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FOREWORD

The Propulsion Systems Program is one of six Propulsion Systems Research and Technology
Base Programs within the NASA Aeronautics Enterprise. This program, which consists of a
number of projects that are structured to address the critical technology needs of a range of
vehicle classes, focuses on the goals of safety, environment, capacity, efficiency, affordability,
performance, and survivability.

The Propulsion Systems Program relies on a number of critical technical competencies to per-
form research and develop technologies. Among these competencies are propulsion materials and
structures. On May 1, 1997, individuals involved in materials and structures research under
several of the Propulsion Systems Program projects met at the Cleveland Airport Marriott, in
Cleveland, Ohio, to discuss their progress at the PPM and Other Propulsion R&T Conference.
Representatives of government, industry, and universities heard presentations on material pro-
cessing, material characterization, modeling, lifing, applied life models, design, vibration control,
mechanical components, and tribology. This publication contains figures and supporting text
from those presentations.

The majority of the research discussed was performed under the Physics & Process Modeling
(PPM) project, which is focused on using physics-based models and process modeling tech-
niques to reduce time, cost, and risk barriers to revolutionizing turbine engines and power sys-
tems. Other Propulsion Systems Program projects represented in the conference were Smart,
Green Engine (SGE); Fast, Quiet Engine (FQE); High Temperature Engine Materials Program
(HITEMP); and Hybrid Hyperspeed Propulsion (HHP). Also represented were the Rotorcraft
Systems Program and the NASA Lewis Director's Discretionary Fund.

This conference was held in conjunction with three other conferences at the NASA Lewis
Materials and Structures Technology Symposium. The other conferences addressed Advanced
Subsonic Technology, Enabling Propulsion Materials, and the High Temperature Engine Materi-
als and Structures Project.

Conference Chairs:

Douglas A. Rohn
L. James Kiraly
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THE EFFECT OF HYDROGEN ANNEALING AND SULFUR CONTENT ON THE
OXIDATION RESISTANCE OF PWA 1480

JAMES L. SMIALEK
NASA Lewis Research Center

INTRODUCTION

For many decades the dramatic effect of trace amounts of reactive elements on alumina and chromia
scale adhesion has been recognized and widely studied. Although various theories have been used to
account for such behavior, the connection between scale adhesion and sulfur segregation was initially
reported by Smeggil et al., 1986 (ref. 1). This study found strong surface segregation of sulfur from
very low levels in the bulk, which could then be curtailed by the addition of reactive elements. It was
assumed that the reactive elements, which are strong sulfide formers, acted by gettering sulfur in the
bulk, thus precluding  sulfur segregation and weakening of the oxide-metal bond. Subsequent studies
confirmed that adhesion could be produced by reducing the sulfur impurity level, without reactive ele-
ments (ref. 2,3).

The understanding of this phenomenon has been applied to modern single crystal superalloys (figures 1,
2; ref. 4), where the addition of Y, although very effective, is problematic. Also problematic is definition
of the level of sulfur that is acceptable and below which no further adhesion benefit is reached.
Published works have indicated a broad transition defined by various materials and oxidation tests.

The present study describes the oxidation behavior of one superalloy (PWA 1480) as a function of
various sulfur contents produced by hydrogen annealing for various temperatures, times, and sample
thicknesses. The purpose is to define more precisely a criterion for adhesion based on total sulfur
reservoir and segregation potential (figure 3).

EXPERIMENTAL PROCEDURE

Oxidation coupons were electrodischarge machined from polycrystalline bar stock of PWA 1480, to 13
x 25 mm coupons with thicknesses of 0.25, 0.5, 1.3, 2.5, or 5.1 mm and polished through 600 grit
emery. The starting sulfur content was determined to be about 6.2 ppmw by GDMS (glow discharge
mass spectroscopy, Shiva Technologies). Hydrogen annealing was performed in a flowing H2/Ar
mixture for 8-100 hr at 1000°C to 1300°C, as indicated in figure 5. All samples were clean and metallic,
with less than ±0.03 mg/cm 2 weight change after annealing. Cyclic oxidation was performed in air at
1100°C (2012°F) with a cycle frequency of 1-hr, for up to 500 or 1000 hr. Scales were characterized
by x-ray diffraction and SEM.

RESULTS AND DISCUSSION

Gravimetric Data
The effect of annealing temperature on the 1100°C cyclic oxidation weight change curves is shown in
figure 6 for a specimen thickness of 0.5 mm (20 mils) and annealing time of 20 hr. The 1000° and
1100° C anneals did little to improve the cyclic oxidation resistance over that of the
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as-received control sample, resulting in more than 20 mg/cm 2 weight loss after 500 1-hr cycles. The
1200° and 1300°C annealing treatments, however, resulted in 1000 hr weight changes of only +0.10
and -3.4 mg/cm2, respectively. This represents a very significant improvement.

The effect of annealing, time on oxidation behavior is shown in figure 7 for 0.5 mm (20 mil) samples
annealed at 1200°C. Here a significant improvement was noted by only an 8 hr anneal, producing a
weight loss of only 6.7 mg/cm2 after 1000 hr. The 1000 hr weipt changes of the 20, 50, and 100 hr
samples were all excellent (+0.10, +0.36, and +0.16 mg/cm , respectively). Finally the effect of
specimen thickness is shown in figure 8. Here a 20 hr anneal at 1200°C produced very adherent scales
for 0.25 and 0.5 mm (10 and 20 mil) samples, but substantial weight losses for 1.3 and 2.5 mm ( 50 and
100 mil) thicknesses.

The dependence of adherence (as exhibited by the 500 hr cyclic oxidation weight change) can be seen as
a function of annealing temperature, time, and sample thickness in figures 9-11. Weight losses are
reduced dramatically for temperatures over 1200°C, times over 20 hr, and samples under 0.5 mm (20
mil) thickness. Each figure also shows the improved performance of longer anneal times, higher anneal
temperatures, or thinner samples between the individual curves of each family.

Scale phases were identified from X-ray diffractometer scans as primarily Al 203j N(Al,Cr)2Oa, and
CrTa04 . A greater relative amount of Al203 is noted for the more oxidation resistant samples, and more
NiCr204 and CrTa04 for the samples with poor oxidation resistance. SEM/EDS analysis revealed a
complex multiphase segmented scale on the control sample with clusters of high Cr or Ta oxides as
compared to a relatively uniform Al203 scale on the 0.5 mm sample annealed at 1200°C for 20 hr.

Effect of Sulfur Content
The effect of hydrogen annealing on sulfur content is summarized in figure 12. The sulfur content was
progressively reduced as the annealing time and temperature increased and the thickness decreased.
Many values in the 0.1- 0.3 ppmw range were obtained. These levels had been associated with the most
oxidation resistant samples in previous studies (ref. 4). The 500 hr weight change of all the samples
tested is shown in figure 13 as function of the sulfur content for the 5 sets of sample thicknesses. For
each curve, the final weight change diminishes from a relatively large loss at the starting sulfur content,
becoming much less severe at about 1 ppmw, and extremely small at 0.1 ppmw. Despite scatter in the
sulfur data, an overall detrimental trend with sample thickness can also be discerned (figure 14).

Adhesion Criteria
A fundamental approach has been suggested to define a critical sulfur content (ref. 5). This concept
claims that a limit to an adhesion benefit is reached when the sample contains a total amount of sulfur
less than that required to produce —1 monolayer of segregation. The implication is that about one
monolayer will product,, significant spallation events, but, with no replenishment, it is unable to sustain
repetitive degradation. The equivalence between bulk sulfur content and segregated monolayers has
been approximated:

CS (ppmw)-- (8.27x10 -2 gm/cm2)*NA/W	 (ref. 5)

where: C, = bulk sulfur content in ppmw; N n = number of segregated monolayers; A = sample surface
area in cm2; and W = sample weight in gm. The 1 monolayer criterion is shown on the "adhesion map"
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of figure 16 for PWA 1480 samples of density = 8.42 gm/em. The weight change data are represented
by symbols, where the degree of shading corresponds to a weight change interval. The 0 and -10
mg/cm` contour lines obtained from figures 13 and 14 mark the transition from excellent adherence
(solid symbols) to poorly performing (lightly shaded symbols). Excellent behavior is thus indicated for
samples having a total sulfur content less than about one monolayer equivalent. This appears to be as
good a criterion that can be made at this time, given the scatter in the sulfur data. It should also be
noted that the thermodyanmic equilibrium surface concentration of sulfur at 0.1 ppmw bulk is predicted
to be vastly reduced from the 30 % saturation value (ref. 4). Thus low bulk levels also produce low
equilibrium segregation levels, which can then benefit scale adhesion regardless of specimen thickness.

CONCLUDING REMARKS

This study has shown the strong dependence of superalloy oxidation resistance on low levels of sulfur
impurity contents. Extraordinary improvements are possible from desulfurization by hydrogen
annealing. Typical sample thickness —1 mm may be easily desulfurized to <lppmw by annealing at
1200°C. Sulfur segregation is reduced which in turn produces excellent cyclic oxidation behavior at
1100°C (very small weight changes of only 0.5 to 1 mg/cm z after 1000 hours). A basic criteria of scale
adhesion was developed which suggests that a critical sulfur content of 0.1-1 ppmw is required to obtain
the maximum adhesion for alloys without Y. The benefit of low sulfur superalloys may be taken by
reducing the amount of Y required, by operating without a coating, or by extending oxidative lives with
coatings.
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Previous Studies Have Shown:

• Conventional SX superalloys contain —3-10 ppmw
sulfur impurity

• Unacceptable cyclic oxidation resistance (w/o Y)

• Sulfur segregation saturates at about 30 at.%

• Desulfurization improves scale adhesion
(in melt or hydrogen annealing)

• 0.1 ppmw appears to be lower limit needed

• Acceptable upper limit still needs to be defined
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Motivations
(Tubbs and Smialek, 9989; 9995)

• Hydrogen annealing effects on sulfur content (T, t, L)

• Sulfur diffusivity vs temperature

• Optimum annealing conditions

• Quantified sulfur effect on cyclic oxidation

• Critical sulfur content vs thickness:
(adhesion map)

• Internally consistent data base:
(one ingot, one anneal process, one oxidation test)

Fig. 3

Experimental Strategy

• Partial hydrogen annealing matrix: Dt/L2

— L: 10, 20, 50, 100, 200 mils (0.25 - 5 mm)

— t: 8, 20, 50, 100 hr

— D=A*exp(-Q/RT)

— T: 1000 0 , 1100 0 , 1200 0 , 1300°C (1830-2370°F)

• GDMS measurement of ppm levels of sulfur

• Cyclic oxidation: 1100°C, 1-hr cycles, 500-1000 hr

• Weight change, XRD, SEM/EDS

Fig. 4
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SeleCtion of Hydrogen Annealing Parameters
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Effect of Sample Thickness on PWA1480 Oxidation
1200 °C hydrogen anneal; 1100 °C cyclic oxidation
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Effect of Anneal Temperature on 500 hr Weight Change
hydrogen annealed; 1100 °C cyclic oxidation
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Effect of Anneal Time on 500 hr Weight Change
1200 °C hydrogen anneal; 1100 °C cyclic oxidation
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Effect of Sample Thickness on 500 hr Weight Change
hydrogen annealed; 1100 °C cyclic oxidation
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Sulfur Content after Hydrogen Annealing
(vs sample thickness, temperature, time)
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Effect of Sulfur Content on 500 hr Weight Change

1100 ')C cyclic oxidation
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Equivalence Between Bulk and
Surface Sulfur Content

(N m= 1; one sulfur atom per one (001) Ni atom)

• CS (ppmw) = 8.27 x 10- 2 gm /cm2 x N mA / pV

• C. x L — 8.27 x 10-2 cmxNM

Fig. 15

Oxide Adherence Map for Desulfurized PWA1480
1100 °C, 1-hr cycles, 500 hours
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Why Is -1 Monolayer Equivalent Critical ?

• Saturation at 0.3 monolayers; sufficient for massive
Al2O3 spallation

- Repeated spallation events cause depletion zones,
trigger Ni,Cr,Ta-rich oxides; conversely,

- Limited sulfur reservoir limits spallation events

• Low bulk sulfur reduces equilibrium saturation level
(-0.01 Monolayer @ 0.2 ppmw sulfur)

Fig. 17

Summary and Conclusions

• Hydrogen annealing very effective in sulfur reduction

Strong T, t, L dependence, e.g., exp(-Dt/L2)

• Strong effects of hydrogen annealing and sulfur
content on 1100°C cyclic oxidation:

<20 mils, >1200°C, >20 hr, <0.3 ppmw S:
(-+-1 mg/cm 2 vs -30 mg/cm2 )

• Adhesion criteria suggested by mapping:
Critical sulfur • thickness parameter equivalent
to 1 monolayer of total segregation

Fig. 18
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Future Considerations

• Complete DS , critical anneal evaluations
• Evaluate critical S/Y ratios

• Evaluate melt desulfurized PWA1484
• Coatings and TBC's

• HT-XPS segregation vs CS

Fig. 19
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FACTORS INFLUENCING RESIDUAL STRESSES
IN YTTRIA STABILIZED ZIRCONIA THERMAL BARRIER COATINGS

ROY T.R. McGRANN, Edmund F. Rybicki, and John R. Shadley
The University of Tulsa

Tulsa, Oklahoma

and

William J. Brindley
NASA Lewis Research Center

Cleveland, Ohio

Introduction

To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an
understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many
factors related to coating performance is the state of stress in the coating. The total stress state is composed of the
stresses due to the in-service loading history and the residual stresses.

Residual stresses have been shown to affect TBC life [1], the bond strength of thermal spray coatings [2], and the
fatigue life of tungsten carbide coatings [3]. Residual stresses are first introduced in TBC's by the spraying process
due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top
coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due
to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica
content has also been shown to affect sintering and the cyclic life of thermal barrier coatings [4, 51. Thus, it is
important to understand how the spraying process, the in-service thermal cycles, and the silica content can create
and alter residual stresses in thermal barrier coatings.

Objectives and Approach

There are three primary objectives of this work. The first objective is to determine how residual stresses are
affected by the substrate temperature as the top coat is applied. Two temperatures were selected to represent a
range of possible substrate temperature conditions. The second objective is to determine the effect of post-
processing thermal cycles on the build up of coating residual stresses. The third objective is to determine the effect
Of silica (Si02) content in the powder on the coating residual stresses.

The approach involves four replicates of each of the twelve test conditions to determine the reproducibility of the
residual stresses. The through-thickness residual stresses in the coating were evaluated using the Modified Layer
Removal Method [6]. Figure 3 is the test matrix used to reach these objectives.

Specimen Composition, Dimensions and Preparation Procedures. The specimens consisted of three materials (1) a
B1900 substrate (a high strength, high temperature nickel base alloy with a chemical composition of 64%Ni,
8%Cr, 10%Co, 6%Al, 1%Ti), (2) a Ni-36Cr-6A1-1.0Y bond coat, and (3) a yttria stabilized zirconia (YSZ), Zr0 2

-8%Y203 top coat. The B1900 substrate material was prepared as castings of 50.8 mm (two inch) long bars, 25.4
mm (one inch) wide and 4.8 mm (0.190 in) thick. The bars were surface ground and then stress relieved. The
stress relief heat treatment was a standard superalloy solution treatment at 1090°C (1994°F) for four hours
followed by an aging treatment at 870°C (1598°F) for sixteen hours. The surface oxide was lightly ground off.
One side of each specimen was grit blasted and thickness measurements were made. The bond coat and top coat
were applied to the specimens by air plasma spraying (APS). The thickness of each specimen was measured on a
preset grid before and after the application of the bond coat. Next, the top coat was applied to the specimens. The
temperature of the coating face of the specimens was monitored by a pyrometer during top coat spraying. For the
specimens referred to as the "higher processing temperature specimens," the substrate was preheated to 500°C
(932°F). After the first pass of the top coat application, the coated surface temperature was controlled to 500°C.

Work funded under NASA Contract NCC3-338.
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For the "lower processing; temperature specimens," the substrate was initially at room temperature. Over the
course of two or three top coat application passes, the coating surface temperature rose to 260°C (500°F.

Thermal Cycling. The combined effects of processing substrate temperature and post-processing thermal cycling
were investigated. One thermal cycle is defined as heating the specimen in air in a resistance heated furnace to
1100°C (2012°F) for one hour, removing the specimen from the furnace while still at 1100°C, and static air
cooling to room temperature. Specimens were subjected to zero, one, ten, twenty or thirty thermal cycles.

Procedure For Evaluating Residual Stresses. The "Modified Layer Removal Method" was used to determine the
through-thickness residual stress distributions in the top coat [9]. The procedure involves attaching strain gauges
to the uncoated side of the specimen and removing layers of the coating. Figure 4 shows the free-body diagram
used to develop the method. Layers of about 0.13 mm (5 mils) were removed from the coating by polishing using a
metallurgical polishing wheel. Thickness measurements of the specimen are made after each layer is removed.
Changes in strain gauge readings are recorded as layers are removed. The strain and thickness changes are inputs
for the residual stress analysis back-computation procedure. The analysis is applied to each layer removed and
calculates the residual stress in the layer removed and the change in stress distribution for the remaining piece.
The stresses are summed in the back-computation procedure, for each layer removed, to evaluate the residual stress
distribution in the material removed. The material properties used in this calculation are the modulus of elasticity
for the substrate and the coating, 206 GPa (3 x 10' psi) and 34.5 GPa (5 x 106 psi), respectively, and Poisson's
ratios of 0.3 and 0.18 for the substrate and coating, respectively.

Results And Discussion

Through-Thickness Residual Stress Distributions. Two through-thickness residual stress distributions, that are
representative of the behavior of the residual stresses, were selected for illustration. Figure 5 shows the through-
thickness residual stress data for three specimens with the higher processing temperature and no thermal cycling.
The second example, sbown in Figure 6, illustrates the residual stress data for the specimens with a higher
temperature after ten thennal cycles. Both figures are for specimens with a "standard" (STD) coating powder, i.e.,
a coating powder in which the silica content was not controlled.

Average Coating Residual Stress. The average residual stress through the thickness of the YSZ coating was
calculated for each set of specimens listed in the test matrix. First, the average residual stress through the coating
thickness for the individual specimens was calculated. Then, the average stress for each set of specimens was
calculated. Figure 7 shows the average compressive stress for each combination of thermal cycling, processing
substrate temperature, and silica content.

Effects Of Substrate Temperature. A comparison of the average through-thickness residual stresses for specimens
with the higher processing temperature and the specimens with the lower processing temperature reveals a
consistent difference. The mean residual stress through the coating thickness is shown versus substrate
temperature in Figure 8. This figure shows that, for the three cases of thermal cycling involving different substrate
processing temperatures (zero, one, and ten cycles), the coatings applied with the higher processing temperature
have a higher average compressive residual stress than the coatings applied with the lower processing temperature.
For the case of zero thermal cycles, coatings applied with the higher processing temperature had 3.8 MPa (0.6 ksi)
more compressive residual stress. The residual stresses in specimens with the higher processing temperature and
no thermal cycles agree with previously published findings [7, 8]. For one cycle, the difference between the higher
and lower processing temperature specimens is 7.1 IN4Pa (1.0 ksi); and, for ten thermal cycles, the difference is 8.7
MPa (13 ksi) difference. For zero, one, and ten thermal cycles, the higher substrate processing temperature
specimens had higher average compressive residual stresses.

Effect Of Number Of Thermal Cycles. An important finding of this study is that processing can generate residual
stresses to which thermal cycling "adds" further residual stresses. The residual stresses due to processing are most
likely due to thermal expansion mismatch strains on cooling from the process temperature. The changes in residual
stresses due to cycling may indicate a change in the TBC system by some means, such as ceramic sintering,
ceramic creep, bond coat: creep or bond coat oxidation. The effect of the number of thermal cycles on coating
residual stress shows a pattern of increasing compressive residual stress with increasing number of thermal cycles,
for cycles one through ten.. The effect of the number of thermal cycles on the average through-thickness residual
stress is shown in Figure 9. This figure and Figure 7 show a marked increase of compressive residual stress
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during the first cycle. The trend is then for the residual stress to reach an fairly constant level as the number of
thermal cycles increases. The greatest increase in coating compressive residual stresses occurs during the first
thermal cycle. As shown in Figure 7, after the first cycle, there is a 17.1 MPa (2.48 ksi) increase in compressive
residual stress for the specimens with the lower processing temperature and a 20.4 MPa (2.95 ksi) increase for the
specimens with the higher processing temperature [9]. In contrast, the increase in compressive residual stress in
the coating due to cycles two through thirty is only 7.1 MPa (1.0 ksi) for the lower processing temperature and
there is a 6.6 MPa (0.96 ksi) increase in compressive residual stress in the coating from cycles two through ten for
the higher processing temperature.

Effect of Silica Content during Thermal Cycling. The effect of the difference of the silica content in the spray
powder is shown in Figure 10. In the as-sprayed condition (0 cycles), the compressive residual stress of the 1.0%
silica coating is 27 MPa (3.9 ksi) while the residual stress for the 0.1% silica content is practically zero.
Interestingly, after ten cycles the residual stresses begin to approach each other. the compressive residual stress in
the coating applied using the lower silica content powder increases to 11.4 MPa (1.65 ksi) while the compressive
residual stress in the coating applied using the higher silica content powder decreases to 15.1 MPa (2.19 ksi).

Trends of Residual Stresses. The results demonstrate six features of residual stresses in these TBC's:
(1) Compressive residual stresses in the YSZ coating can be controlled by controlling the processing temperature

of the specimen.
(2) Top coat residual stresses were more compressive for the higher processing temperature of 500°C than for the

lower processing temperature of 260°C.
(3) The effect of the post-processing thermal cycle history considered here was to increase the compressive

residual stresses in the STD top coats for both the higher and lower processing temperatures.
(4) For the STD coating powder, the first thermal cycle produced a larger change in top coat residual stress than

cycles two through ten combined for both processing temperatures, but with a greater change in the residual
stresses (6.6 MPa) occurring during cycles two through ten for the higher processing temperature than the
change in residual stress (5.0 MPa) for the lower processing temperature.

(5) The effect of silica in the as-sprayed condition was to dramatically increase the coating compressive residual
stress.

(6) The residual stress in the coating applied using the higher silica content powder became less compressive with
thermal cycling while the compressive residual stress for the lower silica case became more compressive.
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Average Compressive Residual Stress
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Effect of Thermal Cycles
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CONCLUSIONS: Substrate Temperature

♦ The higher substrate processing temperature
(500°C) produced higher compressive residual
stresses in the YSZ top coat.

♦ Compressive residual stresses in the YSZ top coat
increased for both processing temperatures as a
result of one and ten thermal cycles.

Fig. 11

CONCLUSIONS: Thermal Cycles

♦ The residual stress change in the YSZ top
coat due to the first cycle was greater than the
change due to cycles two through ten by a
factor of three.

♦ The residual stress level in the YSZ top coat
after thirty cycles was equal to the residual
stress level after ten cycles.

Fig. 12
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CONCLUSIONS: Silica Content

The residual stress for the lower (0.1%) Si02
content coating is close to zero in the as-sprayed
condition and became more compressive after ten
thermal cycles.

The residual stress for the higher (1.0%) Si02
content coating is very compressive in the as-
sprayed condition and became less compressive
after ten thermal cycles.

Fig. 13

Suggestions for Further Work

♦ Residual Stresses and Oxidation and Sintering

♦ Material Property Determination Methods

♦ Residual Stresses and Other Application Processes

Fig. 14
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IN-SITU CURE MONITORING OF THE IMMIDIZATION REACTION
OF PMR -15*

SHERYL COSSINS
South Dakota School of Mines and Technology
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and

Dr. Jon J. Kellar
Department of Metallurgical Engineering

Dr. Robb M. Winter
Department of Chemical Engineering

South Dakota School of Mines and Technology
Rapid City, South Dakota

Glass fiber reinforced polymer composites are becoming widely used in
industry. With this increase in production, an in-situ method of quality control for
the curing of the polymer is desirable. This would allow for the production of
high-quality parts having more uniform properties.' Recently, in-situ fiber optic
monitoring of polymer curing has primarily focused on epoxy resins and has
been performed by Raman or fluorescence methods. 2-6 In addition, some
infrared (IR) investigations have been performed using transmission or ATR
cells. 7-9 An alternate IR approach involves using optical fibers as a sensor by
utilizing evanescent wave spectroscopy.

Initial work at South Dakota School of Mines and Technology (SDSM&T)
concerning the curing of epoxy adjacent an embedded silica optical fiber has
been monitored in-situ by evanescent wave spectroscopy. 1 ' The epoxy studied
was partially fluorinated and therefore had a refractive index lower than that of
the silica optical fiber. The lower refractive index of the partially fluorinated
epoxy allowed the fiber to be used as a waveguide for the internal reflection of
IR light. This evanescent wave samples the polymer at the fiber/polymer
interface. This combination of epoxy/silica served as a model composite system.

The bands used to monitor the cure of the epoxy were as follows: the C-N
overtone absorbance band at 4725 cm -' and the NH2 combination band of the
hardener at approximately 4925 cm -'. It was found that the C-N band increased
and the NH 2 band decreased over time. This result was expected, as epoxies
react with the NH2 in the curing agent to form C-N bonds while curing.

This method of cure monitoring has been applied to a PMR-15 composite
system. Optical grade sapphire fiber has been chosen as the sensor due to its

* Work funded under NASA Grant NGT3-52312
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wide transmission range, high refractive index, and strength. The system will be
used to determine the end of the immidization reaction or "gel point". It is
important to know when the gel point has been reached because it is at this
point that the Lewis Research Center Group increases the temperature and
pressure applied in order to crosslink the polymer. Before the final product is
made, PMR-15 can go through undesired temperature cycling simply through
shipping and storing. This causes the polymerization reaction to be at different
stages for different batches or lots of PMR-15. Because of this batch to batch
variation, the time to reach the gel point can vary. By monitoring the reaction in-
situ, the gel point can be found for each batch and variation in the quality of the
final product may be reduced.

In order to monitor the PMR-15 reaction, we must first identify the bands
present and determine which will be changing during the reaction. Spectra of
the raw products of PMR-15 were collected using diffuse reflectance infrared
Fourier transform (DRIFT) Spectroscopy. Spectra were also collected for the
cured and uncured PMR-15 polymer. During the immidization reaction primary
amines are converted to tertiary amines. Therefore, the reaction is complete
when the primary and secondary amine bands have disappeared or stopped
decreasing. Some examples of near-IR bands for the raw materials are as
follows: 44-methylene dianiline (MDA): amine stretching and bending
combination 5000-5050 cm - ', aromatic primary amines 6550-6850 cm-';
3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA): aromatic CH stretch
5900-6100 cm -1 , carboxylic acid stretch 5300-5400 cm -1 ; 5-norbornene-2,3-
dicarboxylic anhydride (Nadic): carboxylic acid stretch 5300-5400 cm-'.
Complete identification of the bands is ongoing. 11-12

Design of a curing cell to duplicate conditions at Lewis Research Center
has been completed. The requirements of this cell were to maintain a
temperature of (500 O F + 1 °F for 60 to 90 minutes, to accommodate up to three
150 µm diametE.^r sapphire fibers, and be easily cleaned without damage to the
fibers. It was also designed to have a nitrogen blanket to prevent occurrence of
oxidation reactions. Experiments to monitor the immidization reaction are
currently being performed.
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SILICA FIBER SENSOR
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140 dam diameter silica fiber

•	 Embed in Epo-Tek 328

•	 Heat. to 150 °C for 1 hour

•	 C01lect spectra during cure

Fig. 6

Paper 3	
6
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Infrared Fibers and Their Transmission Ranges.
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SUMMARY OF RESULTS

• Sapphire fiber chosen

• Heating cell designed

• Possible IR bands for cure monitoring
identified

Fig. 15

CONCLUSIONS

• Monitoring of the immidization reaction
of PMR-15 is possible

Fig. 16
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FUTURE INORK

• Obtain fiber spectrum and compare to
DRIFT

• Identify and monitor IR bands
changing with cure

• Develop correlatic; ► n of band change to
gel point

Fig. 17
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Introduction

Electron beam curing of Polymer Matrix Composites (PMCs) is a nonthermal, nonautoclave curing
process that has been demonstrated to be a cost effective and advantageous alternative to
conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing
costs; significantly reduced curing times; improvements in part quality and performance; reduced
environmental and health concerns; and improvement in material handling. In 1994 a Cooperative
Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense
Programs and 10 industrial partners, was established to advance the electron beam curing of PMC
technology. Over the last several years a significant amount of effort within the CRADA has been
devoted to the development and optimization of resin systems and PMCs that match the performance
of thermal cured composites. This highly successful materials development effort has resulted in
a board family of high performance, electron beam curable cationic epoxy resin systems possessing
a wide range of excellent processing and property profiles. Hundreds of resin systems, both
toughened and untoughened, offering unlimited formulation and processing flexibility have been
developed and evaluated in the CRADA program.

