
NASA Contractor Report 201714

ICASE Report No. 97-33

TWO IMPROVED ALGORITHMS FOR ENVELOPE

AND WAVEFRONT REDUCTION

Gary Kumfert
Alex Pothen

NASA Contract No. NAS1-19480

July 1997

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

TWO IMPROVED ALGORITHMS FOR ENVELOPE AND

WAVEFRONT REDUCTION 1

Gary Kumfert t

Department of Computer Science +

Old Dominion University

Norfolk, VA 23.529-0162

{kumfert, pothen}©cs, odu.edu

Alex Pothen t't

ICASE, MS 403

NASA Langley Research Center

Hampton, VA 23681-0001

pothenOicase, edu

ABSTRACT

Two algorithms for reordering sparse, symmetric matrices or undirected graphs to

reduce envelope and wavefront are considered. The first is a combinatorial algorithm

introduced by Sloan and further developed by Duff, Reid, and Scott; we describe en-

hancements to the Sloan algorithm that improve its quality and reduce its run time.

Our test problems fall into two classes with differing asymptotic behavior of their en-

velope parameters as a function of the weights in the Sloan algorithm. We describe

an efficient O(n log n + m) time implementation of the Sloan algorithm, where n is the

number of rows (vertices), and m is the number of nonzeros (edges). On a collection

of test problems, the improved Sloan algorithm required, on the average, only twice

the time required by the simpler Reverse Cuthill-McKee algorithm while improving the

mean square wavefront by' a factor of three. The second algorithm is a hybrid that

combines a spectral algorithm for envelope and wavefl'ont reduction with a refinement

step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope

size and mean square wavefront obtained from the Sloan algorithm at the cost of greater

running times. We illustrate how these reductions translate into tangible benefits for

frontal Cholesky factorization and incomplete factorization preconditioning.

1Available on the Web at http://www, cs .odu. edu/'pothen. This work was supported by National
Science Foundation grants CCR,9412698, DMS-9505110, and ECS-9527169, by U. S. Department of
Energy grant DE-FG05-94ER.25216, and by the National Aeronautics and Space Administration under
NASA Contract NAS1-19480 while the second author w_s in residence at. the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681-0001.

1 Introduction

We consider two algorithms for reducing the envelope and wavefron! of sparse, symmet-

ric matrices or undirected graphs. The first algorithm was introduced by Sloan [39],

improved further by Duff, Reid, and Scott [11], and is currently the best combinatorial

algorithm for this problem. We describe enhancements to Sloan's algorithm that (i)

reduce the envelope and wavefront size further, and (ii) reduce its asymptotic time com-

plexity and practical execution times. The second algorithm is a new hybrid algorithm

that combines an algebraic (spectral) algorithm for envelope reduction described by

Barnard, Pothen and Simon [4] with the Sloan algorithm as a post-processing step. The

spectral algorithm takes a "global" viewpoint of the problem, but could potentially be

improved by combining it with a "local" refinement algorithm. The spectral algorithm

is known to produce envelope and wavefront sizes significantly smaller than previous

algorithms [4]. The hybrid algorithm further reduces the envelope size and wavefronts

over the spectral and Sloan algorithms. We present a few examples to show that these

improved orderings could lead to faster frontal solves and more efficient incomplete fac-

torization preconditioners.

Sloan [39] described an implementation of his algorithm for unweighted graphs. The

idea of Sloan's algorithm is to number vertices from one endpoint of an approximate

diameter in the graph, choosing the next vertex to number from among the neighbors

of currently numbered vertices and their neighbors. A vertex of maximum priority is

chosen from this eligible subset of vertices; the priority of a vertex has a "local" term

that attempts to reduce the incremental increase in the wavefront, and a "global" term

that reflects its distance from the second endpoint of the approximate diameter.

Duff. Reid, and Scott [11] have extended this algorithm to weighted graphs obtained

from finite element meshes, and have used these orderings for frontal factorizat.ion meth-

ods. The weighted implementation is faster for finite element meshes when several ver-

tices have common adjacency relationships. They have also described variants of the

Sloan algorithm that work directly with the elements (rather than the nodes of the

elements). The Sloan algorithm is a remarkable advance over previously available algo-

rithms such as Reverse ('uthill-McKee (RCM) [6], Gibbs-Poole-Stockmeyer [18, 29], and

Gibbs-Killg [17] algorithms since it computes smaller envelope and wavefront sizes.

For the most part, we follow Sloan, and Duff, Reid and Scott in our work on the

Sloan algorithm. Out' new contributions are the following:

We show that the use of a. heap instead of an array to maintain the priorities of

vertices leads to a lower time complexity, and an implementation that is about

four times faster on our test problems. Sloan had implemented both versions,

preferring the array over the heap for the smaller problems he worked with, and

had reported results only for the former. Duff, Reid, and Scott had followed Sloan
in this choice.

Our implementation of the Sloan algorithm for vertex-weighted graphs mimics

what the algorithm would do on the corresponding unweighted graph, unlike the

Duff, Reid, and Scott implementation. Hence we define the key parameters in the

algorithm differently, and this results in smaller wavefront sizes.

• We examine the weights of the two terms in the priority function to show that

our test problems fall into two classeswith different asymptotic behaviorsof their
envelopeparameters;by choosingdifferentweightsfor thesetwo classes,we reduce
the wavefront sizesobtained from the Sloanalgorithm, on the average,to 60% of
the original Sloan algorithm on a set of eighteentest problems.

Together, theseenhancementsenable the Sloanalgorithm to compute small envelope
and wavefront sizesfast--the time it needsis in generalbetweentwo to five times that
of the simpler RCM algorithm.

This paper is the third in a serieson spectral algorithms for envelopeand wavefront
reduction. We will now summarizethe findings in the first two papersto put our work
on the hybrid algorithm in context.

Barnard, Pothen, and Simon [4] describeda spectral algorithm that associatesa
Laplacianmatrix with the givensymmetricmatrix, computesaneigenvectorcorrespond-
ing to the smallest positive Laplacian eigenvalue,and then computesthe permutation
by sorting the componentsof the eigenvectorin monotonically increasingor decreasing
order.

l_:nlikethe rest of the algorithms that are combinatorial in nature, the spectral al-
gorithm is algebraic, and henceits good envelope-reductionproperties are intriguing.
Georgeand Pothen [16] analyzed the algorithm theoretically, by consideringa related
problem called the 2-sum problem. They showedthat minimizing the 2-sum over all
permutations is equivalent to a quadratic assignmentproblem, in which the trace of a
product of matrices is minimized over the set of permutation matrices. This problem
is NP-complete;however,lowerbounds for the 2-sumcould beobtained by minimizing
over the set of orthogonal and doubly stochasticmatrices. (Permutation matricessatisfy,
the additional property that their elementsare nonnegative;this property is relaxed to
obtain a lowerbound.) This techniquegavetight lower boundsfor the 2-stunfor many
finite-elementproblems,showingthat the 2-sumsfrom the spectralordering werenearly
optimal (within a few percenttypically). They alsoshowedthat the pernmtation matrix
closestto the orthogonal matrix attaining the lower bound is obtained (to first order)
by pernmting the secondLaplacian eigenvectorin monotonic order. This justifies the
spectral algorithnl for minimizing the 2-sum.Theseauthorsalsoshowedthat a family of
graphs with small (7_2)separatorshas small mean squarewavefront (at most 0(1_1+'_)),

where 1_ is the number of vertices in the graph, and the exponent 3' _> 1/2 determines

the separator size.

The analysis of the spectral algorithm suggests that while spectral orderings may

also reduce related quantities such as the envelope size and the work in an envelope

factorization, they might be improved further by post-processing with a combinatorial

reordering algorithm. We explore this issue further by using the second step of the

Sloan algorithm in the post-processing step; the resulting algorithm is called the hybrid

algorithm in the rest. of this paper.

We list some work on related problems. Juvan and Mohar [27, 28] have considered

spectral methods for minimizing the p-sum problem (for p > 1), and Paulino et al. [35,

36] have applied spectral orderings to minimize envelope sizes. Additionally, spectral

methods have been applied successfully in areas such as graph partitioning [26, 37, 38],

the seriation problem [3], and DNA sequencing [20].

The rest of this paper is organized as follows. In Section 2, we review background

information. First we define various envelope parameters, delve into the details of the

spectral algorithm, and then describea problemwherethe spectralalgorithm performs
poorly but where the hybrid algorithm doeswell. Section 3 describesthe details of a
weighted Sloanalgorithm; weshow how the envelopeparametersvary as a function of
the weights in the priority, function. We analyze the time complexity of our efficient:
implementation (in the Appendix), and show that it runs about four times faster, on
the average,than previous implementations. In Section4, we then describethe hybrid
algorithm, which refinesthe spectral ordering by meansof the secondstepof a modified
Sloanalgorithm. In Section5, wepresentresults from the RCM, Sloan,spectral, and hy-
brid ordering algorithms for a collection of problems. Comparisonsaremadeacrossfour
envelopeparameters(envelopesize,bandwidth, maximum wavefront, and mean-square
wavefront), and running time. Section6 presentssomepreliminary results from using
the hybrid ordering in frontal Choleskyand incomplete factorization preconditioning.
Conclusionsand directions for future work are included in Section7.

