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ABSTRACT

Despite significant achievements in computational fluid dynamics, there still remain many fluid
flow phenomena not well understood. For example, the prediction of temperature distributions is
inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary
layer interactions close to the wall. Complexities of fluid flow phenomena include transition to
turbulence, relaminarization, separated flows, transition between viscous and inviscid,
incompressible and compressible flows, among others, in all speed regimes. The purpose of this
paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit
(FDMEI) method, in an attempt to resolve these difficult issues in CFD. In this process, a total of
six implicitness parameters characteristic of the current flowfield are introduced. They are
calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet
numbers, and Damkohler numbers (if reacting) at each nodal point and time step. This implies that
every nodal point or element is provided with different or unique numerical scheme according to
their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar,
turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of all
variables between adjacent nodal points are determined accurately. If these implicitness
parameters are fixed to certain numbers instead of being calculated from the flowfield information,
then practically ail currently available schemes of finite differences or finite elements arise as
special cases. Some benchmark problems to be presented in this paper will show the validity,
accuracy, and efficiency of the proposed methodology.



1. INTRODUCTION

Nearly haif a century has elapsed since the digital computer revolutionized computational
technologies in engineering and mathematical physics. During this time finite difference methods
(FDM) have dominated the field of computational fluid dynamics (CFD) [1-7], whereas the
opposite is true for finite element methods (FEM) in solid mechanics. In recent years, however,
the trend toward finite element methods in CFD appears to be increasingly favorable [8-14].

In general, the analyst preoccupied with the methods of his choice based on his
educational background or research experience is seldom motivated to investigate other options.
Thus, today the gap between these two disciplines is widely apart, despite the fact that the
thorough understanding of the relations between FDM and FEM is beneficial. The purpose of this
paper is an attempt to call for a new approach in which both FEM and FDM can be united toward
the common goal of achieving the highest level of accuracy and efficiency in CFD. Similarities
and dissimilarities must be identified in order to recognize merits and demerits of each method and
to enable the analysts to choose the most desirable approach suitable for the particular task at
hand.

One of the most important questions in CFD is how to deal with large gradients of the
variable (density, velocity, pressure, temperature, and source terms). Rapid changes of Mach
numbers, Reynoids numbers, Peclet numbers, and Damkdhler numbers (if reacting) between
adjacent nodal points or elements can be a crucial factor in determining whether the chosen
computational scheme will succeed or fail. Furthermore, proper treatments for incompressibility
and compressibility, viscous and inviscid flows, subsonic and supersonic flows, laminar and
turbulent flows, nonreacting and reacting flows are extremely important. The most general case
of fluid dynamics where these various flow properties may be depicted in external and internal
hypersonic flows is shown in Fig 1a,b. A typical reacting flow (hydrogen-air reaction) can also be
seen in Fig. lc.

Can a single formulation and computer code be made available to satisfy all the
requirements mentioned above? Can a single mathematical formulation lead to most of the
currently available computational schemes both in FDM and FEM as special cases? Most
importantly, wiil such an approach guarantee accuracy and efficiency? In this paper, we respond
to these questions positively, based on the results obtained through example problems.

Toward this goal, our approach is based on the following procedure [15, 16], known as
the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) scheme:

(a) Write the Navier-Stokes system of equations in a conservation form.

(b) Expand the conservation variable U™ in Taylor series up to and including the second-
order time derivatives of the conservation variables.

(¢) Introduce in step (b) six different flowfield-dependent implicitness parameters which
are calculated from the changes in Mach numbers, Reynolds numbers, Peclet numbers,
and Damkéhler numbers (if reacting) between nodal points or local elements.



(d) Substitute step (a) and (c) into step (b) to obtain the increments of the conservation
variablesAU™" . As a result, the final form resembles the implicit factored scheme of
Beam and Warming [1], but much more rigorous.

(e) Step (d) may be used either in FDM or FEM.

The computational procedure as described above is capable of resolving complex
properties of fluid flows in general with shock waves, turbulence, and reacting flows in particular.

(1) Incompressible flows are dependent on changes in Reynolds number between nodal
points in FDM and within local elements in FEM. Incompressibility conditions are
characterized by these changes in Reynolds number.

(2) Compressible flows are dependent on changes in both Mach number and Reynoids
number between nodal points in FDM and within local elements in FEM. Dilatational
dissipation is characterized by these changes in Mach number and Reynolds number.

(3) Shock waves in compressible flows are dependent on changes in Mach number
between nodal points in FDM and within local elements in FEM. Shock wave
discontinuities are characterized by these changes in Mach number.

(4) High temperature gradient flows are dependent on changes in Peclet number between
nodal points in FDM and within local elements in FEM. The convection vs diffusion

in heat transfer is characterized by these changes in Peclet number.

(5) Reacting flows are dependent on changes in Damkohler number between nodal points
in FDM and within local elements in FEM. The mass source vs convective transfer,
mass source vs diffusive transfer, heat source vs convective heat transfer, heat source
vs conductive heat transfer, and heat source vs diffusive heat transfer are characterized
by these changes in Damk¢hler number.

(6) Direct numerical simulation (DNS) for turbulent flows in which mesh refinements are
carried out until turbulence length microscales are resolved without turbulence models
can not be reliable particularly for high speed compressible turbulent flows unless the
computational scheme is capable of treating high gradients of variables as described in
(2) above. To improve turbulence calculations, Legendre polynomial spectral modes
may be added as shown in [15]. Whether or not the spectral mode approach is
advantageous for an overall computational efficiency remains to be seen. Due to the
limitation of computer time, the example problems in this paper are not intended for
DNS microscale resolutions.

Details of the mathematical formulations as described above are presented in Section 2,
implementation and computational process in Section 3, some example problems in Section 4,
and concluding remarks in Section 3.



2. MATHEMATICAL FORMULATIONS

For the general purpose program considering the compressible viscous reacting flows, we
write the conservation form of the Navier-Stokes system of equations as '
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where U, F,, G,, and B denote the conservation flow variables, convection flux variables,
diffusion flux variables, and source terms, respectively,
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where f; = Z:l Y, f,; is the body force, Y, is the chemical species, H, is the zero-point enthalpy,

w, is the reaction rate, and D, is the binary diffusivity. Additional equations for vibrational and
electronic energies may be included in (1) for hypersonics.

