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ABSTRACT

Despite significant achievements in computational fluid dynamics, there still remain many fluid
flow phenomena not well understood. For example, the prediction of temperature distributions is
inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary

layer interactions close to the wall. Complexities of fluid flow phenomena include transition to
turbulence, relaminarization, separated flows, transition between viscous and inviscid,

incompressible and compressible flows, among others, in all speed regimes. The purpose of this
paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit

(FDMED method, in an attempt to resolve these difficult issues in CFD. In this process, a total of
six implicitness parameters characteristic of the current flowfield are introduced. They are
calculated from the current flowtield or changes of Mach numbers, Reynolds numbers, Peeler
numbers, and DamkOhier numbers (if reacting) at each nodal point and time step. This implies that

¢ve_ nodal point or element is provided with different or unique numerical scheme according to
their current flowtield situations, whether compressible, incompressible, viscous, inviscid, laminar,

turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of all
variables between adjacent nodal points are determined accurately: If these implicitness

parameters are fixed to certain numbers instead of being calculated from the flowfield information,
then practically all currently available schemes of finite differences or finite elements arise as

special cases. Some benchmark problems to be presented in this paper will show the validity,
accuracy, and efficiency of the proposed methodology.
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1. INTRODUCTION

Nearly haft a century has elapsed since the digital computer revolutionized computational

technologies in engineering and mathematical physics. During this time finite difference methods

(FDM) have dominated the field of computational fluid dynamics (CFD) [I-7], whereas the

opposite is true for finite element methods (FEM) in solid mechanics. In recent years, however,
the trend toward finite element methods in CFD appears to be increasingly favorable [8-14].

In general, the analyst preoccupied with the methods of his choice based on his

educational background or research experience is seldom motivated to investigate other options.

Thus, today the gap between these two disciplines is widely apart, despite the fact that the

thorough understanding of the relations between FDM and FEM is beneficial. The purpose of this

paper is an attempt to call for a new approach in which both FEM and FDM can be united toward

the common goal of achieving the highest level of accuracy and etTaciency in CFD. Silnilariti_-_

and dissimilarities must be identified in order to recognize merits and demerits of each method and

to enable the analysts to choose the most desirable approach suitable for the particular task at •

hand.

One of the most important questions in CFD is how to deal with large gradients of the

variable (density, velocity, pressure, temperature, and source terms). Rapid changes of Math

numbers, Reynolds numbers, Peclet numbers, and Damk6hler numbers (if reacting) between

adjacent nodal points or elements can be a crucial factor in determining whether the chosen

computational scheme will succeed or fail. Furthermore, proper treatments for incompressibility

and compressibility, viscous and inviscid flows, subsonic and supersonic flows, laminar and

turbulent flows, nonreacting and reacting flows are extremely important. The most general case

of fluid dynamics where these various flow properties may be depicted in external and internal

hypersonic flows is shown in Fig la, b. A typical reacting flow (hydrogen;air reaction) can also be

seen in Fig. lc.

Can a single formulation and computer code be made available to satisfy all the

requirements mentioned above? Can a single mathematical formulation lead to most of the

currently available computational schemes both in FDM and FEM as special cases? Most

importantly, will such an approach guarantee accuracy and etYaciency? In this paper, we respond

to these questions positively, based on the results obtained through example problems.

Toward this goal, our approach is based on the following procedure [15, 16], known as

the Fiowfield-Dependent Mixed Explicit-Implicit (FDMEI) scheme:

(a) Write the Navier-Stokes system of equations in a conservation form.
• ° .I-I

(b) Expand the conservauon vanable[f in Taylor series up to and including the second-

order time derivatives of the conservation variables.

(c) Introduce in step (b) six different flowfield-dependent implicitness parameters which

ate calculated from the changes in Mach numbers, Reynolds numbers, Peclet numbers,

and Darnk/Shler numbers (if reacting) between nodal points or local elements.



(d) Substitutestep(a)and(c) intostep (b) to obtainthe incrementsof theconservation
• ÷1 • • •

variables AIr . As a result, the final form resembles the unpliclt factored scheme of

Beam and Warming [I], but much more rigorous.

(e) Step (d) may be used either in FDM or FEM.

The computational procedure as described above is capable of resolving complex

properties of fluid flows in general with shock waves, turbulence, and reacting flows in particular.

(1) Incompressible flows are dependent on changes in Reynolds number between nodal

points in FDM and within local elements in FEM. Incompressibility conditions are

characterized by these changes in Reynolds number.

(2) 17ompressible flows are dependent on changes in both Mach number and Reynokts

number between nodal points in FDM and within local elements in FEM. Dilatational

dissipation is characterized by these changes in Mach number and Reynolds number.

(3) Shock waves in compressible flows are dependent on changes in Mach number "

between nodal points in FDM and within local elements in FEM. Shock wave

discontinuities are characterized by these changes in Mach number.

(4) High temperature gradient flows axe dependent on changes in Peclet number between

nodal points in FDM and within local elements in FEM. The convection vs diffusion

in heat transfer is characterized by these changes in Peclet number.

(5) are dependent on changes in Darak6hler number between nodal points

in FDM and within local elements in FEM. The mass source vs convective transfer,

mass source vs diffusive transfer, heat source vs convective heat transfer, heat source

vs conductive heat transfer, and heat source vs diffusive heat transfer are characterized

by these changes in Damk6hler number.

(6) Direct numerical simulation (DNS) for turbulent flows in which mesh refinements are

carried out until turbulence length microscales are resolved without turbulence models

can not be reliable particularly for high speed compressible turbulent flows unless the

computational scheme is capable of treating high gradients of variables as described in

(2) above. To improve turbulence calculations, Legendre polynomial spectral modes

may be added as shown in [15]. Whether or not the spectral mode approach is

advantageous for an overall computational efficiency remains to be seen. Due to the

limitation of computer time, the example problems in this paper are not intended for

DNS microscale resolutions.

Details of the mathematical formulations as described above are presented in Section 2,

implementation and computational process in Section 3, some example problems in Section 4,

and concluding remarks in Section 5.



2. MATHEMATICAL FORMULATIONS

For the general purpose program considering the compressible viscous reacting flows, we

write the conservation form of the Navier-Stokes system of equations as

au aF i aG_
_+_+_=B

at ax_ axe,

where U, F i, G i, and B denote the conservati0h flow

diffusion flux variables, and source terms, respectively,

(D

variables, convection flux variables,

P =/PV,vi + PS_JI -'tit

Pr, L pYkvi J -pD_Yk_ L w_ j

where fj = ___.,_,Ykf_ is the body force, Yk is the chemical species, H; is the zero-point enthalpy,

wk is the reaction rate, and Dn, , is the binary dittusivity. Additional equations for vibrational and

electronic energies may be included in (1) for hypersonics.

