ_;ES -DCROSS -DCHECK -ONOCOLOR-DREPORTS -DDEBUG
DEFINE i = -DDOCACHE -DNEW-CONVOLVE -DCROSS -_qCHECK-DNOCOLOR

3EFINE 2 = -DCPU=MC68030 -DUNIX -OFLOAT=double -DFACTOR=\,*!O -DSPECSIZE=50000

MYCC = cc -c $(DEFINE 1) $(DEFINE 2)

MYLD = cc -o

LDOPTSl =

LDOPTS2 = -Im

MAIN FILES : main. wav. load. reade, readt, spectra, assign, spectrb, parallel, func. event.

MINOR FILES : abs. voi. worker, parallel, func. event•

all. main minor

maln • $(MA[N FILES,=.o)

$(MYLD) main $(LDOPTSI) $(MA[N_FILES:.=,o) $(LDOPTS2)

minor • $(MINOR_FILES. =.o)
$(MYLD) minor $(LDOPTSI) $(MINOR FILES.=,o) $(LDOPTS2)

main.o ' main.c spectra,h common.h parallel.h mtest.c nrutil.c amoeba.c spfit.c

$(MYCC) maln.c

wav.o • wav.c spectraih common.h

$(MYCC) wav.c

load.o ' load.c spectra.h common.h

$(MYCC) load.c

reade.o • reade.c smectra.h common.h

$(MYCC) reaOe.c

readt.o - readt.c spectra.h common.h

$(MYCC) readt.c

aDs.o ' abs.c minor.h

$(MYCC) abs.c

func.o • func.c

$(MYCC) func.c

#01,0 ' VOi.C mlnor.h

$(MYCC) VOl.C

spectra.o ' spectra.c spectra.h common.n parallel•h

$(MYCC) spectra.c

A-3

oectrD.o spectrb,c s,ectra.n c:mmon.h para]]el.h

$(MYCC: spectr_.c

oarallel o: oara]lel,c paralle].h Daraiie

$(MYCC: parallel.c

sun.c parallel_sun.n _ara :e]_vx.c _arallel_vx.n

worker.o: worker.c minor.n common.h parallel.h

$(MYCC) worker.c

event.o • event.c event_.ic event_SGI.c event_vx.c

$(MYCC) event.c

clean:

rm *.o

rm real n

rm mi nor

A-4

APPENDIX B. Shell Scripts

The following example is a shell script that is used by VME01 (the coordinator) upon
system star[up:

I
SCRIPT STATEMENTS I COMMENTS

IoginUserAdd("hecht","cQReycSeRc");

cd "VXWORKS" load and run vx_init to set up the prompt
Id < vx init.o and assign the processor number to the

I

vx init processor

putenv "OPADHOME = host:SPECTRUM/IDL_FILES"

cd "host:VXWORKS/SC RIPTS/CO DE"

Id 0,0,"ld_code.o"
Id code

Id 0,0,"run_vme01 .o"
cd "h ost:VXWO R KS/SC R IPTS"

sp(run_code,0,0,0,0,0,0,0,0,0);

load and run Id code to read the job

description file Tor this processor

download the proper coordinator code

load and run run vme01.o that reads the

job description file and calls the
coordinator function with the specified

command line parameters.

The ioginUserAdd0 functions allows the specified user to log in with the password

specified. If a user is not added to the system in this way, he will not be able to log in to the

computer. The next three lines load and run vx_init, a program that sets up the prompt,

assigns the processor its processor number and provides the code to perform the

reset_all0 function that resets all of the processors on the bus. The next line calls the

putenv0 function which adds the specified environment variable.
The next three lines load and run Id_code, the program that reads the "job

description" file for this processor and determines whether to download the code for the
coordinator or the worker. The following line downloads and runs run_vme01 that reads

the job description file and calls the coordinator function with the specified command line
parameters. After the coordinator function returns, the reset_all0 function is called. The

run_code0 function from run_vme01.o is spawned as a separate task so the shell doesn't
wait for it to finish.

