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1. STATEMENT OF THE PROBLEM

Water vapor imagery from the geostationary

satellites such as GOES, Meteosat, and GMS provides

synoptic views of dynamical events on a continual

basis. Because the imagery represents a non-linear
combination of mid- and upper-tropospheric

thermodynamic parameters (three-dimensional

variations in temperature and humidity), video loops of

these image products provide enlightening views of
regional flow fields, the movement of tropical and

extratropical storm systems, the transfer of moisture

between hemispheres and from the tropics to the mid-
latitudes, and the dominance of high pressure systems

over particular regions of the Earth. Despite the obvious

larger scale features, the water vapor imagery contains

significant image variability down to the single 8 km

GOES pixel. These features can be quantitatively
identified and tracked from one time to the next using

various image processing techniques.

Merrill et ai. (1991), Hayden and Schmidt (1992),

and Laurent (1993) have documented the operational

procedures and capabilities of NOAA and ESOC to
produce cloud and water vapor winds. These

techniques employ standard correlation and template

matching approaches to wind tracking and use

qualitative and quantitative procedures to eliminate bad
wind vectors from the wind data set. Techniques have

also been developed to improve the qualily of the

operational winds though robust editing procedures
(Hayden and Veldon 1991). These quality and control

approaches have limitations, are often subjective, and

constrain wind variability to be consistent with model

derived wind fields.

This paper describes research focused on the

refinement of objective quality and control parameters
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for water vapor wind vector data sets. New quality and

control measures are developed and employed to

provide a more robust wind data set for climate

analysis, data assimilation studies, as well as operational
weather forecasting. The parameters are applicable to
cloud-tracked winds as well with minor modifications.

The improvement in winds though use of these new

quality and control parameters is measured without the
use of rawinsonde or modeled wind field data and

compared with other approaches.

2. METHODOLOGY

2.1 The'Marshall Automated Wind Technique

The standard approach taken in tracking winds

with a sequence of geostationary satellite images uses a

sequence of two or more images to track identifiable

image features (determine image displacements). For a

pair of images, the first is divided into image sub-scenes

called templates, while the second image contains

corresponding sub-scenes called search areas. The

template is an array of picture elements and the spatial

location of a template is designated as the template's

center picture element location in the image. For motion
calculations, the template is translated within a search

area in the later image looking for the best match.

The automatic determination of local similarity

between feature templates and all locations in the search

area (best fit) has traditionally been done using either
cross-correlation or pattern recognition methods. The

Marshall Automated Wind (MAW) algorithm is

differentiated from other tracking algorithms in the way

it determines the best position of the template from one

image to the next. Atkinson (1987) first used the

sequential similarity detection algorithm (SSDA) of
Barnea and Silverman (1972) in a cloud tracking

algorithm. The SSDA is a different class of digital

image registration and involves a simple calculation of a

field of "template matching" numbers at every possible

translation of the template within the search area. Each
such number is the sum of the absolute value

differences between every pixel in the template and the

8TMCONF.ONSAT.MET.& OCEAN. 5



corresponding search area in the second image. This
method is unique in that it is computationally fast,

requires no normalization of a correlation surface, and

therefore yields an exact "0" minimum value template

match in an ideal non-normalized registration case. The

quantities obtained from this technique are a minimum

template matching number (based on the simple

difference between pixeis in image ! and image 2) and

its position within the search area, which is the template

displacement between image sequences. Displacement

in terms of earth location and image separation times is

used to determine velocity vectors (magnitude and

direction of the flow field).

When using the algorithm, there are several
decisions to be made that affect the motion vector

results (winds): template size, search area displacement,

image resolution, and temporal spacing of images. Our

experience indicates that the highest quality winds come

from the appropriate match of spatial and temporal

resolution. For example, Wilson (1984) used 1 km
GOES visible data at 5 minute interyals to determine

mesoscale circulation associated with developing

thunderstorms tola high degree of accuracy (standard
error < 1.0 m s" ). Merrill (1989) also discussed the

effect of image resolution on the trackability of image

features. The data used in this study are from three days

of GOES 8 geostationary satellite at hourly intervals

and 8 km spatial resolution. Past work with GOES VAS

water vapor data indicates that the appropriate template

size needs to be greater than 300 km to include

significant pixel variability for accurate template

matching. For this study a 49 x 49 pixel template is

used. Smaller templates may be appropriate for cloud

tracking where thermal structure or reflectance
structure is greater. The search area size (and shape) is

dictated by the expected magnitude and direction of the
wind. In this study, the search area is a region covered

by the template when moved 30 pixels (8 km) in any

direction from the initial point (center of template in the
first image). This allows for winds in excess of 70 ms _.