2 Background

We provide definitious of various envelope parameters in Section 2.1, and review the

spectral algorithm for envelope and wavefront reduction in Section 2.2. Then in Sec-

tion 2.3, we motivate the hybrid algorithm by describing a class of problems where a

poor spectral ordering is improved by the Sloan post-processing step in the hybrid.

2.1 Definitions and Notation

Consider a sparse symmetric n × n matrix A = [aij], whose diagonal elements are all

nonzero. We consider only' the lower triangle of A (including the diagonal). Let fi(A)

denote the column index of the first nonzero element of the ith row. The row width of

the ith row, rwi(A), is the difference between i and fi(A), or equivalently,

rwi(A)= max {i-j}.
j_a,,#O

The e:nvelope of a, matrix is defined as

Env(A)={(i,j)'fi(A) _<j<i, 1 <i<n}.

The envelope of a symmetric matrix is easily visualized: picture the lower triangle of

the matrix, and remove the diagonal and the leading zero elements in each row. The

remaining elements (whether nonzero or zero) are in the envelope of the matrix. The

number of these elements is the envelope size:, E_iz_(A) = IEnv(A)l, which can also be

expressed as
72

E_iz_(A) = _-] rwi(A).
i=l

Sloan [39] uses the term profile which denotes the envelope size plus the number of

elements on the diagonal.

Another envelope parameter is the bandwidth of a matrix, defined as

bw(A) = max {rw_(A)}.
l<i<n

Consider the ith step of Cholesky factorization where only the lower triangle of A is

stored. An equation (row) k is active at the ith step if k _> i and there exists a column

l _< i such that akl # 0. The ith wavefront of A, wfi(A), is the set of active equations

during the ith step of Cholesky factorization. We can describe the ith wavefront in three

ways that are more intuitive. It is the set of rows that have nonzeros in the submatrix

consisting of the first i columns of A and rows i to n. It is also the set of rows in the ith

column that are within the envelope of the matrix, where the ith row is also included.

Vy'e can also define the ith wavefront in terms of the adjacency graph of A. If X is a set

of vertices in a graph, then its adjacency set

Ill tile adjacency graph of ,4, the ith wavefront consists of the vertex i together with the

set of vertices adjacent to the vertices numbered from 1 to i. Formally, the ith wavefront
is

wf/(A) = vi U adj ({Vl, V2,... , Vi}).

The u wavefront sizes (one for each column) can be characterized by the values

maximum u,at,_froTzt and mean-square wave front

maxwf(A) = max {Iwf_(A)l}
l<i<n

mswf(A) = 1 _,]wfi(A)12-- .

7_ i=1

The maxinmm wavefront size measures the maximum storage needed for a frontal matrix

during a frontal factorization, while the mean square wavefront measures the number of

floating point operations in the factorization. Duff, Reid, and Erisman [9] discuss the

application of wavefl'ont reducing orderings to frontal factorization. It is easy to veri_

the identitv
/2 /1

Iwf_(A)l =, + _ rw_(A) =- ,1 + E_z,.
i=1 i=1

The envelop(, and wavefront parameters depend on the order in which vertices of

the graph are numbered and are independent of the numerical values of the actual

matrix elements. This process of vertex numbering permutes the corresponding matrix

syinmetrically by rows and columns. Formally, we construct a permutation matrix P

for a given ordering and symmetrically permute a matrix A such that

A'= DAP T.

The goal is to find a permutation matrix or an ordering of the vertices of adjacency: graph

to minimize the envelope size or the mean-square-wavefront. Minimizing the envelope

size and the bandwidth of a matrix are NP-complete problems [31]; and related problems

such as minimizing the 2-sum are also NP-complete [16].

Figure l(a) shows a small two-dimensional grid and Figure l(b) shows the structure

of its associated matrix A. Figure l(c) is a table showing the row-widths and wavefronts

of the inatrix ,4. From this table, we can compute the parameters E_i_(A) = 46,

4

A 2-D Grid

['°
7 113

:-'_ 15

.... 16

Matrix of the grid.

o[::...
OOOQQlIO

5 OO • •0

I Q• • ••

• : .. -:

0 5 10 15

i fi rwi wfi
1 1 0 3
2 1 1 4
3 1 2 4
4 2 2 5
5 2 3 5
6 3 3 5
7 4 3 5
8 4 4 5
9 5 4 5
10 6 4 4
11 7 4 4
12 8 4 4
13 9 4 3
14 11 3 3
15 12 3 2
16 14 2 1

sum 46 62

(0) (b)

Figure 1: A two dimensional mesh and its vertex ordering are shown in (a), the structure

of the associated matrix is in (b), and a table of pertinent data is in (c).

bw(A) = 4, maxwf(,4) = 5, and mswf(A) _ 16.4. If we numbered the vertices in Figure 1

in a spiral fashion beginning with vertex one and numbering from the outside towards

the inside, the permuted matrix ,4' yields Esize(A') = 59, bw(A') = 11, maxwf(A') = 7,

and mswf(A') _ 24.8.

The unstructm'ed grid bcsstk30 is the stiffness matrix of an off-shore generator

platform fi'om the Harwell-Boeing test collection [10]. We show the nonzero patterns

from the RCM, Sloan, spectral, and hybrid orderings in Figure 2.

2.2 Spectral Ordering Algorithm

Sl)ectral methods ass()ciate a Laplacian matrix with the given symmetric matrix A,

-1 ifi 7_j, aij 7_0
i,al)la,'ia,,(A) = [/_j] = 0 if i ¢ j, a_.i = 0

I/ kl if i = j

The Laplacian matrix of an undirected graph is defined a.s the Laplacian matrix asso-

ciated with its adja(('n(v matrix. The Laplacian matrix is a singular M-matrix. By

construction, the Laplacian has row and column sums identically zero. Its smallest

eigenvalue is zero, and the corresponding eigenvector is the vector of all ones. If the

given matrix is irreducible, or equivalently, if its adjacency graph is connected, zero is a

simple eigenvalue. An eigenvector corresponding to the smallest positive eigenvalue of

the Laplacian matrix is called a Fiedler vector in recognition of the pioneering work of

Miroslav Fiedler on the spectral properties of the Laplacian [12, 13].

The spectral ordering is obtained by sorting the components of the Fiedler vector in

monotonically nonincreasing or nondecrea.sing order. The same permutation is applied

to the original matrix to obtain the spectral ordering. George and Pothen [16] show

\

(a) (b)

(c) (d)

Fignre '2: t_('M (a), Sloan (b), spectral (c), and hybrid (d) orderings of bcsstk30.

1 60

69

'_ .58

_, 57

'5 .Se o
'6 "55

,7 54

6 ,53

,9 52 lo

,10 .51

,11 50

,12 49 2o
.13 48

•14 47

"'I5 46

'16 45 _o

,17 .44

'18 43

'I9 .42
"20 41 40

24125 "x
, , , , N

10 20 30 40 50

(a) (b)

Figure 3: The hybrid ordering of the roach grid and its associated matrix.

that reversing the ordering will change (improve or deteriorate) the envelope size by, a

multiplicative factor that is at most the maximum degree of a vertex in the graph.

We do not. need to compute the Fiedler vector very accurately for these applications.

Since a multilevel algorithm is used to compute the Fiedler vector for the large problems

that we consider, the practical implementations of our algorithms sometimes work with

misconverged Fiedler vectors. Our experience is that these misconverged vectors work

quite well in this application. Greater reductions in the envelope parameters result, when

a local refinement algorithm, such as the Sloan algorithm, is used, than by computing

the Fiedler vector more accurately. Similar observations have been made when multilevel

algorithms are used in graph partitioning [24].

We find that on many finite element problems spectral orderings do well in a global

sense, but often do poorly on a local scale. It. is exactly this amenability to local

refinement that we seek to exploit with our hybrid algorithm.

2.3 Counter-Examples for Spectral Envelope Reduction

The spectral algorithm computes the lowest wavefront and envelope sizes over current.

algorithms for many finite element meshes as the results in Section .5 will show. However.

there are problems on which the spectral method can perform poorly, as can be seen in

the results presented in Subsection .5.2. Here we consider an example due to Guattery

and Miller [22] where a spectral partitioning algorithm fails to find a good cut if the part

sizes must be balanced, turns out to be one on which the spectral ordering algorithm

does badly as well. We show that the hybrid algorithm, in which the spectral ordering

is refined by the Sloan algorithm in a post-processing step, does well on this problem.

Figure 3 shows an example of the "roach" graph and the ordering computed by the

hybrid algorithm. The roach graph is a ladder with the top 2/3 of the rungs removed.

For a given positive integer k, this graph has 6k vertices: 2k along each "antenna", and

2k vertices on the ladder. The spectral ordering of this graph would begin numbering

from the endpoint of one of the antennae, march along the outline of the graph, and end

at the endpoint of the other antenna. This leads to an envelope size of 2k 2, and a mean

square wave front of k2/18. (Only leading terms are shown.) It can be seen in Figure 3

that the hybrid algorithm numbersnodesalongone antenna, then alternatesacrossthe
rungsof the ladder, and finally numbersthe secondantenna. This leadsto an envelope
sizeof 10],',and a meansquarewavefront of (2/3)k, an order of magnitude decreasein
both.

