The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

R. David Hampton
McNeese State University
Lake Charles, Louisiana

Bjarni V. Tryggvason and Jean DeCarufel
Canadian Space Agency
Quebec, Canada

Miles A. Townsend
University of Virginia
Charlottesville, Virginia

William O. Wagar
Lewis Research Center
Cleveland, Ohio

May 1997
The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

R. David Hampton¹
McNeese State University

Bjarni V. Tryggvason² and Jean DeCarufel³
Canadian Space Agency

Miles A. Townsend⁴
University of Virginia

William O. Wagar⁵
NASA Lewis Research Center

Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

¹Assistant Professor, Engineering Department (Mechanical), McNeese State University, Drew Hall, Lake Charles, Louisiana, USA 70609
²Canadian Astronaut / MIM Principal Investigator & Payload Specialist, Canadian Space Agency, St. Hubert, Quebec, CAN J3Y8Y9
³Control System Engineer, Canadian Space Agency, St. Hubert, Quebec, CAN J3Y8Y9
⁴Wilson Professor, Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, Virginia, USA 22903
⁵Senior Research Engineer, NASA Lewis Research Center (MS 500-216), 21000 Brookpark Road, Cleveland, Ohio, USA 44135
Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station show acceleration environments that are noisier than expected [1]. The acceleration environment on the International Space Station (ISS) likewise will not be as clean as originally anticipated; the ISS is unlikely to meet its microgravity requirements without the use of isolation systems [1], [2]. While the quasi-static acceleration levels due to such factors as atmospheric drag, gravity gradient, and spacecraft rotations are on the order of several micro-g, the vibration levels above 0.01 Hz are likely to exceed 300 micro-g rms, with peaks typically reaching milli-g levels [3]. These acceleration levels are sufficient to cause significant disturbances to many experiments that have fluid or vapor phases, including a large class of materials science experiments [4].

The Microgravity Vibration Isolation Mount (MIM) is designed to isolate experiments from the high frequency (>0.01 Hz) vibrations on the Space Shuttle, Mir, and ISS, while passing the quasi-static (<0.01 Hz) accelerations to the experiment [5]. It can provide up to 60 dB of acceleration attenuation to experiments of practically unlimited mass [6]. The acceleration-attenuation capability of the MIM is limited primarily by two factors: (1) the character of the umbilical required between the MIM base (stator) and the MIM experiment platform (flotor), and (2) the allowed stator-to-flotor rattlespace. A primary goal in MIM design was to isolate at the individual experiment, rather than entire rack, level; ideally the MIM isolates only the sensitive elements of an experiment. This typically results in a stator-to-flotor umbilical that can be greatly reduced in size and in the services it must provide. In the current implementation, the umbilical provides experiments with power, and data-acquisition and control services. Even with the approximately 70-wire umbilical the MIM has demonstrated good isolation performance [6].

The first MIM unit was launched in the Priroda laboratory module which docked with Mir in April 1996. The system has been operational on Mir since May 1996 and has supported several materials science experiments [1]. An upgraded system (MIM-II) will be flown on the U.S. Space Shuttle on mission STS-85 in July 1997 [6].
In order to develop controllers for the MIM it is necessary to have an appropriate dynamic model of the system. The present paper presents an algebraic, state-space model of the MIM, in a form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional experiment platform was studied extensively by Hampton [7]. It was found that optimal control techniques could be effectively employed using a state-space system model, with relative-position, relative-velocity, and acceleration states. The experiment platform was assumed to be subject to Lorentz (voice-coil) electromagnetic actuation, and to indirect (umbilical-induced) and direct translational disturbances.

The task of the research presented below was to develop a corresponding state-space model of the MIM. Translational and rotational relative-position, relative-velocity, and acceleration states were to be included, with the rotational states employing Euler parameters and their derivatives. The MIM dynamic model must incorporate indirect and direct translational and rotational disturbances.

System Model

A schematic of the MIM is depicted in Figure 1. The stator, defined in reference frame $\mathcal{S}$, is rigidly mounted to the orbiter. The flotor, frame $\mathcal{F}$, is magnetically levitated above the stator by eight Lorentz actuators (two shown), each consisting of a flat racetrack-shaped electrical coil positioned between a set of Nd-Fe-Bo supermagnets. The coils and the supermagnets are fixed to the stator and flotor, respectively. Control currents passing through the coils interact with their respective supermagnet flux fields to produce control forces used for flotor isolation and disturbance attenuation [5].

The flotor has mass center $F^*$ and a dextral coordinate system with unit vectors $\hat{f}_1$, $\hat{f}_2$, and $\hat{f}_3$, and origin $F_0$. The stator (actually, stator-plus-orbiter) has mass center $S^*$ and a dextral coordinate system with unit vectors $\hat{s}_1$, $\hat{s}_2$, and $\hat{s}_3$, and origin $S_0$. The inertial reference frame $\mathcal{O}$ is
similarly defined by \( \hat{n}_1, \hat{n}_2, \) and \( \hat{n}_3, \) and origin \( N_0. \) The umbilical is attached to the stator at \( S, \) and to the flotor at \( F. \)