Expanding the conservation variables U in Taylor series including the first and second

derivatives, we have

au'_ ÷ At2 a2u-'-,_ FO(At 3)
U _=U'+At at 2 at 2

where s t and s,, are the implicimess parameters defined such that

au "÷', au" aAU "*l

at at at

(2)

0 < s t < 1 (3)

a2u,,.,, a2u . a2AU .÷_
= _ + s2 0 < s2 < 1 (4)

ad ad ad

with AU _*t = U_*l - L1_ • It is assumed that the convection flux F i is a function of U and the

diffusion fluxG_ is a function of both U and its gradient U i. Thus, we have

a__o= aF, a_+B (5)
at ax_ axt

a_u a ( au%
X_2 = --'a,--" 7xa(b_t )at ax_t, at )

a2 re au'l+d(aU'/

a_t, _-_/) L-if;/)
(6)

where the convection Jacobian a_, the diffusion Jacobian b_, the diffusion gradient Jacobian c_j,

and the source Jacobian d are def'med as



aG_aE b_ aG_ %=_ , d=aa
at = au ' = a-u- ' auj au (7)

Substituting (3) - (6) into (2) and assuming the product of the diffusion gradient Jacobian with

third order spatial derivatives to be negligible, we obtain

( oAF_*_ oAG_÷_ )]aG_' +B'+s I ax_ ax: +AB_*I

aG_._ -d_ _F/' + B"

+ axj B" _, ax i _)xi

AU "+l = At
Ox_ ax a

ffAt 2

+TILer.,+ m -

+S: (ai+bi_ _'_X/

+o (8)

In order to provide different implicitness (different numerical treatments or schemes) to

different physical quantities, we reassign s t and s: associated with the diffusion and source terms,

respectively,

stAG i =:_ s_AG_ , StAR _ s s All (9a)

s2AG i =_ s, AG i , s2AB _ s6 All (9b)

with the various implicimess parameters def'med as

s t = fast order convection implicimess parameter

sz = second order convection implicimess parameter

s3 = f'L,'Storder diffusion implicitness parameter

s4 = second order diffusion implicimess parameter

s s = first order source term implicitness parameter

s_ = second order source term implicitness parameter

The first order implicitness parameters s 1, s 3, and ss will be shown to be flowfield

dependent with the solution accuracy assured by taking into account the flowfield gradients,

whereas the second order implicitness parameters s2, s 4, and s6, which are also flowfieid

dependent, mainly act as artificial viscosity, contributing to the solution stability.

Substituting these implicimess parameters as defined in (9) into (8), we obtain
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2 U a÷l

da(.,_u.÷,)l [ {_2((a,bs+b,bs)AU'+')]

[ +b;) )t-U"_'') ]] ¢_r: _Gr-d I _x i + _ jj-s6 d_((ai ctx, d 2 AU ".l jl+_t _x---T+_x--T-B']

TL t,,+bt  ,wBJj-dl _7_+_T_-B")j -I" _9(_t,_3) : O (10)

with

aB
All "+l_ AU "+l =dAU '_l (11)

au

For simplicity we may rearrange (10) in a compact form,

a 2==-'+=_(_,=v"')+--(_,,_u")+Q"+o(_'):oR (12)

Or

with

aE, a2E_jA + ax_ ax,axj
AU "+i= -Q" (13)

_kt 2

-- d2
A = l-Atssd- 2 s6

Atl s4dbi]E i = At(sta i + s3bl) +--_--[s6 d(al + bl)+ s2 dat +

t_kf 2

El # =Ats3co---_--[s2(aia j + bias)+ s4(aib s + blbj -d%)]

(14)

(15)

(16)
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Q,, =-_xia At +--_d (F_ +G_')+---_(a_ +bi)B"

---]--(a_+bl)(F _ +G_.) - At+--T-d "
L 2

(17)

We may allow the source terms in the LHS of (13) to lag from the time step n + 1 to n, so that

(13b) can be written as ..--

1 + _ + _/AU = -Q" (18)

with

+--d (F i" +G_')+-"_-ta, +bi)B"Q" =-_'x_ 2

02 I'At2 At 2 At 2

_xi_x_L2 • +b,)(F# +G i +-_'-- ds s

(19)
• t'

Note that the Beam-Warming Scheme [I] can be written in the form identical to (18) with

the following definitions of E_, E# and Q"

E, =.uXt(a, +b,). with m = 0/(1+_) (20)

E_ = mat% (21)

At (aF; aG_"_ _ ..,
Q" =_ --+_ +--Auax, ) (22)

where the cross derivative terms appearing in Q_ for the Beam-Warming scheme are included in

the second derivative terms on the LHS. The Beam-Warming scheme is seen to be a special case

of the FDMEI equations if we set s t = s 3 "-- m, s 2 = $4 = $5 = $6 "- 0, in (18), with adjustments of Q_

on the RHS. The stability analysis of the Beam-Warming scheme requires _ > 0.385 and 0 = ½ +

_. This will fix the implicitness parameter m to be 0.639 < m < 0.75. It can be shown that the

FDMEI equations as derived in (9) are capable of producing practically all existing FDM and

FEM schemes. Some examples axe shown in Appendix A.

Contrary to the Beam-Warming scheme, the FDMEI approach is to obtain the implicitness

parameters from the current flowfield variables at each and every nodal point rather than by fixing

the implicitness parameters to certain predetermined numbers and using them for the entire flow

domain irrespective of the local flowfieM variation from one point to another. These implicitness

parameters may be determined for spatial and temporal bases as depicted in Fig. 2. The final



valuesof implicitnessparametersat anypoint andat any timecan be obtained as the average of

both spatial and temporal contributions:

Convection Implicitness Parameters:.

st

"min(r,l)

= 0

1

r>ot

r<ot ,M_ _0
2

M_=0 .+-

s2 =s t , 0<n<l (23)

with

2/lvlr- M,._, -M_ (24)

where the maximum and minimum Mach numbers are calculated between adjacent nodal points in

FDM or within a local finite element in FEM for spatial implicitness parameters (Fig. 2a) and

between the time step at n and n - 1 for temporal implicitness parameters (Fig. 2b), and ot is a.,

user-specified small number (or - 0.01). Here it is seen that s t is directly related to the flowfield,

whereas s2 depends on s t such that s 2 = s t . The primary roll of s t is to ensure the solution

accuracy by properly accommodating the convection gradients, whereas that of s2 is to act as

artificial viscosity, for solution stability.