Expanding the conservation variables U in Taylor series including the first and second
derivatives, we have
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where s, and s, are the implicitness parameters defined such that
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with AU™ = U™ = U". Itis assumed that the convection flux F, is a function of U and the
diffusion fluxG. is a function of both U and its gradient U,. Thus, we have
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where the convection Jacobian a, , the diffusion Jacobian b, , the diffusion gradient Jacobian c; ,
and the source Jacobian d are defined as
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Substituting (3) - (6) into (2) and assuming the product of the diffusion gradient Jacobian with
third order spatial derivatves to be negligible, we obtain
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In order to provide different implicitness (different numerical treatments or schemes) to
different physical quantities, we reassign s, and s, associated with the diffusion and source terms,
respectively,

5AG; = 5,AG, , 5AB = 5, AB (9a)

5AG; = 5,AG,; . 5;AB = 5, AB | (9b)

with the various implicitness parameters defined as
= first order convection implicitness parameter
s, = second order convection implicitness parameter
s, = first order diffusion implicitness parameter
s, = second order diffusion implicitness parameter
= first order source term implicitness parameter
s, = second order source term implicitness parameter
The first order implicitness parameters s,, s;, and s; will be shown to be flowfield
dependent with the solution accuracy assured by taking into account the flowfield gradients,

whereas the second order implicitness parameters s,, s,, and s,, which are also flowfield
dependent, mainly act as artificial viscosity, contributing to the solution stability.

Substituting these implicitness parameters as defined in (9) into (8), we obtain
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For simplicity we may rearrange (10) in a compact form,
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We may allow the source terms in the LHS of (13) to lag from the time step n + 1 to n, so that
(13b) can be written as ' -
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Note that the Beam-Warming Scheme [1] can be written in the form identical to (18) with
the following definitions ofE,, E; and Q"

E, =mAt(a, +b,), with m = 8/(1+€) (20)
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where the cross derivative terms appearing in Q" for the Beam-Warming scheme are included in
the second derivative terms on the LHS. The Beam-Warming scheme is seen to be a special case
of the FDMEI equations if we set s, =s, =m, 5, =5, = 55 = 5§, = 0, in (18), with adjustments of Q'
on the RHS. The stability analysis of the Beam-Warming scheme requires & > 0.385 and 6 = i+
E. This will fix the implicitness parameter m to be 0.639 < m < 0.75. It can be shown that the

FDMEI equations as derived in (9) are capable of producing practically all existing FDM and
FEM schemes. Some examples are shown in Appendix A.

Contrary to the Beam-Warming scheme, the FDMEI approach is to obtain the implicitness
parameters from the current flowfield variables at each and every nodal point rather than by fixing
the implicitness parameters to certain predetermined numbers and using them for the entire flow
domain irrespective of the local flowfield variation from one point to another. These implicitness
parameters may be determined for spatial and temporal bases as depicted in Fig. 2. The final



values of implicitness parameters at any point and at any time can be obtained as the average of
both spatial and temporal contributions:

vecrion Im Parameters:.
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where the maximum and minimum Mach numbers are calculated between adjacent nodal points in
FDM or within a local finite element in FEM for spatial implicitness parameters (Fig. 2a) and
between the time step at n and n — 1 for temporal implicitness parameters (Fig. 2b), and . is a -
user-specified small number (a = 0.01). Here it is seen that s, is directly related to the flowfield,
whereas s, depends on s, such that s, =s7. The primary role of s, is to ensure the solution

accuracy by properly accommodating the convection gradients, whereas that of s, is to act as
artificial viscosity, for solution stability.

Diffusion Implicitness Parameters:

min(s,1) s>P
0 s<P,Re_, #0, orPe_, #0 s,=s; , O<n<l (25)
1 Re_. =0, orPe_, =0 -

S
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with

s=Re’, ~Rek, [Re,, or s=qPel, —Pel, [Pe,, (26a,b)

where the maximum and minimum Reynolds numbers or maximum and minimum Peclet numbers
are calculated similarly as in s, for spatial and temporal implicitness parameters, and B is a user-
specified small number (B = 0.01). If temperature gradients are large, it is possible that Peclet
numbers instead of Reynolds numbers will dictate the diffusion implicitness parameters. The
larger value of s, is to be chosen, as obtained either from (26a) or (26b). Note also that s, =53

with s, ensuring the solution accuracy by taking into account the diffusion gradients, and here
again, s, plays the role of artificial viscosity, for solution stability.

rce T Implici Pari r,

For the case of chemically reacting flows theDa (Damkéhler number) must be used
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where the maximum and minimum Damké&hler numbers are calculated similarly as in s, and s, for
spatial and temporal implicitness parameters, and ¥y is a user-specified small number (y = 0.01).
The relationship between s, and s, is similar to those for convection and diffusion implicitness
parameters such that s, = s; with s, and s, controlling the solution accuracy and solution stability,

respectively. The average of both spatial and temporal implicitness parameters will be adopted for
use in computations at any point (element) and time.

Relationships between all physical phenomena and the corresponding numerical treatments ’
are characterized by the balance between the first order implicitness parameters (s,, s,, s) and the
second order implicitness parameters (s, S, S¢), ensuring the computational accuracy and
computational stability, respectively. The idea is to provide adequate (no more and no less than
required) amount of numerical viscosity in order to preserve the computational accuracy. Note
that the definitions for the second order implicitness parameters have been modified from those
reported in {15, 16] in order to meet the above requirements (Fig. 3). Initially, it was thought that
the second order implicitness parameters should be the direct opposite compliances of the first
order implicitness parameters (s, = 1 - s,, 5, =1 = 5,, 5, =1 = s55) [16] such that the second order
implicitness parameters are the maximum and minimum, respectively, for the minimum and
maximum values of the first order implicitness parameters. Unfortunately, such definition resulted
in too little numerical viscosities for the high values of the first order implicitness parameters.
Subsequently, the limiting values (0.5) of the second order implicitness parameters were provided
such that s, = max(l - s, , 0.5), etc. as experimented in [15]. However, it was noted that both
first and second order parameters should assume the same values at the both extremes at zero and
unity with the second order implicitness parameters being reasonably large for all values of the
first order implicitness parameters. Thus, the second order implicitness parameters given above
are the nonlinear continuous functions of the first order implicitness parameters satisfying these
requirements. The range of the constant n is 0 < n < 1, although n = 1 has been found to be the
optimum, exhibiting the best convergence rate for reasonably high CFL numbers in the example
problems presented in Section 4.

The flowfield dependent implicitness parameters as defined above are capable of allowing
various numerical schemes to be automatically generated, as summarized below:

(1) The first order implicitness parameters s, and s, control all high gradient phenomena such
as shock waves and turbulence. These parameters as calculated from the changes of local
Mach numbers and Reynolds (or Peclet) numbers within each element and are indicative
of the actual local element flowfields. The contours of these parameters closely resemble



()

3

4

&)

(6)

M

10

the flowfields themselves, with both s, and s, being large (close to unity) in regions of
high gradients, but small (close to zero) in regions where the gradients are small. The
basic role of s, and s, is to provide computational accuracy.