Figure 1. Schematic of the MIM

State Equations of Motion

Translational Equations of Motion

Let \( E \) be some flotor-fixed point of interest for which the acceleration is to be determined. If \( E \) has inertial position \( r_{N_0 E} \), then its inertial velocity and acceleration are \( \dot{r}_{N_0 E} = \frac{d}{dt} (r_{N_0 E}) \) and

\[
\ddot{r}_{N_0 E} = \frac{N d}{dt} \left[ \frac{N d}{dt} (r_{N_0 E}) \right],
\]

respectively. (The presuperscript indicates the reference frame of the differentiations. The subscripts indicate the vector origin and terminus.) The angular velocity and angular acceleration of the flotor with respect to the inertial frame are represented by \( \omega^F \) and \( \alpha^F \), respectively, where

\[
\alpha^F = \frac{d}{dt} (\omega^F).
\]

Let \( F \) be the resultant of all external forces acting on the flotor; \( M^{F/F^*} \) (or simply \( M \)), the moment resultant of these forces about \( F^*; m, \) the flotor mass; and \( I^{F/F^*} \) (or \( I \)), the central inertia
dyadic of the flotor for \( \hat{F}_1 \), \( \hat{F}_2 \), and \( \hat{F}_3 \). Then Newton's Second Law for the flotor can be expressed in the following two forms:

\[
F = m\ddot{\mathbf{r}}_{N_{E}}
\]  
(Eq. 1)

and

\[
M = I \cdot \frac{\mathbf{N}}{\omega} \times \left( I \cdot \frac{\mathbf{N}}{\omega} \right)
\]  
(Eq. 2)

From Equation (2),

\[
\frac{\mathbf{N}}{\omega} = I^{-1} \left[ \mathbf{M} - \frac{\mathbf{N}}{\omega} \times \left( I \cdot \frac{\mathbf{N}}{\omega} \right) \right]
\]  
(Eq. 3)

It will be useful to find an expression for \( \ddot{r}_{N_{E}} \) in terms of the acceleration \( \ddot{r}_{N_{E}} \) of the umbilical attachment point \( S_{u} \), and in terms of the extension of the umbilical from its relaxed position.

Begin with the following:

\[
\mathbf{r}_{S_{F_{u}}} = \mathbf{r}_{N_{E}} + \mathbf{r}_{E_{F_{u}}} - \mathbf{r}_{N_{E}S_{0}} - \mathbf{r}_{S_{u}S_{u}}
\]  
(Eq. 4)

Differentiation of Equation (4) yields

\[
\ddot{\mathbf{r}}_{S_{F_{u}}} = \ddot{\mathbf{r}}_{N_{E}} + \omega \times \dot{\mathbf{r}}_{E_{F_{u}}} - \ddot{\mathbf{r}}_{N_{E}S_{0}} - \mathbf{r}_{S_{u}S_{u}}
\]  
(Eq. 5)

A second differentiation gives

\[
\dddot{\mathbf{r}}_{S_{F_{u}}} = \dddot{\mathbf{r}}_{N_{E}} + \frac{\mathbf{N}}{\omega} \times \ddot{\mathbf{r}}_{E_{F_{u}}} + \omega \times \left( \frac{\mathbf{N}}{\omega} \times \dot{\mathbf{r}}_{E_{F_{u}}} \right) - \dddot{\mathbf{r}}_{N_{E}S_{0}} - \frac{\mathbf{N}}{\omega} \times \frac{\mathbf{N}}{\omega} \times \mathbf{r}_{S_{u}S_{u}}
\]  
(Eq. 6)

Substitution for \( \frac{\mathbf{N}}{\omega} \) from Equation (3) into Equation (6) yields

\[
\dddot{\mathbf{r}}_{S_{F_{u}}} = \dddot{\mathbf{r}}_{N_{E}} + \left( I^{-1} \cdot \left[ \mathbf{M} - \frac{\mathbf{N}}{\omega} \times \left( I \cdot \frac{\mathbf{N}}{\omega} \right) \right] \right) \times \dddot{\mathbf{r}}_{E_{F_{u}}} - \dddot{\mathbf{r}}_{N_{E}S_{0}} - \frac{\mathbf{N}}{\omega} \times \frac{\mathbf{N}}{\omega} \times \mathbf{r}_{S_{u}S_{u}}
\]  
(Eq. 7)

In these equations

\[
\frac{\mathbf{N}}{\omega} = \frac{\mathbf{N}}{\omega} + \frac{\mathbf{N}}{\omega}
\]  
(Eq. 8)

Under the assumptions that \( \frac{\mathbf{N}}{\omega} \) and \( \frac{\mathbf{N}}{\omega} \) are negligibly small and, therefore, that

\[
\dddot{\mathbf{r}}_{N_{E}S_{0}} \approx \dddot{\mathbf{r}}_{N_{E}S_{0}}
\]  
(Eq. 9)
Equation (7) reduces to
\[
\ddot{r}_{\text{SF}_u} = \ddot{r}_{N_F} + \left\{ L^{-1} \cdot \left[ M - \omega^F \times \left( \dot{L} \cdot \omega^F \right) \right] \right\} \times r_{EF_u} - \ddot{r}_{N_o} + \omega^F \times \left( \omega^F \times r_{EF_u} \right). \tag{Eq. 10}
\]

Linearization about \( \omega^F = 0 \) yields the following result:
\[
\ddot{r}_{\text{SF}_u} = \ddot{r}_{N_F} + \left\{ L^{-1} \cdot \dot{M} \right\} \times r_{EF_u} - \ddot{r}_{N_o}. \tag{Eq. 11}
\]

Appropriate expressions for \( \bar{F} \) and \( \bar{M} \) will now be determined, for substitution into Equations (1) and (11), respectively. Those amplified equations will then be used to obtain a more useful expression for \( \ddot{r}_{\text{SF}_u} \). [See Equations (43-48).]

