ANALYSIS OF TECHNOLOGY FOR COMPACT COHERENT LIDAR

CONTRACT No. NAS8-38609
Delivery Order No. 172

Contract Period:
August 13, 1996 - June 30, 1997

Submitted To:
NASA/MSFC
Marshall Space Flight Center, AL 35812

Prepared By:
Farzin Amzajerdian
Center For Applied Optics
University Of Alabama In Huntsville
Huntsville, Al 35899
(205) 890-6030 ext. 452

June 30, 1997
1.0 INTRODUCTION

In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance.

The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work.

a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected.

b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor.

c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.
2.0 Compact Coherent Lidar Techniques

A number of different coherent lidar techniques were studied under this Delivery Order (DO) and the merits and disadvantages of each technique were defined. The lidar techniques, that were considered and studied, are listed in Tables 1 and 2. Tables 1 and 2 summarize the basic characteristics of each technique including their measurement capabilities and limitations, target type, and size estimates. The development status for each lidar technology is also listed in Table 2. The coherent lidars can be divided into three different categories based on their principals of operation. These categories of coherent lidars may be referred to as: Frequency-chirped, Doppler, and Feedback Interferometry. The former category of coherent lidars does not match the goals of this project, and was not studied in detail under this DO.

Table 1. Compact Coherent Lidar Techniques

<table>
<thead>
<tr>
<th>Lidar Type</th>
<th>Laser Source</th>
<th>Wavelength (nm)</th>
<th>Power/Pulse Energy</th>
<th>Target</th>
<th>Measurement Capabilities</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency-Chirp Tunable CW Diode</td>
<td>1550</td>
<td>30 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Frequency-Chirp Tunable CW Solid State 2020 or 2067</td>
<td>50 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency-Chirp With External Modulator CW Microchip</td>
<td>1320</td>
<td>50 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Optical Feedback Interferometry CW Diode</td>
<td>810</td>
<td>TBD</td>
<td>Hard Cooperative</td>
<td>Velocity: 1 cm/s Range: TBD Accuracy: TBD</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Doppler, Injection-Seeded Solid State</td>
<td>2020</td>
<td>3 mJ</td>
<td>Hard Non-Cooperative and Aerosol</td>
<td>Velocity: 10 cm/s Range: 5000 m Accuracy: 6 m Wind R: 2000 m</td>
<td>F >F</td>
<td></td>
</tr>
<tr>
<td>Doppler, Self-Seeded Solid State</td>
<td>2067 or 2091</td>
<td>3 mJ</td>
<td>Hard Non-Cooperative and Aerosol</td>
<td>Velocity: 5 cm/s Range: 5000 m Accuracy: 3 m Wind R: 300 m</td>
<td>E F</td>
<td></td>
</tr>
</tbody>
</table>

A 50 - 100 in³ B 100 - 200 in³ C 200 - 300 in³ D 300 - 400 in³ E 400 - 600 in³ F 600 - 800 in³
Two frequency-chirped lidar systems were considered and studied: one uses a Continuous Wave (CW) laser source with an internal frequency modulation mechanism based on a PZT actuator, and the other uses an external frequency modulator that is basically an Electro-Optic Modulator device. These systems are illustrated in figures 1 and 2. When a micro-chip solid state laser is used as the source, the frequency-chirped lidar approach with an external modulator would be easier to implement.
Figure 1. Frequency-chirp Lidar Using A Cw Tunable Laser

Figure 2. Frequency-chirp Lidar Using A Cw Laser And An External Modulator

The principle of operation is the same for both frequency-chirped lidar approaches. Figure 3 and 4 illustrate the basic principles of operation for frequency-chirped lidar. Figure 3 shows a typical frequency modulation waveform where the laser frequency is varied with time in a repeatable fashion.
As shown in figure 4, the target range information can be extracted by measuring the constant frequency difference between the transmitted and return frequencies. This constant frequency difference is given by:

\[f_a = \left(\frac{B}{T} \right) \left(\frac{2}{c} \right) R_{\text{target}} \]

where:

\[t_a = \text{Round-trip time to target} \]
In the case where the target is not stationary during the return signal reception and processing, then the signal frequency will be also shifted due to Doppler effect. The signal Doppler frequency shift is related to the target velocity as given by the following equation.

