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IMPROVEMENTS IN BLOCK-KRYLOV RITZ VECTORS AND THE
BOUNDARY FLEXIBILITY METHOD OF COMPONENT SYNTHESIS

Abstract

by

KELLY SCOTT CARNEY

A method of dynamic substructuring is presented which utilizes a set of static
Ritz vectors as a replacement for normal eigenvectors in component mode synthesis.
This set of Ritz vectors is generated in a recurrence relationship, proposed by Wilson,
which has the form of a block-Krylov subspace. The initial seed to the recurrence
algorithm is based upon the boundary flexibility vectors of the component.
Improvements have been made in the formulation of the inial seed to the Krylov
sequence, through the use of block-filtering. A method to shift the Krylov sequence
to create Ritz vectors that will represent the dynamic behavior of the component at
target frequencies, the target frequency being determined by the applied forcing
functions, has been developed. A method to terminate the Krylov sequence has also
been developed. Various orthonormalization schemes have been developed and

evaluated, including the Cholesky/QR method. Several auxiliary theorems and proofs
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which illustrate issues in component mode synthesis and loss of orthogonality in the
Krylov sequence have also been presented.

The resulting methodology is applicable to both fixed and free-interface
boundary components, and results in a general component model appropriate for any
type of dynamic analysis. The accuracy is found to be comparable to that of
component synthesis based upon normal modes, using fewer generalized coordinates.
In addition, the block-Krylov recurrence algorithm is a series of static solutions and
so requires significantly less computation than solving the normal eigenspace problem.
The requirement for less vectors to form the component, coupled with the lower
computational expense of calculating these Ritz vectors, combine to create a method

more efficient than traditional component mode synthesis.
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Chapter 1

Introduction

Component mode synthesis is a methodology for analyzing large structures by
separating them into smaller components, reduced representations of which can then
be recombined to analyze the entire system. This methodology has become well
established and widely used in structural dynamic analysis. The advantages of
component mode synthesis include lower computation costs associated with smaller
components, and the flexibility of data management gained by working with the
discrete components.

The typical component mode synthesis algorithm is briefly described®. A large
structure is broken into components, with each component having a set of boundary,
or interface, points. At these interface points, fixed or free boundary conditions are
assumed, and a corresponding set of component normal mode shapes, or eigenvectors,
is determined. The eigenvectors are augmented by a set of modes which are
associated with the component’s boundary flexibility. Depending on whether a fixed
or free interface is selected, these modes are the constraint modes or the attachment
modes, respectively. The combined set of component normal modes and boundary
modes are used to represent the component in subsequent system analysis by using

the following transformation process. The combined set of modes form a coordinate
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transformation matrix which transforms the physical coordinates of the structural
model into a combination of modal coordinates and boundary coordinates. The
boundary coordinates are retained in the physical space, so they can be used to couple
the components for subsequent system analysis.

A component’s size, although smaller than that of the complete structural
model, can still be large enough to be computationally expensive. The rapid reduction
in cost per calculation in today’s digital computers has not necessarily led to a
reduction in total computation cost. Instead, engineers have exploited the increased
computational resources by creating larger structural and component models. The
larger models have allowed for more structural details to be represented, as well as
more refined data recovery, but they may be expensive to formulate and analyze. In
order to reduce the computational cost associated with large component models, it is
desirable to develop more efficient methods of formulation. Since the solution of the
normal eigensystem problem requires the largest computational effort in component
formulation, it is logical to develop alternate methods which circumvent the
eigensystem solution entirely.

A method, which does circumvent the eigensystem solution, has been defined
in literature and is briefly described''®*. The boundary flexibility modes, specifically
either the same constraint modes or attachment modes that were mentioned previously,
are multiplied by the component mass matrix to create a force matrix. Static analysis

is then performed, using this force matrix and the component stiffness matrix, to
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obtain a matrix, or block, of vector displacements. A recurrence relationship of matrix

multiplications, which have been shown to be a Krylov sequencem”"

, then defines a
series of matrices, or blocks, of vector displacements. The calculated vectors are
orthogonalized, using normalized Gram-Schmidt orthogonalization'®. These vectors,
which can also be thought of as static modes or static Ritz vectors, replace the normal
modes in the component formulation methodology. Because the static Ritz vectors
are calculated in blocks and are based on a Krylov sequence, the subspace defined by
these vectors is called a block-Krylov subspace.

The work described in this dissertation originated by identifying areas of
potential improvement in the implementation of the existing static Ritz vector, block-
Krylov, boundary flexibility methodology. Specific potential improvements in the
form of equations and software were created, implemented and assessed. If useful,
the improvement was adopted. These adopted improvements are briefly discussed
in the following paragraphs.

Mathematical theory predicts that the vectors obtained from the Krylov
sequence, after orthogonalization with the previous two vectors in the sequence, are
independent. However, in practical applications these vectors usually converge, and
sometimes quickly, to a nearly dependent state. Using totally dependent or nearly
dependent vectors, the Gram-Schmidt orthogonalization algorithm fails. As a result,

a set of vectors sufficient to define the dynamics of the component may not be

obtainable. A solution to this problem has been available, consisting of repeated



4

Gram-Schmidt orthogonalization with all previous vectors, whenever that procedure
initially fails. This simple solution is usually successful. However, successive re-
orthogonalization can be computationally expensive and there is no guarantee that the
resulting vectors will have any physical significance, or that this process will not also
eventually fail®. Several alternate re-orthogonalization procedures have been
investigated, evaluated, and discussed in this work.

In addition to the investigation of Gram-Schmidt re-orthogonalization
procedures, an alternative procedure for orthogonalization in the block-Krylov
sequence has been presented. " Rather than the Gram-Schmidt vector by vector
numerical scaling approach, a matrix transformation which orthogonalizes the vectors
simultaneously can be created, without calculating eigenvectors. This matrix
transformation utilizes the transpose of the Cholesky factor of a matrix product of the
original dependent set of vectors. This process has been shown to be more efficient
than the Gram-Schmidt orthogonalization procedure in this application. Cholesky
orthogonalization has been integrated into the boundary flexibility method of
component synthesis using generalized static Ritz vectors.

Another enhancement in the boundary flexibility methodology was possible
because of the initiation of the Krylov sequence with the boundary flexibility modes.
Recall that the boundary flexibility modes are multiplied by the mass matrix to create
a force matrix. The size of this force matrix is the same as the size of the component

interface, which subsequently determines the block size in the Krylov sequence.
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When working with finite element models which have simple interfaces the resulting
force matrix and solutions have physical significance and the blocks are convenient
to process. However, in typical aerospace structures where a more complicated
interface and a large number of interface nodes exists, the Krylov block size will be
very large. This can lead to several complications in convergence and truncation.

The problem of large block size has been solved in this work by discarding nearly
dependent vectors from the block, previous to orthogonalization. Vectors which are
nearly dependent are, geometrically, nearly identical to each other. As a result, no
particularly useful information is being lost when they are removed from the block.
This reduction also reduces the size of subsequent blocks. This method has been
identified in this work as block filtering.

A problem which all static Ritz vector, Krylov sequence solutions have is the
lack of a sound mathematical basis for judging when to terminate the sequence. The
sequence should be terminated when the resulting set of Ritz vectors is sufficient for
dynamic representation of the component. ~When using normal eigenvectors to
represent a component, modal truncation, based upon an eigenvalue cutoff, is the
most popular basis for judging if the dynamic representation is sufficient. Static Ritz
vectors do not have an eigenvalue with which to associate a truncation limit and so
an alternate method of the termination of the Krylov sequence was required and

developed. This method is an heuristic methodology based upon the density of the
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modal space in the component and the demonstrated observation that the most
dynamically significant static Ritz are generated early in the Krylov sequence.

While investigating the Lanczos eigenvalue extraction method, done so because
of it’s use of the Krylov sequence and it’s resulting similarity with static Ritz vectors,
the tool of inverse operators was recognized. The use of inverse operators is
commonly called sequence shifting. By shifting the sequence, an eigenvalue
extraction routine can locate missing eigenvalues within a specific frequency range.
The use made of shifting in this work differs from that of eigenvalue extraction in
that, instead of targeting ranges of missing eigenvalues, the shift is targeted to the
frequency of the applied forcing function. In this manner, vectors which can
contribute to an accurate dynamic response prediction are generated. The use of
shifting in this manner has been identified in this work as targeted shifting.

Of the various enhancements discussed in the preceding paragraphs, only block
filtering is specifically tied to component mode synthesis and the boundary flexibility
method. All the other improvements, such as targeted shifting and modal density
series truncation, can be used in the general static Ritz vector methodology. Even
so, in this work these improvements have primarily been implemented and evaluated
in the context of the boundary flexibility method. Several general math proofs, which
are also not specific to the boundary flexibility method, have also been derived and

presented.



Chapter 2

Literature Review

2.1) Introduction:

Wilson, Yuan, and Dickens® originally proposed the use of Ritz vectors, based
upon external loading, for structural dynamic analysis. This formulation reduced an
entire structure, not a component. The algorithm begins with a set of externally
applied loads. The displacements from the static solution to the applied loads become
the initial Ritz vector. That vector is then multiplied by the mass matrix to become
the next force vector. This sequence is repeated to form a recurrence relationship and
a series of special Ritz vectors, which are referred to in this work as static Ritz
vectors. The proposed recurrence relationship is used in the papers discussed below
and throughout this work.

Wilson’s methodology was applied, using MSC/NASTRAN, to several large
finite element models by Arnold, Citerley, Chargin, and Galant’. It was found that
Wilson’s methodology was computationally more efficient than the standard normal
modes procedure. A recent application using a simple model of the space station was
presented by Escobedo-Torres and Ricles'?. This work compared the predicted
transient response of the space station due to a docking force using load dependent

Ritz vectors with predictions using eigenvectors.
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Nour-Omid and Clough® investigated Wilson, et al’s methodology and found
that the proposed recurrence relationship actually generated a Krylov sequence. A

Krylov subspace of order j is a vector space defined by

[b,Ad,A%,..., A ] 2.1)

where ¢ is a column vector and A is a square, symmetric matrix. If A is n x n,
nonsingular, and if j = n, the Krylov vectors span the n dimensional space'®, and an
exact solution can be produced. In structural dynamics, the Krylov subspace can be

defined by the following Krylov sequence,

[r. K 'Mr,(K*M)?r,..(K'M)'r] (2.2)

where K is the stiffness matrix, M is the mass matrix, and r is a starting vector (or in
block-Krylov, a set of vectors). The matrix product KM is not symmetric and its use
in the Krylov sequence yields subtle theoretical and practical differences which will
be discussed below. The Krylov sequence is also the basis of the Lanczos eigenvaiue
extraction algorithm, and Nour-Omid and Clough refer to Wilson’s static Ritz vectors
as Lanczos coordinates. The Lanczos eigenvalue extraction algorithm generates
Krylov vectors, which are used to transform the system into a tridiagonal form'*.
To extract the eigenvalues, this tridiagonal matrix is diagonalized using a QR, or

related, algorithm. Nour-Omid and Clough utilize the tridiagonal system matrices

directly to solve the dynamic response problem.
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Nour-Omid and Clough extended their work to a more general dynamic
loading represented by a linear combination of load vectors®™, such as time dependent
loading. The result was a structural dynamics application of the block-Krylov, or
block-Lanczos method for the dynamic analysis of structures. A block is defined as
the combination of a set of vectors, or modes, into matrices. They also presented the
requirement of using the Gram-Schmidt procedure to orthogonalize the vectors within
the Krylov block.

The use of static Ritz vectors was shown to be applicable to component mode
synthesis by Wilson and Bayo®®. The static Ritz vectors calculated were based, once
again, upon an external load. Only a formulation for components with fixed interface
boundary conditions was presented. This work was also implemented and applied by
Léger'® to an example small beam.

A similar development of static Ritz vectors in component mode synthesis was
presented by Allen’. This paper provided the basis for the application work performed
by Brunty’. The transient response of the Space Shuttle vehicle, during liftoff, was
calculated using load-dependent static Ritz vectors and compared to the response
predicted using eigenvectors in the component mode synthesis. Similar answers were
obtained using less computer time.

Abdallah and Huckelbridge!, and independently, Craig and Hale',
demonstrated a generalized methodology applicable to components with fixed or free

interfaces, with or without rigid body modes, and with or without applied loading.
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Components having no applied external loading were formed using the boundary
flexibility matrix, multiplied by the mass matrix, to form a force matrix. This force
matrix produces a set of static Ritz vectors. (Craig and Hale refer to these vectors as
Krylov vectors). The boundary flexibility matrix is defined as either the constraint
modes or the attachment modes, depending on whether fixed or free interface
conditions are selected. The methodology contained in these two papers is reviewed
in the next three parts of this section. Abdallah and Huckelbridge also quantified the
advantages, in computational effort, that generalized static Ritz vectors have over
normal eigenvectors. Carney, Abdallah, and Huckelbridge implemented this
methodology in MSC/NASTRAN®.

Yiu and Landess® also developed a similar methodology for forming a
component which does not have an external applied load. However, their formulation
is applicable to fixed interface components only. A criteria for concluding the
recurrence sequence, based upon the rigid body mass and flexibility represented by
the calculated static Ritz vectors, was proposed.

Some applications of static Ritz (referred to in that article as Krylov) vectors,
including unsymmetric, damped structural dynamics systems may be found in the
work of Craig, Su, and Kim''. The focus of this effort is on the control of the flexible
structure represented by the Krylov vectors.

Both the Lanczos eigenvalue extraction algorithm and static Ritz vectors

calculated using the boundary flexibility method are based upon the Krylov recurrence
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sequence. As a result, some of the information and experience available in the
published literature concerning Lanczos eigenvalue extraction has relevance to static
Ritz vectors. Amongst the wide amount of available literature, the most complete and
up to date source of information concerning the Krylov sequence and Lanczos
eigenvalue extraction is Parlett’s book, The Symmetric Eigenvalue Problem®. This
book also includes information on other eigenvalue extraction algorithms, as well as
discussions on general linear algebra tools which are particularly useful in this type
of analysis.

In addition, two other excellent sources of information concerning the Lanczos
eigenvalue extraction algorithm are the reports, A Shifted Block Lanczos Algorithm
for Solving Sparse Symmetric Generalized Eigenproblems', by Grimes, Lewis and
Simon of Boeing Computer Services, and the MSC/NASTRAN Handbook for
Numerical Methods®'. These reports have a useful emphasis on the practical
implementation of the Lanczos algorithm. The same implementation of the shifted
block-Lanczos algorithm is presented in both of these documents. The first
commercial implementation of Lanczos eigenvalue extraction was accomplished by
Boeing Computer Services. MSC subsequently obtained this code from Boeing and
implemented it in MSC/NASTRAN, and have since made a number of modifications

and improvements to the algorithm.
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2.2) Review of Boundary Flexibility Component Mode Synthesis:

Almost all of the literature published on the variously titled, Krylov, Lanczos,
or static Ritz, vectors focuses on the use of these vectors at the system level. These
works deal with either Lanczos eigenvalue extraction, control dynamics, or external
load derived Ritz vectors. The emphasis of this dissertation is the use of static Ritz
vectors in component mode synthesis. As a result, a detailed review of the small
amount of literature describing the static Ritz vector boundary flexibility method of
component synthesis, which is the starting point of this work, is warranted.

2.2.1) Fixed Interface Methodology:

First, as is standard in component mode synthesis methods, the finite element

component mass, m, and stiffness, k, matrices are partitioned into internal and external

degrees of freedom, denoted by subscripts i and c, respectively.

m_ m_
m = cc cl (23)
mic m;
k_ k.
k - cc ca (24)
kic ku
The constraint modes are defined by
O, =k, K (2.5)

which is the same definition used in standard component mode synthesis.
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For Wilson’s method®, a set of externally applied loads is required to obtain
the initial set of Ritz vectors. For the boundary flexibility method, this set of loads
is created by multiplying the constraint modes by the mass matrix. (Craig'® also
included the off-diagonal mass matrix in his formulation.) Since the mass matrix is
used to create the loads, they can be considered inertia loads. This set of inertia loads

are then used to generate the initial set, or block, of Ritz vectors using the following

g =k;" (m; @, +m,) (2.6)

where the superscript ** indicates that the vectors in the matrix have not been
normalized. The first block of vectors is normalized using the following equation,
where the subscript r signifies that the block is normalized vector by vector. There

are ¢ vectors within each matrix, or block.

ql = L r= 1,2,...,(: (27)

Note that the denominator of the right hand side of the equation is merely the inner
product norm, |gl,,, calculated with respect to the mass matrix.
The subsequent sets of static Ritz vectors in the Krylov sequence are generated

using the recurrence relationship which was defined in equation (2.2)"*%,

g -k, mq, (2.8)
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where the superscript * signifies that the vectors have not been orthogonalized or
normalized. The additional sets of vectors are orthogonalized, with respect to the
mass matrix, with all previous vectors. The process used to perform this

orthogonalization is a normalized Gram-Schmidt procedure.

*® %

4 =4;"4,;.° (2.9)

where
= T *
c=gq,,,"mg; (2.10)

and g, ;, is the concatenation of the previous sets of Ritz vectors,
q,,.1=14:,9;5-,4;,] 21D

where all vectors have been normalized as follows.

g = d r=12,..,c (2.12)

The complete set of calculated Ritz vectors is included in the transformation
matrix as @, (The resulting transformation matrix has the same form as that of
"Craig-Bampton" component mode synthesis’, with the Ritz vectors replacing the

normal modes.)

[+

(I)ic Ql

(2.13)

-
f
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The physical mass and stiffness matrices are transformed into the component modal

matrices
b=9"m? (2.14)
x=PTk ¥ (2.15)
The resulting mass submatrices are
_ Bee Pa (216)
R Ky

where

Bee = q’icT("'ii Q. +m )m P +m

B = pclT = Qlj'(miid)ic+mi¢) 2.17)
T
wy =1y =Q m;Q
The resulting stiffness submatrices are
X
x=| % K (2.18)
K, ¥
where
ch = kcid)ic+ kcc
T=0 (2.19)

K =Xy

Ky = QIT k;Q,
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The use of constraint modes in the transformation matrix leads to the null off-diagonal
partitions of the component stiffness matrix, just as in the approach based upon normal
modes.
2.2.2) Free Interface Methodology for Components with No Rigid Body Modes:
When allowing the interface points of a component to be free to deflect while
forming the component, a somewhat different basis for the initial vector of the Krylov
sequence is required. The attachment modes, rather than the constraint modes are
utilized in initial block definition. By definition, the attachment modes are the

columns of the flexibility matrix which correspond to the interface degrees of freedom.

g=k | (2.20)
g,-= Eec (2.21)
8ic

The initial block of vectors in the free interface formulation is defined as

qI" = k'l mga (222)

and is normalized as follows.

x %

q,
z r=12,..c (2.23)

1P= * %k * X
J@, " ma)

q
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Note that the unpartitioned physical mass and stiffness matrices of the component are
used in the free interface formulation. The recurrence algorithm then proceeds in the

same manner as in the fixed interface methodology.

g =k'mgq (2.24)
PRV (2.25)
c=q,, mg’ (2.26)

g
g - d r=12,.,c (2.27)

r ﬁqu.' T m qut #)

Formation of a static Ritz vector component then follows the normal
component mode synthesis techniques which were presented by MacNeal'” and
Rubin?. To combine the "Rubin-MacNeal" method with the presented method, the
normal eigenvectors are simply replaced with the static Ritz vectors, as in the fixed
interface methodology. The free interface methodology uses residual flexibility terms,
which fully define the stiffness missing from the modal space due to excluded modes.
The flexibility contained in the calculated Ritz vectors is given by the following

equation.
g:=0Q(QkQ)' Q] (2.28)
The unrepresented flexibility, or residual flexibility, is defined as

g,-E-8 (2.29)
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The residual flexibility matrix is then partitioned in the same manner as the flexibility
matrix was in equation (2.21), when the attachment modes were created for initial
vector calculation. The result is the residual attachment modes.

gCCd
8:,°

d
glf.‘d

(2.30)

When the residual attachment modes, g, are added to the Ritz vectors, O, the
complete flexibility of the component is represented.

The residual attachment modes and the Ritz vectors are used to form the
component transformation matrix. This matrix transforms the physical subspace, u,

to the modal subspace, p, and is defined by the following equation.

uC

g ccy ch
Q;

P,
p,

(2.31)

u;

8i

d

In order to provide physical interface degrees of freedom, for use in component
coupling, p, in the above equation is back-transformed to eliminate it from the right-

hand side of the equation. This results in the following transformation matrix,

I 0

cc

* *
8. @Qy

uC

(2.32)
P,
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where
* _ -1
8, -8 icdg ccy

Q' =Qu-8. 8., Qu (2.33)

The transformation of the component mass and stiffness matrices then proceeds in a
similar manner as shown in equations (2.14) through (2.19), with the following
differences. The Q, matrix partition replaces the @, matrix partition. The g~ matrix
partition replaces the @, matrix partition. In the fixed-interface methodology, the
definition of the constraint modes, ®,, leads to terms in the component stiffness
matrix which cancel out. In the free-interface methodology, the definition of the
transformation submatrices has changed and so this cancellation does not occur.
Therefore, the corresponding equations in (2.19) are replaced by the following

equations, respectively.

Kee = gic‘T(kii 8. tk.)rk.8,. vk,

x, =%, =Q; (kg +k,) (2.34)

2.2.3) Free Interface Methodology for Components with Rigid Body Modes:

When a component has rigid body modes, the associated stiffness matrix is
singular. The inverse of the stiffness matrix, the flexibility matrix, cannot be directly
obtained, and therefore the attachment modes cannot be directly obtained. To
circumvent this problem, Rubin®** presented the following method for obtaining the

residual elastic attachment modes of a component with rigid body modes.
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First, the stiffness matrix is constrained from rigid body motion by partitioning

out r degrees of freedom, where r is the number of rigid body modes.

k
k={ 7 (2.35)
krw kﬂ'
The remaining partition is then inverted.
g, =k, (2.36)
This flexibility matrix is then expanded back to n (w + r) size.
0
g =5 2.37)
¢ ofW 0"
A square projection matrix is defined by
A=I_-md®' (2.38)

where &, is the rigid body modes matrix. The elastic flexibility matrix, g,, with rigid

body motion removed, is shown in reference [24] to be

g, -A"g A (2.39)

Now the analysis proceeds in a similar fashion to the previously discussed

methodology of the free interface component with no rigid body motion. The major
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difference between the two approaches is that the elastic flexibility matrix is used in

place of the general flexibility matrix. The inertia relief attachment modes are

Eec, (2.40)

g =
a, gic‘

The initial block of vectors is calculated using the inertia relief attachment modes and

the elastic flexibility matrix.

ql“ =g¢mgae (2'41)

The subsequent static Ritz vectors are calculated, orthogonalized, and
normalized as shown in equations (2.24) through (2.27). The residual elastic
flexibility terms are also calculated as shown in the free interface with no rigid body
modes discussion, equations (2.28) through (2.30). Creation of the transformation
matrix, equations (2.31) through (2.34), is also similar to when no rigid body modes
are present. The one exception is that the rigid body modes must be included in the

transformation matrix. Therefore, equation (2.31) is replaced by

P,
u, 8 ch ch
_ d P, (2.42)
U; 8., Q @
P,

Formation of the final transformation matrix, and subsequently the component mass

and stiffness matrices, is then performed as described in the previous section.
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2.3) Relationship to Lanczos Eigenvalue Extraction:

In addition to being the result of the fundamental recurrence equation when
calculating static Ritz vectors, a Krylov sequence is also the result of the fundamental
recurrence relation used in the Lanczos eigenvalue extraction algorithm'**. The
Lanczos eigenvalue extraction algorithm uses a Krylov sequence to generate terms
which can be used to transform the given system into a tridiagonal form. This
tridiagonal matrix is then diagonalized using a QR, or related, eigenvalue extraction
algorithm and the resulting diagonal terms are the eigenvalues of the original system.
A detailed presentation of the Lanczos algorithm is beyond the scope of this work.
Since Krylov vectors are the foundation of the Lanczos eigenvalue extraction
algorithm, some of the existing literature which investigates orthogonalization, shifting,
and practical implementation of the Lanczos algorithm is applicable to static Ritz
vectors, since they are also derived from the Krylov sequence.

There are also significant differences between the Lanczos eigenvalue

extraction algorithm'>%

and the use of static Ritz vectors directly. These differences
are summarized as follows. In the selection of the initial seed to start the Krylov
sequence, Lanczos starts with a random vector. This is done to prevent the Krylov
sequence from converging to a particular class of eigenvectors and skipping other
eigenvectors entirely. Since another transformation will take place converting the

tridiagonal matrix into the system eigenvalues, the vectors from the sequence need not

have a particular physical significance. Wilson’s methodology initiates the sequence
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with a matrix which has physical significance, i.e., a load vector. In the boundary
flexibility method that load vector is the constraint or attachment modes multiplied by
the component mass matrix, forming an inertia load vector block. That leads the
vectors which result from subsequent iterations of the sequence to tend to also have
physical significance. This difference alters the Krylov sequence from being a purely
mathematical tool for eigenvalue extraction, into a mechanically based application in
structural dynamics.