The force resultant \( \bar{F} \) is the vector sum of the eight actuator (coil) forces \( \bar{F}_c^i (i = 1,...,8) \), with resultant \( \bar{F}_c \); of the umbilical force \( \bar{F}_{ul} \), caused by umbilical extensions from the relaxed position; of the direct disturbance forces, with resultant \( \bar{F}_d \); and of the gravitational force \( \bar{F}_g \). Gravity may be neglected for a space vehicle in free-fall orbit. The moment resultant \( \bar{M} \) is the vector sum of the moments due to the coil forces, with resultant \( \bar{M}_c \); of the moment \( \bar{M}_{ul} \) due to the umbilical force \( \bar{F}_{ul} \); of the moment \( \bar{M}_{ur} \) due to the umbilical rotations from the relaxed orientation; and of the moment \( \bar{M}_{d} \) due to the direct disturbance forces. There is no moment due to gravity, since \( \bar{M} \) is about the flotor center of mass \( F^* \). In equation form, assuming the \( i^{th} \) coil force to be applied at point \( B_n \),
\[
\bar{F} = \sum_{i=1}^{8} \bar{F}_c^i + \bar{F}_{ul} + \bar{F}_d \tag{Eq. 12}
\]
and
\[
\bar{M} = \sum_{i=1}^{8} L_{F^* B_n} \times \bar{F}_c^i + L_{F^* F_u} \times \bar{F}_{ul} + \bar{M}_{ur} + \bar{M}_d. \tag{Eq. 13}
\]
More explicit expressions for \( F^i_c \) and \( F^u_w \) will now be developed. If the actuator has coil current \( I_i \), length \( L_i \), and magnetic flux density \( B_i \), then the associated actuator force becomes

\[
F^i_c = I_i L_i B_i \times \hat{B}_i. \tag{Eq. 14}
\]

Assume a translational stiffness \( K_i^t \) for an umbilical elongation in the \( \hat{s}_i \) direction, and a corresponding translational damping \( C_i^t \). If a post-superscript \( u \) is used to refer to the umbilical in its relaxed (unextended, untwisted) position, then the force the umbilical exerts on the flotor becomes

\[
F^u_w = -\left\{ \sum_{i=1}^{3} K_i^t \left( r_{s_i} - r_{s_u} \right) \cdot \hat{s}_i \right\} \hat{s}_i + \sum_{i=1}^{3} C_i^t \left[ \frac{d}{dt} \left( r_{s_i} - r_{s_u} \right) \cdot \hat{s}_i \right] \hat{s}_i \right\}. \tag{Eq. 15}
\]

Define the following, for \( i = 1, 2, 3 \):

\[
x_{ai} = \left( r_{s_i} - r_{s_u} \right) \cdot \hat{s}_i \tag{Eq. 16}
\]

and

\[
x_{bi} = \dot{x}_{ai}. \tag{Eq. 17}
\]

If \( N_{so} \approx 0 \), Equation (15) becomes

\[
F^u_w = -\sum_{i=1}^{3} \left( K_i^t x_{ai} + C_i^t x_{bi} \right) \hat{s}_i. \tag{Eq. 18}
\]

The relative positions \( x_{ai} \) and the relative velocities \( x_{bi} \) will be six of the nine translational states used in the state-space formulation of the system equations of motion.

As with \( F^i_c \) and \( F^u_w \) above, \( M^u_w \) can be also be expressed in more explicit form, in analogous fashion. Assume a rotational stiffness \( K_i^r \) and a rotational damping \( C_i^r \), for umbilical twist about the \( \hat{s}_i \) direction. Let \( \phi_s^i \) represent the rotation of the flotor, relative to the stator, from the relative
position in which the $\mathbf{\hat{f}}$ and $\mathbf{\hat{s}}$ coordinate systems are aligned. $^{FS}_p \mathbf{n}$ is the rotation axis, and $\phi$ is the angle of twist about that axis. Using the post-superscript $u$ as before, the moment $M_{\omega}$ can be expressed by the following:

$$M_{\omega} = -\sum_{i=1}^{3} K_{i} \left[ \left( \phi^{FS}_{u} \mathbf{n}_{a} - \phi^{FS}_{u} \mathbf{n}_{b} \right) \cdot \mathbf{\hat{s}}_{i} \right] \mathbf{\hat{s}}_{i} + \sum_{i=1}^{3} C_{i} \left[ \frac{N}{dt} \left( \phi^{FS}_{u} \mathbf{n}_{a} - \phi^{FS}_{u} \mathbf{n}_{b} \right) \cdot \mathbf{\hat{s}}_{i} \right] \mathbf{\hat{s}}_{i}, \quad (\text{Eq. 19})$$

or

$$M_{\omega} = -\sum_{i=1}^{3} K_{i} \left[ \left( \phi^{FS}_{u} \mathbf{n}_{a} - \phi^{FS}_{u} \mathbf{n}_{b} \right) \cdot \mathbf{\hat{s}}_{i} \right] \mathbf{\hat{s}}_{i} + \sum_{i=1}^{3} C_{i} \left[ \left( \phi^{FS}_{u} \mathbf{n}_{a} - \phi^{FS}_{u} \mathbf{n}_{b} \right) \cdot \mathbf{\hat{s}}_{i} \right] \mathbf{\hat{s}}_{i}. \quad (\text{Eq. 20})$$