\[f_D = \frac{2V_{\text{target}}}{\lambda} \]

By mixing the return signal with part of the laser beam, that is split from the main beam before being transmitted, an IF signal will be generated by the detector. As illustrated in figure 4, this heterodyne IF signal has a frequency equal to the difference frequencies during up and down slopes of the frequency-chirp waveform that are equal to:

\[f_{\text{IF}+} = f_a + f_D \]
\[f_{\text{IF}-} = f_a - f_D \]

Both target range and velocity can be then extracted directly from the IF signal:

\[R_{\text{target}} = \frac{(f_{\text{IF}-} + f_{\text{IF}+})cT}{4B} \]
\[V_{\text{target}} = \frac{(f_{\text{IF}-} - f_{\text{IF}+})\lambda}{4} \]

The maximum target range and range measurement accuracy can be obtained by using the equations below.

Maximum Range \(R_{\text{max}} = \frac{CT}{2} \) \(\Rightarrow T \geq \frac{2R_{\text{max}}}{c} \)

Range Accuracy \(\delta R = \left(\frac{T}{B} \right)^2 \frac{c}{2} \sqrt{\frac{S}{4\pi T_s}} \)

Where:
\(B/T = \text{Chirp Rate} \)
\(S = \text{Laser Linewidth} \)
\(T_s = \text{Measurement Time} \)

The frequency modulation bandwidth required to achieve 1 cm range measurement accuracy was calculated and provided in figure 5 and 6 as a function of signal averaging time. For figure 5, a Distributed Bragg Feedback (DBF) diode laser was used as the source and a micro-chip solid state laser was used for the data in figure 6. These figures
indicate that an averaging time of about 5 msec is required to achieve 1 cm range accuracy with a reasonable frequency-chirp bandwidth.

Transmitter: DBF Diode Laser

![Frequency-chirp bandwidth versus averaging time using a DBF Diode Laser.](image)

Figure 5. Frequency-chirp bandwidth versus averaging time using a DBF Diode Laser.
From the results of these analyses, it was then concluded that the frequency-chirped coherent lidar is ideal for the hard target applications, such as Automated Rendezvous and Capture (AR&C). However, this technology can not be applied to the measurements of fuzzy targets. For example, the wind or air mass velocity measurements require pulsed lidar with a relatively high peak power. Another issue associated with the frequency-chirped lidar technology is the non-availability of a narrow linewidth laser source meeting the operational and physical requirements of the applications considered for this work.

3.0 Doppler Coherent Lidar

Based on the trade analysis described earlier, the Doppler coherent lidar was selected to be pursued. And further the self-seeded coherent lidar technique was selected over the more conventional injection-seeded coherent lidar technique. The advantages of self-seeded coherent lidar technique, compared with the injection-seeded coherent lidar...
technique, are much reduced complexity of the lidar optical and mechanical designs, elimination of the a separate highly stable, single frequency, CW laser, and simpler system control electronic design.

In an effort toward the development and laboratory demonstration of this lidar technique, a flash lamp-pumped, and an acousto-optic Q-switch suitable for self-seeded lidar technique were specified by the UAH personnel and was procured by the MSFC. In addition, a compact and efficient diode-pumped laser resonator was also specified to be procured by the MSFC. The diode-pumped laser will be used in the development of an actual prototype system. The prototype system will be developed upon These lasers will be initially used to develop a laboratory type lidar system. Then upon successful demonstration of the laboratory system using the flash lamp-pumped laser. Both laser radiate several milli joules of energy at 2 microns wavelength.

The lidar feedback control electronics was designed to be built by the MSFC engineers. Once completed, the UAH personnel will perform the necessary tests and then implement the lidar control unit. The lidar control electronics will control the laser Q-switch transmission to allow the generation of single frequency pulses. Another function of the control electronic is to control the transmission of an external acousto-optic modulator for generation of a local oscillator beam. The control electronic will also provide all the necessary timing signals for the lidar signal detection and processing. A detector amplifier was also designed that will be used in the laser feedback control loop. This detector will monitor the level of the energy build-up inside the laser resonator prior to firing of the Q-switched pulse.