The second order implicitness parameters s, and s, are also flowfield dependent.
However, their primary role is to provide adequate computational stability (artificial
viscosity) as they were originally introduced into the second order time derivative term of
the Taylor series expansion of the conservation flow variables U™". The primary role of s,
and s, is to provide computational stability: -

The s, terms represent convection. This implies that if s, = O then the effect of convection
is small The computational scheme is automatically altered to take this effect into
account, with the governing ec_!}lations being predominantly parabolic-elliptic. Note that
these effects are confined atU" , notat U

The s, terms are associated with diffusion. Thus, with s, = 0, the effect of viscosity or
diffusion is small and the computational scheme is automatically switched to that of Euler
equations where the governing equations are predominantly hyperbolic.

If the first order implicitness parameters s, and s, are nonzero, this indicates a typical
situation for the mixed hyperbolic, parabolic and elliptic nature of the Navier-Stokes
system of equations, with convection and diffusion being equally important. This is the
case for incompressible flows at low speeds. The unique property of the FDMEI scheme
is its capability to control pressure oscillations adequately without resorting to the
separate hyperbolic elliptic pressure equation for pressure corrections. The capability of
FDMEI scheme to handle incompressible flows is achieved by a delicate balance between
s, and s, as determined by the local Mach numbers and Reynolds (or Peclet) numbers. If
the flow is completely incompressible (M = 0), the criteria given by (19) leads to s, = 1,
whereas the implicitness parameter s, is to be determined according to the criteria given in
(21). Make a note of the presence of the convection-diffusion interaction terms given by
the product of b;a, in the 5, terms and ab; in the 5, terms. These terms allow interactions
between convection and diffusion in the viscous incompressible andfor viscous
compressible flows.

If temperature gradients rather than velocity gradients dominate the flowfield, then s, is
governed by the Peclet number rather than by the Reynolds number. Such cases arise in
high speed, high temperature compressible flows close to the wall.

In the case of reacting flows the source terms B contains the reaction rates which are
functions of the flowfield variables. With widely disparate time and length scales involved
in the fast and slow chemical reaction rates of various chemical species as characterized by
Damkéhler numbers, the first order source term implicitness parameter s; is instrumental
in dealing with the stiffness of the resulting equations to obtain convergence to accurate
solutions. On the other hand, the second order source term implicitness parameter S
contribute to the stability of solutions. It is seen that the criteria given by (27-28) will
adjust the reaction rate terms in accordance with the ratio of the diffusion time to the
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reaction time in finite rate chemistry so as to assure the accurate solutions with
computational stability.

Various definitions of Peclet number and Damkohler numbers (Table 1) between the
energy and species equations should be checked. Whichever definition provides larger
values of s, and s; must be used. The summary of the above definitions for implicitness
parameters is shown in Table 2.

The transition to turbulence is a natural flow process as the Reynolds number increases,
causing the gradients of any or all flow variables to increase. This phenomenon is the
physical instability and is detected by the increase of s, if the flow is incompressible, but by
both s, and s, if the flow is compressible. Such physical instability is likely to trigger the
numerical instability, but will be countered by the second order implicitness parameters s,
and/or s, to ensure numerical stability automatically. In this process, these flowfield
dependent implicitness parameters are capable of capturing relaminarization,
compressibility effect or dilatational turbulent energy dissipation, and turbulent unsteady
fluctuauons.

An important contribution of the first order implicitness parameters is the fact that they can
be used as error indicators for adaptive mesh generations. That is, the larger the
implicitness parameters the higher the gradients of any flow variables. Whichever governs
(largest first order implicitness parameters) will indicate the need for mesh refinements. In
this case, all variables (density, velocity, pressure, temperature, species mass fraction)
participate in resolving the adaptive mesh, contrary to the conventional definitions of the
error indicators [10,15,16].

Physically, the implicitness parameters will influence the magnitudes of Jacobians. Thus,
Item(8) above may be modified so that the diffusion implicitness. parameters s, and s, as
calculated from the Reynolds number and Peclet number can be applied to the Jacobians
(a, b; ¢, corresponding to the momentum equations and energy equation, respectively.
Furthermore, two different definitions of Peclet number (Pe,, Pe) would require the s, and
s, as calculated from the energy and species equations to be applied to the corresponding
terms of the Jacobians. Similar applications of the source term implicitness parameters s,
and s, should be followed for the source term Jacobian d with five different definitions of
Damkéhler number applied to the corresponding terms of d. In this way, high temperature
gradients arising form the momentum and energy equations and the finite rate chemistry
governed by the energy and species equations can be resolved accordingly.

The FDMEI equations as given in (13) or (18) may be solved by either FDM or FEM.

The standard linear Galerkin approximations of FEM lead to the resuits of central differences of
FDM. However, the main difference between FDM and FEM arises when integration by parts is
performed in FEM and the explicit terms of Neumann boundary conditions “naturally” appear as
boundary integral forms. Thus, all Neumann boundary conditions can be directly specified at
boundaries in FEM. This is not the case for FDM. Often, a rather cumbersome process must be
taken for Neumann boundary conditions in FDM.



12

When dealing with all speed flow regimes such as in shock wave turbulent boundary layer
interactions where compressible and incompressible flows, viscous and inviscid flows, and laminar
and turbulent flows are intermingled throughout the flowfield domain, a computational scheme
intended for only one type of flow physics and that does not account for other types of flow
phenomena will fail. For example, the flow close to the wall in shock wave turbulent boundary
layer interactions is incompressible (M < 0.1), whereas away from the wall the flow is
compressible (supersonic or hypersonic). In this case, viscous flows change to inviscid flows. In
between these two extremes the flowfield changes continuously, oscillating back and forth across
the boundary layers of velocity and entropy, and leading edge and bow shocks. At any given
computational nodal point or element, gradients of each variable (density, pressure, velocity, and
temperature) may be very small or very large, so large that practically all currently available
computational methods may fail. In order to succeed, it is necessary that the current flow physics
everywhere be identified and so recognized, with specific computational schemes accorded to
each and every computational nodal point and element. It is clear that such accommodations are
available in (13) or (18).

3. IMPLEMENTATION AND COMPUTATIONAL PROCESS

As stated earlier, the governing equations for the Taylor series-modified Navier-Stokes system of
equations, (13) or (18) may be applied to either FDM or FEM, or to the finite volume method
(FVM). For application to FDM any of the existing finite difference methods can be used to
obtain the standard finite difference analogs for either (13) or (18) such as the central schemes,
upwinding schemes, or TVD schemes. The role of the FDMEI is them to enhance the
computational accuracy above and beyond the limit of the current FDM capabilities.