These differences between the two methodologies stem from the differing goals
of the two algorithms. As discussed above, the Lanczos algorithm searches for the
eigensystem by first transforming the original system matrices into tridiagonal form,
and then diagonalizing that tridiagonal form to obtain the eigenvalues. Some
applications of Wilson’s methodology make use of the tridiagonal form, but the
orthonormalized vectors obtained from the sequence are instead used to transform and
reduce the original system directly. The eigenvalues and eigenvectors are not
obtained, and both transformed mass and stiffness matrices do not assume a diagonal
form. In all component mode synthesis the reduced matrices are not diagonal anyway,
due to the coupling mass and stiffness partitions of the final reduced matrices
(equations 2.17 and 2.34). Therefore, the non-diagonal form obtained from the use
of static ritz vectors is not a disadvantage when used in component mode synthesis.

In addition, the vector space in which a transformed system is tridiagonal is not the
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same as in the component mode synthesis algorithm, and, as a result, is not useful as
a final goal.
Vector blocks are also utilized in the practical implementation of the Lanczos

eigenvalue extraction algorithms'*?**'

. The original Lanczos algorithm had difficulty
in determining a complete set of multiple eigenvalues. Using vector blocks in the
Krylov sequence allows the algorithm to determine multiple roots, up to the dimension
of the block. When blocks are used in the Krylov sequence, the tridiagonal form of
the transformed system also assumes a blocked format. The bandwidth of the
tridiagonal form is then determined by the dimension of the block. The block format
complicates orthogonalization and sequence truncation schemes. The block format
is a natural feature in the boundary flexibility method because of the multidimensional
inertia load vector block.

2.4) Orthogonalization:

The most computationally expensive aspect of the formulation of static Ritz
vectors is the process of orthogonalization (equations (2.9) through (2.12)). As a
result, efficient orthogonalization is critical in determining this method’s efficiency
when compared to the use of eigenvectors. Since Ritz vectors are not inherently
independent, for them to be used in a similarity transformation, they must be

orthogonalized. Obviously if this process is more computationally expensive than the

calculation of eigenvectors, then it’s usefulness is limited.
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2.4.1) Loss of Orthogonality:

It has been shown in several works'>!%%

, that if a Ritz vector obtained from
the Krylov sequence is orthogonalized, using Gram-Schmidt, with the two previous
Krylov vectors, it is theoretically orthogonal to all previously generated vectors. The
orthonormalizing coefficients are assembled into a tridiagonal matrix. The assembled
tridiagonal matrix is also the result of the Krylov coordinate transformation on the
original system matrix (Q"AQ). In other words, use of the Krylov sequence and the
properties of orthogonality, allow the system to also assume a tridiagonal form.
Unfortunately, in practice the theoretical orthogonality that each new Krylov vector
has with all vectors, after orthogonalization with the previous two, is usually lost due
to either even minimal computational round-off error, or other factors which will be
discussed in chapter 3. A mathematically rigorous explanation of this phenomena is
given in references [21],[22] and {26]. As a result, additional orthogonalization and
sometimes re-orthogonalization is required in order to perform a correct transformation
and to maintain the tridiagonal form.

A brief clarification of terms found in the existing literature and used in this
work follows. When Gram-Schmidt procedures are required, they are sometimes
referred to as orthogonalization and sometimes as re-orthogonalization, varying with
author. In this work, orthogonalization refers to the initial Gram-Schmidt process,

even if performed with all previous vectors. Re-orthogonalization refers to any

additional orthogonalization steps following the initial orthogonalization.
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The initial solution to the loss of orthogonality, which occurs in the Krylov
sequence, was to simply explicitly orthogonalize with all previous vectors, rather than
just the previous two. This orthogonalization scheme is computationally more
expensive than orthogonalizing with the previous two vectors, especially as the
number of previously determined vectors becomes large. The computational expense
of orthogonalization is what limited Lanczos eigenvalue extraction use for many years.
Many enhancements to the basic Lanczos eigenvalue extraction algorithm have
appeared in the literature through the years, some of which were directed toward
insuring orthogonality. Paige*' established a theorem, using matrix norms and terms
from the tridiagonal matrix, which yields a numerical criterion for determining when
re-orthogonalization is required. The orthogonality of the obtained vectors is not
explicitly calculated. When the requirement for orthogonalization does arise, the new
vector would be orthogonalized with respect to all previous vectors. Parlett and
Scott” also use a numerical criterion, derived using matrix norms and terms from the
tridiagonal matrix, to determine when re-orthogonalization is required. They proposed
the simple modification of orthogonalizing, using modified Gram-Schmidt®, with only
those previous vectors with which the new vector is not orthogonal. Simon® clarified
issues dealing with the loss of orthogonality, developed an additional re-
orthogonalization scheme, and investigated the complete orthogonalization issue in

depth.
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2.4.2 Orthonormalization:

In general, the existing literature describes the Lanczos eigenvalue algorithm

as extracting the eigenvalues of a single symmetric matrix, A.

Ax = Ax (2.43)

The vectors obtained from the Krylov sequence are orthonormalized using the
Euclidean vector norm, which is defined as |x |, = e 2+ Ix, 0124+ |xp |22,
Because of the spectral theorem®, the eigenvectors are also orthonormal with respect
to the A matrix. However, as discussed above, in structural dynamics, the

eigenproblem which is being solved is a system with both mass and stiffness matrices.

Kx = AMx (2.44)

In the MSC/NASTRAN application of the Lanczos eigenvalue extraction algorithm,
the mass and stiffness matrices are used directly in the Krylov sequence and the
Krylov vectors are orthonormalized with respect to the mass matrix®'.

In the use of static Ritz vectors for structural dynamics applications, as
described in detail in section 2.2, the mass and stiffness are used in the Krylov
sequence and the vectors are orthonormalized with respect to the mass matrix. There
is one exception to the use of the mass matrix. In the work of Su and Craig?, the
static Ritz (referred to as Krylov) vectors are orthonormalized with respect to the

stiffness matrix. The result of orthonormalizing with respect to the mass matrix will
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be that the modal partition of the reduced system mass matrix is the identity matrix.
One can orthonormalize with respect to the mass matrix, the stiffness matrix, or using
the Euclidean vector norm, but not all three, with a single Gram-Schmidt
orthogonalization procedure. Orthonormalizing with respect to mass (or stiffness)
allows some flexibility in dealing with the reduced mass matrix in some applications
and is required to generate the tridiagonal form when using the Krylov sequence of
equation (2.2). This is a direct result of the matrix product, K "M, not being
symmetric. As previously discussed, in component mode synthesis the resulting
transformed mass and stiffness matrices are, by definition, not diagonal, and exist in
a different space than that of the tridiagonal form. Therefore, the matrix form of the
transformed component matrices is not an important issue, and it is not necessary to
maintain the ability to generate the tridiagonal form.

2.4.3) Cholesky/QR Decomposition:

Parlett? presents the following discussion, relating to orthogonalization. Any
non-null rectangular m by n matrix B can be written as B = QR with m by r Q
satisfying Q"Q = I, and r by n R upper triangular with non-negative diagonal
elements. The QR factorization is the matrix formulation of the Gram-Schmidt
process for orthonormalizing the columns of B. When B has full rank, then R is the

upper Cholesky factor of B'B since

RTR=RTQTQR.__BTB (245)
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Use of the upper Cholesky factor of a matrix for orthogonalization will be presented
in section 3.3.5.
2.5) Shifting:

A technique defined by Scott®® shows how an inverse operator, either applied
explicitly while using subspace iteration or applied implicitly by while using the
Lanczos algorithm, can direct a solution to particular frequency range. The use of the
inverse operator in the Lanczos eigenvalue extraction algorithm is commonly called
shifting. Shifting has been implemented with success in the commercially available

Lanczos eigenvalue extraction routine'*'.

The inverse operator is applied to the
Krylov sequence within the Lanczos algorithm, and therefore can be applicable to any
Krylov sequence based solution.

In the Scott paper, the problem of computing some eigenpairs of the

generalized eigenvalue problem is considered,

(A-AM)x=0 (2.46)

with A being the eigenvalues and x the eigenvectors of the pencil (A,M). A system

is created using the operator

(A-oM)M

that has the same eigenvectors as (2.46). The shifted system eigenvalues are

transformed to 1/(A - 6). This means that the eigenvalue nearest G becomes the
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dominant eigenvalue and the sequence will converge to the corresponding eigenvector.
In the commercially available Lanczos routines the algorithm is applied to the shifted

and inverted eigenvalue problem of the following equation

1

-ag

MA-oM)'Mx = Mx (2.47)

The use of the shifted eigenvalue form allows the for good approximations to
eigenvalues within specific ranges, even if they are clustered. The cost for having the
advantage of shifting is the factorization of (A - cM)™".

2.6) Spectrum Slicing:

Parlett? presents the following theorem. When the triangular factorization of

(A - oM) is calculated, if A is symmetric then

(A-oM)=LDLT (2.48)

where D is diagonal and M is positive definite. Then

v(A-oI)=v(A-aM)=v(D) (2.49)

where v is number of negative eigenvalues and A = diag (A, ,A,, ... , A,). The
number of negative elements of D equals the number of eigenvalues of the pencil
(A,M) which are less than 6. As a result, whenever a shift is undertaken the number

of eigenvalues below the shift frequency is determined.
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2.7) Kryvlov Sequence Termination Techniques:

A large uncertainty in the use of static Ritz vectors and the boundary flexibility
method is the lack of a criteria for terminating the Krylov sequence. When
eigenvectors are used to form a component, typically a frequency range is defined and
all eigenvectors with eigenvalues within that given range are determined. That option
does not exist in the use of static Ritz vectors. A number of error criterions have been
proposed which truncate the sequence when a somewhat arbitrary variable reaches a
arbitrary value.

Wilson, et. al.’, used a definition of the modal participation factor to define
an error term. This factor is equivalent to the dependence coefficient in a Gram-
Schmidt orthogonalization procedure. The error term is the linearly independent
portion of the force vector, with respect to the Ritz vectors. The linearly independent
portion of the force vector should be zero if the complete static solution is desired.
No account is made for the dynamic response of the system in the error term. A
similar error term was defined by Léger'®.

Nour-Omid and Clough also used a modal participation factor as a sequence
truncation criterion'*?°. However, they did not define or use an error term based upon
the desired dependence of the force vector. They proposed a simple cut off when the
mode participation factor (or dependence coefficient) reached an arbitrary numerical

value. No account is made for the dynamic response of the system.
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Su and Craig” stated that a modal participation factor, such as used by Nour-
Omid and Cough, was not valid for a non-diagonal representations, which are the
result of the representations not being based upon normal modes. Therefore, they
proposed that the norm of the off-diagonal submatrices in the transformed mass and
stiffness matrices should be used as sequence truncation criterion. Again, the
sequence would be terminated when the norm reached an arbitrary numerical value.

Yiu and Landess™ proposed two similar sequence truncation criteria. The first
used a flexibility convergence criteria, similar to the error term proposed by Wilson,
et. al. A mass convergence criteria was also proposed. It was based upon the amount
of the rigid body mass, rather than the force vector, which would be represented by
Ritz vectors. The percentage of rigid body mass represented by Ritz vectors is
commonly referred to as effective mass'*. When the percentage of rigid body mass

represented reaches an arbitrary numerical value the sequence is terminated.



Chapter 3

Theoretical Development

3.1) Introduction:

This short chapter presents two theorems which pertain to the use of static Ritz
vectors in the boundary flexibility method of component mode synthesis. These
theorems concern whether or not static Ritz vectors can be used to represent a
component in a mathematically rigorous fashion. Proofs are presented which
demonstrate the fact that static Ritz vectors can be used to correctly represent a
component.

3.2) The Exact Nature of the Methodology:

Currently, most component mode synthesis applications use the normal
eigenvectors of the substructure to form the component. If all the eigenvectors of a
system are used to form the component, the complete dynamic properties of the
component are represented and an "exact” finite element solution may be obtained.
This is because, if all the modes are used, the component representation in not a Ritz
vector approximation but is instead a complete linear coordinate transformation. The
same principle holds true for components based upon a block-Krylov sequence. It
was proven in references [10] and [27] that an n size Krylov subspace spans the entire
n dimensional space. The following theorem is an alternative demonstration of the

proposition that, if n Krylov vectors are used to form a component from a system of

33
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size n, then the same complete solutions, as found directly from finite elements or
normal modes, can be obtained.

Theorem 3.1 - Given that x is an eigenvector of A, and that A is the
corresponding eigenvalue, then for B, where B = P'AP, P'x is the associated
eigenvector of B and A is the invariant eigenvalue of both B and A.

Proof - The eigensystem of A is defined as

Ax = Ax 3.1
and since, from the definition of B,
A=PBP! (3.2)
equation (3.1) can be re-written as
PBP'x-=ix (3.3)
Premultiplying by P’ yields
BP'x=AP'x (3.4)

If y is defined as P’'x, then
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and it is evident that the eigenvalue of this system is A, and that the associated
eigenvector is P'x. W

It is important to note that the only constraint on P, implicit or explicit, is that
it is an nonsingular matrix, with the same dimension as A. For P to be nonsingular
it must be of full rank, or equivalently stated, its columns must be linearly
independent. Therefore, in order for an exact coordinate transformation to be
accomplished, the vectors from which the transformation matrix is assembled must be
linearly independent. These vectors do not need to be the eigenvectors, and they do
not need to be orthogonal.

The fact that the vectors in a transformation matrix need only be linearly
independent, and not orthogonal, is already utilized in component synthesis based
upon normal eigenvectors. The transformation matrices which result from normal
mode component synthesis consist of linearly independent vectors, not orthogonal
ones. This can be demonstrated simply by inspecting the result of the matrix
transformation, as shown in equations (2.14) through (2.19). The complete reduced
mass and stiffness matrices are not diagonal. Only the modal partition of the matrices,
which does result from an orthogonal transformation, is diagonal. Therefore, even
when compared to normal eigenvectors, the use of static Ritz vectors contains no
inherent disadvantages of matrix form or accuracy, since the resulting complete

component mass and stiffness matrices in either case are not diagonal.
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In the proof of theorem 3.1, the inverse of the transformation matrix was used
in the pre-multiply position. Typically, as in equations (2.14) and (2.15), the transpose
of the transformation matrix is used in this position. If a set of orthogonal vectors
make up a transformation matrix, then the inverse and the transpose of the matrix are
identical. If the vectors are only linearly independent, and not orthogonal, then the
transpose and the inverse of the transformation matrix are not identical. However, in
structural dynamics, this does not necessitate using the inverse of the transformation
matrix. In structural dynamics, the eigensystem represents the space of the matrix
multiplication M~ 'K, which is derived from Kx = AMx. The following theorem shows
that for the M"'K space, use of the inverted transformation matrix and the transposed
transformation matrix is interchangeable.

Theorem 3.2 - Specifying that P #P’, so that P is not orthonormal, and if M,
= P'MP and K, = PPKP, which represent a transformation using the transpose, and
M, = P'MP and K, = P'KP, which represents a transformation using the inverse, then
MK, =M,'K,.

Proof - This may be proven by substitution. The proposition is that

MK, - M, K, (3.6)
and since, by definition,

M =P"™MP M, =P'MP

3.7
K ,-P’KP  K,=P'KP
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These equations may be substituted into equation (3.6), yielding

(P’TMP)'P’TKP -(P"'MP)'P'KP (3.8)

Post-multiplying by P'K"'P, and canceling, results in
(PTM P)' PP = (P'M P)’! (3.9)

and then post-multiplying by P’MP yields,

(PTMP)'PT™MP-1 (3.10)

which reduces to

I-1 1 (3.11)

In summary, it was proven in theorem 3.1 that orthogonal vectors are not
required for an exact transformation, i.e., linearly independent vectors suffice. This
proof used the inverse of the transformation matrix in the pre-multiply position. With
a non-orthogonal transformation matrix, the transpose and the inverse of the
transformation matrix are, by definition, not identical. As a result, a transformation
which uses the transpose of a non-orthogonal matrix resuits in a mass and stiffness
matrix different from the result obtained from a transformation using the inverse of
the transformation matrix in the pre-multiply position. In theorem 3.2 it was shown

that when the transformed mass and stiffness matrices, which result from the use of
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the non-orthogonal transpose, are combined, the result is identical to the result
obtained from using the inverse in the pre-multiply position. Obviously, the
eigensystem of the two transformation results are then also identical. Therefore, if the
dimension of the transformation matrix is equal to the dimension of the component
matrix, then Ritz vectors, or any linearly independent set of vectors, can form an exact
transformation. Also, if the system is a dual matrix system, such as one consisting
of a mass and stiffness matrix, then the transpose of the linearly independent set of

vectors may be used in the pre-multiply position of the transformation.
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Chapter 4

Orthogonalization, the Krylov Sequence and Static Ritz Vectors

4.1) Introduction:

This chapter examines several related issues pertaining to the orthogonalization
of static Ritz vectors in the boundary flexibility method of component mode synthesis.
Efficient orthogonalization is essential to the efficiency of the methodology because
the bulk of the computing effort required to produce a static Ritz vector component
is in vector orthogonalization. Section 4.2 examines general issues concerning
orthogonalization of the vectors obtained from the Krylov sequence. The vectors
derived from this sequence must be orthogonalized with respect to previously obtained
vectors, usually using a Gram-Schmidt approach, to insure linear independence in the
transformation matrix. Various orthogonalization schemes are proposed and examined
for their accuracy, robustness, and efficiency. In section 4.3 issues concerning the use
of blocks with the Krylov sequence are discussed. These topics include orthogonality
within the block, and reducing the block to a manageable size. Algorithms containing
the new orthogonalization schemes are presented in section 4.4
4.2) Orthogonalization:

As presented in chapter 2, the static Ritz boundary flexibility method of
component synthesis is based upon the Krylov sequence. The vectors derived from
this sequence must be orthogonalized with respect to previously obtained vectors to

insure linear independence in the transformation matrix. If linear independence, or
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orthogonality is not maintained, numerical errors in the transformation are a certainty.
In addition, for a system of size n, the orthogonalization methodology should be
robust enough to obtain n linearly independent vectors, to insure completeness in the
representation. Orthogonalization routines such as Gram-Schmidt or modified Gram-
Schmidt can be extremely expensive computationally if implemented inefficiently.
Lanczos eigenvalue extraction was not used widely until efficient orthogonalization
schemes were implemented within the algorithm. Consistent with this, for static Ritz
vectors to be practical, the orthogonalization scheme must be accurate, robust, and
efficient.

Issues examined in this section include the reason why the loss of
orthogonality occurs, checking of vector orthogonality, various Gram-Schmidt
orthogonalization schemes, orthonormalization options, and alternate orthogonalization
methodologies. An appropriate, workable orthogonalization scheme is suggested.
This proposed scheme is contrasted with those used with Lanczos eigenvalue
extraction. In Lanczos eigenvalue extraction, it is also important to maintain
orthogonality to insure linearly independent vectors. In addition, maintaining the
orthogonality also aids in determining multiple eigenvalues, as well as maintaining the
tridiagonal form™. As discussed in chapter 2, maintaining the tridiagonal form is not
important in the use of static Ritz vectors, when used in the boundary flexibility

method of component synthesis.
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4.2.1) Linear Independence and the Loss of Orthogonality:

It was shown in chapter 3.2 that for an n size system, n independent vectors
will form a transformation matrix which will allow an exact linear transformation.
The boundary flexibility algorithms presented in chapter 2 would not be successful in
obtaining n independent vectors without additional enhancements. Specifically, the
normalized Gram-Schmidt orthogonalization technique utilized in these algorithms is
not robust enough to obtain independent vectors which span the entire n space. It
must be said that, in typical applications, there is no requirement for the entire space
of size n to be represented. One major advantage of component mode synthesis is a
reduction of system size. However, in some cases this loss of orthogonality begins
quite early within the Krylov sequence. As a result, no guarantee can be made that
a sufficient number of vectors, to adequately represent the component, is obtainable.
In addition, whether the component is reduced by means of sequence truncation,
vector selection, or any other approach, a correct reduction can not be guaranteed,
unless the entire dynamic space is obtainable. Therefore, the static Ritz vector
algorithm should be able to yield » independent vectors for an n size system.

Theoretically, each Krylov vector is linearly independent of previous vectors.
This can be demonstrated by inspection of equation (2.1). Since each vector is a
product of multiplication of previous vectors, except for the special cases of null or
unity spaces, each vector can not also be defined as a linear combination of previous

vectors. However, in practice, numerical dependence does occur in vectors obtained
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from a Krylov sequence. Due to this numerical dependence, n independent vectors,
describing an 7 size system, can not be directly obtained from the Krylov sequence.
Understanding of this problem can be aided by considering a Krylov sequence based
upon a space described by the normalized vector, x’. Assume, in equation (2.1), that
A, the iteration matrix, is x* and that ¢, the initialing vector, is e,, the unit column

matrix of order one. The Krylov sequence becomes

[e,, x%e ,x% .., x20 e, ] 4.1)

Figure (4.1) shows a plot of the resulting vectors, to the ninth order, normalized to

o]
2 x™ and x'¢,

unity. In other words, the sequence of functions x%, x*, x% x% x° x
have been plotted. The unit column matrix, e;, was not plotted. It can be seen that
as this series continues to a higher order, the vectors become nearly dependent
because of computational roundoff error, and eventually, numerically indistinguishable,
despite theoretical independence. The Gram-Schmidt algorithm is not able to
orthogonalize a vector which is numerically dependent on previous vectors.

An analytical source of vector dependency, not dependent on computational
roundoff, is the situation when the Krylov sequence converges to a normal
eigenvector. This state might seem to be desirable, considering the traditional use of
eigenvectors in dynamic analysis and component mode representation. (In this

circumstance the Krylov sequence acts similar to a power method of eigenvalue

extraction.) Unfortunately, when the Krylov vectors have converged and produced
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an eigenvector, the next vector in the Krylov sequence is the same eigenvector, scaled,
which is linearly dependent. Theorem 4.1 demonstrates the convergence.

Theorem 4.1 - If an eigenvector of the system Kx = AMx, x;, appears in the
Krylov sequence, x;,, = K"'Mx,, then the resulting vector, x,,;, is linearly dependent

upon x,, and differs only by a scale factor of I/4.

Proof - If
-1 (42)
xi+1 = x .xl. .

and since the Krylov sequence is defined as

x., =KMzx, (4.3)
then

1 -KMx 4.4)

A
which leads to

Kx = AMx, (4.5)

which is true, from the definition of an eigenvector. W
The potential convergence of the Krylov sequence to system eigenvectors has
several implications. It is a reason, in addition to not prejudicing the sequence

towards a certain eigenvector, that in Lanczos eigenvalue extraction, the Krylov
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sequence should be initiated by a random vector. In Lanczos eigenvalue extraction,
the system will be re-transformed to a diagonal form and so the eigenvectors are not
required at that step. The potential convergence of the Krylov sequence to

eigenvectors also restricts shifting of the sequence™>'.

Shifting the sequence so that
it would produce a vector close to an eigenvector would cause the dependency
problem discussed above.

In the use of generalized static Ritz vectors, where the vectors which initiate
the sequence and the vectors resulting from the sequence have physical significance,
the convergence of the Krylov sequence to eigenvectors can cause problems of linear
dependency. Consider a cantilevered beam under a gravity load. The deflected shape
of the beam is very close to the first normal eigenvector. (A cantilevered beam under
a gravity load is used as an example and is illustrated in chapter 5.) If that vector
initiates the sequence, subsequent vectors will be nearly linearly dependent on the
previous vector. The greater the similarity a static Ritz vector has to an eigenvector,
the greater will be the dependency of the subsequent vector in the Krylov sequence.
In practice, total dependency does not occur on digital computers due to the same
class of roundoff errors that lead to the requirement for re-orthogonalization discussed
in section 2.4.1. When two Ritz vectors are nearly linearly dependent, the differences

between the two vectors will tend to be random, and so physically significant

information that the vector will contribute, after orthogonalization, would be minimal.
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This random element resulting from orthogonalization does have some benefit.
In Parlett®, the process of randomization is discussed. There, randomization is
defined as a process of creating a set of random vectors, after several blocks of static
Ritz vectors have been obtained, and then orthogonalizing these random vectors with
the previous static Ritz vectors. A Krylov sequence initiated with a vector orthogonal
to a space requiring representation may have difficulty in producing n independent
vectors for a system of size n. For example, if the initial vector does not contain a
displacement in one of the three ordinate directions, then a pure Krylov sequence
would not generate a vector representing the system in that direction. Introducing a
random element into all degrees of freedom contained in a vector, and then
orthogonalizing, would allow all possible directions and shapes to be represented.

It has been found that due to computational roundoff error an explicit
randomization routine is not necessarily required. As discussed above, when a vector
is orthogonalized with a vector upon which it is nearly dependent, the purified vector
will contain a random element. As a result, randomization occurs to some degree in
all Krylov processes implemented on a digital computer. In this manner, vectors may
be obtained which are orthogonal to the initiating vector in the Krylov sequence and
the complete n size component space may be spanned.