As part of effort for the laboratory demonstration of this coherent lidar technique, the design of the lidar control electronics was started. This electronic will control the laser Q-switch transmission to allow the generation of single frequency pulses. Another function of the control electronic is to control the transmission of an external acousto-optic modulator for generation of a local oscillator beam. The control electronic will also provide all the necessary timing signals for the lidar signal detection and processing. Much of the control electronic was designed in this period and the remaining parts will be designed over the next reporting period. A detector amplifier was also designed that will be used in the laser feedback control loop. This detector will monitor the level of the energy build-up inside the laser resonator prior to firing of the Q-switched pulse.

Two acousto-optic modulators meeting the requirements of the lidar system were specified and procured by NASA/MSFC. One of these modulators has been integrated into the laser resonator as a Q-switch and the other will be used outside the laser resonator as the local oscillator beam regulator and the frequency-shifter. A acousto-optic RF driver was also specified by the UAH personnel and procured by MSFC.

A series of experiments have been defined by the UAH personnel to be performed at MSFC that will allow the characterization the laser. These measurements are necessary for successful implementation of the feedback control unit and demonstration of the laser
single frequency operation.

As part of this work, a computer solid state laser resonator model was developed that will enable the determination of the laser resonator optimum design and operating parameters. This model was later tested and its accuracy was verified using the 2-micron solid state laser parameters that are available in the technical literature.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Technology for Compact Coherent Lidar</td>
<td>June 30, 1997</td>
<td>University of Alabama in Huntsville</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Farzin Amjajerdian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Alabama in Huntsville</td>
<td></td>
</tr>
<tr>
<td>Huntsville, Alabama 35899</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
<th>12. Sponsoring Agency Name and Address</th>
<th>13. Type of report and Period covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS8-38609</td>
<td>National Aeronautics and Space Administration</td>
<td>Aug. 13, 1996 - June 30, 1997</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20546-001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marshall Space Flight Center, AL 35812</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words (Suggested by Author(s))</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

NASA FORM 1626 OCT 86
ANALYSIS OF TECHNOLOGY
FOR COMPACT COHERENT LIDAR

CONTRACT No. NAS8-38609
Delivery Order No. 172

Contract Period:
August 13, 1996 - June 30, 1997

Submitted To:
NASA/MSFC
Marshall Space Flight Center, AL 35812

Prepared By:
Farzin Amzajerdian
Center For Applied Optics
University Of Alabama In Huntsville
Huntsville, Al 35899
(205) 890-6030 ext. 452

June 30, 1997
1.0 INTRODUCTION

In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance.

The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work.

a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected.

b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor.

c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.
2.0 Compact Coherent Lidar Techniques

A number of different coherent lidar techniques were studied under this Delivery Order (DO) and the merits and disadvantages of each technique were defined. The lidar techniques, that were considered and studied, are listed in Tables 1 and 2. Tables 1 and 2 summarize the basic characteristics of each technique including their measurement capabilities and limitations, target type, and size estimates. The development status for each lidar technology is also listed in Table 2. The coherent lidars can be divided into three different categories based on their principals of operation. These categories of coherent lidars may be referred to as: Frequency-chirped, Doppler, and Feedback Interferometry. The former category of coherent lidars does not match the goals of this project, and was not studied in detail under this DO.