*Cooperative Research and Development Agreement (CRADA) No. Y1293-0233.
**Managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy
under contract DE- ACO5-960R22464.
***Managed by Lockheed Martin Energy Systems for the U.S. Department of Energy under contract
DE-ACO5-84OR21400.
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Our research has determined that conventional epoxy resins can be cured by exposure to electron
beam radiation as provided by a high energy/power electron beam accelerator to provide materials
with high glass transition temperatures and mechanical properties comparable to thermally cured
epoxies (1-3). A cationic photoinitiator at a concentration of 1-3 parts per hundred of the epoxy
resin is required for this process. These cationic photoinitiators are triaryl sulfonium and
diaryliodonium salts of weakly nucleophilic anions. Diaryliodonium salts of the
hexafluoroantimonate anion have been found to be the most effective commercially available
photoinitiators. The cationic photoinitiator decomposes when subjected to irradiation from
ultraviolet light or high energy electrons to produce a Bronsted acid (proton) which catalyzes the ring
opening polymerization of the epoxy group. The weakly nucleophilic anion from the initiator is not
strongly attracted to the cation that is generated, nor does it interfere with the growing polymer chain
(4). Properties of the electron beam cured cationic epoxies include: glass transition temperatures
(TA 's) ranging from 100-400°C (212-752°F), high flexural moduli [up to 4.0 GPa, (580 ksi)], low
moisture absorption (<2%), good toughness obtained by the addition of toughening agents [0.41-0.92
MPam'] (373-837 psi in "); and low-moderate cost of the epoxy resin-photoinitiator compositions.

Several toughened and untoughened compositions were selected for evaluation as composite
matrices. PMCs made from these easily processed resins have exhibited: low shrinkage after
electron beam cure, low void content (0.6-1.8%) and good mechanical properties with IM7 carbon
fiber [0° flexural strengths, 1.71-2.01 GPa (248-292 ksi); 0° flexural moduli, 150-196 GPa (21.8-
28.4 msi; and 0° interlaminar shear strengths 77-89 MPa (11 : 2-12.9 ksi)]. Many composite parts
manufactured via hand lay-up, tow/tape placement, filament winding, resin transfer molding (RTM),
and vacuum assisted resin transfer molding (VARTM) have been produced using these materials,
demonstrating their fabrication versatility.

Electron beam processing is potentially more economical than conventional thermal cure processing.
Complex part shapes can be made with inexpensive tooling and part throughput is extremely high.
Since electron beam curing is at near ambient temperatures, inexpensive, lightweight, and disposable
fabrication tools or mold materials such as thermoplastics, foam plastics, plasters, waxes, and wood
can be used instead of metals. Electron beam processing also allows the simultaneous curing of
several different cationic epoxy resin compositions. Thus, a single composite structure fabricated
from electron curable cationic epoxies with different thermal and mechanical properties can be cured
in a single cycle. As electron beam curing can be conducted at room temperature or lower, stresses
are reduced. This factor can be critical in the design of structures such as cryogenic tanks that must
perform at low temperatures. Electron beam curable epoxy resins are friendly to the environment
and greatly reduce the amount of waste generated in composite fabrication processes. No hardener
such as an amine is required - only a few parts per hundred of a relatively nontoxic photoinitiator.
Formulated and prepregged resin have essentially unlimited pot life and shelf life at room
temperature provided that the resins are not exposed to ultraviolet or sunlight.

One particular epoxy resin-photoinitiator composition (designated Electron Beam Resin 8H)
exhibited a very high glass transition temperature after electron beam curing; T s, 396°C (745°F)
from the peak of the DMA tan delta curve. This resin was extensively evaluated as a matrix resin
for PMCs using Hercules IM7-GP-12K carbon fiber. Unidirectional prepreg of 8H with this fiber
was manufactured by YLA, Inc. of Benicia, California. All test panels (16 plies unidirectional x 30.5
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cm x 30.5 cm) were prepared using conventional lay-up techniques. Intermediate debulks were
conducted under vacuum bag pressure every four plies at room temperature for 15 minutes. The
final debulk and bleed cycle was performed under vacuum bag pressure at 70°C (158°F) for one
hour. The panels were electron beam cured at the Whiteshell Laboratories of Atomic Energy of
Canada Limited (AECL) using the AECL I10/1 Electron Linear Accelerator. Curing was performed
under vacuum bag pressure while the panels were at room temperature at a dose per pass of 50 kGy
for a total dose of 250 kGy.

In a thermal cure cycle there is a considerable decrease in resin viscosity as temperature increases,
followed by an abrupt increase in viscosity with the onset of gelation. This factor combined with
autoclave pressures may allow poorly laid-up laminates to be well consolidated. Since electron
beam curing occurs at near ambient temperature, there is no viscosity decrease before gelation and
curing. Thus, lay-up technique is critical in obtaining, good laminate properties. To date the best
series of panels had a void volume of 1.77% by acid digestion, with the following room temperature
mechanical properties: 0° flexural strength, 1.99 GPa (288 ksi); 0° flexural modulus, 196 GPa (28.4
msi); 0° compressive strength, 1.57 GPa (228 ksi); 0° compressive modulus, 149 GPa (21.6 msi);
and 0° interlaminar shear strength, 77 MPa (11.2 ksi). Long term aging studies were conducted on
early specimens of these laminates at NASA Lewis Research Center (LeRC). Weight loss in air after
1000 hours at 232°C (450°F) was only 4.25% but 18.4% after 1000 hours at 288°C (550°F).
Mechanical properties were not significantly changed after 1000 hours at 232°C, but noticeably
deteriorated on aging at 288°C.

Future efforts in the area of electron beam cured PMC's for high temperature applications will focus
on improving the quality of electron beam resin 8H laminates and more extensive testing. Research
efforts will also be directed toward the development of electron beam curable polyimides as part of
a project sponsored by NASA LeRC.
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Presentation Outline

• Introduction
• Electron Beam Curable Cationic Epoxy Resins

& Composites - Advantages and Highlights
• High Temperature Composite Properties

— Weight Loss

— Flexural Properties
— Interlaminar Shear Properties

• Conclusions
• Future Research Areas

Introduction

• Electron Beam Curing is a Very
Fast, Nonthermal, Nonautoclave
curing method that uses High-
Energy, High-Power Radiation
to cure polymer matrix
composites.
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ADVANTAGES OF PMC ELECTRON BEAM CURING
OVER THERMAL CURING

41	 Shorter cure times

41 Amenable to high production rates

• Lower overall energy requirements

•	 Reduced thermal stresses in cured part

• Effective with thick PMC parts

41	Lower tooling costs

So 	 Reduced environmental, safety, and health concerns

• Improved material handling

go Reduced overall manufacturing cQsts ( .25% - 65% Cost Savings vs Thermal
Cum)

The CRADA Has Developed Hundreds Of EB
Curable Cationic Epoxy Resin Systems

(Toughened and Untoughened)
Epoxies

•	 Bisphenol A Liquid Epoxy Resins

Cationic Initiators (w/ Various Anions)
Diaryliodonium Salts

•	 Bisphenol F Epoxy Liquids Triarylsulfonium Salts

•	 Epoxy Novolac Resins Iron Complexes

•	 Multifunctional Epoxy Resins Diaryldisulfones

•	 Cycloaliphatic Epoxy Liquids Triazine Compounds

•	 Hydrocarbon Epoxies Tougheners

•	 Toughened Epoxies Engineering Thermoplastics

•	 Flexible Epoxies Hydroxy-Containing Thermoplastics

•	 Fusion Solid Epoxies Reactive Flexibilizers

•	 Multi-Epoxy Resins (Blends) Elastomers

•	 Diluted Liquid Epoxy Resins Rubbers

•	 Multifunctional Epoxy Diluents Undissolved Thermoset Particles
•	 Undissolved Thermoplastic Particles
•	 Polyarylates
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Advantages of Electron Beam
Curable Cationic Epoxies

• Most Commercially Available (Non-Amine Containing)
Epoxies EB Cure

• Unlimited Variety Of Epoxy Resin Systems Can Be
Formulated

• No Hardeners Required (less environmental/health
concerns)

• Indefinite Shelf Life (must be kept away from UV)

• No Oxygen Inhibition Problems During Cure

• Resin System Costs Are Comparable To Thermally
Curable Epoxy Variants

Advantages of Electron Beam Curable
Cationic Epoxies (Resin Properties Only)

• Minimal Volatile Emissions During Cure; (<0.1%)

• Wide Range Of Trs(tan delta); 130 to >395°C; (TQ - TC1fd ranged from 100 to >
3700C

• Very Low Water Absorption After 48 hr. H 2O boil; some < I% most < 2%: vs.
thermal cured epoxies 3-6%

• Low Shrinkage; 2 - 3% vs. thermal cured epoxies 4-6% vs. EB cured acrylates 8-
20%

• Resins Are Toi enable; RT K j ,s ranged from 0.41-0.97 Wa m 0.5 vs. 0.90 for
Fiberite 977-3; -100 0C K ies surpass RT values

• Low Total Mass Loss; 0.05-1.00% for resins after vacuum oven aging
@125°C/Sdays vs. goal of <1% for composites
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Highlights of EB Curable Cationic
Epoxy Containing Composites

• Many Cat, Epoxies Have Been Successfully Prepregged
— Numerous prepregs have been made via solution dip, direct hot melt coating, and

film calendering methods
• Many Cat, Epoxies Have Been Processed Using Several Fabrication Methods

— Many PMC parts have been manufactured via hand lay-up, tow placement, filament
winding, RTM, and VARTM processes

• Void Contents Are Comparable To Autoclave Cured PMCs
— Many PMCs fabricated using hand lay-up and filament winding processes have less

than I% void contents
• Improved Mechanical Properties Compared To Autoclave Cured PMCs

— PMCs exhibit some mechanical properties exceeding those of Fiberite's, autoclave
cured, 977-2 and 977-3 toughened epoxy PMCs

• Cryogenic & Thermal Cycling Of PMCs Showed Excellent Retention Of Properties

— Mechanical properties of PMCs after cryogenic & thermal cycling were unaffected
and in some cases increased in value

PropeM Srompar d on Of Electron Beam Cured Versu s Thermal Cured W/Re s in (X) Unidirectional Laminates
(Data

Fibente 977-2	 Fibente 977-3
Normalized to 62% fiber volume)

Resin (Fiberite	 (Fiberite EB Resin
EB Resin 2 EB Resin 3' EB Resin 4 EB Resin 5

Systems Marketing	 Marketing Sfl
Literature Data) Literature Data)I '

Autoclave	 Autoclave
Cure Cured (6 hrs.	 Cured (3 hrs.'

250 kGy 150 kGy 150 kGy	 150 kGy	 i 150 kGy
Conditions @ 350°F @ 85 @ 355°F @ 85

psi)	 psi)
Void Volume, Not Reported I Not Reported 1.77

i
0.72 1.24	 0.64 1.18I i

Tg.*C (Tan
200	 190/240 396	 ! 392	 I

I
232	 212 212

'0° Flex. Sir., 1641 (238)	 1765 (256) 1986 (288) 2006 (291) 1793 (260)	 1765 (256) 1710 (248)
MPa (ksi)

O° Flex. Mod.. 147 (21.3)	 150 (2147) 196 (28.5) 163 (23.6) 163 (23.7)	 154 (22.3) 150 (21.8)
GPa (msi)

O° Comp. Stir., 1580 (230)	 1680 (244) 1565 (227)
MPa (ksi)

'
0° comp.,
Mod., GPa 152(22)	 154 (22.3) 149 (21.6)

(msi)
o° ILSS, MPa 110(16)	 127 (18.5) 77 (11.2)

,I

79 (11.5) 79 (11.5)	 89 (12.9) 77 (11.2)
(ksi)

Hot/Wet 0°
ILSS', MPa 89 (12.9) 61 (8.8)

(ksi)

1 wk. in H 2O @ 160°F, tested @ 220°F
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Temperature, Cv
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FLEXURAL STRENGTH OF ELECTRON BEAM RESIN 8H/IM7
UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR-

TESTED AT 25°C
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FLEXURAL MODULUS OF ELECTRON BEAM RESIN 8H/IM7
UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR -

TESTED AT 25°C
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Bars indicate one standard deviation

15

0

2
Cz 10L0x0
LL	 5

0 -^
0
	

200	 400	 600	 800	 1000	 1200

Time (hours)
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UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR

AT 232°C (450°F)
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INTERLAMINAR SHEAR STRENGTH OF ELECTRON BEAM
RESIN 8H/IM7 UNIDIRECTIONAL LAMINATES VERSUS AGING

TIME IN AIR - TESTED AT 25°C

15

Bars indicate one standard deviation
E
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SUMMARY AND CONCLUSIONS

• Electron Beam Resin 8H exhibited a glass transition temperature of 396°C (745T)
after electron beam cure at room temperature

• Electron Beam Resin 8WIM7 laminates exhibit good mechanical properties at 25°C

•	 Weight loss for the laminates is 4.25 and 18.4% after 1000 hours in air at 232°C
(450T) and 288°C (550T), respectively

• Mechanical properties of Electron Beam Resin 8H are not affected by aging at 232°C,
but are degraded by aging at 288°C

FOCUS OF FUTURE HIGH TEMPERATURE ELECTRON BEAM
RESIN RESEARCH

•	 Optimize Electron Beam Resin 8H/IM7 fabrication to maximize mechanical properties

•	 Rerun aging tests on optimized laminates

•	 Explore feasibility of electron beam curable polyimides by screening of model
compounds
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JOINING OF SILICON CARBIDE-BASED CERAMICS BY
REACTION FORMING METHOD*

M. SINGH
N YM A, Inc.

Engineering Services Division
Brook Park, Ohio

and

J.D. Kiser
NASA Lewis Research Center

Cleveland, Ohio

Introduction

Recently, there has been a surge of interest in the development and testing of silicon-based ceramics
and composite components for a number of aerospace and ground based systems. The designs often
require fabrication of complex shaped parts which can be quite expensive. One attractive way of
achieving this goal is to build up complex shapes by joining together geometrically simple shapes.
However, the joints should have good mechanical strength and environmental stability comparable to
the bulk materials. These joints should also be able to maintain their structural integrity at high
temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus,
joining has been recognized as one of the enabling technologies for the successful utilization of silicon
carbide based ceramic components in high temperature applications.

Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing,
and soldering have been provided in recent publications [1-3]. The majority of the techniques used
today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal
brazing, brazing with oxides and oxynitrides, or diffusion welding [4-6]. These techniques need either
very high temperatures for processing or hot pressing (high pressures). The joints produced by these
techniques have different thermal expansion coefficients than the ceramic materials, which creates a
stress concentration in the joint area. The use temperatures for these joints are around 700 T.

Ceramic joint interlayers have been developed as a means of obtaining high temperature joints [7-11].
These joint interlayers have been produced via pre-ceramic polymers [8-9], in-situ displacement
reactions [10], and reaction bonding [11] techniques. Joints produced by the pre-ceramic polymer
approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot
pressing or high pressures are needed for in-situ displacement reactions and reaction bonding
techniques. Due to the equipment required, these techniques are impractical for joining large or
complex shaped components.

The reaction processing technique [12] reported here is unique in terms of producing joints with
tailorable microstructures. The formation of joints by this approach is attractive since the

` Work funded under NASA Contract NAS3-27186.
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thermomechanical properties of the joint interlayer can be tailored to be very close to those of the
silicon carbide base materials. In this paper, the microstructure and mechanical properties of reaction
formed joints in Cerastar RB-SiC material are presented. The high temperature flexural strength of
joints has been measured up to 1350 °C in air. Scanning electron microscopy has been used to
characterize the fracture surfaces. The flexural strength of joints has been compared to those of
bulk Cerastar RB -SIC material.

Experimental Procedures

The Cerastar reaction-bonded silicon carbide (RB-SiC) materials used in this study were provided
by Carborundum Co., Gardner, MA. These materials were fabricated by the reaction bonding of
coarse and fine silicon carbide grains with silicon using a liquid silicon infiltration process. As
processed samples were sectioned, mounted, and polished for metallographic studies. For joining
studies, 6 cm x 3 cm size silicon carbide pieces were machined from SiC plates. These pieces were
cleaned in acetone and dried. Joining is carried out by initially applying a carbonaceous mixture to the
joint areas between the silicon carbide pieces. The specimen is then heated to 100 °C for 15-20
minutes. Next, the joint area is infiltrated with molten silicon at 1425 °C for 15 minutes. Molten silicon
reacts with carbon to form silicon carbide, with a controllable amount of residual silicon phase in the
joints.

Flexure bars were machined from the joined pieces, with joints in the middle of the flexure bars. Four-
point flexural strength testing was carried out with MIL-STD-1942 (MR) configuration B
specimens with 20 nun inner and 40 mm outer spans. Flexure tests were carried out at room
temperature, 800, 1200, and 1350 °C in air. A number of Cerastar RB-SiC bars were heat treated
at 1200 °C for 4 firs. in air. For the as-machined and heat treated Cerastar RB-SiC materials, at
least six to nine specimens were tested at room temperature, and three specimens were tested at
each high temperature. Three joint thicknesses were investigated. For each joint thickness, at least
three joined specimens were tested at room temperature while two were tested at high
temperatures. After testing, fracture surfaces were examined by optical and scanning electron
microscopy to identify the failure origins.

Results and Discussion

Microstructure

An optical micrograph of as received Cerastar RB-SIC material is shown in Fig. 6. This
micrograph shows the distribution of coarse and fine silicon carbide grains (gray) in a silicon
phase (white). There are pools of silicon and some porosity in this material. Microstructures of
reaction formed joints are shown in Fig. 7 (a-c). In Fig. 7(a), the joint was very thick (— 350 µm) and
silicon rich. This joint will be referred to as Joint A Two thinner joints, referred to as Joints B and C
are shown in Fig. 7 (b) and (c). These joints contain silicon carbide and silicon phase. The joint
thickness and composition have a strong influence on the room and high temperature properties of the
joined materials.

Flexural Strength and Fractography

The room and high temperature flexural strengths of the as-machined and heat treated Cerastar
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RB-SiC along with the joined materials are shown in Fig. 10. The average room temperature
strengths of as-machined and heat treated Cerastar RB-SiC specimens were 157±11 MPa and
202±14 MPa, respectively. Thus, the flexural strength of heat treated bars is higher at room
temperature. Healing of machining flaws by silica formation is one possible explanation. The
flexural strength of the specimen containing thick joint A is about 44±2 MPa. In flexure bars with
thick joints, fracture always occurred at the joints. In addition to being thick, this joint was also
rich in silicon. The microscopic examination of fracture surfaces of specimens with thick joints
tested at room temperature revealed the failure mode to be typically brittle. Specimens containing
thinner joints, B and C, have flexural strengths comparable to those of bulk materials. In the
flexure specimens with thinner joints, fracture always occurred in the bulk materials away from
the joint. In this case, the fracture origins appear to be inhomogeneities inside the specimen. This
observation indicates that the material strength is not limited by the joint strength but by the
strength of the bulk materials. In addition, there is no significant loss in strength of materials with
thin joints up to 1350 °C.

Conclusions

It has been demonstrated that the reaction forming approach can be used to produce strong joints in
reaction bonded silicon carbide materials. Thin (SiC-rich) joints show no significant strength loss at
Egli 	 and have properties at least similar to the bulk parent material used in this study.
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OBJECTIVES

• To develop an affordable approach for the joining of silicon carbide-based
materials.

• To characteriize the microstructure and mechanical properties of reaction-
formed joints.

Fig. t

JOINING REQUIREMENTS

• Joint properties comparable to base materials.

- Use temperature > 1200 °C
- Good mechanical strength
- Oxidation and corrosion resistance
- Low CTE mismatch to minimize the residual stresses
- Thermal shock resistance

• Leak tight joints.

• Practical, reliable, and affordable technique adaptable to in-field
installation, service, and repair.

Fig. 2
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Flow Chart for the Joining of Silicon Carbide-Based
Ceramics by Reaction Forming Method

(Schematic)

Apply Carbonaceous Mixture to
Joint Area

Cure at 100-110'C
for 10 to 20 minutes

Apply Silicon or Silicon-Alloy
(paste, tape or slurry)
Heat at 1400-1425'C
for 10 to 15 minutes

StroZilorable
 and Tough Joints

with 	 Properties

Fig. 3

EXPERIMENTAL PROCEDURES

- Material: Cerastar RB-SiC (Carborundum Co., Gardener, MA).

Joining: As machined pcs. (6 cm x 3 cm x 0.8 cm) cleaned with acetone
and dried.

• Butt joints formed between the pieces and three joint thicknesses
evaluated.

• Flexure bars (50 mm x 4 mm x 3mm) were machined with joints in the
middle of the bars.

Monolithic specimens heat treated at 1200 °C for four hours to minimize
surface machining flaws.

Fig. 4
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CHARACTERIZATION

• Microstructure (Optical microscopy)

• Four-point flexure tests (40/20 span)

• Loading rate : 0.5 mm/min

, Test temperatures (25, 800, 1200, 1350 °C), Air

Fractography (SEM, Optical microscopy)

Fig. 5

Microstructure of As-Received Cerastar RB-SiC

• Fabricated by the reaction bonding of coarse a-SiC grains with
silicon phase.

• Uneven distribution of both phases.

Fig. 6
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Microstructures of Reaction Formed Joints in Cerastar RB-SiC

Joint A (--350 pm)	 Joint B (-50-55 pm)
	

Joint C (-20-25 pm)

Fig. 7

Flexu.- al Strength of Cerastar RB-SiC Ceramics
as a Function of Temperature
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Flexural Strength of As-Received and Joined
Cerastar RB-SiC Ceramics at Room Temperature
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Fig. 9

Flexural Strength of As-Received and Joined
Cerastar RB-SiC Ceramics as a Function of Temperature
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Fractographs Showing the Failure Behavior in Thick (-350 Nm) Joints

• Flexure bars always fracture at thick joints because of their poor
mechanical strength.

Fig. 11

Fractographs Showing the Failure Behavior in Thin (- 50 pm) Joints

• Joined flexure bars fail away from the joint regions.

Fig. 12
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SUMMARY OF RESULTS

• A reaction based joining approach for silicon carbide materials has been
developed.

• The thickness of the reaction formed joints can be tailored.

• Thin joints (-; 60 pm) have good room and high temperature properties.

• Failure of flexure bars with thin joints occurs away from the joint regions.

Fig. 13

CONCLUSIONS

• A reaction based joining approach for silicon carbide materials has been
developed. Using this approach, joints with tailorable thickness and good
room and high temperature properties can be produced.

FOCUS OF FUTURE RESEARCH

• Joining of other types of silicon carbide (Hexoloy-SA, RFSC) and
characterization of high temperature thermomechanical properties.

• Joining of fiber reinforced composites (C/SiC and SiC/SiC) and
characterization of joint properties.

Fig. 14
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THERMODYNAMIC STUDIES OF HIGH TEMPERATURE MATERIALS
VIA KNUDSEN CELL MASS SPECTROMETRY

NATHAN S. JACOBSON and Michael P. Brady`
NASA Lewis Research Center

Cleveland, OH 44135

The Knudsen Cell technique is a classic technique from high temperature chemistry for
studying condensed phase/vapor equilibria. It is based on a small enclosure, usually
about 1 cm in diameter by 1 cm high, with an orifice of well-defined geometry. This
forms a molecular beam which is analyzed with mass spectrometry. There are many
applications to both fundamental and applied problems with high temperature materials.
Specific measurements include vapor pressures and vapor compositions above solids,
activities of alloy components, and fundamental gas/solid reactions (ref. 1).

The basic system is shown in Fig. 2. Our system can accommodate a wide range of
samples, temperatures, and attachments, such as gas inlets. It is one of only about ten
such systems world-wide.

In order to obtain precise data, there are a number of critical experimental issues. These
include selection of an inert Knudsen cell material, uniform temperature throughout the
cell and accurate temperature measurement. A common problem in all types of mass
spectrometry is to identify the gases ('parent molecules') which form a particular peak in
the mass spectrometer. This is done via the mass-to-charge ratio, isotopic abundances,
and various other techniques (ref. 1). It is also critical to separate the background
composition from a given peak. This is accomplished with the shutter shown in Fig. 2.
Finally the measured ion current must be converted to a vapor pressure and/or
thermodynamic activity. A standard of known vapor pressure, such as gold or silver, is
used to calibrate the system. In our twin cell configuration, this calibration is done in-
situ as an integral part of each experiment.

Two examples will be discussed. First consider the vaporization of a cylindrical alumina
combustor in a stream of high temperature combustion gases. This problem is illustrated
in Figs. 6-8. The problem is to determine how hot the combustor can be before volatility
becomes a limiting issue. In general, vapor pressures greater than —10 -6 bar lead to
recession rates greater than 10 mils/10,000 hrs, which are not acceptable for long term
operation (ref. 2). To do this calculation, Knudsen cell measurements on Al-0(g)
species together with estimates on AI-O-H(g) species are needed (refs. 3 and 4). These
are put into a free energy minimization program together with the combustion gas
composition (ref. 5). The results are shown in Fig. 8. At temperatures greater than 2170

Zn

K, volatility becomes a limiting issue.

Formerl y NRC Associate at NASA LeRC, Currentl y at Oak Ridge National Laboratory
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The second example is thermodynamic activity measurements in the Ti-Al and Ti-AI-X
systems. These are important for many application including: prediction of oxidation
properties (i.e. will TiO or A1,O 3 be the stable oxide?) (ref. 6), prediction of alloy/fiber
reactions (ref. 7), and phase diagram assessments. For these measurements, we use a
unique twin cell flange for comparing the alloy to the standard in-situ. This is illustrated
in Figs. 10 and 11. Measurements were made of aluminum activity and where possible
titanium activity. The Ti-Al phase diagram is shown in Fig. 12 and sample
measurements about the 7–TiAl phase field are shown in Fig. 13. These have been
shown consistent with measurements of other investigators. A critical issue in oxidation
is understanding the effect of alloying elements. For example it is known chromium
promotes oxide formation. Is this by increasing Al activity and decreasing Ti activity?
Measurements are currently underway to determine this. Al activity measurements are
shown in Fig. 15.

A brief description of high temperature Knudsen cell mass spectrometry has been given.
It has been used many years on many systems. However it continues to provide useful
applied and fundamental data on high temperature materials. NASA LeRC has a unique
facility for this technique. Two specific examples are discussed: vaporization of A1,O3
and thermodynamic activity measurements for Ti-AI-X alloys.
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Knudsen Cell Technique

• Classic techique from High Temperature
Chemistry to study solid/vapor equilibria.

• Small cell, well defined orifice—form
molecular beam to analyze vapor, generally
with mass spectrometry.

• Many applications to high temperature
materials.

Fig. 1

High Temperature Knudsen Cell
Mass Spectrometer

Magnetic
20-Dynode	 sector

	

electron multiplier	 analyzer	 Optical
pyrometer

Signal	 vvvv	 — Ion F^ 
Shutterbeam

ej\̂ 	 f 	

$p

Molecular
Ion beam	 beam
focusing plates 	 -----

-
Ionizing e^°"
electrons	 ,Shutter

Optical	 Collimatingpyrometer -_^	 slit

Pyrometer	 Resistance
sight holes 1----__	 heater

Sample
Knudsen cell

Fig. 2
	

CD-91-52433

3	 Paper 6



Knudsen Cell Measurements

• Basic and applied problems:
- `Vapor pressure's. above solids
- Activities of alloy components
- Baas/solid reactions

• Much of the tabulated thermodynamic data
is from this technique.

• Only about 10 laboratories worldwide have
this capability.

Fig. 3

Critical Experimental Issues

• Knudsen Cell:
- Inert container material.
- Uniform temperature.
- Accurate temperature measurement.

• Use melting points of pure materials to
calibrate.

• Identify the gases which form a particular peak in
mass spectrometer.

• Separate background from signal.
• Relate intensity to vapor pressure.

Fig. 4
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Types of Measurements

• Identify vapor species—e.g., Al 2O(g) over AI2O3(s).

• Determine absolute vapor pressures.

• Heats of vaporization
- Second law: Slope of In P vs. 1/T = AH/R

• Compare vapor pressure of an alloy component to
that of a pure metal.
- a(A) = P(A)/P°(A)

• Leak in external gas—look at gas/solid reaction.

Fig. 5

Example 1: Vaporization of Alumina
• Actual problem: cylindrical alumina combustor with

a stream of hot combustor gases (N2,021 CC2, H2O)

• How hot can we make the alumina before volatility
becomes an issue?