For the benefit of the readerfamiliar with graphsconstructedfrom the crossproduct
of a path and double tree, described in [22], we mention that the proposed hybrid
algorithm exhibits similar behavior.

3 A Fast Implementation of the Sloan Algorithm

We describe a variant of the Sloan algorithm applicable to vertex-weighted graphs in

Section 3.1; we also discuss the behavior of the envelope parameters as a function of the

weights in the Sloan algorithm. In Section 3.2, we describe an efficient implementation

of this algorithm. The Appendix contains a complexity analysis to demonstrate that the

new implementation takes O(n log n) time for problems with good separators, whereas

earlier implementations require at least O(n 3/2) time.

3.1 The Weighted Sloan Algorithm

In this section we consider a weighted graph oil a set of multi-vertices and edges, with

integer weights on the multi-vertices. We think of the weighted graph as being derived

fl'onl an uuweighted graph, and the weight of a multi-vertex as the number of vertices

of the unweighted graph that it represents. The weighted graphs in our applications are

obtained from finite element meshes, where neighboring vertices with the same adjacency

structures are "condensed" together to form multi-vertices. The weighted graph could

potentially have fewer vertices and many fewer edges than the original unweighted graph

in many finite element problems. Duff, Reid, and Scott [11] call the weighted graph the

sul)ervariable connectivily graph. Ashcraft [2] refers to it as the compressed graph, and

has used it to speed Ul) lh(' minimum-degree algorithm, and Wang [40] used it for an

('tIici('nt nested dissectioll algorithm.

:\ few gral)h-theor(,ti((-on(-ei)ts are needed to describe Sloan's algorithm. The dis-

la11('_ between two w'rli('os ill a graph is the number of edges in a shortest path joining

them. The diamet_, is a pal Ii in the graph whose length is the largest distance between

any two vertices. A p._(udo-diam(tcr is an approximation to a diameter.

Sloan's algorithm [3.q] is a graph traversal algorithm that has two parts. The first

part is heuristic algorithm thai selects a start vertex s and an end vertex e that form the

endpoints of a pseudo-diam('ler. The second part then numbers the vertices, beginning

from ,_, and chooses the nexl vortex to number from a set of eligible vertices by means of a

priority function. Roughly, the priority of a vertex has a dynamic and static component:

the dynamic component favors a vertex that increases the current wavefront the least,

while the static part favors vertices at tile greatest distance from the end vertex e. The

computation-intensive part of the algorithm is maintaining the priorities of the eligible

vertices correctly as vertices are numbered.

We follow Duff, Reid and Scott in their efficient scheme to compute the pseudo-

diameter in the first step of the Sloan algorithm.

O,

1.

2.

3.

4.

5.

.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

function Sloan

begin

{ Initialize: given a vertex-weighted graph G, weights I'V1 and I._,

start vertex s, end vertex e, and adjacency lists of vertices}

norm = [dist(s, e)/AJ;
for i = 1 to n

status[i} +-- inactive

P[i] = -I4'1 * norm * incr(i) + W2 * dist(i, e)
endfor

status[s} +-- preactive

{ Main Loop }
for k= 1 ton

i = vertex of maximum priority (P[-]) among all active or preactive vertices
order[i} +-- k

forall j E adj(i) do

case (status[i] = pveactive and status[j] = inactive or pveactive):

P[j] +-- P[j] +(size(i) + size(j)), norm * I4q {j now active, i numbered}
status[j] +-- active

far_neighbors(j)
break

case (status[i] = preactive and status[j] = active):

P[j] +- P[j] +size(i), norm * Wa {i moves from preaetive to numbered}
break

case (status[i] = active and status[j] = preactive):

P[j] +-- P[j] +size(j), norm, ti5 {j moves from preactive to active}

status[j] +-- active

farmeighbors(j)
break

end forall

status[i] +-
end for

numbered

end

function far_neighbors(j)

begin

forall g E adj(j)((# i) do

if (status[t] = inactive) then status[g] +-- pveactive end if

P[g] +-- P[g] +size(j) • norm, W_ {j now active}
end forall

end

Figure 4: The Sloan algorithm for a vertex-weighted graph.

Eligible Vertices. Vertices are in four mutually exclusive states at each step of the

algorithm. Any vertex that has already been numbered in the algorithm is a numbered

vertex. Active vertices are unnumbered vertices that are adjacent to some numbered

vertex. Vertices that are adjacent to active vertices but are neither active nor numbered

are called preactive vertices. All other vertices are reactive. Initially all vertices are

inactive, except for _, which is preactive.

At any step k, the sum of the sizes of the active vertices is exactly the size of the

wavefi'ont at that step for the reordered matrix, wfk(pApT), where P is the current

permutation. Active and preactive vertices comprise the set of vertices eligible to be

numbered in future steps.

An eligible vertex with the maximum priority is chosen to be numbered next. The

priority function of a vertex i has two components: incr(i), the increase in the wavefront

size (the number of additional vertices that enter the wavefront) if i were to be numbered

next, and dist(i, e), its distance from the end vertex c.

Increase in Wavefront Size. Our implementation of the weighted Sloan algorithm

on the weighted graph mimics what the Sloan algorithm would do on an unweighted

graph, and thus we define the degrees of the vertices and incr(i) differently from Duff,

Reid, and Scott [11].

We denote by size(i) tile integer weight of a multi-vertex i. The degree of the multi-

vertex i, deg(i), is the sum of the sizes of its neighboring multi-vertices. Let the current

degree of a vertex i, cdeg(i), denote the sum of the sizes of the neighbors of i among

preactive or inactive vertices. It can be computed by subtracting from the degree of

i the sum of the sizes of its neighbors that are numbered or active. When an eligible

vertex is assigned the next available number, its preactive or inactive neighbors move

into the wavefi'ont. Thus

cdeg(i) + size(i), if i is preactiveincr(i) = cdeg(i), if i is active

The size(i) term for a preactive vertex i accounts for the inclusion of i into the

wavefront. (Recall that the definition of the wavefront includes the diagonal element.)

Initially, incr(i) is deg(i) + size(i) since nothing is in the wavefront yet.

The second component of the priority function, dist(i, e), measures the distance of a

vertex i from the end vertex e. This component encourages the numbering of vertices

that are very far froln e even at the expense of a larger wavefront at the current step.

This component is easily computed for all i by a breadth first search rooted at e.

The Priority Function. Denote by P(i) the priority of an eligible vertex i during

a step of the algorithm. The priority function used by Sloan, and Duff, Reid and Scott

is a linear combination of two components

P(i) = -W1 * incr(i) + 1'1/2* dist(i, c),

where |I"l and W,2 are positive integer weights. At each step, the algorithm numbers

next an eligible vertex i that maximizes this priority function.

The value of incr(i) ranges from 0 to (A + 1) (where A is the maximum degree of

the unweighted graph G), while dist(i, e) ranges from 0 to the diameter of the graph G.

We felt it desirable for the two terms in the priority function to have the same range

10

2.5

_'1.5

O
z

1

0.5

esize

___ bandwidthmaxwf
meansqwf

/

/

\

\

\

diametedrnaxdeg = 10

0 _ I I I I I

1:2A8 1:2^7 1:2A6 1:2^5 1:2A4 1:2^3 1:2^2

i =

/

I I I I

1:2 1:1 21: 2^2:1 2_3:1 2A4:1

Figure 5: Envelope parameters of BARTH5 as a function of the ratio of the weights 14"1

and H,_.

so that we could work with normalized weights 14"1 and H':2. Hence we use the priority:
function

P(i) = -147 * L(dist(s,e)/A)J • incr(i)+ lk_ * dist(i, e).

If the pseudo-diameter is less than the maximum degree, we set their ratio to one. We

discuss the choice of the weights later in this section.

The Algorithm. We present in Figure 4 our version of the weighted Sloan algo-

rithm. This modified Sloan algorithm requires fewer accesses into the data structures

representing the graph (or matrix) than the original Sloan algorithm. The priority up-

dating in the algorithm ensures that incr(j) is correctly maintained as vertices become

active or preactive. When a vertex i is numbered, its neighbors and possibly their

neighbors need to be examined. Vertex i must be active or preactive, since it is eligible

to be numbered. We illustrate the updating of the priorities for only the first case in

the algorithm, since the others can be obtained similarly. Consider the case when i is

preactive and j is inactive or preactive. The multi-vertex i moves from being preactive

to numbered, and hence moves out of the wavefront, decreasing incr(j) by size(i), and

thereby increases P(j) by I4"1 • L(dist(s, e)/A)j, size(i). Further, since j becomes active

and is now included in the wavefront, it does not contribute in the future to incr(j), and

hence P(j)increases by 14'1 * [(dist(s,e)/A)J • size(j).

The Choice of Weights. Sloan [39], and Duff, Reid and Scott [11] recommend

the unnormalized weights I¥1 = 2, H':2 = 1. We studied the influence of the normalized

weights !d.'l and I4_ on the envelope parameters, and found, to our initial surprise, that

the problems we tested fell into two classes.

The first class is exemplified by the BARTH5 problem, whose envelope parameters are

plotted for various ratios of the weights in Figure 5. The y-axis reports the value of each

envelope parameter scaled with respect to the value obtained with the unnormalized

weights H:l = 1 and 14'2 = 2 in the Sloan algorithm. Thus this and the next Figures

reveal the improvements obtained by normalizing the weights in the Sloan algorithm.