Table 1. Compact Coherent Lidar Techniques

<table>
<thead>
<tr>
<th>Lidar Type</th>
<th>Laser Source</th>
<th>Wavelength (nm)</th>
<th>Power/ Pulse Energy</th>
<th>Target</th>
<th>Measurement Capabilities</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency-Chirp</td>
<td>Tunable CW Diode</td>
<td>1550</td>
<td>30 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B D</td>
</tr>
<tr>
<td>Frequency-Chirp</td>
<td>Tunable CW Solid State</td>
<td>2020 or 2067</td>
<td>50 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B E</td>
</tr>
<tr>
<td>Frequency-Chirp With External Modulator</td>
<td>CW Microchip</td>
<td>1320</td>
<td>50 mW</td>
<td>Hard Cooperative</td>
<td>Velocity: 2 cm/s Range: 500 m Accuracy: 1 cm</td>
<td>B D</td>
</tr>
<tr>
<td>Optical Feedback Interferometry</td>
<td>CW Diode</td>
<td>810</td>
<td>TBD</td>
<td>Hard Cooperative</td>
<td>Velocity: 1 cm/s Range: TBD Accuracy: TBD</td>
<td>A C</td>
</tr>
<tr>
<td>Doppler, Injection-Seeded</td>
<td>Solid State</td>
<td>2020</td>
<td>3 mJ</td>
<td>Hard Non-Cooperative and Aerosol</td>
<td>Velocity: 10 cm/s Range: 5000 m Accuracy: 6 m Wind R: 2000 m</td>
<td>F >F</td>
</tr>
<tr>
<td>Doppler, Self-Seeded</td>
<td>Solid State</td>
<td>2067 or 2091</td>
<td>3 mJ</td>
<td>Hard Non-Cooperative and Aerosol</td>
<td>Velocity: 5 cm/s Range: 5000 m Accuracy: 3 m Wind R: 300 m</td>
<td>E F</td>
</tr>
</tbody>
</table>

| | A 50 - 100 in³ | C 200 - 300 in³ | E 400 - 600 in³ |
| | B 100 - 200 in³ | D 300 - 400 in³ | F 600 - 800 in³ |
Two frequency-chirped lidar systems were considered and studied: one uses a Continuous Wave (CW) laser source with an internal frequency modulation mechanism based on a PZT actuator, and the other uses an external frequency modulator that is basically an Electro-Optic Modulator device. These systems are illustrated in figures 1 and 2. When a micro-chip solid state laser is used as the source, the frequency-chirped lidar approach with an external modulator would be easier to implement.
The principle of operation is the same for both frequency-chirped lidar approaches. Figures 3 and 4 illustrate the basic principles of operation for frequency-chirped lidar. Figure 3 shows a typical frequency modulation waveform where the laser frequency is varied with time in a repeatable fashion.
As shown in figure 4, the target range information can be extracted by measuring the constant frequency difference between the transmitted and return frequencies. This constant frequency difference is given by:

\[f_a = \left(\frac{B}{T} \right) \left(\frac{2}{c} \right) R_{\text{target}} \]

where:

\[t_a = \text{Round-trip time to target} \]

Figure 3. A typical linear Frequency-chirp waveform.

Figure 4. Transmitted and target return frequency waveforms.
In the case where the target is not stationary during the return signal reception and processing, then the signal frequency will be also shifted due to Doppler effect. The signal Doppler frequency shift is related to the target velocity as given by the following equation.

$$f_D = \frac{2V_{\text{target}}}{\lambda}$$

By mixing the return signal with part of the laser beam, that is split from the main beam before being transmitted, an IF signal will be generated by the detector. As illustrated in figure 4, this heterodyne IF signal has a frequency equal to the difference frequencies during up and down slopes of the frequency-chirp waveform that are equal to:

$$f_{IF+} = f_a - f_D$$
$$f_{IF-} = f_a + f_D$$

Both target range and velocity can be then extracted directly from the IF signal:

$$R_{\text{target}} = \frac{(f_{IF+} + f_{IF-})cT}{4B}$$
$$V_{\text{target}} = \frac{(f_{IF-} - f_{IF+})\lambda}{4}$$

The maximum target range and range measurement accuracy can be obtained by the using the equations below.

Maximum Range

$$R_{\text{max}} = \frac{CT}{2} \Rightarrow T \geq \frac{2R_{\text{max}}}{c}$$

Range Accuracy

$$\delta R = \left(\frac{T}{B}\right)\frac{c}{2} \sqrt{\frac{S}{4\sqrt{\pi T_s}}}$$

Where:

$$B/T = \text{Chirp Rate}$$
$$S = \text{Laser Linewidth}$$
$$T_s = \text{Measurement Time}$$

The frequency modulation bandwidth required to achieve 1 cm range measurement accuracy was calculated and provided in figure 5 and 6 as a function of signal averaging time. For figure 5, a Distributed Bragg Feedback (DBF) diode laser was used as the source and a micro-chip solid state laser was used for the data in figure 6. These figures
indicate that an averaging time of about 5 msec is required to achieve 1 cm range accuracy with a reasonable frequency-chirp bandwidth.