• Long term operation < 10 mils/10,000 hr — < 10-6
bar

1 1 1 ^ 1

—'	 t 1 1 t f`

Fig. 6
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E 10-4

d 10-6

5
10-8

a
0 10-10

10-12
3 4	 5	 6	 7x10-4

1/T, K

Equilibrium Vaporization of Al 203 into a
Vacuum

• R. C. Paule, H. Temp. Sci. 8, 257 (1976) + many
other Knudsen Cell Studies. 	 i0-5

• Main reactions:
- Al203= 2 AI(g) + 3 O (g) 	 10 -6
- A'203= 2 AIO(g) + O(g) 	 CZ
- 2 O(g ) = 02(9)	 10-7

• Suppressed by oxygen. 	 N
Q 10^
0a
> 10-9

10 -1C
4.8 5.0 5.2 5.4 5.6 5.8

Fig. 7

	 1lTx104

Equilibrium Vaporization of Al 203 into a
Combustion Atmosphere

• Use thermodynamic data from Knudsen Cell
investigations and estimates for AI-0 and AI-O-H

• Computer code which considers all vaporization
reactions:

10 -2 r

Fig. B
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Example 2: Thermodynamic Activity
Measurements in Ti-AI and Ti-AI-X

• Activity: "Escaping tendency"—ratio of vapor
pressure of metal in alloy to pure metal—tells
how tightly bound metal is in alloy.

• Uses:
- Predict oxidation characteristics.
- Predict alloy/fiber reactions (Misra, Met.

Trans. 22A, 715 (1991)).
• 3Ti + Al 203 = 3 TiO + 2A1

- Phase diagram assessments.

Fig. 9

Double Cell Technique
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(Knudsen Cell Flange

— Knudsen cellsHeat shield pack---,,; ;	 ,^; = '^

8.25 in. flange---,,,-` — Ta heating element

Cell holder

Stainless steel cross

on ball bearings
y ('Ir/j.^ ate\

t	 -	 --Water cooling for
flange 0-ringIli

w — Water-cooled
Motorized	 r	 power feedthrough
Y translator,

C0% . 7	 --Motorized
X translator

Fig. 11

Ti-AI Phase (Diagram
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Kattner, Lin, and Chang, Met. Trans. 23A, 2081 (1992).
F=ocus on y-TiAI and adjacent two phase regions.
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Al Activity Data Near rTi-AI

Ti-0.612AI--y TiAI + TAI 
Ti-	 3AI--y TiAI	 •

0.1
Q
	 n

0
a
	 AA

♦ 	 -

Q

Ti-0.461AI--y TAI + °
LZ 

Ti3A1

0.00065	 0.00070	 0.00075	 0.00080
1/T(K)

Mg. 13

Ti-AI-X Studies

• Alloying additions (esp. Cr) promote Al2O3
formation and limit TiO formation.

• Is this by increasing a(AI) and decreasing
a(Ti)?

• Examine
- Ti-48A1-2Cr Ti-48A1-13Cr
- Ti-48A1-2Nb Ti-48A1-13Nb

- Ti-48A1-2Nb-2Cr
• Work in progress—currently looking at a(Ti)

Fig. 14
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Activity of Al in Ti-AI-X Alloys

0.2

0.1
0.09
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m 0.06
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Ti48A113C^ Tii=58A1
TMAl2Cr

wTi48A1

Ti48Al2NbZCr

\ ^i 88A113Nb
Ti48Al2N

0.00068	 0.00072	 0.00076

1/T(K)

Fg. 15

Summary

• Classic experimental technique for studying solid/
vapor equilibria.

- Unique facility at NASA LeRC.

• Experimental Technique

- Inert cell.

- Precise temperature measurement.

- Convert ion intensities to partial pressures.

• Many, many applications. Two examples:

- Vaporization of Al2O3.
- Thermodynamics of Ti-AI-X alloys.

Mg. 16
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MECHANICAL PROPERTIES OF Cu-Cr-Nb ALLOYS'

DAVID L. ELLIS

Case Western Reserve University / NASA Lewis Research Center
Cleveland, OH

Introduction

The Cu-Cr-Nb alloys were originally developed under the Earth-To-Orbit program for the Orbital Transfer Vehicle
(OTV). The planned use was the combustion chamber of the regeneratively cooled rocket engine. The primary
materials properties of interest were the elevated temperature tensile and creep strengths, low cycle fatigue (LCF)
lives, and thermal conductivities. The currently used alloy NARIoy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) was used as the
standard for comparison for the new alloys.

The Cu-Cr-Nb alloys are strengthened by the high melting point intermetallic compound Cr,Nb. The density of this
phase is lower than Cu, so as the alloying levels are increased the density of the alloy decreases (Figure 7). At the
higher alloying level tested, Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) has a 4.1 % lower density than NARIoy-Z.

The objective of the current work is to expand the developmental work conducted previously to develop a database
suitable for the initial design of a hypersonic vehicle heat exchanger. Experimental work was concentrated on the
tensile strength, creep lives, LCF lives and thermal conductivities. The mechanical properties will be presented in
this paper. Thermal conductivities have been previously reported (1).

Experimental Procedure

All Cu-Cr-Nb samples were made from conventionally Ar gas atomized powder produced by the Special Metals
Corporation. The powder was canned in 5.08 cm (2") O.D. mild steel extrusion cans. The cans were extruded at
857°C (1575°F) using a round die with a 16:1 reduction in area.

Samples were machined from the extruded bars. For tensile and creep samples, a subsize design conforming to
ASTM Standard E 8 (2) were used. The elevated temperature tensile tests were conducted in vacuum using a
nominal strain rate of 1.1 x 10-4/sec. Creep tests were conducted in vacuum using a constant load creep frame.
Creep testing also was conducted on NARIoy-Z samples for direct comparison to the Cu-Cr-Nb alloys.

Fullv reversed, strain controlled LCF tests were conducted at room temperature, 538°C (1000°F) and 650°C
(1200°F). A triangular waveform with a constant strain rate of 0.002/s was used. For the elevated temperature LCF
tests, an inductively heated graphite susceptor was placed around the sample to provide heating. Oxidation was
minimized by flowing Ar over the sample.

Results And Discussion

The chemical compositions of the alloys are listed in Figure 5. The alloying levels were near the values for
stochiometric Cr,Nb. A slight excess of Cr was chosen for increased h ydrogen embrittlement resistance (3). The
microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM)
micrographs are presented in Figure 6. The images show the presence of large amounts of Cr,Nb precipitates in a
nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but
as the images demonstrates, the extremely fine (<15 nm) Cr,Nb are the primary strengtheners for the alloys.

Work funded under NASA Grant NCC 3-463
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The tensile strength of the alloys are presented in Figure 8. The values for NARloy-Z are the minimum design
values reported by Rocketdyne (4). The average values are between 5% and 10% higher. Work is currently
underway to tensile test NARloy-Z samples for direct comparisons. The results show clearly that the Cu-Cr-Nb
alloys have a significant advantage in yield strength at all temperatures tested. In particular, the Cu-Cr-Nb alloys
have approximately twice the elevated temperature strength of NARloy-Z above 400°C. An alternative way of
looking at the results is the Cu-Cr-Nb alloys maintain their yield strengths to a much higher temperature than
NARloy-Z. To a lesser extent, Cu-Cr-Nb alloys have a higher ultimate tensile strength (UTS) than NARloy-Z.

Three typical creep curves are presented in Figure 9. The stress for NARIoy-Z had to be decreased to achieve
comparable creep lives at the test temperatures. Figure 10 compares the creep lives for Cu-8 Cr-4 Nb and NARloy-
Z. For simplicity, the lives of Cu-4 Cr-2 Nb are not shown, but they were approximately half that of Cu-8 Cr-4 Nb
samples. In all cases, the Cu-Cr-Nb alloys have a much greater life and stress capability. It is particularly
interesting to note that the creep life of Cu-8 Cr-4 Nb tested at 800°C is nearly identical to NARloy-Z at 650°C.
This again indicates the possibility for increased operating temperatures and/or stresses with the Cu-Cr-Nb alloys.

A typical set of Cu-8 Cr-4 Nb LCF loops are presented in Figure 11. Cu-8 Cr-4 Nb exhibits some strain hardening,
but not as much as many other alloys. The LCF lives of Cu-8 Cr-4 Nb and NARloy-Z are presented in Figure 12.
At room temperature, Cu-8 Cr-4 Nb is equal to NARloy-Z at 2% total strain, the worst case, even though it has a
lower ductility. At lower total strains, Cu-8 Cr-4 Nb lives were approximately 50% greater than NARloy-Z. The
results for elevated temperature LCF testing showed that the Cu-8 Cr-4 Nb samples had lives 50% to 200% greater
than NARloy-Z at 538°C. The results from testing at 650°C showed little difference from the 538°C tests. This
again indicates the possibility of increased temperature capability over NARloy-Z.

Summary And Conclusions

The Cu-Cr-Nb alloys have significantly higher strengths than NARloy-Z at all temperatures tested. Usable strengths
were retained up to approximately 700°C (1300°F). The creep properties of the Cu-Cr-Nb alloys were also greatly
improved over NARloy-Z. The lives at a given stress were increased by up to 2-3 orders of magnitude with the
largest increases occurring at the higher temperatures. Alternatively, the Cu-Cr-Nb alloys were capable of
supporting a stress 10% to 50% greater than NARloy-Z for a given life. LCF testing showed Cu-8 Cr-4 Nb was
equal to or better than NARIoy-Z at room temperature. At elevated temperatures, the Cu-8 Cr-4 Nb was clearly
superior to NARloy-Z and did not have any significant change in LCF between 538°C and 650°C.

Taken in total, the results indicate the possibility of trade-offs of temperature and stresses that could greatly increase
the operating parameters of hypersonic vehicle heat exchangers.

Future Work

Future work will focus on completing the tensile testing of NARIoy-Z to provide a direct comparison to the Cu-Cr-
Nb data. In addition, research will examine the oxidation behavior of the Cu-Cr-Nb alloys in air and two potential
engine environments. Since the fabrication of heat exchangers may require a sheet product, several tests will be
conducted to determine a suitable rolling schedule and heat treatments.
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Background

• Originally developed for Orbital Transfer Vehicle
(OTV) under Earth-To-Orbit (ETO) program

• Alloys designed to meet needs of combustion
chamber liner

— High elevated temperature strength and creep
resistance

— Long low cycle fatigue (LCF) life

— Hligh thermal conductivity

— Properties that meet or exceed those of currently
used NARioy-Z (Cu-3 Ag-0.5 Zr)

Fig. 1

Program Objectives

• Quantify tensile, creep and thermal conductivity at a
level suitable for initial design work on hypersonic
aircraft combustors and rocket combustion chamber
liners

Fig. 2
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Experimental Procedure

Production of Cu-Cr-Nb Alloys
• Conventionally atomized

powders produced by
Special Metals

• Extruded at 870°C (1575°F)
• 16:1 reduction in area
• Full consolidation achieved

Tensile Testing
• Subsized tensile

specimens
• Vacuum testing
• Strain rate = 0.0001 1 /sec

Fig. 3

Experimental Procedure (Cont.)

Creep Testing

• Vacuum testing

• Constant load

• Displacement recorded
by computer DAQ unit

LCF Testing

• Only Cu-8 Cr-4 Nb alloy
tested

• Strain controlled

• Fully reversed

• Triangular waveform

• Constant strain rate =
0.002/s

Fig. 4
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Microstructure Of Cu-Cr-Nb Alloys

• Cr and Nb form a very high melting point intermetallic
compound, Cr2Nb

• Matrix is nearly pure Cu
Fig. 5

Alloy Chemistries

Alloy Ag Cr Cu Nb O* Zr Cr:Nb

Cu-4 Cr-2 Nb - Powder t 3.27 Bal. 2.92 251 2.00

Cu-4 Cr-2 Nb 3.8 Bal. 3.6 N.A. 1.89

Cu-8 Cr-4 Nb - Powder t 6.45 Bal. 5.49 455 2.10

Cu-8 Cr-4 Nb 6.5 Bal. 5.5 640 2.11

NARloy-Z 3.0 Bal. N.A. 0.5

All chemistries in weight percent
`O is in ppm by weight
tChemistry supplied by Special Metals
N.A. - Not available

• Alloy designations reflect amount of Cr and Nb in atomic percent

— Cu- ,4 Cr-2 Nb = Cu-4 at.% Cr-2 at.% Nb

Fig. 6
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Comparison Of Densities
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• Cu-Cr-Nb alloys have yield strengths approximately
1.5 - 2X higher than NARIoy-Z

• Cu -8 Cr-4 Nb has a superior UTS compared to NARIoy-Z
— Cu-4 Cr-2 Nb has equal or better UTS than NARIoy-Z

Fig. 8
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• NARIoy-Z can spend a significant
portion of its life in Third Stage
creep

• Cu-Cr-Nb creep elongations are
generally lower than those of
NARIoy-Z
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• Cu-4 Cr-2 Nb lives are approximately half that of Cu-8 Cr-4 Nb
• For a given life, Cu-8 Cr-4 Nb can support 20%+ higher stresses
• For a given stress, Cu-8 Cr-4 Nb alloy has lives 2 to 3 orders of

magnitude longer than NARIoy-Z
Fig. 10
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• Some strain hardening of Cu-8 Cr-4 Nb occurs
— Not as much as Cu

• Consistent behavior up to failure
Fig. 11

Low Cycle Fatigue Lives

Room Temperature
	

Elevated Temperature

Failed at 442 cycles

Cycle
1

-----	 2
10

---	 100
400

1000	 10000	 1000	 10000
Cycles To Failure	 Cycles To Failure

• Cu-8 Cr-4 Nb at least as good as NARIoy-Z at room temperature

• Cu-8 Cr-4 Nb has 50% to 200% greater LCF life at 538°C (1000°F)
than NARIoy-Z

— No significant difference between 538°C and 650°C (1202°F)
Cu-8 Cr-4 Nb LCF lives

Fig. 12
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Summary

• Cu-Cr-Nb alloys have much higher yield strengths than
NARIoy-Z

• Cu-Cr-Nb alloys have greatly increased creep capabilities

— 20% or greater increase in stress for a given life

— 2 to :3 order-of-magnitude increase in life for a given stress

• Cu-Cr-Nb alloys have better LCF capabilities

— Elevated temperature LCF properties are significantly
better than NARIoy-Z

• Thermal conductivity data set available in NASA
CR-198!29

Fig. 13

Conclusions

• Cu--Cr-Nb alloys are attractive replacements for
NARIoy-Z in elevated temperature, high flux
applications

• Cu-Cr-Nb alloys offer considerable potential for
hypersonic aircraft heat exchangers

Fig. 14
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Future Work

• Complete NARloy-Z tensile testing

• Perform microscopy on LCF samples

• Determine strengthening mechanism(s) by further
TEM analysis

• Examine oxidation resistance of Cu-Cr-Nb alloys

— Air

— Water saturated air

— Possible mixed 0 2/H2/H20/CO/CO2 environment
representative of hydrocarbon fueled engine

• Determine suitable rolling schedule and heat
treatments to produce Cu-Cr-Nb sheet

Fig. 15
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MoSi2-BASE COMPOSITE FOR ENGINE APPLICATIONS

MOHAN G. HEBSUR
NYMA Inc.

Brookpark, Ohio

and

Michael V. Nathal
NASA Lewis Research Center

Cleveland, Ohio

Introduction

The intermetallic compound MoSi, has long been known as a high temperature material that has excellent oxidation
resistance and electrical/t ermal conductivity. Also its low cost, high melting point (2023 °C), relatively low density
(6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural
material (ref. 1). However, the use of MOSi 2 has been hindered because of the brittle nature of the material at low
temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as "pest"
oxidation) at temperatures between approximately 400 and 500 °C, and a coefficient of thermal expansion (CTE)
that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the
fiber and the matrix resulted in severe matrix cracking during thermal cycling.

Maloney and Hecht (ref. 2) have done extensive work on the development of continuous-fiber-reinforced MOSi 2 -
base composites to achieve high temperature creep resistance and room temperature toughness. Candidate fibers
consisted of ductile refractory metal fibers and high strength ceramic fibers. Refractory metal fiber reinforcement of
MOSi 2 matrix composites was shown to increase both creep strength and fracture toughness. The addition of about 40
vol % of SiC in the form of whiskers and particulate was shown to lower the thermal expansion of MOSi2-base matrix
and prevent matrix cracking in a refractory fiber-reinforced composite. However, there was a severe reaction
between refractory fibers and the matrix. Matrix cracking was observed during consolidation with an SCS-6-fiber-
reinforced composite, even with the matrix containing up to 40 vol % SiC (40SiQ to modify thermal expansion. The
SCS-6/MoSi 2-40SiC composite survived five thermal cycles at 1300 °C but was completely destroyed within 100
hours of exposure to air at 500 °C.

The pesting phenomenon was caused by the formation of voluminous Mo oxides in the microcracks. During the
accelerated oxidation, M003 and SiO 2 were simultaneously formed in amounts determined by their concentrations in
the intermetallic. The accelerated oxidation is a necessary, but not sufficient, condition for pesting. Recent improve-
ments in the fabrication of MoSi, have led to materials with less porosity that are correspondingly less susceptible to
pest attack. However, because of increased surface areas and fabrication complexities from incorporating reinforce-
ment phases in MOSi 2-based composites, pesting of composite materials is still a major concern.

Earlier work (ref. 3) to develop a MoSi, matrix suitable for SiC fiber reinforcement was carried out at NASA Lewis
under the High Speed Civil Transport Enabling Propulsion Materials (HSCT/EPM) program. In that work, the
addition of about 30 to 50 vol % of thermodynamically stable Si 3N4 particulate was found to improve the low
temperature accelerated oxidation resistance of MoSi, by forming a Si 20N, protective scale, which eliminated the
catastrophic pest failure. The Si 3N4 addition doubled the low temperature toughness and increased the high
temperature creep resistance of MoSi, by 5 orders of magnitude. More important, adding Si 3N4 significantly
lowered the CTE of the MoSi, and eliminated matrix cracking in SCS-6 reinforced composites, even after thermal
cycling. These encouraging preliminary results led to a joint program for further development between Pratt &
Whitney, the Office of Naval Research, and NASA Lewis. The overall aim of this long-range program is to develop
these composites for advanced aircraft engine applications so that they can compete with the current superalloys and
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other advanced materials, primarily ceramic matrix composites (CMC's, see Fig. 1). A turbine blade outer air seal
(BOAS) for the Pratt & Whitney ATEGG/JTD engine demonstrator was chosen as the first component upon which
to focus. This paper briefly describes the progress made so far in developing MoSi 2-base hybrid composites.

Microstructure and Properties of SCS-6/MoSi,-Base Composites

Figure 2 shows the transverse microstructure of the as-fabricated SCS-6 composite. Although in this case fiber
distribution was not uniform, Fig. 2 clearly indicates an absence of matrix cracking. The CTE measurements made
on the matrix-only plate and those made on the composites are plotted as a function of temperature in Fig. 3. The
CTE's of monolithic MoSi 2, Si3N4. and SiC (ref. 2) are also included in this figure. It is clear from Fig. 3 that adding
Si 3N4 to MoSi2 effectively lowered the CTE of the matrix, thereby reducing the CTE mismatch with the fibers;
hence, no matrix cracks were found in the composite (Fig. 2). Figure 4 shows the SCS-6/MoSi 2 and SCS-6/MOSi 2

-30Si3N4 composites exposed at 500° C. The SCS-6/MOSi 2 specimen, which had matrix cracks, was completely
destroyed; it turned into -powder within 24 cycles, whereas the SCS-6/MoSi 2-30 Si3N4 specimen was intact even after
200 cycles and did not show any pest oxide.

Figure 5 plots the load verses time for the SCS-6/M0Si 2-30Si3N4 monolithic, chevron-notched, 4-point- bend
specimens tested at room temperature (RT). Even after testing for 2 hours, the composite specimen did not break.
The critical stress intensity factor K q, calculated from the maximum load data, was greater than 35 MPa•m 05 . This
indicates that the composite specimen was seven times tougher than the monolithic material. The toughness of the
hybrid composite also increased with temperature, reaching as high as 65 MPa•m 05, at 1400 °C in an argon
atmosphere. Charpy impact tests were conducted on ASTM standard specimens of the MoSi 2-50Si3N4 matrix and
the SCS-6/MoS1 2-50Si3N4 hybrid composite between 23 (RT) and 1400 °C in air. The force-verses-time curves
obtained from the Charpy impact tests indicate that much more energy is required for crack initiation in the
composite specimens and that substantial energy is absorbed during crack propagation. The impact test results also
showed that the impact resistance increased with an increase in temperature, and fiber reinforcement improved
resistance by nearly five times, from 2.5 to 12 J (almost equal to cast Ni-base super alloys). The impact resistance of
both the monolithic and the hybrid composite was superior to any material in the literature data on high temperature
intermetallic or ceramic-based materials (Fig. 6).

In Fig. 7 the RT tensile stress-strain curve for SCS-6/MOSi 2-Si3N4 indicates composite-like behavior and three
distinct regions: an initial linear region, followed by a nonlinear region, and a second linear region. The nonlinear
region is due to matrix-cracking normal to the loading direction. The second linear region is controlled by fiber
bundle strength. The carbon layer on SCS-6 fibers appears to have a significant influence on mechanical properties,
particularly the tensile strain to fracture, which is a measure of composite toughness. The RT tensile stress-strain
curves shown in Fig. 7 clearly demonstrate not only improved strength and toughness but also a graceful failure due
to fiber pull-out. Tensile: tests showed the temperature dependence of the ultimate tensile strength (see Fig. 8). For
comparison, the data from SCS-6/RBSN (ref. 4) are also included. The MoSi 2 composite exhibits higher strength
than SCS-61RBSN at temperatures up to 900 °C; beyond that, it starts losing strength. Unlike CMC's, which have
about 20 percent porosity, the MoSi,base composite is fully dense in the as-fabricated condition and, hence. exhibits
a higher modulus than CMC's do. Preliminary results of stress rupture tests carried out on SCS-6 [0°]/M0Si2

-50Si3N4 composite specimens between 1000 and 1200 °C in vacuum indicated that this material is superior to Ni-
base superalloys but inferior to monolithic ceramics such as AS 800 (AlliedSignal). A specimen tested at these
temperatures exhibited the classical creep curve with a minimum creep rate of 2x10 -9 sec -'.

Advanced Processing and Fibers for Low Cost and Complex Shaped MoSi,-Base Composites

Most of the outstanding strength and toughness values reported thus far were achieved with composites reinforced
with SCS-6 fibers. This fiber does not have adequate creep strength at the high temperatures envisioned for MoSi2,
and it is too large to be bent around the sharp radii needed to make complex shapes. Finer diameter fibers would
offer better cost, shape-making, creep resistance, and toughness properties. Hi-Nicalon (Nippon Carbon) is currently
the best available fiber, although NASA's EPM program is developing improved SiC fibers that would be
appropriate for a MoSi 2-Si3N4 matrix. In earlier studies, we used the powder cloth technique to produce composites.
However, because this process is highly labor intensive and does not produce uniform fiber distribution, we recently
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switched to tape casting as the powder/metallurgy method for composite fabrication. Melt infiltration and chemical
vapor infiltration are popular methods for processing of CMC's because of the potential for shape making and the
lower cost, but they cannot produce thickness larger than 0.25 in. Problems with segregation and porosity are also
aggravated in thick specimens made by these techniques. However, composites with small diameter fibers, such as
SCS-9-reinforced (75-um diam.) and coated Hi-Nicalon-reinforced (18- to 20-um diam.) MoSi2-Si 3N4 composites
were successfully fabricated in thickness greater than 0.4 in. Figure 9(a) clearly illustrates the range in fiber diameter
in this study. Note how switching from powder cloth to tape casting improved the fiber spacing control. Figure 9 (b)
displays efficient spreading of the fiber tows and infiltration of MoSi 2-Si3N4 powder particles.

As part of a study to investigate the influence of fiber diameter and architecture on mechanical behavior, tensile and
fracture toughness tests were conducted on specimens of SCS-6-, SCS-9-, and BN/SiC-coated Hi-Nicalon/MoSi 2-
50Si3N4 hybrid composites at RT (Fig. 10 (a) and (b)). Testing in the [0°] direction produced the highest strength
(700 to 1000 MPa) and total strain (1.2 percent) to failure. Testing in the [90°] direction produced the lowest
ultimate tensile strength, only 72 MPa, and strain (0.04 percent) to failure fora SCS-6-reinforced composite. The Hi-
Nicalon-reinforced composite exhibited high strength and strain to failure in the [0°/90°] direction (about 60 percent
of unidirectional values). RT fracture toughness also followed the same trend (Fig. 10 (a)). The SEM micrograph of
fracture surfaces shows more fiber pullout in the Hi-Nicalon-reinforced composite than in the SCS-6 reinforced

composite (Fig. 10(b)). The Hi-Nicalon/MoSi 2-Si3N4 in the [0°/90°] direction has a higher fracture toughness value
than Hi-Nicalon/SiC, the CMC's, and Hi-Nicalon/Si 3N4 in the [0°] direction (see Fig. 10 (c)). Because the CMC's
were processed at much higher temperatures, the fibers were degraded, thereby decreasing the toughness; Hi-
Nicalon/MoSi2-Si3N4 was processed at lower temperatures and, therefore, exhibited lower toughness.

Conclusions

A wide spectrum of mechanical and environmental properties have been measured in order to establish feasibility of
an MoSi 2-base composite with Si 3N4 particulate and SiC fibers.The high impact resistance of the composite is of
particular note , as it was a key property of interest listed by Pratt & Whitney. Processing issues have also been
addressed in order to lower cost and improve shape making capability. These results indicate that this composite
system remains competitive with other ceramics as potential replacement for superalloys.
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SiC/MoSi2 COMPOSITE
NASA/P&W/ONR PROGRAM

• OVERALL OBJECTIVE:
To provide R & D support to complement Pratt and Whitney's
larger effort of developing IMC Blade Outer Air Seals (BOAS)
for ATEGG/JTD Engines.

• SPECIFIC OBJECTIVE:
To investigate the technical feasibility of SiC continuous fiber
reinforced MoSi2-base hybrid composites (IMC). This material
system offers the potential for improved properties over the
current (baseline SiC particulate reinforced (MoW)Si2-system.
The longer range goal is cost reduction through processing.

Fig. 1

SEM-BSI OF AS-FABRICATED SCS-6/MoSi2-30Si3N4
COMPOSITE SHOWING NO MATRIX CRACKING

Fig. 2
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SILICON NITRIDE ADDITION' TOTALLY ELIMINATED
PESTING IN MOLY DISILICIDE-BASE COMPOSITES
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PROCESS DEVELOPMENT FOR MoSi 2-Si3 N 4/SiC HYBRID
COMPOSITES

• Finer Diameters for Near-Net Shape Capability
• Improved Fiber Spacing Control
• Potential for Lower Cosit

1993 Status
	

1995 Status
	

1995 Status
SCS-6 Fibers
	

SCS-9 Fibers
	

Hi-Nicalon
150 pm diameter
	

75 pm diameter
	

20 pm diameter
(Powder Cloth Process)

	
(Tape Cast)
	

(Tape Cast)

Fig. 9(a)

BN/SiC COATED Hi-NICALON/MoSi2-50Si3N4
COMPOSITE SHOWING GOOD INFILTRATION

Fig. 9(b)
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INFLUENCE OF FIBER DIAMETER AND ARCHITECTURE
ON RT TENSILE STRENGTH OF MoSi2-BASE

COMPOSITES
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SEM-SE IMAGES OF RT FRACTURE TOUGHNESS
TESTED SPECIMENS

SCS-6 [0/90°]
	

BN/SiC/Hi-Nic [0/90°]

MOSi2-50Si3N4 MATRIX

Fig. 10(c)

SUMMARY
HYBRID COMPOSITE:
(MOSi 2+Si 3 N4 particulate + continuous SiC fibers)

• Si 3 N 4 particulate
— Eliminated pest
— Improved creep and oxidation resistance
— Lowered CTE and density
— Doubled the RT fracture toughness

• SiC fibers
— Increased toughness at all temperatures
— Increased UTS and allowed "graceful failure"
— Improved impact resistance five-fold
— Tensile creep properties evaluated
— Tensile and toughness evaluated as a function of fiber

architecture and diameter

• Processing
Larger and thicker composites fabricated with improved fiber
spacing and finer diameter fibers by tape casting technique

Fig. 11
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CONCLUSION

MOSi 2-base hybrid composites remain competitive with
state-of-art ceramics as replacement for superalloys in
jet engines

FUTURE PLANS

• Continue exploring lower cost processing of hybrid
composites

• Continue MOSi 2-Si 3 N 4 development
• Mechanical properties evaluation
• Optimizing fiber coatings

Fig. 12
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MECHANICAL CHARACTERIZATION AND MICROMECHANICAL
MODELING OF WOVEN CARBON/COPPER COMPOSITES 

BRETT A. BEDNARCYK2 and Marek-Jerzy Pindera3
University of Virginia

Charlottesville, VA

David L. Ellis and Robert V. Miner
NASA Lewis Research Center

Cleveland, OH

Introduction

In recent years, interest in woven and braided composites has been on the rise. These materials consist
of reinforcing fibers, or bundles of fibers called yarns, woven or braided into a desired preform prior to
consolidation with traditional matrix materials. Woven and braided composites offer excellent out-of-
plane impact and crack resistance while possessing far superior stability during manufacture compared to
their traditional counterparts, Fig. 2.

