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Comparison of lidar backscatter with particle distribution and

GOES-7 data in Hurricane Juliette
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Abstract. Measurements of calibrated backscatter, using two

continuous wave Doppler lidars operating at wavelengths 9. I and

10.6p.m were obtained along with cloud particle size distributions

in Hurricane Juliette on 21 September 1995 at altitude -11.7 km.

Agreement between backscatter from the two lidars and with the

cloud particle size distribution is excellent. Features in

backscatter and particle number density compare well with

concurrent GOES-7 infrared images•

Introduction

Lidars can be used to measure backscatter of atmospheric

aerosols and clouds [Menzies and Trait, 1994], where the

backscatter magnitude is in part indicative of particle number

density. Their high resolution capability provides a unique

method of measuring fine-scale atmospheric variations

[Srivastava et al., 1995]. Recently, two National Aeronautics

and Space Administration (NASA)/Marshall Space Flight Center

(MSFC) continuous wave (CW) focused Doppler lidars obtained

in-situ high resolution calibrated backscatter measurements in

Hurricane Juliette as part of the 1995 NASA/Multicenter

Airborne Coherent Atmospheric Wind Sensor (MACAWS)
mission on board NASA's DC8 aircraft. Two traverses of

Juliette's eye were made off the west coast of Mexico at altitude

11.7 km on 21 September 1995. The two independent l idar data

sets offered an opportunity for intercomparison and validation of

the calibrated backscatter results. These were also intercompared

with in-situ cloud particle size distributions obtained from

NASA/Ames Research Center's forward scattering spectrometer

probe (FSSP), the DC8 aircraft infrared (IR) surface temperature

radiometer data, and the Geostationary Operational

Environmental Satellites (GOES-7) l 11am IR emission images

with their corresponding estimates of cloud top temperature and

height. At the time of the DC8 flight through Juliette, GOES-7

was in geosynchronous orbit over the equator and 135 ° W

longitude and provided superior viewing geometry of the eastern

Pacific ocean region• GOES-7 IR data for the 12-h period

beginning at t600 UTC and spanning the DC8 flight, were used

to monitor the cloud development and structure of Juliette.

Meteorology, Flight, and GOES-7 Data

Juliette developed off the west coast of Mexico on 16

September 1995. It moved slowly west-northwestward and

gradually intensified, reaching hurricane strength by 18
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September. Juliette reached its maximum strength at 2100 UTC

on 20 September, with peak winds of 64 m s -_ (125 kt) and

minimum central pressure of 925 hPa. At this time, eyewall

decay-replacement cycles were occurring, with the old eyewall

contracting and dissipating while a new, larger annular eyewall

formed outside [Willoughby et al., 1982]. Late stages of this

cycle were observed at the time of the DC8 traversal of Juliette's

core on 21 September. As the storm moved over cooler water it

gradually lost strength, ultimately dissipating on 26 September.

During the DC8 flight around and through Juliette, the storm

displayed a nearly symmetrical, rapidly expanding cirrus outflow

shield, according to concurrent GOES-7 imagery. The storm's

rainfall pattern, however, exhibited considerable azimuthal

asymmetry, with heaviest precipitation located in the storm's

core and in strong rainband convection along the storm's southern

periphery, as diagnosed from the 85 GHz channel of the Special

Sounder Microwave/Imager (SSM/I) at 1756 UTC on 21

September. Outer rainbands were absent on the storm's northern

flanks, perhaps because of the presence of cooler ocean water and

drier midtropospheric air. The small, old eyewall, still evident

within the center of the new, larger annular eye, remained

connected to the new eyewall by a vestigial spiral band structure

in the storm's north quadrant, with a veil of thin cirrus covering

the developing new large eye.