4.2.2) Use of The Euclidean Norm for Normalization:

In section 2.4.2, it was discussed that in the creation of static Ritz vectors,

where the Krylov sequence of equation (2.2) is used to generate the vectors, previous
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Gram-Schmidt algorithms orthonormalized the vectors with respect to the mass matrix.
This is required if obtaining a tridiagonal form is desired. If the Krylov sequence is
based upon equation (2.1), then the Euclidean norm is used. In the implementation
of the Gram-Schmidt orthogonalization procedure, it was found that the use of the
mass matrix in orthonormalization becomes comparatively and extremely costly for
anything other than a small problem size. As a result, alternatives were examined.
The tridiagonal form is not a particular advantage using Ritz vectors, as opposed to
eigenvectors, in component mode synthesis. In component mode synthesis, by
definition, the transformed matrices have large off-diagonal components. Therefore,
it is possible to orthonormalize using the Euclidean norm, even though doing this will
not produce a diagonal modal mass matrix and a tridiagonal modal stiffness matrix.
Again, this feature is not a disadvantage in component mode synthesis and very large
savings in computational cost are achievable, as documented in chapter 5.

4.2.3) Gram-Schmidt Failure and Reorthogonalization:

The simple normalized Gram-Schmidt orthonormalization procedure outlined
in section 2.2 is inadequate to guarantee a set of orthogonal and linearly independent
set of Ritz vectors. In the previous section, it was discussed how linear dependence
can arise in vectors generated by a Krylov sequence. It is well documented that the
Gram-Schmidt orthogonalization algorithm is not successful at producing an
orthogonal vector from a nearly dependent vector’®. The Gram-Schmidt procedure

will fail on occasions when vectors, although theoretically independent, are dependent
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within the numerical constraints of current digital computers. These vectors cannot
then be made orthogonal, using the single normalized Gram-Schmidt step described
in the chapter 2.

One option for orthogonalizing numerically nearly dependent vectors is the
modified Gram-Schmidt algorithm. Modified Gram-Schmidt is a computationally
expensive procedure which is very successful at orthogonalizing nearly dependent
vectors*'®, Implementation of modified Gram-Schmidt will be discussed in the next
section and its computational expense will be discussed in the next chapter. A
potentially less expensive option is to repeat the Gram-Schmidt orthonormalization,
if it has been unsuccessful in the first attempt. Reorthogonalization will work, even
though the first Gram-Schmidt attempt has been unsuccessful at producing an
orthogonal vector, because it modifies the vector enough so that it is no longer
numerically nearly dependent. The second normalized Gram-Schmidt step, or
reorthogonalization, is then usually successful at producing a orthogonal vector. Two
normalized Gram-Schmidt orthogonalizations will typically be less expensive than one
modified Gram-Schmidt orthogonalization, especially considering that the
reorthogonalization step will not be required for every Krylov vector. Computational
costs comparisons for various models will be presented and discussed in chapter 5.

If Gram-Schmidt orthonormalization is to be repeated when unsuccessful, a
assessment of the Ritz vectors’ orthogonality is required. Upon completion of each

Krylov vector calculation, and the associated normalized Gram-Schmidt
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orthogonalization, each vector is checked for orthogonality. The orthogonality of the

block-Krylov vectors is checked using one of the following equations; either
L,= ql,j—leii q; (4.6)

or

LE = ql,j-quj (47)

depending on whether the vectors have been orthogonalized with respect to the mass
matrix or using the Euclidean vector norm. (The mass matrix used in equation (4.6)
is appropriate for fixed interface modes. For the free interface approach, the complete
physical mass matrix is used.) If the new vector, g, is orthogonal to all previously
calculated vectors, L, or L, will be a j by / size null vector. The infinity norm of the

L vector, which is defined as

ILL, = max {|,], [},],..., [L;]} (4.8)

is then calculated and compared to a specified value, e. If L. > e, then the associated
vector is judged to be non-orthogonal and the Gram-Schmidt algorithm is repeated.

4.2.4) Various Gram-Schmidt Orthogonalization Strategies:

A number of combinations of Gram-Schmidt orthonormalization and
reorthogonalization strategies are possible. These strategies, for the initial Gram-

Schmidt step, include complete orthogonalization and orthogonalization with the
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previous two blocks only, a possibility which was discussed in section 2.4. It is
possible to use modified Gram-Schmidt exclusively, however that option is not
competitive  computationally. Complete  reorthogonalization, selective
reorthogonalization, and selective reorthogonalization using modified Gram-Schmidt
were the reorthogonalization options investigated. Orthonormalizing with respect to
the mass matrix or using the Euclidean vector norm can be performed with any of the
above possibilities. The total number of possibilities investigated, amongst the
different combinations possible, is twelve. Of these twelve, the options which were
examined and presented in the next chapter are, total initial orthogonalizations with
all three reorthogonalization options, and initial orthogonalization with the previous
two blocks and with selective reorthogonalization, for a subtotal of four cases.
Orthonormalization with respect to the mass matrix and the Euclidean norm for the
above four cases was also performed for a total of eight Gram-Schmidt options
considered. The computational time required for creating component mode models
from various finite element models, using the various Gram-Schmidt options discussed
above, is presented in chapter 5.
4.2.5) Cholesky/OR Orthogonalization:

Alternatives to Gram-Schmidt orthonormalization exist which perform the
orthogonalization in a matrix format, rather than a vector by vector format. Use of
explicit matrix orthogonalization can be an advantage in certain programming

applications. Gram-Schmidt is classified as a method of performing a B = QR
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decomposition, where B is a set of vectors (such as unorthogonalized Krylov vectors),
Q is the orthonormalized vector set, and R is an upper triangular matrix, which can
be assembled from the coefficients in the Gram-Schmidt algorithm. In typical Gram-
Schmidt the R matrix is not assembled or used explicitly. The QR decomposition can
be performed explicitly by using a Householder technique'® or by recognizing that the
R matrix is also the upper Cholesky factor of the B "B subspace®. It is instructive to
note the similarity of the B "B matrix multiplication with equation (4.6), the
differences being that all vectors, new and previous, are included in the B matrix.
Cholesky/QR orthogonalization may be understood as a algorithm which, first,
locating the non-orthogonal vectors by the BB multiplication, and second, determines
a transformation which will shift those vectors to an orthogonal space.

That the R transformation matrix can be determined by Cholesky
decomposition of the BB subspace is demonstrated in the following equations. First,
the Cholesky factor is defined as follows: if A is positive definite and symmetric then

the LU decomposition,

A=LDU 4.9)

is equivalent to

A=LDLT (4.10)
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which may be written as

A=LDm(LDm)T=CTC 4.11)

where C = D”?L7, and is called the Cholesky factor. That BB is symmetric can be

shown as follows
B'B=-(BTB)Y'=BT(B") (4.12)

Since the QR decomposition is defined by B = QR, then the BB matrix

product 1s

BTB=(QR)TQR=RTQTQR (4.13)

and since, by definition, @’Q = I, then equation (3.24) becomes

BTB=RTR=CTC (414)

and because both R and C are upper triangular matrices then R = C, and therefore R
is the upper Cholesky factor of B'B.

The steps in the Cholesky/QR orthogonalization algorithm can be summarized
as follows:
1) The matrix product B "B, or using the notation of chapter 2, g, ; 'qy ;, is
calculated, where ¢, j' is the concatenation of the vectors g, ;; defined in equation

(2.11) and the vector block q'j defined in equation (2.8),
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2) The matrix product B "B, is decomposed into, R’R, where R is upper triangular.
3) The equation, R'Q " = B, is solved, with only one forward substitution required
since R is lower triangular.

The Cholesky/QR decomposition algorithm can also be used to orthonormalize

vectors with respect to the mass matrix. If equation (4.13) is re-written as

BTMB=(QR’YMQR=RTQTMQR (4.15)

and since Q"MQ = I, if orthonormalizing with respect to the mass matrix, then

equation (4.14) can be re-written as

B'™MB=RTR=C'C (4.16)

which would yield a different transformation matrix, R, and a different set of
orthogonal vectors, @, than the previous example of orthonormalizing with respect to
the Euclidean vector norm. As discussed in section 2.4, the vectors must be
orthonormalized with respect to the mass matrix for the tridiagonal form to be
achieved, if the Krylov sequence of equation 2.2 is used. The practical aspect of the
tridiagonal form in boundary flexibility component synthesis is that each new vector
block theoretically only needs to be orthogonalized with the previous two vector
blocks.

It is evident, upon examination of the above algorithm, that Cholesky/QR

decomposition orthonormalizes a set, or subset, of vectors simultaneously. This set,
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or subset, would include all the vectors within a specific Krylov block, and these
vectors are nonorthogonal. However, it is important to note that the previous vectors,
which have been successfully orthonormalized, would produce a partition of B B that
is the identity matrix. Decomposing and solving an identity partition produces a
transformation which does not alter vectors which formed the mutually orthonormal
subset. As a result, the theoretical description of the tridiagonal form is applicable to
vectors orthonormalized using Cholesky/QR decomposition, if, as presented above,
they have been orthonormalized with respect to the mass matrix. Theoretically then,
it is possible to orthonormalize, using Cholesky/QR, each new vector, or block, with
the previous two vectors, or vector blocks, and be orthonormal to all previous vectors,
in an identical manner as in the Gram-Schmidt algorithm. Practically, the
Cholesky/QR algorithm has an advantage over Gram-Schmidt in that, when the loss
of orthogonality occurs within the Lanczos algorithm, the inevitably of which is
discussed was section 4.2.1, it does not need to be eliminated immediately. All non-
orthogonal vectors can be reorthogonalized simultaneously at intervals, as required,
and at the termination of the Krylov sequence. The numerous repetitions of the
orthogonality checks required in some implementations of the Gram-Schmdt
algorithm is not required in the Cholesky/QR algorithm. However, a method to
automatically determine when a reorthogonalization is required, such as presented in
reference [26] for Gram-Schmidt, would be required if orthogonalization with the mass

matrix and the previous two blocks only were to be implemented practically.
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4.3) Issues Concerning the Use of Blocks in the Boundary Flexibility Method:

In the boundary flexibility method of component synthesis, several issues of
orthogonalization and usage present themselves, due to the use of blocks in the Krylov
sequence. Nour-Omid and Clough®® described how vector blocks may be used with
Wilson’s algorithm and that the results pertaining to the tridiagonal form and
orthogonalization with the previous two blocks, described in section 2.3, are
applicable. A difference resulting from the use of blocks is that orthogonalization
must be performed with the previous two blocks, not merely the previous two vectors.
Those equations will not be repeated here. The need for orthogonalization within each
block was also discussed by Nour-Omid and Clough. However, it was not presented
that, depending on the choice of the initializing vectors (forces), the vectors within the
block may be approaching linear dependency. In the boundary flexibility method of
component synthesis, nearly dependent vectors within a block can and do occur. This
is not a numerical convergence of the Krylov sequence, as discussed in section 4.2.1.
The nearly dependent vectors within a block is the natural result of the static solution
of a structure under generalized loading, such as the mass matrix multiplied by the
boundary flexibility matrix as in this dissertation. An illustrating example, is
presented in section 4.3.1.

As presented in chapter 2, the initializing block of forces in the boundary
flexibility method is the mass matrix multiplied by the constraint modes, or the

flexibility modes. The size of these matrices is therefore dependent on the size of the
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of the boundary set of the structural component under consideration. In typical
aerospace applications the boundary set of these models can be quite large, larger than
can be practically used in the block-Krylov sequence. Block size reduction by
filtering can correct an excessive block size and this addition to the boundary
flexibility method of component synthesis is presented in section 4.3.2.

4.3.1) Dependence of Vectors Within the Block:

In the boundary flexibility method of component synthesis, nearly dependent
vectors within a block result from the static solution of a structure under generalized
loading. Chapter 2 details this generalized loading as the mass matrix multiplied by
the boundary flexibility matrix. The initial set of Ritz vectors is the static response
the component exhibits for the generalized loading. There is no theoretical basis to
expect that this set of vectors within the initial, or any other, block should be linearly
independent. The boundary flexibility algorithm, as presented in reference [1] and
reviewed in chapter 2, made no orthogonality check of the vectors within the Krylov
block. Furthermore, if internal block orthogonalization is not performed, subsequent
Gram-Schmidt steps are ineffective because the blocks are orthogonalized with a set
of vectors that are not orthogonal.

Consider the case of a simple beam represented by a finite element model
consisting of only two nodes and one element. This single element model is used as
an example to demonstrate that the vectors within the initial Krylov block can be

almost linearly dependent. The beam element will be processed as a component with
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a fixed node interface. The interior partition of the component stiffness and mass

matrix, for the simple beam element model, may be obtained directly from beam

theory’.
L E 12 -6 4.17)
“ L3|-6L 4L?
_EH -12 -6L (4.18)
“ L3|6L 2L?
m.=_" 156 -22L (4.19)
" 420|-22L 4L?
The inverse of k; is as follows,
1 1
4 L3 &% (4.20)
H Erjt 1
2L g2

The constraint modes are given by equation (2.5), as

q,ic: kii_l kw _ [_01 _il (421)



57

Because the component interface is statically determinate, the constraint modes are
identical to the rigid body displacement matrix. The initial block of static Ritz

vectors, ¢, , as given by equation (2.6), is

41 35.666L
mL’ (4.22)

g, =k;" ' m;®, = " 420E] 5_; 49
assuming a lumped mass approach. The vectors contained in q,” can be examined
for dependency. For the first vector, g,, over g5, is equal to .7321L. For the second
vector, g,, OVer q,, is equal to .7279L. These two vectors are, once normalized,
almost identical and linearly dependent.

A large amount of dependency can also occur in larger blocks. Consider a
structure with a statically indeterminate interface. In many cases the nodes may be
positioned closely together, or in a symmetric fashion, either of which may result in
some of the constraint modes being nearly identical. Since the initial set of Ritz
vectors is the static displacement of the component to the mass matrix times the
constraint modes, it is obvious that many component models will yield nearly
dependent vectors, in the initial block.

As mentioned previously, Nour-Omid and Clough® presented the requirement
for orthogonalization within each block of vectors. They suggested that the Gram-

Schmidt orthogonalization procedure, as shown in equations (2.9) through (2.12) be

applied in a two step process. First, the Gram-Schmidt orthonormalizing is applied
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to each vector within each Krylov block. Then, orthogonalization is performed with
the previous vector blocks. An alternate solution to the problem of dependent vectors
within the blocks, was presented by Su and Craig in reference [27]. In this solution
a singular value decomposition is performed on the ¢, "mgq,” subspace. The obtained
transformation matrix orthogonalizes the block.

The recommended method for orthonormalizing the vectors within the Krylov
block has been discussed previously in section 4.2.5, Cholesky/QR orthogonalization.
Some advantages of using Cholesky/QR decomposition to obtain an orthonormalizing
transformation matrix have already been discussed. In relation to vector blocks, this
methodology can orthogonalize a new block separately, or with the previous two
blocks, or with all previous blocks, simultaneously. One potential disadvantage is
that, if the vectors are almost linearly dependent, than the matrix to be decomposed
is numerically singular. As discussed above, this near dependence is to be expected
in even simple problems. The potential singularly of the B "B matrix product can be
solved by block filtering, which will be discussed next.

4.3.2) Block Filtering:

Block filtering is a procedure by which nearly identical, or dependent, vectors
are removed from a vector block. It is based upon a standard orthogonality check.
The use of block filtering simultaneously solves two problems. First, by filtering the

vectors, the size of the block created by the boundary flexibility method can be
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reduced to a manageable level. Second, it can eliminate the potential singularities of
the B "B matrix product which is used in Cholesky/QR orthonormalization.

The first function of block filtering is block size reduction which corrects
excessive block size. The size of the block in the boundary flexibility method is
determined by the size of the boundary set of the structural component. The initial
block of forces in the boundary flexibility method is the mass matrix multiplied by the
constraint modes, or the flexibility modes. For the fixed interface method the equation

establishing the first block, (2.6), is repeated here.
g =k (m @ vm,) (2.6)

The boundary set of practical structural models, which require the use of component
mode synthesis, is usually large enough to cause problems in use of the algorithm.
For instance, a typical Space Shuttle cargo element component model might have a
boundary set of forty-eight degrees of freedom, eight nodes with six degrees of
freedom each. This would lead to a block size of forty-eight. In contrast, the default
block size in the MSC/NASTRAN implementation of the Lanczos eigenvalue
extraction method® is seven, with a maximum of fifteen.

There are several reasons why a large block size is a disadvantage. First, as
discussed in the previous section, many of the vectors in the blocks may be nearly
identical. The information retained after orthogonalizing these nearly dependent

vectors may not be significant, and in extreme cases may only be the product of
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numerical roundoff. In these cases the Ritz vectors obtained from the second Krylov
sequence iteration are more likely to be dynamically significant than the product of
numerical roundoff. Second, truncation of the Krylov sequence and final resulting set
of vectors becomes very imprecise. The static Ritz vectors are generated block by
block and so if the block size is very large many more vectors than desired may be
obtained. Finally, with large blocks, orthogonalization within each block becomes
more expensive and can become numerically difficult due to the previously discussed
dependencies.

The second function of block filtering is the elimination the singularities in the
B "B matrix product, which is used in Cholesky/QR orthonormalization. If two
vectors in the B matrix are nearly identical than, after normalization, the B TB matrix
will have a unity term on both (lower and upper) off-diagonal positions corresponding
to the column number of the identical vectors. Since each row of the B "B matrix has
a unity term in the diagonal position, the two rows corresponding to the two identical
vectors will be dependent, and Cholesky decomposition becomes problematic. If one
of the two vectors is eliminated by block filtering than decomposition can be
accomplished. No information is lost in the block filtering because, by definition, the
vectors in question are nearly identical, and so the discarded vector is a duplication.

The block filtering procedure can be summarized as follows:

1) The vectors within the block, qj*, are normalized as follows

% ® - * * -1/2
qj =qj [<d1ag(q]' Tmi,‘qj )>cc/ ] (4'23)
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or, depending on the orthonormalization selection,

q;" =g, [<diag(g,’ " ¢;)>;; "] (4.24)

cc

where diag is defined as the diagonal terms of the matrix product and the exponent,
V2 s applied to each term within the resulting diagonal matrix, not to the complete
matrix itself.

2) The cross-orthogonality of the vectors is calculated

L =q Tml.iqj‘ (4.25)

m
or, depending on the orthonormalization selection,
LE = q]* T q]‘ (426)

At this point no orthogonalization has occurred and so there is no reason to expect the
matrix product to result in the identity matrix. In this way, the above equations differ
from equation (4.6) and (4.7).

3) The L matrix is partitioned into its lower triangular portion, excluding the diagonal
terms.

4) The infinity norm, as defined in equation (4.8), of each column in the resulting
lower triangular matrix is calculated. These terms are compared to an arbitrary filter
value, e, determined by practice to be initially set to .995. Vectors with associated

terms greater than this value are partitioned from the normalized block.
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5) The size of the revised block is determined and if the block is too small or too
large then the filter value is raised or lowered, respectively, and step 4) is
subsequently repeated. The minimum value for a block has been set at six and the
maximum at eighteen.

4.4) Summary and Revised Orthogonalization Algorithm:

The following tables contain revised orthogonalization algorithms for the
boundary flexibility method of component synthesis, using static Ritz vectors. These
algorithms are a synthesis of the basic methodology described in section 2.2 and the
revisions and additions to the method which have been presented in this chapter.
Table (4.1) presents the algorithm using the mass matrix for orthonormalization. This
algorithm initially orthonormalizes with the previous two vector blocks, and then at
intervals, and at the termination of the sequence, full reorthogonalization occurs.
Table (4.2) presents the algorithm using the Euclidean vector norm for
orthonormalization. Both algorithms are presented for fixed interface components,
however, for free interface components the body of algorithms presented are identical.
The initialization and transformation of the free interface component are different, as

documented in section 2.2.
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After the assembly of the component mass, m, and stiffness, k, matrices:
1) Initialization
P, = _kﬁ'l k, [create boundary flexibility matrix, k;
and k, were defined in equation (2.3)]
g, =k, (m,;®, +m,) [create the initial block]

(For a free interface component, (If the component has rigid body modes then
the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

g, = where g = k! [boundary flexibility matrix]

8ic

gi=gm g, [create the initial block])

2) Filtering of Initial Block

g, =q,"[<diag(q,’ Tm.q,") >cc]’1/2 [normalization]
L, = 91" Tm“ ql" [cross orthogonality]
N0 .
L |- [partition into lower triangular]
m Lm \

If (< “I_'m"m>c) > e, than dependent [infinity norm of each vector]

q, - [ql qDEP] [partition out dependent vectors]

Table (4.1) - Revised Boundary Flexibility Algorithm
Using Orthonormalization With Respect to the Mass Matrix
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3) Orthonormalization of the Initial Block

L,=q'"Tm,q""" [B"MB matrix product]
L, = RTR [Cholesky factor decomposition]
RT q{ =q;" [Solve by forward substitution]

4) For Blocks j =23, ..., 1

q;, = kﬁ'l m.qg, [Krylov sequence]
g =g, [<diag(g’ T m',iqj‘)>cc]'1/2 [normalization]
L= qj" Tmii qj** [cross orthogonality]
N0 L ,
L -|- [partition into lower triangular]
L\

If (< ||1—,m I.>.) = e, than dependent [infinity norm of each vector]

g - [qu" qmsp] [partition out dependent vectors]
5) Orthonormalization (At intervals, orthonormalize with all previous blocks)
(when j = [, transform system to form component)

L wxxT axx T s
L,=q;; m.q; ;i [B'MB matrix product]

L, = RTR [Cholesky factor decomposition]

* %k &

RT quj_ L2 = D2 [Solve by forward substitution]

Table (4.1) (Continued) - Revised Boundary Flexibility Algorithm
Using Orthonormalization With Respect to the Mass Matrix
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After the assembly of the component mass, m, and stiffness, k, matrices:
1) Initialization

P, = —kﬁ'l k, [create boundary flexibility matrix, k;

and k,. were defined in equation (2.3)]

q; = kii‘l(mﬁd)ic+mic) [create the initial block]

[For a free interface component, (If the component has rigid body modes then
the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

g, = where g=k! [boundary flexibility matrix]

8ic

q; —gmg, [create the initial block]]

2) Filtering of Initial Block

q; = g, [<diag(q,’ qu*) >cc]'1/2 [normalization]
L,=q," Tq O [cross orthogonality]
N0 . .
Lp-|- [partition into lower triangular]
L, \

If (< ||I: > 2 e than dependent [infinity norm of each vector]

g, -~ [q I qDEP] [partition out dependent vectors]

Table (4.2) - Revised Boundary Flexibility Algorithm
Using Orthonormalization With the Euclidean Vector Norm
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3) Orthonormalization of the Initial Block

Ly=q,""Tq " [B"B matrix product]
L; =RTR [Cholesky factor decomposition]
RquT =q;" [Solve by forward substitution]

4) For Blocks j =23, ..., 1

q; = kﬁ-l m.q, [Krylov sequence]
qj” = q]_‘ [< diag (qj' qu‘) >cc]'1/ 2 [normalization]
L= qj" qu" [cross orthogonality]
\ 0 e :
Lp-|- [partition into lower triangular]
Lp \

If (<ILgl.>,) = e, than dependent [infinity norm of each vector]

* % LR LS

q; - [qj qmzp] [partition out dependent vectors]

5) Orthonormalization (each block)
(when j = [, transform system to form component)

L= a,, " Tq, o [B"B matrix product]
L;- =RTR [Cholesky factor decomposition]
RT 41T,j _ q;”}* [Solve by forward substitution]

Table (4.2) (Continued) - Revised Boundary Flexibility Algorithm
Using Orthonormalization With Respect the Euclidean Vector Norm
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Figure (4.1) - Normalized Vectors Obtained from a Krylov Sequence of
Order Nine, with x* as the Iteration Matrix
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Chapter 5
Numerical Examples of Orthonormalization

5.1) Introduction:

The following chapter describes the method with which the algorithms
presented in chapter 4 were implemented. Also included are a number of illustrative
examples of theoretical concepts, timing comparisons, and descriptions of algorithm
trials on practical models. The software and hardware, and finite element models used
in these examples is also described.

5.2) Tools and Programming:

The algorithms presented in section 4.3 were implemented in
MSC/NASTRAN?, Version 67. The use of a standard, commercially available
computer program allows the results of this work to be transferred easily to other
structural dynamists. Adding the static Ritz vector algorithms to MSC/NASTRAN is
implemented by the use of the internal programming language called DMAP (Direct
Matrix  Abstraction Programming). The standard solution sequences of
MSC/NASTRAN are written in DMAP, and the source code of MSC/NASTRAN 1is
available at the DMAP level. For example, equations (2.3) through (2.5), (creation
of structural mass and stiffness matrices, partition, and constraint mode creation) and
(2.16) through (2.23) (transformation into the modal component) are currently
contained in the standard MSC/NASTRAN normal modes solution sequence. The

equations presented in Tables (4.1) and (4.2) were written using DMAP, and were
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then incorporated into the MSC/NASTRAN normal modes solution sequence. In
addition, Gram-Schmidt orthonormalization was also implemented, to allow
comparisons with the presented Cholesky/QR decomposition algorithm.

A Cray X-MP running under the UNICOS operating system was the resident
hardware running the version of MSC/NASTRAN utilized. This fact is relevant when
considering the timing numbers presented in section 5.4.