The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix
composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical
testing as well as micromechanical modeling, Fig. 1. While the literature is replete with experimental
and modeling efforts for woven and braided polymer matrix composites, little work has been done on
woven and braided MMCs (ref. 1). Thus, the development and understanding of woven MMCs is at an
early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density
and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as
space power radiator panels.

The experimental portion of this investigation consists of monotonic and cyclic tension, compression,
and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on
composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti),
and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix
interfacial bonding (ref. 2, 3). The analytical modeling effort utilizes an approach in which a local
micromechanical model is embedded in a global micromechanical model. This approach differs from
previously developed analytical models for woven composites in that a true repeating unit cell is
analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently
idealized to allow efficient geometric discretization and efficient execution.

Material Svstem

Six plates with each matrix type were produced via pressure infiltration casting. The reinforcement
phase was provided by Amoco, and it consisted of three layers of VCX-1 1 carbon fiber yarns woven in
the 8H pattern (Fig. 3). The Cr and Ti matrix alloying additions have been shown to locate preferentially
at fiber/matrix interfaces in C/Cu composites, allowing reaction and a superior bond (ref. 3). Fig. 4a

' Work funded under NASA Grant NAG3-1319.
Ph.D. Candidate.

3 Associate Professor.
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shows an optical micrograph of a typical plate cross-section. Note the presence of porosity within the
infiltrated fiber yarns (Fig. 4b).

Experimental Results

Fig. 5 shows the results of a typical monotonic tension test and a typical monotonic compression test on
8H satin C/Cu. The tensile response of the copper matrix and the carbon fiber (longitudinal and
transverse) are included for comparison. In tension, the composite typically exhibited little elastic
behavior and stiffened noticeably at higher strains. Failure in tension occurred by fracture of the matrix,
leaving fiber yarns intact across the failure surface. In compression, the composite did not stiffen and
failed at a lower stress and strain compared to tension. Failure occurred via microbuckling of the layers
of the woven reinforcement. The apparent stiffer initial response in the compressive test compared to the
tensile test (Fig. 5) is believed to be an artifact of the different specimens and test fixtures used in the
different tests.

The effect of matrix alloy type on the monotonic tensile and compressive response of 8H satin C/Cu is
shown in Fig. 6. Recall that the matrix alloying elements were added to improve fiber/matrix interfacial
bonding, with the C/Cu-Cr composite possessing the best interfacial bond, followed by C/Cu-Ti, and
finally by C/Cu. In tension, the observed trend in the three stress-strain curves is opposite that expected.
That is, C/Cu-Cr, with its superior fiber-matrix bonding, would be expected to have the stiffest overall
response, followed by C/Cu-Ti, and finally by C/Cu, which is not the case. In compression, on the other
hand, the observed trend in the stress-strain curves follows the expected trend. Future work will attempt
to explain these trends via detailed micromechanical modeling. Note in Fig. 6 that a greater amount of
stiffening occurred in the alloyed-matrix composites compared to the C/Cu composite.

Fig. 7 shows the results of typical cyclic tension tests for composites with each matrix alloy type. Large
amounts of hysteresis were present upon unloading for both the C/Cu-Cr and C/Cu composites.
Examining the loading and unloading elastic modulus for each cycle revealed that the hysteresis is not
caused by damage within the composite (ref. 1). It is believed that the hysteresis is caused by kinematic
hardening of the matrix and frictional effects associated with sliding along the poorly-bonded
fiber/matrix interface. The results of typical shear tests on 8H satin C/Cu composites with each alloy
type are shown in Fig. 8. As was the case in compression, the shear stress-strain curves exhibited the
trend expected based on the interfacial bond strength.

Model Results and Correlation

The model developed for this investigation consists of the ori ginal method of cells micromechanics
model (ref. 4) embedded in the three-dimensional generalized method of cells (GMC-3D)
micromechanics model (ref. 5) (Fig. 9). This embedded approach allows the global three-dimensional
geometry of the woven composite to be represented by GMC-3D, while the local behavior of the
infiltrated fiber yarns is modeled by the original method of cells. Matrix plasticity is included on the
local level.

The simplest geometric representation of the repeating unit cell for an 8H satin woven composite is
shown in Fi-. 10a. Fig. 1 Ob shows the next level of refinement in which the yarn cross-over regions are
more accurately represented. The results presented herein are preliminary, generated using the simple
geometry. Fig. 11 compares the predictions of the model with actual data from tension tests. Predictions
are presented for the fully infiltrated case as well as the case in which the infiltrated fiber yarns contain
14% (by volume) porosity. Although experimental results for all three matrix alloy types are included,
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the model results should be compared with the C/Cu-Cr results since the present model treats the fiber
and matrix as well-bonded. Hence, even when porosity is included the model overpredicts the tensile
response of 8H satin C/Cu. Fig. 12 compares model predictions with the compressive response of the
composite. In this case the model underpredicts the composite response, and inclusion of porosity
degrades the correlation. Fig. 13 shows that in shear, the model significantly overpredicts the response
of the composite. It is likely that the absence of fiber/matrix debonding in the model, which is probably
present even in the C/Cu-Cr composite, accounts for a good deal of the discrepancy between the model
and experiment. Other sources of the discrepancy include the coarse unit cell geometry used in the
micromechanical model, and the absence of residual stresses from fabrication cool down.

Conclusions

The mechanical response of 8H satin C/Cu has been characterized via mechanical testing and
micromechanical modeling. Tensile testing of the composite revealed a small elastic range, noticeable
stiffening at higher strains, and large hysteresis loops upon unloading. The stiffening behavior has been
attributed to straightening of the fiber yarns, while the hysteresis has been attributed to kinematic
hardening of the matrix and frictional effects associated with the fiber/matrix interface. In tension,
failure occurred by fracture of the matrix with the fiber yarns remaining intact. In compression, failure
occurred via microbuckling, resulting in a lower ultimate strength and strain to failure than in tension,
Fig. 14.

Comparing results for the three copper matrix alloy types with different degrees of fiber/matrix bonding
showed that in tension, the observed trend in stress-strain curves is opposite to that expected. In
compression and shear, however, the expected trend was observed. The unexpected behavior in tension
may be due to a complex interaction of the microstructural architecture of the cross-over regions,
fiber/matrix debonding, and residual stresses. These will be addressed in the future (Fig. 15, 16).
Modeling the response of the composite was performed using a local/global embedding approach which
allows an accurate yet efficient representation of the composite geometry. The model-experiment
correlation was reasonably good for tension and compression, but poor for shear. Future work will
involve improving this correlation via inclusion of fiber/matrix debonding, as well as other effects, in the
model (Fig. 16), and utilizing a more refined unit cell geometry (Fig. 10b).
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Objectives

• Characterize the mechanical behavior of 8-harness (8H) satin C/Cu
—> Stress-strain response
-4 Identification of factors affecting the behavior

1. Mechanical testing
• Tension tests (monotonic & cyclic)
• Compression tests (monotonic & cyclic)
• Combined tension-compression tests
• losipescu shear tests (monotonic & cyclic)

2. Micromechanical modeling: Embedded approach
• Local model: Original Method of Cells
• Global model: Three-Dimensional Generalized Method of Cells

Fig. 1

Woven Composites —> Background

• Reinforcement —> fabric woven from fiber or bundles of fibers (yarns)

• Simplifies handling during fabrication --> fabric vs. individual fibers

• Near net-shaped woven or braided preforms

• Many different types of weaves:

Plain Weave
	

2/2 Cord
	

3/1 Warp Twill
	

5-Harness Satin

Fig. 2

Paper 9	 4



9 mm
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Material System —> 8H Satin C/Cu

• Candidate for high heat flux aerospace applications: space power
radiator panels

• 3 layers Amoco VCX-11 carbon fiber yarns of reinforcement woven in 8H
satin pattern:

Fig. 3

Material System -> 8H satin C/Cu

• Three Cu matrix alloy type: pure Cu, Cu-0.5 wt. % Ti, Cu-0.7 wt. % Cr

• Alloying additions present to improve fiber/matrix bonding, not to affect
matrix mechanical properties

• Porosity present within infiltrated fiber yarns:

Fig. 4
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Experimental Results —> Cyclic Tension (Matrix Alloy)
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Micromechanical Model —> Approach

• Local model --> original method of cells â embedded Q

• Global Model GMC-3D

Fiber

XZ

	 Repeating Unit Ce ll

Fig. 9

Micromechanical Model —> Repeating Unit Cells

(a) Coarse geometric refinement
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Summary

• Mechanical behavior of 8H satin C/Cu characterized: three Cu matrix
alloys (increasing bond strength): pure Cu --^, Cu-Ti 	 Cu-Cr

• Porosity present within infiltrated fiber yarns

• Mechanical testing:
—^ Monotonic and cyclic tension, compression, and shear and

combined tension-compression tests performed
Elastic range small, large amount of inelastic behavior

—^ Large amount of hysteresis: kinernatic hardening & frictional effects
Failure modes, ultimate strength, strain to failure different for
tension &. compression

• Micromechanical Modeling:
Embedded local/global approach

—^ Allows representation of true unit cell geometry
—^ Plasticity incorporated on level of local model

Fig. 14
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Conclusion

• Trend expected based on the fiber/matrix bond strength observed in
compression and shear

• Trend opposite to that expected observed in tension

• Model predictions correlate reasonably well in tension and compression
• Model predictions are poor in shear

• To explain unexpected trend based on the fiber/matrix bond strength,
and improve the model-experiment correlation, the following factors
should be considered:

-^ Fiber/matrix debonding
Porosity

—^ Repeating unit cell geometric refinement
Residual stresses

--^ Grip constraint effects (compression and combined tests only)
Fig. 15

Future Work

• Include fiber/matrix debonding in model

• Utilize more refined geometry in model

• Model residual stresses

• Model grip constraint effect for compression & combined tests

• Continued analysis of experimental results

fig. 16
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COMPUTATIONAL MODELING METHOD FOR SUPERALLOYS

GUILLERMO BOZZOLO
Ohio Aerospace Institute

and
Ronald D. Noebe and John Gayda
N.A.S.A. Lewis Research Center

Tntrnranr+inn

Computer modeling based on theoretical quantum techniques has been largely inefficient due
to limitations on the methods or the computer needs associated with such calculations, thus per-
petuating the notion that little help can be expected from computer simulations for the atomistic
design of new materials. In a major effort to overcome these limitations and to provide a tool for
efficiently assisting in the development of new alloys, we developed the BFS method for alloys (ref.
1), which together with the experimental results from previous and current research that validate
its use for large-scale simulations, provide the ideal grounds for developing a computationally eco-
nomical and physically sound procedure for supplementing the experimental work at great cost and
time savings.

Background

The BFS method for alloys succeeds over other competing techniques in that it is not limited (,o
any specific number of elements and it is not restricted to any particular crystallographic structure.
These are major obstacles for other techniques, usually limited to the treatment of a few elements
and just binary alloys. Moreover, other techniques only provide reliable results for bulk calculations
offering little confidence in applications to extended defects (surfaces, interfaces). The BFS method
is based on quantum perturbation theory and the solution of trascendental equations for each atom
in the sample, in order to compute their contribution to the total energy. Thus, the computational
requirements are trivial, favoring the use of BFS for large-scale simulations. The method relies
on first-principles determined parameters with general transferrability to any situation, as opposed
to competing techniques that have the additional disadvantage that their parameters or potentials
should be determined and optimized for each specific application.

Based on the idea of determining the energy of formation of arbitrary atomic configurations
(OH), the method determines the energy contribution of each atom (Ei), partitioning this contri-
bution into a strain (Entrain) and a chemical component (E=hem) providing separate information on
the structural and compositional features of the sample (ref. 1). The two contributions are linked
by a coupling function gi so that OH = F_ i Ei = Ti (E2train + giEZhem) The three terms (Entrain'
Echem g) are evaluated by solving perturbation theory-based equations which require input pa-
rameters determined for each element and each binary combination of elements via first-principles
calculations. This amounts to solving three trascendental equations for each atom in the sample.
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The BFS method has been recently applied to assist in HITEMP projects investigating the role
of alloying additions to NiA1. Due to its simplicity and physically sound foundation, the method
provides detailed at.omistic information regarding fundamental properties (i.e. solubility limit of
such additions, their site preference, metastable structures, formation of precipitates, interfacial
segregation, physical properties, etc). The method is meant to provide a useful tool in the process
of alloy design, by giving much needed insight in the basic mechanisms at the atomic level that
guide the formation of the alloy and its ensuing properties. Due to its minimal hardware, time and
cost requirements, it gives an alternative source of information that can only enhance the knowledge
gained through experimental work.

Figs. 5-10 summarize the work done for NiAl-based alloys. In essence, the same procedure is
now being applied to the study of partitioning ratios in superalloys, by individually examining the
role of each alloying component and the interaction between them. In this study, we built a large
set of sufficiently large atomic configurations, considering almost every possible atomic distribution
in a given lattice. With the advance knowledge that all the alloys studied experimentally are bcc-
based, we restricted the calculation to such crystallographic structure. First, we examined the
defect structure of non-stoichiometric NiAI alloys (ref. 2), succesfully reproducing every known
experimental fact: substitutional defects, triple defects, vacancies and their location, dependence
of the lattice parameter with concentration, etc. (Fig. 6). We later added, separately, Ti, Cr, and
Cu atoms, examining in each case the site preference of each element as a function of concentration
and in the presence of other alloying additions, as well as the solubility limit and the formation of
precipitates.

For Ti, it was found that it forms Heusler Ni 2 A1Ti precipitates above XT= — 5%, in agreement
with experiment. This was found by analyzing a large number of possible atomic configurations
and defining the ground state structures for each concentration as the minimum energy states,
finding that below 5 at. % Ti, disordered configurations are energetically favorable, but with a
clear departure of ordered states (Heusler) beyond that value (Fig. 7). For Cr, a similar analysis
determined that the solubility limit is approximately 1 at. % Cr, with the formation of a-Cr
precipitates beyond that value. This is in excellent agreement with experiment (Fig. 8) and
the known features of the ternary phase diagram, We later studied 4- and 5-element systems,
concentrating on the interaction between the different alloying additions and how that affects the
phase structure of the alloy. The 5-element (Ni-22.56A1-9.47Ti-33.5Cr-1.95Cu) alloy shown in
Fig. 10 is a good example of the type of information that is easily available with this technique:
the numerical simulation using BFS for calculating the energy shows that Ti and Cr retain their
individual behavior (Heusler and a-Cr precipitate formation, respectively) with the addition of Cu
segregation to the NiAl/Cr interface, as well as the formation of a new Ni-AI-Ti ordered phase in
the NiAl/Cr interface. Other issues are apparent from the simulation, including the clustering of
Ti atoms in the presence of antistructure Ni atoms in the NiAI matrix.

Progress in the BFS application to superalloys

We are currently in the initial stages of using a similar approach to the study of fcc-based
superalloys. The main ingredient of the method - the parameterization of the BFS equations - is
being implemented for up to 9 elements (Ni,Co,Cr,A1,Ti,Mo,Ta,W and Nb). Once the parameter-
ization is completed, we plan to individually test the ternary, quaternary and then higher order
additions to the base alloy and perform a similar analysis to that previously described for NiAl-

Paper 10 2



based alloys. By comparing the BFS predictions for the ternary cases with available - although
scarce - experimental data, we expect to develop the necessary confidence on the first-principles
determined BFS parameters which will be the basis for the high-order calculations. Moreover, also
in a similar fashion to the NiAl project, we will supplement our analytical BFS calculations with
large-scale Monte Carlo/BFS computer simulations, concentrating on the temperature effects and
simulated annealing, and its influence on the resulting microstructure.

In addition, previous work using BFS for the analysis of fcc Ni-based superalloys has been
extensive and it provides a solid foundation to the upcoming research. Following the methodology
described above (i.e. building a set of possible atomic configurations and calculating the energet-
ics and properties with BFS), we completed the process of determining a specific set of physical
properties (compressibility, density and energy of formation) to the experimental validation of the
theoretical predictions. A Ni-25AI-12.5Cu-25Au alloy was specified from a set of 200+ alloys, and
later processed and analyzed in the laboratory (Figs. 11-12).

The first step for our current program consists in the determination of the BFS parameters.
These quantities (two for each pair of elements) as well as the necessary parameters for each
individual atomic species (another four parameters) are determined using first-principles calcula-
tions. These parameters, unlike competing techniques, are determined once only and they are used,
unchanged, in any other application involving these elements. The transferrability of the BFS pa-
rameters is a powerful advantage of BFS, as it allows for immediate application to other systems
as soon as the initial work in determining them is completed. We are in the process of determining
the necessary parameters for the 9 elements of interest (Ni,Al, Co,Cr,Ti,Mo,Ta,W and Nb) and the
BFS parameters for every combination of them (Ni-Al, Ni-Co .... ). Once this phase of the program
is completed, we will proceed to analyze the behavior of each one of the alloying additions (Co,
Ti, ...) in the Ni-AI-Cr base alloy, their solubility limit, the site preference scheme, etc. , and later
examine higher-order combinations. In doing so, we expect to gain understanding on the observed
and expected behavior of the final alloys, based on our knowledge on the individual effects an(': how
each new element added modifies the behavior of the previous ones.

Conclusions

The BFS technique is capable of:
1) Determine the energetics, lattice parameter and other properties of complex alloys. 2)

Provide the calculational basis for large-scale computer simulations of the alloy formation process
therefore introducing substantial time and cost savings by assisting in the alloy design process.
3) Model complex systems: previous work dealt with up to 5-component, 3-phase systems which
exhibit interfacial segregation. 4)With additional computational modules, it can be extended to
calculate mechanical properties as well as improved modeling of the heat treatment and its relation
to the microstructure of the alloy.
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OBJECTIVE

To apply a recently developed computational modeling technique

(the BFS method for alloys) to assist in the determination of
superalloy properties.

• To introduce a new methodology in alloy design focusing on
time, cost and hardware savings.

Fig. 1

THE BFS METHOD FOR ALLOYS
GENERAL CONCEPT

• Calculates the energy of formation of a predetermined atomic configuration for a given bulk
composition.

• By comparing the energy of different configurations, it is then possible to determine the
ground state structure by finding the minimum energy configuration.

40 The calculation provides the energy of formation, lattice parameter and bulk modulus for
each configuration. By adding other modules, other physical and mechanical properties could
also be predicted.

Fig. 2
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THE BFS METHOD

The energy of formation of an arbitrary alloy structure is the sum of individual atomic
contributions in the alloy

OH

*The energy of each atom consists of a strain energy (structural effects) and
a chemical energy (compositional effects) contribution, linked by a coupling factor g

strain	 them

F_i = £ i	 + 2-C.
• The three quantities are determined by using methodology derived from Equivalent Crystal

Theory, which is based on quantum perturbation theory.

• This involves solving transcendental equations for each term, for each atom, where the
parameters used are determined only once, via first-principles calculations.

The parameterization is universal and does not change with each specific application.

— The parameterization does not rely on experimental input.

Fig. 3

THE BFS METHOD: PROCEDURE

ANALYTICAL CALCULATIONS

1. Construct an arbitrary distribution of N atoms of different species in arbitrary sites.

2. Compute the energy of formation of such a structure:
For each atom, compute the contribution to the energy of formation by solving the BFS equations.

- Add the contributions.
- Compare the result with that of other distributions to determine the configuration

with minimum energy.

THE QUALITY OF THE RESULTS DEPENDS ON THE NUMBER AND TYPE OF
CONFIGURATIONS CONSIDERED

Output: Information on the ground state structure as well as metastable states.
Trends and behavior of properties (i.e. , lattice parameter dependence on composition).

NUMERICAL CALCULATIONS

Monte Carlo algorithms for simulating the heat processing of the sample.

Output: Details on the microstructure; influence of temperature.

Fig. 4
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Monte Carlo/BFS simulations for two Ni-AI-Cr alloys

Ni-33A1-34Cr	 Ni-25A1-25Cr

Ni-22.56AI-9.4711-33.5Cr- 1.9501

Ni-Al-Ti-Cr-Cu

*Ground state configuration
of a 1024 atom cell of a
5-element alloy,
obtained with BFS

!Initial state: totally
random distribution

*Final state: alter slow
cooling (simulated) of
the sample via a
Monte Carlo numerical
calculation in which the
BFS method was used
to compute the energy
at every step.

Segregation of Cu to the
NiAIICr interphase.
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bee-Cr precipitate
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Fig. 10
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Fig. 12

Ni

Al

Cu

Au

FCC ALLOYS

BFS WAS PREVIOUSLY APPLIED TO THE DETERMINATION OF
PHYSICAL PROPERTIES OF FCC-BASED QUATERNARY ALLOYS:

• A set of 350+ (Ni-Al-Cu-Au) alloys was defined and studied.

• Classified according to their density, compressibility and energy of formation.

• These alloys were later made and analyzed to confirm theoretical predictions.

• Methodology will be applied to the study of up to 9 component superalloys.

Fig. 11

NUATE CARLOIBFS SINIULA` RA OF A

NI-25A I-12.5C,u-25A u ALLOY
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APPLICATION OF BFS TO SUPERALLOYS

FOLLOWING A SIMILAR PROCEDURE TO THAT USED FOR NiAI ALLOYS,
THE BFS METHOD WILL BE USED TO:

* INVESTIGATE THE BASIC PROPERTIES OF Ni-Al-Cr FCC-BASED ALLOYS

0 INVESTIGATE THE BEHAVIOR OF ALLOYING ADDITIONS TO THE BASE ALLOY

— INDIVIDUALLY, STUDYING ALL POSSIBLE QUATERNARY SYSTEMS.

— SIMULTANEOUSLY INCREASING THE NUMBER OF ADDITIONS, STUDYING

THE INTERACTION BETWEEN THEM AND THE RESULTING BEHAVIOR.

— STUDYING THE FUNDAMENTAL PROPERTIES OF THE RESULTING ALLOYS.

Fig. 13

SUMMARY

0 The BFS method has been used to determine the structure of NiAI alloys of
increasing complexity, ranging from the binary B2 NiAI alloy to a 5-element
alloy.

4p The methodology was used to first determine, theoretically, specific
properties of a 4-element fee alloy, then verified experimentally.

0 BFS parameters were determined for 9 alloy components
(Ni, Al, Cr, Co, Ti, Mo, Ta, W and Nb) for application in superalloys.

Fig. 14
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— alloy energetics
— site occupancy
— lattice parameter

— precipitate structure
— solubility limits
— lattice misfit

temperature effects

CONCLUSIONS

0 Computer modeling using BFS provides the same description of NiAl, NiAI+Ti and
NiAI+Cr properties that experiment does but also provides much needed additional
information on atomistic effects.

9 BFS efficiently assists in alloy design, providing detailed information concerning,
for example

•The flexibility of BFS can be extended to any arbitrary system, with any number of
components and crystallographic structures. The methodlogy will be applied to
the study of 9-component superalloys.

• At minimal cost, time, and personnel requirements, provides valuable support
for alloy development programs.

Fig. 15

FUTURE WORK

*BFS INPUT:

Determine BFS parameters for Ni, Al, Cr, Co, Ti, Mo,Ta,W, and Nb.

Determine BFS parameters for all the binary combinations.

*ANALYTICAL BFS CALCULATIONS

Determine properties of ternary, quaternary, etc. alloys

•MONTE CARLOBFS SIMULATIONS

Determine partitioning ratios 'y/y'.

Fig. IG
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Characterization of Damage Accumulation in a C/SiC Composite at Elevated
Temperatures

Jack Telesman, and Mike Verrilli
NASA Lewis Research Center

Cleveland, Ohio

Louis Ghosn
Case Western Reserve University

Cleveland, Ohio

Pete Kantzos
Ohio Aerospace Institute

Cleveland, Ohio

Introduction and Motivation
This research is part of a program aimed to evaluate and demonstrate the ability of candidate CMC
materials for a variety of applications in reusable launch vehicles. The life and durability of these
materials in rocket and engine applications are of major concern and there is a need to develop and
validate life prediction methodology. In this study, material characterization and mechanical testing was
performed in order to identify the failure modes, degradation mechanisms, and progression of damage in
a C/SiC composite at elevated temperatures. The motivation for this work is to provide the relevant
damage information that will form the basis for the development of a physically based life prediction
methodology.

Material
The material used in this study is a DuPont Lanxide C/SiC manufactured using a proprietary infiltration
procedure. The fiber architecture was a simple 0/90 two dimensional weave laminate. The composite was
fabricated in 8" x 8"x 0.125" panels. Test specimens, having a typical dog bone geometry, were
machined using diamond tooling and re-infiltrated following machining in order to protect the newly
exposed surfaces.

The typical surface condition an microstructure of the composite is shown in Figure 3. It is obvious that
in the as-received condition the material exhibits a variety of inherent cracking within the matrix, fiber
tows, and surface. The majority of the internal cracks seem to be contained within the [90] plies, and the
majority of the surface cracks seem to be within the coating itself.

Testing
The material was characterized by performing a variety of tensile, creep, and fatigue testing. The bulk of
the mechanical testing was performed at 650 0C (12000F). Limited testing was also performed at 550 oC
(I 0220F) and 450 oC (842 0F) in order to determine the temperature regime where the environmental
effect is dominant.

In order to determine the progression and accumulation of damage, a significant number of tests were
interrupted prior to failure and subjected to NDE and metallographic inspection. A NDE method was
used to determine the resonant frequency as a function of life of a stress rupture specimen that was tested
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at 650 oC and 70 MPa and periodically interrupted. Similarly, stress rupture specimens tested at 650 oC
and 70 MPa were interrupted after 30min, 75min, and 150min (corresponding to 10%, 25%, and 50% of
life) and sectioned for metallography. Also where applicable, particularly in the fatigue tested
specimens, the stiffness was monitored as a function of life.

Results
Stress Rupture Behavior
The stress-rupture behavior at various elevated temperatures is shown in Figures 4 and 5. The strength of
the composite degrades very rapidly for temperatures above 550 oC. At 650 oC and 70 MPa the life is
approximately 5hrs. At 450 oC and 200 MPa on the other hand the life is significantly greater than 50
hours and furthermore there is little degradation in the residual strength. The effect of damage
accumulation was evident in the stress strain behavior of an interrupted specimen. As shown in Figure 6,
a decrease in stiffness occurred very early in life and the degradation continued throughout the test.
Similar degradation was observed in the resonant frequency response, Figure 7. At 650 oC the applied
load has very little effect on the life, this observation in conjunction with the fact that damage occurs
very early in life not only suggests that the environment governs the damage process but also that the
presence of inherent cracking hastens the process.

Fatigue Behavior
Low cycle fatigue testing was performed in order to determine if any synergistic process occurs in the
presence of fatigue. The results are shown in Figure 8 in comparison to the stress rupture data. In
general, the strain accumulation is slower, and overall longer lives are attained during fatigue. The effect
of cyclic induced damage was further investigated by performing a fatigue test at much higher frequency
(100 Hz). The results indicate that even though the cycles to failure increased by several orders of
magnitude, the time to failure was in the same order as the lower frequency fatigue tests and stress
rupture tests, Figure 9. This observation reinforces the notion that overall at 650 oC the damage
accumulation is governed by environmental exposure. Fatigue damage doesn't appear be have any
additional effects. Similar to the observations of stress rupture damage, the damage accumulation that
was observed in the low cycle fatigue tests manifests itself in the reduction of stiffness as shown in
Figure 10. The reduction of stiffness with respect to the life fraction is not only consistent for the
various fatigue testing conditions but it coincides well with the creep rupture behavior. This behavior
further implies that damage accumulation is environmentally driven. Most importantly, however, this
behavior, if indicative of the actual damage, can serve as the basis for life prediction methodology.

Metallography
Extensive metallography and fractographic examination was performed on the failed and interrupted
specimens with the primary purpose of determining the mechanisms of damage. The surface of the
specimens did not reveal any additional damage aside from the already existing cracks, Figure 11. This
suggests that the coated surface (i.e. the matrix) is not an overwhelming contributor to the damage
process and that the damage responsible for the failure is occurring internally.