Flight through Juliette lasted -2.5-h, during which two

traverses of the eye were made separated by -1.6-h. A GOES-7

IR image of Juliette at 2100 UTC (-21 rain. after the first eye

penetration) is shown in Fig.1. Flight track from 2010 to 2250

Figure 1. GOES-7 IR image of Hurricane Juliette on 21

September 1995 at 2100 UTC. The co-located position of the

NASA DC8 flight track is shown from 2010 to 2250 UTC.
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Figure 2. (a) Measured IR surface cloud-top temperature (CTT) from GOES-7 and DC8 radiometer and (b) calculated cloud-top

height (CTH) from GOES-7 along the DC8 flight track. CW lidar backscatter 13 (m -_ sr -_) measurements at (c) 9. l ram and (d) 10.61am

wavelengths; and (e) FSSP measurements of total particle number concentration N (cm 3), inferred total particle volume V(p.m _ cm3),

and shaded cross section of log (dn/dlog(D)). Broad-scale features labeled alphabetically on the 10.61am 13 time series plot are

identified in Fig. 1.
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UTC is shown overlaid on the image with storm features labeled

alphabetically along with wind vectors from the DC8 flight level

data. From five GOES-7 IR images taken consecutively between

2030 and 2230 UTC, the digital IR cloud-top temperature (CTT)

was determined at the co-located position of the DC8 flight track,

and is shown in Fig.2(a). The IR temperature corresponding to

the closest pixel to the flight track location was used to assign a

CTT value. Data resolution is -8 km which corresponds to a

-33-s portion of DC8 data stream (DC8 speed -240 m s-t).

Accuracy of CTT estimates is believed to be better than 0.5 K.

Also, Fig.2(a) shows the IR temperature from nadir-viewing

radiometer on DC8. This operates in the spectral band of 9.5 to

11.5 /am and has a 2° field of view which autoranges over three

temperature spans to cover 208 to 328 K with +_0.5 K accuracy.

CTT from GOES-7 was converted to cloud-top height (CTH),

shown in Fig.2(b), using corresponding temperature and

associated geopotential height from a reference climatological

thermodynamic profile stratified by season and latitude. This

conversion is good when clouds are opaque with large optical

depth, while thin clouds with a low thermal emissivity can give

erroneously low CTH values. The DC8 flight altitude is also

shown in Fig.2(b). There are seven distinct, broad-scale regions

where the CTH is greater than the DC8 cruising altitude.

Data shown in Figs.2(a, b) allow intercomparison of GOES-7

satellite and in-situ DC8 temperature measurements in several

flight segments. Between 2057 to 2127 UTC and 2146 to 2210

UTC, where DC8 was above or near cloud top, the estimated

CTT from GOES-7 agrees with DC8 radiometer. However, in

regions like the annular eye, the location and width of the

features agree well but the magnitude does not. This difference is

a result of the different spatial resolution of the two radiometers.

When DC8 was in dense cloud, GOES-7 detected a lower CTT

associated with a CTH above DC8 flight altitude.

Lidar Backscatter and Particle Distribution

The CW Doppler lidars, operating at 9.1 and 10.61.tm CO2

wavelengths, are coherent homodyne instruments measuring the

backscattered signal from particles in the lidar sample volume.

The lidar beams were focused at -54 m from the aircraft, beyond

the DC8 right wing. Details of the lidars and data acquisition are

given elsewhere [Rothermel et al., 1996]. Measured signal-to-

noise ratio (SNR) was converted to absolute backscatter

coefficient 13 (m" sr -_) based on an aerosol calibration technique

[Jarzembski et al., 1996]. Both lidar measurements of [3 were

obtained with 3-s integration times, giving horizontal along-track

resolution of-0.72 km and corresponding integrated sample

volume of -400 m _ for DC8 ground speed of -240 m s-_.

Absolute uncertainty in the [3 measurements is -20%, while

relative uncertainty between adjacent !3 values is less than 1%,

due mostly to subtle laser power fluctuations. The measured

sensitivities of the 9.1 and 10.6/am lidars were -8 x 10 -_2 m -t sr _

and -5 x 10 _ m -f sr -_, respectively.

Using these two airborne CW lidars, absolute calibrated 13was

obtained for the first time in the upper levels of a hurricane. 13at

9.1 and 10.6/am are shown in Fig.2(c) and (d), respectively.

Dramatic 13 variations, some spanning over five orders of

magnitude, are evident, showing a variety of features at 20-150

km scales. These features are labeled alphabetically on the

10.6/am 13time series plot in order to facilitate comparison with

the GOES-7 data [Figs.1 and 2(b)]. Very fine-scale (-2 km

scale) [3 variations were also detected. Both independent 13

measurements exhibit similar features that agree spatially,

temporally, and in relative magnitude. The correlation

coefficient between 13for the two lidars is -0.94.