5.3) Finite Element Models:

All finite elements models were created using standard MSC/NASTRAN.
They required no special processing. The normal modes solution sequence created the
finite element component mass and stiffness matrices and performed the partitions into
internal and external degrees of freedom. They were then ready to be processed by
the boundary flexibility algorithm using Ritz vectors.

5.3.1) Simple Beam Model:

The first example case of a simple beam was derived from a finite element
model of the Space Station Freedom photovoltaic array central mast. The length of
the beam was 1179.9 inches. The modulus of elasticity, E, was 10.1 x 10° lbs/in® and
the moment of inertia of the cross section was 108.9 in*. Its weight per unit length
was .2296 lbs/in. The simple beam was modeled with eleven nodes and ten beam
finite elements. Several different boundary conditions, both at the component and
system level, were imposed upon this beam, yielding cantilevered and free-free

conditions. The different boundary conditions cases will be described in section 5.4.
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5.3.2) Space Station Electrical Power System Radiator:

The next example used was a finite element model of the Space Station
Electrical Powe; System (EPS) Radiator (Figure (5.1)). The main contractor
constructing the EPS Radiator is Loral Vought Systems. Its purpose is to expel excess
heat created by Space Station Electrical Power System into space. The structure
weighs approximately 1440 pounds and, when deployed, is approximately 50 feet long
and 12 feet wide. The finite element model representing this structure was created by
Loral Vought Systems (Figure (5.2)). This finite element model contains
approximately 4000 degrees of freedom. With the boundary degrees of freedom fixed,
the EPS Radiator finite element produces eight normal modes below 5 Hz, the first
three being at .19, .73, and .94 Hz (Figures (5.3), (5.4), and (5.5), respectively).
5.3.3) Cassini Spacecraft:

The third example used was a finite element model of the Cassini Spacecraft
deep space probe (Figure (5.6)). The primary organization responsible for the Cassini
spacecraft is the Jet Propulsion Laboratory of the California Institute of Technology
and NASA. This spacecraft will be launched upon a Titan IV launch vehicle and will
explore the Saturn planetary system. The structure weighs approximately 12,890
pounds and is approximately 23 feet long and 14 feet wide. The finite element model
representing this structure was created by the Jet Propulsion Laboratory (Figure (5.7)).
This finite element model contains approximately 11,100 degrees of freedom. With

the boundary degrees of freedom fixed, this Cassini finite element model produces
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sixty-three normal modes below 50 Hz, the first three primary structural modes being
at 7.36 (bending), 7.70 (bending), and 15.78 Hz (torsion).
5.4) Numerical Results:

The following numerical examples can be divided into two groups. The first,
contained in sections 5.4.1 and 5.4.2, are illustrations of some of the theoretical
properties, presented in chapter 4, of generalized static Ritz vectors in the boundary
flexibility method. These examples also serve to validate the correctness of the
implementation of the presented theory. Sections 5.4.3 and 5.4.4 contain examples
of a more practical nature. These examples serve to provide a physical understanding
of the methodology and its benefits in terms of computer cost.

5.4.1) Numerical NNustrations of Theoretical Properties:

If a number of Ritz vectors, equal to the number of degrees of freedom in a
finite element model, are used to form a component, then those vectors do not
represent a Ritz approximation but are an exact transformation. That a component
so formed is exact was proven in section 3.2. A demonstration of that proof, and of
the correct implementation of the boundary flexibility/static Ritz vector methodology
and algorithms presented in chapter 4, is shown in Table (5.1). A complete set of
Ritz vectors, equal to the number of degrees of freedom in the beam model, were
calculated. The interface was assumed to be fixed and so the beam was cantilevered.
A boundary flexibility component model was subsequently formed. The normal

eigenvalues of the transformed component were then calculated and compared to the
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eigenvalues obtained directly from the finite element model of the cantilevered beam.
This is the comparison contained in Table (5.1).

The cross orthogonality of the Ritz vectors, as defined in equations (3.6) and
(3.7), used in the exact transformation discussed in the preceding paragraph, were
calculated. The six largest pairs of off-diagonal terms resulting from the cross
orthogonality calculation for two different cases are given in Tables (5.2) and (5.3).
The vectors used to form the matrix, from which the terms contained in Table (5.2)
were extracted, were orthonormalized with respect to mass matrix. In order to
facilitate obtaining the exact transformation, orthonormalization was performed on all
previous vectors at each step in the Krylov sequence, not with just the previous two
vector blocks. The vectors used to form the matrix, from which the terms contained
in Table (5.3) were extracted, were orthonormalized using the Euclidean vector norm.

The orthogonality properties of the Krylov sequence are illustrated in Tables
(5.4) and (5.5). As was discussed in section 2.3, theoretically, if Ritz vectors are
orthonormalized with respect to the mass matrix and the preceding two blocks of
vectors, then they are orthogonal with all previously calculated vectors. Table (5.4)
contains the orthogonality check of the first five blocks of vectors produced for the
cantilevered beam example described above, orthonormalized with respect to the mass
matrix. Theoretically, all vectors should be mutually orthonormal and this matrix
should be the identity matrix. The extremely large terms at position (1,30) and (30,1)

of the matrix are illustrative of the inherent breakdown of orthogonality which was
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discussed in section 4.2.1, and demonstrated by Theorem 4.1. The rapid creation of
non-orthogonal vectors in this small idealized example clearly demonstrates the
requirement for re-orthogonalization. When calculating Ritz vectors for a more
realistic problem, the requirement for continual re-orthogonalization can outweigh the
advantages of orthogonalization with just the previous two blocks and it can become
more efficient to orthogonalize with all previous vector blocks.

Table (5.5) also contains an orthogonality check with the previous two vector
blocks. However, in this example the vectors have been orthogonalized using the
Euclidean vector norm. There is no theoretical reason why these vectors should be
orthogonal with all previous vectors and they are not. The vectors are orthogonal with
the previous two blocks, but non-orthogonality is manifest between the other vectors.
Specifically, the vectors in block four of the example are not orthogonal with those
in block one and the vectors in block five are not orthogonal with the vectors In
blocks one and two. As a result, whatever advantages exist for using
orthonormalization with the Euclidean vector norm must be weighed against the
requirement for orthogonalization with all previous vectors or more difficult re-
orthogonalization.

5.4.2) Numerical Illustrations of Block Issues:

The Krylov block issues of dependence, size, and filtering, which were
discussed in section 4.3, can be illustrated by the following example, using the EPS

Radiator finite element model. This model has a boundary set of six nodes, which is
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a typical size in practical aerospace applications. The six nodes each have six degrees
of freedom and so the boundary set in this component model has thirty-six degrees of
freedom, which in turn leads to thirty-six constraint modes and an initial block size
of thirty-six. Clearly, as discussed in section 4.3, this is an unwieldy amount of
vectors to process. The cross-orthogonality of the initial block is presented in Table
(5.6). As can be seen, this is a large matrix which contains many nearly identical
vectors, as identified by the mariy cross-orthogonality terms approaching unity. This
is a further demonstration of the initial nonorthogonality of vectors within a block.
The initial, large block of vectors was filtered to produce a new set of eight vectors.
The cross-orthogonality of the filtered vector block presented in Table (5.7). Since
only nearly identical vectors were removed, the filtered vector block contains almost
the identical response information as the original block, is a more convenient size to
work with, and is numerically cleaner and easier to orthonormalize.

5.4.3) Simple Beam Numerical Results:

A component representation of the ten element beam finite element model was
created using the boundary flexibility method and static Ritz vectors. The fixed
interface approach, with constraint modes and two Krylov blocks, was used to form
the component. The interface of the component consisted of one node and six degrees
of freedom. The number of constraint nodes is equal to the number of interface
degrees of freedom, and the size of the Krylov block is equal to the number of

constraint modes. Therefore, each Krylov block contained six Ritz vectors. Since the
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component model was formed with two Krylov blocks, it contained a total of twelve
generalized coordinates.

Plots of the lateral static Ritz vectors, which represented the cantilevered beam,
are shown in Figures (5.8-11). The unorthogonalized vectors, as produced by
equations (2.6) and (2.8), or as given in Table (4.1), are shown in Figures (5.8-9)(a)
and (5.10-11)(a), respectively. The first normalized vector, as produced by equation
(2.7), is given in Figure (5.8)(b). (The first vector does not need to be
orthogonalized.) The remaining orthogonalized and normalized vectors, as produced
by equation (2.12), are given in Figures (5.9-11)(b). The first two unorthogonalized
vectors (given in Figures (5.8-9)(a)), which are in the first Krylov block, appear to be
nearly identical. The first static Ritz vector produced by the boundary flexibility
method is similar to the classic first bending normal mode shape of a beam. After
orthonormalization, the second static Ritz vector has been modified into the classic
second bending normal mode shape (as shown in Figures (5.8-9)(b)).

The similarity of the Ritz vectors to the normal modes of a cantilevered beam
provides an important insight into the numerical difficulties of orthogonalizing vectors
which result from the Krylov sequence. It was shown in theorem 4.1, section 4.2.1,
that the Krylov sequence converges to an eigenvector. In other words, when an
eigenvector is input into the sequence, it produces the same eigenvector. The resulting
complete vector dependency will cause numerical orthogonalization to be very

difficult. Even when the Ritz vectors closely resemble the normal modes, but are not
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exactly the normal modes, near duplication of these vectors from the subsequent
Krylov iteration occurs. This convergence to normal modes is the potentially
important disadvantage of creating boundary flexibility static Ritz vectors which
closely resemble normal modes. This convergence also partially explains the high
degree of nonorthogonality evident in Tables (5.4) and (5.5).

The eigenvalues of the reduced component subspace were then calculated to
evaluate the static Ritz vector representation. The first five single plane natural
frequencies from this reduced system are shown in Table (5.8). For comparison,
Table (5.8) also includes the frequencies of a reduced system where the component
was formed using traditional normal modes. This component was also formed with
a fixed interface, but thirteen normal modes were used for numerical convenience.
The full, or "exact", finite element eigenvalue solution is also shown. In the case of
the Ritz vectors, no modal selection of any kind was used. For the case of the normal
modal component, modal selection by truncation was used. The superior accuracy of
the normal modal component, in the fourth bending mode, does not necessarily
represent a limitation of the boundary flexibility methodology, but instead
demonstrates the requirement for an adequate Krylov sequence truncation criteria.
This subject will be discussed in chapter 7.

In addition to the fixed interface example, two free interface examples were
created. Both were based on the same ten element beam finite element model, but

with different boundary conditions. The first free component model considered was
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free-fixed, with the component interface being the free boundary condition, and hence
it had no rigid-body modes. Equations (2.20) through (2.34) define the formulation
of this free interface component. This component was also formed with two Krylov
blocks, and therefore twelve Ritz vectors. Table (5.9) presents the first five single
plane system natural frequencies of the reduced component subspace, compared to the
natural frequencies of the full finite element model. The second free component
mode]l considered consisted of the ten element beam with free-free boundary
conditions and six rigid body modes. Equations (2.35) through (2.42) define the
formulation of this component. Table (5.10) contains the six rigid body frequencies
and the first four single plane elastic frequencies of the reduced component subspace,
compared to the frequencies of the full finite element model. In the two free interface
cases, there is no comparison with the normal component mode synthesis. This is
because standard free-interface MSC/NASTRAN routine does not use the "Rubin-
MacNeal" method, and so a direct comparison was not performed.

5.4.4) Timing Comparisons:

Static Ritz vector component models were formed using the boundary
flexibility methodology for the EPS Radiator finite element model and the Cassini
spacecraft finite element model. A variety of options was used in performing these
computer runs. Orthonormalization was performed using Cholesky/QR and Gram-
Schmidt, and with respect to the mass matrix and with the Euclidean vector norm.

When orthonormalizing with respect to the mass matrix, orthonormalization was
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performed both with all previous blocks and with the previous two blocks, as allowed
theoretically. When Gram-Schmidt was used, reorthogonalization was performed with
all vectors, with selected vectors, and with selected vectors using modified Gram-
Schmidt. The timing comparisons are presented in Table (5.11) for the EPS Radiator,
and Table (5.12) for the Cassini. In these comparisons a specified, consistent number
of Ritz vectors was created. The number of vectors specified was sufficient to create
an accurate component, for an arbitrary frequency cutoff. A Cray X-MP, using the
UNICOS operating system, was the computer hardware system used to perform these
timing comparisons.

The algorithms were implemented using DMAP, in version 67 of
MSC/NASTRAN. As aresult, some caution should be used in interpreting the timing
comparison data. Each DMAP module calls an independent set of compiled fortran
routines, and each call takes a certain amount of computer time, which is essentially
overhead. As a result, a large sequence of DMAP statements, especially a loop which
will be repeated many times, will not be efficient as programs written in some
compiled computer languages, such as FORTRAN. The results of the modified Gram-
Schmidt reorthogonalization option would be particularly misleading, because of the
large number of separate DMAP calls. On the positive side, the results for static Ritz
vector, boundary flexibility component synthesis represent a lower bound estimate of
the likely improvement in computer time. If implemented more efficiently, such as

in the FORTRAN code of NASTRAN, this methodology should demonstrate a greater
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time savings in forming the component then the already significant amount shown for
the Cassini model in Table (5.12). The Cassini spacecraft model was the largest finite

element model considered.



80

Mode Ritz Normal Modes
1 .5463995 .5463995
2 .5463995 .5463995
3 3.414649 3.414649
4 3.414649 3.414649
5 9.522067 9.522067
6 9.522067 9.522067
7 18.56508 18.56508
8 18.56508 18.56508
9 27.57835 27.57835
10 30.53347 30.53347
11 30.53347 30.53347
12 45.41006 4541006
13 45.41006 45.41006
14 63.18172 63.18172
15 63.18172 63.18172
16 81.89710 81.89710
17 83.59296 83.59296
18 83.59296 83.59296
19 84.63568 84.63568
20 104.4086 104.4086
21 104.4086 104.4086
22 133.7274 133.7274
23 151.3342 151.3342
24 151.3342 151.3342
25 181.4946 181.4946
26 182.6918 182.6918
27 182.6918 182.6918
28 223.0661 223.0661
29 223.0661 223.0661
30 223.7470 223.7470
31 251.5984 251.5984
32 259.2011 259.2011
33 271.7271 271.7271
34 271.7271 271.7271
35 286.7794 286.7794

Table (5.1) - A Comparison of Cantilevered Beam Frequencies (Hz)
Obtained From a Static Ritz Component Transformed into Normal Eigenvalues
and a Direct Normal Eigenvalue Solution
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Mode Ritz Normal Modes
36 305.6441 305.6441
37 315.2220 315.2220
38 329.7375 329.7375
39 329.7375 329.7375
40 397.8221 397.8221
41 397.8221 397.8221
42 411.6982 411.6982
43 473.4397 473.4397
44 473.4397 473.4397
45 543.8633 543.8633
46 543.8633 543.8633
47 560.5679 560.5679
48 692.9518 692.9518
49 692.9518 692.9518
50 694.1468 694.1468
51 808.7912 808.7912
52 901.3738 901.3738
53 969.3694 969.3694
54 1010.923 1010.923

Table (5.1)(Continued) - A Comparison of Cantilevered Beam Frequencies (Hz)
Obtained From a Static Ritz Component Transformed into Normal Eigenvalues
and a Direct Normal Eigenvalue Solution



82

Row 1, Selected Columns
1,1) 1.0000e+00 1,54) 1.9043¢-14

Row 6. Selected Columns
6,6) 1.0000e+00 6,54) -1.4917e-14

Row 12, Selected Columns
12,12) 1.0000e+00 12,54) -1.6464¢e-14

Row 13, Selected Columns
13,13) 1.0000e+00 13,54) 1.3798e-14

Row 39, Selected Columns
39,39) 1.0000e+00 39,51) -1.3741e-14

Row 49 Selected Columns
49.49) 1.0000e+00 49,54) -2.2577e-14

Row 51, Selected Columns
51,39) -1.3741e-14  51,51) 1.0000e+00

Row 54, Selected Columns
54,1) 1.9043e-14 54,6) -1.4917e-14
54,49) -2.2577e-14  54,54) 1.0000e+00

54,12) -1.6464e-14

54,13) 1.3798e-14

Table (5.2) - The Largest Off-Diagonal Terms From an Orthogonality
Check of the Static Ritz Vectors Representing a Cantilevered Beam,
Using Orthonormalization With Respect to the Mass Matrix
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Row 39, Selected Columns
39,39) 1.0000e+00 39,51) 9.4066e-15

Row 40, Selected Columns
40,40) 1.0000e+00 40,51) 8.4148e-15

Row 42, Selected Columns
42.42) 1.0000e+00 42,54) -1.7574e-14

Row 43, Selected Columns
43.43) 1.0000e+00 43,54) 1.1849¢-14

Row 48. Selected Columns
48,48) 1.0000e+00 48,54) 1.2303e-14

Row 49._ Selected Columns
49,49) 1.0000e+00 49,54) 2.1308e-14

Row 51, Selected Columns
51,39) 9.4066e-15 51,40) 8.4148e-15 51,51) 1.0000e+00

Row 54, Selected Columns
54,42) -1.7574e-14  54,43) 1.184%9e-14 54,48) 1.2303e-14
54,49) 2.1308e-14 54,54) 1.0000e+00

Table (5.3) - The Largest Off-Diagonal Terms From an Orthogonality
Check of the Static Ritz Vectors Representing a Cantilevered Beam,
Using Orthonormalization With the Euclidean Vector Norm
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Block One

1D 1.0000e+00 1,25) 1.6720e-02 1,30) 5.8706e-01
2,2)  1.0000e+00 |
3,3) 1.0000e+00 3,28) 9.8957e-02
4.4) 1.0000e+00

5,5) 1.0000e+00

6,6) 1.0000e+00

Block Two

7.7 1.0000e+00

8,8) 1.0000e+00

9,9) 1.0000e+00

10,10) 1.0000e+00

11,11) 1.0000e+00

12,12) 1.0000e+00

Block Three

13,13) 1.0000e+00

14,14) 1.0000e+00

15,15) 1.0000e+00

16,16) 1.0000e+00

17,17) 1.0000e+00

18,18) 1.0000e+00

Block Four

19,19) 1.0000e+00

20,20) 1.0000e+00

21,21) 1.0000e+00

22,22) 1.0000e+00

23,23) 1.0000e+00

24.24) 1.0000e+00

Block Five

25,1) 1.6720e-02 25,25) 1.0000e+00
26,26) 1.0000e+00

27,27y 1.0000e+00

28,3) 9.8957e-02 28,28) 1.0000e+00
29,29) 1.0000e+00

30,1) 5.8706e-01 30,30) 1.0000e+00

Table (5.4) - The Cross Orthogonality of Static Ritz Vectors
Created by Orthonormalizing With the Previous Two Blocks,
Using Orthonormalization With Respect to the Mass Matrix



Block One

1D 1.0000e+00
2,2) 1.0000e+00
3,3) 1.0000e+00
4.4) 1.0000e+00
5,9) 1.0000e+00
6,6) 1.0000e+00
Block Two

7.7) 1.0000e+00
8,8) 1.0000e+00
9,9) 1.0000e+00

10,10) 1.0000e+00
11,11) 1.0000e+00
12,12) 1.0000e+00
Block Three

13,13) 1.0000e+00
14,14) 1.0000e+00
15,15) 1.0000e+00
16,16) 1.0000e+00
17,17) 1.0000e+00
18,18) 1.0000e+00
Block Four

19,1) -9.9924e-01

20,2) -9.9135e-01

21,3) -9.9924e-01

22,3) 3.8427e-02
23,23) 1.0000e+00
24,1) -3.8427e-02
Block Five

25,6) -1.8463e-01

26,2) -1.2688e-01

27.4) 1.8463e-01

28,9) -9.9601e-01

29,29) 1.0000e+00
30,7) 9.9601e-01

Table (5.5)- The Cross Orthogonality of Static Ritz Vectors
Created by Orthonormalizing With the Previous Two Blocks,
Using Orthonormalization With the Euclidean Vector Norm
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1,19)
2,20)
3.21)
4,21)

-9.9924e-01
-9.9135¢-01
-9.9924e-01
-3.9085e-02
6,19) 3.9085e-02
7,25)
8.,26)
9,27)
10,28)

-4.9289%¢-02
-2.5613e-01
-4.9289¢-02
-7.4190e-02

12,30) -7.4190e-02

19,6) 3.9085e-02
20,20) 1.0000e+00
21,4) -3.9085e-02
22,4) -9.8199¢-01
24,6) -9.8199e-01
-4.9289e-02
-2.5613e-01

-4.9289¢-02
-7.4190e-02

25,7)
26,8)
27,9)
28,10)

30,12) -7.4190e-02

1,24)
2,26)
3,22)
4,22)
6,24)
7,30)

9,28)

19,19)

21,.21)
22.22)

24,24)
25,25)
26,26)
27,27)
28,28)

30,30)

-3.8427e-02
-1.2688e-01
3.8427e-02
-9.8199¢-01
-9.8199¢-01
9.9601e-01

-9.9601e-01

1.0000e+00

1.0000e+00
1.0000e+00

1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00

1.0000e+00

4,27)

6.25)

1.8463e-01

-1.8463e-01
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Row 1. Columns | Thru 3

1 1.0000e+00 -9.9999%-01 -9.9604e-01 -9.9996e-01 9.5350e-01 -9.9999¢-01 -9.7551e-01 -9.9976e-01 9.9978e-01 -9.9964e-01
11)  7.5250e-01 -1.6221e-01 -9.9941e-01 -9.9906e-01 -9.9289¢-01 -9.9924¢-01 -9.4312¢-01 9.9905¢-01 -9.9947¢-01 9.9967¢-01
1) -9.9854e-01 -9.9967e-01 9.9860e-01 9.9959%¢-01 -9.7430e-01 -9.9972¢-01 9.9975e-01 -9.9973e-01 7.8313e-01 1.386%¢-02
31} 9.9951e-01 9.9954¢-01 -9.9908e-01 -9.9963¢-01 -9.9900e-01 -9.9952¢-01
Row 2, Columns | 3

1) -9.9999¢-01 1.0000e+00 9.960le-01 9.9995¢-01 -9.5348¢-01 1.0000e+00 9.7619¢-01 9.9971e-01 -9.9973¢-01 9.9959¢-01
11}  -7.5179e-01 1.5939%e-0! 9.9931e-01 9.9896e-01 9.9282¢-01 9.9916e-01 9.4310e-01 -9.9895¢-01 9.9954e-01 -9.9971e-01
21)  9.9867e-01 9.9969%¢-01 -9.9872e-01 -9.9964e-01 9.7493e-01 9.9968e-01 -9.9971e-0] 9.9968e-01 -7.8530e-01 -1.5068¢e-02
31 -9.9937¢-01 -9.9941e-01 9.9888e-01 9.9951e-01 9.987%-01 9.9938e-01

w 3 lumns | Thru 3

[) -9.9604e-0! 9.9601e-01 1.0000e+00 9.9615¢-01 -9.7650e-01 9.9589¢-01 9.8395¢-01 9.9409e-01 -9.9425¢-01 9.9473e-0}
11} -6.9905¢-01 1.0225¢-01 9.9328e-01 9.9217e-01 9.8160e-01 9.9282¢-01 9.2030e-01 -9.9210e-01 9.9320e-01 -9.9385¢-01
21} 9.9044e-01 9.935%-01 -9.9057e-01 -9.9359¢-01 9.8418e-01 9.9381e-01 -9.9433¢-01 9.9407¢-01 -8.10582-01 -8.9784¢-02
1) -9.9442e-01 -9.9452e-01 9.9475e-01 9.9450e-01 9.9456e-01 9.9483¢-01
Row 4. s 1 3

1) -9.9996e-01 9.9995¢-01 9.9615¢-01 1.0000e+00 -9.5398e-01 9.9994e-01 9.7488e-01 9.9975¢-01 -9.9979%¢-01 9.9979¢-01
11)  -7.5412e-01 1.6492e-01 9.9947e-01 9.9915e-01 9.9343e-01 9.9937e-01 9.4482e-01 -9.9913e-01 9.9946e-01 -9.9968e-01
21} 9.9843e-01 9.9965¢-01 -9.9848e-01 -9.9961e-01 9.7366e-01 9.9968¢-01 -9.9981e-01 9.9975¢-01 -7.8143e-01 -1.1353¢-02
31} -9.5956e-01 -9.9959¢-01 9.9901e-01 9.9963e-01 9.9892¢-0! 9.9958¢-0!

w S 1 s 1 3

1) 9.5350e-01 -9.5348e-01 -9.7650e-01 -9.5398¢-01 1.0000e+00 -9.5308e-01 -9.7285¢-01 -9.4745¢-01 9.4793e-01 -9.4997e-01
11)  5.4647e-01 5.0223e-02 -9.4547e-0] -9.4255e-01 -9.2212e-01 -9.4442¢-01 -8.3595e-01 9.4234e-01 -9.4538e-01 9.4702¢-01
21) -9.3835e-01 -9.4610e-01 9.3865¢-01 9.4636¢-01 -9.763%¢-01 -9.4656e-01 9.4828¢-01 -9.4744e-01 B8.5363e-01 2.7095e-01
31} 9.4900e-01 9.4928e-01 -9.5089%-01 -9.4899¢-01 -9.5045¢-0]1 -9.5032¢-01
Row lumns | 3