This became evident upon inspection of the metallographic sections obtained from the interrupted
specimens. As seen in Fi gure 12, fibers near the surface are being destroyed by the oxidizing
environment which enters the specimen by the myriad of inherent cracks, Figure 13. This phenomenon is
also apparent on the fracture surface of the stress rupture specimens, Figure 14, where for the most part
the C fibers are missing and seem to have been consumed. The carbon fibers on the tensile specimens, on
the other hand, are intact. Also evident from the interrupted tests is a progression of damage. The
specimen interrupted at 50% of the life show the most extensive damage while the specimen interrupted
at 10% of life exhibits the least amount of damage. The fact that damage appears at a very early stage in
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life, and manifests itself in the form of fiber damage, gives support to the observations that stiffness
degradation reflects the presence and progression of damage.

Discussion and Summary
Based on the observations of the various mechanisms present and the material behavior, the damage
process of C/SiC at elevated temperatures can summarized as follows:

I. early in life the existing cracks propagate into the composite and are bridged by the
fibers

2. these cracks act as pipelines for the environment, which attacks the C fibers
3. failures in the oxidized fibers results into further crack propagation and linking up of cracks
4. as more fibers are oxidized the bridging effect diminishes until the net section in one of the

locally oxidized regions is insufficient to carry and transfer load

In general, the damage seems to accumulate as crack propagation, linking up of cracks, and
environmental degradation of the load bearing fibers. The toughening mechanisms, although very
complex and interrelated, can be categorized as bridging, multiple cracking, and crack tortuousity. These
mechanisms are also manifested at various scales. For example, crack bridging can occur within a fiber
tow as shown in Figures 12 and 13 where individual fibers are bridging the crack. Also bridging can
occur on a larger scale, as shown in Figure 15, where the whole fiber tows are bridging cracks.
Understanding the interrelationships of these mechanisms as well as their degradation due to the
environment is vital to developing vital and reliable life prediction methodology.

Conclusions
1. The strength of the C/SiC CMC degrades significantly during stress rupture testing for temperatures

above 550 oC, whereas below 450 oC degradation is minimal.
2. Degradation of the modulus seems to occur very early in life and continue throughout the test. Low

cycle fatigue testing at the same testing conditions exhibited longer time to failure than the stress
rupture testing.

3. Examination of failed and interrupted specimens indicates that the C fibers are oxidizing very rapidly
at these temperatures.

4. The accumulation of damage, the failure process, and degradation of strength above 550 oC is
dominated by environmental degradation of the carbon fibers.

Future Work
The damage data obtained so far has been mainly qualitative, in the future emphasis will be placed on
quantifying the observed damage and correlating it with observed mechanical behavior such as resonant
frequency or stiffness degradation. This will serve as the basis for developing and evaluating a life
prediction model based on actual material behavior. Also, the material fatigue properties will be further
evaluated at lower temperature regimes where the environment does not dominate the failure process and
damage accumulation occurs by other mechanisms. This will ensure that the major environmental and
fatigue damage processes are incorporated in the lifing model.
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MOTIVATION

LONG TERM GOAL:
• DEVELOP, CODIFY, AND VALIDATE LIFE PREDICTION METHODOLOGY FOR

CERAMIC MATRIX COMPOSITE ENGINE COMPONENTS FOR REUSABLE
LAUNCH VEHICLES.

SHORT TERM GOAL:
• IDENTIFY DEGRADATION MECHANISMS, DAMAGE PROGRESSION, AND

FAILURE MODES TO SUPPORT THE DEVELOPMENT OF LIFING MODELS.

APPROACH

• CHARACTERIZE MECHANICAL BEHAVIOR OF 2-D WEAVE DuPONT LANXIDE
C\SiC CMC (TENSILE, CREEP, AND FATIGUE PROPERTIES).

• IDENTIFY DEGRADATION MECHANISMS, DAMAGE PROGRESSION, AND
FAILURE MODES IN THE CMC.

• DEVELOP LIFE MODELS BASED UPON CAPTURING AND MODELING THE
PHYSICS OF THE DAMAGE ACCUMULATION PROCESSES.

Fig. 1

EXPERIMENTAL PROCEDURE

• ELEVATED TEMPERATURE TENSILE, CREEP, AND FATIGUE TESTS

• TEST TEMPERATURE: 650'C (1200'F), 550 °C (1022 °F), AND 450 °C
(842 °F)

• STIFFNESS DATA MONITORED AND STORED THROUGHOUT THE TEST

• NDE INSPECTION PERFORMED ON SELECTED SPECIMENS
(SPECIMENS WERE SUBJECTED TO INTERRUPTED TESTING AND
REPEATED INSPECTION)

• FRACTOGRAPHIC AND METALLOGRAPHIC CHARACTERIZATION OF
FAILED AND INTERRUPTED SPECIMENS

Fig. 2
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DUPONT LANXIDE
C/SiC CMC
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MATERIAL
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Fig. 3

Stress-Rupture Data for DuPont C/SiC
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STRESS-RUPTURE OF C/SiC CMC AT
VARIOUS TEMPERATURES
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DAMAGE PROGRESSION IN C/SiC AT 650 °C
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SUMMARY AND CONCLUSIONS

1. THE STRENGTH OF THE C/SiC CMC DEGRADES SIGNIFICANTLY
DURING STRESS RUPTURE TESTING FOR TEMPERATURES ABOVE
550 °C, WHEREAS BELOW 450 °C DEGRADATION IS MINIMAL.

2. LOW CYCLE FATIGUE TESTING AT THE SAME TESTING CONDITIONS
PRODUCED LONGER TIME TO FAILURE THAN THE STRESS RUPTURE
TESTING.

3. DEGRADATION OF THE MODULUS SEEMS TO OCCUR VERY EARLY IN
LIFE AND CONTINUE THROUGHOUT THE TEST FOR BOTH STRESS
RUPTURE AND FATIGUE LOADING.

4. FRACTOGF'.APHIC EXAMINATION OF FAILED SPECIMENS AND
METALLOGRAPHIC EXAMINATION OF SPECIMENS FROM
INTERRUPTED TESTS INDICATES THAT THE CARBON FIBERS ARE
OXIDIZING VERY RAPIDLY AT THESE TEMPERATURES.

5. THE ACCUMULATION OF DAMAGE, THE FAILURE PROCESS, AND
DEGRADATION OF STRENGTH ABOVE 550 °C IS DOMINATED BY
ENVIRONMENTAL DEGRADATION OF THE CARBON FIBERS.

Fig. 16

FUTURE WORK

QUANTIFY AND CORRELATE OBSERVED DAMAGE AND STIFFNESS
DEGRADATION TO ESTABLISH A BASIS FOR A DAMAGE
ACCUMULATION MODEL

INVESTIGATE FATIGUE MECHANISMS AND DAMAGE ACCUMULATION
AT LOWER TEMPERATURE REGIMES WHERE ENVIRONMENTAL
EFFECTS ARE NOT PRESENT

INCORPORATE BOTH ENVIRONMENTAL AND FATIGUE DAMAGE
MECHANISMS INTO A PHYSICALLY BASED LIFE PREDICTION MODEL

Fig. 17
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ACCELERATED TESTING METHODOLOGY FOR THE DETERMINATION OF
SLOW CRACK GROWTH OF ADVANCED CERAMICS

Sung R. Choi'
Cleveland State University

Cleveland, Ohio

Jonathan A. Salem and John P. Gyekenyesi
NASA Lewis Research Center

Cleveland, Ohio

Introduction

Constant stress-rate ("dynamic fatigue") testing has been used for several decades to characterize
slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures
(refs. 1,2). The advantage of constant stress-rate testing over other methods lies in its simplicity:
Strengths are measured in a routine manner at four or more stress rates by applying a constant
crosshead speed or constant loading rate (Figs. 1 and 2). The slow crack growth parameters (n
and A) required for design can be estimated from a relationship between strength and stress rate
(refs. 1,2).

With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time
can be achieved (Fig. 2). If a preload corresponding to 50 % of the strength is applied to the
specimen prior to testing, 50 % of the test time can be saved as long as the strength remains
unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in
strength testing of ceramics or optical fibers to apply some preloading (<40%). The purpose of
this work is to study the effect of preloading on the strength to lay a theoretical foundation on
such an empirical practice. For this purpose, analytical and numerical solutions of strength as a
function of preloading were developed. To verify the solution, constant stress-rate testing using
glass and alumina at room temperature and alumina, silicon nitride, and silicon carbide at elevated
temperatures was conducted in a range of preloadings from 0 to 90 %.

Solution

The analytical and numerical solutions of strength as a function of preloading has been obtained
previously (refs. 3,4). For the natural flaw system with no residual stress field, the normalized (or
`reduced') strength as a function of preloading can be expressed as follows:

6f = (1+aâ+1)v(„+>)	 (1)

where 6 f is the normalized strength, in which the strength with preloading is normalized with

respect to the strength with zero preloading, ap is the preloading factor (1 < ap < 1) , where the

preloading stress is normalized with respect to the strength with zero preloading, and n is the slow

NASA Senior Resident Research Associate, Lewis Research Center, Cleveland, OH.
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crack growth (SCG) parameter. In this analysis, slow crack growth was described by the
following well-known power-law equation

v = da l dt = A[K, l K,, ]" 	 (2)

where v is the crack growth rate, a the crack size, t time, A the SCG parameter, K, the mode I
SIF, and K,, fracture toughness of a material. The resulting plot of Eq .(1) for various values of
n is shown in Fig. 4(a). For the indentation crack system where an additional term appears in the
net SIF, due to the residual contact stress produced by elastic/plastic indentation deformation,
analytical solution was not feasible. The solution was thus made via numerical methods (ref. 4).
The result of the numerical solution of strength as a function of preloading is presented in Fig.
4(b).

Experimental

The materials used viere soda-lime glass, 96 wt % alumina (ALSIMAG 614, G.E. Ceramics),
NC132 silicon nitride (Norton Co.), and NC203 silicon carbide (Norton Co.). Constant stress-
rate testing was conducted in four-point flexure using soda-lime glass plates and as-machined
MOR alumina bars at: room- temperature distilled water, and using as-machined alumina bars at
1000°C air, as-machined NC132 silicon nitride bars at 1100°C and as-machined NC203 silicon
carbide bars at 1300°C. Indentation-induced surface flaws both with and without residual contact
stress field were used for glass specimens. Atypical range of applied stress rates was 0.03 to 333
MPa/s. After the regular constant stress-rate testing (i.e., without preloading), additional testing
was performed to determine the influence of preloading on strength and to verify the solutions.
Typically, five preloads ranging from 50 to 90 % were used at each chosen stress rate.

Results and Discussion

1) Constant Stress-Rate Testing
The results of the constant stress-rate testing for each material are shown in Fig. 6. The SCG
parameter n was found to be: n = 17.1 t 0.5 for indented-and-annealed glass, n' = 17.4 ± 0.4 for
as-indented glass, n = 41.7 f 2.3 for as-machined alumina at RT, n'= 40.2 ± 4.9 for as-indented
alumina at RT, n = 7.6 ± 0.3 for alumina at 1000°C, n = 18.6 ± 1.7 for NC 132 at 1100°C, and n =
29.7 ^ 1.5 for NC203 at 1300°C.

2) Strength as a Function of Preloading
The results of the preloading experiments for each material are shown in Fig. 7, where strength
was plotted as a function of preloading from 0 to 90 %. The line in the figures represents the
strength obtained with zero preloading at each test rate. It is evident from these figures that the
strength is almost insensitive to preloading for most of the materials tested either at room
temperature or at elevated temperatures.

3) Comparison with Theoretical Solutions
A comparison of the: solutions with the experimental data can be made if the strength with
preloading are normalized with respect to the strength without preloading at each stress rate,
obtaining ^ f in accordance with Eq. (1) and the numerical solution. The resulting plots are

shown in Fig. 8. The: theoretical line by Eq. (1) or by the numerical solution calculated with the

Paper 12



estimated SCG parameter n for each case was also included, Except for NC203, the theory is in
good agreement with the experimental data, thereby indicating that the solutions are valid not only
at room temperature but at elevated temperatures. Note that the variation in strength (about 5%)
is attributed to the inherent scatter of strength exhibited by the materials. NC203 SiC exhibited
the highest variation because of its low Weibull modulus (in 8). The effect of strength scatter
(Weibull modulus) on preloading is illustrated in Fig. 9. Excellent agreement is found in the
indented glass specimens and the alumina specimens, since the specimens exhibited a high Weibull
modulus of greater than 20.

4) Crack Growth Behavior
The reason why the preloading technique is workable is due to the fact that most of the crack

growth occurs close to and/or at failure time at which fracture strength is defined. The nature of
this long "incubation" time of an initial crack is a key aspect that makes the preloading technique
feasible in constant stress-rate testing (see Fig. 10).

5) Implications
The most direct and powerful effect of preloading technique is the saving of test time, which

gives a great impact on testing efficiency (Fig. 11). For example, if it takes about 9 h to test one
ceramic specimen in constant stress rate testing and if a minimum of 20 specimens are required to
obtain reliable statistical data, then total testing time at that stress-rate would be 180 h. But if a
preloading of 801/6 is applied, the total testing time would be reduced to 36 h so that 80 % of the
total test time can be saved. And 70 % saving for a preload of 70 %, and so on. This great
advantage of the preloading technique has been adopted to a recently established ASTM standard
on slow crack growth testing for advanced ceramics. Also, the preloading technique can be used
as a tool identifying a mechanism associated with failure at elevated temperatures (ref. 3), as
shown in Fig. 12.
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DETERMINATION OF SLOW CRACK GROWTH OF
ADVANCED CERAMICS
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ANALYTICAL AND NUMERICAL SOLUTIONS
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EXPERIMENTAL

MATERIALS:
ROOM TEMPERATURE:

GLASS (AS-INDENTED & ANNEALED) (2)
ALUMINA (AS-INDENTED & AS-MACHINED) (2)

ELEVATED TEMPERATURES:
ALUMINA (1000°C)
NC 132 SILICON NITRIDE (1100°C)
NC203 SILICON CARBIDE (1300°C)

CONSTANT STRESS-RATE TESTING:
FOUR-POINT FLEXURE
0.03 TO 333 MPa/s (A RANGE OF STRESS RATES)

PRELOADING EXPERIMENT:
PRELOAD RANGING FROM 50 TO 90 %

Fig. 5
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RESULTS OF CONSTANT STRESS-RATE TESTING
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RESULTS OF PRELOADING EXPERIMENTS
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COMPARISON WITH THEORY
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DRAMATIC TEST-TIME SAVING
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A TOOL IDENTIFYING A FAILURE MECHANISM
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ROBUST INTEGRATION SCHEMES FOR GENERALIZED
VISCOPLASTICITY WITH INTERNAL-STATE VARIABLES

Atef F. Saleeb

W. Li

THOMAS E. WILT

Department of Civil Engineering
The University of Akron

Akron, Ohio

Introduction

The scope of the work in this presentation focuses on the development of algorithms for
the integration of rate dependent constitutive equations. In view of their robustness; i.e.,
their superior stability and convergence properties for isotropic and anisotropic coupled
viscoplastic-damage models, implicit integration schemes have been selected. This is
the simplest in its class and is one of the most widely used implicit integrators at present.

Viscoplastic Models

Several viscoplastic models have been proposed and developed to treat the complex
time dependent viscoplastic behavior of metals, alloys and composites at high tempera-
ture. The deformation behavior of materials at high temperature involves energy dissipa-
tion and material stiffness variations due to physical changes in the material's
microstructure. Consequently, thermodynamic arguments have often been utilized as a
foundation on which phenomenological constitutive laws may be formulated. The com-
plete potential-based class of inelastic constitutive models exhibit a number of unique
advantages from both a theoretical and a computational standpoint, for example, the
symmetry of the resulting consistent tangent stiffness matrix, and possesses a form
which is convenient for further development of new deformation and damage models.
The Generalized Viscoplastic with Potential Structure (GVIPS) [1] model possesses
both the thermodynamic potential (Gibb's function) and the dissipation function ( Q
form).

Another class of constitutive models are the Non-Associative Viscoplastic (NAV) mod-
els. the NAV models refer to those that have a partially (e.g. Q form only) or totally
incomplete potential form. An example of a NAV model is that of Freed [2). Recent work

' Work funded under NASA Grant NAG3-1493 (Technical Monitor: Steven Arnold)
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has demonstrated that the above models may be modified to restore the complete poten-
tial structure.

For these two different classes of models, a general computational framework suitable
for implementation of both is needed.

Integration Schemed

Computational algorithms for the integration of constitutive relations play a key role in the
inelastic finite element analysis of engineering structures. Consequently, much research
effort has been devoted over the years to the development and critical assessment of
integration schemes for the rate equations in these material models.

In early application; the explicit integration schemes, (i.e., forward Euler method) were
predominate because of their ease of implementation, and because they do not require
evaluating and inverting a Jacobian matrix. However, explicit integrators may not be effi-
cient. That is, too many iteration steps may be required and convergence (stability) can-
not be guaranteed. As a result, several alternative approaches have been used, for
example, Gear's multi-step method [3] and Walker's asymptotic method [4]. Note that
every integration scheme has its own particular application domain and is problem
dependent.

The majority of recent work has emphasized the use of implicit integration methods in
view of their stability and convergence properties. Based on the fully implicit, backward
Euler scheme, the corresponding algorithmic (consistent) tangent stiffness arrays are
derived from the integration rule, which are important for finite element solutions using
(global) Newton-Raphson iterative methods.

Line Search

Although the implicit scheme is unconditionally stable, its successful application may still
require proper selection of the size of the steps utilized. In this regard two factors are
important: (i) accuracy, and (ii) convergence of the local iterations. A simple time subin-
crementing strategy was found to be effective in obtaining accurate results especially
when dealing with regions of discontinuity in the state space. However this was found to
be insufficient to obtain a computationally efficient solution for a highly nonlinear problem
such as viscoplasticity. When a large time-step size is chosen, too many subincrement-
ing are needed, which leads to inefficiency. Thus a more sophisticated solution proce-
dure, namely, a line search algorithm, is required to produce an effective robust solution
algorithm.

It is well know that classical Newton-Raphson is fast and stable only when the trial solu-
tion is close to the converged value. Thus, the purpose of the line search algorithm is to
guide the solution towards convergence by searching for a scalar multiplier that adjusts
the amount of the increment vector to be updated within each iteration [5]. The concept
of line search may be applied at either the global (structural) iteration level or at the local

2
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(constitutive) iteration level. At the global level, the concept of the line search algorithm
pertains to minimizing the total potential energy, that is, the work done by the residual
force due to the iterative displacement. It has been suggested that the line search be
incorporated with a consistent tangent stiffness and that the use of the line search is
essential for robust performance of Newton's method [6,7]. It also demonstrated that in
elasto-plastic analysis convergence is not guaranteed unless the global line search is
used [8]. On the local (constitutive) level, line search is used to adjust the suitable incre-
ment of stress and internal variables to guarantee the convergence of the local iterations.
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MOTIVATION

Two major obstacles for fully utilizing recent time-dependent/hereditary
constitutive models in practical engineering analysis

• Lack of efficient and robust integration algorithms

- Coupled system of tensorial rate (differential) equations or general kernal
convolution integration

- Increased mathematical complexity and associated numerical stiffness

Difficulties associated with characterizing large number of required material
parameters

Fig.  I

OBJECTIVE

Develop a robust and efficient integration algorithm for viscoplastic
constitutive equations

Fig. 2
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BACKGROUND
• Computational algorithms for integrating the constitutive models are a key

component for an efficient inelastic finite element analysis

• Two classes of integration schemes are: iterative and non-iterative

• Iterative

- Fully implicit scheme
- Requires local iterations

• Non-iterative

- Semi-implicit
- Fully explicit
- No local iterations
- Usually less "overhead"

• History dependent integral representation

- Full history data storage
Fig. 3

INTEGRATORS

• General differential form: £n + 1 = En + Atr(1 - a)^n + (X 3I + 1]

• Fully explicit- (a = 0) Forward Euler

• Fully implicit: ((x = 1) Backward Euler, (a = 1/2) Midpoint rule

- F1 must be evaluated at n + a, which requires a local iterative procedure

• Semi-implicit: (0!-, as 1)

- to avoid iterations, some methods employ an approximation for sn + 1

- these are referred to as foward gradient methods, i.e., £n + 1 is approxi-

mated in terms of known quantities at time n using a Taylor series expan-
sion,

E I	 = sl + ael D6 + awl ashn+ 1	 n	 ao n n acI n 
n

Fig. 4
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INTEGRATORS

General Integral Form:
t

A = J K(t, T)E(T)dL

0

A = Typical state variable

K(t, T) = IKernal function, e.g.,

• exponential

• power form

• functional derivative

Fig. 5

MODEL CLASSES INVESTIGATED

• Differential/Internal variable type

- nonassociative/dynamic recovery (NAV)

- fully associative/nonlinear kinematic hardening (GVIPS)

Fig. 6
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NON-ASSOCIATIVE MODELS (NAV)
FREED/WALKER VISCOPLASTIC MODEL (1993)

(DYNAMIC RECOVERY)

Flow Law: EI = f(J, D) r- 	F = M(g - a)	 (x = aS + al

f (J, D) = BA7 sinh^Jln

M = isotropic/deviatoric tensor operator

Evolution Laws:

aS = 2Z[HS^I 
g ,TI l	

al = 2Z1 H lj - glLIl

?rs = mas	 Tc1 = Mal 
D = qJ - qD

aS = "short-term" back stress; a l = "long-term" back stress

Fig. 7

POTENTIAL BASED MODELS
GENERALIZED VISCOPLASTICITY WITH POTENTIAL STRUCTURE, GVIPS

(NONLINEAR KINEMATIC HARDENING)

Gibb's Potential: T(a, a) = e (g) +T I (a) Dissipation Potential: S2 = n(a, a)

Flow Law: ^I = as = f( F)17 1' = M(g - a)

M = isotropic/an isotropic tensor operator

n

f(F ) = 2µ

2

	

Evolution Law: a = L-1an = 
a 

on L -1 V _ Yn 	 n = Maasaaaa as _ 	 h _)

2	 -1

L-1 - [aaaa] 
= hardening stiffness operator

Fig. 8
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IMPLICIT INTEGRATOR

^n+1 - ^-n+rld"'n+1

En + 1 is the vector of state variables

6
-n

6
For the NAV model: E_ qsn and for GVIPS: E = n_n	

a.	
_n	

a
91n

D

6n	 stress

an 	 back stress (s and 1 denote short and long term)

D	 drag stress

Fg. 9

IMPLICIT INTEGRATOR

dEn + 1 is the increment in state variables and may be expressed as

_	 -1

dEn + 1 - (KE) Rn + 1

- where K. is the iterative Jacobian matrix of state variables

- R n + 1 is the residual function of state variables, e.g., R  + 1 =

- and the residual functions for NAV are

R o = 6n + 
1 - 6 n - Ce (DE + Otf Un + 1)

Ras 1 = as, In + 1 - as In - 2AWs, if Zrn + 1 + 20tgs, 1Z?1s, 
1 n + 1

R  = Ra a
s

 + Ra 
1	

RD = Dn + 1 - Dn - At(q J - qD)

Fig. 10

R

R
-a

s

R- a1

RD
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1.0

11

99

LINE SEARCH

• The factor T1 is a scalar (0 s i1 s 1) that adjusts the step size to optimize the
iterative solution

- rl is obtained by a line search algorithm

- the objective is to minimize the dot product s 	 I Rk + 1 * dEk + 1

ratio Si

Fig. 11

VALIDATION TESTS

CYCLIC
	

CREEP
	

RELAXATION

	

£ = 2x10- 3 S-1
	

6 = 1 ksi/s	 > = 1x10-3 s -1

	

max = 0.0144
	

Umax = 10 ksi
	

£max = 0.01

hold time = 1000 s
	

hold time = 1000 s

Fig. 12
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NONPROPORTIONAL LOAD
NAV MODEL

Nonproportional loading path	 Nonproportional loading
results for NAV (121 °C)

so s
6	 A A	 5

a	 40 4.
A

a^	 0
0

cue —40
c^

3	 •
—80 •	 1 step

10 steps
2

-120
50 steps

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75	 -200-150 -100 -50 0	 50 100 150
Axial Strain x 0.01	 Axial Stress, MPa

Fig. 16
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LINE SEARCH COMPARISONS
CYCLIC TEST (NAV MODEL)

Method CPU GIT SUB LIT
Subincrementing 14.5 8 15 5
Line search 1.0 3 0 22

CREEP TEST (GVIPS MODEL)

Method CPU GIT SUB LIT

Subincrementing 1.5 4 4 2
Line search 1.0 4 0 2

RELAXATION TEST (GVIPS MODEL)

Method CPU GIT SUB LIT
Subincrementing 1.1 3 2 2
Line search 1.0 3 0 2

Fig. 17

SUMMARY/CONCLUSIONS

• Implicit integration algorithm provides unconditional stability

- for both the creep and relaxation tests the explicit integrator (forward Euler)
failed at -100 steps

- implicit succeed using only 2 steps
- "large" time increments for an efficient solution (computation time savings)

• Accuracy is consistent with first order formulation

- creep: re! steps, 8% error	 relaxation: 2 steps, 2% error

• Important for life prediction studies that require many analysis load cycles and
an efficient integrator

• Current algorithm used in material parameter estimator

- analysis is performed repeatedly during optimization: requires efficiency

- parameters vary during optimization: requires robust integrator

Fig. 18
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FUTURE RESEARCH

- Currently, implicit integration algorithm has been successfully implemented into
the MARC user subroutine HYPELA

- Next: Implement algorithm into ABAQUS user subroutine UMAT

- Organize computer code to allow easier implementation of new constitutive
models

• Develop for combined differential/integral hereditary representations

Fig. 19
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Introduction
A key ingredient in the design of engineering components and structures under general
thermomechanical loading is the use of mathematical constitutive models (e.g. in finite
element analysis) capable of accurate representation of short and long term stress/defor-
mation responses. In addition to the ever-increasing complexity of recent viscoplastic
models of this type, they often also require a large number of material constants to
describe a host of (anticipated) physical phenomena and complicated deformation mech-
anisms. In turn, the experimental characterization of these material parameters consti-
tutes the major factor in the successful and effective utilization of any given constitutive
model; i.e., the problem of constitutive parameter estimation from experimental mea-
surements.

Traditionally, simple, basically trial-and-error procedures (graphical/mechanistic fitting)
have been used for simple models, but these are certainly rather limited in more general
situations Fig. 4 . This is particularly true in dealing with very large number of material
constants that are often lacking in their direct physical interpretation, where complica-
tions due to the vastly different scaling and highly interactive nature of these parameters
in a large test matrix under various controls (stress, strain, or mixed) under transient and
steady-state conditions Fig. 2.

An urgent need and obvious need therefore exists for a systematic development of a
general methodology for constitutive parameter estimation. This provides the main moti-
vation for the present work.

Background and Approach

The problem belongs to the class of inverse problems [1] of mathematical programming
and optimization theories. Its solution requires three major and interrelated parts Fig. 4
in its application to the present dynamic (time-variant) case; i.e., (a) primal analysis

* Work funded under NASA Grant NAG3-1746 (Technical Monitor: Steven Arnold)
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(response functionals) for the differential form of the constitutive model, (b) sensitivity
analysis, and (c) optimization of an error/cost function. The optimization algorithms for
the last part (c) are presently very well developed [2]. This is not the case, however,
regarding work on the other two, intimately related, parts (a) and (b). Mainly due to the
greater mathematical complexity and associated intensive computational demands for
the present dynamic and nonlinear case, compared to other more traditional optimization
problems of linear structures. This renders unsuitable or even inapplicable several of the
available solution methods and algorithms for primal and sensitivity analyses, Fig. 5.

For example, using an explicit integration method, with its known material-dependent
conditional stability limits, becomes very ineffective for primal analysis, in which essen-
tially thousands of i'different materials" are being processed for response predictions (in
a typical optimization cycle), thus making any adaptive time-stepping strategy very com-
plicated, if at all possible. Similarly, in addition to several accuracy and numerical insta-
bility problems, the use of finite-differencing schemes for sensitivity analysis can easily
become computationally prohibitive with the increase in material constants and time win-
dows for fitting with long-duration tests.

The highlights of the mathematical formulations and main features of the present devel-
opment (Figs. 6 and 7) are summarized as follows. Posed as a least-square, con-
strained, nonlinear mathematical optimization [2], we use an objective functional of the
minimum-deviation .-error type, i.e., differences in the predicted and measured responses
at varying times. The material constants constitute the design variables, with several
(side) constraints to ensure a physically-meaningful model. For the primal response
analysis part, we utilize an implicit, unconditionally-stable, integration algorithm. Details
and several applications of this scheme are described in a separate presentation in this
proceeding; see also [3]. The sensitivity and analysis is of the it J= preformed on
the basis of an Mlli i , recursive, form associated with the above integrator. Finally, the
optimizer segment is of the gradient-based type, utilizing a sequential-quadratic pro-
gramming scheme 1:4]. It is these three approaches combined that provide for the robust-
ness and computational efficiency.