For applications to FEM we begin by expressing the conservation and flux variables and
source terms as a linear combination of trial functions @, with the nodal values of these variables.

U(x,?) = @, (x) U, (1) , F(x,7)= ®,(x) F,(*)
G )=0,(x)Gu() .,  B(x:)=0,(x)B,() (29)
Applying the generalized Galerkin approximations to (11) we obtain
I¢“R(U,F,.,G,.,B)dQ =0 (30)
Q
or
(Augn, + Bug) AU = HZ + N2, 31)
where
Ay = J'Qad)p dQl (32)
Q

Tln =6n —siAtdn —sﬁ%Atzdndu (33)
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where all Jacobians must be updated at each time step and &lu represents the Neumann boundary

trial and test functions, with o, B denoting the global node number and r, s providing the number
of conservation variables at each node. For three dimensions, i, j = 1, 2, 3 associated with the
Jacobians imply directional identification of each Jacobian matrix (a,, a,, a;, b;, by, b,, ¢, ¢,
€130 C31» Cg0 Cp3s Cyy» Cyyy &5) With 1, 5 =11, 2, 3, 4, 5 denoting entries of each of the 5 x 5 Jacobian
matrices.

It is important to realize that the integration by parts as applied to the generalized Galerkin
approximations in FEM produces all Neumann boundary integrals. It is particularly advantageous
that Neumann boundary conditions through re-evaluation of Jacobians normal to the boundary
surfaces can simply be added to the boundary nodes for the stiffness matrix B ,in (34). On the
other hand, all Neumann boundary conditions which appear in (36) act as source terms. These
features are absent in FDM, but implementations of Neumann boundary conditions can be handled
by devising special forms of finite differences at boundary nodes.

The generalized Galerkin approach of (13) may be replaced by the generalized Petrov-
Galerkin methods. This process will require the RHS of (34) and (35) to be revised by adding,
respectively,
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with E,  being the quantities inside of the brackets of the convection terms in (34) and E_ are

those in (34) and Pg, are the Petrov-Galerkin parameters as defined in (A20), Appendix A. The
role of the FDMEI is, as in FDM of different schemes, to enhance the solution accuracy above
and beyond the Petrov-Galerkin methods. Otherwise, the formulation given by (13) represents
the generalized Taylor-Galerkin method with accuracy enhanced by the FDMEI scheme.

Similar results are obtained either by FDM or FEM with accuracy of computations derived
primarily from the FDMEI equations of (13) or (18). However, with the increase of Reynolds
number (say around Re >>10), it is possible that accuracy may increase with applications of
special functions such as Legendre polynomials of high degree modes characterizing extremely
small turbulent microscales. Implementation of such high frequency modes can be achieved by
placing these modes between the corner nodes of isoparametric finite elements. Adaptively, such
high modes can be chosen as needed for the resolution of turbulent microscales. Once again the
diffusion implicitness parameter s, will play a crucial factor in determining the required degrees of
Legendre polynomial The use of Legendre polynomial spectral modes superimposed onto
isoparametric elements has been discussed in [9,12,15]. Its merit, however, has not yet been fully
established for general applications.

For turbulent flows with an extremely high Reynolds number, the phase error of the short
wavelengths can be very large. In this case, it is necessary to add numerical dissipation terms to
damp out the short wavelengths. Such numerical viscosities are conceptually different from the
second order implicitness parameters whose role is to ensure stable solutions while preserving the
solution accuracy dictated by the first order implicitness parameters. Toward this end, it is
desirable to revise (18) in the form

2

I+_a_E—{+_a_.E—lj AU"‘H__QR ~n 3
% | ox2 =-Q"-Q 37

x,0x ;

where Q" is the numerical dissipation vector in terms of the second order tensor of numerical
dissipation, S i associated with the second order derivatives of U,

— ’u" 2*u”
=S5, =L AxAx;
Q=3 0x,0x HEnA%, 0x,0x ;

(38)

with [T being the numerical dissipation constant chosen as O<{ <}, where H, is set
approximately equal to 2, but adjusted from numerical experiments. Note that the Galerkin
integral of (38) (integration by parts once) leads to the first derivative of the trial and test
functions combined with the nodal values of Ug. In addition, note that the damping provided by

the second order derivatives will not disrupt the formal accuracy of the FDMEI scheme. This
process may be applied to (13) as well.
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One of the most significant aspects of the FDMEI scheme is that for low Mach numbers
(incompressible flow) the scheme will automatically adjust itself to prevent pressure oscillations.
This adjustment is analogous to the pressure correction scheme employed for incompressible
flows. Otherwise, the FDMEI scheme is capable of shock wave resolutions at high Mach
numbers, and particularly well suited for dealing with interactions between shock waves and
turbulent boundary layers where regions of high and low Mach numbers and Reynolds numbers
coexist. In this case, the inviscid and viscous interactions are allowed to take place. To this end
the second order implicitness parameters play the role of artificial viscosity needed for shock wave
resolutions in the presence of flow diffusion due to physical viscosity.

In order to understand how the FDMEI scheme handles computations involving both
compressible and incompressible flows fundamental definitions of pressure must be recognized.
Consider in the following that the fluid is a perfect gas and that the total energy is given by

= p_1
E—CPT—;'*'EV'-V‘- (39)

The momentum equation for steady state incompressible rotational flow may be integrated to give -
I(p+ pv,v,) dx; = J'[u +4v, )+ e Jm,]dx
+3pv;v;=p,+W (40)
with
=__”p, Vi) FPERY mk]dx

where @, is the component of a vorticity vector, p, is the constant of i mtegrauon and m denotes
the spatial dimension.

Combining (39) and (40) leads to the following relationship:
=p(c,T+vv;,—E)-W (41)

If p, as given by (41) remains a constant, equivalent to a stagnation pressure, then the
compressible flow as assumed in the conservation form of the Navier-Stokes system of equations
has now been turned into an incompressible flow, which is expected to occur when the flow
velocity is sufficiently reduced (approximately 0.1 £ M < 0.3 for air). Thus, (41) may serve as an
equivalent equation of state for an incompressible flow. This can be identified element by element
for the entire domain. Note that conservation of mass is achieved for incompressible flows with
p, in (41) being constant, thus keeping the pressure from oscillating.

Once the Navier-Stokes solution via FDMEI is carried out and all flow variables
determined, then we compute fluctuationsf” of any variablef,

ff=f-f (42)
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where f and f denote the Navier-Stokes solution and its time average, respectively. This

process may be replaced by the fast Fourier transform of the Navier-Stokes solution. Unsteady
turbulence statistics (turbulent kinetic energy, Reynolds stresses, and various energy spectra) can
be calculated once the fluctuation quantities of all variables are determined.