1) -9.9999¢-01 1.0000e+00 9.958%¢-01 9.9994e-01 -9.5308¢-01 1.0000e+00 9.7610e-01 9.9973e-01 -9.9974e-01 9.9959¢-01
1Y) -7.5237e-01 1.5987¢-01 9.9933e-01 9.9898e-01 9.9290e-01 9.9918e-01 9.4331e-01 -9.9897e-01 9.9957¢-01 -9.9974e-01
21)  9.9874e-01 9.9972e-01 -9.9879-01 -9.9967e-01 9.7481e-01 9.9970e-01 -9.9972¢-01 9.9969e¢-01 -7.8513e-01 -1.4196e-02
31)  -9.9937¢-01 -9.9940e-01 9.9886¢-01 9.9951e-01 9.9878e-01 9.9937¢-01

w 7 1 s 3

1) -9.7551e-01 9.7619e-01 9.8395¢-01 9.7488e-01 -9.7285¢-01 9.7610e-01 1.0000e+00 9.7086e-01 -9.7096e-01 9.7087e-01
11) -6.0711e-01 -5.8122¢-02 9.6749%e-01 9.6537¢-01 9.4835¢-01 9.6691¢-01 8.6941e-01 -9.6530e-01 9.7294e-01 -9.7297e-01
21)  9.7127e-01 9.7230e-01 -9.7154e-01 -9.7271e-01 9.9978e-01 9.7074¢-01 -9.7084e-01 9.7077e-01 -8.998%¢-01 -2.0921e-0}
31) -9.6844e-01 -9.6868¢-01 9.6838¢-01 9.6942¢-01 9.6805¢-01 9.6889¢-01
Row lumns 1 Thru 3

1) -9.9976e-01 9.9971e-01 9.9409¢-01 9.9975e-01 -9.4745¢-01 9.9973e-01 9.7086e-01 1.0000e+00 -9.9999¢-01 9.9979¢-01
11) -7.6648e-01 1.8253¢-01 9.998%¢-01 9.997Se-01 9.9490e-01 9.9980e-01 9.4872e-01 -9.9975¢-01 9.9967¢-01 -9.9982¢-01
21} 9.9902e-01 9.9988¢-01 -9.9905¢-01 -9.9978e-01 9.6940e-01 9.9999¢-01 -9.9997e-01 9.9996e-01 -7.7111e-01 0.0000e+00
1) -9.9979¢-01 -9.9980e-01 9.9922e-01 9.9986e-01 9.9916e-01 9.9973¢-01
Row 9 | s 1 3

1) 9.9978¢-01 -9.9973e-01 -9.9425¢-01 -9.9979¢-01 9.4793e-01 -9.9974¢-01 -9.7096¢-01 -9.9999¢-01 1.0000e+00 -9.9985¢-01
11)  7.6607e-01 -1.8215¢-01 -9.9990e-01 -9.9974¢-01 -9.9492¢-01 -9.9981e-01 -9.4877¢-01 9.9974e-01 -9.9966e-01 9.9982¢-01
21)  -9.9895e-01 -9.9987¢-01 9.9898e-01 9.9978e-01 -9.6951e-01 -9.9998¢-01 9.9999¢-01 -9.9998¢-01 7.7128e-01 0.0000e+00
31)  9.9981e-01 9.9982e-01 -9.9921e-01 -9.9987e-01 -9.9915¢-01 -9.9975¢-01

w ] lymns 3

1) -9.9964e-01 9.9959%-01 9.9473e-01 9.9979¢-01 -9.4997¢-01 9.9959-01 9.7087¢-01 9.9979%-01 -9.9985¢-01 1.0000e+00
11) -7.6582e-01 1.8200e-01 9.9975¢-01 9.9960e-01 9.9536e-01 9.9980e-0]1 9.5065¢-01 -9.9958e-01 9.9952¢-01 -9.9969-01
21)  9.9856e-01 9.9967¢-01 -9.9856e-01 -9.9966e-01 9.6944e-01 9.9972¢-01 -9.9991e-01 9.9987e-01 -7.7124e-01 0.0000e+00
31 -9.9968e-01 -9.9970e-01 9.9885¢-01 9.9967e-01 9.9876e-01 9.9965¢-0]

w 11 lumns 3

1) 7.5250e-01 -7.5179¢-01 -6.9905¢-01 -7.5412¢-01 5.4647¢-01 -7.5237¢-01 -6.0711¢-01 -7.6648e-01 7.6607e-01 -7.6582e-01
1) 1.0000e+00 -7.1435e-01 -7.7317e-01 -7.7935e-01 -8.2077e-01 -7.7680e-0]1 -9.0551e-01 7.7955e-01 -7.6740e-01 7.6551e-01
21) -7.7476e-01 -7.6670e-01 7.7381e-01 7.6684e-01 -5.9718e-01 -7.6694e-01 7.6661e-01 -7.6683¢-01 2.5430c-01 -6.4781e-01
31)  7.6653e-01 7.6609e-01 -7.5886¢-01 -7.6493e-01 -7.5924e-01 -7.6421e-01
Row 1 s 1 3

1) -1.6221e-01 1.593%-0! 1.0225¢-01 1.6492e-01 5.0223e-02 1.5987¢-01 -5.8122¢-02 1.8253e-01 -1.8215¢-01 1.8200e-01
11) -7.1435e-01 1.0000e+00 1.9580e-01 2.0415e-01 2.5665¢-0f 1.9830e-01 3.9512¢-01 -2.0440e-01 1.7371e-01 -1.7391e-01
21} 1.7840e-01 1.7672¢-01 -1.7734e-01 -1.7494e-0] -6.4138¢-02 1.8295¢-01 -1.8267¢-01 1.8287e-01 4.7562e-01 9.0808e-01
31} -1.9090e-01 -1.9001e-01 1.8765¢-01 1.8719¢-01 1.8867e-01 1.3869¢-01
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Row 13 lumns } 3

1) -9.9941e-01 9.9931c-01 9.9328e-01 9.9947¢-01 -9.4547e-01 9.9933e-01 9.6749e-01 9.9989%-01 -2.9990e-01 9.9975e-01
11) -7.7317e-01 1.9580¢-01 1.0000e+00 9.9995¢-01 9.9574e-0! 9.9993¢-0] 9.5135e-01 -9.9995¢-01 9.9935e-01 -9.9955¢-01
21)  9.9864e-01 9.9964e-01 -9.9866e-01 -9.9951e-01 9.6604e-01 9.9987¢-01 -9.998%¢-01 9.9987¢-01 -7.6210e-01 1.8510e-02
31) -9.998%-01 -9.9989%-01 9.9931e-01 9.998%-01 9.9927e-01 9.9982¢-01
Row 14, Columns | 6

1) -9.9906e-01 9.9896e-01 9.9217e-01 9.9915e-01 -9.4255¢-01 9.9898e-01 9.6537e-01 9.9975¢-01 -9.9974¢-01  9.9960e-01
11) -7.7935e-01 2.0415¢-01 9.9995¢-01 1.0000e+00 9.9651e-01 9.9995e-01 9.5402e-01 -1.0000e+00 9.9925¢-01 -9.9941e-01
21)  9.9867e-01 9.9951e-01 -9.9867e-01 -9.9939%¢-01 9.6377e-01 9.9974e-0! -9.9975¢-01 9.9973e-01 -7.5718¢-01 2.8265e-02
31)  -9.9974e-01 -9.9973¢-01 9.9903e-01 9.9971e-01 9.9899¢-01 9.9963e-01
Row 1§ lumns | 3

1) -9.9289%e-01 9.9282e-01 9.8160e-01 9.9343¢-01 -9.2212¢-01 9.9290e-01 9.4835e-01 9.9490e-01 -9.9492¢-01 9.9536e-01
11) -8.2077e-01 2.5665¢-01 9.9574e-01 9.965]e-01 1.0000e+00 9.9660e-01 9.7569%-01 -9.9650e-01 9.9525¢-01 -9.9505¢-01
21)  9.9533¢-01 9.9503e-01 -9.9515e-01 -9.9526¢-01 9.4543e-01 9.9477¢-01 -9.9518¢-01 9.9500e-01 -7.2508¢-01 9.7575e-02
31) -9.9459¢-01 -9.9458¢-01 9.9220e-01 9.9431e-01 9.9210e-01 9.9424¢-0!

w | mns 3

1) -9.9924e-01 9.9916e-01 9.9282e-01 9.9937¢-01 -9.4442e-01 9.9918e-01 9.6691e-01 9.9980e-01 -9.9981e-01 9.9980e-01
11) -7.7680e-01 1.9830e-01 9.9993e-01 9.9995¢-01 9.9660e-01 1.0000e+00 9.5435¢-01 -9.9994e-01 9.9946e-01 -9.9960e-01
21)  9.9880e-01 9.9964e-01 -9.9879¢-01 -9.995%-01 9.6528e-01 9.9975¢-01 -9.9986e-01 9.9981¢-01 -7.6135¢-01 2.403%¢-02
31) -9.9970e-01 -9.9971e-01 9.9884e-01 9.9967e-01 9.9877e-01 9.996le-01
Row 17 mns 1 Thru

1) -9.4312e-01 9.4310e-01 9.2030e-01 9.4482¢-01 -8.3595e-01 9.4331e-01 8.6941e-01 9.4872¢-01 -9.4877e-01 9.5065¢-01
1D -9.0551e-01 3.9512e-01 9.5135¢-01 9.5402e-01 9.7569¢-01 9.5435¢-01 1.0000e+00 -9.5400e-01 9.5099¢-01 -9.4993¢-01
21)  9.5281e-01 9.4963e-01 -9.5217e-01 -9.5072e-01 8.6322e-01 9.4831e-01 -9.4967e-01 9.4907¢-01 -6.0968¢-01 2.8219¢-01
31) -9.4782e-01 -9.4779e-01 9.4127e-01 9.4685¢-01 9.4106e-01 9.4686e-0t
Row 1 olumns | Thru 3

1) 9.9905e-01 -9.9895e-01 -9.9210¢-01 -9.9913e-01 9.4234e-01 -9.9897e-01 -9.6530e-01 -9.9975¢-01 9.9974¢-01 -9.9958¢-01
11)  7.7955¢-01 -2.0440e-01 -9.9995€-01 -1.0000e+00 -9.9650e-01 -9.9994e-01 -9.5400e-01 1.0000e+00 -9.9925¢-01  9.9940e-01
21) -9.9868e-01 -9.9951e-01 9.986%-01 9.9939¢-01 -9.6370e-01 -9.9974¢-01 9.9974¢-01 -9.9973e-01 7.5704e-01 -2.8583e-02
31)  9.9973e-01 9.9972¢-01 -9.9902¢-01 -9.9970e-01 -9.9899e-01 -9.9962¢-01
Row 19 lumns |

1) -9.9947e-01 9.9954e-01 9.9320e-01 9.9946¢-01 -9.4538¢-01 9.9957¢-01 9.7294¢-01 9.9967¢-01 -9.9966¢-01 9.9952¢-01
11) -7.6740e-01 1.7371e-01 9.9935e-01 9.9925¢-01 9.9525¢-01 9.9946e-01 9.5099¢-01 -9.9925¢-01 1.0000e+00 -9.9997¢-01
21)  9.9970e-01 9.9994e-01 -9.9971e-01 -9.9998¢-01 9.7105e-01 9.9966e-01 -9.9967e-01 9.9966e-01 -7.7909¢-01 0.0000e+00
31) -9.9897¢-01 -9.9900e-01 9.9790e-01 9.9911e-01 9.9781le-01 9.9885¢-01
Row 20, Columns | 3

1) 9.9967¢-01 -9.9971e-01 -9.9385¢-01 -9.9968¢-01 9.4702e-01 -9.9974e-01 -9.7297¢-01 -9.9982¢-01 9.9982e-01 -9.9969¢-01
11)  7.6551e-01 -1.7391e-01 -9.9955¢-01 -9.9941e-01 -9.9505¢-01 -9.9960e-01 -9.4993e-01 9.9940e-01 -9.9997¢-01 1.0000e+00
21) -9.9951e-01 -9.9998e-01 9.9953e-01 1.0000e+00 -9.7124¢-01 -9.9980e-01 9.9983¢-01 -9.9981e-01 7.7823¢-01 0.0000e+00
31)  9.9927e-01 9.9930e-01 -9.9834¢-01 -9.9939%-01 -9.9826e-01 -9.9918e-01
Row 21 lumns 3

1) -9.985de-01 9.9867e-01 9.9044e-01 9.9843¢-01 -9.3835e-01 9.9874e-01 9.7127e-01 9.9902¢-01 -9.9895¢-01 9.9856e-01
11) -7.7476e-01 1.7840¢-01 9.9864e-01 9.9867¢-01 9.9533e-01 9.9880e-O0l 9.5281e-01 -9.9868¢-01 9.9970e-01 -9.9951e-01
21)  1.0000e+00 9.9953¢-01 -1.0000e+00 -9.9957¢-01 9.6897e-01 9.9908e-01 -9.9892e-01 9.9896e-01 -7.7756e-01 2.0543e-02
31) -9.9797e-01 -9.9799¢-0) 9.9670e-01 9.9818¢-01 9.9663e-01 9.9774e-01
Row 22, Columns 1 Thru 36

1) -9.9967e-01 9.9969¢-0L 9.9359¢-01 9.9965¢-01 -9.4610e-01 9.9972¢-01 9.7230e-01 9.9988¢-01 -9.9987¢-01 9.9967e-01
11) -7.6670e-01 1.7672e-01 9.9964e-01 9.995le-01 9.9503¢-01 9.9964e-01 9.4963e-01 -9.9951e-01 9.9994¢-01 -9.9998¢-01
21)  9.9953e-01 1.0000e+00 -9.9955¢-01 -9.9997¢-01 9.7060e-01 9.9988e-01 -9.9986e-01 9.9986e-01 -7.7626¢-01 0.0000e+00
31) -9.9937e-01 -9.9939¢-01 9.9854e-01 9.9950¢:01 9.9846e-01 9.9927¢-01
Row 23, Columns | Thru 3

1) 9.9860e-01 -9.9872e-01 -9.9057¢-0] -9.9848¢-01 9.3865¢-01 -9.9879%-01 -9.7154e-01 -9.9905¢-01 9.9898¢-01 -9.9856e-01
11)  7.7381e-01 -1.7734¢-01 -9.9866e-01 -9.9867¢-01 -9.9515e-01 -9.9879%-0} -9.5217e-01 9.9869¢-01 -9.9971e-01 9.9953¢-01
21)  -1.0000e+00 -9.9955¢-01 1.0000e+00 9.9958¢-01 -9.6927¢-01 -9.9912e-01 9.9894e-01 -9.9899¢-01 7.7812e-01 -1.9052¢-02
31)  9.980le-01 9.9802e-01 -9.967%-01 -9.9823¢-01 -9.9672¢-01 -9.9779%-01
Row 24 mns | 3

1) 9.9959¢-01 -9.9964¢-01 -9.9359%¢-01 -9.9961¢-01 9.4636e-01 -9.9967e-01 -9.7271e-01 -9.9978¢-01 9.9978e-01 -9.9966¢-01
11)  7.6684e-01 -1.7494e-01 -9.9951¢-01 -9.9939%¢-01 -9.9526e-0} -9.9959¢-01 -9.5072e-01 9.9939¢-01 -9.9998¢-01 1.0000e+00
21)  -9.9957¢-01 -9.9997¢-01 9.9958¢-0! 1.0000e+00 -9.7091e-01 -9.9976e-01 9.9979¢-01 -9.9977¢-01 7.7785¢-01 0.0000e+00
31)  9.9919e-01 9.9922¢-01 -9.9819¢-01 -9.9931¢-01 -9.9810e-01 -9.9909¢-01
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Row 25 lumns | Thru 3

1) -9.7430e-01 9.7493e-01 9.8418e-01 9.7366e-01 -9.7639¢-01 9.7481e-01 9.9978¢-01 9.6940e-0]1 -9.6951e-01 9.6944e-01
11} -5.9718e-0]1 -6.4138e-02 9.6604¢-01 9.6377¢-01 9.4543¢-01 9.6528e-01 8.6322¢-01 -9.6370e-01 9.7105e-01 -9.7124e-01
21)  9.6897e-01 9.7060e-01 -9.6927e-01 -9.7091e-01 1.0000e+00 9.6926e-01 -9.6937¢-01 9.6930e-01 -9.0022¢-01 -2.2244¢-01
31) -9.6730e-01 -9.6753e-01 9.6765e-01 9.6825¢-01 9.6734e-01 9.6783e-0!

Row 26 lumns ] 3

1) -9.9972¢-01 9.9968e-01 9.9381e-01 9.9968¢-01 -9.4656e-01 9.9970e-01 9.7074e-01 9.9999¢-01 -9.9998e-01 9.9972e-01
11) -7.6694e-01 1.8295¢-01 9.9987¢-01 9.9974e-01 9.9477¢-01 9.9975e-01 9.483le-01 -9.9974e-01 9.9966e-01 -9.9980e-01
21)  9.9908e-01 9.9988e-01 -9.9912¢-01 -9.9976e-01 9.6926e-01 1.0000e+00 -9.9994e-01 9.9996e-01 -7.7091e-01 0.0000e+00
31) -9.9976e-01 -9.9976e-01 9.9922e-01 9.9984e-01 9.9917¢-01 9.9968e-0!

w 27 s 1 3

1) 9.9975¢-01 -9.9971e-01 -9.9433¢-01 -9.9981e-01 9.4828e-01 -9.9972¢-01 -9.7084e-01 -9.9997e-01 9.9999¢-01 -9.9991e-01
11) 7.6661e-01 -1.8267e-0]1 -9.9989¢-01 -9.9975¢-01 -9.9518e-01 -9.9986e-01 -9.4967¢-01 9.9974e-01 -9.9967e-01 9.9983e-01
21} -9.9892e-01 -9.9986e-01 9.989d4e-01 9.9979¢-01 -9.6937e-01 -9.9994e-01 1.0000e+00 -9.9997e-01 7.7105¢-01 0.0000e+00
31)  9.9979e-01 9.9981e-01 -9.9911e-01 -9.9983e-01 -9.9904e-01 -9.9974¢01
Row 28, Columns | 3

1) -9.9973e-01 9.9968e-01 9.9407e-01 9.9975e-01 -9.4744e-01 9.9969¢-01 9.7077e-01 9.9996e-01 -9.9998e-01 9.9987¢-01
11} -7.6683¢-01 1.8287e-01 9.9987¢-01 9.9973e-01 9.9500e-01 9.9981le-01 9.4907e-01 -9.9973¢-01 9.9966e-01 -9.9981e-01
21)  9.9896e-01 9.9986e-01 -9.9899¢-01 -9.9977e-01 9.6930e-01 9.9996e-01 -9.9997¢-01 1.0000e+00 -7.7095¢-01 0.0000e+00
31 -9.9977¢-01 -9.9977e-01 9.9912e-01 9.9983e-01 9.9906e-01 9.9970e-01
Row 29 Columns_] Thru 36

1) 7.8313e-01 -7.8530e-01 -8.1058e-01 -7.8143e-01 8.5363e-01 -7.8513e-01 -8.9989¢-01 -7.7111e-01 7.7128e-01 -7.7124e-01
I 2.5430e-01 4.7562e-01 -7.6210e-01 -7.5718e-01 -7.2508e-01 -7.6135e-0] -6.0968e-01 7.5704e-01 -7.7909¢-01 7.7823e-01
21) -7.7756e-01 -7.7626e-01 7.7812e-01 7.7785e-01 -9.0022¢-01 -7.7091e-01 7.7105¢-01 -7.7095¢-01 1.0000e+00 5.2942¢-01
31)  7.6361e-01 7.6423e-01 -7.6291e-01 -7.6626e-01 -7.6212e-01 -7.6457¢-01
Row 30. s 1

1) 1.3869¢-02 -1.5068¢-02 -8.9784e-02 -1.1353e-02 2.7095¢-01 -1.4196¢-02 -2.0921e-01 0.0000e+00 0.0000e+00 0.0000e+00
1}) -6.4781e-0t 9.080Be-01 1.8510e-02 2.8265e-02 9.7575e-02 2.4039e-02 2.8219e-01 -2.8583e-02 0.0000e+00 0.0000e+00
21)  2.0543e-02 0.0000e+00 -1.9052¢-02 0.0000e+00 -2.2244e-01 0.0000e+00 0.0000¢+00 0.0000e+00 5.2942¢-01 1.0000e+00
Row 31, Col s 3

1) 9.9951e-01 -9.9937e-01 -9.9442¢-01 -9.9956e-01 9.4900e-01 -9.9937¢-01 -9.6844¢-01 -9.9979¢-01 9.9981e-01 -9.9968e-01
1) 7.6653e-01 -1.9090e-01 -9.9989%e-01 -9.9974e-01 -9.945%-01 -9.9970e-01 -9.4782¢-01 9.9973e-01 -9.9897¢-01 9.9927¢-01
21} -9.9797¢-01 -9.9937¢-01 9.9801e-01 9.9919¢-01 -9.6730e-01 -9.9976e-01 9.9979e-01 -9.9977e-01 7.6361e-01 0.0000e+00
31)  1.0000e+00 1.0000e+00 -9.9970e-01 -9.9998e-01 -9.9966e-01 -9.9999¢-01
Row 32 Jumns 1 36

1) 9.9954¢-01 -9.9941e-01 -9.9452¢-01 -9.995%¢-01 9.4928e-01 -9.9940e-01 -9.6868¢-01 -9.9980e-01 9.9982¢-01 -9.9970e-01
1) 7.6609¢-01 -1.9001e-01 -9.9989¢-01 -9.9973e-01 -9.9458¢-01 -9.9971e-01 -9.4779e-01 9.9972¢-01 -9.9900e-01 9.9930e-01
21)  -9.9799-01 -9.993%-01 9.9802¢-01 9.9922¢-01 -9.6753¢-01 -9.9976¢-01 9.9981e-01 -9.9977¢-01 7.6423e-01 0.0000e+00
31)  1.0000e+00 1.0000e+00 -9.996%¢-01 -9.9998e-01 -9.9964e-01 -9.999%¢-0]
Row 33, Columns | Thru 3

1) -9.9908e-01 9.9888¢-01 9.9475¢-01 9.9901e-01 -9.5089¢-01 9.9886e-01 9.6838e-01 9.9922e-01 -9.9921e-01 9.9885¢-01
11) -7.5886e-01 1.8765¢-01 9.9931e-01 9.9903¢-01 9.9220e-01 9.9884¢-01 9.4127e-01 -9.9902e-01 9.9790e-01 -9.9834e-01
21)  9.9670e-01 9.9854¢-01 -9.9679¢-01 -9.9819¢-01 9.6765e-01 9.9922¢-01 -9.9911e-01 9.9912¢-01 -7.6291e-01 0.0000e+00
31)  -9.9970e-01 -9.9969¢-01 1.0000e+00 9.9971e-01 1.0000e+00 9.9975e-01
Row 34 Jumns | 3

1) -9.9963e-01L 9.9951e-01 9.9450e-01 9.9963e-01 -9.4899¢-01 9.9951e-01 9.6942¢-01 9.9986e-01 -9.9987¢-01 9.9967e-01
11} -7.6493¢-01 1.8719¢-01 9.9989e-01 9.9971e-01 9.9431e-01 9.9967e-01 9.4685¢-01 -9.9970e-01 9.9911e-01 -9.993%¢-01
21} 9.9818e-01 9.9950e-01 -9.9823¢-01 -9.9931e-01 9.6825e-01 9.9984e-01 -9.9983e-01 9.9983e-01 -7.6626¢-01 0.0000e+00
31)  -9.9998¢-01 -9.9998e-01 9.9971e-0! 1.0000e+00 9.9967e-01 9.9997e-0!
Row 35 I s | Thry 3

1) -9.9900e-01 9.9879¢-01 9.9456e-01 9.9892¢-01 -9.5045¢-01 9.9878e-01 9.6805¢-01 9.9916¢-01 -9.9915¢-01 9.9876e-01
11) -7.5924e-01 1.8867e-01 9.9927¢-01 9.9899¢-01 9.9210e-01 9.9877e-01 9.4106e-01 -9.9899¢-01 9.9781e-01 -9.9826¢-01
21)  9.9663¢-01 9.9846e-0! -9.9672¢-01 -9.9810e-01 9.6734e-01 9.9917e-01 -9.9904e-01 9.9906e-01 -7.6212¢-01 0.0000e+00
31)  -9.9966¢-01 -9.9964¢-01 1.0000e+00 9.9967¢-01 1.0000e+00 9.9971e-01

w 3 s | 3

1) -9.9952e-01 9.9938¢-01 9.9483e-01 9.9958e-01 -9.5032¢-01 9.9937¢-01 9.688%e-01 9.9973e-01 -9.9975¢-01 9.9965¢-01
11) -7.6421e-01 1.8869e-01 9.9982e-01 9.9963¢-01 9.9424e-01 9.9961e-01 9.4686e-0]1 -9.9962e-01 9.9885¢-01 -9.9918e-01
21)  9.9774e-01 9.9927¢-01 -9.9779%e-01 -9.9909%-01 9.6783e-0] 9.9968e-01 -9.9974e-01 9.9970e-01 -7.6457e-01 0.0000e+00
31)  -9.9999¢-01 -9.9999¢-01 9.9975e-01 9.9997¢-01 9.9971e-01 1.0000e+00