11

-- esize
bandwidth
maxwf
rneansqwf

18

16

14

_'.12

6

4

2
- - ----_____ __ _ _ .

0 L , , J ,
1:2A5 1:2_1 . 1:2'%3 1:2^2 1:2 1:1

i
I

: /

/

/

t III /

I

"/I

I /

I I

I /I

I/

,j/

=1

i [I I I I21 2A2'.1 2,'_3:1 2_1.:1 L:_5:1 2A6:1 !^7:1

Figure 6: Envelope parameters of FINANCES12 as a function of the ratio of the weights

14"1 and W'2.

(Information about the problems in these Figures is included in Table 5.)

The envelope parameters are plotted at successive points on the :r-axis corresponding

to changing the weight I'l_q or _}_ by a factor of two. The ratio of the pseudo-diameter to

inaxinmm degree is 10 for this problem, and here large values of W, lead to the smallest

envelope size and wavefront sizes. The normalized weights 14'1 = 2 and W2 = 1 suffice

to obtain these values; note the asymptotic behavior of the envelope parameters. The

bandwidth has a contrarian behavior to the rest of the parameters, and thus high values

of l_'I;2lead to small bandwidths for these problems.

The second class is exemplified by the FINANCES12 problem, whose envelope param-

et.ers are plotted for various choice of weights in Figure 6. Again, the value of each

parameter is scaled by the value obtained by the Sloan algorithm with unnormalized

weights lI'_ = 2. I4.) = 1. The ratio of the pseudo-diameter to maximum degree is 1.

Here high values of IV2 lead to small envelope parameters. Note that the bandwidth fol-

lows the same trend as the rest of the envelope parameters, unlike the first class. Other

problems from Table 5 that belong to this class are: FORD:t, FORD2, SKIRT, NASARB,

BCSSTK30, and FINANCE256. All other problems belong to the first class.

A user needs to experiment with the weights to obtain a near-optimal value of an

envelope parameter for a new problem, since one does not know a priori which of the

two classes it belongs to. Fortunately, small integer weights suffice to get. good results

in our experiments, and hence a set of good weights can be selected automatically by

computing the envelope parameters with a few different weights.

The results tabulated in Section 5 show that it is possible to reduce the mean square

wavefront by choosing one normalized set of weights for each problem in Class 1, and

another for each problem in Class 2, rather than the unnormalized weights (W1 = 2,

W2 = 1) used by Sloan, and Duff, Reid and Scott. The weights we have used are W, = 8,

H',2 = 1 for Class 1 problems, and I4:1 = 1, |'_2 = 2 for problems in Class 2. An automatic

procedure could compute the envelope parameters for a few sets of weights, and then

12

choosethe ordering with the smaller values.

There are two limiting cases of the Sloan algorithm.

When l'l'l = 0, _ # 0, then the distance from the end vertex e determines the

ordering, and the Sloan algorithm behaves almost like RCM. However, this limiting case

differs from the case when is nonzero and W2 is much larger than I4']. In the latter

case, the first, term still plays a role in reducing the envelope parameters. For instance,

the values of envelope parameters obtained when the ratio W2/H':I is 2 TM are significantly

smaller than the values obtained when 14] = 0 and I'V2 # O. Only neighbors and second-

order neighbors of the numbered vertices are eligible to numbered at any step, and

among these vertices the first term serves to reduce the local increase in the wavefront

when H;l is nonzero.

The second limiting case, when W'2 = 0, W1 # 0, corresponds to a greedy algorithm

in which vertices are always numbered to reduce the local increase in wavefront. This

greedy algorithm does particularly poorly on Class 2 problems.

The two classes of problems differ in the importance of the first, "local", term that

controls the incremental increase in the wavefront relative to the second, "global", term

that emphasizes the numbering of vertices far from the end-vertex. When the first term

is more important in determining the envelope parameters, the problem belongs to Class

1, and when the second term is more important, it belongs to Class 2. We have observed

that the first class of problems represent simpler meshes: e.g., discretization of the space

surrounding a body, such as an airfoil in the case of BARTHS. The problems in the second

class arise from finite element meshes of complex three-dimensional geometrical objects,

such a.s automobile frames. The FINANCE512 problem is a linear program consisting of

several subgraphs joined together by a binary tree interconnection. In these problems, it

is important to explore several "directions" in the graph simultaneously to obtain small

envelope l)arameters.

The bandwidth is smaller when larger weights are given to the second term, for both

classes of problems. This is to be expected, since to reduce the bandwidth, we need to

decrease, over all edges, the maximum deviation between the numbers of the endpoints

of an edge.

3.2 The Accelerated hnplementation

In the Sloan algorithm, the vertices eligible for numbering are kept. in a priority queue.

Sloan [39] inlplemented the priority queue both as an unordered list in an array and as a

binary heap, and found that the array implementation was faster for his test. problems (all

with less than 3,000 vertices). Hence he reported results from the array implementation

only. Duff, Reid, and Scott [11] have followed Sloan in using the array implementation

for the priority queue in the Harwell library routine MC40 [1].

We provide a complexity analysis of the worst-case execution time of the two im-

plementations in the Appendix, which shows that the heap implementation runs in

O(n log 7_) time, while the array implementation requires O(n 1"_) time for two-dimensional

problems, and O(7_ a/a) time for three-dimensional problems.

This difference in running time requirements is experimentally observed as well. In

Figure 7 we compare the times taken by the array and heap implementations of the Sloan

algorithm relative to our implementation of the RCM algorithm. The RCM algorithm

uses a fast. pseudo-diameter algorithm described by Duff, Reid, and Scott [11].

13

1

]0 1

9

6

. l

I

0

- | --° RCMNorm

A_ay S_

_Dim

32.7

15.1

l .

120.1
4.9

Figure 7: Relative timing performance of RCM, ArraySloan, and HeapSloan algorithms.

For the eighteen matrices in Table 5, the mean time of the ArraySloan was 11.3 times

that of RCM, while the median time was 8.2 that of RCM. However, the mean cost of

the HeapSloan was only 2.5 times of RCM, with the median cost only 2.3. The greatest

improvements are seen for the problems with greater numbers of vertices or with higher

average degrees.

We have also computed the times taken by MC40B to order these problems, and

found them to be comparable to the times reported here for the ArraySloan implemen-

tation, inspire of the different programming languages used (Fortran for MC40B and

and C for ours.)

We emphasize that this change in the data structure for the priority queue has

no significant influence on the quality of the envelope parameters computed by the

algorithm. Minor differences might be seen due to different tie-breaking strategies.

4 The Hybrid Algorithm

The hybrid algorithm consists of two steps: first compute the spectral ordering; then

use a modification of the second part of the Sloan algorithm to refine the ordering

locally. We shall refer to this modification of the second part. as the modified Sloan

algorithm. This abuse of nomenclature should not cause any confusion in the context

of the hybrid algorithm. We describe how we modified Sloan to refine a given input

ordering in Section 4.1. Implementation details are presented in Section 4.2.

4.1 Modifications to the Sloan Algorithm

To change the Sloan algorithm from one that computes an ordering from scratch to one

that refines a given ordering, we need to modify the selection of start and end nodes, and

the priority function. We use input ordering in this section to describe the ordering of the

matrix immediately before the Sloan refinement is performed. In our implementation,

14

this input ordering is the spectral ordering, though the refining algorithm can work with

any input ordering.

The Sloan algorithm requires a start node to begin numbering from, and an end node

to compute the priority function. We choose the start node s to be the first node and

the end node e to be the last node in the input ordering. Hence the burden of finding a

good set of endpoints is placed on the spectral method. Experience suggests that this is

where it should be. The spectral method seems to have a more global view of the graph

than the local diameter heuristic. This feature alone, with no change in the priority

function, yields improved envelope parameters over the Sloan algorithm for most of our

test problems.

The priority function is

P(i) = -_1 * [(n/_)J • incr(i) + 14_ • dist(i, e) - I43 * i.

The first two terms are similar to the priority function of the Sloan algorithm (Sub-

section 3.1), except that the normalization factor has n, the number of vertices in the

numerator, rather than the pseudo-diameter. The latter is not computed in this context,

and this choice makes the first and third term range from 1 to n.

This function is sensitive to the initial ordering through the addition of a third

weight, l/I_. For |4:a > 0, higher priority is given to lower numbered vertices in the input.

ordering. Conversely, for H'_ < 0, priority is given to higher numbered vertices. This

effectively performs the refinement on the reverse input ordering, provided s and e are

also reversed. There is some redundancy, between weighting the distance from the end

in terms of the number of hops (dist(i,e)) and the distance from the end in terms of the

input ordering (i).

Selection of the nodes s and e_and the new priority function are the only algorithmic

modifications made to the Sloan algorithm. The node selection, node promotion, and

priority updating scheme (see Fig. 4), are unchanged.

The normalization factor in the first term of the priority function makes the initial

influence of the first and third terms roughly equal in magnitude when |'VI and 1.'1_

are both equal to 1. The weight I4.'2 is usually set to one. This makes it a very weak

parameter in the whole algorithm, but small improvements result when its influence is

nonzero. If the component of the Fiedler vector with the largest absolute value has the

negative sign, we set ti"3 = -1 and swap s and e. Otherwise, we set 14",3= 1 and use the

nondecreasing ordering of the Fiedler vector.