Before we demonstrate numerical examples, let us summarize why the FDMEI scheme is
capable of handling low speed and high speed and compressible and incompressible flows,
including shock waves and turbulent flows: (1) How is the transition from incompressible flow to
compressible flow naturally and automatically accommodated without using two separate
equations or two separate codes? This process is dictated by the first order convection
implicitness parameter sl as reflected by the Mach number changes and the expression of the
stagnation pressure. (2) How is the shock wave captured? As the Mach number increases and
its discontinuity is abrupt, the s, terms associated with second order derivatives together with
squares of the convection Jacobian provide adequate numerical viscosities through second order
derivatives, similarly as the Lax-Wendroff scheme. (3) How is the transition from laminar to
turbulent flows naturally and automatically accommodated? This process is governed by the first
and second order diffusion implicitness parameters (s, and s,) as calculated from the changes of |
the Reynolds number. The terms associated with s; and s, are responsible for fluctuations of
velocities, with the values of these implicitness parameters increasing with intensities of turbulence
in conjunction with the diffusion gradient Jacobian and the squares of the diffusion Jacobian. This
process allows the Navier-Stokes solutions to contain fluctuations which can be extracted by
subtracting the time averages of the Navier-Stakes solutions. (4) How do the interactions
between convection and diffusion take place? Changes of Mach numbers and Reynolds numbers
as reflected by both convection and diffusion implicitness parameters close to the wall contribute
to the unsteadiness. Away from the wall, they contribute to the transition between incompressible
to compressible flows. (5) How are the stiff equations arising from widely disparate reaction
rates of all chemical species treated? The most crucial aspect of the FDMEI scheme is its
capability to identify the ratio of the resident time to the reaction time as calculated from five
different definitions of the Damkéhler numbers between the adjacent nodal points and time steps
as reflected in the calculated first order implicitness parameter, s;, and the second order
implicitness parameter, s,. These parameters provide precise degree of computational implicitness
at every nodal point and every time step, contributing to the determination of accurate chemical
reactions.

4. APPLICATIONS

We examine here various example problems:(a) flow over a flat plate, (b) shock wave
turbulent boundary layer interactions on a compression corner, (c) 3D duct flows, and (d) lid-
driven cavity flow. Linear isoparametric finite elements are used for the example problems.

(a) Behavior of Flowfield Dependent Implicitness Parameters on Flat Plate

First of all, our concemn is to test the behavior of FDMEI and FDMEI-FEM. Toward this
objective we examine the flow over a flat plate investigated earlier by Carter [17] as shown in Fig.
4a. The initial setting for the implicitness parameters are determined from the initial conditions of
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the flowfield and subsequently updated after each time step until the steady state solution is
reached.

Corresponding to the mesh refinements and the flowfields at steady state shown in Fig. 4b,
¢, d, the contours of implicitness parameters s, and s, are given in Fig. 5. It is seen that the
implicitness parameters themselves closely resemble the flowfield. There are little or no changes
in Mach numbers and Reynolds numbers between adjacent nodes or elements far away from the
surface of the plate as indicated by s, = s, = 0. * Along the leading edge shock and boundary
layers, both s, and s, move toward unity indicating-that gradients of all variables increase. The
final flowfields, as shown in Fig. 4b,c,d, are the consequence of these implicitness parameters.
The implicitness parameters s, and s, are the compliances of s, and s,, respectively, with their
primary roles being the artificial viscosity. Thus, the first order implicitness parameters (s,, s,)
help to resolve the high gradients ensuring the accuracy of the solution. While on the other hand,
the second order implicitness parameters ,, s,) ensure computational stability.

Computations of wall pressure, wall skin friction, u-velocity, v-velocity, density and
temperature distribution are shown in Figs. 6a through 6f. The comparison with the Carter’s data .
indicates reasonable agreements.

(b) Supersonic Flow on a Compression Corner

In this example we demonstrate calculations of supersonic flow on a compression comer.
The inlet boundary conditions (non-dimensionalized) are p = 1, M = 2.25, p = 0.14, Re = 105,
Pr=0.72, and v = 0, with adiabatic wall condition. The steady state background mean flowfields
for the compression corner are shown in Fig 7a. In these calculations, all perturbation
(fluctuation) variables are determined from time averages of the Navier-Stokes solutions
according to (35). The horizontal and vertical perturbation velocities (&, V") at locations close to
the wall (x =0.10256 m, y = 0.001 m) and away from the wall (x = 0.10256 m, y = 0.04 m) are
shown in Fig. 7b. Note that &’ is extremely unsteady whereas v’ is significantly less unsteady
close to the wall Away from the wall, both &’ and v’ are almost steady. These trends are
reflected in the turbulence (Reynoids) stresses as shown in Fig 7c. Turbulent kinetic energy
distributions at the locations upstream of the corner (x = 0.0513 m) and downstream of the corner
(x = 0.1333 m) are shown in Fig 7d. We observe that the turbulent kinetic energy downstream of
the comner is significantly larger than the upstream. No turbulent statistics calculations (wave

numbers or frequencies vs power spectral density) are attempted at this time as turbulence
microscales are not resolved in this example.

It should be noted that the above results obtained without turbulence models or without
the standard DNS solutions (neither spectral nor DNS-mesh refinements) are regarded as the
consequence of the time-averaging of the FDMEI Navier-Stokes solutions. This implies that the
fluctuation of variables between nodal points (Fig 2a) and between time steps (Fig 2b) as reflected
in terms of the implicitness parameters (s;) have contributed to these physical phenomena, with
compressibility and shock waves dictated by the Mach number-dependent s,, and with
incompressibility and turbulent fluctuations dictate by the Reynolds number or Peclet number-
dependent (s,). An equal participation of 5, and s, will be responsible for shock wave turbulent
boundary layer interactions. A comparison of the results of the FDMEI scheme with the x-¢
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turbulent model and experimental data is shown in Fig 7e. It is seen that the FDMEI resuits
compare more favorably with those of measurements [18].

(c) FDMEI Analysis of Three Dimensional Flows

To demonstrate the effectiveness of the flowfield-dependent implicitness parameters in 3-
D flows at the steady state, we examine the spatially evolving boundary layer (Figs. 8a through
8¢). Note that the contours of s, and s, (Fig. 8c) show the boundary layer effects in which both s,
and s, are indicative of rapid changes of Mach numbers and Reynolds numbers respectively, larger
(close to unity) on the wall, but small (closer to zero) away from the wall. The velocity vectors
and RMS error distributions versus interactions are shown in Figs. 8d and 8e, respectively.