Diffusion Implicitness Parameters:

$3
min01(s,1) s > I]

= s<_,Re_,_:O, orP%i ._:0

Re=a, = 0, or Pe._ = 0

s, =s_ , 0<n<l (25)

with

s = %/Re.,_- Rein/Re_ or s = (26a,b)

where the maximum and minimum Reynolds numbers or maximum and minimum Peclet numbers

are calculated similarly as in s t for spatial and temporal implicitness parameters, and _ is a user-

specified small number (_ -= 0.01). If temperature gradients are large, it is possible that Peclet

numbers instead of Reynolds numbers will dictate the diffusion implicitness parameters. The

larger value of h is to be chosen, as obtained either from (26a) or (26b). Note also that s_ = s_

with s 3 ensuring the solution accuracy by taking into account the diffusion gradients, and here

again, s+ plays the role of artificial viscosity, for solution stability.

Source Term Implicitness Parameters:.

For the case of chemically reacting flows theDa (Damk6hler number) must be used



"rain(t,1) t >_.7

0 t<y,Da_

1 Da_ = 0

,0 s6=s'; , 0<n<l (27)

with

t-4Da_ - Da_/Da= (28)
, .

where the maximum and minimum Damk/Shler numbers are calculated similarly as in s t and s3 for

spatial and temporal implicitness parameters, and T is a user-specified small number (T = 0.01).

The relationship between s 5 and s 6 is similar to those for convection and diffusion implicitness

parameters such that s 6 = s_ with s_ and s 6 controlling the solution accuracy and solution stability,

respectively. The average of both spatial and temporal implicitness parameters will be adopted for

use in computations at any point (element) and time.

Relationships between all physical phenomena and the corresponding numerical treatments

are characterized by the balance between the first order implicitness parameters (s v s 3, s_) and the

second order implicitness parameters (s z, s 4, s6), ensuring the computational accuracy and

computational stability, respectively. The idea is to provide adequate (no more and no less than

required) amount of numerical viscosity in order to preserve the computational accuracy. Note
that the definitions for the second order implicitness parameters have been modified from those

reported in [15, 16] in order to meet the above requirements (Fig. 3). Initially, it was thought that

the second order implicitness parameters should be the direct opposite compliances of the first

order implicitness parameters (s 2 = 1 - s t, s 4 =1 - s 3, s 6 =1 - ss) [16] such that the second order

implicitness parameters are the maximum and minimum, respectively, for the minimum and

maximum values of the first order implicitness parameters. Unfortunately, such definition resulted

in too little numerical viscosities for the high values of the first order implicitness parameters.

Subsequently, the limiting values (0.5) of the second order implicitness parameters were provided

such that s2 = max(l - s t , 0.5), etc. as experimented in [15]. However, it was noted that both

first and second order parameters should assume the same values at the both extremes at zero and

unity with the second order implicitness parameters being reasonably large for all values of the

first order implicitness parameters. Thus, the second order implicitness parameters given above

are the nonlinear continuous functions of the first order implicitness parameters satisfying these

requirements. The range of the constant n is 0 < n < 1, although n _--.¼ has been found to he the

optimum, exhibiting the best convergence rate for reasonably high CFL numbers in the example

problems presented in Section 4.

The flowfield dependent implicitness parameters as defined above are capable of allowing

various numerical schemes to be automatically generated, as summarized below:

(1) The first order implicitness parameters s t and s 3 control all high gradient phenomena such

as shock waves and turbulence. These parameters as calculated from the changes of local

Mach numbers and Reynolds (or Peclet) numbers within each element and are indicative

of the actual local element flowfields. The contours of these parameters closely resemble
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(2)

(3)

(4)

(5)

(6)

(7)

the flowfields themselves, with both s t and s 3 being large (close to unity) in regions of

high gradients, but smaU (close to zero) in regions where the gradients are smaU. The

basic role of s t and s 3 is to provide computational accuracy.

The second order implicitness parameters s 2 and s 4 are also flowfield dependent.

However, their primary role is to provide adequate computational stability (artificial

viscosity) as they were originally introduced into the second order time derivative term of

the Taylor series expansion of the conservation flow variables U "÷l. The primary role of s2

and s_ is to provide computational stability:

The s t terms represent convection. This implies that if s t = 0 then the effect of convection

is small. The computational scheme is automatically altered to take this effect into

account, with the governing equations being predominantly parabolic-elliptic. Note that

these effects are confined atL f'+', not at IJ".

The s3 terms are associated with diffusion. Thus, with s3 --- 0, the effect of viscosity or
diffusion is small and the computational scheme is automatically switched to that of Euler .-

equations where the governing equations are predominantly hyperbolic.

If the first order implicitness parameters s t and s 3 are nonzero, this indicates a typical

situation for the mixed hyperbolic, parabolic and elliptic nature of the Navier-Stokes

system of equations, with convection and diffusion being equally important. This is the

case for incompressible flows at low speeds. The unique property of the FDMEI scheme

is its capability to control pressure oscillations adequately without resorting to the

separate hyperbolic elliptic pressure equation for pressure corrections. The capability of
FDMEI scheme to handle incompressible flows is achieved by a delicate balance between

s t and s3 as determined by the local Mach numbers and Reynolds (or Peclet) numbers. If
the flow is completely incompressible (M = 0), the criteria given by (19) leads to s t = 1,

whereas the implicitness parameter s 3 is to be determined according to the criteria given in

(21). Make a note of the presence of the convection-diffusion interaction terms given by

the product of b_aj m the s z terms and a_bj in the s 4 terms. These terms allow interactions
between convection and diffusion in the viscous incompressible and/or viscous

compressible flows.

If temperature gradients rather than velocity gradients dominate the flowfield, then s3 is

governed by the Peclet number rather than by the Reynolds number. Such cases arise in

high speed, high temperature compressible flows close to the wall.

In the case of reacting flows the source terms B contains the reaction rates which are

functions of the flowfield variables. With widely disparate time and length scales involved

in the fast and slow chemical reaction rates of various chemical species as characterized by

DamkOhler numbers, the first order source term implicitness parameter s s is instrumental

in dealing with the stiffmess of the resulting equations to obtain convergence to accurate

solutions. On the other hand, the second order source term implicitness parameter s 6

contribute to the stability of solutions. It is seen that the criteria given by (27-28) will

adjust the reaction rate terms in accordance with the ratio of the diffusion time to the
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(8)

(9)

reaction time in finite rate chemistry so as to assure the accurate solutions with

computational stability.

Various definitions of Peclet number and Damk6hler numbers (Table I) between the

energy and species equations should be checked. Whichever definition provides larger

values of s 3 and s s must be used. The summary of the above definitions for implicimess

parameters is shown in Table 2.
,.

The transition to turbulence is a natural flax# process as the Reynolds number increases,

causing the gradients of any or all flow variables to increase. This phenomenon is the

physical instability and is detected by the increase ofs 3 if the flow is incompressible, but by

both s_ and s I if the flow is compressible. Such physical instability is likely to trigger the

numerical instability, but will be countered by the second order implicitness parameters s2

and/or s4 to ensure numerical stability automatically. In this process, these flowfield

dependent implicitness parameters are capable of capturing relaminar_on,

compressibility effect or dilatational turbulent energy dissipation, and turbulent unsteady

fluctuations.