Table (5.6)(Cont.) - The Cross Orthogonality of the First Krylov Block of the EPS Radiator
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Row 1, Columns | Thru 8
1.0000e+00 9.5350e-01 -9.7551e-01 7.5250e-01 -1.6221e-01 -9.4312e-01 7.8313e-01 1.386%e-02

Row 2. Columns 1 Thru 8
9.5350e-01 1.0000e+00 -9.7285e-01 5.4647e-01 5.0223e-02 -8.3595¢-01 8.5363e-01 2.7095e-01

Row 3, Columns ] Thru 8
-9.7551e-01 -9.7285¢e-01 1.0000e+00 -6.0711e-01 -5.8122¢-02 8.6941e-01 -8.9989%¢-01 -2.0921e-01

Row 4. Columns 1 Thru 8
7.5250e-01 5.4647e-01 -6.0711e-01 1.0000e+00 -7.1435e-01 -9.0551e-01 2.5430e-01 -6.4781e-01

Row 5. Columns 1 Thru 8
21.6221e-01 5.0223e-02 -5.8122e-02 -7.1435e-01 1.0000e+00 3.9512e-01 4.7562¢-01 9.0808e-01

Row 6. Columns 1 Thru 8
.0.4312¢-01 -8.3595¢-01 8.6941e-01 -9.0551e-01 3.9512e-01 1.0000e+00 -6.0968e-01 2.8219e-01

Row 7. Columns 1 Thru 8
7.8313e-01 8.5363e-01 -8.9989e-01 2.5430e-01 4.7562e-01 -6.0968e-01 1.0000e+00 5.2942¢-01

Row 8. Columns 1 Thru 8
1.3869¢-02 2.7095e-01 -2.0921e-01 -6.4781e-01 9.0808e-01 2.8219¢-01 5.2942e-01 1.0000e+00

Table (5.7) - The Cross Orthogonality of the First Krylov Block
of the EPS Radiator, After Block Filtering



90

Modes Finite Ritz Percent Normal Percent
Element Vectors Difference | Modes Difference
Ist Bend .5464 Hz .5464 Hz 0. % .5464 Hz 0. %
2nd Bend | 3.415 Hz 3415 Hz 0. % 3.415 Hz 0. %
3rd Bend 9.522 Hz 9.610 Hz 92 % 9.522 Hz 0. %
4th Bend 18.57 Hz 2424 Hz 31. % 18.57 Hz 0. %
1st Tors 27.58 Hz 27.58 Hz 0. % 27.58 Hz 0. %

Table (5.8) - Comparison Between the Frequencies of a

Cantilevered Beam Obtained From Fixed Interface Component
Normal Modes, Ritz Vectors, and Finite Elements




Modes Finite Ritz Percent
Element Vectors Difference
1st Bend .5464 Hz .5464 Hz 0. %
2nd Bend | 3415 Hz 3.415 Hz 0. %
3rd Bend | 9.522 Hz 9.524 Hz 02 %
4th Bend 18.57 Hz 19.23 Hz 3.6 %
1st Tors 27.58 Hz 27.58 Hz 0. %

Table (5.9) - Comparison Between the Frequencies of a
Cantilevered Beam Obtained From Free Interface Component
Ritz Vectors, and Finite Elements
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Modes Finite Ritz Percent
Element Vectors Difference
Ist Rigid 0. Hz 0. Hz 0. %
2nd Rigid 0. Hz 0. Hz 0. %
3rd Rigid 0. Hz 0. Hz 0. %
4th Rigid 0. Hz 0. Hz 0. %
5th Rigid 0. Hz 0. Hz 0. %
6th Rigid 0. Hz 0. Hz 0. %
1st Bend 3.474 Hz 3.474 Hz 0. %
2nd Bend 9.549 Hz 9.549 Hz 0. %
3rd Bend 18.65 Hz 1869 Hz | .21 %
4th Bend 30.70 Hz 33.15 Hz 8. %

Table (5.10) - Comparison Between the Frequencies of a
Free-Free Beam Obtained From Free Interface Component
Ritz Vectors, and Finite Elements
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Various Normalization Methods

' Orthonormalized Orthonormalized Orthonormalized
Various wrt the Euclidean wrt the Mass wrt the Mass
Orthogonalization Norm Matrix, and all Matrix, previous
Methods previous blocks two blocks only
Cholesky/QR 97.0 140.9 112.4
Decomposition
Gram-Schmidt, 103.9 379.2 385.6
Reorthogonalize
with all vectors
Gram-Schmidt, 116.0 409.1 468.9
Reorthogonalize
with selected
Gram-Schmidt, 461.0 3747.0 4196.9

Reorthogonalize
using modified
Gram-Schmidt

Various Eigenvalue Extraction Methods

Normal
Eigenvalues

Lanczos

Modified Givens

Inverse Power

115.5

5758.8

6455.5

Table (5.11) - Comparisons of the Computer Time (seconds) Required
to Form a Component of the EPS Radiator Finite Element Model
(4000 DOF), Using Selected Orthonormalization Options




Various Normalization Methods

_ Orthonormalized Orthonormalized Orthonormalized
Various wrt the Euclidean wrt the Mass wrt the Mass
Orthogonalization Norm Matrix, and all Matrix, previous
Methods previous blocks two blocks only
Cholesky/QR 323.2 399.5 376.1
Decomposition
Gram-Schmidt, 341.6 5343 542.1
Reorthogonalize
with all vectors
Gram-Schmidt, 348.5 5583 565.2
Reorthogonalize
with selected
Gram-Schmidt, 559.5 3062.5 3095.3
Reorthogonalize

using modified
Gram-Schmidt

Various Eigenvalue Extraction Methods

Normal
Eigenvalues

Lanczos

Modified Givens

Inverse Power "

743.7

|

Table (5.12) - Comparisons of the Computer Time Required
to Form a Component of the Cassini Spacecraft Finite Element
Model (11,100 DOF), Using Selected Orthonormalization Options
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Figure (5.1) - Space Station Electrical Power System Deployed Radiator
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Figure (5.2) - Space Station EPS Radiator Undeformed Finite Element Model
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Figure (5.3) - EPS Radiator First Normal Mode, Fixed Interface
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Figure (5.4) - EPS Radiator Second Normal Mode, Fixed Interface
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Figure (5.5) - EPS Radiator Third Normal Mode, Fixed Interface
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.8) - Fixed Interface Ritz Vector,
Block One, Vector One
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.9) - Fixed Interface Ritz Vector,
Block One, Vector Two
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.10) - Fixed Interface Ritz Vector,
Block Two, Vector One
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.11) - Fixed Interface Ritz Vector,
Block Two, Vector Two



Chapter 6

Targeted Shifting

6.1) Introduction:

Inverse operators have been widely used in a variety of eigenvalue extraction
routines. The use of inverse operators is commonly called sequence shifting. By
shifting the dominant frequency sought by an algorithm, an eigenvalue extraction
routine can locate missing eigenvalues within a specific frequency range. In Lanczos
eigenvalue extraction, the inverse operator shifts the dominant frequency of the Krylov
sequence to a range of frequency where missing eigenvalues are located. By doing
so, the number of eigenvalues beyond the range of interest is minimized while
insuring that interesting modes are calculated.

The utility made of the ability of the inverse operator to shift the dominant
frequency of the Krylov sequence is not limited to searching for missing eigenvalues.
This chapter presents shifting that is targeted to the frequency of the dominant applied
dynamic load vector, rather than to missing eigenvalues. By shifting the dominant
frequency sought by the Krylov sequence, static Ritz vectors which can contribute to
an accurate dynamic response prediction are generated. The use of the inverse

operator in this manner has been identified in this work as targeted shifting.

106
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6.2) Theo!

As discussed in section 2.5, an inverse operator can direct a solution to
particular frequency range. The problem discussed in section 2.5 was the computation

of selected eigenpairs of the generalized eigenvalue problem,

(K-AM)x=0 (6.1)

with A being the eigenvalues and x the eigenvectors, the matrix A of equation (2.46)
being re-written to the common structural dynamics usage of K. A system is created

using the operator

(K__OM)—IM (62)

which has the same eigenvectors as (6.1). The shifted system eigenvalues are
transformed to 1/(A - ©), with ¢ being defined as the shift frequency. When the
inverse operator is applied the eigenvalue nearest G becomes the dominant one and
the sequence will converge to the corresponding eigenvector. The cost for performing
the shift is the factorization of (K - oM ).

If the selected shift frequency, G, is coincidentally an exact eigenvalue, then
(K - oM)' is, by definition, singular. To obtain a non-singular matrix the shift value
is merely altered by a small constant value, such as .1, to move the shift away from

the eigenvalue frequency.
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To add an inverse operator to the static Ritz vector calculation the Krylov
sequence presented in chapter 2 must be modified. Several different inverse operators
could be used. Some inverse operators, such as that defined by equation (6.2),
transform the system equations so that they produce transformed eigenvalues, but the
produced eigenvectors are not transformed. Others inverse operators transform the
system equations such that both the eigenvalues and eigenvectors are transformed. (In
eigenvalue extraction routines this transformation necessitates a back transformation
to obtain a final solution.) The operator defined by equation (6.2) was selected for
this work because this operator does not transform vectors resulting from the Krylov
sequence when shifting is applied.

When this operator is applied to the Krylov sequence presented in Table (4.1)

and chapter 2, equation (2.8),
q; =k;'m, 9, (2.8)
is revised to become
g;=(k;~omy)"'m,q, (6.3)

Note that if a shift frequency is defined as zero, then equation (6.3) becomes equation
(2.8). The standard Krylov sequence can be considered to be a shifted sequence with

the shift frequency permanently defined as zero.
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If the inverse operator is applied to the equation used to generate the initial

block of Ritz vectors, equation (2.6)

q; =k, (m;®, +m,) (2.6)

would be revised to become

qlux _ (k,-,--Om,-i)_l mii(miiq)ic+mic) (64)

6.3) Illustrative Example:

A short numerical example is given to illustrate the effectiveness of shifting.

Consider a system with the following defining matrices,

410
K=1121 (6.5)
012

and

200
M=l010 (6.6)
001

In this example, a load, rather than the boundary flexibility matrix, will be used to
initiate the sequence. The initial load dependent static Ritz vector is defined by the

following equation

*

¢ =K"p (®7)
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If p is defined as

then the normalized initial Ritz vector, g,, 1s

q, = [408 .408 .816]" (6.9)

The Rayleigh quotient of a vector derived from a two matrix, or general

system, can be defined as

T
b, = i’iTK—q" (6.10)
q, Mg,

When the vector used with equation (6.10) is an eigenvector, then the Rayleigh
quotient is the eigenvalue associated with that eigenvector. The square root of a
vector’s Rayleigh quotient implies, as a eigenvalue does, a frequency at which the
vector is most likely to respond. The initial static Ritz vector, g,, has a Rayleigh
quotient of p = 2.857.

The eigenvalues of the system defined in equations (6.5) and (6.6) are .775,

2., and 3.225. The system eigenvectors, ¢, are

-309 707 312
é=|.756 0.000 .764 (6.11)
-617 -.707 .624
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The cross orthogonality of the third eigenvector and the first Ritz vector, ¢,'q,, is .948.
The initial static Ritz vector, produced by equation (6.8), is most numerically similar
to the third eigenvector, both by mode and by frequency.

The shifted initial load dependent static Ritz vector is defined by the following

equation

g, =(K-oM)'Mp (6.12)

Using the same force vector, p, defined by equation (6.8), and a shift with an arbitrary
frequency of 1.0, (an assumption being made that the force vector, p, has a dominant

frequency component of 1.0) the normalized initial Ritz vector, g,, is

g, = [0.000 .894 -.447)T (6.13)

The Rayleigh quotient of this vector is p = 1.199, relatively close to the shift value
of 1.0. The cross orthogonality of the first eigenvector and the first Ritz vector, ¢,7g,,
is .952. The shifted initial static Ritz vector’s frequency content is closer to a target
frequency than that of the vector (equation 6.9) produced without the shift. Rather
than resembling the third eigenvector of the system, the shifted initial Ritz vector
resembles the first eigenvector.
6.4) Targeted Shifting:

After considering the example presented in section 6.3, it is reasonable to

consider using the frequency content of an applied dynamic loading in the shift
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methodology. This can be accomplished by determining the frequency content of the
applied dynamic load and using the dominant frequencies as shift values. The
resulting shifted static Ritz vectors will be more likely to accurately predict system
responses than static Ritz vectors which have a frequency content far removed from
that of the applied dynamic load. In addition, it is also reasonable to augment the
static Ritz vectors derived from the boundary flexibility matrices with static load
dependent Ritz vectors.

Each separate targeted shift that is performed entails the computation cost of
decomposing (k; - om,)" into the upper and lower triangular factors U and L. In a
large finite element model the computational cost to perform this factorization can be
significant and over-aggressive shifting can make the computational cost of this
procedure exceed that of the orthonormalization and make the static Ritz vector
calculation inefficient. As a result it is beneficial to minimize the amount of shifts in
the overall targeted shifting strategy. The overall targeted shifting strategy will
discussed in the next section.

Since relatively few frequencies can be targeted in a computationally efficient
shift strategy, the method chosen to select frequencies important to the dynamic
response should seek, at most, several dominant frequencies. The absolute magnitude
of any particular frequency is unimportant since the relative magnitude of a frequency
is used to identify the dominant frequencies. The choice of which method is used to

determine the frequency content of the time domain dynamic loading can be made
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somewhat subjectively. Most analytical procedures which transform a time domain
response into the frequency domain, such as calculating a power spectral density, or
a frequency response function, etc. would be sufficient for identifying several
dominant frequencies. Alternately, if frequency information is available describing the
dynamic environment from non-analytical experience, then that information can also
easily be used. A shift can also easily be targeted to test derived frequency
information describing the structure itself. There is, of course, a possibility in some
applications, due to the nature of the dynamic excitation, that no dominant frequencies
can be identified. In those circumstances, the unshifted Krylov sequence is sufficient.

Static Ritz vectors derived from the spatial distribution of the applied dynamic
load, in conjunction with targeted shifting, can augment the static Ritz vectors derived
from the boundary flexibility matrices. A load dependent static Ritz vector may be
calculated from a dynamic load by using the spatial distribution of the dynamic load
at a single time step to create a representative static load. Selecting a time step where
the applied dynamic load, at a particular node, is at a maximum, is one possible
criteria. Consideration should be given, in the time step selection, to the dominant
frequency chosen for shifting. Another possible method for creating a representative
static load derived from the applied dynamic load would be to, determine the
maximum applied load over all time steps for each node, and from these maximums
synthesize a single static force vector. This representative static vector may have no

physical relation to the dynamic spatial characteristics of the applied loading, and the
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resulting static Ritz vector may not resemble a response to dynamic excitation. Once
a representative static load has been created, static Ritz vectors may be calculated by
using equation (6.12) with the selected dominant frequency. This load dependent
static Ritz vector is appended to the vectors calculated by the algorithm given in
Tables (4.1) and (4.2).

6.5) Shift Strategy:

A definite theory does not exist which describes an optimal ordering and value
of shifts in Krylov sequence methodologies. In Lanczos eigenvalue extraction a fairly
complicated heuristic approach, which is successful in extracting eigenvalues, has been
developed'®. That particular strategy has limited applicability to the creation of
boundary flexibility method static Ritz vectors. As a result, an alternate heuristic
strategy has been developed specifically to create accurate static Ritz vectors as early
in the Krylov sequence as possible.

The new shift strategy for static Ritz vectors is introduced as follows. No shift
(or equivalently, a shift of zero) is applied to the initial block of vectors. The
representative static load, derived from applied the dynamic loading, is also not
applied to calculate the initial block. Therefore, equation (2.6), as previously

presented, is used to generate the initial block of Ritz vectors

g =k (m;®, m,) (2.6)
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The non-zero shift equation, (6.4), is not used in the computer implementation of this
work. The initial zero shift is performed because a basic set of vectors targeted to the
lowest frequencies is desired. These vectors are desired because, with only a limited
amount of shifts targeting the several selected dominant frequencies, they describe
other important dynamic characteristics not in the frequency spectrum of the targeted
shifts.

Two selected dominant frequencies are allowed, and a cutoff frequency 1s also
used as a shift frequency, for a total of three non-zero targeted shifts. When
approximately one quarter of the total required vectors have been calculated (the next
chapter presents a method to determine this value) a shift targeted to the first selected
frequency is performed. At this shift the representative static load, derived from the
applied dynamic loading, is also used by appending it to th‘e previous vector block.

The resulting modified Krylov sequence equation (6.3) becomes

q; = (k;-opmy)™ m gy Py (6.14)

with the addition of the representative static load, p,, and with the subscript &
indicating the shift number, initially k = 1. The vector block, g;', will have one more
column in it than the vector block, g;,, due to the augmentation of g;, with the
representative static load, p,. Subsequent to the block increment, j, at which the shift
is applied, equation (6.3) is used to calculate additional vector blocks. When

approximately one half of the total required vectors have been calculated a second
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shift, k = 2, is applied with the second selected target frequency. The third shift is
applied when approximately three quarters of the vectors required have been
generated. The frequency used for the shift is a user defined cutoff frequency which
will be discussed in the next chapter.

This strategy was developed through trial and error and is as a result heuristic.
There may be other strategies which would be successful at creating a set of static
Ritz vectors which accurately represent a substructure. The effectiveness of the
presented strategy will not be demonstrated until chapter 8, after a sequence
termination methodology has also been presented.

6.6) Applied Dynamic Loading of Example Structural Models:

Several examples applied to the structural examples given in chapter 5 are
presented. For the beam example the time domain loading is shown in Figure (6.1).
The response spectrum of this time domain load is shown in Figure (6.2). The
dominant frequency selected is the frequency where the response spectrum reaches it’s
peak, at .546 HZ. Because the time domain dynamic load is a rectangular impulse,
this frequency is equal to the inverse of twice the impulse width. The dynamic
loading is applied to a single node, the end point. As a result, the maximum spatial
load for the structure is the maximum applied dynamic load at that node and a
representative static load is easily created.

For the EPS Radiator the spatial distribution of the dynamic loading is the

same at every time step that the load is applied. As a result, all choices for an
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appropriate time step from which to derive a representative static load are identical.
The load is applied in a series of rectangular impulses as shown in Figure (6.3). The
response spectrum of this applied dynamic load is shown in Figure (6.4). The peak
of the response spectrum, at a frequency of approximately 5 HZ, is a result of the
pulse width of .08 sec of the applied dynamic load. This applied dynamic loading is
derived from a plume impingement loading event. Plume impingement loading occurs
when the space shuttle approaches the space station, directing it’s reaction control
system jets toward the station. It is the critical loading event for the space station
structure in it’s on-orbit configuration. The specific loading case shown in Figure
(6.3) is a result of the shuttle translating in yaw along the main station axis.

All Cassini spacecraft loading comes through the spacecraft/launch vehicle
interface. As a result, the boundary flexibility vectors are the only available loading
vectors. (A separate applied dynamic load vector does not exist.) Figures (6.5), (6.6),
and (6.7) show the interface acceleration for a liftoff loading event in the three
translational directions. Response spectra of this inertia loading are shown in Figures
(6.8), (6.9), and (6.10). Dominant frequencies of 5 HZ and 13 HZ were selected for
the two targeted shifts. The 13 HZ frequency was derived from the pitch and yaw
excitation response spectrum and the 5 HZ frequency was selected from the
longitudinal excitation response spectrum. No representative static load was appended,

because of the lack of a spatial distribution for the applied dynamic load.
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Figure (6.1) - Time Domain Beam Model Applied Dynamic Loading
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Figure (6.3) - Plume Impingement Dynamic Loading on the EPS Radiator
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Figure (6.6) - Cassini Spacecraft Yaw Translation Interface Acceleration
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Chapter 7

Krylov Sequence Termination Techniques

7.1) Introduction:

Determining when a sufficient number of static Ritz vectors have been
calculated is a problem which all static Ritz vector methods, including the boundary
flexibility method, share. When enough static Ritz vectors have been calculated to
accurately represent the dynamics of the given finite element model the Krylov
sequence can be terminated. A heuristic method for sequence termination has been
developed which is based, not on rigorous mathematics, but on the observed properties
of load dependent and boundary flexibility static Ritz vector creation.

A mathematically rigorous basis for judging when the sequence can be
terminated was extensively sought for, both in the literature and by analytical
investigation. It is possible that such a solution exists, however, a rigorous solution
was neither located nor could be created here. It is also possible that a mathematically
rigorous sequence termination methodology, which would be independent of physical
knowledge of typical structural dynamic systems (this knowledge was used to create
the heuristic method presented in this chapter), cannot be created.

The mathematically rigorous solution sought was analogous to modal
truncation. Modal truncation, based upon an eigenvalue cutoff, is the most popular
basis for determining if a sufficient number of normal eigenvectors have been

calculated. Static Ritz vectors do not have an eigenvalue with which to associate a
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truncation limit, but they do have a Rayleigh value, as presented in chapter 6. Using
Rayleigh values as a partial substitute for eigenvalues was explored and was found to
not be practical.

7.2) Error Criteria and Effective Mass:

Several error criteria have been proposed which truncate the Krylov sequence
when a somewhat arbitrary variable reaches a arbitrary value. These proposed criteria
were briefly described in chapter 2. Most of the proposed termination criteria are
applicable only to load dependent static Ritz vectors, with a goal of obtaining an
accurate solution to the given static problem. Error criteria which are completely
aimed toward the solution of static problems have a limited direct utility in their
application to dynamic substructuring and boundary flexibility static Ritz vectors.

The single proposed error criteria for Krylov sequence termination which is
directed to dynamic problems is that proposed by Yiu and Landress®. This criteria
is based on a parameter, effective mass, commonly used in structural dynamics for the
identification of globally important normal eigenvectors of a structure. Effective mass
is a measure of the amount of the total structural mass represented in each individual
eigenvector. Effective mass is calculated as follows, beginning with an intermediate

matrix, Mg, being defined as

My - 0TMO,, (7.1)
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where ® is the matrix of eigenvectors, and @, is the rigid body transformation matrix
of the structure. Each term within the resulting matrix of equation (7.1) is squared to

form the effective mass of each eigenvector.
Effective Mass = < Mg, >* (7.2)

Note that eigenvalues are not used in the effective mass calculation, allowing static
Ritz vectors to directly replace the eigenvectors in equation (7.1). Each eigenvector
has a total of six effective mass values, three for the translations and three for the
rotations. The individual effective mass terms of the eigenvectors can, separately in
each translation and rotation coordinate, be summed and the sum can be compared to
the rigid body mass of the structure. The percentage of mass represented by
eigenvectors, in each direction, is referred to as the total effective mass.

Yiu and Landress proposed that the effective mass calculation can be made
using static Ritz vectors, and that when the total effective mass reaches an arbitrary
percentage, the sequence can be terminated. The recommended arbitrary percentage
was a minimum of 90% total effective mass, which is consistent with standard
aerospace practice when using normal eigenvectors. In standard aerospace practice
this cutoff value is used to determine if the important dynamics of a structure has been
test verified, and in some cases even a greater percentage than 90% is specified.

The primary assumption made when using total effective mass as an error

criteria is that, when enough vectors have been calculated to achieve the selected
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arbitrary percentage of represented mass, an accurate solution is guaranteed.
Engineering experience has demonstrated that if this percentage is set at a high enough
value an accurate dynamic solution will often be possible. However, usually an
accurate solution is possible with far fewer vectors than the amount required to reach
the cutoff value. The effective mass of the normal eigenvectors, from the beam
example model presented in chapter 5, is shown in Table (7.1). The effective mass
of the normal eigenvectors, from the EPS Radiator and the Cassini finite element
models, is shown in appendix A. These are typical effective mass results for typical
finite element models. The total effective mass of these models does not converge
monotonically, nor does it reach any particular percentage within the frequency range
of interest. Table (7.1) demonstrates that, for the torsional rotation (R2) of the beam
model, eigenvectors with eigenvalues up to 150 HZ yield a total effective mass of
76.7%. The contribution of the 22nd mode at 133.73 HZ was required to bring the
axial translation (T2) total effective mass above 90%. Eigenvectors with eigenvalues
in this frequency range are not required to allow an accurate dynamic solution for the
excitation described in chapter 6. The rectangular impulse excitation has a relatively
broad frequency spectrum, and excitation at a particular high frequency would require
eigenvectors in that range for an accurate solution, but in any case a required total
effective mass of 90% is arbitrary.

For the EPS Radiator model, there are 175 modes below 140 HZ. These

modes yield a total effective mass of 78.1% for axial translation and 75.6% for out-
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of-plane translation. The in-plane rotational total effective mass for this set of modes
is 75.7%. If the desired total effective mass was set at a value of 90%, hundreds of
vectors would be generated, but most are not required for an accurate dynamic
solution, at frequencies of interest in loads calculation. The Cassini model total
effective mass reaches 90% much quicker than the example beam and the EPS
Radiator. Even here, if the desired value is set higher than 90%, many unnecessarily
vectors might be calculated. In conclusion, effective mass, while a useful tool, was
investigated but was not implemented in this work. Other similar error criteria were
also found to not exhibit rapid, monotonic or well behaved convergence.