For Class 1 problems, higher values of 141 can lead to improvements in the envelope

parameters over the choice of 1¥1 = 1, even though it is slight in most cases. For Class

2 problems, use of _1.'_ = 1, I4"2 = [¥3 = 2 can lead to improvements as well.

4.2 Implementation Details

All the results presented in the following section were obtained on a Sun SPARCsta-

tion 20 with 64MB physical main memory and 846MB of swap space, running SunOS 4.1.3.

The software used includes Matlab 4.2a, Chaco 2.0 [24] and a suite of Matlab M-files and
MEX-files 2 that we wrote. All of the MEX-files are written in C. A toolbox of M-files

"_Both M-files and MEX-files are programs in Matlab. M-files are interpreted and are analogous to

UNIX scripts or DOS batch files. MEX files are compiled C or Fortran codes that are dynamically
linked into Matlab.

15

Problem IVI]El Comment

BARTtt

BARTH4

BARTH5

SHUTTLE.EDDY

COPTER1

COPTER2

FORD1

FORD2

SKIRT

NASASRB

COMMANCHE_I)UAL

TANDEMA_TX

TANDEM_DUAL

ONERA_DUAL

BCSSTK30

PDS10

FINANCE256

FINANCE512

COMP.SKIRT

COMP.NASARB

COMP.BCSSTK30

6,691 19,748

6,019 17,473

15,606 45,878

10,429 46,585

17,222 96,921

05,4 _6 352,238

18,728 41,424

100,196 222,246

45,361 1,268,228

54,870 1,311,227

7,920 11,880

18,454 117,448

84,069 183,212

85,567 116,817

28,924 1,007,284

16,558 66,550

37,376 130,560

t-._l t-._ y ¢)_,_o. 261,120

14,944 160,461

24,953 275,796

9,289 111,442

2-D CFD problems

3-D structural problems

3-D CFD problems

3-D stiffness matrix

linear programs

compressed SKIRT

compressed NASARB

compressed BCSSTK30

Table 1: The list of eighteen test problems. For the three problems that compressed

well, their compressed versions are also shown.

written by Gilbert. [19] was used to generate some model problems, visualize results, and

test code under development.

Matlal) is the main platform on which the experiments were done. Its interactive

environnlent is very flexible to use. M-files allowed for quick prototype code generation.

However. M-tiles are interpreted and too slow, in general, for matrices of reasonable size.

The code was then re-written in C, given a Matlab wrapper function, and linked as a

MEX file into Matlab's (lynamic library. Chaco was used to obtain the Fiedler vector.

5 Computational Results

We describe in Section 5.1 how we chose the computational parameters in the hybrid al-

gorithm. In Section 5.2 we discuss the relative reductions in envelope size and wavefront

of eighteen test problems obtained from RCM, Sloan, spectral, and hybrid algorithms.

5.1 Chaco's User Parameters

We use the SymmLQ/RQI option in Chaco to obtain the Fiedler vector. Chaco takes

a multilevel approach, coarsening the grid until it has less than some user specified

16

Problem mswf maxwf Esize bw

BARTH
BARTH4
BARTH5
SHUTTLE
COPTER1
COPTER2
FORD1
FORD2
SKIRT
NASARB
COMMANCHE.DUAL
TANDEM .VERTEX
TANDEM .DUAL
ONERA.DUAL
BCSSTK30
PDS10
FINANCE256
FINANCES12

Time
(sec.)

1.26e4 164 7.01e5 199 0.13
1.61e4 204 7.03e5 218 0.05
5.08e4 351 3.26e6 373 0.16
5.84e3 167 7.09e5 238 0.12
2.84e5 797 8.62e6 932 0.13

2.26e6 2,447 7.55e7 2,975 0.88

2.65e4 223 2.90e6 258 0.30

" r. ")e'"3.14e5 884 o._- i 963 1.1

1.11e6 1,745 4.42e7 2,070 5.0

1.65e5 840 2.06e7 881 3.3

6.73e3 150 5.90e5 155 0.07

8.28e5 1,489 1.53e7 1,847 0.27

1.96e6 2,008 1.22e8 2,199 1.4

4.86e6 3,096 1.71e8 3,478 1.2

1.07e6 1,734 2.66e7 2,826 3.7

3.66e6 2,996 2.95e7 4,235 0.35

9.38e5 1,437 3.26e7 2,014 0.51

5.79e5 879 5.55e7 1,306 1.0

Table 2: Envelope parameters and CPIT time on a Sun Sparc-20 workstation for the

RCM algorithm.

17

Problem SLOAN NSLOAN SPECTRAL HYBRID
(Class)

BARTH
BARTH4
BARTH5
SHUTTLE
COPTER1
COPTER2
FORD1
FORD2
SKIRT
NASARB
COMMANCHE.DUAL
TANDEM.VTX
TANDEM.DUAL
ONERA.DUAL
BCSSTK30
PDS10
FINANCE256
FINANCE512
COMP.SKIRT
('()MP.NASARB
(IOMP.B('SSTK30

0.48 0.43 (1) 0.43 0.30
0.40 0.21 (1) 0.20 0.15
0.56 0.18 (1) 0.18 0.14
0.60 0.60 (1) 1.0 0.65
0.71 0.45 (1) 0.74 0.53
0.39 0.27 (1) 0.28 0.16
0.67 0.67 (2) 0.48 0.39
0.51 0.51 (2) 0.44 0.33
0.57 0.50 (2) 0.44 0.37
0.74 0.75 (2) 0.99 0.71
0.60 0.34 (1) 0.37 0.23
0.16 0.12 (1) 0.14 0.10

0.53 0.28 (1) 0.14 0.11

0.44 0.21 (1) 0.09 0.07

0.37 0.30 (2) 0.10 0.05

0.20 0.13 (1) 0.75 0.15

0.04 0.04 (2) 0.07 0.04
0.05 0.06 (2) 0.14 0.05

0.46 (2) 0.51 0.39

0.68 (2) 1.8 0.7,5

0.26 (2) 0.13 0.06

Table 3: Mean square Wavefront sizes for various algorithms relative to RCM. The

numbers in parentheses after the values for the normalized Sloan algorithm show the

class each problem belongs to (See Section 3).

18

Problem SLOAN NSLOAN SPECTRAL HYBRID
BARTH
BARTH4
BARTH5
SHUTTLE
COPTER1
COPTER2
FORD1
FORD2
SKIRT
NASARB
COMMANCHE.DUAL
TANDEM.VTX
TANDEM.DUAL
ONERA.DUAL
BCSSTK30
PDS10
FINANCE256
FINAN('ESI2
('()MP.SI{Iffi'
('OM P.NAS:\ It II
(!OMP.B('SSTi(30

0.66 0.65 0.64 0.53
0.60 0.42 0.37 0.34
0.77 0.44 0.42 0.39
0.85 0.66 1.3 0.67
0.84 0.58 0.65 0.57
0.58 0.49 0.43 0.32
0.86 0.86 0.96 0.78
0.74 0.78 0.91 0.76
0.65 0.84 0.65 0.57
0.73 0.91 1.2 0.86
0.83 0.55 0.55 0.44
0.38 0.30 0.29 0.25
0.72 0.55 0.34 0.30
0.67 0.45 0.34 0.30
0.63 0.64 0.38 0.22
0.48 0.40 1.0 0.28
0.22 0.22 0.30 0.21
0.28 0.32 0.85 0.49

0.67 0.68 0.54
0.71 2.3 0.78
0.52 0.40 0.23

Table 4' .Xlaxilmunwavefrontsizesrelative to the RCM algorithm.

19

Problem SLOAN NSLOAN SPECTRAL HYBRID
BARTH
BARTH4
BARTH5

SHUTTLE

COPTER1

COPTER2

FORD1

FORD2

SKIRT

NASARB

COMMANCHE.DUAL

TANDEM.VTX

TANDEM.DUAL

ONERA.DUAL

BCSSTK30

PDSI0

FINANCE256

FINANCE512

COMP.SKIRT

COMP.NASARB

COMP.B('SSTK30

0.69 0.66 0.66 0.55

0.64 0.47 0.46 0.40

0.75 0.43 0.44 0.39

0.81 0.82 1.0 0.85

0.84 0.68 0.89 0.74

0.63 0.53 0.56 0.43

0.81 0.80 0.68 0.61

0.71 0.71 0.65 0.56

0.77 O. _, 0.70 0.63

0.89 0.88 0.99 0.87

0.73 0.59 0.61 0.47

0.42 0.37 0.40 0.34

0.72 0.54 0.39 0.34

0.66 0.46 0.31 0.27

0.60 0.53 0.33 0.2,5

0.41 0.34 0.82 0.38

0.20 0.22 0.28 0.20

0.21 0.25 0.34 0.20

0.70 0.74 0.65

0.86 1.1 0.89

0.52 0.38 0.26

Table 5: Envelope sizes relative to RCM.