The total particle number density, N, and the particle size

distributions, dn/dlog(D) (where n is the number of particles in

the size bin around size D) at 10-s integration time from the

FSSP (sample volume -10 .3 m 3) are shown in Fig.2(e). A

detailed description of the FSSP is given in Cutten et al., 1996.

Total particle volume V obtained from a spherical particle

approximation is also shown in Fig.2(e) to give a rough estimate

of cloud ice content. At diameter -I jam, specular reflection off

ice particle surfaces could cause the enhanced particle count

artifact. Although caution needs to be exercised in interpreting

FSSP size distribution data taken inside clouds in the presence of

ice particles [Gardiner and Hallett, 1985], the agreement

between the two independent data sets, 13 and N, (along with

dn/dlog(D) and V) is excellent with logarithmic correlation of

-0.86, depicting the direct proportionality between 13and N.

Hurricane Eye Traverses

The DC8 entered the north periphery of Juliette at ~ 1900 UTC

at altitude -3.1 km. After skirting the storm's western edge, it

began a slow ascent along the storm's south flank at 1954 UTC.

By 2024 UTC it reached a cruising altitude of-11.7 km, and

positioned itself for the first eye traverse from south to north. At

the time, the original eye was weakening as its eyewall cloud

collapsed within a new, larger eye, giving the appearance of an

annular eye with clouds in the central region.

Located within the hurricane's outer cirrus cloud anvil (region

a), dense cirrus decks were encountered at -2018 and -2027

UTC with enhanced 13 and N The magnitude of the fine-scale 13

variations in (a) were smaller than in the rest of the traverses. At

-2034 UTC, a very dense eyewall cloud (b) was encountered,

with a sharp increase in [3 and N. The strength of 13 was so

extreme that the 9.11am lidar became temporarily saturated. In

this eyewall cloud, there was intense precipitation which lasted

for several minutes. Here, the sun was completely obscured in

the zenith-looking video record because of dense clouds and

precipitation. During this time, the CTT decreased dramatically,

showing that the eyewall CTH was -3 km above the DC8, which

was the highest CTH encountered.

An extremely Iow-13 remnant of clean atmosphere (c) from the

new annular eye, with a drop in !3 of almost 6 orders of

magnitude, was encountered immediately after passing through

(b). GOES-7 and DC8 radiometer IR temperatures rose

dramatically here, indicating a CTH lower than flight level. The

traverse of this region lasted _80-s corresponding to a distance of

-20 km. 13 in (c) is similar to typical aerosol 13seen on the return

flight along the southern California coast at -12.8 km altitude

and in clean air in remote regions over the Pacific ocean in the

upper troposphere [Srivastava et al., 1996] at -8 km altitude.

Cirrus from the old eyewall cloud (d) was detected inside the

new annular eye, causing a dramatic increase in 13 and N as well

as a decrease in CTT and increase in CTH In (e), there was

strongly varying [3 from clouds linking the new and old eyewalls

across the north part of the annular eye. In 0% additional cirrus

having high 13 and N was seen north of the annular eye with a

drop in CTT and rise in CTH. Although the sun was again

obscured in (J), no precipitation was observed. Region (h)

consisted of cirrus cloud bands outside the immediate eyewall

cloud, between thin cirrus (g) having low 13 and N and clearer air

(i) with extremely low [3 and N.

As the DC8 turned within (i), it re-entered the same cloud

band (h), now labeled (j). This traverse from (i) to (j) showed an

abrupt increase in [3 and N, as dramatic as the change from (b) to

(c). Levels of 13 and N gradually decreased eastward along this

trailing cloud band, before dropping abruptly again in (k). In (i)
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and(k),theCTTrose,indicatinglowerCTHwithcloud-freeair
aloftattheDC8cruisingaltitude.TheDC8thenflewalongthe
northeyewallcloud(/). [3andNgraduallydecreasedin(m),a
bandof clearerairsimilarto(g). The cirrus cloud band (n)

outside the most intense part of the hurricane displayed

considerable 13 variations. This is probably because DC8 flight

level was very near the CTH, so that the lidars sampled anvil-top

waves having large particle density fluctuations, also seen as

fluctuations in particle size in n(D) (Fig.2e).