The shell script for vme02-vme06 is similar to the above except run_vme.o is
downloaded and executed instead of run_vme01.o. The main difference is that the worker

processors do not reset the system after they finish executing. Figure B-1 shows the major

steps of the programs called by the shell scripts.

The following is an example of a "job description" file for the coordinator:

5 host:SPECTRUM/worldmain.VERSION6 @vxmain -tO -p5 -nl -ml .Rhost:VXWORKSISCRIPTSNERSION61vmeOI_&out .f0 VERSION61
4 host:SPECTRUMJvmrkJmain.VERSlON6 @vxmain -t0 -p4 -nl .ml .Rhost:VXWORKSISCRIPTSNERSION61vmeOI_4.out .f0 VERSION61

B-1

:3host:SPECTRUM/workJmain.VERSION6 @vxmain -tO-p3 -nl -ml .Rhost:VXWORKS/SCRIPTSNERSION61vme01 3.out -f0 VERSION61
2 host:SPECTRUM/work/main.VERSION6 @vxmain -t0 -p2 .nl -ml -Rhost:VXWORKS/SCRIPTSNERSION6/vmeOI_2.out -fO VERSION6/
1 host:SPECTRUM/wor_main.VERSION6 @vxmain -tO.pl -nl -ml .Rhost:VXWORKS/SCRIPTSNERSION6/vme01 1.out-fO VERSION6/

The fields contain: the number of processors to use, the fully specified filename of the
executable for the coordinator, the command line used to invoke the coordinator (including

the path for the report file) and the directory where the comp.lst files can be found.
The following is an example of a "job description" file for the workers:

0 host:SPECTRUM/work/minor.VERSION6 host:VXWORKSISCRIPTSNERSION61

0 hoat:SPECTRUM/workJminor.VERSlON6 hoat:VXWORKS/SCRIPTSNERSION6/
0 host:SPECTRUM/work/minor.VERSION6 host:VXWORKSlSGRIPTSNERSION6/

0 host:SPECTRUM/work/minor.VERSION6 host:VXWORKS/SCRIPTSNERSlON6/
0 host:SPECTRUM/work/minor.VERSION6 host:VXWORKSlSCRIPTSNERSlON61

The fields contain, the worker's processor number, the fully specified filename for the

executable for the worker and the path for the report file.

The function call to start the coordinator is:
start(char *cmd);

where cmd is a string containing the command line parameters to be passed to the main()
function, start() is only used with VxWorks. It merely translates the command string into the
main(int argc, char *argv[]) interface used with the UNIX programs and then calls the main
function with the correct parameters.

The function call to start the worker processes is:
worker(int proc_num, int debug, char *outpath);

where proc num is the processor number assigned to this worker, debug is a value used
to select different levels of messages to aid in debugging the code, and outpath is the path

that the report file should be created in. The report filename will be created from the
processor number and the number of processors participating in the run. For example
vme02_3.out is the report file for processor number 2 for the test run in which 3 processors

participated in the calculations.
The command line required to start the coordinator in UNIX is:

main .ml 5 44 -tO .p5 .R/homelebs3301gradlecelhechtNXWORKSISCRIPTSIUNIXIvmeO1_5.out VERSION61

When the -m# option is chosen, only the path for the "comp.lst" file is specified, not
the filename. The mtest fuction creates the filenames for the number of comp.lst files

specified (comp00.1st, comp01.1st, comp02.1st etc..).
When the Worker processes are created, the path specified for the coordinator

report file is also used for the workers - only the filenames are changed.