7.3) Modal Density Truncation;

A new method has been developed that is based upon the density of the modal
space in a finite element model and the observation that the most dynamically
significant static Ritz vectors are generated near the beginning of the Krylov sequence.
This method was developed from the observation that almost all of the boundary
flexibility static Ritz vectors calculated early in the Krylov sequence are required to
obtain an accurate solution to the dynamic response problem. This includes static Ritz
vectors with Rayleigh values which are high relative to the frequency range of interest,
which might erroneously imply relatively low importance to dynamic response
prediction. It was also observed, in general, for the test examples utilized and from

the current literature, that accurate dynamic response predictions are possible with
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fewer load or boundary flexibility derived static Ritz vectors than with normal
eigenvectors.

Krylov sequence termination using modal density truncation can be described
in detail as follows. First, a cutoff frequency is defined by the user. This frequency
should be based upon the dynamic range of interest and the frequency spectrum of the
forcing function. Next, the number of normal eigenvectors with eigenvalues below
the cutoff frequency is determined, which is referred to here as the modal density.
The actual eigenvectors and eigenvalues of the model are not required, just their
number. The Krylov sequence is then initiated and when the number of static Ritz
vectors created is equal to a fraction of the modal density, the sequence is terminated
and the component is formed. A value for this fraction has been determined by trial
and error. The effectiveness of this sequence termination strategy will be
demonstrated in the next chapter.

Modal density truncation is not mathematically rigorous, but it is practical.
It is effective because the order of the system, within the frequency range of interest,
is related to the number of static Ritz which are needed to represent this model. This
algorithm is simple, and does not pursue unobtainable arbitrary parameter values,
which can be the case when using error functions. The computational cost of this
method is the factorization of the mass and stiffness matrices, shifted to the cutoff

frequency. The factorization for determining the modal density can be reused as a
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shift in the Krylov sequence, targeting static Ritz vectors near the cutoff frequency
at no additional computational cost.
7.4) Determination of Modal Density and Truncation:

A method, called spectrum slicing, for determining the number of eigenvalues
in a system, below a certain value, was presented in section 2.6. Equation (2.48)
from that section, has been rewritten below in a form consistent with the equations in
Tables (4.1) and (4.2). The triangular factorization of the matrices k; and m,, shifted

to a cutoff value o, is calculated
(k;-om;)=LDLT (7.3)
where G, is calculated from the user defined cutoff frequency, by

o,=(2nf,)* (7.4)

Equation (2.49) can then rewritten as

v(A-o I)=v(k;-o m;)=v(D) (7.5)

where v is number of negative eigenvalues and A = diag (A, ,A,, ... , A,). The
number of negative elements of D is equal to the number of eigenvalues, n. , of the
matrices k; and m;, which are less than G..

The Krylov sequence is continued until the total number of calculated static

Ritz vectors, here defined as n,, is greater than the number of eigenvalues below G,
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n., multiplied by the fraction y. The fraction y was established by trial and error.
Writing the termination logic in the form of the sub-indices from the equations of

Tables (4.1) and (4.2) yields

ifn.>Vyn_, thenj=1 (7.6)

All calculated static Ritz vectors, n,, are retained for subsequent dynamic analysis.
The boundary flexibility algorithm, with targeted shifting and modal density truncation

included, and numerical examples will be presented in the next chapter.
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Mode Freq. Effective Masses (%)

No. (Hz) T1 T2 T3 R1 R2 R3
1 0.55 0.0 0.0 61.3 97.0 0.0 0.0
2 0.55 61.3 0.0 0.0 0.0 0.0 97.0
3 341 18.1 0.0 0.8 0.1 0.0 24
4 341 0.8 0.0 18.1 24 0.0 0.1
5 9.52 2.8 0.0 3.7 0.2 0.0 0.1
6 9.52 3.7 0.0 2.8 0.1 0.0 0.2
7 18.57 3.2 0.0 0.1 0.0 0.0 0.1
8 18.57 0.1 0.0 3.2 0.1 0.0 0.0
9 27.58 0.0 80.6 0.0 0.0 0.0 0.0

10 30.53 20 0.0 0.0 0.0 0.0 0.0
11 30.53 0.0 0.0 20 0.0 0.0 0.0
12 45.41 1.3 0.0 0.1 0.0 0.0 0.0
13 45.41 0.1 0.0 13 0.0 0.0 0.0
14 63.18 0.7 0.0 03 0.0 0.0 0.0
15 63.18 0.3 0.0 0.7 0.0 0.0 0.0
16 81.90 0.0 8.6 0.0 0.0 0.0 0.0
17 83.59 0.4 0.0 0.3 0.0 0.0 0.0
18 83.59 0.3 0.0 0.4 0.0 0.0 0.0
19 84.64 0.0 0.0 0.0 0.0 76.7 0.0
20 104.41 0.3 0.0 0.0 0.0 0.0 0.0
21  104.41 0.0 0.0 0.3 0.0 0.0 0.0
22 133773 0.0 28 0.0 0.0 0.0 0.0

Total Effective Mass (%)
T1 T2 T3 R1 R2 R3
954 92.1 95.4 100.0 76.7 100.0

Table (7.1) - Beam Finite Element Model Effective Masses



Chapter 8
Numerical Examples of Targeted Shifting and Modal Density Truncation

8.1) Aloorithm with Targeted Shifting and Modal Density Truncation:

The complete static Ritz vector, boundary flexibility algorithm, with targeted
shifting and modal density truncation included, is shown in Table (8.1). This
algorithm was extended from that presented in chapter 4, which included block
filtering and Cholesky/QR orthonormalization. Only the revised boundary flexibility
algorithm for euclidean vector orthonormalization is presented in this chapter, because
there is no fundamental difference in the application of targeted shifting and modal
density truncation to the various orthonormalization options presented in chapter 4.

8.2) Numerical Results and the Determination of the Fraction y:

Three sets of time response problems were performed for the three example
models described in chapter 5 using the applied loading described in chapter 6. These
direct transient response problems were all performed using dynamically reduced
models, a structural damping ration of 2%, with the beam example and the EPS
Radiator having a fixed interface. The Cassini model was excited using enforced
acceleration on a seismic mass. Two comparison cases for each model were generated
using eigenvectors, the first using a modal truncation frequency greater than the
dynamic range of interest, and the second using a frequency cutoff at the frequency
range of interest. The beam example cutoff was 250 HZ for the high frequencies and

100 HZ for the representative frequencies. The EPS Radiator and the Cassini cutoff

137



138

frequencies were 150 HZ for the high frequencies and 60 HZ for the representative
frequencies. Three time response problems, using three different values for the fraction
y = 1.0, .5 and .25, for each example model created with static Ritz vectors, were
performed.

A selected set of physical accelerations and loads for each of these models was
recovered. Table (8.2) shows the ratios of the minimum and maximum peak
responses of the beam example, formulated using the options discussed above, to the
prediction using the high frequency cutoff eigenvalue model. Tables (8.3) and (8.4)
present similar tables for the EPS Radiator and the Cassini model transient solutions.
There is no guarantee that the high frequency cutoff eigenvalue model represents a
completely converged solution. The cutoff values were selected by multiplying the
frequency at the cutoff of the dynamic range of interest by 2.5, and, considering the
large size of the Cassini and the EPS Radiator models, this cutoff produced a size
dynamic model for which a transient solution could still conveniently be obtained.

Several observations can be made of the beam example ratios presented in
Table (8.2). First, in the case of the axial tip acceleration, which is dependent on high
frequency beam dynamics, the y = 1.0 Ritz vector response predicted a more
complete solution than did the eigenvector response. Figures (8.1) and (8.2) show
axial tip acceleration time history plots predicted by the 250 Hz cutoff eigenvector and
the Wy = 1.0 Ritz vector models. The ratios for the y = .50 and the y = .25 beam

examples are identical. This is because the truncation criteria algorithm produced
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identical representations. There are so few eigenvectors in the frequency range of
interest that, after the initial two vector blocks are calculated, there are already enough
vectors to satisfy the truncation criteria. As a resuit, no more vectors were calculated
for the y = .50 beam example than were calculated for the y = .25 beam example,
and targeted shifting and the representative static load is not utilized for either of these
two cases. Not utilizing targeted shifting and a representative static load vector
partially explain the relatively low response predictions of the y = .50 and the y =
25 cases. The lateral tip acceleration time history for the y = 1.0 case is illustrated
in Figure (8.3), and the base bending moment for the same case is illustrated in Figure
(8.4). The time histories of the other cases are not included because they are
essentially identical.

Table (8.3) presents the time response ratios generated using the EPS Radiator
model. All the results from the various cases are reasonably consistent with the 150
Hz frequency cutoff case. There begins to be some divergence from the 150 Hz case
in the responses generated using the y = .25 model. This would suggest that a
fraction value of = .50 might be appropriate for accurate, but low computational
cost, response predictions. In general, the responses predicted using the v = 1.0 Ritz
vector component is a marginally closer match to the high frequency cutoff case than
the 60 Hz eigenvector model.

Figures (8.5), (8.6), (8.7), and (8.8) present the time response of the X

acceleration, the Z acceleration, and the two bending moments, for the y = 1.0 case.
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As in the beam example, the time histories plots of the EPS Radiator from the various
cases are virtually identical. Examining the X acceleration time history explains the
somewhat lower ratios obtained for the y = .50 and the ¥y = .25 maximum values
comparisons. The minimum value is much greater than the maximum value, which
represents a relatively small overshoot, and the ratio of the maximums represent a
comparison of relatively small values.

Table (8.4) presents the ratios of the time responses of the Cassini model using
various ’s, compared to the 150 Hz cutoff eigenvector component. There is more
divergence in the results of the various cases using the Cassini model than was in the
previously discussed models. It was more difficult for the static Ritz vectors to match
appendage accelerations than other responses. Once again, the results suggest that
fraction value of approximately ¥ = .50 might be the appropriate choice for
reasonably accurate response predictions. The High Gain Antenna Strut response
predictions of the 60 Hz cutoff eigenvector component indicate that, for this element,
the 60 Hz cutoff was too low. The Ritz vector models, whose vector size is based
upon the number of vectors in the 60 Hz model, were also unable to accurately predict
these strut loads. However, for the element forces in the main body stringer, the Ritz
vectors were able to obtain more accurate response predictions than the 60 Hz
eigenvector component. In conclusion, the use of a fraction value of y = .50 may
not provide enough Ritz vectors for accurate response predictions if the frequency

cutoff of interest selected excludes important dynamic effects.
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Figures (8.9), (8.10), (8.11), and (8.12) present the time response of the X, Y,
and Z acceleration, and the strut axial load, for the W = 1.0 case. The ratios of the
maximum values of the accelerations in the Z direction were not presented in Table
(8.4). An examination of Figure (8.11), the Z direction acceleration, will show that
the maximum value occurs near the initial time step and it’s value is near zero. Ratios
of these small response values was not meaningful and were not calculated. Appendix
B contains the minimum and maximum responses of all the models and cases, and it

was from this data that Tables (8.2), (8.3), and (8.4) were generated.
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After the assembly of the component mass, m, and stiffness, k, matrices:

1) Modal Density Calculation

o,=(2nf )? [shift value is calculated from user

defined cutoff frequency, f,]

T - .
(ky-o,my)=L D,L; =LU, [decompose shifted matrices]
o,=a,+.1 [if and only if (k; - Om;;) is singular]
v(D) =n, fcount the eigenvalues below o]

2) Initialization
P, = _kﬁ'l k, [create boundary flexibility matrix, k;
and k,, were defined in equation (2.3)]
q; = kii“l( m,®, +m.) [create the initial block]

[For a free interface component, (If the component has rigid body modes then
the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

4

g, - “| where g= k! [boundary flexibility matrix]
8ic

QI =gmg, [create the initial block]]

3a) Filtering of Initial Block
g, = q,"[<diag(q, qu‘) >cc]‘1/2 [normalization]

L,=q," "¢ [cross orthogonality]

Table (8.1) - Revised Boundary Flexibility Algorithm
With Targeted Shifting and Modal Density Truncation
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3a) (Continued) Filtering of Initial Block

\ 0

- [partition into lower triangular]
L; \

L,-

If (< ”iE"w>c) > e, than dependent [infinity norm of each vector]

g - [‘II" qDEP] [partition out dependent vectors]

3b) Orthonormalization of the Initial Block

Ly=q,*Tq " [B'B matrix product]
L, =R'R [Cholesky factor decomposition]
RquT =g [Solve by forward substitution]

4) For Blocks j =2,3, ..., L, until n, > ¢ n,

4a) Set Shift Variables, Based on Count of n,

n .
Ifn < 1|J4 S, thenk =0, 0, =0 [no shift]
Yy n, 1 .
Ifn > ,thenk =1, 0, = 07, 0 = Eoc [use G, if defined]
v - - _2 [use O, if defined]
Ifn > ,thenk—2,ok—or_,,ok—§oc 29
Ifn > nc, thenk =3, 0, = o, [reuse L, and U, from modal

density calculation]

Table (8.1) (Continued) - Revised Boundary Flexibility Algorithm
With Targeted Shifting and Modal Density Truncation



4b) Vector Calculation and Filtering
(k;-o,m;)=L U,
g,=0,+.1
LU, q; =m;q;_,
LU, q; =mylq;, p;]

qj" = qj* [< diag(qj‘ qu‘) >cc]_1/2

LE_:qjtthj:u:
\ 0

L_~-{-

E LE \

If (< HI_,-E||,,>C) > e, than dependent

* %

q;

LE 2 3

_.[qj

4c) Orthonormalization

4pep ]

xxx T

L"E = ql’j ql’j:tx
L.=R'R

XX

T
Rqu,j =4,

columns( q,, J.) =n,
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[ifk=3,thenL,=L.and U, = U]

[if and only if (k; - 6m;;) is singular]
[create new vector block, unless & = 1]
[create new vector block, if k = 1 ]

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

[B'B matrix product]
[Cholesky factor decomposition]

[solve by forward substitution]

[count total calculated vectors]

5) When n, > ¥ n_, Transform System to Form Component

Table (8.1) (Continued) - Revised Boundary Flexibility Algorithm
With Targeted Shifting and Modal Density Truncation
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" Eigen - 100 Hz || Ritz - y = 1.0 " Ritz - y = .50 Ritz - y = .25
" Min Max Min Max “ Min Max Min Max
Tip Acceleration
Lat " 1.00 1.00 1.00 1.00 " .88 .85 .88 .85
Axial “ 0.87 0.89 1.11 1.13 " .85 .85 .85 .85
Element Forces at the Base of the Beam 7
M " 1.00 1.00 1.00 1.00 “ 1.00 1.00 II 1.00 1.00
\Y% " 1.00 1.00 1.00 1.00 || 99 1.00 " 99 1.00

Table (8.2) - Ratios of Responses of the Beam Example Model Using Various
Representations to the 250 HZ Cutoff Eigenvector Representation Responses

| Eigen - 60 Hz | Ritz-y=10 | Ritz-y=.50 I Ritz - y = 25

" Min

Max | Min

Max " Min Max " Min Max

Tip Acceleration
X 1.00 1.01 1.00 98 97 .88 97 .87
Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Z 1.00 1.01 .99 99 .98 1.02 97 1.00
Element Forces at the Base of the Scissors Beam
M1 1.02 1.01 1.01 1.01 1.00 1.00 1.01 1.01
M2 1.02 1.02 1.00 1.01 1.02 1.04 1.07 1.11
\% 1.02 1.02 1.01 1.00 1.04 1.02 1.11 1.07
P 1.02 1.00 1.00 1.00 1.02 1.00 1.12 1.10

1.02 1.01 1.01 1.01 1.00 1.00 1.01 1.01

Table (8.3) - Ratios of Responses of the EPS Radiator Model Using Various
Representations to the 150 HZ Cutoff Eigenvector Representation Responses
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| Eigen-60Hz | Ritz-w=10 | Riz-y=50 | Ritz-y =25

" Min Max " Min Max " Min Max " Min Max

Acceleration at the Oxidizer Tank cg

X 1.00 1.00 1.07 1.03 1.06 1.20 g7 a7
Y 1.00 1.00 97 1.02 .97 .99 .96 1.09
Z 1.00 1.02 .93 92

Acceleration at the Probe cg

X 1.00 1.00 1.00 98 1.16 1.07 1.03 .96
Y 1.00 1.00 98 1.00 .97 1.01 97 92
Z 1.00 1.00 1.02 1.01

High Gain Antenna Strut Beam Element Forces

Ml 1.00 1.00 1.00 .96 1.08 .93 .87 .94
M2 98 1.02 1.00 95 92 .88 .84 .89
P 1.05 .90 98 94 .89 .82 .90 .84

Main Body Stringer Beam Element Forces

Ml 1.06 94 .99 1.01 99 .99 97 1.02
M2 .99 1.00 .99 1.03 .93 1.00 99 99
P 1.02 99 99 1.01 1.00 1.01 .96 1.03

Lower Equipment Module Skin Membrane Forces

Fx 1.00 1.00 1.00 1.00 1.01 1.04 .99 .99

Fy 99 1.01 1.00 1.00 .99 1.00 1.00 1.00

Fxy .99 1.00 .99 1.00 1.00 1.01 92 1.07

Table (8.4) - Ratios of Responses of the Cassini Model Using Various
Representations to the 150 HZ Cutoff Eigenvector Representation Responses
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Figure (8.1) - Beam Example Tip Axial Acceleration
Generated Using a 250 Hz Eigenvector Cutoff
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Figure (8.2) - Beam Example Tip Axial Acceleration
Generated Using a y = 1.0 Ritz Vector Representation
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Generated Using a y = 1.0 Ritz Vector Representation



&

= HZETXOT QZRUZENW 1 Tphk WoOLnHOYN WO HnYE

153

10/18/96
0.

0.1 0.2 0.3 0.4 B2
1.0 S + + +1.0
ED E
0.8 k0.8
0.6 0.6
0.4 0.4
0.2 il 0.2
0 - +0 .
-0. l l l l | ‘ +-0.2
-0. -0.4
0. 0.1 0.2 0.3 0.4 E2
EPS RADIATOR - VERSION 3.3 1
FRS? = §0HZ, MULTIPLE=1., TARGET1 = S. SUPERELEMENT 422
SOI ON 69, SAMPLE TRANSIENT SUBCASE 10

Figure (8.7) - EPS Radiator Scissor Beam Bending Moment 1
Generated Using a W = 1.0 Ritz Vector Representation



154

96
5 11)?,181 0.1 0.2 9.3 0.4 B2
1.0 & + 'y + +1.0
B EO EO0
A
s
E
[*]
F
s
[~
5 |
S oy \ 1 I ! 0.5
0
R
S
B
E
A
: A
g (1] ﬂ {\ /\ A AVAV 0.
X U\]V vV
D
1
N
G
M
[¢]
M
E
N o, 4-0.5
2 |
-1. h-1.0
-1. +-1.5
-2. b +-2.0
0. 0.1 0.2 0.3 0.4 B2
EPS RADIATOR - VERSICN 3.3 1
S% = 60HZ, MULTIPLE=1., TARGETl = 5. SUPERELEMENT 422
ION 69, SAMPLE TRANSIENT SUBCASE 10

Figure (8.8) - EPS Radiator Scissor Beam Bending Moment 2
Generated Using a ¥ = 1.0 Ritz Vector Representation



155

10 10/28/96 1
0. 0.5 1.0 1.5 2.0 2.5 EO

4. + + 3 + + +4 .

A E2

[o

c

E

L

E

R

%

I k] +3

o]

N

A

T

!:g

0 2. B 2

X
1. m 1.

-2 l“ -2,
-3 =3,
T
-4 -4,
0. 0.5 1.0 1.5 2.0 2.5 EO

CASSINI MODEL TEST - VERSION 3.3 1
ORTHOPT = 1, ORTHNRM = 1, FREQ = 60 HZ SUPERELEMENT 100
MULTIPLE = 1., TARGET1 ='S Hz, TARGET2 = 13 HZ SUBCASE 100
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Chapter 9

Summary and Conclusions

Using the boundary flexibility method to initialize the block-Krylov recurrence
algorithm provides an efficient and simple method for generating static Ritz vectors.
Static Ritz vectors so generated accurately can represent the dynamics of a
substructure. Because this methodology does not require the solution of the
component eigenvalue problem, a component can be formed with a significant
decrease in computational cost. The component formed using static Ritz vectors can
include fewer vectors than the comparable eigensolution, for similar accuracy, and the
computational cost of the transient solution is then also reduced.

This dissertation presents new developments in several areas related to static
Ritz vector calculation using the boundary flexibility method. It has been shown that
the loss of orthogonality, discussed in the literature, is directly related to convergence
to an eigenvector in a power extraction method. Orthonormalization using the
euclidean norm rather than the mass matrix has been demonstrated. The replacement
of Gram-Schmidt with Cholesky/QR orthonormalization has also been demonstrated.
These two modifications to the orthonormalization algorithm were developed to
decrease the primary computational cost of the block-Krylov sequence.

The Krylov blocks produced by the boundary flexibility method are initially
to large for efficient handling and computation. As a result, a method of block

filtering has been developed which retains the physically significant information
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contained in the vector block, while eliminating the redundant information. Block
filtering reduces the block size to that commonly used in commercial Lanczos
eigenvalue extraction routines.

The use of inverse operators, or shifting, commonly used in Lanczos
eigenvalue extraction routines to search for missing eigenvectors, has been applied to
the boundary flexibility method. Shifting alters the Krylov sequence so that vectors
near a selected frequency are created. Targeted shifting utilizes the frequency
spectrum of the applied dynamic loading to select a targeted frequency. The spacial
distribution of the applied dynamic loading can be used in conjunction with targeted
shifting to further refine the static Ritz vector creation.

Determining when a sufficient number of static Ritz vectors have been
calculated to accurately represent a component has been difficult. Truncation of the
Krylov sequence based upon the modal density of the given finite element model has
been developed and presented. This heuristic method is based on the observation that
dynamically significant static Ritz vectors are calculated early in the Krylov sequence,
and that fewer static Ritz vectors than eigenvectors are necessary to accurately
represent a component.

Potential future work on the boundary flexibility method of static Ritz vector
creation could include the use of synthetic load vectors to supplement the spatial
distribution of the applied dynamic load. A synthetic load could be created which

would cause a particular element, or sets of elements, to deflect. Applying this load
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to the Krylov sequence would create static Ritz vectors which should guarantee
accurate response predictions for specific, critical data recovery items. This technique
could be investigated with no additional theoretical development.