2O

Problem SLOAN NSLOAN SPECTRAL HYBRID

BARTH

BARTH4

BARTH5

SHUTTLE

COPTER1

COPTER2

FORD1

FORD2

SKIRT

NASARB

COMMANCHE.DUAL

TANDEM.VTX

TANDEM.DUAL

ONERA.DUAL

BCSSTK30

PDS10

FINANCE256

FINANCE512

COMP.SKIRT

COMP.NASARB

COMP.BCSSTK30

2.93 4.53 1.76 4.15

5.02 7.04 2.64 7.39

3.44 8.91 1.96 5.19

3.50 3.39 2.66 4.05

3.80 7.34 1.02 7.82

4.05 11.4 1.89 8.39

7.67 6.91 12.0 12.0

7.06 12.1 5.75 8.04

9.37 3.66 2.13 2.15

5.82 5.83 4.17 5.57

9.94 15.9 2.52 8.15

2.35 3.56 1.39 2.29

3.55 9.07 2.92 4.72

8.93 11.3 2.08 3.19

5.60 5.11 1.91 2.28

3.59 3.77 1.87 3.58

4.41 4.11 2.49 2.44

3.26 2.88 2.84 2.38

6.07 3.19 3.16

5.81 6.83 4.72

4.02 2.05 2.03

Table 6: Bandwidths relative to RCIVl.

21

Problem SLOAN SPECTRAL HYBRID
BARTtt
BARTH4
BARTH5
SHUTTLE
COPTER1
COPTER2
FORD1
FORD2
SKIRT
NASARB
COMMANCHE.DUAL
TANDEM.VTX
TANDEM.DUAL
ONERA.DUAL
BCSSTK30

PDS10

FINANCE256

FINANCE512

COMP.SKIRT

COMP.NASARB

COMP.BCSSTK30

1.9 10. 11.

3.4 18. 20.

2.7 19. 21.

2.7 15. 17.

4.7 25. 28.

3.0 18. 20.

1.7 12. 13.

2.7 19. 21.

1.7 3.7 4.5

2.3 8.5 9.7

2.1 19. 19.

2.7 14. 16.

2.2 14. 15.

2.3 15. 15.

1.7 3.2 4.0

2.1 36. 37.

2.4 16. 18.

2.3 17. 18.

0.33 0.69 0.91

0.49 1.8 2.3

0.34 0.56 0.74

Table 7: CPU times relative to the RCM algorithm.

Metric Units RCM SLOAN NSLOAN SPECTRAL HYBRID

mswf le5 10. 3.7 2.3 a.1 1.4

maxwf le2 12. 7.0 6.2 6.9 4.5

Esiz_ le7 3.7 2.3 1.9 1.7 1.4

bw le3 1.5 7.9 10. 3.6 6.4

CP[WTime secs. 1.1 2.2 10. 11.

Table 8: Average performance of the algorithms. The arithmetic mean of each metric is

calculated from the unnormalized values of that metric for the test problems.

2'2

number of vertices (1000 seems to be sufficient). Then it computes the Fiedler vector

on the coarse grid, orthogonalizing only for eigenvectors corresponding to small eigen-

values. Then the coarse grid is refined back to the original grid and the eigenvector is

refined using Rayleigh Quotient Iteration (RQI). This refinement is the dominant cost

of the whole process. During the coarsening, we compute generalized eigenvectors of the

weighted Laplacians of the coarse graphs from the equation A:g = ,_DY, where D is the

diagonal matrix of vertex weights. This feature, obtained by turning on the parameter

MAKE VWGTS, speeds up the eigenvector computation substantially.

Two other parameters, EIGEN_TDLERANCE and COARSE_NLEVEL_RQI, control how ac-

curately eigenvectors are computed and how many levels of graph refinement occur

before the approximate eigenvector is refined using RQI, respectively. We set the value

of EIGEN TOLERANCE to 10 -3, and it was very effective in reducing cpu-time. Even in the

case where this tolerance induces misconvergences, the spectral ordering is still good and

the hybrid ordering even better for most problems. The COARSE NLEVEL RQI parameter

didn't have much effect, so we used the program's default value of 2.

5.2 Results

We consider five ordering algorithms RCM, Sloan with unnormalized weights l_] = 2,

W2 = 1, Sloan with normalized weights (I¥1 = S, W2 = 1 for problems in Class 1, and

W1 = 1, 14/2 = 2 for problems in Class 2), spectral, and hybrid (normalized weights W1 =

I4:2 = _1.'3 = 1 for Class 1 problems, 147 = 1, W2 = 14_ = 2 for Class 2 problems). When

we refer to the Sloan algorithm without mentioning the weights, we mean the algorithm

with normalized weights. We have compared the quality and time requirements of these

algorithms on eighteen problems (see Table 5.1). The problems are chosen to represent

a variety of application areas: structural analysis, fluid dynamics, and linear programs

from stochastic optimization and multicommodity flows. The complete set of results for

RCM are shown in Table 5.2; for other algorithms, results normalized with respect to

RCM are presented in Tables .5.3 through 5.7.

A comparison of the mean performance of the various algorithms is included in Ta-

ble 5.8. The CPU time for only one of the Sloan algorithms is shown because the two

a lgorithnls have identical running times since they differ only in the choice of weights.

The values in this table are computed by taking arithmetic means of the (unnormalized)

values of each metric over the problems in the test collection. Values normalized with

respect to the 1RCM algorithm (reported in Tables 5.3 through 5.7 should not be used

to compute the arithmetic mean, since the arithmetic mean of normalized data is incon-

sistent in the sense that the rankings of the algorithms could depend on the algorithm

chosen as the reference algorithm. This is because the larger ratios in the normalized

data strongly influence the arithmetic mean. The reader can compute the unnormalized

data from the results for RCM included in Table 5.2 and the tables with the normalized

data.

Initially we discuss the results on the uncompressed graphs, since most of the graphs

in our test collection did not gain much from compression. We discuss later in this

section the three problems that exhibited good gains from compression.

The envelope parameters and times reported in the tables are normalized with re-

spect to the values obtained from RCM. For the Sloan algorithm, two sets of values

are reported: the first is from the unnormalized weights _/_'z1 ---- 2, [4 2 ---- 1, and the

23

secondfrom the normalizedweightsfor Class 1 and Class2 problems. The normalized
Sloanalgorithm is labeledby the column NSLOAN in Table 5.3, and the number in the
parenthesis(i) indicates the classto which a problem belongsto. The results for the
compressedproblemsare indicated by the last three rows.

The Sloanalgorithm with the normalizedweightsreducesthe mean-squarewavefront
on averageto 23% of that of RCM; when unnormalizedweights are used in the Sloan
algorithm, the meansquarewavefrontis 36%of that of RCM. (Henceforth,a performance
figureshouldbe interpreted to bethe averagevaluefor the problemsin the test collection;
we shall not state this explicitly.) The hybrid reducesmean-squarewavefront to 14%
of that of RCM, and to 60% of that of (normalized) Sloan. The hybrid algorithm
computesthe smallestmeansquarewavefront for all but three of the eighteenproblems.
Note that evenfor the problemswherethe spectral algorithm doespoorly relative to the
Sloanalgorithm, the post-processingenablesthe hybrid algorithm to compute relatively
small wavefronts. Ill general, the spectral and Sloanalgorithms tend to vie for second
placewith RCM finishing fourth.

Thesealgorithms alsoyield smaller maximum wavefrontsizesthan RCM. The nor-
malized Sloan algorithm yields valuesabout 52% of RCM, while the hybrid computes
valuesabout 38%of RCM. Thus thesealgorithms leadto reducedstoragerequirements
for frontal factorization methods.

The results for the envelopesizeare similar. The hybrid, on average,reducesthe
envelopesizeto 37%of that of the RCM ordering,and to 73%of that of the normalized
Sloan algorithm.

The Sloan, spectral, and the hybrid algorithms all reduce the wavefront sizeand
envelopesize at the expenseof increasedbandwidth. This is expectedfor the Sloan
algorittun sinceFigures5 and 6 showthat the weightsyielding small wavefrontsizesare
quite different from the weights for small bandwidth. It is also not surprising for the
spectral and the hybrid algorithms sincetheir objective functions, 2-sum (for spectral,
see[16]) and wavefront size (for the hybrid) differ from the bandwidth.

On thesetest problems,our efficient implementation of the Sloanalgorithm requires
on averageonly 2.1 times that of the time taken by the RCM algorithm. The hybrid

algorithm requires about 5.0 times the time taken by the Sloan algorithm on the av-

erage. This ratio is always greater than one, since the hybrid algorithm uses second

step of the Sloan algorithm (numbering the vertices) to refine the spectral ordering, and

the eigenvector computation is nmch more expensive than the first step of the Sloan

algorithm (the pseudo-diameter computation). We believe that these time requirements

are small for the applications that we consider: preconditioned iterative methods and
frontal solvers.

Gains from Compressed Graphs. As discussed in Subsection 3.1, the use of the

supervariable connectivity graph [11] (called the compressed graph by Ashcraft [2!) can

lead to further gain in the execution times of the algorithms. Only three of the problems,

SKIRT, NASARB, BCSSTK30, compressed well. This is because many of the multicomponent

finite element problems in our test set had only one node representing the multiple

degrees of freedom at that node. The compression feature is an important part of many

software packages for solving PDE's, since it results in reduced running times and storage

overheads, and our results also show impressive gains from compression.

Three problems in our test. set compressed well: SKIRT, NASARB, and BCSSTK30.