B-2

vx init

Call function gethostname() which extracts a the unique processor name from tts ROM

The processor name is of the form "vme0X". where currently X=I 6.
Set the processor number to X and the shell prompt equal to the processor name

Id code

Depending on the processor number, determine the job description file name

Open the job description file
Read one line to determine the name of the executable SPECTRA file

Load the executable SPECTRA file into memory

Close the job description file

run_code

. Depending on the processor number, determine the job description file name

. Open the job description file

. Remove one line from the job description file

• Close the job description file
. Execute the specified program with the specified command line parameters:

• If the processor is the coordinator:
Call the coordinator program with the command line

When program terminates, reset all processors

• If the processor is a worker:
Call the worker program with the command line

Figure 5-1. Summary of programs called by scripts

B-3

APPENDIX C. VxWorks system calls

Name Database: The name database is used to associate a shared memory object's ID

with a unique name. The database provides a name-to-value and value-to-name
translation. This provides a convenient way to obtain an object's ID (which is the same on

all CPUs) from its name.
STATUS smNameAdd(char *name, void *value, int type): This routine adds a name of

a specified object type and va/ue to the shared memory objects database. The name

parameter is a null-terminated string and the type parameter specifies the type of shared
memory object (binary semaphore, counting semaphore, message queue etc..). The va/ue

parameter is the object ID or the global address of a block of shared memory allocated with

smMemMailoc0 or smMemCalloc0.
STATUS smNameFind(char *name, void **pValue, int *pType, int waitType): This
routine searches the shared memory objects name database for an object matching a

specified name. If the object is found, its value and type are copied to the addresses

pointed to by pValue and pType. The value of waitType can be one of the following:
NO WAIT (0): The call returns immediately, even if name is not in the database.
WA_T FOREVER (-1): The call returns only when name is available in the database. If

nameTs not already in, the database is scanned periodically as the routine waits for name

to be entered.

Semaphore Functions: The semaphores used in the software are binary semaphores.
The routines below handle the creating, taking and giving of the semaphores. VxWorks

shared memory object package does not allow shared semaphores to be deleted.

SEM_ID semBSmCreate(int options, SEM_B_STATE initialState): This routine allocates
and initializes a shared memory binary semaphore. The semaphore is initialized to an

initia/State of either SEM_FULL or SEM_EMPTY. The options parameter specifies the

queuing style for the shared memory semaphores (SEM Q FIFO). The function returns

a semaphore ID used to identify the semaphore.
STATUS semTake(SEM_lD semld, int timeout): This routine performs the take operation

on a specified semaphore. A timeout in ticks may be specified by the timeout parameter.

WAIT_FOREVER and NO_WAIT are additional values that can be used for the timeout

parameter.
STATUS semGive(SEM_lD semld): The routine performs the give operation on a

specified semaphore.

Message Queue Functions: The following functions are used to setup the shared memory

message queues. VxWorks shared memory object package does not allow shared

message queues to be deleted.
MSG Q ID msgQSmCreate(int maxMsgs, int maxMsgLength, int options): This
routine creates a shared memory message queue capable of holding up to maxMsgs

messages, each up to maxMsgLength bytes long. It returns a message queue ID used to

identify the created message queue.
STATUS msgQSend(MSG_Q_ID msgQId, char *buffer, UINT nBytes, int timeout, int

C-!

priority): This routine sends the message in bufferof length nBytes to the message queue

msgQId. The timeout parameter specifies the number of ticks to wait for free space if the
message queue is full. The timeout parameter can also have a value of NO_WAIT or
WAIT FOREVER. The priority parameter specifies the priority of the message being sent

(MSG_PRI_NORMAL, MSG_PRI_URGENT) which determines whether the message is
added to the tail of the list or to the head of the list.

int msgQReceive(MSG_Q_lD msgQId, char *buffer, UINT maxNBytes, int timeout):
This routine receives a message from the message queue msgQ/d. The received message

is copied into the specified buffer, which is rnaxNBytes in length. If the message is longer
than maxNBytes, the remainder of the message is discarded. The timeout parameter

specifies the number of ticks to wait for a message to be sent to the queue, if no message
is available when msgQReceive0 is called. The timeout parameter can also have a value

of NO WAIT or WAIT FOREVER.