An example of wind vectors derived using the

MAW algorithm in the above way is shown in Figure

1. A sequence of 3 - hourly images of GOES 8 imager
data on June 27, 1995 covering the northern hemisphere

was used for tracking. Image times were 1415, 1515,

and 1615 UTC. The spacing of the wind vectors is

roughly 350 km over most of the Northern Hemisphere
extended region. Figure la shows all winds derived

from the tracking algorithm without quality and control

measures imposed. When viewed with a loop of the

water vapor imagery (not shown), it is readily apparent

that the wind vectors capture many of the main

circulation features in the imagery. There are some

vectors which do not show spatial consistency and will

be the subject of quality and control measures presented

below. This paper focuses on procedures to quasi-

objectively determine good winds from bad based on
statistical parameters derived in the tracking process and

consistency measures between pairs of wind vectors.

2.2 Sources of error in satellite derived winds

Errors are implicit in satellite derived winds,

and the magnitude of these errors is difficult to assess

because of the lack of ground truth or verification data.

In application of sequential satellite imagery for wind
determination, it is assumed that the clouds or water

vapor features are conservative passive tracers of the

wind field and the motion is also assumed to be only

advective. However, this is not always the case and

changes in clouds and water vapor features may be mis-

interpreted and lead to wind errors. Other sources of

errors generally fall into two categories: image

navigation and registration errors, and feature
identification and tracking errors. Because the nature of

these sources is understood however, quality and

control procedures can be used to reduce errors. Errors

attributed to improper height assignment are not

actually errors in the wind vectors but in their

assignment to a pressure-height coordinate system and

subsequent comparison with point source ground truth

data (radiosondes or model analyses) and are not

discussed in this paper.

2.3 Estimation of wind errors

Also unique to this study is the use of

statistical structure functions to independently quantify
the random error associated with the wind data set

without reference to rawinsonde or modeled wind data.

Hillger and Vonder Haar (1988) and Fuelberg and

Meyer (1986) and others have shown that structure
function analysis can be used to estimate the magnitude

of mean non-direction gradients (structure) in data

fields. The slope of the structure curves at small

separation intervals can be used in the error estimation.
The reduction in this random error associated with the

use of various quality and control parameters is used as

a measure of success for the quality and control

parameters.

6 AMERICANMETEOROLOGICALSOCIETY



Figure 1. GOES 8 imager water vapor derived winds for June 27, 1995. A sequence of three hourly water vapor

images centered around 1515 UTC was used for wind determination. The upper figure (a) presents all wind vectors

derived from the tracking algorithm. The vectors in circles and boxes are winds which may or may not be "bad"

based on different quality and control methods. The lower figure (b) presents "good" winds as determined by

direction and speed deviations of 25 ° and 10ms "l, respectively. A streamline analysis presents a smooth flow field.
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2.4 The height assignment problem

The "height" assignment of water vapor winds is

important for a quantitative analysis of the wind field.
The GOES 8 imager 6.7 ktm channel weighting function

peaks between 200 and 600 mb, and its width of

significant contribution varies between 200 and 400 mb
for cloud-free situations. Therefore the level assigned

to winds derived from the water vapor imagery can vary

over this range. The height assignment approach used in

this study is consistent with other water vapor wind
studies and uses the water vapor image brightness

temperature and a representative thermodynamic

reference profile to assign a pressure height to the wind
vectors. The need for more sophisticated CO2 "slicing"

methods (Menzel et al. 1983) may be necessary if

clouds are tracked in the water vapor imagery.