Results for these problems are shown in the last three rows of each table. The numbers

24

of multivertices and edgesin the compressedgraphs are also shown. For these three
problems,compressionspeedsup the Sloanalgorithm on averageby a factor of nearly
5, and the hybrid algorithm by a factor of 4.6.

Compressionimprovesthe quality of the Sloan algorithm for thesethree problems,
and doesnot havemuch impact on the hybrid algorithm. This improvedquality of the
compressedSloan algorithm follows from our choiceof parameters in the compressed
algorithm to correspondexactly to their values in the uncompressedgraph. However,
on IghShRB,the spectral envelopeparametersdeteriorate upon compression.We do not.
know the reasonfor this, but it could be due to the poorer quality' of the eigenvector
computed for the weighted problem. In any case, the compressedhybrid algorithm
recoupsmost of this deterioration.

6 Applications

This section discusses preliminary evidence demonstrating the applicability of the order-

ings we generated. In Section 6.1 we describe how a reduction in mean square wavefront

directly translates into a greater reduction in cpu-time in a frontal factorization. We

also discuss the impact of these orderings on incomplete Cholesky (IC) preconditioned
iterative solvers in Section 6.2.

6.1 Frontal Methods

The work in a frontal Cholesky factorization algorithm is

1 _--_ iwf_(A)] (iwf,(A)l + :3).work(A) =
i=1

Hence a reduction in the mean-square wavefront leads to fewer flops during Cholesky

factorization. Duff, Reid, and Scott [11] have reported that Sloan orderings lead to faster

frontal factorization times than RCM orderings. Barnard, Pothen and Simon [4] have

reported similar results when spectral orderings are used.

Two problems were run by Dr. Jennifer Scott on a single processor of a Cray-Jg0

using the Harwell frontal factorization code MA42. The matrix values were generated

randomly. (The orderings used were obtained earlier than the results reported in Ap-

pendix A; however, these results suffice to show the general trends.) The results in

Table 9 show a general correlation between mean square wavefronts (proportional to

flops) and factorization times. The spectral ordering enables the factorization to be

computed about 5.2 times faster than the Sloan ordering for the BCSSTK30 problem; this

ratio is 1.8 for the SKIRT problem. The hybrid does not improve factorization times over

the spectral ordering for these problems.

6.2 Incomplete Cholesky Preconditioning

In this section we report preliminary experiments on the influence of our orderings

on preconditioned conjugate gradients (CG). We precondition CG with an Incomplete

Cholesky factorization (IC(k)) that controls k, the level of the fill introduced.

25

bcsstk30

skirt

Initial
RCM
Sloan
Spectral
Hybrid
Initial
RCM
Sloan
Spectral
Hybrid

Sun SPARC20

Ordering
Time

0

3.7

6.1

11.9

14.6

0

5.0

8.4

18.6

22.6

Cray-J90

Frontal Solve

Time Flops

1106 8.7e+10

1649 1.4e+ll

989 7.5e+10

188 1.1e+10

205 1.1e+10

2427 2.1e+ll

2233 1.9e+ll

1754 1.4e+ll

"979 7.6e+10

980 7.3e+10

Table 9: Results of two problems on a CRAY-J90 using MA42. Times reported are in

seconds.

Since the envelope is small, we confine fill to a limited number of positions, and

hope to capture more of the character of the problem with fewer levels of fill. ttowever,

a tighter envelope is only' one of the factors that affect convergence. For instance,

or¢lerings must respect numerical anisotropy for fast convergence.

Our preliminary results have been mixed. In Table 6.2 we show information pertain-

ing to two problems that are representative of our data. It is worth noting how strongly

the norm of the remainder matrix for a given ordering is a predictor of iteration counts.

The BODY. Y-5 I)roblem shows that the Sloan ordering can be very effective in reducing

the iteration count. This 1)roblem is a 2-dimensional mesh with an aspect ratio of 10 -5.

In the case of poor aspect ratios, a weighted Laplacian should be more appropriate for

computing the spectral ordering, but we defer this topic for future research. Duff and

Meurant [8] indicate tha! ordering becomes more significant when the problem becomes

mow (tiflicult (disconlimlous coefficients, anisotropy, etc.).

Another problem fro,ll lhe Harwell-Boeing collection BCSSTK17 did not converge

(luickly for levels of till I)(,Iow two. indicating that it is a difficult problem. The rate of

convergence at two level._ of fill shows that the new ordering reduces the iteration count

by almost half that of its ('los(.sl coinpetitor. Since envelope reduction concentrates fill,

it is possible that the t)en('tils of the hybrid ordering are maximized when more than

one level of fill is allowed.

7 Conclusions

We have observed that problems t_ll into two distinct classes when we examine how enve-

lope parameters vary asymptotically as a function of the weights in the Sloan algorithm.

Small wavefronts are obtained for the first class of problems when the the "local" term

in the priority function is weighted large relative to the "global" term; for the second

class of problems, the "global" term should be weighted to be more important. The

bandwidth behaves contrary to the other envelope parameters for the first class, but its

26

body.y-5

II.'l = 18,589

]E I = 55,132
Level 0

Level 2

IIRII
nnz(L)

iteration count

cpu time

flops

lIRIl
nnz(L)

iteration count

cpu time

flops

bcsstk17 IIRIIF

II'l = 10,974 nnz(L)

IEI = 208,838 iteration count,

Level 2 cpu time

flops

Ordering

RCM Sloan Spectral Hybrid

3,608 2,598 9,166 7,276

73,721 73,721 73,721 73,721

756 497 1,203 1,009
,-,,) .1,103 ¢,6 1,715 1,405

6.@+08 4.5e+08 1.1e+09 9.1e+08

1,430 885 988 501

128,854 126,141 128,121 126,319

457 231 356 265

726 376 564 422

5.1e+08 2.6e+08 4.@+08 2.9e+08

6.5e+08 6.5e+08 7.3e+08 1.9e+09

470,304 473,017 486,524 474,935

422 323 320 179

1131 894 871 503

1.1e+09 9.5e+08 9.5e+08 5.2e+08

Table 10: Convergence of preconditioned CG on body.y-5 and bcsstklT.

27

behavior is similar to the others for the second class. This is understandable since the

bandwidth is a global property of an ordering of a graph.

A new normalized scheme for choosing weights according to the problem class im-

proves the quality of the orderings computed by the Sloan algorithm. Our efficient

implementation of the Sloan algorithm on the average required only 2.1 times the time

taken by tlCM, while producing mean square wavefronts about three times smaller than

those obtained from RCM. Since the cost of the RCM algorithm is a few breadth-first-

searches through the graph, these results imply that the Sloan algorithm is an effective

combinatorial algorithm for computing envelope and wavefront reducing orderings.

Our modified Sloan algorithm for compressed graphs is very fast on problems that

exhibit good compression. Since this algorithm mimics the computations that would be

performed on the original unweighted graph, the faster algorithm does not sacrifice the

quality of the orderings.

We have also described a hybrid algorithm that combines a spectral algorithm with

a refinement step using a modified Sloan algorithm. The hybrid algorithm further im-

proves the good envelope and wavefront reducing properties of the spectral algorithm.

It produces orderings of better quality (about 40% of the normalized Sloan) but at a

cost greater by factor of five than the HeapSloan algorithm. In applications such as

frontal factorization schemes, where the time taken to compute an ordering is insignif-

icant, relative to tile subsequent, factorization step, or for nonlinear problems where the

cost of the ordering can be amortized over several linear solves, the hybrid algorithm

is an attractive choice. However, in other applications where the tradeoff between the

quality of the ordering versus the time required for computing the ordering favors fast

ordering algorithms, the HeapSloan is attractive.

In this work we have primarily focused on improving the quality and time require-

ments of the Sloan algorithm. With similar attention to the eigencomputation of the

spectral algorithnl we believe that the time requirements of the spectral algorithm could

be reduced, and thereby the hybrid algorithm could be made more competitive. An

interesting question is whether one can design algorithms that compute orderings with

the same quality as the hybrid but at the cost of the Sloan algorithm. Boman and Hen-

drickson [5] have recently described an attempt in this direction, a multilevel algorithm
for wavefront reduction.

Much more work is needed to understand the influence of these orderings on the

conw-rgence behavior of preconditioned iterative solvers.

Our software implementing these algorithms is available with three different inter-

faces: a stand-alone code, a code that can be called within Matlab, and another callable

within PETSc. These codes are available from us upon request by electronic mail.

Acknowledgments

We thank Dr. Jennifer A. Scott of the Department of Computation and Information

of Rutherford Appleton Laboratory for testing our orderings on the frontal code MA42,

and Dr. Bruce Hendrickson of Sandia National Labs for modifying some of the Chaco

functions to help us obtain accurate timing results. We are grateful to Dr. Scott and

to Dr. Cleve Ashcraft (Boeing Information Services) for two rounds of careful reviews.

Thanks also to Dr. Steve Guattery (ICASE) for comments on drafts of this paper.

28

References

[1] Anonymous, Harwell Subroutine Library, A Catalogue of Subroutines (Release 12).

1995.

[2] C. C. Ashcraft, Compressed graphs and the minim.urn degree algorithm, SIAM J.

Sci. Stat. Comp., 16 (1995), pp. 1404-1411.