Shared Memory Functions: These functions allow tasks on different CPUs to allocate and
release variable size chunks of memory that are accessible from all CPUs with access to

the shared memory system. The shared memory can be mapped into different addresses
on different CPUs. Two functions are provided to convert local addresses to global

addresses (when adding the object to the name database) and from global addresses to

local addresses (when retrieving the object from the name database).
Void *smMemMalloc(unsigned nBytes): This routine allocates a block of memory from

the shared memory system partition whose size is equal to or greater than nBytes. The
return value is the local address of the allocated shared memory block.

STATUS smMemFree(void * ptr): This routine takes a block of memory previously
allocated with smMemMalloc0 or smMemCalloc0 and returns it to the free shared memory

system pool.
Void *smObjLocaiToGIobal(void * IocaiAdrs): This routine converts a local shared

memory address IocalAdrs to its corresponding global value.
Void *smObjGiobalToLocal(void *globaiAdrs): This routine converts a global shared

memory address globalAdrs to its corresponding local value.

C-2

APPENDIX D. Parts of common.h

typedef struct

{
int size;

DB *data[6];

int offset[6];

}

/* pointers to 6 arrays of FLOATS */
/* offset from the start of the data array shared mem to the */

DATATYPE;

typedef struct

{
char name[100];

double conc;

char in;

double broadp;

} ELEMENT;

typedef struct

{
double temp;

double pathl;

double press;

} SPECTRAP;

typedef struct

{
int shiftpars;

double shift[8];

double resp[3];

} SPECTRAFtT;

typedef struct

{
int elem;

int start_line;

int num_lines;

} ELEM_BLK:

D-1

typedef struct
(
double conc;

double mass;

double sigh2:

double sigh2o;

double partf;

char nist;

char filn[MAX_ELEM_NAME];

DATATYPE datn;

DATATYPE datl;

double broaden;

double xi;

ELEMENT els;

} ELEM_INFO;

/* values from element.lst */

/* data from *.bn3 */

/* values from comp.lst */

typedef struct

(
ELEM_BLK elem_blk[MAX_ELEM_BLKS];

int num_elem_blks;

int total_lines;

} ASSIGN_ELEM;

typedef struct

(
int doevent;

int nothin;

int reports;
int check;

int nocolor;

int DatnArraySize;

int repetitions;

ASSlGN_ELEM assign[MAX_NUM_PROCS];

} FIXED_GLOBALS;

D-2

typedef struct

SPECTRAPspectrap;
int linst;
double Ilimit;
double range:

#ifdef CHECK
double test1 [rRANSDIM];
double test2[TRANSDIM];

#endif
#ifdef NOCOLOR

double wavarray[TRANSDIM];
int etem[TRANSDIM];
double emissErRANSDIM];

#endif
} SHARED_GLOBALS;

extern DB *darn_array;
extern ELEM_INFO*elem_info;
extern SHARED_GLOBALS*Sh_globals;
extern FIXED_GLOBALS*Fx_globals;
extern int elem_cost[NUM_ELEM];
extern ELEM_BLKelem_blk[MAX_ELEM_BLKS];

D-3

APPENDIXE.Command line options

The available command line options include:
-F# fit (0)

#=1 don't save fit values
#-2 save fit values in file.fit
use -fl or -f2 to indicate contents of file.thc

-f# save files (1)
#-1 -> save thick-thin spectrum in X.thc-thn
#=2 -> save rwave and thick-thin in X.thc-thn
#=3 -> save rwqave X.thc-thn X.spl
#=4 -> save rwqave X.thc-thn X.spl nonzero

-e# disable event timing (1)
-m# call retest function (0)
-d# debug level (0)
-r# report level (2)
-t# nothin (1)
-n# nocolor (0)
-c# check
-C# cross
-p# number of procs to use (1)
-wS S=string of two double numbers
-Rpath path - fully specified output filename
-g# gauss

#=0 triangular
#=1 gauss
#-2 parameterized special
#-8 response in file 'rasresp.dat'
#-9 response in file whose name follows option

E-1