Equation (20) can be expressed in alternate form using Euler parameters. Let $^{FS}_p \mathbf{n}$ be described in $\mathfrak{O}$ by

$$^{FS}_p \mathbf{n} = e_1 \mathbf{\hat{s}}_1 + e_2 \mathbf{\hat{s}}_2 + e_3 \mathbf{\hat{s}}_3. \quad (\text{Eq. 21})$$

Define the following Euler parameters [8].

$$^{FS}_{\beta_0} = \cos \frac{\phi}{2}, \quad (\text{Eq. 22})$$

$$^{(S)FS}_{\beta_1} = e_1 \sin \frac{\phi}{2}, \quad (\text{Eq. 23})$$

$$^{(S)FS}_{\beta_2} = e_2 \sin \frac{\phi}{2}, \quad (\text{Eq. 24})$$

$$^{(S)FS}_{\beta_3} = e_3 \sin \frac{\phi}{2}, \quad (\text{Eq. 25})$$

and

$$^{FS}_{\beta} = \sin \frac{\phi}{2}^{FS}_p \mathbf{n}. \quad (\text{Eq. 26})$$

For small values of $\phi$, the Euler parameters can be simplified:

$$^{FS}_{\beta_0} \approx 1, \quad (\text{Eq. 27})$$

$$^{(S)FS}_{\beta_1} = e_1 \phi/2, \quad (\text{Eq. 28})$$
\[(S)F/S\beta_2 = e_2 \phi/2, \quad (S)F/S\beta_3 = e_3 \phi/2, \quad (S)F/S\beta_3 = e_3 \phi/2, \]

and

\[F/S\beta = \frac{\phi}{2} F/S\beta_3. \quad \text{(Eq. 31)}\]

Note that, for small angles,

\[
\phi F/S\beta_3 = 2 F/S\beta. \quad \text{(Eq. 32)}
\]

This equation can be used to simplify the stiffness terms of Equation (20).

For the damping term, Equation (31) can be differentiated to yield

\[
F/S\beta = \frac{\phi}{2} \cos \frac{\phi}{2} F/S\beta_3 + \sin \frac{\phi}{2} F/S\beta_3, \quad \text{(Eq. 33)}
\]

or, for small angles,

\[
2 F/S\beta = \phi F/S\beta_3 + \phi F/S\beta_3. \quad \text{(Eq. 34)}
\]

Equation (20) now becomes

\[
M_{wa} = -2 \left( \sum_{i=1}^{3} K_i \left[ (F/S\beta - F/S\beta^w) \cdot \hat{s}_i \right] \hat{s}_i + \sum_{i=1}^{3} C_i \left( F/S\beta \cdot \hat{s}_i \right) \hat{s}_i \right). \quad \text{(Eq. 35)}
\]

Define the following, for \(i = 1, 2, 3:\)

\[
x_{a} = (F/S\beta - F/S\beta^w) \cdot \hat{s}_i \quad \text{ (Eq. 36)}
\]

and

\[
x_{a} = \hat{x}_{a} = \hat{x}_{a}. \quad \text{(Eq. 37)}
\]

The assumption that \(N_{\omega}^w\) is negligible yields, finally,

\[
M_{wa} = -2 \left\{ \sum_{i=1}^{3} \left[ K_i x_{a} + C_i x_{a} \right] \hat{s}_i \right\}. \quad \text{(Eq. 38)}
\]

Note that Equation (11) describes \(\ddot{F}_{s,F_a}\) in terms of the acceleration of an arbitrary flotor-fixed point \(E\). For \(E\) located at flotor mass center \(F^*\), Equation (11) can be used straightforwardly with Equation (1) to yield
Define now three unknown-acceleration terms, to be used with Equation (39). The first term represents the indirect translational acceleration disturbance input to the flotor, applied at the stator end of the umbilical:

\[ a_m = \ddot{r}_{N,S} . \]  

(Eq. 40)

The second term represents the direct translational acceleration disturbance to the flotor, due to unknown disturbance force \( F_d \):

\[ a_d = \frac{1}{m} F_d . \]  

(Eq. 41)

And the third represents the direct angular acceleration disturbance input to the flotor, due to \( F_d \):

\[ \alpha_d = \dot{L}^{-1} \cdot M_d , \]  

(Eq. 42)

Substitution from Equations (12), (13), (14), (18), (38), (40), (41), and (42) into (39) yields the following result:

\[ \ddot{r}_{S,F} = \frac{1}{m} \left( F_e + F_u \right) + \dot{L}^{-1} \cdot \left( \dot{M}_e + \dot{M}_w + \dot{M}_{uw} \right) \times r_{F,F} - \alpha_d \times r_{F,F} - a_m + a_d , \]  

(Eq. 43)

where

\[ F_e = \sum_{i=1}^{8} E_i^e = \sum_{i=1}^{8} I_i B_i \hat{L}_i \times \hat{B}_i , \]  

(Eq. 44)

\[ E_u = - \sum_{i=1}^{3} \left( K_i x_m + C_i x_{m,i} \right) \hat{s}_i \]  

(Eq. 45)

\[ M_e = \sum_{i=1}^{8} M_i^e = \sum_{i=1}^{8} r_{F,F} \times \left( I_i B_i \hat{L}_i \times \hat{B}_i \right) , \]  

(Eq. 46)

\[ M_w = -r_{F,F} \times \sum_{i=1}^{3} \left( K_i x_m + C_i x_{m,i} \right) \hat{s}_i , \]  

(Eq. 47)
and
\[
M_{ur} = -2\left\{ \sum_{i=1}^{3} \left( K_i x_i + C_i x_i \right) \xi_i \right\}.
\]
(Eq. 48)