The overall strategy, is summarized in the flow chart of Fig. 8. Its main driver (dubbed
COMPARE for QQnstitutive Model PARamter Estimator) controls the three solution mod-
ules (primal analysis, sensitivity, optimizer), together with the management of data files
and results. From the practical standpoint (Fig. 9), the overall strategy is sufficiently gen-
eral to handle comprehensive test-matrix data, under arbitrary load-control variables,
multiaxial stress/strain tests, and transient as well as steady-state response measure-
ments.

All applications given utilize a viscoplastic model of the nonlinear kinematic-hardening
type, GVIPS [5], having a total of eight material constants (Fig. 10). The first part of the
studies [Figs. 11-15 ] are performed on a simulated ("exact") model material, for valida-
tion and to investigate the issues of parameter sensitivities, accuracy, comparisons, and
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In the second part [Figs. 17-22 ], we use actual test-matrix results for TIMETAL21 S
material. This includes three tensile test under different strain rates, creep tests with
three different imposed stresses, a relaxation test, as well as a three-step creep test.
The "fitting" success in this latter, more realistic application, with vastly different condi-
tions and very large number of data points, clearly points to the potential benefit and
practicality of the general methodology.
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OUTLINE
• Motivation

• Objectives

• Background

• Mathematical formulation

• Computational algorithms

• Sensitivity analysis

• Applications

Fig 1

MOTIVATION
Two major obstacles to fully utilizing recent time-dependent/hereditary con-
stitutive models in practical engineering analysis:

• Lack of efficient and robust integration algorithms

• Difficulties associated with characterizing large number of required
material parameters

- Most rriaterial parameters lack obvious/direct physical interpretations

- Even under load histories in simple laboratory tests, several parameters will
highly i nteract to affect predicted responses

- Further complications due to:

(i) Incompleteness of response measurment in both time and state

(ii) Vastly different scalin g of constitutive parameters

- Urgent need exists for specific guidelines in the systematic development of
eg nera.l methodology for constitutive-Parameter-identification

Fg. 2
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OBJECTIVES
General: Systematic development of general methodology for constitutive

parameter estimation

Specific:

• Mathematical formulation of a basic optimal material parameter estimation
scheme

• Computational algorithms for implementation

• Validation tests and performance studies

• Alternatives for further refinements in fitting;
that is, variable/cost function scaling, weights, multicriteria optimization theo-
ries, etc.

Fig. 3

BACKGROUND
• 'Traditional" approaches for constitutive parameter estimations:

- Essentially trial-and-error in nature

- Based on several assumptions about test conditions and material behavior
that are rarely satisfied in actual tests

- Difficult to control error propagation in sequential evaluations of parameters

- Rather limited in applications

• Modern approaches for constiutive parameter estimations based on
mathematical programming and optimization theories:

- Moreeg neral/systematically derived

- Three major parts for modular implementations:

(a) Primal analysis for response functionals
(integrated history)

(b) Sensitivity analysis

(c) Optimization of "cost' function
Fig 4
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BACKGROUND

• Methods and algorithmic details differ greatly for the sensitivity analysis:

- Finite difference methods (prohibitively expensive; prone to errors)

- Evolutionary sensitivities approach (expensive two-subproblem
integrations; special coding for number of parameters dependent sizes of
arrays; stiffness/singularity problems)

- Adioint sensitivity approach (regressive computations with large storage
requirements; or increased computational cost for terminal adjoint
problems)

- Direct-differentiation sensitivity (most effective and accurate when
consistently derived with the underlying implicit integration of the model)

Fig. 5

MATHEMATICAL FORMULATION

• Framework required characteristics:

- Coupled nonlinear system (internal/external state variables)

- Transienj response with different possible steady-state conditions
(time variance)

- Arbitr rU (optional) control variables; i.e., stress-, strain-, mixed-types of
loading (general test matrix)

• Approach:

- A least-square, constrained, nonlinear mathematical optimization problem

- Material parameters constitute the design variables, with several associated
side -constraints to ensure physically meaningfull model

- The technique is of the minimum-deviation-error type, for the integrated mul-
tiaxial response (functionals)

Fg.6
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MATHEMATICAL FORMULATION
• Noteworthy aspects:

(i) Robustness and effectiveness:

- Unconditionally stable implicit integration for qrimal analysis (model
problem)

- Direct-differentiation approach for accurate sensitivity analysis

- State-of-the-art optimizer using sequential quadratic programming (with
exact gradient and variable metric/Hessian) for least-squares
minimization

(ii) Computational efficiency:

- Non-iterative "exact" sensitivities (once after primal analysis time-step
convergence)

- Effective scaling for both the design variables and the objective function
in optimization

- Enhanced iterations with line searches in implicit integration

Fig. 7

COMPUTATIONAL ALGORITHM

Sensitivity	 Analyzer

Direct Differentiation	 Implicit Integration

	

Optimizer	 Approach	 For Primal Analysis
Data Files

(COMPARE)
Sequential Quadratic	 Driver
ProProgramming SQP

	

	
Analysis Data:

9	 9 ^	 )	 -Problem Type/Control
- Identify active/ passive variables 	

Multiaxial Responses

for a test
	p 	 Time Window

	

n variables and	
Estimator Data:

Scale design	 -Number of Tests
objective function	 Initial Design Variables

	

Formulate a single design 	 Upper/Lower Limits
optimization problem	 Active/Passive

weighted objective function	 Variables
constraints	 Variable Grouping
sensitivities	 Weighting Factors

Optimizer Data:
Results	 Convergence

Tolerance

- Iteration Limits

	

Fig. a	 - Stop Criteria
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COMPUTATIONAL ALGORITHMS

• Features and capabilities:

- General test matrix with arbitrary control (stress, strain, or mixed) with
multi dal measurements (two normal plus one shear component), e.g.,

Stress-control	 Creep

Mixed-control 	 Relaxation

Stress-control	 Tension/constant stress rate

Mixed-control 	 Tension/torsion test

- Active/ ag ssive design parameter activation (e.g., parametric study)

er'lower side constraints

- Ar itra. y number of tests and time windows selected for fitting

- Goodness-of-fit statistical measures

Fig. 9

SENSITIVITY ANALYSIS
• Model problem

- Unified viscoplasticity with potential GVIPS (nonlinear hardening; static
recovery mechanism; isotropic/nonisotropic yielding)

- Total of ,even viscoplastic parameters (design variables)

Flow equation	 = 2 (viscosity [t;  exponent n)

Evolution equation	 = 4 2 (hardening; modulus H, exponent P)
+ 2 (recovery; modulus R, exponent m)

Yield threshold 	 = 1 (Kt)

• Simulated "actual" material (perfect model representation capability)

- Normalized sensitivity plots

- "Accuracy" and efficiency comparisons with traditional finite-differencing
schemes

- Creep, relaxation, constant-strain-rate tension as representative tests

Fg. 10
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SENSITIVITY ANALYSIS (SIMULATED TESTS)

DESIGN T1 T25 T50

PARAMETERS IMPLICIT F.D. IMPLICIT F.D. IMPLICIT F.D.

1.7899 1.7864 4.5844 4.5816 4.5844 4.5817KT
(10)-1 (10)-1

n -1.1361 -1.1384 21588 2.1525 2.1588 2.1525
(10)-1 (10)-1 (10)-1 (10)-1 (10)-1 (10)-1

µ 1.4583 1.4570 -1.7294 -1.7291 -1.7295 -1.7291
(10)-6 (10)-6 (10)-6 (10)-6 (10)-6 (10)-6

M 9.2111 0.000 -6.3965 -6.4033 -1.5127 -1.5144
(10)-19 (10)-6 (10)-6 (10)-5 (10)-5

13 4.2054 4.2041 44439 -9.4236 -9.4395 -9.4325
(10)-3 (10)-3 (10)-1 (10)-1 (10)-1 (10)-1

R -9.1043 0.000 -9293.57 -9293.71 -2.1978 -2.1976
(10)-9 (10)+5 (10)+5

H 1.4634 1.4628 3.6125 3.6085 3.6124 3.6084
(10)-7 (10)-7 (10)-5 (10)-5 (10)-5 (10)-5

Time Evolution
Fig. 11

L7n

SENSITIVITY ANALYSIS (SIMULATED TESTS)
TIME EVOLUTION
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EFHCIENCY OF IMPLICIT SENSITIVITY SCHEME

TENSILE CREEP RELAXATION

RELATIVE
CPU

IMPLICIT 1.0 1.0 1.0
F.D. 8.004 8.235 7.931

General Estimate:

Relative CPU = 8 x Ni x N  x N  x 11

N 1. = Number of integration steps per each (equal) optimization

interval

NW = Number of (equal) sampling points (time windows) per test

N t = Number of total tests

rt = Trial- Differencing-Accuracy Factor il = 2 --^ 10 ---) ?

Fig. 13

TYPICAL CONVERGENCE AND FITTING ACCURACY
(SIMULATED MATERIAL FOR TENSILE/CREEP/RELAXATION TEST)
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160	 )K True Set

---- Initial Set
140	

— Optimized Set
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0.40
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W
0.30
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0.10

TYPICAL CONVERGENCE AND FITTING ACCURACY
(SIMULATED MATERIAL FOR TENSILE/CREEP/RELAXATION TEST

0.70 r	 180 ,

0.00 t`
0	 20 40 60 80 100 120 140 160 180x103

Time (sec)

Accuracy in Creep Test

Fig. 15

20
0	 9000	 18000	 27000	 36000	 45000

Time (sec)

Accuracy in Relaxation Test

APPLICATIONS
• Material: - TIMETAL 21S

- Temperature = 650°C

• Experimental tests available

(a) 3 tensile tests

(b) 3 creep test

(c) 1 relaxation test

(d) single 3-step creep test

• Results/Studies

- varied number of tests included in fitting

- varied sampling-time intervals within each test

- varied material-parameter bounds and optimization weights

- comprehensive case: all tests (a)-(d) included in fitting

Fig. 16
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SUMMARY OF COMPREHENSIVE FIT CASE
(TIMETAL 21S; 8 TESTS; T=Tensile, C=Creep, R=Relaxation, SC=3-Step Creep)

T1 T2 T3 C1 C2 C3 R SC

Number of 93 67 57 96 103 107 72 285
Fitting Points

Weight Factors 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
(equal weight)

Weight Factors 0.1193 0.1657 0.1947 0.116 0.1077 0.1037 0.1542 0.0389
(variable weight)

a) Fitted Points and Weights

Number of Number of Number of Normalized
Iterations Function Calls Gradient Calls CPU

Estimated 53 61 54 1.0
(equal)

Estimated 49 54 50 0.882
(variable)

b) Solution Efficiency
Fg. 17

SUMMARY OF COMPREHENSIVE FIT CASE
( TIMETAL 21 S; 8 TESTS)

120

v 
1.00	 (E = 4059.97) Equal

(E = 5070.06) Variable

0
0.60

v
N 0.40

0.20
0
2 

-0.00

—Equal Weight

x Variable Weight

(E = 103.65) Variable
(E = 88.4) Equal

-0.20
0	 10	 20	 30	 40	 50	 60	 70	 80	 90

Number of Iterations

Fg. 18
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TENSILE BEHAVIOR CORRELATION
(COMPREHENSIVE FIT)

Given:
- a "far" initial guess	 300

- with/without bounds on parameters ^ 200
--> unique `optimal" response	 N

N

£0 = 8.333x10-5	 b 100

x Experiment

---- Initial Set	 00

— Optimum Set

	

3K (Released-Constraints) 800	 /

600	
600	

100£010 0 	/	 a
400 	 400

b 200	 ^'` 	 b 200

00 20 40 60 80 100 120	 00 2 4 6 8 10 12

Time (see)	 Time (see)
Fig. 19

CREEP BEHAVIOR CORRELATION
(COMPREHENSIVE FIT)

Given:
0.04

- a "far" initial guess 60 = 72.4MPa
- varying sample-time intervals o.03

unique "optimal" response w 0.02

x	 Experiment 0.01

--- Initial Set

0'^— Optimum Set 0 3000	 6000	 9000

x	 Large Sample Fit Time (see)

0.04 0.04

60 = 109.6MPa 6p = 128.4MPa
0.03 0.03

0.02ca 0.02uN x

0.01 0.01

0.000
3000	 6000	 9000 0 ^0 3000	 6000	 9000
Time (see) Time (see)

Fig. 20

400	 800	 1200

Time (see)
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RELAXATION BEHAVIOR CORRELATION
(COMPREHENSIVE vs. SINGLE-RELAXATION TEST FIT

Given:
- a "far" initial guess	 Comprehensive fit gives better overall

predictions with comparable accuracy
- variable optimization weights 	 to the "pure" single-response curve

	

-^ unique optimized response	 correlation

2507	
aintrial ° 238MPa	 250	

ainirial — 238MPa

200	 200

x Experiment	 x Experiment

	

p; 150	 --- Initial Set	 p., 150 ,	 -- Initial Set

— Equal Weight	 — Comprehensive Fit

	

b 000 	 Variable Weight	 b l	 1	 3t Single Test Fit

50 \	 50

	

O L	
1	

O L	
I	 1

	

0	 3	 6	 9x104	 0	 3	 6	 9x104

Time (sec)	 Time (sec)
	(a) Comprehensive Fit 	 (b) Single-Test Fit

Fig. 21

3-STEP CREEP CORRELATION
(COMPREHENSIVE FIT)

0.06

+ Experiment	 +

0.05	 — luitW Set

— Egnal weight

0.04	 Variable Wei&	 +/

w 0.03

0.02

0.01

0.00-
0	 1	 2	 3	 4x104

Time (sec)

Fig 22
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SUMMARY/CONCLUSIONS

• Validation with exact (simulated) material

- Given an accurate constitutive model, exact correlation is achievable by
COMPARE

• Assessment with real materials (T/METAL 21S)

- Automated material parameter estimation enables the model to achieve its
"best" correlation

- Serves as a tool for identifying critical experiments to maximize pertinent
"data content" (e.g., one test for tension, creep, cyclic and (initial) relaxation)

- Requires minimum "user expertise"

- Gives a measure for model suitability and directions for its further
enhancement in realistic range of applications

- Estimates for effects of model versus experimental (noisy data) deficiencies
(COMPARE's knowledge of parameter sensitivities)

Fig. 23

SUMMARY/CONCLUSIONS

- Including more data points in fitting enhances the optimizer convergence
speed

• New model implementation

- Demands more than just a definition of elementary (differential) flow/evolution
equations - integrated form Jacobian

Fig. 24

FUTURE WORK

• Inclusion of new material models in COMPARE library

• Experience in applications with multiaxial test fitting

• "User-friendly" enhancements

Fig. 25
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A VISCOPLASTIC CONSTITUTIVE THEORY FOR MONOLITHIC
CERAMIC MATERIALS--I

LESLEY A. JANOSIK
NASA Lewis Research Center

Cleveland, Ohio

and

Stephen F. Duffy, PhD, PE'
Cleveland State University

Cleveland, Ohio

Introduction

With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine
components, the need arises to accurately predict thermomechanical behavior (Fig. 1). This paper, which is the first of
two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an
overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g.,
creep, stress relaxation, etc.) in monolithic structural ceramics.

Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by
hydrostatic stress. This is not the case, however, for ceramic-based material systems, cmless the ceramic is fully dense.
The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials
exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics
must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and
compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of
stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation.
However, none of these theories allow different behavior in tension and compression. In addition, these theories are
somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by
ceramic materials at high temperature.

When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior
that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current
conditions, but also on thermo-mechanical history. The objective of this work (Fig. 2) is to present the formulation of a
macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in
this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and
its attending geometrical implications. For complete details of the model, the reader is directed to the recent publication
by Janosik and Duffy (ref. 1).

Flow Potential

Using continuum principles of engineering mechanics, the complete viscoplastic theory (Fig. 3) is derived from a
scalar dissipative potential function, identified here as S2 (Fig. 4), first proposed by Robinson (ref. 2) for a J2 model,
and later extended to sintered powder metals by Duffy (ref. 3). The specific form adopted for the flow potential is an

NASA Resident Research Associate at Lewis Research Center.
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integral format proposed by Robinson (ref. 2) that has similar geometrical interpretations (e.g., convexity and
normality) as the yield function encountered in classical plasticity. This isothermal formulation includes parameters for
viscosity, hardening, recovery, and unitless stress exponents. Also included is the octahedral threshold shear stress, K,
which is generally considered a scalar state variable that accounts for isotropic hardening (or softening). However, since
isotropic hardening is often negligible at high homologous temperatures (? 0.5), to a first approximation K is taken to
be a constant for metals. This assumption is adopted in the present work regarding ceramic materials. Specific details
regarding the experimental test matrix needed to characterize these parameters will appear in a second article.

Threshold Function

The specific formulation used here for the threshold function, F (a component of the flow potential function), was
originally proposed by Willam and Warnke (ref. 4) in order to formulate constitutive equations for time-independent
classical plasticity behavior observed in cement and unreinforced concrete. Willam and Warnke (ref. 4) proposed a
yield criterion for concrete that admits a dependence on the hydrostatic component of stress and explicitly allows
different material responses in tension and compression (Fig. 5). Several formulations of their model exist, i.e., a three-
parameter formulation and a five-parameter formulation. For simplicity, the work presented here builds on the three-
parameter formulation shown in Fig. 6.

The Willam-Warnke criterion uses stress invariants to define the functional dependence on the Cauchy stress (Uy)
and internal state variable (ay). The invariants TI and J3 admit a sensitivity to hydrostatic stress, and account for
different behavior in tension and compression (since this invariant changes sign when the direction of a stress
component is reversed), respectively. Note that a threshold flow stress is similar in nature to a yield stress in classical
plasticity. The specific details involved in deriving the final form of the function F can be found in Willam and Warnke
(ref. 4). A similar functional form is adopted for the scalar state function G. This formulation assumes a threshold does
not exist for the scalar function G, and follows the framework of previously proposed constitutive models based on
Robinson's (ref. 2) viscoplastic law.

For the Wiliam-Wamke three-parameter formulation, the model parameters include 6t, the tensile uniaxial

threshold stress, qc, the compressive uniaxial threshold stress, and cbc, the equal biaxial compressive threshold stress
(Fig. 7). The Willam-Warnke model yields a flow surface in the shape of a pyramid with a triangular base in the Haigh-
Westergaard stress space, as depicted in Fig. 5. As a reference, typical J2 plasticity models have yield surfaces that are
right circular cylinders in the Haigh-Westergaard stress space.

Flow Surfaces - Interpretation

As in Robinson's original theory, the current model is closely tied to the concepts of a potential function and
normality. It is this potential-normalit y structure that provides a consistent framework. According to the stability
postulate of Drucker (ref. 5), the concepts of normality and convexity are important requirements which must be
imposed on the development of a flow or yield surface. Constitutive relationships developed on the basis of these
requirements assure that the inelastic boundary-value problem is well posed, and solutions obtained are unique.
Experimental work by Robinson and Ellis (ref. 6) has demonstrated the validity of the potential-normality structure
relative to an isotropic J alloy (i.e., type 316 stainless steel). With this structure, the direction of the inelastic strain rate
vector for each stress point on a given surface is directed normal to the flow surface F=constant, as illustrated in Fig. 8.
Without experimental evidence to the contrary, it is postulated that this structure is similarly valid for isotropic
monolithic ceramic materials. The convexity of the proposed flow surface assures stable material behavior, i.e.,
positive dissipation of inelastic work, which is based on thermodynamic principles. The convexity requirement (Fig. 8)
also implies that level surfaces of a function are closed surfaces, since an open region of the flow surface allows the
existence of a load path along which failure will never occur. Finally, the Willam-Warnke flow criterion (and the
constitutive theory presented herein) degenerates to simpler models (e.g., the two-parameter Drucker-Prager and the
one-parameter Von Mises) under special limiting conditions (Fig. 9).

Constitutive Model

Constitutive equations formulated for the flow law (strain rate) and evolutionary law are given in Fig. 10. These
relationships employ stress invariants to define the functional dependence on the Cauchy stress and a tensorial state
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variable. The potential nature of S2 is exhibited by the manner in which the flow and evolutionary laws are derived. The
flow law, t^, is derived from .fl by taking the partial derivative with respect to the applied stress. The adoption of a
flow potential and the concept of normality, as expressed in the flow law, were introduced by Rice (ref. 7). In his work
this relationship was established using thermodynamic arguments. The authors wish to point out that this concept holds
for each individual inelastic state. The evolutionary law, d^, is similarly derived from the flow potential. The rate of
change of the internal stress is expressed by taking the partial derivative of S2 with respect to the internal stress, and
multiplying by a scalar hardening function dependent on the inelastic state variable (i.e., the internal stress) only. Using
arguments similar to Rice's, Ponter and Leckie (ref. 8) have demonstrated the appropriateness of this type of
evolutionary law.

Example

A preliminary example was performed to illustrate some of the capabilities of the multiaxial constitutive model
developed herein, and to compare the results with those obtained utilizing a J2 model. In addition, the effects of
varying the Willam-Warnke parameters were demonstrated. Figs. 11-13 depict the applied loading condition,
approach, and observed results.

A second article will examine specific time-dependent stress-strain behavior that can be modeled with the constitutive
relationship presented in this article. No attempt is made here to assess the accuracy of the model in comparison to
experiment. A quantitative assessment is reserved for a later date, after the material constants have been suitably
characterized for a specific ceramic material.

Summary/Conclusion

The overview presented in this paper is intended to provide a qualitative assessment of the capabilities of this
viscoplastic model in capturing the complex thermomechanical behavior exhibited by ceramic materials at elevated
service temperatures. Constitutive equations for the flow law (strain rate) and evolutionary law have been formulated
based on a threshold function which exhibits a sensitivity to hydrostatic stress and allows different behavior in tension
and compression. Further, inelastic deformation is treated as inherently time-dependent. A rate of inelastic strain is
associated with every state of stress. As a result, creep, stress relaxation, and rate sensitivity are phenomena resulting
from applied boundary conditions and are not treated separately in an ad hoc fashion. Incorporating this model into a
non-linear finite element code would provide industry the means to numerically simulate the inherently time-dependent
and hereditary phenomena exhibited by these materials in service.
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Fig. 2

CE T!AMIC LIFE PREDICTION ANALYSIS

POTENTIAL
FAILURE =DES
IN HEAT ENGINE
APPLICA7 IONS:

• Time-Independent Failure Modes:
• Fast fracture (tension, compression, shear)
• Buckling

• Time-Dependent Failure Modes:
• Static, dynamic, and cyclic fatigue
• Creep crack growth
• Creep deformation res onse
• Stress corrosion and oxidation
• Impact and contact loading response

Current Capabilities: 	 Needed Capabilities:
3Fast-fracture
3Subcntical Crack Growth

w Higl'i loading
w Low to intermediate temperatures

(2000 °F)

• Creep deformation
• Creep rupture

w Extended duration loading
w Elevated temperatures

(-2400 °F)

rig. i

OBJECTIVE

To present a multiaxial continuum theory which
accounts for time-dependent hereditary material

deformation behavior of isotropic structural ceramics.

OUTLINE: • Introduction to Viscoplasticity
• Flow Potential
• Threshold Function
• Flow Surfaces-Interpretation
• Constitutive Model
• Example
• Conclusions/Enhancements



VISCOPLASTICITY

Phenomenological 	 scalar	 y y Viscoplastic
Approach:	 Potential	 Continuum	 Constitutive

Function	 principles	 Model

(Considers effects at the rnacrostructural level)

Plasticity:
F < 0	 Elastic Behavior
F=O  Yield Surface
F> 0 Not Allowed

Viscoplasticity:
F < 0	 Elastic Behavior
F=O Threshold Flow Surface
F> 0	 Viscoplastic Flow

62

a,

:0
irface

Fig. 3

FLOW POTENTIAL FUNCTION

General form:

S2 = S2 (aij ,al̂ ,T)	 S2 = S2 (aij,aj)
Assume isothermal	

intemal
conditions	 applied

stress	 state
variable

Specific	 2 1	 R ) rm
form:	 = K2µ^fFndF + H J J G dG

	(Robinson, 1978)

where ,u,1, H, n, m, and K are material constants
characterizing viscoplasticity

F=F(I ij, nij^
	

G=G(a ij , aij)

where:	 , ij = Sij — aij
	 Sij = aij — (1 / 3) 6kk 6ij

17 ij = 6ij — a ij
	 a ij = aij — (1 / 3) akk Sij

Fg. 4
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Willam-Warnke Model

Fig. 5

THRESHOLD FUNCTION

• Originally proposed to formulate
constitutive equations for time-
independent classical plasticity behavior

in cement and unreinforced concrete

• Three-parameter model

• Assumes material is isotropic

• Allows different behavior in tension &
compression through the invariant J3

• Admits dependence on the hydrostatic
stress through the invariant Il

F = F(I j, Jy J)

where I,= (113) 6ii

J2 =(112)S,,Sjt

J3 = (113) SijSjA^ki

THRESHOLD FUNCTION
Define:

Inelastic deformation occurs for
stress states where

F (Y ij > ^l ij > > 0

Willam-Warnke
3-Parameter Formulation:

1 1 	 ^Il

_ (1
J2	 I `	 it i1

\2

1

J3 — 3 E iiI jk Y_ ki

1	 1	 [ 2^2 ] 1/2

	

11

^' I1, J2, J3 )
6c	 5-	 +	 — 1

r^g^	 3p6,

7
(Willam and Warnke, 1975)

The dependence on J3 is introduced through the angle of similitude 8

Cos (36) - `3V3 )J3

2 Q2) 3/2

Note that similar relationships exist for scalar function G.
Fig. 6
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THRESHOLD PARAMETERS

6r = Uniaxial tensile stress
a, = Uniaxial compressive stress
Qb, = Equal biaxial compressive stress

Yt
=6t Ybc=6bc

6c	 6c

Cutting Plane View

Tensile Meridian, B= 0J2
—

Z7 - - _	 6r Il

F=Oz''

Q'	P K

Compressive Meridian, B= 7r

6	 Q22 (MPa)r
6

r 

(MPa)

-3	 -2 -15 -1 -05 0
-05

-1

15	 shold
SurfaceF=0	 .2

6C

-3

P = Ybc Yt

Ybc — Yt

C

1/2

6)	
Ybc Y,

rt 	
5 J 2Ybc + Yt

rc —

(51)1/2 
rYbcY 

3 Ybc Y + Ybc — Y

RS. 7

FLOW SURFACE'S
Normality Condition:

The direction of the inelastic strain rate vector for each stress point on a given surface is
directed normal to the flow surface F=constant.

• Flow surfaces eventually cluster forming a limiting surface.

• Implies large changes in elastic strain rate for only small stress changes.

Fg. 8a

7	
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tea)

va)

FLOW SURFACES
Convexity Condition:

Wiliam -Warnke: 0.5 r, <rf S r,.

UM (MPa)

.7	 -6	 -5

f	 c	 0
b	 /	 all (M1fP2)

a

Surface 
3

— a— 0.726 r,

ti 0582 r,

c — 0.531 r,

d— 0-S101,
e — 0.496 r,

f — 0.487 r,

• Assures stable material behavior (i.e., positive dissipation of inelastic work).

• Implies that level surfaces of a function are closed surfaces.

Fg. 8b

FLOW S URFACES
(Degeneration to "simpler" models)

Limiting Conditions:
Q2 (MPa)	 an (MPa)

1

6c o.s 61 6c a, 1 (MPa)	 o.s	
6r =

a„ (MPa)
-J -25	 -IS . 1 -0S	 OS	 1	 5	 _

-0.S	
-IS	 -1	 -0.1	 O5	 .5	 ..

-0.7

F=0
CIL .-5	 F=0

Willam-Warnke	 Drucker-Prager	 Von Mises
("Triangle" in n-plane)	 (Circle in 7z-plane)	 (Circle in n-plane)

3 Parameters	 2 Parameters	 I Parameter
rt , ro P	 ro I P	 ro

rc=rt=ro	 rc= rf=ro

	

Mg. 9	 P --:^ °

g
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CONSTITUTIVE MODEL

The potential nature of S2 is exhibited in the extended normality structure

Flow Law:
_ do	 2 j2 8i .