(10) An important contribution of the first order implicitness parameters is the fact that they can

be used as error indicators for adaptive mesh generations. That is, the larger the

implicitness parameters the higher the gradients of any flow variables. Whichever governs

(largest first order implicitness parameters) will indicate the need for mesh refinements. In
this case, all variables (density, velocity, pressure, temperature, species mass fraction)

participate in resolving the adaptive mesh, contrary to the conventional definitions of the

error indicators [10,15,16].

(11) Physically, the implicitness parameters will influence the magnitudes of lacobians. Thus,

Item(8) above may be modified so that the diffusion implicitness parameters s 3 and s 4 as

calculated from the Reynolds number and Peclet number can be applied to the Jacobians

(a_, b i, cij), corresponding to the momentum equations and energy equation, respectively.
Furthermore, two different definitions of Peclet number (Pea, Pe_) would require the s 3 and

s4 as calculated from the energy and species equations to be applied to the corresponding

terms of the Jacobians. Similar applications of the source term implicitness parameters s s

and s 6 should be followed for the source term Jacobian d with five different definitions of

DamkOhler number applied to the corresponding terms of d. In this way, high temperature

gradients arising form the momentum and energy equations and the finite rate chemistry

governed by the energy and species equations can be resolved accordingly.

The FDMEI equations as given in (13) or (18) may be solved by either FDM or FEM.

The standard linear Galerkin approximations of FEM lead to the results of central differences of

FDM. However, the main difference between FDM and FEM arises when integration by parts is

performed in FEM and the explicit terms of Neumann boundary conditions "naturally" appear as

boundary integral forms. Thus, all Neumann boundary conditions can be directly specified at

boundaries in FEM. This is not the case for FDM. Often, a rather cumbersome process must be

taken for Neumann boundary conditions in FDM.
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Whendealingwith all speedflow regimessuchas in shock wave turbulent boundary layer

interactions where compressible and incompressible flows, viscous and inviscid flows, and laminar

and turbulent flows are intermingled throughout the flowfield domain, a computational scheme

intended for only one type of" flow physics and that does not account for other types of flow

phenomena will fail. For example, the flow close to the wall in shock wave turbulent boundary

layer interactions is incompressible (M _< 0.I), whereas away from the wall the flow is

compressible (supersonic or hypersonic). In this case, viscous flows change to inviscid flows. In
between these two extremes the flowfield changes continuously, oscillating back and forth across

the boundary layers of velocity and entropy, and leading edge and bow shocks. At any given

computational nodal point or element, gradients of each variable (density, pressure, velocity, and

temperature) may be very small or very large, so large that practically all currently available

computational methods may fail. In order to succeed, it is necessary that the current flow physics

everywhere be identified and so recognized, with specific computational schemes accorded to

each and every computational nodal point and element. It is clear that such accommodations are

available in (13) or 08).

3. IMPLEMENTATION AND COMPUTATIONAL PROCESS

As stated earlier, the governing equations for the Taylor series-modified Navier-Stokes system of

equations, (13) or (18) may be applied to either FDM or FEM, or to the finite volume method

(FVM). For application to FDM any of the existing finite difference methods can be used to

obtain the standard finite difference analogs for either (13) or (18) such as the central schemes,

upwinding schemes, or TVD schemes. The role of the FDMEI is them to enhance the

computational accuracy above and beyond the limit of the current FDM capabilities.

For applications to FEM we begin by expressing the conservation and flux variables and

source terms as a linear combination of trial functions O= with the nodal values of these variables.

u(,,t) =o=(,) u=ct) , = F=Ct)
G,(x,t) = (I)=(x) G=(t) , B(x,t) = (I)=(x) B=Ct) (29)

Applying the generalized Galerkin approximations to (11) we obtain

j' _=R(U,F,, G,, B)dn = 0
G

(A=_,, + B _Arr "+'

(30)

where

A,= = j'O=O_ dn (32)
Q

rl._= 8..- ssAtd_- s6_ At2d,d= (33)

or

=H;.+N3 (3D
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B_.=!I-{At(s_a_.+s3bi,_)+At"_[s2d.aiu+s6dn(ai_,+bi_,)+s4d,,biu]}_,i_

_2

+ _(s_a_, +s,b_,)+.--_[s=d,,a_, +s6d,,(a_+b,,,)+s,d,,b_] +,,do,

+ Ats:,,,.--_-.-[s=(ai.a,_, +bi,,a,_,)+ s,(a_,,b,,, +binb,_,-d.coL. dP,_dO_,, nidF

.= . . -- v," ")+ (. +b,.),; .o,,x,,

+b,.)(G a,8; da

(34)

(35)

(36)

where all Jacobians must be updated at each time step and _, represen_ the Neumann boundary

trial and test functions, with or, [3 denoting the global node number and r, s providing the number

of conservation variables at each node. For three dimensions, i, j = 1, 2, 3 associated with the

Jacobians imply directional identification of each lacobian matrix (a t, a:, a_, b t, b 2, b3, eft, c12,

err ezt, %2, e2_, %t, %2, %_) with r, s = 1, 2, 3, 4, 5 denoting entries of each of the 5 x 5 Jacobian

matrices.

It is important to realize that the integration by parts as applied to the generalized Galerkin

approximations in FEM produces all Neumarm boundary integrals. It is particularly advantageous

that Neumann boundary conditions through re-evaluation of Jacobians normal to the boundary

surfaces can simply be added to the boundary nodes for the stiffmess matrix B,_, in (34). On the

other hand, all Neumann boundary conditions which appear in (36) act as source terms. These

features are absent in FDM, but implementations of Neumaun boundary conditions can be handled

by devising special forms of f'mite differences at boundary nodes.

The generalized Galerkin approach of (13) may be replaced by the generalized Petrov-

Galerkin methods. This process will require the RHS of (34) and (35) to be revised by adding,

respectively,
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C_

with El, , being the quantities inside of the brackets of the convection terms in (34) and Ea,, are

those in (34) and 13gi are the Petrov-Galerkin parameters as defined in (A20), Appendix A. The

role of the FDMEI is, as in FDM of different schemes, to enhance the solution accuracy above

and beyond the Petrov-Galerkin methods. Otherwise, the formulation given by (13) represents

the generalized Taylor-Galerkin method with accuracy enhanced by the FDMEI scheme.