Substitution from Equation (43) into Equation (11) produces the following equation for the acceleration of arbitrary flotor point \( E \):
\[
\ddot{r}_{N_E} = \frac{1}{m} \left( \dot{F}_c + \dot{F}_{ur} \right) + \dot{I}^{-1} \left[ \left( M_c + M_{ul} + M_{ur} \right) \times r_{F_E} + \alpha_d \times r_{F_E} + \alpha_d \right].
\]
(Eq. 49)

Assuming \( N \omega^S \) to be negligible, one also has the following:
\[
\dot{r}_{S,F_E} = \frac{s}{dt} \left( r_{S,F_E} \right),
\]
(Eq. 50)
and
\[
\ddot{r}_{S,F_E} = \frac{s^2}{dt^2} \left( r_{S,F_E} \right).
\]
(Eq. 51)

(Note that assuming \( N \omega^S \) to be negligible does not imply that \( S \) and \( \Theta \) are identical; it means rather that \( S \) can be treated as if it is in pure translation relative to \( \Theta \) for the frequencies of interest.) Equations (43), (49), (50), and (51) provide the basis for a state-space form of the translational equations of motion, using \( x_{ai}, \dot{x}_{bi}, \) and low-pass-filtered approximations to the \( \hat{s}_i \) components of \( \ddot{r}_{N_E} \) [see Equations (96) and (103)], as states.

**Rotational Equations of Motion**

Let
\[
\Phi = \sin \frac{\phi}{2}
\]
as before [Eq. (26)]. Differentiating the left side twice produces
\[
\frac{d}{dt} \left( F/S \Phi \right) = \frac{s}{dt} \left( F/S \Phi \right) + \omega^S \times F/S \Phi
\]
(Eq. 52)
and
\[
\frac{d^2}{dt^2} \left( F/S \Phi \right) = \frac{s^2}{dt^2} \left( F/S \Phi \right) + \omega^S \times \frac{s}{dt} \left( F/S \Phi \right) + \omega^S \times \frac{s}{dt} \left( F/S \Phi \right) + \omega^S \times F/S \Phi.
\]
(Eq. 53)

Assuming as before that \( N \omega^S \approx 0 \), Equations (52) and (53) become, respectively,
\[
\ddot{\mathbf{p}} = \frac{d}{dt} \left( \frac{F/S_{\phi}}{\mathbf{p}} \right) 
\]  
(Eq. 54)

and

\[
\dddot{\mathbf{p}} = \frac{d^2}{dt^2} \left( \frac{F/S_{\phi}}{\mathbf{p}} \right). 
\]  
(Eq. 55)

Similarly,

\[
\ddot{\mathbf{p}} - \dddot{\mathbf{p}} = \frac{d}{dt} \left( \frac{F/S_{\phi}}{\mathbf{p}} - \frac{F/S_{\phi}}{\mathbf{p}} \right) 
\]  
(Eq. 56)

and

\[
\dddot{\mathbf{p}} - \dddot{\mathbf{p}} = \frac{d^2}{dt^2} \left( \frac{F/S_{\phi}}{\mathbf{p}} - \frac{F/S_{\phi}}{\mathbf{p}} \right). 
\]  
(Eq. 57)

Returning to Equation (26), two differentiations of the right side yield

\[
\frac{N d^2}{dt^2} \left( \frac{F/S_{\phi}}{\mathbf{p}} \right) = \frac{\dot{\phi}}{2} \cos \frac{\phi}{2} F/S_{\phi} \dot{\mathbf{r}} - \left( \frac{\dot{\phi}}{2} \right)^2 \sin \frac{\phi}{2} F/S_{\phi} \dot{\mathbf{r}} + \dot{\phi} \cos \frac{\phi}{2} F/S_{\phi} \dot{\mathbf{r}} + \sin \frac{\phi}{2} F/S_{\phi} \dot{\mathbf{r}}. 
\]  
(Eq. 58)

Linearizing about \( \phi = 0 \) and \( \dot{\phi} = 0 \), and assuming \( F/S_{\phi} \) to vary negligibly with time, Equation (58) becomes

\[
2 \frac{F/S_{\phi}}{\mathbf{p}} = \ddot{\mathbf{p}} \quad (\text{Eq. 59})
\]

Similarly, Equation (33) reduces to

\[
2 \frac{F/S_{\phi}}{\mathbf{p}} = \dddot{\mathbf{p}}. 
\]  
(Eq. 60)

Equations (56), (57), (59), and (60) provide the basis for a state-space form of the rotational equations of motion, using as states the \( \hat{s}_i \) components of \( F/S_{\phi} F/S_{\phi} \) and of \( F/S_{\phi} F/S_{\phi} \) (i.e., \( x_{ai} \) and \( x_{ai} \), respectively, for \( i = 1, 2, 3 \)).