At -2209 UTC, the west-to-east traverse of the eye began. 13

and N decreased briefly at -2210 UTC and then rose in the

western eyewall cloud (o). At -2214 UTC, there was a further

increase in 13due to heavy precipitation that lasted -1 min. [3 and

N then dropped dramatically in the clearer air of the new eye (p).

In (q), there was a large increase in 13 and N, in association with

rainband clouds merging in the original eye, stronger than that

seen in (d) -I.6-h earlier, while the clearer air (r) has a structure

similar to (p). 13 and N were very large in the eastern eyewall

cloud (s), but no heavy precipitation was observed there. In each

of the eyewall regions sampled (b, d,f, o, q, s), largest n occurred

in the large size regime. At 2231 UTC, DC8 began a slow

descent and reached (t) with small 13 and N at -11.0 km altitude.

Regions (g), (m), and (t) are all in relatively clear air and show

similar features in 13 and N. Finally, (u) is a cloud band outside

the immediate eyewall cloud as encountered earlier in (h and j);

this time the feature was sampled at -8.2 km altitude. Here, [3 is

comparablc to (o, q, s), but N has dropped considerably relative

to 13, which may be due to possible changes in particle

morphology at the lower altitude and higher temperature.

Discussion

This is the first time a comparison has been made among

satellite imagery parameters and in-situ calibrated 13 from

airborne CW lidars and cloud particle size distributions in a

hurricane. Both the 9.1 and 10.61am lidars tracked the changing

fcatures in Juliette despite the dramatic variability in 13

magnitude. Nearly every variation in 13 is reflected in N,

dn/dlog(D), and V and in the more coarse CTH, in spite of the

significant differences in the sample volumes of the in-situ and

satellite instruments. The size distributions provide an excellent

data set for modeling scattering from cloud ice particles, with

validation provided by the concurrent calibrated 13measurements.

13at 9. I and 10.61.tin differ by the wavelength dependence factor.

Lidar 13ratio between 9.1 and 10.6gm is measured to be around

-6 _+ 2. Assuming a log-normal size distribution for cloud

particles under a spherical approximation with equivalent sphere

radii (mean radius of several microns), Mie theory gives 13ratios

ranging from 3 to 7. A lower ratio of-2 would indicate presence

of sulfuric acid aerosols [Srivastava eta[., 1995]; however, this

was not encountered even under the lowest 13 conditions within

luliette, suggesting little likelihood of stratospheric air intrusion,

which would contain mostly sulfuric acid aerosols. This

corroborates findings by Newcll et al. (1996).

Within a cloud, the 13 variations give direct indications of

cloud N variations, as shown by the excellent agreement between

13and N. In a mature storm like Juliette, high 13is associated with

high N which indicates strong convective activity, leading to

high CTH. Low 13 due to low N indicates lesser convective

activity which would not support a high CTH. Hence, whenever

the DC8 is in clouds, variations of lidar-measured 13 along the

flight track correspond to the crossing of contours of N in the

field of cloud particle density (as seen in Fig.2e), the latter of

which is in turn associated with the cloud activity as indicated by

the CTH (Fig.2b). In regions where the CTH is above the DC8,

comparison of CTH with the two separate in-situ data sets shows

the correlation between logN and CTH, and between Iog13 and

CTH (remapped to a common grid of CTH data) to be -0.6 and

-0.5, respectively. Because these correlations cannot fully

account for differences associated with the dissimilar spatial

resolutions of the in-situ versus satellite data sources, we suspect

that the real correlation is even higher. Therefore, in vigorous

convective systems CTH itself may be a possible indirect

indicator of changes in the particle density field and 13variations

at a given height within the upper levels of the cloud. This

suggests an intriguing possibility of using large-scale satellite

data to infer some of the deep cirrus cloud microphysieal

parameters. However, more research should be pursued to verify

this further and determine the detailed height dependence of the

13-CTH and N-CTH correlations for various cloud types as well

as their possible utility for parameterization of global backscatter
fields within clouds.
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