Similar results are obtained either by FDM or FEM with accuracy of computations derived

primarily from the FDMEI equations of (13) or (18). However, with the increase of Reynolds

number (say around Re >>10 ), it is possible that accuracy may increase wtth applications ot

special functions such as Legendre polynomials of high degree modes characterizing extremely
small turbulent microscales. Implementation of such high frequency modes can be achieved by

placing these modes between the comer nodes of isoparametric finite elements. Adaptively, such

high modes can be chosen as needed for the resolution of turbulent microscales. Once again the

diffusion implicitness parameter s_ will play a crucial factor in determining the required degrees of

Legendre polynomial. The use of Legendre polynomial spectral modes superimposed onto

isoparametric elements has been discussed in [9,12,15]. Its merit, however, has not yet been fully

established for general applications.

For turbulent flows with an extremely high Reynolds number, the phase error of the short

wavelengths can be very large. In this case, it is necessary to add numerical dissipation terms to

damp out the short wavelengths. Such numerical viscosities are conceptually different from the

second order implicitness parameters whose role is to ensure stable solutions while preserving the

solution accuracy dictated by the first order implicitness parameters. Toward this end, it is

desirable to revise (18) in the form

I + _ + _/au = --Q" - Q" (37)
 xi xj )

where Q" is the numerical dissipation vector in terms of the second order tensor of numerical

dissipation, Sij, associated with the second order derivatives of U",

_2U. _2 U"

-if" = a ,ax j =  ax,ax;  x,ax (3s)

with _ being the numerical dissipation constant chosen as 0<_<_ o, where _, is set

approximately equal to 2, but adjusted from numerical experiments. Note that the Galerkin

integral of (38) (integration by parts once) leads to the first derivative of the trial and test

functions combined with the nodal values of UI. In addition, note that the damping provided by

the second order derivatives will not disrupt the formal accuracy of the FDMEI scheme. This

process may be applied to (13) as well.
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Oneof themost significantaspectsof the FDMEI schemeis that for low Machnumbers
(incompressibleflow) the schemewill automaticallyadjustitself to preventpressureoscillations.
This adjustmentis analogousto the pressurecorrection schemeemployedfor incompressible
flows. Otherwise,the FDMEI schemeis capableof shock wave resolutionsat high Mach
numbers,and particularlywell suited for dealing with interactionsbetweenshock wavesand
turbulentboundarylayerswhereregionsof high and low Mach numbersandReynoldsnumbers
coexist. In thiscase,the inviscidandviscousinteractionsareallowedto takeplace. To thisend
thesecond order implicitness parameters play the role of artificial viscosity needed for shock wave

resolutions in the presence of flow diffusion due to physical viscosity.

In order to understand how the FDMEI scheme handles computations involving both

compressible and incompressible flows fundamental definitions of pressure must be recognized.

Consider in the following that the fluid is a perfect gas and that the total energy is given by

E=cpT-p+ viv i (39)

The momentum equation for steady state incompressible rotational flow may be integrated to give --

with

p +{pv_v_ = p, +W

1

w-ml

(40)

where o)k is the component of a vorticity vector, po is the constant of integration, and m denotes

the spatial dimension. "

Combining (39) and (40) leads to the following relationship:

p, = p(c,r + v,v,- e)-w (41)

If po as given by (41) remains a constant, equivalent to a stagnation pressure, then the

compressible flow as assumed in the conservation form of the Navier-Stokes system of equations
has now been turned into an incompressible flow, which is expected to occur when the flow

velocity is sufficiently reduced (approximately 0.1 < M < 0.3 for air). Thus, (41) may serve as an

equivalent equation of state for an incompressible flow. This can be identified element by element
for the entire domain. Note that conservation of mass is achieved for incompressible flows with

po in (41) being constant, thus keeping the pressure from oscillating.

Once the Navier-Stokes solution via FDMEI is carried out and all flow variables

determined, then we compute fluctuations.t" of any variable f,

f' = f - ._ (42)
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where f and f denote the Navier-Stokes solution and its time average, respectively. This

process may be replaced by the fast Fourier transform of the Navier-Stokes solution. Unsteady

turbulence statistics (turbulent kinetic energy, Reynolds stresses, and various energy spectra) can

be calculatedonce the fluctuationquantitiesof allvariablesaredetermined.

Before we demonstrate numerical examples, let us summarize why the FDMEI scheme is

capable of handling low speed and high speedand compressible and incompressible flows,

including shock waves and turbulent flows: (1) How.is the transition from incompressible flow to

compressible flow naturally and automatically accommodated without using two separate

equations or two separate codes? This process is dictated by the first order convection

implicitness parameter s I as reflected by the Mach number changes and the expression of the

stagnation pressure. (2) How is the shock wave captured? As the Mach number increases and

its discontinuity is abrupt, the s 2 terms associated with second order derivatives together with

squares of the convection Jacobian provide adequate numerical viscosities through second order

derivatives, similarly as the Lax-Wendroff scheme. (3) How is the transition from laminar to

turbulent flows naturally and automatically accommodated? This process is governed by the first

and second order diffusion implicitness parameters (s 3 and s 4) as calculated from the changes of

the Reynolds number. The terms associated with s 3 and s 4 are responsible for fluctuations of

velocities, with the values of these implicitness parameters increasing with intensities of turbulence

in conjunction with the diffusion gradient Jacobian and the squares of the diffusion Jacobian. This

process allows the Navier-Stokes solutions to contain fluctuations which can be extracted by

subtracting the time averages of the Navier-Stakes solutions. (4) How do the interactions

between convection and diffusion take place? Changes of Mach numbers and Reynolds numbers

as reflected by both convection and diffusion implicitness parameters close to the wall contribute

to the unsteadiness. Away from the wail they contribute to the transition between incompressible

to compressible flows. (5) How are the stiff equations arising from widely disparate reaction

rates of all chemical species treated? The most crucial aspect of the FDMEI scheme is its

capability to identify the ratio of the resident time to the reaction time as calculated from five
different definitions of the DamkiShler numbers between the adjacent nodal points and time steps

as reflected in the calculated first order implicitness parameter, s s, and the second order

implicitness parameter, s 6. These parameters provide precise degree of computational implicitness

at every nodal point and every time step, contributing to the determination of accurate chemical

reactions.

4. APPLICATIONS

We examine here various example problems:(a) flow over a flat plate, (b) shock wave

turbulent boundary layer interactions on a compression corner, (c) 3D duct flows, and (d) lid-

driven cavity flow. Linear isoparametric finite elements are used for the example problems.

(a) Behavior of Flowfield Dependent Implicitness Parameters on Flat Plate

First of all our concern is to test the behavior of FDMEI and FDMEI-FEM. Toward this

objective we examine the flow over a flat plate investigated earlier by Carter [ 17] as shown in Fig.

4a. The initial setting for the implicitness parameters axe determined from the initial conditions of
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the flowtleld and subsequently updated after each time step until the steady state solution is

reached.