The shift strategy developed, and the value of the fraction , could be tested
with a larger number of example models. This might allow for a either a
simplification, or a greater sophistication of the shift strategy. In particular, an
alteration of the shift strategy, to allow the use of the applied load and targeted
shifting, on models with a number of eigenvectors in the frequency range of interest

smaller than the block size, should be investigated.
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Appendix Al - EPS Radiator Finite Element Model Effective Masses

Mode Frequency Effective Masses (%)
No. (Hz) Tl T2 T3 R1 R2 R3

1 0.19 0.0 00 468 937 358 0.0
2 0.70 0.1 0.0 0.0 00 112 0.1
3 0.91 434 0.0 0.0 0.0 1.0 850
4 1.20 0.0 357 0.1 0.0 0.1 2.2
5 1.30 0.0 0.3 12.3 3.6 9.4 0.0
6 2.59 04 0.0 0.0 0.0 1.6 0.2
7 3.32 19.2 0.0 0.0 0.0 0.6 6.1
8 3.65 0.0 0.1 3.7 0.7 2.8 0.0
9 5.15 0.0 9.9 0.0 0.0 0.0 0.6
10 5.78 0.2 0.0 0.0 0.0 0.6 0.0
11 6.73 0.0 0.5 1.7 0.3 1.3 0.0
12 6.88 4.3 0.0 0.0 0.0 0.2 04
13 8.92 0.0 0.5 0.4 0.0 0.3 0.0
14 9.72 0.9 0.0 0.0 0.0 0.0 0.1
15 9.96 0.0 1.0 1.2 0.2 0.9 0.1
16 10.33 0.8 0.0 0.0 0.0 0.5 0.1
17 10.72 0.0 0.2 53 0.5 4.0 0.0
18 12.08 1.1 0.0 0.0 0.0 0.1 0.1
19 13.15 0.0 0.0 0.0 0.0 00 0.0
20 14.51 0.8 0.0 0.0 0.0 0.0 0.1
21 15.05 0.0 0.0 0.0 0.0 0.2 0.0
22 16.34 0.7 0.0 0.0 0.0 0.0 0.0
23 16.34 0.0 0.0 0.0 0.0 0.0 0.0
24 16.91 0.0 0.0 0.0 0.0 0.1 0.0
25 17.83 0.7 0.0 0.0 0.0 0.0 0.0
26 18.71 0.7 0.0 0.0 0.0 0.0 0.0
27 19.15 0.0 1.2 0.1 0.0 0.1 0.1
28 20.25 0.0 0.3 0.0 0.0 0.0 0.0
29 21.03 0.1 0.0 0.0 0.0 1.2 0.0
30 22.80 0.0 0.0 0.0 0.0 0.0 0.0
31 22.94 0.0 0.1 0.0 0.0 0.0 0.0
32 23.13 0.0 0.0 0.0 0.0 0.0 0.0
33 24.03 0.0 0.0 0.0 0.0 0.0 0.0
34 24.04 0.0 0.0 0.0 0.0 0.0 0.0
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35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75

24.80
25.52
25.64
25.75
26.23
26.34
27.01
2743
27.69
28.19
28.46
2891
29.61
30.23
30.88
30.89
31.13
33.69
33.79
34.35
34.71
36.57
37.37
37.51
37.53
38.26
38.61
39.79
39.83
40.88
41.08
42.45
44.29
44.52
45.73
46.20
46.53
46.74
48.69
49.37
49.70

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.5
0.1
0.0
0.0
0.0
1.1
0.0
0.0
0.0
0.3

17

0.0
0.0
0.0
0.0
2.2
0.0
04
2.1
0.0
0.3
0.0
1.6
0.0
04
0.1
0.0
0.0
9.5
0.2
0.0
0.0
0.0
0.0
0.0
0.0
2.6
03
1.8
0.0
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0.0
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0.0
0.0
0.0
0.0
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0.0
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0.0
0.0
0.0
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0.0
0.0
0.0
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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0.0
0.0
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0.0
0.0

0.0
0.1
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0.0
0.0
0.0
04
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0.0
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0.0
0.6
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04
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0.0
0.0
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.1
0.0



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

50.80
51.21
51.81
52.04
53.69
55.50
56.10
56.65
56.97
57.69
58.28
59.33
60.24
61.50
62.01
62.45
63.12
63.86
64.84
67.15
70.52
70.53
71.34
73.06
74.40
75.66
76.92
79.49
79.89
80.46
82.72
83.36
84.53
85.43
86.57
87.00
88.86
89.31
89.90
92.33
92.75

0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

02
0.6
0.0
0.5
1.7
0.0
0.0
4.7
0.1
0.0
0.1
0.5
0.0
0.6
0.8
0.9
0.0
0.2
0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.5
0.0
0.0
0.0
0.1
0.0
0.0
0.0

167

0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.2
0.0
0.1

0.1

0.0
0.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

9421

96.19

96.53

98.07

98.77

99.72
100.06
100.19
100.46
101.95
102.02
102.69
103.97
104.88
106.50
107.69
107.93
108.61
108.78
109.35
110.03
111.76
111.93
113.42
113.43
113.70
113.70
114.31
114.41
115.00
115.16
116.00
117.72
117.95
118.99
121.38
122.25
123.42
123.68
124.66
125.34

0.0
0.0
0.1

1.0
0.0
0.1

0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.1

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.2
0.7
0.6
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

168

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.1
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.1

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

125.37
126.61
127.27
128.22
128.68
129.60
131.13
131.41
133.15
133.57
133.86
134.39
135.99
136.67
137.31
137.41
138.89
139.59

0.0
0.0
0.0
1.0
0.6
0.2
0.0
0.2
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0

T1
78.1

0.0 0.0 0.0 0.0
0.0 0.0 0.0 .00
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.3 0.0 0.2
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
Total Effective Mass (%)
T2 T3 R1 R2
903 756 994 757

169

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

R3
98.8



Appendix A2 - Cassini Finite Element Model Effective Masses

Mode Frequency

No.

WO Wn AW~

(Hz)

7.36
7.70
12.19
14.89
14.91
15.50
15.75
15.88
15.90
17.85
18.28
19.01
19.08
19.21
19.54
19.81
19.96
20.04
20.34
20.47
20.63
21.39
23.44
23.73
25.55
25.94
26.54
27.14
27.23
27.45
27.52
28.33
29.60
29.70

Tl

49.2
7.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
3.0
43
0.1
1.7
0.5
0.0
0.0
04
1.4
1.2
54
0.0
1.5
0.0
1.0
0.0
1.0
0.0
0.0
0.0
1.7
0.3
0.5

Effective Masses (%)

T2

8.6
50.9
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.7
0.2
0.0
0.9
0.1
0.0
0.2
1.7
2.0
1.8
03
0.0
0.0
0.0
9.0
0.0
0.6
0.0
0.0
0.0
0.0
0.1
0.6
1.1

T3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.2
0.0
04
0.5
0.0
52
0.5
0.0
0.0
4.1
35
0.0
1.1
0.0
0.8
0.4
0.1
0.1
0.0
0.1
0.0
0.2
14.2
2.8
23

170

R1

13.2
78.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.2
0.0
0.0
0.1
0.6
0.3
02
0.0
0.0
0.0
0.0
25
0.0
0.2
0.0
0.0
0.0
0.0
0.1
0.1
0.2

R2

78.7
12.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.7
0.9
0.0
0.6
0.1
0.0
0.0
0.1
0.3
02
1.3
0.0
0.3
0.0
0.1
0.0
0.2
0.0
0.0
0.0
0.5
0.1
0.1

R3

0.0
0.0
0.2
0.0
0.0
139
60.5
0.0
0.0
0.0
1.0
2.2
0.8
0.0
0.2
04
0.0
0.5
0.9
1.2
0.1
0.0
0.7
0.0
3.4
0.0
2.5
0.0
0.1
0.0
0.0
0.1
0.0
0.0



35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75

31.27
31.51
33.53
34.49
34.99
35.23
36.45
36.73
37.53
38.04
38.29
38.53
39.26
39.39
40.65
41.70
41.97
42.69
43.38
44.23
44 .58
44.98
45.11
46.03
47.12
47.71
48.40
48.89
49.13
50.11
50.11
50.12
50.93
52.72
53.08
53.31
54.10
55.12
56.42
57.31
58.35

1.9
00
04
2.6
0.0
0.3
1.2
2.7
0.8
0.0
0.0
0.1
0.2
1.2
0.0
0.4
0.2
0.2
1.6
0.1
0.0
0.1
0.2
0.0
0.0
0.0
0.1
0.0
0.2
0.0
0.0
0.2
0.0
00
02
0.2
0.0
0.1
0.0
0.0
0.0

29
0.1
0.0
0.0
0.0
0.0
3.7
1.4
2.1
1.1
0.1
0.0
0.7
0.0
3.0
0.2
0.1
0.1
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.2
0.0
0.0
0.0
0.0

171

4.6
2.1
1.9
0.0
0.0
0.3
0.5
0.1
15.6
1.6
19.6
0.1
0.0
0.5
0.0
0.2
04
0.1
0.1
0.5
0.1
1.3
0.9
0.1
0.0
0.2
1.3
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.1

0.5
0.0
0.0
0.0
0.0
0.0
0.6
0.3

0.4
0.2

0.0
0.0
0.1

0.0
0.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.4
0.0
0.1

0.5

0.0
0.1

0.2
0.5

0.2
0.0
0.0
0.0
0.0
0.3

0.0
0.1

0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.1

0.0
0.0
0.0
0.1

0.0
0.0
0.1

0.1
0.0
0.0
0.1

0.2
0.1

0.0
0.0
0.0
0.1

0.1

0.0
0.0
0.0
0.0
0.0
0.3

0.0
0.0
0.0
0.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

58.75
59.10
59.12
59.12
59.13
59.30
59.72
59.93
60.32
61.40
62.01
62.77
63.21
64.52
65.18
67.86
67.88
67.88
67.88
67.91
67.94
68.75
69.50
69.86
71.31
72.05
73.13
75.57
75.57
75.59
75.59
75.64
75.68
75.84
76.07
76.43
76.81
78.81
79.64
80.36
82.57

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.3
0.0
0.0
0.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.1
0.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.5
0.1
0.3
0.3



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153

154
155

83.03
83.48
84.86
85.93
86.70
87.09
87.80
88.35
88.41
88.81
90.55
90.56
90.70
91.26
91.73
92.47
92.88
93.82
94 .24
94.37
94.99
95.03
96.00
96.25
97.55
99.16
100.37
101.77
101.93
103.05
104.03
104.08
104.62
106.66
106.66
106.69
107.17
107.17
107.85

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.1

0.0
0.1

0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.1

0.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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03
0.0
0.1
0.0
0.0
0.6
0.0
0.0
0.1

03
0.0
0.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



156
157

174

109.30 0.0 0.0 0.0 0.0 0.0
109.53 0.0 0.0 0.0 0.0 0.0

Total Effective Mass (%)
T1 T2 T3 R1 R2
97.8 978 978 998 998

0.5
0.2

R3
93.8



Appendix B

MIN/MAX SUMMARY

STRUCTURE: beam PARAM2: eigen PARAM3: 250 HZ RESPONSE: ALL
1D VALUE OCCURRENCE VALUE OCCURRENCE

ACCE 10 3 -2.25390E+01 .9300 1.79300E+01 .0100
ACCE 10 4 -7.88126E-01 .9200 8.04331E-01 .0000
ACCE 10 5 -2.25390E+01 .9300 1.79300E+01 .0100
EL FOR 1 4 -2.61165E+03 1.8250 2.54222E+03 1.0250
EL FOR 1 5 -2.54222E+03 1.0250 2.61165E+03 1.8250
EL FOR 1 6 -3.19838E+00 1.8200 3.31442E+00 1.0400
EL FOR 1 7 -3.31442E+00 1.0400 3.19838E+00 1.8200
EL FOR 1 8 -2.29287E-01 .9450 1.27743E+00 .0250
EL FOR 1 9 -4 .65317E-10 .9450 2.67230E-08 .0250

175



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FCR

beam
ID

10
10

[=)
HBHHHEHERO

PARAM2: eigen

WORINWN U PdW

176

MIN/MAX

-2.
-6.
-2.
-2.
~-2.

-3

-3.

-2
-2

SUMMARY

PARAM3 :
VALUE OCCURRENCE
24629E+01 .9300
83512E-01 .9200
24629E+01 -9300
61165E+03 1.8250
54222E+03 1.0250
.19838E+00 1.8200
31442E+00 1.0400
.28109E-01 .9450
.13987E-11 .1400

100 BZ

NN OR

RESPONSE: ALL

VALUE

.78509E+01
.97566E-01
.78509E+01
.54222E+03
.61165E+03
3.
3.
1.
1.

31442E+400
19838E+00
08525E+00
09748E-13

OCCURRENCE

.0100
.0000
.0100
.0250
.8250
.0400
.8200
.0250
.0800

e



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

beam
1D

10
10

-
PHRERBRBO

177

MIN/MAKX

PARAM2 :

WU U W

-2.
-8.
-2.
-2.

-2
-3
-3

-2.
0.

SUMMARY

ritz PARAM3: fracl.O
VALUE OCCURRENCE
24504E+01 .9300 1
72979E-01 .9200 8
24504E401 .9300 1
61165E+03 1.8250 2
.54221E+03 1.0250 2
.19838E+00 1.8200 3
.31401E+00 1.0400 3
17777E-01 .9450 1
00000E+00 .0000 0

RESPONSE: ALL

VALUE

.78359E+01
.90928E-01
.78359E+01
.54221E+03
.61165E+03
.31401E+00
.19838E+00
.12482E+00
.00000E+00

OCCURRENCE

.0100
.0000
.0100
.0250
.8250
.0400
.8200
.0250
.0000

o



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

MIN

PARAMZ :

WO A W

-1.
-6.
-1.
-2.
-2.
-3.
-3.
-2.

0.

178

/ MAX SUMMARY
ritz PARAM3: frac.S
VALUE OCCURRENCE
98163E+01 .9300
70055E-01 .0200
98163E+01 .9300
61174E+03 1.8250
53853E+03 1.0250
20066E+00 1.8200
27943E+00 1.0450
27150E-01 . 9450
00CO0E+00 .0000

OFWWNNHF M

RESPONSE: ALL

VALUE

.52155E+01
.68161E-01
.52155E+01
.53853E+03
.61174E+03
.27943E+00
.20066E+00
.01833E+00
.00000E+00

OCCURRENCE

.0100
.9400
.0100
.0250
. 8250
.0450
.8200
.0250
.0000

P



179

MIN/MAKX SUMMARY

STRUCTURE: beam PARAM2: ritz PARAM3: frac.25 RESPONSE: ALL
ID VALUE OCCURRENCE VALUE OCCURRENCE

ACCE 10 3 -1.98163E+01 .9300 1.52155E+01 .0100
ACCE 10 4 -6.70055E-01 .0200 6.68161E-~01 .9400
ACCE 10 5 -1.98163E+01 .9300 1.52155E+01 .0100
EL FOR 1 4 -2.61174E+03 1.8250 2.53853E+03 1.0250
EL FOR 1 5 -2.53853E+03 1.0250 2.61174E+03 1.8250
EL FOR 1 6 -3.20066E+00 1.8200 3.27943E+00 1.0450
EL FOR 1 7 -3.27943E+00 1.0450 3.20066E+00 1.8200
EL FOR 1 8 -2.27150E-01 .9450 1.01833E+00 .0250
EL FOR 1 9 0.00000E+00 .0000 0.00000E+00 .0000



STRUCTURE:

ACCE
ACCE
ACCE

EL
EL
EL
EL
EL
EL

FOR
FOR
FOR
FOR
FOR
FOR

radiator
ID

440827
440827
440827
440155
440155
440155
440155
440155
440155

180

MIN/MAXKX SUMMARY

PARAM2: eigen PARAM3: 150 HZ
VALUE OCCURRENCE

3 -9.96496E-01 31.0078 2
4 -5.71353E+00 .1150 1
5 -1.67945E+00 17.0102 2
4 -2.91732E-01 21.6194 9
5 -1.54566E+00 16.2353 6
6 -5.46363E-02 18.1800 7
7 ~4.14298E-01 21.6094 9
8 -9.38668E-01 16.2503 6
9 -2.75216E-01 21.6194 9

RESPONSE: ALL

VALUE

.54486E-01
.71285E+00
.06374E+00
.41954E-01
.89794E-01
.09203E-02
.28340E-01
.09971E-01
.15571E-01

OCCURRENCE

17.0102
17.1851
21.3244

.1250
21.6094
16.9851
16.2353
18.7948
17.0051



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FCR
EL FOR

radiator

440827
440827
440827
440155
440155
440155
440155
440155
440155

MIN

PARAMZ2 :

WEWJAU S N W

-1.
-5.
-1.
.96674E-01
-1.
-5.
-4,
-9.
-2.

-2

181

/ MAX

eigen
VALUE

00129E+00
71337E+00
69103E+00

57609E+0Q0
56583E-02
24259E-01
60995E-01
79499E-01

SUMMARY

PARAM3 :
OCCURRENCE

31.0078

.1150
17.0102
21.6194
16.2353
18.1800
21.6094
16.2503
21.6194

60 HZ

WAHAOUINONKEND

RESPONSE: ALL

VALUE

.57273E-01
.71283E+00
.07328BE+00
.55594E-01
.06379E-01
.91698E-02
.46616E-01
.08715E-01
.28780E-01

OCCURRENCE

17.0102
17.1851
21.3244

.1250
21.6094
16.9902
16.2353
18.7948
17.0051



STRUCTURE:

ACCE
ACCE
ACCE
EL FCR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

radiator
ID

440827
440827
440827
440155
440155
440155
440155
440155
440155

MIN

PARAM2 :

WAL UbW

-9.
-5.
-1.
-2.
-1.
-5.
-4.
-9.
-2.

182

/ MAX

ritz
VALUE

92473E-01
71352E+00
65486E+00
93704E-01
54285E+00
56114E-02
16776E-01
40207E-01
76952E-01

SUMMARY

PARAMS3 :
OCCURRENCE

31.0078

.1150
17.0102
21.6194
16.2353
18.1800
21.6094
16.2503
21.6194

fracl.0

WUV HEN

RESPONSE: ALL
VALUE OCCURRENCE
.50247E-01 17.0102
.71291E+00 17.1851
.03754E+00 21.3244
.49249E-01 .1250
.93919E-01 21.6094
.54589E-02 16.9902
.26655E-01 16.2353
.07573E-01 18.7948
.22073E-01 17.0051



STRUCTURE :

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

radiator
ID

440827
440827
440827
440155
440155
440155
440155
440155
440155

MIN

PARAM2:

WOJAUTS U W

-9.
-5.
-1.
-2.
-1.
-5.
-4.
-9.
-2.

183

/ MAX

ritz
VALUE

68425E-01
72016E+00
64152E+00
92021E-01
57293E+00
54656E-02
30009E-01
55818E-01
76342E-01

SUMMARY

PARAM3 :
OCCURRENCE

31.0078

.1150
17.0102
21.6144
16.2353
18.1800
21.6094
16.2553
21.6194

frac.5

WOWUIIONEFND

RESPONSE: ALL

VALUE

.24475E-01
.71146E+00
.09572E+00
.44502E-01
.15953E-01
.52181E-02
.44717E-01
.10545E-01
.15235E-01

OCCURRENCE

17.0501
17.1851
21.3244

.1250
21.6094
16.9902
16.2353
18.7948
17.0051



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

radiator

440827
440827
440827
440155
440155
440155
440155
440155
440155

MIN

PARAM2 :

VoW & Uk W

-9.
-5.
-1.
-2.
-1.
-5.
-4.
-1.
-2.

184

/ M2aX

ritz
VALUE

65517E-01
72386E+00
62194E+00
95189E-01
65746E+00
35842E-02
61048E-01
04982E+00
78004E-01

SUMMARY

PARAM3:
OCCURRENCE

31.0078

.1150
17.0102
21.6144
16.2453
18.1800
21.6094
16.2553
21.6194

frac.25

WAHAWOVUNQIOVUNEN

RESPONSE: ALL
VALUE OCCURRENCE
.21647E-01 17.0551
.71038E+00 17.1851
.05417E+00 21.3244
.55356E-01 .1250
.67631E-01 21.6094
.54796E-02 16.9851
.95492E-01 16.2453
.70256E-01 17.9000
.23280E-01 17.0051



STRUCTURE:

ACCE
ACCE
ACCE
ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FCR
EL FOR
EL FOR
EL FOR

cassini
ID

10004
10004
10004
701
701
701
11601
11601
11601
1262
1262
1262
16505
16505
16505

PARAM2: eigen

wwhoune ok ndwul e Ww

185

MIN/MAX

-5.
-4.
-1.

-3

-2.
-1.
-1.
-3.

-6

-2.

-4

-1.
-9.

-4
-9

SUMMARY

PARAM3: 150 HZ
VALUE OCCURRENCE

88261E+02 1.3670
04763E+02 1.9490
75641E+03 .5140
.12625E+02 1.2130
75651E+402 1.9610
14259E+03 .7740 -
04208E+02 .5960
49150E+01 1.1870
.76765E+02 .8570
22637E+02 1.2840
.89656E+01 .7670
02894E+02 1.2850
22882E+01 1.3640
.11428E+02 .8510
.47152E+01 1.1040

VWWounNREOA NN WWUTLE

RESPONSE: ALL

VALUE

.88726E+02
.37344E+02
.23883E+02
.78308E+02
.07647E+02
.93264E+00
.69385E+01
.77298E+01
.52884E+02
.08921E+02
.4372BE+01
.93157E+01
.67772E+01
.11B39E+02
.85466E+01

OCCURRENCE

.7680
.6300
.6850
1.1050
.6280
.0000
.8620
1.1300
1.1320
.8560
1.9350
.8550
.6080
.5970
.6490



STRUCTURE :

ACCE
ACCE
ACCE
ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

cassini

10004
10004
10004
701
701
701
11601
11601
11601
1262
1262
1262
16505
16505
16505

PARAM2: eigen

Sdwhond ok Wwuew

186

MIN/MAX

-5.
-4.
-1.
-3.
-2.
-1.
-1.
~-3.
-7.
-2.
-4.
-1.
-9.
-4.
-9.

SUMMARY

PARAM3 :
VALUE OCCURRENCE
88162E+02 1.3670
04593E+02 1.9490
75667E+03 .5140
12834E+02 1.2130
75536E+02 1.9610
14237E+03 .7740
04183E+02 .5960
40644E+01 1.1870
10632E+02 .8570
36321E+02 1.2840
85338E+01 .7670
04599E+02 1.2850
22948E+01 1.3640
08437E+02 .8510
41314E+01 1.1040

60 HZ

RESPONSE: ALL

VALUE

4.89098E+02
5.36760E+02
3.23813E+02
3.78818E+02
5.07715E+02
-3.90032E+01
5.70208E+01
4.88520E+01
6.11217E+02
1.02161E+02
2.44500E+01
5.85180E+01
8.67314E+01
3.14572E+02
9.87876E+01

OCCURRENCE

.7680
.6300
.6850
1.1050
.6280
.0000
.8620
1.1300
1.1320
.8560
1.9350
.8550
.6080
.5970
.6490



STRUCTURE:

ACCE
ACCE
ACCE
ACCE
ACCE
ACCE
EL FCR
EL FOR
EL FOR
EL FCR
EL FOR
EL FCR
EL FOR
EL FCR
EL FCR

cassini
ID

10004
10004
10004
701
701
701
11601
11601
11601
1262
1262
1262
16505
16505
16505

187

MIN/MAX

PARAMZ :

Bwhoune ok Ul Wk w

-6.
-3.
~-1.
-3.
-2.
-1.
-1.
-3.
-6.
-2.
-4.
-1.
-9.
-4.
-9.

SUMMARY

ritz PARAM3: fracl.0
VALUE OCCURRENCE
31701E+02 1.3650 5
91711E+02 1.9500 S
80007E+03 .5140 3
14088E+02 1.3620 3
69071E+02 1.9620 )
14687E+03 1.0300 -1
03659E+02 .5970 5
48669E+401 .6730 4
65697E+02 .8570 6
21476E+02 1.2840 1
85302E+01 .7670 2
01938E+02 1.2850 5
21733E+01 1.3640 8
10586E+02 .8510 3
37584E+01 1.1040 9

RESPONSE: ALL

VALUE

.02735E+02
.49198E+02
.46303E+02
.715035E+02
.09647E+02
.60672E+01
.43767E+01
.51540E+01
.37747E+02
.09841E+02
.49850E+01
.99338E+01
.67974E+01
.12612E+02
.82706E+01

OCCURRENCE

.7660
.6310
.3990
1.1050
.6280
.0000
.8610
1.1320
1.1330
.8560
1.9370
.8550
.6080
.5970
.6490



STRUCTURE:

ACCE
ACCE
ACCE
ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

cassini
ID

10004
10004
10004
701
701
701
11601
11601
11601
1262
1262
1262
16505
16505
16505

188

MIN/MAX

PARAM2 :

SWwhoUkoUdUTd Wb W

-6
-3

-1.
-3.
-2.
-1.
-1.
-3.
-6.
-2.
-4.
-1.
-9.
-4.
-9.

SUMMARY

ritz PARAM3: frac.S
VALUE OCCURRENCE
.21011E+02 1.2210
.92906E+02 1.1080
62924E+03 .5080
62351E+02 1.3630
68399E+02 1.0970
16865E+03 1.0300 -
12753E+02 .5950
22312E+01 1.1860
03145E+02 .8530
20645E+02 1.2860
57440E+01 .7680
02720E+02 1.2870
30055E+01 1.3620
08634E+02 .8510
48909E+01 1.1030

YWOVUINH VIR WUBREUVWL

RESPONSE: ALL

VALUE

.85796E+02
.29591E+02
.67419E+02
.04263E+02
.14539E+02
.07396E+01
.31308E+01
.20591E+01
.55450E+02
.08038E+02
.43067E+01
.99723E+01
.00367E+01
.10949E+02
.97088E+01

OCCURRENCE

.7680
.6350
.3470
1.1050
.62390
.0000
.8620
1.1310
1.1330
. 8550
1.9390
.8550
.6070
.5980
.6450



STRUCTURE :

ACCE
ACCE
ACCE
ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR
EL FOR

cassini

10004
10004
10004
701
701
701
11601
11601
11601
1262
1262
1262
16505
16505
16505

189

MIN/MAX

PARAMZ :

wwhoUB oA WNT AW

-4.
-3.
-1.
-3.
-2.
-1.
-9.
-3.
-6.
-2.
-4.
-9.
-9.
-4.
-8.

SUMMARY

ritz PARAM3: frac.25
VALUE OCCURRENCE
52083E+02 1.3610 3
88050E+02 1.9500 5
62037E+03 1.2890 2
23387E+02 1.3680 3
68010E+02 .5160 4
15915E+03 .7770 -4
03325E+01 .5930 S
09406E+01 .6650 4
11457E+02 .8520 5
15326E+02 1.28%0 1
86087E+01 .7680 2
91673E+01 1.2890 6
16432E+01 .8510 8
12496E+02 .8510 3
68751E+01 1.1050 1

RESPONSE: ALL

VALUE

.76871E+02
.85286E+02
.13292E+02
.62839E+02
.66561E+02
.01343E+01
.33065E+01
.00999E+01
.70471E+02
.11135E+02
.40371E+01
.12986E+01
.55358E+01
.10529E+02
.05739E+02

OCCURRENCE

.8310
.6280
.6900
1.1070
.6310
.0000
.8610
1.1330
1.1370
.8530
1.9370
.8530
.6020
.5990
.6460
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