(d) Demonstration of Compressibility vs Incompressibility

We ask the question: Can a single formulation or computer program originally designed
for high speed compressible flows be applied to analyze the low speed incompressible flows? The
advantage of FDMEI is to respond positively to this question. To prove the point, let us examine
the lid-driven cavity flow at the steady state (Figs. 9a through 9f). Notice that, for M = 0.1, ~
density changes occur closer to the lid, whereas, for M = 0.01, density is constant throughout the
domain (Fig. 9e), corresponding to P, being variable and constant, respectively (see Eq. (32)).
The equation of state for compressible flows is automatically switched over to accommodate the
incompressible flows. This advantage is contrary to the previous practice such as the Table look-
up for the equation of state for incompressible flow handled separately through hyperbolic elliptic
equation as derived from the continuity equation combined with the momentum and cnergy
equations. Comparisons of the results of FDMEI with those of the independent incompressible
flow code of Ghia et al [19] are very favorable as shown in Figs. 9a through 9f.

5. CONCLUDING REMARKS

The validity of the proposed new approach to computational fluid dynamics has been
demonstrated through some example problems. Excluded from these examples are reacting flows
which are reported elsewhere {16]. Also excluded is the effect of additional spectral modes of
Legendre polynomials which are described in [15]. None of the example problems have been
carried out with mesh refinements required for resolving turbulent microscales due to the
limitation of computer time. The following concluding remarks are provided:

(a) The flowfield-dependent implicitness parameters as calculated from the current
flowfield information are indicative of the magnitude of gradients of all variables and
adjust the computational schemes accordingly for every nodal point or element, rather
than dictated by arbitrarily selected constant parameters throughout the domain.

(b) The first order implicitness parameters s,, s,, and 55 as calculated from Mach numbers,
Reynolds or Peclet numbers, and Damkéhler numbers, respectively, ensure the
solution accuracy, whereas the second order implicitness parameters s,, s, and s
which are determined as compliances of s,, s,, and s,. respectively, assist in the
solution stability.

(c) The FDMEI method is capable of resolving mutual interactions and transition between
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viscous and inviscid flows, compressible and incompressible flows, and laminar and
turbulent flows, in all speed regimes.

(d) Further research on FDMEI is required in order to investigate many other physical

phenomena including hypersonics and reacting flows with high temperatures in 3D
geometries.
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Table 1 Definitions of Nondimensional Flowfield Quantities

p(v-V)v=-Yp+ u[Viv +4V(V )]
< 3 3

A C

ksl

T T N
V-pv[c,dT-V-kVT —V'[pDVY,‘jcp,‘dT}=—ZHZw,‘
L . o L)

E F G

V-(pY, v)-V-(pDVY,)=w,
(S

 —F7 X
Mach number M u A _ inertial force
a B pressure force
Reynolds number Re puL | A _ inerual force
1 C  viscous force
Peclet number, [ Pe, puLc, | E _ convective heat transfer
' k F ~ conductive heat transfer
Peclet number, II Pe ; ul 1 _ convective mass transfer
D ]~ diffusive mass transfer
Damkéhler number, I Da, Lw, K_ mass source
puY, I ~ convective mass transfer
Damkéhler number, II Da, | I’w, |K_ mass source
;D_Y: J  diffusive mass transfer
Damkéhler number, T Day | gL | N_ heat source
Hu E convective heat transfer
Damkéhler number, IV Da,, ql? E_ _ heat source
kT F conductive heat transfer
Damkéhler number, V Da . ql? N heat source
G

= diffusive heat transfer




Table 2 Flowfield Dependent Implicitness Parameters
5, - First order convection implicitness parameter
. Ensures solution accuracy.
min(r,l) r>a Strongly flowfield dependent, with
5= 0 r<oc,Mm¢O high gradients characterized by large
Convection M. =0 Mach number changes between
gradient 1 min = nodal points or within element and
behavior > L between time steps.
)
=ML -M%, M,
s, - Second order convection implicitness parameter
n Ensures solution stability.
=5 , 0<n<l Flowfield dependent artificial
viscosity for convection process
s. - First order diffusion implicitness parameter
3 p P
Ensures solution accuracy.
min(s,]) s> Strongly flowfield dependent. with
Diffusion R 0 P high gradients characterized by large
gradient 5= 0 s<P,Re,, #0, orPe,, #0 | changes in Reynolds number or
. 1 Re . =0, or Pe_. =0 | Peclet number between nodal points
behavior e - or within element and between time
steps. Diffusion gradient behavior
s= ,/ Rel —Rel, /Re,, or s= \}Pe,‘,_ -pe}, [Pe,, |TMB&Y be dictated by Peclet number
/ / when temperature gradients are
high. Choose whichever (Reynolds
or Peclet number) provides the larger
value for 5.
s, - Second order diffusion implicitness parameter '
n Ensures solution stability.
s,=s, , O<n<l Flowfield dependent artificial
viscosity for diffusion process
s, - First order source term implicitness parameter
) Ensures solution accuracy.
min(s,1) +2Y Strongly flowfield dependent, with
S5 = 0 t<y,Da_ #0 high reaction rate gradients
Source characterized by large Damkohler
term 1 Da,, =0 number changes between nodal
. points or within element and
gradlent - 2 2 .
. t—-\,Da -Da_,, /Da, between time steps.
behavior max min / min P

s - Second order source term implicitness parameter

s;=5; , O<n<l

Ensures solution stability.
Flowfield dependent artificial
viscosity for reaction process
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(@ rdealized mrbuience jength scaies assumed to be within each element - spatally
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Fig2 Spatiai and Temporal Flowfield Dependent Implicitness Parameters
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5, =8,5,=5.5=5.0<n<l

Relationships between the first and second order
implicitness parameters. Stable soiutions occur in the
range, 0 <7 < 1, with an optimum at n =~ for the
second order implicitness parameters to preserve the
solution accuracy as dictated by the first order
implicitness parameters.
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Fig. 4 Flat plate problem - initial and adaptive meshes and their corresponding density
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(b) s, contours

Fig. 5 Flowrield-dependent first order convection and diffusion implicitness
parameters
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APPENDIX A

ANALOGIES OF FDMEI TO CURRENTLY AVAILABLE FDM AND FEM SCHEMES

Analogies of FDMEI to currently available computational schemes of FDM and FEM are
summarized below. :

A1. Analogies of FDMEI! to FDM

Some of the FDM schemes are compared with FDMEI in the following Table.

n .
5 5, E, E; [0, Truncation error
Beam-Warming 9 0 0Ar , 0At At 3
+b. C.. . . 1 2 Al
1] T+ | T+E | 1+E 0 ) 1+& " 1+gw +1+§AU ofe-+-g)r.ar']
Euler explicit 0 0 " " " O(At‘ )
Euler implicit 1 1 " " " O(A,Z)
Three-point 2 2 " " " o(ar’)
implicit
Trapezoidal % -;- " " " O(At’ )
implicit
Leap fro g 0 0 " " " o( NJ )
explicit

Other schemes of FDM are compared with FDMEI as follows:

(a) Lax-Wendroff Scheme

The Lax-Wendroff scheme without artificial viscosity takes the form

AU == {Fy )

At

2Ax?