£IJ	
daii	 Eil = CO 

Clsii + C2E
i1

+ Cg Y-19^gi _	 3 I

[Rice (1967), (1971)]

Limiting Conditions: ♦ y	 J2 Model

r. = t=ro andp -->	
^iJ C0[C2Y-iJJ

ll

Evolutionary Law:

a•• - - h a '^
	 r	 2 j2S^i 

11`^	 aaii * ay =h eii -CH
I
C	 CSaii +C6^ai4a9i -	

lJ3

[Ponter & Leckie (1976),
Ponter (1976)]	 where h is a hardening function dependent on the internal stress

Limiting Conditions: 	 ♦ 	 J2 Model
ro =r =ro and 

a ij = h {^ i^ - C4[C5 a î ] }
Fig. 10

Example: Willam-Warnke .Model vs. J2 Model

611

	

10 0 0	 APPROACH
6ii = 0 0 0 ksi

	

^ ^ ^	 Viscoplasticity
parameters

N, R, H, n, m, b

Willam-Warnke

Willam-Warnke Model:
parameters

( 6t, (Tc, 6bc) or (p , rt, r.)
Subcase FA] Subcase ® Subcase

6t 	 = 0.2 6f	 = 0.2 6t	 = 0.5 Computer Algorithm
Gc	 = 2.0 ac = 2.0 6C	 = 1.0 (Constitutive Model)

abc = 2.32 Gbc = 0.2 ab, = 1.5

J2 Model:
6t	 = 1 . 732 • Creep Curve (Strain vs. Time)

6c	 = 1.732
State Variable vs. Time
Flow Surface

abc = 1.732
Fig. I I
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Willam-Warnke Model vs. J2 Model
CUTTING PLANE VIEW

Willam-Warnke Model
-Threshold Parameters

6t # 6c # 6bc

(For typical ceramic4 6t < 6c < 6bc

Tensile Meridian, B = 0 	 ( 4) >n

6bc	 6t	 II

F=^0 1

P K---

CompressiveMeridian, B=0

_ a t 6bc
P 

_ 
6c (abc at)

• Meridians are linear

• Meridians intersect hydrostatic axis
Fig. 12

J2 Model
-Threshold Parameters

6t = 6c = 6bc

(	 I/2

	

Tensile Meridian, e= 0 	 l ^2

	

Cc	 at

I^

F=0

_	
P

6bc

Compressive Meridian, e= 0

0---^—

• Meridians are linear

• Meridians are parallel

Willam-Warnke Model vs. J2 Model

J2 Model

• Poisson effect (v ;^ 0.5)

• £11 = -2E22 = -2E33

Fg. 13.
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G, = 0.2

a = 2.0

a, = 0.2

20	 40	 60	 80	 100

Time (hr)
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0.015

0.01

w^ 0.005

c	 0

rn -0.005

-0.01

-0.015

-0.02
q 0
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0.02

	

0.ols	 a, = 0.5
ar = 1.0

	

0.01	 a = 1.5
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W	 o

	

`r' -0.005	 F33

.001

-0.015
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Willam-Warnke Model vs. J2 Model
Willam-Warnke Model

o2

	

0.015	
£11

0.01

'0 .005
c
— o

0.005

-0.01

-0.015

-0.02
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ATime (hr)

a, = 0.2
ac = 2.0

a,, = 2.32

Fig. Bb

SUMMARY

• Fundamental concepts of viscoplasticity

• Specific form for the potential function

• Multiaxial derivation of viscoplastic constitutive model

• Preliminary applications of constitutive model

FUTURE ENDEAVORS

• Incorporate model into computer algorithm
• Develop experimental test matrix

• Identify parameters applicable to ceramics
• Model phenomena such as creep, stress relaxation,

strain-rate sensitivity, etc.

• Develop user-defined subroutines for commercial
FEA software packages

Fig. 14
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CREEP LIFE PREDICTION OF CERAMIC COMPONENTS USING
THE FINITE ELEMENT BASED INTEGRATED DESIGN

PROGRAM (CARES /CREEP) *

OSAMA M. JADAAN
University of Wisconsin-Platteville

Platteville, Wisconsin

Lynn M. Powers**
Case Western Reserve University

Cleveland, Ohio

and

John P. Gyekenyesi
NASA Lewis Research Center

Cleveland, Ohio

Introduction and Theory

The desirable properties of ceramics at high temperatures have generated interest in their use for
structural applications such as in advanced turbine systems. Design lives for such systems can
exceed 10,000 hours. Such long life requirements necessitate subjecting the components to
relatively low stresses. The combination of high temperatures and low stresses typically places
failure for monolithic ceramics in the creep regime (ref 1).

The objective of this work is to present a design methodology for predicting the lifetimes of
structural components subjected to multiaxial creep loading. This methodology utilizes
commercially available finite element packages and takes into account the time varying creep
stress distributions (stress relaxation). In this methodology, the creep life of a component is
divided into short time steps, during which, the stress and strain distributions are assumed
constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant
creep rupture criterion (ref 2). For components subjected to predominantly tensile loading, failure
is assumed to occur when the normalized accumulated damage at any point in the component is
greater than or equal to unity.

Some ceramic components, such as vanes and rotors, are subjected to concurrent tensile and
compressive stress fields. For such components, failure generally starts at or near the most highly
stressed point and subsequently propagates across the section. The creep rupture life for members
subjected to concurrent tensile and compressive loading is divided into two stages. The first is
called the stage of latent failure (damage initiation). During this stage, the damage accumulates

* Work funded under NASA Grant NAG3-1968 and NASA Cooperative Agreement NCC3-5 18.
** NASA Resident Research Associate at Lewis Research Center.
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until it reaches unity at some point within the component, and failure begins. Hence, this portion
of life for members subjected to concurrent tensile and compressive loading represents the entire-
predicted life for predominantly tensile components. Damage due to compressive stresses is
assumed to be negligible, although in this methodology, it can be accounted for very easily if it is
determined to be of any significance. Subsequently, the second stage, named the damage
propagation takes place. During this stage a damage front defined by the condition D=1 will
travel through the body or surface of the component. Component failure occurs at the end of this
stage when its total load carrying capacity is expended. In CARES/Creep (Ceramics Analysis
and Reliability Evaluation of Structures /Creep), this means that failure is assumed to occur when
D=1 at the periphery of the expanded critical damage zone. The corresponding time will be the
creep rupture life for that component. This size of the critical damage zone corresponding to
creep rupture failure varies depending on the load conditions and component configuration. One
estimation for the duration of the propagation stage is to assume it equal to the time it takes the
damage zone to penetrate the initial tensile stressed portion of the structure.

Two examples were chosen to demonstrate the viability of the creep life prediction methodology
presented above. The integrated design code CARES/Creep (Fig. 7) which utilizes this damage
accumulation model was used for this purpose. The first example, silicon nitride NCX-5100
notched tensile specimen, represents the application of this approach to predicting the creep
rupture life for components subjected to multiaxial predominantly tensile creep loading. The
second example, siliconized silicon carbide KXO1 bend specimen, represents the application of
this approach to components subjected to uniaxial tensile-compressive creep loading. It was
found that the methodology described in this paper yielded good creep rupture life predictions for
both examples, given the amount of scatter usually found in the creep rupture life data.

Examples

1) Notched Tensile Specimen:
The creep experiments were conducted on two types of silicon nitride NCX-5100 specimens.
First, smooth tensile tests were investigated in order to characterize the creep response of the
silicon nitride. Second, experiments on notched tensile bars (Fig. 8) provided a multiaxial stress
state, especially near the notch root, where the creep life may be predicted from data obtained
from the smooth tensile specimens. Creep data used in this example were obtained from ref 3.

Using CARES/Creep, the secondary creep rate parameters, C 7 , C8 , and C, 0 , were determined to
be 7.858x I O-"/Pa' .7

' hour, 6.75, and 127560°K, respectively. Figure 9 shows the experimental
secondary creep strain rate vs. the analytical secondary creep strain rate. This figure shows that
the data scatters relatively close to the 45° line, indicating that the Norton secondary creep rate
model (Fig. 9) was successful in describing the secondary creep behavior of the NCX-5100
material.

Four notched bars were tested (ref 3). The reduced section average stresses were 105, 120, 135,
and 150 MPa. The maximum principal stress distribution for the 120 MPa reduced average
section stress specimen as a function of time is shown in Fig. 10. A multiaxial stress state exists

2
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in the vicinity of the notch root, while the stress state away from the notch is constant and
uniaxial. When the load is initially applied, time=0, the maximum principal stress is located at
the root of the notch. As time progresses, the stress relaxes and, the local maximum moves into
the interior of the notched bar. This stress relaxation, which occurs due to nonlinear creep
deformation, will influence the damage calculations. This is because it was found that the
location of the maximum cumulative damage also moves away from the surface as time elapses,
indicating that failure could originate at the interior of the specimen.

The Monkman-Grant criterion in association with the damage model was used to predict the
creep life for the notched specimens. Since this component is entirely subjected to tensile stress
state, failure was assumed to occur when D first reached unity at any point. The Table shown in
Fig. 11 gives a summary of the failure predictions for the notched bars as a function of their
reduced section stress. The predicted lives using the methodology described in this paper and
computed via CARES/Creep for these specimens compare well to the experimental failure times.
Figure 11 also shows a cumulative damage map for the 120 MPa specimen after 80 hours. The
cumulative damage is equal to one and is located near to but not directly the root of the notch.

2) Bend bar
This example is presented to demonstrate the methodology discussed in this paper for predicting
the creep life of ceramic components subjected to simultaneous tensile/compressive stresses.
Wiederhorn et al. (ref 4) conducted creep testing on the KXO1 siliconized silicon carbide material
at 1300°C using flexure, tensile and compressive specimens. They found that this material spent
most of its life in the secondary creep region. Further, they found that the KXO1 material displays
significant asymmetric creep behavior, and that in both tension and compression, the creep rate
displayed a bilinear power (Norton) law behavior with a transition point at a threshold stress
(Fig. 13). In this example, CARES/Creep was used to predict the creep lives of four point bend
specimens using the tensile and compressive creep and creep rupture properties of the material.
These predicted lives were then compared to the experimental ones.

Figure 14 displays the evolution of stress as function of time (stress relaxation) for the bar tested
at 250 MPa. The stress distribution in the bend bar converged to its stationary value ten hours
after the load was applied. This figure also shows how the neutral axis shifts towards the
compressive region as the specimen creeps.

Figure 15 show the evolution of damage in the flexure bar tested at 250 MPa initially, at t=14.5
hours corresponding to the time when the damage first reached unity (latent stage of failure), and
at t=80 hours corresponding to the time when the final predicted failure occurred (end of damage
propagation stage). In this analysis, it was assumed that failure would occur when the initial
portion of the bend bar stressed in tension is damage (half the depth). The table shown in Fig. 16
indicates that excellent agreement between experimental and predicted creep lives exists for the
bend bars.

Several advantages are apparent to this creep rupture life methodology. First, this methodology
yields a cumulative damage map for the component showing the critical locations where failure
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would originate. This capability is very helpful in the redesign of such components. In creep type
loading applications, it is not a trivial task to predict the location of failure since the multiaxial
stress components redistribute as time elapses. Thus, failure will not necessarily occur at the
location where stresses are highest at the beginning of loading or at the time of failure, but can
take place elsewhere, as shown by the notched tensile specimen. Second, this design
methodology is capable of incorporating the primary creep strain effect into the analysis
(influences the stress state) which could predict shorter lives (conservative predictions) compared
to when only the secondary creep stain effect is used. Third, any equivalent stress criterion can
be used to predict the component's life. As multiaxial creep data emerge in the future and we
understand better how ceramics fail under such applications, the CARES/Creep code can be
modified accordingly. Fourth, any creep rupture criterion (Continuum damage mechanics,
Larson-Miller, minimum commitment method, etc.) can be utilized to compute the damage and
predict life.
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Objective

To develop an integrated design program for predicting the lifetime of
structural ceramic components subjected to multiaxial creep loads.

This methodology utilizes commercially available finite element
packages and takes into account the time varying creep stress

distribution (stress relaxation).

Fig. 1

Constitutive Creep Laws

Total Creep Strain
Ecr - £Primary + £Secondary

Primary Creep Strain Increment — Bailey-Norton Law

C [_
DEp = C 1 aC2 tC3 exp	 T At

Secondary Creep Strain Increment — Norton Law

[_C
DES = C7 aC8 exp	 T0 At

where a is the stress
t is the time
T is the absolute temperature
C i are experimentally determined constants

Fig, 2
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Multiaxial Creep Model

Flow Rule

£i^r= )^ Sit

Proporl:ionality Constant

= 3	 d £cr

26e dt

Secondary Creep Strain Rate

3	
C -1 p [-C101

^cr _ 	 S••C 6 8 ex	 1ij	 2	 i1	 e	 T

where S id is the deviatoric stress

Fig. 3

Effective Stress

6e = 1 {(61—a2)2 +(02—(53) 2 + (a3—a1)211/2

EffectivE! Secondary Creep Strain

.-cr. = C^ 6e 8 t exp L C101

where 6 1 , 62, and 63 are the principal stresses

Fig. 4
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Creep Rupture

Monkman-Grant

tf = b1 £s- b2

Modified Monkman-Grant
Temperature Stratification

Intf =d l -d21nEs+ d3

where bi and d i are constants

Fig. 5

Damage Assessment

Damage

0<-D<1

where	 D = 0 for an undamaged component
D = 1 for a failed component

N	 Atl

D=
i=1
	 exp [ d 1 - d2 In £si + d3/Ti

where At i is the duration of the i th time step
N is the number of time steps

Fig. 6
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NCX-5100 Silicon Nitride

Axisymmetric Model

Temperature = 1370°C

Constant Applied Load

Integrated Design Program

I Uniaxial Creep Tests I
Component Geometry & I

Loading Conditions

II
CARE:)/Creep	 II

Parameter Estimation

Model Generation
Primary & Secondary Creep Strain
Rate Parameters

I	 ANSYS Nonlinear	 I
Finite Element Analysis

Monkman—Grant and 	 Time—Varying Stresses
Modified Monkman—Grant 	 and Temperatures
Parameters	 •

CARES/Creep
Damage Assessment and

Life Prediction

Fig. 7

CARES/Creep Multiaxial Tensile Creep Benchmark
Notched Tensile Specimen — Norton Company

Axisymmetric Model
1047 PLANE82 elements

Height = 8.9 cm
Model Height = 0.72 cm
Diameter = 0.32 cm
Notch Radius = 0.032 cm

Fig. 8

Paper 16	
8



100 hours

Parameter Estimation
Silicon Nitride - N CX-5100

10-'

a^ 10-4
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E= 10-6
n.
X
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10-6	 10-5	 10-4	 10-3

Analytical creep rate (1/hr)

37 Tensile Specimens

Temperatures = 1275-1425 oC

Applied Load = 120-250 MPa

Fig. 9

Stress Relaxation Near the Notch Root
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Notched Tensile Specimen

Damage Map Results
Damage

0 0
Nominal Reduced	 Experimental Predicted

C 0.11 Section Stress	 Failure Time Lifetime
(MPa)	 (hours) (hours) 

0.34 _

0.45 105	 314 179

0.56 120	 44 80
EM 0.68 135	 39 42
M. 150	 3.5 17

0.79
0.90
1.01

CriterionMonkman Grant

Fig. 11

CARES/Creep Uniaxial Tensile - Compressive
Creep Benchmark.

Flexural Specimen - NIST

KX01 Siliconized Silicon Carbide

Plane Stress Model

Temperature = 1300°C

Constant Applied Load 	
Half Symmetry Model

1200 PLANE82 elements

Height = 4.0 mm
Length= 50 mm
Depth = 3 mm

Fig. 12
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u —326
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IM 
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ME 122
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Parameter Estimation
Siliconized Silicon Carbide - KX01

Uniaxial Tension and Compression Tests at 1300°C

n

10-3	• i
r	 •
a^	 Tension	 •	 •
CO 10-4
a	 •
a^

U 10-5	 n 	 Compression
n

60	 80	 100 120 140 160	 200	 250 300

Stress (MPa)

Material displays asymmetric bilinear creep behavior in tension and compression

Fig. 13

Stress Relaxation

Maximum Elastic Stress=250 MPa

Stress

Fig. 14
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Maximum Elastic Stress=250 MPa

MPa

C 0

.113095

.226189

.339284

.452379
565473

678568
Time = 14.5 hrs 791663

.904757
1.018

^J
0
1_

>1

Time = 80 hrs

Fig. 15

Flexure Specimen

Results

Initial lMaximum Experimental Damage Predicted
Elastic Stress Failure Time Initiation Lifetime

(MPa) (hours) (hours) (hours)

200 830 200 830

250 55 14.5 80
300 12 1.2 8.6
350 1.3 0.12 1.3

Secondary Creep
Monkman-Grant Criterion

Fig. 16
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Summary and Conclusions

A general purpose creep life prediction code, CARES/Creep, has been
developed. It is integrated with ANSYS finite element software, and can be
used to design monolithic ceramic components.

Creep life was predicted based on accumulated damage and the
Monkman-Grant and the Modified Monkman-Grant failure criteria.

The creep life was well predicted for components subjected to multiaxial
tensile and uniaxial tensile-compressive stress states.

Life prediction for a component with simultaneous tensile-compressive
stress states is a two step process involving damage initiation and
propagation.

This creep life prediction methodology results in damage maps showing
critical regions and, hence, can be used in the components design.

Fig. 17

Focus of Future Research

Creep Response
Multiaxial Tensile-Compressive Modeling

Continuum Damage Mechanics

Creep Rupture

Probabilistic Methods

Creep-Fatigue Interaction

Integration with CARES /Life

Fig. 18
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CARES/LIFE SOFTWARE FOR DESIGNING
MORE RELIABLE CERAMIC PARTS

NOEL N. NEMETH
NASA Lewis Research Center

Cleveland, Ohio

Lynn M. Powers'
Case Western Reserve University

Cleveland, Ohio

and

Eric H. Baker`
Cleveland State University

Cleveland, Ohio

Introduction

Products made from advanced ceramics show great promise for revolutionizing aerospace and
terrestrial propulsion, and power generation. However, ceramic components are difficult to
design because brittle materials in general have widely varying strength values. The
CARES/Life software (refs. 1 to 5) eases this task by providing a tool to optimize the design and
manufacture of brittle material components using probabilistic reliability analysis techniques.

Probabilistic component design involves predicting the probability of failure for a
therm omechanically loaded component from specimen rupture data. Typically, these
experiments are performed using many simple geometry flexural or tensile test specimens. A
static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and
SCG (fatigue) parameters are then determined from these data. Using these parameters and the
results obtained from a finite element analysis, the time-dependent reliability for a complex
component geometry and loading is then predicted. Appropriate design changes are made until
an acceptable probability of failure has been reached.

CARES/Life is an integrated package that predicts the probability of a monolithic ceramic
component's failure as a function of time in service. It couples commercial finite element
programs -- which resolve a component's temperature and stress distribution -- to reliability
evaluation and fracture mechanics routines for modeling strength-limiting defects. These
routines are based on calculations of the probabilistic nature of the brittle material's strength.
CARES/Life accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the

'NASA Resident Research Associate at Lewis Research Center.
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power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution
function is used to characterize the variation in component strength. The effects of multiaxial
stresses are modeled using either the principal of independent action (PIA), the Weibull normal
stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are
estimated from rupture strength data of naturally flawed specimens loaded on static, dynamic, or
cyclic fatigue.

The capability, flexibility, and uniqueness of CARES/Life has attracted much interest. Initially,
the program was developed with an emphasis on technical features and less regard was given to
ease-of-use. However, over time the program became more intricate -- requiring a higher level
of expertise needed to achieve a desired result. Based on feedback from users, who typically
used the program on an intermittent basis, it was found that the program's capabilities were
underutilized because of it's complexity. First and foremost users wanted an easier to use
program. To begin to address this criticism, CARES/Life has been upgraded with the following:

• Data files to create graphic templates for common business presentation software such as
Lotus Freelance Graphics. This feature, known as CARES/Graphics, produces Weibull and
fatigue plots of specimen rupture data and estimated parameters.

• An interactive input preparation program has been prepared which guides the user through
various program control options and data input formats. This program, known as CARES/Input,
is written in FORTRAN 77 and operates on PC's as well as Unix machines.

• A new interface program between the ANSYS finite element analysis program and
CARES/Life. This program, known as ANSCARES, has a finite element model geometry
surface recognition feature allowing surface flaw reliability to be performed without the
previous requirement of shell elements being attached to the model's surface nodes. This
program also has an expanded element library, including axisymmetric elements.

• A grinding damage model (ref. 6) has been added to account for flaws introduced from
finishing (grinding) operations on components. This model is based on Batdorf methodology
modified to account for non-random (anisotropic) orientation of flaws.

• Capability to use a finite element model of a specimen geometry and loading to obtain
volume and area normalized Weibull and fatigue parameters.

CARES/Life has been in high demand world-wide, although present technology transfer efforts
are primarily focused on U.S.-based organizations. Success stories can be cited in several
industrial sectors including aerospace, automotive, biomedical, electronic, glass, nuclear, and
conventional power generation industries. In 1997 Lewis Research Center (LeRC) in
partnership with Philips Display Components Company (PDCC) and Corning Incorporated, won
the American Ceramic Society Corporate Technical Achievement Award for the design and
manufacture of an improved television picture tube (by PDCC) for the U.S. consumer market.
Also an R&D 100 Award from R&D Magazine was recieved in 1995, the NASA Software of
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the Year Award, and a Federal Laboratory Consortium Technology Transfer Award were
received in 1994.
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Outline

• Probabilistic ceramic component design

• CARES/Life computer program

• Ease-of-use enhancements

• Technology transfer

Conclusion

Fig. 1

Objective

Develop probabilistic based integrated design
programs for the life analysis of brittle material
structural components

Fig. 2



Typical Defect Populations Found in
Engineering Ceramics Manufactured

From Powders

• Grain boundaries

• Triple junctions

• Crystallities

Frequency

^^	 • Agglomerates

`^	 • Chem. inhomogeneities

• Inorganic inclusions

• Organic inclusions

`^	 • Pressing defects

• Machining flaws
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Defect size, µm

Fig. 3

Fracture Map of Hot Pressed Si3N4
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• Material failure characterization

0 Rupture tests of many simple specimens

0 Fast—fracture experiments: Estimate
Weibull parameters

0 Static, dynamic, or cyclic fatigue experiments:
Estimate fatigue parameters

• Fractographic examination of
L

ruptured specimens to determine. `o
the mode of failure

• Component finite-element analysis

0 Thermal analysis
0

p
0 Stress analysis

11 Component reliability evaluation

0 Specify probabilistic failure theory, crack
type. fracture criterion, crack growth law,
Weibull parameters, and fatigue parameters

• Design optimization

0 Risk-of-rupture intensity plot
0 Generate design diagrams: Failure probability

versus time. strength—probabilit y—time (SPT)
diagrams, etc.

4—Point Flexure

Weibull Plot

Uniaxial Tension

Dynamic Fatigue
c^

ra

h
L

d

G^

Fracture stress, MPa

FEA Model

4..

0c.
a

Loading rate, MPa/s

Design Diagram

Probabilistic Component Design Procedure
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Time, hr
Fig. 5

CAIRES/Life

CeramicsAnalysis and Reliability Evaluation of Structures
Prediction Program

• Predicts the probability of a monolithic ceramic
components failure relative to its service life

• Couples commercially availlable finite element
programs to probabilistic design

Fig. 6
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NASA/CARES - Modular Format

Finite Element Interface:
	

Parameter Estimation:
Output from FEA codes	 Weibull and fatigue
(stresses, temperatures, 	 parameter estimates

volumes)
	

from specimens

1% ^_ kfrR^eliability Evaluation:
nt reliability analysis
s "hot spots" and the
 rupture intensity

Fig. 7

CARES/Life Capabilities

• Component reliability evaluation
— Fast-fracture
— Time- or cycle-dependent
— Multiaxial stress states
— Proof test loads
— Random or non-random flaw orientation (new capability)

• Material characterization
— Any specimen geometry (new capability)
— Instantaneous load
— Static load
— Constant stress rate load
— Cyclic load

Fig. 8
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Version 5 - New Features and Changes
Enhance Functionality and Ease-of-Use

CARES/Graphics: Graphical rendering of specimen
rupture data; Weibulll plots, static fatigue,
dynamic fatigue, cyclic fatigue

CARES/Input:	 An interactive input preparation program

ANCARES:	 ANSYS FEA-•CARES/Life interface
(Most CARES/Life users have ANSYS)

WinCARES: A Windows based GUI shell controlling
the various FORTRAN-based numerical
algorithms (Under construction)

Fig. 9

CARES/Grraplrics
User friendly graphics templates for common business presentation software

Two Parameter Weibull Plot of Fast Fracture Data
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• Automatic detection
and modeling of
component surfaces

• Component risk of
rupture rendering

• Robust element
library (solid, shell,
axisymemetric)

CARESIInput
Interactive Input File Preparation for CARES/Life

CARES/Input

Keyword filter
Selects active and defaulted keywords.

• Simplifies the "bewildering array
of input files and keywords"
confronting the user

• Step-by-step walk through of input
file creation

• Error checking diagnostics

CARES/Life Keywords
Automatic prompting of keywords

• Master Control Input
• Material Control Input
• Temperature-Dependent

Material Control Input

Error checking
Check individual keywords and all keywords
collectivel y for errors or inconsistencies.

Write to Template file I
Fig. 11

ANSYS—CARES Interface

Fig. 12
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ININCA,RES: A GU[ for the CARES/Life algorithm

1-1 	 WINCARES	 1 'W
Preferences Help

VVINCARES
Version 1.0 (beta)

A Windows based Graphical User
Interface for CARES/Life„

CARES / FEA:

q̂ CARES / Input:

CARES / Life:

Interface Options

Interactive Input Facility
Parameter Estimation and
Component Reliability

® CARES / Graphics: Presentation Software Options

Fig. 13

Diverse Range of CARES/Life Applications

Aerospace/Terrestrial Power & Propulsion Applications
• Turbocharger rotors
• Rocker arm and cam followers
• Radient heater tubes
• Prototype ceramic turbines
• Poppet valves
• Combustors
• Heat exchangers

Bioengineering Applications
• Dental crowns
• Hip implants

Other Dual-Use Applications
• Infrared transmission windows
• Ceramic packaging for microprocessors
• Cathode ray tubes

Fig. 14
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Successful Technology Transfer

NASA
Technology
Innovations

• Customer Focus

• Cooperative Efforts 	 + Technology Transfer

• Dual—Use Technology 	 Industry
Government
Academia

Space &
"Dual—Use"

Aeronautics
Applications

Applications

Fig. 15

Requests for CARES/Life in Past Year (U.S.)
AlliedSignal APU Turbine Rotors
Army Chip Packages and Electronic Hardware
Battelle Composites Consortium
Caterpillar Various Engine Parts
Ceramatec Fuel Cells, Oxygen Generators, Sensors
Cummins Fuel Injectors
Los Alamos Nat. Lab. Alumina Windows for Particle Accelerators
MIT/ARPA Micro Gas Turbines
3M Various Ceramic Parts
NASA Ames Reusable Spacecraft Thermal Protection
NGK Various Ceramic Parts
Novellus Semiconductor Wafer Manufacturing Equipment
Snaprogetti Heat Exchangers, Chemical Reactors
Teledyne TCAE Auto. Gas Turbines
Thomson Television Picture Tubes
U. Of Mass. Research, and Teaching
U. Of Penn. Research
Westinghouse Submarine Reactor Thrust Bearing

Fig. 16
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Evacuated
tube stresses

NASA/CARES Dual-Use Ceramics
Design Examples

ZnSe Vacuum Chamber Window	 Television Picture Tube

Fie. 17

NASA LeRC's innovative CARES/Life
software design tool allowed Philips to develop

superior glass television picture tubes

• Manufactured over 1 million components

• Realized cost savings in excess of $1 million/year

• Optimized structural design for safety, reliability,
performance, and efficiency

• Optimized component fabrication process through use
of design-for-manufacturability (DFM) techniques

• Reduced glass consumption, tube weight, hazardous waste,
and x-ray emissions

Fig. 18
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2
,CARES Award-Winning Software

* 1996 American Ceramic Society Corporate
Technical Achievement Award

* 1995 R&D 100 Award

* 1994 NASA Software-of-the-Year Award

* 1994 Federal Laboratory Consortium
Technology Transfer Award

Fig. 19

Conclusions

• Lighter weight and more durable ceramic components
can be designed using CARES/Life

• Program ease of use is enhanced with new graphics,
input preparation, and finite element interface modules

• Diligent technology transfer efforts have led to
successful employment of CARES/Life across a diverse
range of industrial sectors

Fig. 20
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FIBER CONTRACTION APPROACHES
FOR IMPROVING CMC PROPORTIONAL LIMIT

JAMES A. DiCARLO
NASA Lewis Research Center

and
Hee Mann Yun*

Cleveland State University
Cleveland, Ohio

Introduction

The fact that the service life of ceramic matrix composites (CMC) decreases dramatically for stresses
above the CMC proportional limit has triggered a variety of research activities to develop microstructural
approaches that can significantly improve this limit. As discussed in a previous report (ref. 1), both local
and global approaches exist for hindering the propagation of cracks through the CMC matrix, the physical
source for the proportional limit. Local approaches include: (1) minimizing fiber diameter and matrix
modulus; (2) maximizing fiber volume fraction, fiber modulus, and matrix toughness; and (3) optimizing
fiber-matrix interfacial shear strength; all of which should reduce the stress concentration at the tip of
cracks pre-existing or created in the matrix during CMC service. Global approaches, as with pre-stressed
concrete, center on seeking mechanisms for utilizing the reinforcing fiber to subject the matrix to in-situ
compressive stresses which will remain stable during CMC service. Demonstrated CMC examples for the
viability of this residual stress approach are based on strain mismatches between the fiber and matrix in
their free states, such as, thermal expansion mismatch and creep mismatch (cf. refs. 1 and 2). However,
these particular mismatch approaches are application limited in that the residual stresses from expansion
mismatch are optimum only at low CMC service temperatures and the residual stresses from creep
mismatch are typically unidirectional and difficult to implement in complex-shaped CMC.