**Equations of Motion in State-Space Form**

From Equation (16),

\[
\mathbf{r}_{S_{\phi}F_{\phi}} - \mathbf{r}_{S_{\phi}F_{\phi}} = x_{a1} \hat{s}_1 + x_{a2} \hat{s}_2 + x_{a3} \hat{s}_3. 
\]  
(Eq. 61)

Using Equations (16), (17), and (50),

\[
\dot{\mathbf{r}}_{S_{\phi}F_{\phi}} - \dot{\mathbf{r}}_{S_{\phi}F_{\phi}} = x_{a1} \hat{s}_1 + x_{a2} \hat{s}_2 + x_{a3} \hat{s}_3. 
\]  
(Eq. 62)
Similarly, employing Equations (16), (17), and (51),

\[ \ddot{r}_{S,F_s} - \ddot{r}_{S,F_s}^{w} = \dot{x}_{b1}\hat{s}_1 + \dot{x}_{b2}\hat{s}_2 + \dot{x}_{b3}\hat{s}_3. \]  
(Eq. 63)

Introduce the use of a presuperscript in parentheses to indicate the coordinate system used for componentation. (This notation allows vectors to be expressed unambiguously in terms of their measure numbers.) Then Equations (61) and (62) take the respective forms,

\[
\begin{pmatrix}
\dot{x}_{a1} \\
\dot{x}_{a2} \\
\dot{x}_{a3}
\end{pmatrix} = \begin{pmatrix}
x_{a1} \\
x_{a2} \\
x_{a3}
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
\dot{x}_{a1} \\
\dot{x}_{a2} \\
\dot{x}_{a3}
\end{pmatrix} = \begin{pmatrix}
x_{b1} \\
x_{b2} \\
x_{b3}
\end{pmatrix}
\]

where \( \dot{x}_a \) and \( \dot{x}_b \) are defined as indicated. (Cf. Equations (16) and (17).) \( \dot{x}_a \) and \( \dot{x}_b \) have corresponding definitions. (Cf. Equations (36) and (37).)

Equations (43) and (63) can be used together to develop a state-space equation for \( \dot{x}_b \).

First, express Equation (63) in measure-number form:

\[
\begin{pmatrix}
\dot{x}_{b1} \\
\dot{x}_{b2} \\
\dot{x}_{b3}
\end{pmatrix} = \ddot{r}_{S,F_s}^{w} - \ddot{r}_{S,F_s}.
\]

Next, define rotation matrix \( S/F \) by

\[
\begin{pmatrix}
\hat{s}_1 \\
\hat{s}_2 \\
\hat{s}_3
\end{pmatrix} = S/F \begin{pmatrix}
\hat{f}_1 \\
\hat{f}_2 \\
\hat{f}_3
\end{pmatrix},
\]

where the prefix indicates the rotation of frame \( \mathfrak{F} \) relative to frame \( \mathfrak{F} \). Finally, observe that, for arbitrary vectors
\[ \mathbf{r}_1 = x_1 \hat{j}_1 + y_1 \hat{j}_2 + z_1 \hat{j}_3 \]  
(Eq. 68)

and

\[ \mathbf{r}_2 = x_2 \hat{j}_1 + y_2 \hat{j}_2 + z_2 \hat{j}_3 \]  
(Eq. 69)

the cross product can be expressed in determinant form by

\[
\mathbf{r}_1 \times \mathbf{r}_2 = \begin{vmatrix} \hat{j}_1 & \hat{j}_2 & \hat{j}_3 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix},
\]
(Eq. 70)

or in matrix form (i.e., using measure numbers) [8], by

\[
(P) \begin{bmatrix} \mathbf{r}_1 \times \mathbf{r}_2 \end{bmatrix} = \begin{bmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}.
\]
(Eq. 71)

Represent the above skew-symmetric matrix by \((P) \mathbf{r}_1^*\). Using this notation, Equation (43) can be expressed as follows:

\[
\dot{\mathbf{x}} = \frac{1}{m} \left( \begin{bmatrix} (S) E_c + (S) E_{\omega} \end{bmatrix} - E_{Q}^{SF} (P) \mathbf{r}_1^* I^{-1} (P) \mathbf{M}_c + (P) \mathbf{M}_w + (P) \mathbf{M}_{\omega} \right) - E_{Q}^{SF} (P) \mathbf{r}_1^* I^{-1} (P) \mathbf{M}_d - (S) \mathbf{a}_m + (S) \mathbf{a}_d,
\]
(Eq. 72)

where \(I\) is the inertia matrix corresponding to \(\mathbf{I}\).

Linearizing Equation (3) about \(\mathbf{N}^F = 0\) yields

\[
\mathbf{N}^F \mathbf{\alpha}^F = I^{-1} \cdot \mathbf{M}.
\]
(Eq. 73)

But

\[
\mathbf{N}^F \mathbf{\alpha}^F = \frac{N d^2}{dt^2} \left( \mathbf{\phi}^{F/S} \mathbf{\hat{\mathbf{n}}}_\phi \right) - \mathbf{\phi}^{F/S} \mathbf{\hat{\mathbf{n}}}_\phi + 2 \mathbf{\phi}^{F/S} \mathbf{\dot{\mathbf{\hat{\mathbf{n}}}}}_\phi + \mathbf{\phi}^{F/S} \mathbf{\ddot{\mathbf{\hat{\mathbf{n}}}}}_\phi.
\]
(Eq. 74)

If \(F/S \mathbf{\hat{\mathbf{n}}}_\phi\) is assumed to vary negligibly with time and Equation (74) is linearized about \(\mathbf{\dot{\mathbf{\phi}}} = 0\), the result is

\[
\mathbf{N}^F \mathbf{\alpha}^F = \mathbf{\phi}^{F/S} \mathbf{\hat{\mathbf{n}}}_\phi.
\]
(Eq. 75)

From Equations (59), (73), and (75),
or, equivalently, 

\[ 2 \frac{d^2}{dt^2} \left( \frac{F}{\beta} - \frac{F}{\beta} \right) = \dot{I}^{-1} \cdot \dot{M}. \]  

(Eq. 77)

Application of Equation (55) leads directly to

\[ \frac{d^2}{dt^2} \left( \frac{F}{\beta} - \frac{F}{\beta} \right) = \frac{1}{2} \ddot{I}^{-1} \cdot \dot{M}. \]  