This scheme arises if we set in FDMEI

a%

=a,_ =a , 5=0 , 5=0 , 5

(b) Lax-Wendroff Scheme with Viscosity

The Lax-Wendroff scheme with viscosity is given by

a;..lz.Fm - (az«,k - a:-;-)Fi + a;-;-E‘-n]

0, s5,=0

(AD)



[ At - o
AU™ = —E(F“_% —F,._%) (A2)
with
. _F,+F
F; =——‘2—— 2Ax ‘A(F,ﬂ F)+D (U.-U)
. F,+F._
F‘._‘i= 2 - ZAx x—L(F F-l)+D—L(U Ul—l)

This scheme arises if we set

D‘.%:D‘._%=as1 , 5=0, =0, s5=0

This implies that as, in FDMEI plays a role of artificial viscosity which is manually implemented in
the Lax-Wendroff scheme. »

(c) Explicit McCormack Scheme
Combining the predictor corrector steps of McCormack scheme we write

AU =‘%(Ff'ﬂ“‘7‘ )‘%(F “FL)+D

A e pey_ A
=_§ (F.-F )-Zx-(F“% —F“'*‘) (A3)

—— a“_,z_F‘.#l —(a‘.%+a‘._é)F,.+a‘._%F,._,]+-D’,.

The FDMEI becomes identical to this scheme with the following adjustments:

a“_*:al._*:a

F'-F, =F), —F{'+F‘.ﬁ—F‘._,_
5=0 , =0, 5=0, s5=0

and the s, term in the FDMEI method is equivalent to
D= %(U:.' -4, +6U] -4U, + UL, )

This again is a manifestation that shows the equivalent of the s, terms is manually supplied in the
McCormack method.

(d) First Order Upwind Scheme



This scheme is written as

- ‘%{B(F? vEL,) - S, - 01)]
R )

The FDMEI analogy is obtained by setting

(A4)

! | 1 n ] 1 n
F' = E’Fm , FL= EF:'—I
5;aC(AU™ -2AUT +AUT) =[aj(U%, - U,)
where C is the Courant number.
(e) Implicit McCormack Scheme

With all second order derivatives removed from (11) we obtain the implicit McCormack
Scheme by setting 5, = 1, 5, =0, 5, =0, 5,=0. However, it is necessary to divide the process into
the predictor and corrector steps. Once again the flowfield-dependent implicitness parameters for
FDMEI will allow the computation to be performed in a single step.

(f) PISO and SIMPLE

The basic idea of PISO and SIMPLE is analogous to FDMEI-FEM in that the pressure
correction process is a separate step in PISO or SIMPLE, whereas the concept of pressure
correction is implicitly embedded in FDMEI-FEM by updating the implicitness parameters based
on the upstream and downstream Mach numbers and Reynolds numbers within an element.

The elliptic nature of the pressure Poisson equation in the pressure correction process
resembles the terms embedded in the By, terms in (28a). Specifically, examine the s; terms
inVOLVING Girg Gjsg and birg@jsg and s4 term iNVOIVINg Girgbjsq. All Of these terms are multiplied by @,
®,,; which provide dissipation against any pressure oscillations. Question: Exactly when is such
dissipation action needed? This is where the importance of implicitness parameters based on
flowfield parameters comes in. As the Mach number becomes very small (incompressibility
effects dominate) the implicitness parameters s, and s4 calculated from the current flowfield will
be indicative of pressure correction required. Notice that a delicate balance between Mach
number (s; is Mach number dependent) and Reynolds number or Peclet number (s4 is Reynolds
number or Peclet number dependent) is a crucial factor in achieving a convergent and stable
solutions. Of course, on the other hand, high Mach number flows are also dependent on these
implicitness parameters. In this case all implicitness parameters, si, §2, 53, 54 will play important
roles.



A4

A2. Analogies of FDMEI to FEM

(a) Generalized Taylor Galerkin (GTG) with Convection and Diffusion Jacobians

Earlier developments for the solution of Navier-Stokes system of equations were based on
GTG without using the implicitness parameters. They can be shown to be special cases of
FDMEI-FEM. :

In terms of both diffusion Jacobian and diffusion gradient Jacobian, we write

3G. . 9U vV,
i ph —4c. —L
o iy
with
3G 3G U
b. =——I' , . =——' s v .
B 0 Ci an / axj

Thus it follows from (10) or (11) withs, =5, =5, =5, =5,=0and s, = | that

OF 3G, .Y . Afa( 9F 3G, )"
A a+l =At —_—1 B i i 3
v ( ox, om )+ 2 | ox,  ox, +B) +o(ar) (A3)

Using the definitions of convection, diffusion, and diffusion rate Jacobians discussed in Section 2,
the temporal rates of change of convection and diffusion variables may be written as follows:

Qﬁ:(a .a_[_J_)‘ ={a _a_F.J__Ei+B )
ot " ot : dx; dx;

aF™ [ 3 gye gy OF; _9GT
ot ‘“‘[( "fa,,(" ur) =, o, D (A6)
A R N "
ot i) V3| ax,
or
3G _

dc, \AU™ 9 AUN™
Vi

x ( T A T\
Substituting (A6) and (A7) into (AS5) yields



- _OF, 3G, ) 9 _oAU™ OF; 3G .
AU 'A‘(ax +B) Z{Bx Bl W P PR M

;o i j j j
- (A8)
acij AU n+ aB n+l
+|e+— 11—
ox; | At T
Assuming that .
dc,;
e,=b,——=0
ox;
and neglecting the spatial and temporal derivatives of B, we rewrite (A8) in the form
Af* 9 c; ) 9
l-——{aa, +— AU™ =H"
{ 2 o, ( ]ax } 49)

9F, 3G, .\ A 3 (_ dF,
H=Atj —-——+B| +
( ox; ox ) 2 dx ( " ox ]
Here the second derivatives of G, are neglected and all Jacobians are assumed to remain constant
within an incremental time step but updated at subsequent time steps.