Corresponding to the mesh refinements and the flowfields at steady state shown in Fig. 4b,

c, d, the contours of implicitness parameters s t and s 3 are given in Fig. 5. It is seen that the

implicitness parameters themselves closely resemble the flowfield. There are little or no changes

in Mach numbers and Reynolds numbers between adjacent nodes or elements far away from the

surface of the plate as indicated by s t = s_ = 0. _ Along the leading edge shock and boundary

layers, both s t and s3 move toward unity indicating.that gradients of all variables increase. The
final flowfields, as shown in Fig. 4b,c,d, are the consequence of these implicitness parameters.

The implicitness parameters s 2 and s 4 are the compliances of s t and s 3, respectively, with their

primary roles being the artificial viscosity. Thus, the first order implicitness parameters (s t, s3)

help to resolve the high gradients ensuring the accuracy of the solution. While on the other hand,

the second order implicitness parameters ($2, s4) ensure computational stability.

Computations of wall pressure, wall skin friction, u-velocity, v-velocity, density and

temperature distribution are shown in Figs. 6a through 6f. The comparison with the Carter's data ..

indicates reasonable agreements.

(b) Supersonic Flow on a Compression Comer

In this example we demonstrate calculations of supersonic flow on a compression comer.

The inlet boundary conditions (non-dimensionalized) are p = 1, M = 2.25, p = 0.14, Re = 105,

Pr = 0.72, and v = 0, with adiabatic wall condition. The steady state background mean flowfields

for the compression comer are shown in Fig 7a. In these calculations, all perturbation

(fuctuation) variables are determined from time averages of the Navier-Stokes solutions

according to (35). The horizontal and vertical perturbation velocities (u', v') at locations close to

the wall (x = 0.10256 m, y = 0.001 m) and away from the wall (x = 0.10256 m, y = 0.04 m) are

shown in Fig. 7b. Note that u" is extremely unsteady whereas v' is significantly less unsteady

close to the wall. Away from the walL both u' and v' arc almost steady. These trends are

reflected in the turbulence (Reynolds) stresses as shown in Fig 7c. Turbulent kinetic energy

distributions at the locations upstream of the comer (x = 0.0513 m) and downstream of the comer

(x = 0.1333 m) are shown in Fig 7d. We observe that the turbulent kinetic energy downstream of

the comer is significantly larger than the upstream. No turbulent statistics calculations (wave

numbers or frequencies vs power spectral density) are attempted at this time as turbulence

microscales arc not resolved in this example.

It should be noted that the above results obtained without turbulence models or without

the standard DNS solutions (neither spectral nor DNS-mesh refinements) are regarded as the

consequence of the time-averaging of the FDMEI Navier-Stokes solutions. This implies that the
fluctuation of variables between nodal points (Fig 2a) and between time steps (Fig 2b) as reflected

in terms of the implicitness parameters (s i) have contributed to these physical phenomena, with

compressibility and shock waves dictated by the Maeh number-dependent s t, and with

incompressibility and turbulent fluctuations dictate by the Reynolds number or Peclet number-

dependent (s3). An equal participation of s t and s 3 will be responsible for shock wave turbulent

boundary layer interactions. A comparison of the results of the FDMEI scheme with the K:-E
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turbulent model mad experimental data is shown in Fig 7e. It is seen that the FDMEI results

compare more favorably with those of measurements [ 18].

(c) FDMEI Analysis of Three Dimensional Flows

To demonstrate the effectiveness of the flowfield-dependent implicitness parameters in 3-

D flows at the steady state, we examine the spatially evolving boundary layer (Figs. 8a through

8e). Note that the contours of s t and s_ (Fig. 8c) show the boundary layer effects in which both s t

and s3 are indicative of rapid changes of Mach numbers and Reynolds numbers respectively, larger

(close to unity) on the wail but small (closer to zero) away from the wall. The velocity vectors

and RMS error distributions versus interactions are shown in Figs. 8d and 8e, respectively.

(d) Demonstration of Compressibility vs Incompressibility

We ask the question: Can a single formulation or computer program originally designed

for high speed compressible flows be applied to analyze the low speed incompressible flows? The

advantage of FDMEI is to respond positively to this question. To prove the point, let us examine

the lid-driven cavity flow at the steady state (Figs. 9a through 9f). Notice that, for M = 0.1, '

density changes occur closer to the lid, whereas, for M = 0.01, density is constant throughout the

domain (Fig. 9e), corresponding to Po being variable and constant, respectively (see Eq. (32)).

The equation of state for compressible flows is automatically switched over to accommodate the

incompressible flows. This advantage is contrary to the previous practice such as the Table look-

up for the equation of state for incompressible flow handled separately through hyperbolic elliptic

equation as derived from the continuity equation combined with the momentum and energy

equations. Comparisons of the results of FDMEI with those of the independent incompressible

flow code of Gkia et al [19] axe very favorable as shown in Figs. 9a through 9f.

5. CONCLUDING REMARKS
• ..

The validity of the proposed new approach to computational fluid dynamics has been

demonstrated through some example problems. Excluded from these examples are reacting flows

which are reported elsewhere [16]. Also excluded is the effect of additional spectral modes of

Lcgendre polynomials which are described in [15]. None of the example problems have been

carried out with mesh refinements required for resolving turbulent microscales due to the

limitation of computer time. The following concluding remarks axe provided:

(a) The flowfield-dependent implicitness parameters as calculated from the current
flowfield information are indicative of the magnitude of gradients of all variables and

adjust the computational schemes accordingly for every nodal point or element, rather

than dictated by arbitrarily selected constant parameters throughout the domain.

(b) The first order implicitness parameters s t, s 3, and s_ as calculated from Mach numbers,

Reynolds or Peclet numbers, and Damk_hler numbers, respectively, ensure the

solution accuracy, whereas the second order implicitness parameters s 2, s 4, and s_

which are determined as compliances of s t, s 3, and s v respectively, assist in the

solution stability.

(c) The FDMEI method is capable of resolving mutual interactions and transition between
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viscousand inviscid flows, compressible and incompressible flows, and laminar and

turbulent flows, in all speed regimes.