The general objective of the present research is to determine the technical feasibility for improving the
CMC proportional limit by a strain-mismatch  approach which is based on the high-temperature in-situ
axial contraction of the reinforcing fibers. The theory and technical details of this concept are explained in
Fig.l. The prime motivation for examining such an approach was the observation, during fiber research
studies at NASA Lewis, that some polycrystalline ceramic fibers currently being utilized as CMC
reinforcement will display large axial contractions under certain high temperature conditions (refs. 3 and
4). These contractions occur even under the application of high tensile stress, suggesting that they should
also occur within CMC, even under the back-stresses provided by the matrix during compression. As an
initial step toward understanding the feasibility of the fiber contraction approach, the objective of this study
(Fig. 2) was to measure and model the effects of time, temperature, and tensile stress on the free-state axial
contraction of SIC fibers by two mechanisms: (1) decomposition and densification and (II) anelastic creep
recovery.

Contraction Mechanism I: Decomposition/Densification

The underlying theory for Mechanism I (Fig. 3) is the fact that due to their processing approach, some
polymer-derived fibers contain unstable oxide impurity phases which are not eliminated at the maximum
production temperatures for the fibers (typically near 1200°C). Thermally treating these fibers above this

* NASA Resident Research Associate at Lewis Research Center
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temperature will result im decomposition of these phases, mass loss by volatilization of carbon and silicon
monoxide, densification of the resulting microstructure, and axial and radial contraction of the fiber. Using
the experimental approach described in Fig. 4, the time- and temperature-dependent contraction strain
results shown in Fig. 5 were obtained for multifilament tows of polymer-derived Hi-Nicalon and Nicalon
fibers. For these data, the tows were held at effectively zero stress in an argon environment. Applying
thermal activation theory (ref. 5), the contraction data for the lower oxygen-containing and thus more
technically-viable Hi-Nicalon fiber were found to be closely modeled by the master contraction curve
shown in Fig. 6. The hict that all the data do not fit this curve can possibly be explained by measurement
difficulties during the initial, very rapid, decomposition stages at the higher temperatures.

Two primary concerns for applying Mechanism I to CMC are (1) concurrent creep of the fiber during
contraction so that the matrix back-stresses could possibly negate the benefits of contraction, and (2) loss
of significant fiber tensile strength due to the decomposition process. Fig. 7 for Hi-Nicalon fibers in single
and tow form show that as long as tensile back-stresses do not exceed -100 MPa, the fibers can indeed
achieve a net contraction of —0.1%, a minimum desirable level since CMC proportional limits are currently
less than this value. But, as Fig. 8 shows, Hi-Nicalon tows treated in argon can lose approximately 50% of
their initial room-temperature strength and that, for treatments in vacuum, the strength loss can be even
worse under certain conditions. Thus, as discussed in Fig. 9, for optimum application of contraction
Mechanism I using Hi-Nicalon fibers, the CMC should preferably contain a large volume fraction of fibers
and a low modulus matrix in order to minimize effects due to matrix back-stresses and fiber strength
degradation. Additional unknown concerns could be chemical alteration of the fiber-matrix interface by the
fiber decomposition products, and alteration of the decomposition kinetics by the fiber interfacial coating or
by the matrix.

Contraction Mechanism II: Anelastic Creep ]Recovery

The underlying theory for contraction Mechanism II (Fig. 10) is based on the transient creep behavior
observed for all SiC fibers tested to date (ref. 6). This transient behavior indicates that during creep at a
constant level of applied stress, internal stresses (associated with grain boundary sliding) build up in the
fiber microstructure which may eventually fully oppose the applied stress, resulting in saturation of creep
strain. When the creep stress is completely removed, it has been observed that these internal stresses drive
the creep strain back towards zero at a rate dependent on time and temperature (anelastic behavior; cf. ref.
4). It has also been observed that under zero back stress, the amount of recovered strain is some fraction of
the total creep strain and that this fraction decreases with increasing creep strain (ref 7). Thus, as
discussed in Fig. 11, if thermally-stable SIC fibers were pre-crept, for example, by tensioning devices
during or after fiber production, these fibers with their internal stresses could then be inserted into CMC by
use of matrix fabrication time-temperature conditions less than those used during the pre-creeping stage.
The CMC could then be thermally treated above the matrix fabrication temperature to allow in-situ  fiber
contraction in which the fiber internal stresses act to overcome the matrix back-stresses. Thus high applied
creep stresses are needed to more easily overcome matrix back-stresses; but they can also be beneficial for
achieving a given creep strain in a cost-effective short time.

For those studies aimed at measuring and modeling Mechanism II, SCS-6 monofilaments were used to
generate data for tensile creep and recovery. This large-diameter SIC fiber was chosen because bend data
exist for its creep/recovery behavior and because this behavior should be typical of thermally-stable small-
diameter SiC fibers which are more technically viable for complex-shaped CMC. The experimental
approach (Fig. 12) focused on determining (1) whether time- and temperature-dependent creep-recovery
models developed previously from bend tests on SCS-6 fibers also applied for tensile tests on SCS-6 and
(2) whether Mechanism II could provide tensile contraction strains (i.e. recovered strains) greater than
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0.1% after the application of a high applied creep stress (750 MPa). The recovered strain versus creep
strain results shown in Fig. 13 pertain to both questions. First, the solid curves calculated from SCS-6
bend recovery data and an anelastic creep model (ref. 7) show that although the recovered strain (for zero
back-stress) increases with increasing creep strain, its fraction of the creep strain decreases. However, at a
given total creep strain, the recovered strain can be increased by increasing the stress applied during the
creep stage. These curves should apply in a qualitative manner to all SiC fibers which display transient
creep. The close agreement between the 800 MPa predicted curve and the two SCS-6 data points supports
the use of this anelastic model to also predict the amount of tensile creep recovery after achieving a given
creep strain level. To estimate the conditions needed to achieve this creep strain, one can use the empirical
equation shown for the abscissa in Fig. 13. Using this equation, NASA studies have determined the
empirical creep constants for all SiC fibers of current technical interest (ref. 6). For the second question, it
can be observed in Fig. 13 that the recovered strains for the SCS-6 tensile data were — 0.3%, a value well
above the level needed for possible CMC application of Mechanism H. Also since the fiber internal
stresses associated with the 0.3% recovered strain were —750 MPa, fiber contractions within CMC should
be able to withstand high matrix back-stresses.

Concluding Remarks

The key results of this study are summarized in Fig. 14. Regarding general conclusions from the current
study (Fig. 15), Mechanisms I and H appear to be feasible for increasing CMC proportional limits. To
demonstrate this, models now exist for estimating the proper fiber and CMC treatment conditions for
activating these mechanisms and also the maximum amount of free-state fiber contraction. Prime concerns
for the applicability of Mechanism I with Hi-Nicalon fibers are low contraction under high matrix back-
stress and tensile strength loss during contraction. On the other hand, Mechanism II with SCS-6 fibers
does not appear to suffer from these issues. Nevertheless, there still remains concern that the required fiber
pre-creeping stage may be difficult to implement at high applied stress, for example, because of a lack of
adequate tensioning devices for continuous tows of small-diameter fibers or because of a high incidence of
random fiber breaks in the tows. Finally, as detailed in Fig. 16, future research will attempt to demonstrate
both mechanisms in mini-CMC using SIC matrices fabricated by chemical vapor deposition (CVI). This
matrix type has many advantages: (1) fabrication temperatures below those of the contraction mechanisms,
(2) capability for remaining elastic during fiber contraction, and (3) the existence of a large vendor base for
CMC fabrication.
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CONCEPT OF INCREASING CMC PROPORTIONAL
LIMIT BY FIBER CONTRACTION

• High-Temperature Mechanisms Exist Which Cause Fibers To Contract
Axially Even Under The Application of High Tensile Stress. If This
Contraction Is Allowed To Occur Within Consolidated CMC, It Should
Provide A Compression of The Matrix Along The Fiber Directions.

• Since Manx Fracture Strains In CMC Are —0.1 %, Small Fiber Contraction
Strains At or Above This Level Should Significantly Improve The CMC
Proportional Limit And Service Life.

• For Optimum Compression, Matrix Fabrication Temperatures Should Be
Below The Fiber Contraction Temperatures. Thus Post-Thermal Treatment
Of The CMC Will Generally Be Required To Implement Concept.

• Likewise, Treated CMC Should Be Utilized Under Service Conditions Where
Fiber And Matrix Remain Elastic, In Order To Retain A Time And
Temperature-Independent Compression Of The Matrix.

Fg. 1

OBJECTIVES

GENERAL

Investigate The Feasibility For Compressing CMC
Matrices And Improving CMC Proportional Limits By
The In-Si1.0 Axial Contraction Of The Reinforcing Fibers

THIS STUDY

As An Initial Step, Measure And Model The Effects
Of Time, Temperature, And Stress On The Free-State
Contraction Of SiC Fibers By Two Mechanisms:

I. Decomposition/Densification
II. Anelastic Creep Recovery

Fg. 2
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Mechanism I:
Fiber Contraction By Decomposition And Densification

Underlying Theory

• Polymer-Derived SiC Fibers, Like Nicalon And Hi-Nicalon, Are
Typically Processed At Maximum Temperatures (1200°C)
Which Allow The Retention Of Unstable Oxide Phases And
Porosity In The Microstructure Inherent In The Fiber Process

• Thermal Treatment Above The Maximum Processing
Temperature Will Cause The Oxide Phases To Decompose And
The Resulting Microstructure To Densify, Thereby Causing Fiber
Axial And Radial Contraction

Fig. 3

Mechanism I:
Fiber Contraction By Decomposition And Densification

Experimental Approach

• Measure And Model Kinetics For Contraction Of Hi-Nicalon Fibers Under
Unstressed And Stressed Conditions

• Determine Residual Strength Of Contracted Fibers At Room Temperature

• Test Conditions:
• Specimens:	 Hi-Nicalon Tows (N = 500, Nippon Carbon)
• Fiber Creep Facilities:	 Grip-Grip Length — 250 mm

Hot Zone — 120 mm
• Temperatures (Constant): 	 1200 to 1700°C
• Environments:	 Argon, Vacuum
• Stress (Constant): 	 0.6 to 140 MPa
• Strength Test (Tow):	 Gauge Length — 25 mm

Pg. d
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TYPICAL CONTRACTION CURVES FOR Hi-NICALON
AND NICALON TOWS IN ARGON
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MASTER CONTRACTIONN CURVE FOR Hi-NICALON
TOW.i IN ARGON USING ACTIVATION MODEL
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STRESS EFFECTS ON THE CONTRACTION OF Hi-NICALON
SINGLE AND TOW FIBERS
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Mechanism I:
Fiber Contraction By Decomposition And Densification

Possible Approach For CMC Application

• Use Fiber Preforms With High Volume Fraction And Matrices
With Love Modulus In Order To Minmize Matrix Back-Stress

Potential Feasibility Issues

• Fiber Creep During Contraction
• Fiber Strength Degradation
• Fiber Decomposition Alters Interfacial Coating

Fg.9

Mechanism II:
Fiber Contraction By Anelastic Creep Recovery

Underlying Theory

• All SiC Fibers Tested To-Date Display Large Transient Creep
Behavior,, Indicating The Buildup Of Internal Elastic Stresses
During Grain Boundary Sliding

• Decreasing Temperature And Releasing Appled Stress Freezes
Internal Stresses Within Fiber Microstructure

• Subsequent Thermal Treatment Of Fiber Allows Internal Elastic
Stresses To Recover, Resulting In Anelastic Creep Recovery Or
Fiber Contraction From The Crept Condition

Fg. 10
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Creep
strain

Mechanism II:
Fiber Contraction By Anelastic Creep Recovery

Potential Approach For CMC Application:
• Choose Stoichiometric SiC Fibers Which Are Thermally Stable And Creep At High

Temperatures Above Typical Matrix Fabrication Temperatures
• Pre-Creep Fibers At High Stress Without Causing Rupture

(At Fiber Vendor During Or After Fiber Production)
• Consolidate CMC And Post Treat To Allow In-Situ Recovery Of Fiber Creep Strain

Back stress = applied stress

Recovered strain

Back stress < applied stress

Back stress = 0

Creep	 Recovery stage
stage

• High Applied Creep Stresses Are Needed To Provide
---Resistance To Matrix Back-Stress During Fiber Contraction
---Short Creep Times For Cost-Effectiveness

Fg. 11

Mechanism II
Fiber Contraction By Anelastic Creep Recovery

Experimental Approach

• Determine And Model The Relationships Between Tensile Creep Recovery And
Tensile Creep Using SCS-6 Monofilament Fibers

• Determine The Tensile Creep Conditions For Achieving Fiber Contraction Strains
Greater Than 0.1%

• Test Conditions:
• Fiber Creep/Recovery Facilities:
• Environment:
• Creep Temperatures/Time:
• Creep Stress:
• Recovery Temperature/Time:
• Recovery Stress:

Hot Zone — 120 mm
Argon
1300 and 1400 °C / 1 Hour
750 MPa
1500 °C / 10 Hours
< 1 MPa

Fig. 12
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Mechanism H:
Fiber Contraction By Anelastic Creep Recovery

Results For Recovered Strain Vs Creep Strain
1

0.5
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Fig. 13

SUMMARY OF RESULTS

• Measurements Have Been Made And Models Developed Which Describe The
Effects of Time, Temperature, And Stress on The Axial Contraction Strain of
SiC Fibers Which can Occur By Two Mechanisms:

I: Fiber Decomposition And Densification
II: Anelastic Strain Recovery After Fiber Creep

• For Mechanism I And Hi-Nicalon Fibers, Contraction Strains Well Above 1%
Can Be Achieved, But At The Expense of Fiber Strength Degradation By

50%. Maximum Back-Stresses For Hi-Nicalon Contraction Are --- 100 MPa.

• For Mechanism II And SCS-6 Fibers, Contraction Strains Up To 0.3% Were
Achieved At High Stress (-750 MPa) and Low Total Creep. Tensile Results
Agee Closely With Anelastic Creep Recovery Model Developed From Fiber
Bend Data.

Fig. 14
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CONCLUSIONS

• Models Now Exist For Understanding And Predicting The Free-State
Contraction Of Hi-Nicalon Fibers By Decomposition/Densification And of
Thermally Stable SiC Fibers, Like SCS-6, By Anelastic Creep Recovery.

• Both Mechanisms Appear Feasible For Causing Sufficient Matrix
Compression In CMC To Significantly Increase The Proportional Limit.

• Potential Issues For Using Hi-Nicalon Fibers And Mechanism I Are Fiber
Strength Loss And Fiber Creep At The Decomposition/Densification
Temperatures.

• Potential Issues For Using Mechanism II Appear To Be In The Pre-Creeping
Stage, i.e., Stress Capability Of Fiber Tensioning Devices And Possible
Random Fiber Fracture During Tensioning.

Fig. 15

FUTURE RESEARCH

To Demonstrate the Feasibility of Fiber Contraction Mechanisms I and II,
Mini-CMC Composites Will Be Fabricated Using CVI Matrices Reinforced
By

• Single Tows of As-Produced Hi-Nicalon Fibers
• Single Fibers of Pre-Crept SCS-6 Monofilaments

• Initial Models Taking Into Account Matrix Back-Stress Effects Will Be
Developed In Order To Estimate Best Conditions For Thermal Treatment of
The Mini-CMC and For Creep of the SCS-6 Fibers.

• Changes In Matrix Cracking Behavior Will Be Monitored Using Tensile
Stress-Strain Hysteresis And Acoustic Emission.

Fig. 16
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THERMAL FATIGUE LIMITATIONS OF CONTINUOUS

FIBER METAL MATRIX COMPOSITES

GARY R. HALFORD
Lewis Research Center

Cleveland, Ohio

and

Vinod K. Arya'
University of Akron

Akron, Ohio

Introduction

The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites
(MMCs) are legendary. When compared to their monolithic matrices, MMCs possess superior
properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion
in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the
fibers are less dense than the matrix material they replace. The potential has been demonstrated
unequivocally both analytically and experimentally, especially at ambient temperatures. Successes
prompted heavily-funded National efforts within the United States (USAF and NASA) and
elsewhere to extend the promise of MMCs into the temperature regime wherein creep, stress
relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for
which alternative high-temperature materials are becoming mandatory, since further enhancement
of state-of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.

Unfortunately, MMCs offer but limited improvement in creep, relaxation, and oxidization
resistance, since these resistances are governed largely by the matrix material per se, and the matrix
is still very much in evidence in the MMC. More seriously, however, MMCs are at a distinct
disadvantage over their monolithic matrix counterpart when it comes to resisting damage induced
by repeated thermal cycling between ambient temperature and maximum service operating
temperatures. As will be shown, thermal cycling is the Achilles' heal of MMCs owing to the large
internal thermal stresses and strains that develop in the constituent matrix and fibers because of their
significant mismatch in thermal expansion a. The mismatch is an inherent one provided a
mismatch in matrix fiber modulii of elasticity is one of the desired characteristics of an MMC.
This is to be expected from the Grdneisen equation (see, for example, ref. 1) that inversely relates
a to bulk modulus of elasticity K,

a = (yCj3KV)	 (1)

NASA Resident Research Associate at Lewis Research Center.
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where y is Gruneisen's constant that is related directly to the sum of the two powers in the equations
for the attractive- and repulsive-energy versus atomic spacing equations, C„ is the specific heat, and
V is the molar volume. Bulk and Young's moduli E are linearly related. Figure 1 depicts Eq. (1)
for three major classes of materials; organic, metallic, and ceramic (ref. 2). The more disparate are
the values of the medulus between fiber and matrix, the greater the thermal expansion mismatch
and hence the greater will be the thermal stresses and strains for a given thermal excursion.

The current analytic research examines the thermal stresses and strains in unit cubes of MMCs
induced by exposure of one face to a heat flux, Q, and the opposite face to a fixed temperature heat
sink. Faces parallel to the x-direction heat flux were assumed insulated to make the analyses more
tractable. A comprehensive range of fiber/matrix MMC architectures and relative orientations to
the heat flux Q have been analyzed. The objective, Fig. 2, is to determine which architectures, if
any, are the least susceptible to thermal stresses and strains, and hence which offer the greatest
potential resistance to thermal fatigue cracking.

Material, Properties, Composite Cubes

A continuous fiber (silicon carbide, SCS6, 33% by vol.) reinforced titanium matrix (Ti-15-3)
composite was analyzed. Pertinent time-independent, temperature-dependent material properties of
the constituent materials are given in Fig. 3. Figure 4 lists discrete ply properties vs. temperature,
computed from METCAN (ref. 3). The composite cubes consist of symmetric 12 ply lay ups with
each ply having the dimensions 0.262 x 0.262 x 0.022 cm (0.665 x 0.665 x 0.0559 in). Several
laminated architectures were selected to represent the extreme combinations of plies relative to the
x-direction of heat flux, Fig. 5. One of the 12 cubes represents the stand-alone matrix material
(Case 0). Four distinct laminate lay-ups (labelled I, II, III, and IV) are positioned in three
orientations (A, B, and C) relative to a heat flux in the x- direction. Case IA is equivalent to Case
IC, so Case IA is dropped and Case 0 is shown in its place. The Case indexing scheme follows a
progression to a thinner center laminate and thicker laminate faces, Fig. 6

Thennal Loading„ and Structural Finite Element Analyses

Elementary cubes were thermally loaded (Fig. 5) with temperature rising from 21°C (70 TF) to a
maximum on the heated face while the opposite face was maintained at 21°C (70T). Side faces
were insulated. Maximum temperatures for the stand-alone matrix and composite cubes were
determined by assuming both to be subjected to the same heat flux. For the arbitrarily prescribed
maximum temperature of 800 0C (1471T) for the stand-alone matrix, thermal conductivity
calculations based on a constant heat flux resulted in a maximum temperature of 910°C (16707) for
the composite cubes owing to their lower thermal conductivity. Both continuum (Unit Cube with
1728 elements, 2197 nodes) and micromechanical (Unit Cell with 3072 elements, 3689 nodes)
elastic finite element structural analyses were performed using MARC (ref. 4) with 8-noded, solid
hexagonal elements, Fig. 7. The micromechanical model is a sub-element of the continuum.
Parallel faces in both models were forced to remain parallel during thermal loading. The elastic
analyses enables generalization of results to other ranges of thermal cycling. Sensitivity studies
(varying a and E by factors of 2) permit extrapolation of results to other MMC systems.
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Results

Stand-alone matrix results (Case 0) are shown in Figs. 8 and 9. The maximum thermal stress range
(428 Mpa (62 ksi)) and mechanical strain range (0.48 %) are in the transverse (y and z) directions.
The effects of increasing or decreasing a and E by factors of two are as expected and are also
displayed. Figure 10 displays the maximum continuum stress range (and corresponding orthogonal
stress ranges) found in each of the 11 composite Cases. The location of the maximum stress ranges
are shown by the big X in fig. 5. In every composite Case, there is a transverse stress that is
greater than the maximum stress in Case 0. The maximum ranges are always at the cube face
whose temperature cycled between the maximum and the minimum. The most benign case (I-B)
has a stress 25% higher than that found in Case 0. Unfortunately, the direction perpendicular to a
fiber is the weakest possible direction in any composite. Combining the highest thermal stresses
with the weakest directions will invariably give rise to much poorer thermal fatigue resistance than
the stand-alone matrix, thereby negating any potential structural benefit of the composite for
thermally-loaded components. The extent of the poorer performance, while not experimentally
evaluated herein, is indicated by the following observations of others. Tensile strengths of [90]
composites are less than the tensile strength of stand-alone matrix material, and isothermal fatigue
strengths of [90] composites can be as low as 10% of [0] fatigue strengths (ref. 5). Furthermore,
thermal fatigue resistances of composites are expected to be even less than their isothermal fatigue
resistance (ref. 6). To better understand why this can be so, it is necessary to examine the thermal
stresses and strains inside the composite using a micromechanical structural analysis (Fig. 7).
Figure 11 shows the mechanical component of the cyclic thermal strain range developed within the
matrix material for each of the 11 composite Cases. Comparable maximum strain ranges are also
shown for Case 0 for comparison. In evejy_Case, every strain range in every direction is higher
than the maximum strain range in the stand-alone matrix material by 35 to 110 %. Furthermore,
the maximum strain ranges are always in a direction transverse to the local fiber direction. A
summary of results, conclusions, and future research efforts are presented in Figs. 12-14.
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INVERSE CORRELATION
Stiffness (E) versus Thermal Expansion (a)
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OBJECTIVE

TO DETEIV41NE:

Which composite ply architectures suffer the lowest thermal
stresses and strains and hence offer the greatest potential resistance to
thermal fatigue cracking.
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MECHANICAL PROPERTIES OF CONSTITUENTS

Temp °C 20.0 1	 130.0 240.0 350.0 460.0 570.0 680.0	 1 790.0 900.0

-F 70.0 270.0 470.0 670.0 870.0 1070.0 1270.0 1470.0 1670.0

E 8.98 8.88 8.79 8.68 8.58 8.47 8.36 8.23 8.11

Fiber v 0.1898 0.1878 0.1857 0.1835 0.1813 0.1790 0.1766 0.1741 0.1715

a 0.1512 0.1546 0.1579 1 0.1616 0.1655 1 0.1695 0.1739 0.1786 0.1836

E 1.78 1.b7 1.56 1.44 1.30 1.15 0.98 0.78 0.48

Matrix v 0.3196 0.3005 0.2802 0.2582 0.2342 0.2075 0.1768 0.1395 0.0875

CL 0.2503 0.2609 0.2733 0.2811 0.3063 0.3298 0.3622 0.4160 0.5278

Units	 E in 106xMPa (1MPa - 0.145 KSI); a in (10-3 OC- 1 or 5.56 x 10-7 oF)

E: Youngs modulus
v: Poisson's ratio
a: Coefficient of thermal expansion

Fig. 3

EFFECTIVE ORTHOTROPIC PROPERTIES
OF THE COMPOSITE

T C 20.0 130.0 240.0 350.0 460.0 570.0 680.0 790.0 900.0

E

M F 70.0 270.0 470.0 670.0 870.0 1070.0 1270.0 1470.0 1670.0

P

Eli 2.6600 2.5200 2.3600 2.2200 2.0200 1.8100 1.5700 1.2600 0.8200

Ess 4.1600 4.0600 3.9500 3.8300 3.7100 3.5700 3.4200 3.2400 3.0000

U12 0.1768 0.1634 0.1492 0.1342 0.1180 0.1004 0.0810 0.0588 0.0313

vsa 0.2768 0.2633 0.2490 0.2336 0.2167 0.1981 0.1767 0.1509 0.1152

U31 0.3038 0.2874 0.2697 0.2504 0.2290 0.2049 0.1768 0.1417 0.0911
Gil 1.0210 0.9670 0.9080 0.8450 0.7440 0.6940 0.6000 0.4820 0.3110
Gn 1.0210 0.9670 0.9080 0.8450 0.7440 0.6940 0.6000 0.4820 0.3110
G31 1.0180 0.9770 0.9310 0.8800 0.8200 0.7510 0.6600 0.5520 0.3740
all 0.2096 0.2170 0.2254 0.2352 0.2471 0.2620 0.2820 0.3128 0.3786

an 0.1797 0.1829 0.1864 0.1899 0.1936 0.1974 0.2009 0.2039 0.2034

Units	 E and G in 106xMPa (1 MPa = 0.145 KSI) and a in (10 .5 -C- 1 or S.S6 x 10-7 -F)

Ezz = E33

azs a33
G: Shear Modulus

Fig. 4
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COMPOSITE ARCHITECTURES
Heat Flux in x-direction
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Continuum Model

Y

X

Micromechanical Model

INDEXING SCHEME FOR COMPOSITE CUBES

I

II
III

IV

Orientation
A

Orientation
B

Orientation
C

Center 12 ply laminate between faces of .a 0 ply laminate at 90°

Center 8 ply laminate between faces of a 2 ply laminate at 90'°

Center 4 ply laminate between faces of a 4 ply laminate at 90°

Center 2 ply laminate between faces of a 5 ply laminate at 90°

Heat flux perpendicular to fibers in center laminate
and parallel to fibers in face laminates

Heat flux perpendicular to fibers in face laminates
and parallel to fibers in center laminate

Heat flux perpendicular to fibers in both center and face laminates

Fig. 6

FINITE ELEMENT MODELS

Fig. 7
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Mechanical Strain Ranges in the Matrix Cube (Case 0)
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Stress Ranges in Composite Cubes
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SUMMARY OF RESULTS

0 Unit Cubes of SCS6/Ti-15-3 MMC subjected to analytic thermal gradients

0 Thermal stresses and strains calculated w/continuum-based, linear-elastic FEA

0 Inclusive range of symmetric MMC architectures analyzed

0 Stand-alone matrix Cubes analyzed for comparison + X2 sensitivity studies for E and a

Fig. laa

SUMMARY OF RESULTS
(Concluded)

0 Continuum thermal stresses in MMCs compared to stand-alone matrix material

0 Max. continuum composite thermal stresses always greater than for stand-alone material

0 Micromechanics Unit Cell analyses at critical locations in MMC Cubes reveal ranges of
thermal strain transverse to fiber much greater (35 to 118% higher) than max. ranges of
strain in stand-alone matrix material

0 Generally recognized, direction transverse to fibers is weakest

Fig. lab
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CONCLUSIONS

0 Thermally induced ranges of stress and mechanical strain in MMC matrix significantly
greater than in stand-alone matrix material

0 Most benign MMC architecture is Case I-C (all plies & fibers perpendicular to heat flux)
Yet, max. mechanical range of strain is 88 % higher than in stand-alone matrix

0 Case H-A least benign w/range of strain 118 % higher than in stand-alone matrix material

0 High thermally-induced ranges of strain in the weakest possible direction

0 Thermal fatigue resistance of continuous-fiber reinforced MMCs severely compromised

Fig. 13

FOCUS OF FUTURE RESEARCH

There are no formal plans for future research on this subject matter.

Fg. 14
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