Transmitter: DBF Diode Laser

![Graph showing frequency-chirp bandwidth versus averaging time using a DBF Diode Laser.]

Figure 5. Frequency-chirp bandwidth versus averaging time using a DBF Diode Laser.
From the results of these analyses, it was then concluded that the frequency-chirped coherent lidar is ideal for the hard target applications, such as Automated Rendezvous and Capture (AR&C). However, this technology can not be applied to the measurements of fuzzy targets. For example, the wind or air mass velocity measurements require pulsed lidar with a relatively high peak power. Another issue associated with the frequency-chirped lidar technology is the non-availability of a narrow linewidth laser source meeting the operational and physical requirements of the applications considered for this work.

3.0 Doppler Coherent Lidar

Based on the trade analysis described earlier, the Doppler coherent lidar was selected to be pursued. And further the self-seeded coherent lidar technique was selected over the more conventional injection-seeded coherent lidar technique. The advantages of self-seeded coherent lidar technique, compared with the injection-seeded coherent lidar
technique, are much reduced complexity of the lidar optical and mechanical designs, elimination of the a separate highly stable, single frequency, CW laser, and simpler system control electronic design.

In an effort toward the development and laboratory demonstration of this lidar technique, a flash lamp-pumped, and an acousto-optic Q-switch suitable for self-seeded lidar technique were specified by the UAH personnel and was procured by the MSFC. In addition, a compact and efficient diode-pumped laser resonator was also specified to be procured by the MSFC. The diode-pumped laser will be used in the development of an actual prototype system. The prototype system will be developed upon These lasers will be initially used to develop a laboratory type lidar system. Then upon successful demonstration of the laboratory system using the flash lamp-pumped laser. Both laser radiate several milli joules of energy at 2 microns wavelength.

The lidar feedback control electronics was designed to be built by the MSFC engineers. Once completed, the UAH personnel will perform the necessary tests and then implement the lidar control unit. The lidar control electronics will control the laser Q-switch transmission to allow the generation of single frequency pulses. Another function of the control electronic is to control the transmission of an external acousto-optic modulator for generation of a local oscillator beam. The control electronic will also provide all the necessary timing signals for the lidar signal detection and processing. A detector amplifier was also designed that will be used in the laser feedback control loop. This detector will monitor the level of the energy build-up inside the laser resonator prior to firing of the Q-switched pulse.

As part of effort for the laboratory demonstration of this coherent lidar technique, the design of the lidar control electronics was started. This electronic will control the laser Q-switch transmission to allow the generation of single frequency pulses. Another function of the control electronic is to control the transmission of an external acousto-optic modulator for generation of a local oscillator beam. The control electronic will also provide all the necessary timing signals for the lidar signal detection and processing. Much of the control electronic was designed in this period and the remaining parts will be designed over the next reporting period. A detector amplifier was also designed that will be used in the laser feedback control loop. This detector will monitor the level of the energy build-up inside the laser resonator prior to firing of the Q-switched pulse.

Two acousto-optic modulators meeting the requirements of the lidar system were specified and procured by NASA/MSFC. One of these modulators has been integrated into the laser resonator as a Q-switch and the other will be used outside the laser resonator as the local oscillator beam regulator and the frequency-shifter. A acousto-optic RF driver was also specified by the UAH personnel and procured by MSFC.

A series of experiments have been defined by the UAH personnel to be performed at MSFC that will allow the characterization the laser. These measurements are necessary for successful implementation of the feedback control unit and demonstration of the laser.
single frequency operation.

As part of this work, a computer solid state laser resonator model was developed that will enable the determination of the laser resonator optimum design and operating parameters. This model was later tested and its accuracy was verified using the 2-micron solid state laser parameters that are available in the technical literature.
|--------------|---------------------------|---------------------------|-----------------------|---------------|--------------------------------|--------------|-----------------------------------|---|-----------------|------------------------|--|----------------------|-------------------------------|------------------------|-----------------|-------------------|----------------------|-----------------|