Applying the Galerkin finite element formulation, we have an implicit scheme,

(A, + By, )AUS =H(, + N3 +N;, (A10)

A‘z [( c:’in] }
B = — a_ a. +———10, b, 1dQ
aPrs ir s [ WAl : N
2 i q } q ﬁt J

2

HS, I [ «.:Ps (Fé‘,, +G;i,) - &, DBy, ——ai,,Qa‘idle;j,] di
Q

At

an:%_J’( im)d, AU"‘ dl‘
r

Nz, =~ [Aﬂba (Fs+G7)- A;a QaF;,,] dr

Here we note that the algorithm given by (Al0) results from (29) by setting
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5,=8,=5,=0,5,=1b,4,= ¢;,/At. and neglecting the terms with b, , and derivatives of G; and

B, the form identical to that reported by Hassan et al [13].
(b) GTG With Convection Jacobians

Diffusion Jacobians may be neglected if their influences is negligible. In this case the
Taylor-Galerkin finite elernent analog may be derived using only the convective Jacobian from the
Taylor series expansion, -

oU" Ar? 9*U”"

n-o-l: ] AI 3
U™ = Ut A +0(ar') (AlD)
where
U oF, 3G, U 3G,
= i i B=—q ———
" o P Mo, o (A12)
PU__3f, 9 3G,
ot? ot 'ox, ox
or
PU_ 3 au), a2 9G,) 3 3B
% ", (a,ai ax,)+ax, (a, ey ]—sx-:- a,B)+-$ (A13)
Substituting (A12) and (A13) into (A1), we obtain
F o6 . ala( au) 7(aG) o B ||
AU =an - L g+ 2 D laa = L =
{ R 2[6&- oo B S .

Expanding oF /3t at (n+1) time step

el
oF;" dF; oG, et oAU™ OFF dGT'
—— = ] ———t e i B - —_a . —_ I J A+l
ot [a,( ox; dx, * O dx, dx;, Ox +B

and substituting the above into (A1l - A13), we arrive at AU™' in a form different from (Al4a),
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(d) Characteristic-Based Zienkiewics/Codina Scheme

This scheme arises from Eg. (10) by splitting the FDMEI Navier-Stokes system of
equations into three parts for continuity, momentum, and energy, separately.

Continuity

(A21)

H

n . a+l ‘82 Fu az i ‘AUn-t-l
AUM:_N[BF, LY. _A‘.( aF]

ox; ox; 2 | dx0x; " 0x,0x ;
where all diffusion terms are neglected. Setting

AU™ = Ap™
F' = pvi U]
s5,2,AU™ — s,Apv] > 0,A0;
+a,F — 8,p";
Ls,2,a,AU™ - 0,0,4p™'3;

These substitutions to (A21) lead to

(v vy a(apv )™ 2'p" o O8p™
Ap "(ZZ—A” ) =—A'[—(—a}-l+°‘ ( ax.) - ad, ax-iti)x-w2 ax-gx-)

(A22)
which is identical to (33) with (Apv,)™ =AD] being the intermediate step in [14]. This
represents the pressure correction equation.

Momentum

a(PViVj) _ at; . dp"” +6 dAp™!
ox, dx, OJx 2 ox

A v-m=-—At
(apv,)

i
At? 9’ »
_(1—62{ ; v, 3%, 9%, (pv,.vj + pBiJ.) ]

which is similar to (30) of [14] with a, = v, 1 = 8, = 5,, and all terms of s,, b, and ¢; being
neglected in FDMEL

(A23)
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Energy

n+l a EVf+V,‘p)n a aT ,
= - L - k v
(ApE) At[ ™ o o +T,V;

(A24)
At 2’ .
——y ——(pEv. .
2 Vi35 0x O "‘”"’)]

which is identical to (40) of [14] with alln + 1 termsvbeing neglected in FDMEL

The solution steps begin with (A-23), followed by (A-21) and (A-24). Note that the
pressure corrections for incompressible flows are internally carried out in FDMEI as the pressure
second derivatives arise automatically in Eq(10). Note also that in FDMEI all implicit terms may
be recovered if so desired.



AU aAU At azAU

" ox, a‘ I ox, ax

(Al6)

For the steady state non-incremental form in 1-D we write (A16) in the form

ou a* o*u
ag - M55 =0 (A17)

Taking the Galerkin integral of (A17) leads to

du a* 3*u
N a——Ar— =
J N( ox 2 ox’ ]dx 0

or

5. 9
fws >aa—;¢:=o (A18) ~

for vanishing Neumann boundaries. Here Wfﬂ is the Petrov-Galerkin test function,

a(b(c)

W(c) ¢(¢)
+oh—"— = (A19)

with o = C/2 and C = aAt/Ax being the Courant number.

For isoparametric coordinates in two dimensions, the Petrov-Galerkin test function
assumes the form '

a(b(c)
ox;

WY = o) +Bg, (A20)

with Bg, being the Petrov-Galerkin parameters
1, —
B=7 (@l + )

o) 732

ViV

8=

where R, is the Reynolds number or Peclet number in the direction of isoparametric coordinates

(€, n). Note that the GPG process given by (A16)-(A20) leads to the Streamline Upwinding
Petrov-Galerkin (SUPG) scheme as a special case.
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& o 2 |ax, o,
(A 14b)
az(“iGj)”ﬂ + d (a B)m+aB"“
axax;, dx : ot
N -V A I e
H _[1 > ax( - ) — ]AU (Aldc)
" 2
g oaf 336 pY, ar 2 ( oF, Y
ox;, Ox; 2 axiL ox;

where second derivatives of G, is assumed to be negligible and B is constant in space and time,
arriving at an implicit finite element scheme,

>

(Ada,, + B(,a,,)AU;:‘ =H., + N +N", (Al5)
where »
Ay =[0Dyd0
o
At ci'n
Bw,, = —i—i [( ,,qam TA’t—)‘DaJ(DaJ] dQ

J'[ .<1>5(Fa"ir+G§ir)"¢a¢aB§r‘Aztz a,,®, ‘Ds.iFt;is]dQ

Q

Ny = j (a,,q st )é AU ndl

s.j 't
r

s

s =-f [At(ia(F{,'+Gi",) A; 2 ]n,-dl"
r

It should be noted that the form (Al4c) arises from (25) with 5, =5, =5, = bj =0ands, =1, an
algorithm similar toHassan et al [13].

(c) Generalized Petrov-Galerkin (GPG)

The Generalized Petrov-Galerkin (GPG) method can be identified by setting s, =5, = 1,
s;=5,=0,b,=c;=d=0,Q" =0,E =a,and E; ={Ar’aa, so that (11) takes the form