(Eq. 78)

In measure-number form,

\[ \ddot{\mathbf{x}} = \frac{1}{2} s^Q I^{-1} (F) \dot{\mathbf{M}}, \]  

(Eq. 79)

or, equivalently,

\[ \ddot{\mathbf{x}} = \frac{1}{2} s^Q I^{-1} \left[ (F) M_{ul} + (F) M_{ur} + (F) M_{u} \right] + \frac{1}{2} s^Q (F) \mathbf{a}_d. \]  

(Eq. 80)

Six state equations of the system are given by Equations (17) and (37), iterating on \( i \); six more, by Equations (72) and (80). The latter six are written in terms of the various forces and moments acting on the system, which loads have been defined in vector form by Equations (44) through (48). These loads can be rewritten in measure-number form and substituted into Equations (72) and (80), as follows. Beginning with Equation (44), the \( i^{th} \) control force can be expressed as

\[ (F) E^{i}_c = \left[ I_i (F) L_i s^Q B_i (F) \right] \mathbf{I}_i (F) \dot{\mathbf{x}} = F^{i}_c u_i, \]  

(Eq. 81)

The resultant control force becomes

\[ (F) E^i_c = \sum_{i=1}^{8} (F) E^{i}_c = F_c \mathbf{u}, \]  

(Eq. 82)

where \( E^{i}_c, F_c, u_i, \) and \( u \) are defined as indicated.

Next, using Equation (64) with (45), the translational force the umbilical exerts on the flotor can be expressed by

\[ (F) E^{i}_{ul} = -K_i \dot{\mathbf{x}}_a - C_i \dot{\mathbf{x}}_b = F_{ul a} \dot{\mathbf{x}}_a + F_{ul b} \dot{\mathbf{x}}_b, \]  

(Eq. 83)
where
\[
K_i = \begin{bmatrix}
K^i_1 & 0 & 0 \\
0 & K^i_2 & 0 \\
0 & 0 & K^i_3
\end{bmatrix},
\]  
(Eq. 84)
\[
C_i = \begin{bmatrix}
C^i_1 & 0 & 0 \\
0 & C^i_2 & 0 \\
0 & 0 & C^i_3
\end{bmatrix},
\]  
(Eq. 85)
and \(F_{ua}\) and \(F_{ub}\) are defined as indicated.

The \(i^{th}\) control force \(F^i_c\) exerts on the flotor a moment \(M^i_c\), defined by Equation (46).

Using the notation introduced with Equation (71), this moment can be expressed by
\[
(F)M^i_c = \left[ L_i B_i (F) \mathcal{L}^* F^* \mathcal{Q}^T \frac{S}{F} \mathcal{Q}^T \frac{S}{F} \mathcal{O}^* \mathcal{O} \right] I_i = M^i_c u_i. 
\]  
(Eq. 86)
The resultant moment becomes
\[
(F)M_c = \sum_{i=1}^{8} (F)M^i_c = M_c u, 
\]  
(Eq. 87)
where \(M^i_c\) and \(M_c\) are defined as indicated.

The umbilical force \(F_{ul}\) exerts on the flotor a moment \(M_{ul}\), given by Equation (47).

Substituting from Equation (83), this moment can be expressed by
\[
(F)M_{ul} = (F) \mathcal{L}^* \mathcal{L} - \frac{S}{F} \mathcal{Q}^T \left[ F_{ua} \dot{x}_a + F_{ub} \dot{x}_b \right]; 
\]  
(Eq. 88)
or, alternatively,
\[
(F)M_{ul} = M_{ula} \dot{x}_a + M_{ub} \dot{x}_b, 
\]  
(Eq. 89)
for \(M_{ula}\) and \(M_{ub}\) appropriately defined.

Finally, Equation (48) expresses the moment \(M_{ur}\) that the umbilical applies to the flotor due to umbilical rotational stiffness. The following equations express \(M_{ur}\) in measure-number form:
\[
(F)M_{ur} = -2 \frac{S}{F} \mathcal{Q}^T K \dot{x}_d - 2 \mathcal{Q}^T C \dot{x}_e = M_{urd} \dot{x}_d + M_{ure} \dot{x}_e, 
\]  
(Eq. 90)
where
\[ K_r = \begin{bmatrix} K_r^1 & 0 & 0 \\ 0 & K_r^2 & 0 \\ 0 & 0 & K_r^3 \end{bmatrix}, \]  
(Eq. 91)

\[ C_r = \begin{bmatrix} C_r^1 & 0 & 0 \\ 0 & C_r^2 & 0 \\ 0 & 0 & C_r^3 \end{bmatrix}, \]  
(Eq. 92)

and \( M_{urd} \) and \( M_{ur} \) are appropriately defined.