(d) Further research on FDMEI is required in order to investigate many other physical

phenomena including hypersonics and reacting flows with high temperatures in 3D

geometries.
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Table 1 Def'mitions ofNondimensional Flowfield Quantifies

A B C

• -_
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g # d
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Mach number M u

a

Reynolds number Re puL

tt

Peclet nmnber, I Pe I puLcp_
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Peclet number, II Pc n uL

D

Darak6hler number, I Da i Lwt
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DamkOhler number, 1I Da u Lz w_

pDYk

Damk6hler number, HI Da m qL

Hu

DamkOhler number, IV Da rv qL 2

kT

Damk6hler number, V Da v qL 2

HD

A inertial force

B pressure force

A inertialfores

C viscous force

E convective heat transfer

F conductive heat transfer

I convective mass transfer

I diffusive mass transfer

K masssource
I convective mass transfer

K mass source
m

J diffusive mass transfer

N heat source

E convective heat transfer

N heat source

F conductive heat transfer

N heatsource

G diffusiveheattransfer



Table 2 Flowfield Dependent Implicimess Parameters

Convection

gradient

behavior

Diffusion

gradient
behavior

Source

term

gradient
behavior

s I - First order convection implicitness parameter

Ensures solution accuracy.

rain(r,1) r > o_ Strongly flowfield dependent, with

s_ i _ r<(x M_._0 highgradientscharacterizedbylarge
= ' Mach number changes between

M ma = 0 nodal points or within element and
- between time steps.

r=_M_-M_2/M_ '

s2 - Second order convection implicitness parameter

Emugm soiuUon stability.

s2 = s_ , 0 < n < l Flowfield dependent artificial
viscosity, for convection process

S3 - First order diffusion implicitness parameter

Emures solution accuracy.

• Strongly flowfield dependent, with
min(s,l) s>f3 highgt.adientscharacterizedby large

ss =, 0 s < [3, Re_. # 0, or Pe_ ;e 0 changes in Reynolds number or

L 1 Re,_ = 0 or Pe_. = 0 Pedet number between nodal points' or"within element and between time

steps. Diffusion gradient behavior

2 z R _/Pe2... - Pe_/Peu may be dictated by Peclet numt_r
S = _/Re,_- Re_ / e_i, or s = _ when temperature gradients are

high. Choose whichever (Reynolds
o¢ Peclct number) provides the larger

value for s7
• .

s4 - Second order diffusion implicimess parameter

F.ammressolution stability.

S4 = s_ , 0 < n < 1 Flowfieid dependent artificial
viScnsi_ for diffusion process

s s - First order source term implicimess parameter

Emmres solution acgm-dcy.

min(t,l) t 2 _/ Strongly flowfield dependent,with

s, [ _ t<, Dam_O high reaction rate gradients
= ' characterized by large DamkOlaler

Da_ = 0 number changes between nodal

points or within element and

s6- Second order source term implicitness parameter

Fanenres solution stability.
PI

s6 = s 5 , 0 < n < 1 Flowfield dependent artificial
viscosity,for reactionprocess
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APPENDIX A

ANALOGIES OF FDMEI TO CURRENTLY AVAILABLE FDM AND FEM SCHEMES

Analogies of FDMEI to currently available computational schemes of FDM and FEM are

summarized below. : -

A1. Analogies of FDMEI to FDM

Some of the FDM schemes are compared with FDMEI in the following Table.

Truncation error

'1

Other schemes of FDM are compared with FDMEI as follows:

(a) Lax- Wend'off Scheme

The Lax-Wench'off scheme without artificial viscosity takes the form

= At F

This scheme arises if we set in FDMEI

ai_=a_= a , st=O , s2-O , s3---0 , s,-'0

(b) Lax- Wendroff Scheme with Viscosity

The Lax-Wendroff scheme with viscosity is given by

(A1)
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 vr'; (A2)

with

F._= Fi+l + Fi At2 2Az

F i + Fi_I At_o
*_ 2 2_

This scheme arises if we set

a.,4 (F, - F,_I) + D.,@(U i - U ,_,)

Di+¢ = D_@ = as I , s2=0 , s s =O , s, =O

This implies that as t in FDMEI plays a role of artificial viscosity which is manually implemented in

the Lax-Wendroff scheme. "

(c) Explicit McCormack Scheme

Combining the predictor corrector steps of McCormack scheme we write

--i -'-- I

The FDMEI becomes identical to this scheme with the following adjustments:

ai_ = a;4 = a

F7 - FT-t= FT.,- F7 + F.¢ - F,@

st=0 , s2=O , ss--0 , s4=0

and the s 2 term in the FDMEI method is equivalent to

D, =_---[U"8_' ,_ -4U;÷t +6UT-4U; t_ + U,"._2)

This again is a manifestation that shows the equivalent of the s2 terms is manually supplied in the

McCormack method.

(d) First Order Upwind Scheme
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This scheme is written as

=- fr

'+F;")-II'I(u"'-u')]
(A4)

The FDMEI analogy isobtainedby setting

_ 1 F- 1 F.
F:'- ,+,, F'_,= ,_,

$2aC(AU_ ''*'t- 2AU '''t AU"""_ " - U",_,+ ,-,)

where C is the Courant number.

(e) Implicit McCormack Scheme

With all second order derivatives removed from (11) we obtain the implicit McCormack

Scheme by setting s t = I, s2 = 0, s 3 = 0, s 4 = 0. However, it is necessary to divide the process into

the predictor and corrector steps. Once again the flowfield-dependent implicitness parameters for

FDMEI will allow the computation to be performed in a single step.

(f) PISO and SIMPLE

The basic idea of PISO and SIMPLE is analogous to FDMEI-FEM in that the pressure

correction process is a separate step in PISO or SIMPLE, whereas the concept of pressure

correction is implicitly embedded m FDMEI-FEM by updating the implicitness parameters based

on the upstream and downstream Mach numbers and Reynolds numbers within an element.

The elliptic nature of the pressure Poisson equation in the pressure correction process

resembles the terms embedded in the B_e,_ terms in (28a). Specifically, examine the sz terms

involving ai,q am and bi,_tam and s4 term involving ai,_rbm. All of these terms are multiplied by _,#

_# which provide dissipation against any pressure oscillations. Question: Exactly when is such

dissipation action needed? This is where the importance of implicitness parameters based on

flowfield parameters comes in. As the Mach number becomes very small (incompressibility
effects dominate) the implicitness parameters s2 and s,, calculated from the current flowfield will

be indicative of pressure correction required. Notice that a delicate balance between Mach

number (s2 is Math number dependent) and Reynolds number or Peelet number (s4 is Reynolds

number or Peclet number dependent) is a crucial factor in achieving a convergent and stable

solutions. Of course, on the other hand, high Mach number flows are also dependent on these

implicitness parameters. In this case all implicitness parameters, st, s2, s3, s4 will play important

roles.
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A2. Analogies of FDMEI to FEM

(a) Generalized Taylor Galerkin (GTG) with Convection and Diffusion Jacobians

Earlier developments for the solution of Navier-Stokes system of equations were based on

GTG without using the implicitness parameters. They can be shown to be special cases of

FDMEI-FEM.