3. WIND RESULTS

3.1 Selection of quality_ and control parameters

Current efforts are focused on examining a

number of quasi-objective parameters to evaluate their

usefulness in determining good winds from bad ones.
The list includes template parameters implicit to the

MAW technique (e.g., difference minimums, primary

versus secondary minimums, and minimums near the

edge of the search area), other easily obtained template

parameters (e.g., variance over the template), and
template consistency checks between pairs of collocated

wind vectors (when 3 sequential images are used for

tracking). Recent results indicate that while template
minimum differences are a measure of the goodness of

fit in tracking an image feature (perfect fit yields a zero

difference), a unique threshold applicable throughout

the image sequence is not easily discernible. Image
variance is useful in identifying regions with limited

structure and a threshold can be determined which is

applicable for a variety of image sequences. However,

the most useful parameters are those derived from

consistency checks of two wind vectors derived from a

sequence of 3 images. This approach is not unique and
has been used to determine a U and V wind component

threshold which ranges between 5 and 20 ms "l (Merrill

et al. 1991; Laurent 1993; Schmidt and Hayden 1992;

and others). Deviations of the U and V components of

the wind are not necessarily the best parameters

however because they do not significantly account for

large directional mismatches at low wind speeds or
relatively small directional changes for large

displacements (wind speeds). Both of these types of

tracking errors regularly occur in water vapor imagery

and are not flagged as bad by the U and V wind

component threshold tests.

To test this hypothesis, water vapor winds were
calculated for three days using a sequence of three

consecutive images. Instead of using u and v

components of the wind, differences in the wind speed
and direction between two pairs of vectors (calculated

from three images) were calculated for each wind vector

location. Using subjective evaluation, thresholds were
established for the speed deviations which eliminated
the bad wind vectors. Bad vectors were determined by

looking for spatial continuity between winds and by

looping the sequence of imagery for the given case
study day. Based on this preliminary work, a speed
deviation (AS) value of 10 ms "1 was determined to be

best at eliminating bad wind vectors. Directional

deviations (AD) between 25 ° and 45 ° were also

determined effective. Additionally, image variance

over the template was evaluated as well and was useful

for identifying areas with limited structure. These areas

often provided bad wind vectors as well. Variance
thresholds can also be use to separate pure water vapor

winds from clouds tracked in the water vapor imagery.

3.2 Structure function results

As a benchmark for measuring improvement in

water vapor wind vectors, a structure function analysis

of the wind components in Figure l a was made along
with those of two other case studies. A U wind

component structure function plot for June 27, 1995 is

shown in Figure 2 (upper curve). The figure indicates

that structure (gradient) increases with increasing

separation distance. The steepest slopes corresponded to

the scales at which significant gradients in the zonal

wind component occur. The intercept of the regression

line through the structure curves corresponds to twice
the error variance of the data. Therefore the random

error in the U component of the wind is calculated as

the square root of half the intercept. Random errors for
the three days range fi'om 4.18 - 5.66 ms "t when all

winds are considered (Table 1). When the direction and

speed deviation thresholds are employed a significant
number of "bad" vectors are removed and the resulting

structure analysis yields the lower curve in Figure 2.
Structure at small separation intervals is significantly
reduced and the noise inherent in the data is likewise

dampened. The random noise values estimated from

structure analysis for the improved wind data set are
shown in the last column of Table 1. Values range
between 0.00 and 3.26 ms "l.
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Figure 2. Structure function curves for the U

component of the wind on June 27, 1995. The upper

curve represents unfiltered winds and the lower curve

represents values after quality and control parameters
were used to eliminate bad wind vectors. Linear

regression lines are also presented. Structure values are

in (ms'I) 2.

Table 1. Random wind errors determined from

structure function analysis. Values in ms 1.

QC WINDS

DATE ALL AU<5 AD<45 AD<25

WINDS AV<5 AS<I0 AS<I0

# Vec. 423 298 349 277

95094 U 5.33 2.38 3.58 1.83

4/4/95 V 4.18 3.13 3.30 3.13

# Vec 539 402 426 352

95178 U 4.73 1.59 3.03 0.00

6/27/95 V 4.13 2.75 2.93 2.53

# Vec 535 429 447 361

95234 U 5.66 3.12 4.02 3.26

8/22/95 V 4.18 3.06 3.30 2.80

Table 1 also shows the error values when

other quality and control parameters are imposed. The
middle column corresponds to the wind errors when

vector pair constraints of 5 ms -Lon either the U or V

component are imposed (this is what'is typically used

operationally). A significant reduction in the random

error occurs over the original wind vectors. In most
cases this reduction is not as large as for the AD/

AS thresholds. Discrepancies between these approaches

are highlighted in Figure 1. The circled vectors indicate
winds which past the 5 ms "l U/V threshold but not the

AS/AD one. Vectors in the squares incdicate the

opposite. This will be the subject of future work and
discussed at the conference. The lower plot in Figure !

(b) indicates the good wind vectors and corresponding

streamline analysis for winds passing the AS/AD
threshold limits.
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