Substituting from Equations (81) through (92), Equations (72) and (80) become, respectively,

\[ \begin{align*}
\dot{x}_b &= \left( \frac{1}{m} F_{ub} - \frac{S}{FQ} (F)_{b}^{x} I^{-1} M_{ura} \right) x_a + \left( \frac{1}{m} F_{ub} - \frac{S}{FQ} (F)_{b}^{x} I^{-1} M_{uba} \right) x_b \\
&\quad + \left( -\frac{S}{FQ} (F)_{b}^{x} I^{-1} M_{ur} \right) x_d + \left( -\frac{S}{FQ} (F)_{b}^{x} I^{-1} M_{ur} \right) x_e + \left( \frac{1}{m} F_{c} - \frac{S}{FQ} (F)_{c}^{x} I^{-1} M_{c} \right) u \\
&\quad - (s)_{m} + (s)_{a} - \frac{S}{FQ} (F)_{a}^{x} (F) a_d 
\end{align*} \]  
(Eq. 93)

and

\[ \begin{align*}
\dot{x}_e &= \frac{1}{2} \frac{S}{F} Q I^{-1} \left[ M_{ura} x_a + M_{uba} x_b + M_{urd} x_d + M_{ure} x_e \right] \\
&\quad + \frac{1}{2} \frac{S}{F} Q I^{-1} M_{c} u + \frac{1}{2} \frac{S}{F} Q (F) a_d.
\end{align*} \]  
(Eq. 94)

For completeness, Equation (37) can be rewritten as \( \dot{x}_d = x_e \).

(Eq. 95)

To include \( \tilde{\xi}_{N_x} \) as states, define \( x_\xi \) by

\[ \omega_h \xi_{\tilde{\xi}_{N_x}} = \dot{x}_e + \omega_h x_e, \]  
(Eq. 96)

for some high value of circular frequency \( \omega_h \). Taking the Laplace Transform,

\[ \begin{align*}
\mathcal{L}\{ \xi_{\tilde{\xi}_{N_x}} \} &= \left( \frac{s + \omega_h}{\omega_h s^2} \right) \mathcal{L}\{x_e\}, \quad (s) \end{align*} \]  
(Eq. 97)

so that

\[ x_e \approx \xi_{\tilde{\xi}_{N_x}} \text{ for } \omega \ll \omega_h. \]  
(Eq. 98)
Now using Equations (82), (83), 87), (89), (90), and (96) with (49),

$$
\dot{x}_e = \omega_h \left( \frac{1}{m} F_{\text{uab}} - s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) x_a + \omega_h \left( \frac{1}{m} F_{\text{uab}} - s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) x_b - \omega h \dot{x}_e \\
- \omega_h \left( s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) \dot{x}_d - \omega_h \left( s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) x_e + \omega_h \left( \frac{1}{m} F_{\text{e}} - s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) u \\
+ \omega_h \left( s_{ij} Q (F) \tau_{pfi} I^1 \tau_{uab} \right) \alpha_d.
$$

(Eq. 99)

A state-space representation of the system is given by Equations (65), (93), (94), (95), and (99), for state vector

$$
\dot{x} = \begin{bmatrix}
    x_a \\
    x_b \\
    x_c \\
    x_d \\
    x_e
\end{bmatrix}
$$

(Eq. 100)

For the small rotation angles associated with the MIM, $s_{ij} Q$ is approximately equal to the $3 \times 3$ identity matrix, in which case the state equations have constant coefficients. Specifically,

$$
\dot{x}_a = x_b, 
$$

(Eq. 101)

$$
\dot{x}_b = \left( \frac{1}{m} F_{\text{uab}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) x_a + \left( \frac{1}{m} F_{\text{uab}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) x_b - \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) \dot{x}_d - \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) x_e + \left( \frac{1}{m} F_{\text{e}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) u \\
- \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) \alpha_d.
$$

(Eq. 102)

$$
\dot{x}_c = \omega_h \left( \frac{1}{m} F_{\text{uab}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) x_a + \omega_h \left( \frac{1}{m} F_{\text{uab}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) x_b - \omega_h \dot{x}_c \\
- \omega_h \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) \dot{x}_d - \omega_h \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) x_e + \omega_h \left( \frac{1}{m} F_{\text{e}} - (F) \tau_{pfi} I^1 \tau_{uab} \right) u \\
+ \omega_h \left( (F) \tau_{pfi} I^1 \tau_{uab} \right) \alpha_d.
$$

(Eq. 103)

$$
\dot{x}_d = \dot{x}_e
$$

(Eq. 104)
Concluding Remarks

This paper has presented the derivation of algebraic, state-space equations for the Canadian Space Agency's Microgravity Vibration Isolation Mount. The states employed include payload relative translational position and velocity, payload relative rotation and rotation rate, and payload translational acceleration; the relative translational position and velocity states are taken across the umbilical. An umbilical elongation causes a restoring force due to umbilical stiffness, and an umbilical elongation rate causes a restoring force due to umbilical damping. Consequently, relative position feedback corresponds directly to a change in effective umbilical translational stiffness; and relative velocity feedback corresponds, similarly, to a change in effective umbilical translational damping. Likewise, relative rotation and rotation-rate feedback correspond to changes, respectively, in effective umbilical rotational stiffness and damping. Feedback of payload translational acceleration causes a change in effective payload mass. Thus, a cost functional which penalizes the chosen states produces an intuitive effect on system effective stiffness, damping, and inertia values.

The acceleration states can be selected to pertain to any arbitrary point on the flotor. This allows an optimal controller to be developed which penalizes directly the accelerations of any significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-form so that the powerful controller-design methods of optimal control theory (e.g., $H_2$ synthesis, $H_{\infty}$ synthesis, mu synthesis, mixed-mu synthesis, and mu analysis) can be used. The controller design approach detailed in references [9], [10], and [11]
has been successfully adapted for MIM controller design; the results will be presented in subsequent papers.

Acknowledgments

The authors are grateful to NASA Lewis Research Center and the Canadian Space Agency for their partial funding of this work.

References


The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

R. David Hampton, Bjarni V. Tryggvason, Jean DeCarufel, Miles A. Townsend, and William O. Wagar

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.