In terms of both diffusion Jacobian and diffusion gradient Jacobian, we write

_Gi . DU _V_

--if- = t,,-_f + c,j ;_t

with

3Gr DU
DG_ % = Vj =

Thus it follows from (10) or (11) with s t = s_ = s4 = s s = s6 = 0 and s 2 = 1 that

R÷I
(AS)

Using the definitions of convection, diffusion, and diffusion rate Jacobians discussed in Section 2,

the temporal rates of change of convection and diffusion variables may be written as follows:

[(o_F_ l _U_'= _)Fs _Gs

_F,-" [/-" -u')--if-=a, _(V" (A6)

_----_ -- bi

n.H

or

3Gr Cb_°3ets_AU'+' + _ (c AU'_ _

--_= t, _x,j_ _t "-_-J
(A7)

Substituting (A6) and (A7) into (A5) yields
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G "+At2I 3 f a,/ 3AU"+__,+,__,[>,...._,+"j-7-tgL--',>, 5U' --s_n'+' ){)xs {)xs I-B "'_

(A8)

Assuming that ' _

and neglecting the spatial and temporal derivatives of B, we rewrite (A8) in the form

(Ag)

Here the second derivatives of G_ are neglected and all J'acobians are assumed to remain comtant

within an incremental time step but updated at subsequent time steps.

Applying the Galerkin finite element formulation, we have an implicit scheme,

(A_s_,. , + B,_ti,.,)AU;, +l = H_. + N"d I + N_. (AIO)

where

<,,,.,]
{ ' }.:, :aq <i,o:i>,(v;,.+G,.)-<i>:<i>,li,,--y,,,.<i,:.,<i>,.,v_,.

Q

(N'+i At2 [ a ,,,a , ,.j niai
_" 2 _- S,q At

. _ At i . . ]N z =-! Atc_,(F,: +G,,)--_--ai,.,*..F./,.j aid["

Here we note that the algorithm given by (AI0) results from (29) by setting
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s I = s3 = s4 = 0, s z = 1, b_r_am = c_JAt, and neglecting the terms with bjr, and derivatives of G i and

B, the form identical to that reported by Hassan et al [13].

(b) GTG With Convection Jacobians

Diffusion Jacobians may be neglected if their influences is negligible. In this case the

Taylor-Galerkin finite element analog may be derived using only the convective Jacobian from the

Taylor series expansion, ..

At 2 _2 U"

U,,÷t=U.+At_t'._ 2 Ot2 _-O(At 3) (All)

where

DU _F_ _G_+B OU _G_
3"_'= 3x, _ =_a,_x _ 3x _-B (A12)

-__ at--+--- J

or

= +-_---/a_-w--/-'_-'i,a#)+"_-
-fir" _"j L _ o_,_, o,,, ; o_, ot

Substituting (AI2) and (AI3) into (A11), we obtain "

AU ,,_
ctr, /)x, 2 [axy _, /gx,) artcqxy

Expanding 3FjlOt at (n+l) time step

(A13)

(Al4a)

and substituting the above into (A11 - AI3), we arrive at AU "÷_ in a form different from (A14a),
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(d) Characteristic-Based Zienkiewics/Codina Scheme

This scheme arises from Eq. (10) by splitting the FDMEI Navier-Stokes system of

equations into three parts for continuity, momentum, and energy, separately.

Continuity

[_F: {ga_AU "÷l At t_2a_Fj ' a _a sAU

_x_3xs
(A21)

where all diffusion terms are neglected. Setting

AU "÷l -..> Ap "+l

v7 _ nv7 _ u7

staiAU "+t --> stApv_' --_ 0tAt7 7

_aiF 7 _ Otp"8_

n÷l

_s2a#sAU '''__ 0t02Ap 8_

- These substitutions to (A21) lead to

: t _'" Fa(pv,)" _(Apv,7'
2 p,, _ 2Ap,,+iAt0, _i+e2 _

A22)

which is identical to (33) with (Apv_)_"=A0, being the intermediate step in [141. This

represents the pressure correction equation.

Momentum

(,,v,)'" [,v,v,)"•

_'At 2 3 2 "]

(A23)

which is similar to (30) of [14] with a_ = v_, 1 - 02 = s t, and all terms of s 2, b i, and c O being

neglected in FDMEI.
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Energy

at[ O(gEv _+ v _p _ k_+x_jvj

at 02 (pEv_ + ]

which is identical to (40) of [14] with alln + 1 terms being neglected in FDMEI.

(A24)

The solution steps begin with (A-23), followed by (A-21) and (A-24). Note that the

pressure corrections for incompressible flows are internally carried out in FDMEI as the pressure
second derivatives arise automatically in Eq(10). Note also that in FDMEI all implicit terms may

be recovered if so desired.
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AU _AU At _2AU
_+a_ a_a/

At _x_ 2 _x_x j

-0

For the steady state non-incremental form in 1-D we write (A16) in the form

_u At a2 _2u
a_x- "_--_x2 =0

Taking the Galerkin integral of (AI7) leads to

(,)f _u a2 32u'_

(A16)

(A17)

or

i (,) 3u-

w_ =Tx_=O (AI8)

for vanishing Neumann boundaries. Here W_") is the Petrov-Galerkin test function,

(AI9)

with ot = C/2 and C = a6//Ax being the Courant number.

For isoparametric coordinates in two dimensions, the Petrov-Galerkin

assumes the form

test function

w_")=,t,_;)+_=,_x, (A20)

with _g_ being the Petrov-Galerkin parameters

1_

=_(,=_+_.h.)

V i

gi =_

where R e is the Reynolds number or Peclet number in the direction of isopammetric coordinates

(_, rl). Note that the GPG process given by (A16)-(A20) leads to the Streamline Upwinding

Petrov-Galerkin (SUPG) scheme as a special case.
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2 n.14(,,G,)
!

ax,ax_

H" = [1

_--'_ _-B +_ _ a_as_+

_"_ (a_n)"_+--_-'I_n"']

2 _x,t " At,) 0xs J

(A 14b)

(Al4c)

ctFi OG, i.B -I t aiTxjJH'=At _x_ _xi 2 _xi

where second derivatives of G i is assumed to be negligible and B is constant in space and time,

arriving at an implicit finite element scheme,

(A=lt_,., + B._,,)AU;, +l = H_. + _<,,.HI"+' + N_, (AI5)

where

tl

..: ![(.,.a,.,
At 1S_, =At I O=.iOa(F;i,+G_u)-_=OaB_,-_ai,,O/,iOt_.sF_, dfl

a 2

_.=, = AU,.j nflFN "+i al,_a#, t At

N_, =- At6=(F: +G,',)--_-- ,,,_=F;.j nidr"

Itshould be noted thatthe form (Al4c) arisesfrom (25) with si= s3= s4= bj= 0 and s2 = I,an

algorithmsimilartoHassan etal[13].

,,t-

(c) Generalized Petrov.Galerkin (GPG)

The Generalized Petrov-Galerkin (GPG) method can be identified by setting s, = s2 = 1,
2. 2

s3=s_=O , bi=c/_= d =0, Q" =0, Ei= a_, and E_; = 2At a_aj, so that (11) takes the form