[3] J. E. Atkins, E. G. Boman, and B. Hendrickson, A spectral algorithm, for" the seri-

ation problem. Tech. Report, Sandia National Lab, Albuquerque, NM, 1996.

[4] S. T. Barnard, A. Pothen, and H. D. Simon, A spectral algorithm for" envelope

reduction of sparse matrices, J. Numerical Linear Algebra with Applications, 2

(1995), pp. 317-334. A shorter version has appeared in Supercomputing '93, IEEE

Computer Society, Press, pp. 493-502, 1993.

[5] E. G. Boman and B. Hendrickson, A multilevel algorithm for envelope reductions,

Preprint, Sandia National Labs, Albuquerque, NM, 1996.

[6] E. H. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,

in Proceed. 24th Nat. Conf. Assoc. Comp. Mach., ACM Publications, 1969, pp. 157-
"9

[7] E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang, Ordering methods for precondi-

tioned conjugate gradieT_ts methods applied to unstructured grid problems, SIAM J.

Matrix Anal. Appl., 13 (1992), pp. 944 961.

[8] 1. Duff and G. Meurant, The effect of orderir_g o_ preconditioned conjugate gradi-

e_ts, BIT, 29 (1989), pp. 635-657.

[9] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,

Clarendon Press, Oxford, 1986.

[10] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users' Guide for" the Harwell-Boeing

Sparse Matrix Collection, 1992.

[11] I. S. Duff, J. K. Reid, and J. A. Scott, The use of profile reduction algor'ithn_s

u,ith a flvntal code, International Journal for Numerical Methods in Engineering,

28 (1989), pp. 2555-2568.

[12] M. Fiedler, Algebraic com_ectivity of graphs, Czechoslovak Math. J., 23 (1973),

pp. 298-305.

[13] --, A property of eigcnvectors of nonnegative symmetric matrices and its appli-

cation to graph theory, Czechoslovak Math. J., 25 (1975), pp. 619 633.

[14] A. George, Computer intplemcntation of the finite dement method, Tech. Report

208, Department of Computer Science, Stanford l_niversity, Stanford, CA, 1971.

[15] A. George and J.W-H. Liu, The evolutiott of the m,inimum degree algorithm, SIAM

Review, 31 (1989), pp. 1 19.

29

[16] A. Georgeand A. Pothen, Analysis of the spectral approach to envelope reduction

via a quadratic assignment formulation, 1995. To appear in SIAM J. Matrix Anal.

Applic.

[17] N. E. Gibbs, Algorithm 509: A hybrid profile reduction algorithm, ACM Trans. on

Math. Software, 2 (1976), pp. 378-387.

[18] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer, An algorithm for reducing the

bandwidth and profile of a sparse matrix, SIAM J. Num. Anal., 13 (1976), pp. 236-

249.

[19] J. R. Gilbert, G. L. Miller, and S.-H. Teng, Geometric mesh partitioning: Imple-

mentation and experiments, Tech. Report CSL-94-13, Xerox Palo Alto Research

Center, 1994.

[20] D. S. Greenberg and S. C. Istrail, Physical mapping with STS hybridization: oppor-

tunities and limits, tech. report, Sandia National Labs, Albuquerque, NM, 1994.

[21] R. G. Grimes, D. J. Pierce, and H. D. Simon, A new algorithm for finding a pseu-

doperipheral node in a graph, SIAM J. Mat. Anal. Appl., 11 (1990), pp. 323-334.

[22] S. Guattery and G. Miller, On the performance of spectral graph partitioning meth-

ods, in 6th ACM-StAM Symposium on Discrete Algorithms, San Francisco. CA,

1995, ACM-SIAM, pp. 233 242.

[23] C. Hehnberg, B. Mohar, S. Poljak, and F. Rendl, A spectral approach to bandwidth

and separator problems in graphs. Preprint, Department of Mathematics, University

of Ljubljana, Jadranska 19, 61 111, Lubljana, Slovenia, 1993.

[24] B. tlendrickson and R. Leland, The Ch, aco User's Guide:, Sandia National Labora-

tories, Albuquerque, NM 87815, 199:3.

[25] --, A multilevel algorithm for partitioning graphs, Tech. Report SAND 93-0074,

Sandia National Laboratories, Albuquerque, NM, 1993.

[26] --, ._1_ improved spectral graph partitioning algorithm for mapping parallel com-

putations, SIAM J. Sci. Comput., 16 (1995), pp. 452-469.

[27] M. Juvan and B. Mohar, Laplace eigenvalues and bandwidth-type invariants of

graphs. Preprint, Department of Mathematics, University of Ljubljana, Jadran-

ska 19, 61 111, Lubljana, Slovenia, 1990.

[28] --. Optimal linear labelings and eigenvalues of graphs, Discr. Appl. Math., 36

(1992), pp. 153 168.

[29] J. G. Lewis, Implementations of the Gibbs-Poole-Stockmeyer and Gibbs-King algo-

rithms, ACM Trans. on Math. Soft., 8 (1982), pp. 180-189.

[30] Y. Lin and J. Yuan, Minimum profile: of grid networks in structure' analysis.

Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan

450052, People's Republic of China, 1993.

3O

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

--, Profile minimization problem for matrices and graphs. Preprint, Department

of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Repub-

lic of China, 1993.

J. W-H. Liu, A generalized envelope method for sparse factorization by 7vws, Tech.

Report CS-88-09, Department of Computer Science, York University, 1988.

J. W-H. Liu and A. H. Sherman, Comparative analysis of the Cuthill-Mckee a1_d

the reverse CuthilI-Mckee ordering algorithms for sparse matrices, SIAM J. Numer.

Anal., 13 (1976), pp. 198-213.

G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh parti-

tioning, in Graph Theory and Sparse Matrix Computation, A. George, J.R. Gilbert,

and J.W.H. Liu, eds., The IMA '_%lumes in Mathematics and its Applications, 56,

Springer Verlag, pp. 57-84.

G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee, Node and element

resequencing using the: Laplacian of a finite dement graph, Part 1, International

Journal for Numerical Methods in Engineering, 37 (1994), pp. 1511 1530.

--, Node: and element resequeT_cin 9 using the Laplacian of a finite element graph,

Part II, International Journal for Numerical Methods in Engineering, 37 (1994),

pp. 1531 1555.

A. Pothen, H. D. Simon, and K. P. Liou, Partitioning sparse: matrices with eigen-

vectors of graphs, SIAM 3. Matrix Anal. Appl., 11 (1990), pp. 430-4,52.

A. Pothen, It. D. Simon, and L. Wang, Spectral nested dissection, Tech. Report

CS-92-01, Computer Science, Pennsylvania State University, University Park, PA,
1992.

S. W. Sloau. :t_ algorithm for" profile aTtd wavefront reduction of sparse matrices,

lnternalional .lournal for Numerical Methods in Engineering, 23 (1986), pp. 239-
251.

L. Wang, ,5'p_clra/ ._sl_d Dissections, PhD thesis, The Pennsylvania State Univer-

sity, 1994.

A Time Complexity

In this Appendix we analyze the computational complexity of the two Sloan implemen-

tations. The analysis has the interesting feature that the time complexity depends on

the maximum wavefront size, a quantity related to the mean square wavefront that the

algorithm is seeking to reduce. Nevertheless, it is possible to get a priori complexity

31

bounds for problems with good separators. The results clearly show the overwhelm-
ing superiority of the heap implementation; an analysisof the complexity of the Sloan
algorithm is not availablein earlier publishedwork.

The major computational differencelies in the implementationof the priority queue
(seeSection3.2). We call these two implementations ArragSIoan and HeapSloaT_ accord-

ing to the data structure used to implement the queue.

For tile array, the operations delete (), insert (), and increment_priority() are

all O(1) operations, but the max_priority() operation (finding the vertex with the

maximum priority) is O(rn), where rn is the size of the queue. All operations on the

binary heap are O(log m) except max_priority(), which is O(1).

To continue with our analysis, we will refer to the algorithm as shown in Figure 4. It

is immediately clear that the function far neighbors() (lines 26--29) is O(deg(j)) for

ArraySloan. We can bound this by A = maxl<i<n(deg(i)). Similarly, far_neighbors ()

for HeapSloan is O(A • log m), where rn is the maximum size of the priority queue.

The Sloan function (lines 1 25) has three loops: the initialization loop (lines 1-4),

the outer ordering loop (lines 6-25), and the inner ordering loop (lines 9-23). The

initialization loop is the same for either implementation, and is easily seen to require

O(IEI) time.

Consider now the ArraySloan implementation. For each step of the outermost loop

starting at line 6, it must find and remove the vertex of maximum priority, requiring

O(m) time. The inner loop is executed at most A times. The worst case for the inner

loop is when the priority is incremented and the far_neighbors routine is called, and

this requires O(A) time. Thus the worst case running time for the ordering loop is

O(ll" I • (,,, + Ai)). For the entire algorithm it is O(IVI * ('" + a _) + IEI).

For the HeapSloan implementation, at each step of the outermost loop starting at

line 6, the algorithm must delete the vertex of maximum priority, and then rebuild the

heap: this takes O(logm) time. The inner loop is executed at most A times. The

worst case for the inner loop is when the priority is incremented and the far_neighbors

fimction is called. This time is O(A. logm). The worst case time complexity for the

ordering loop of HeapSloan is thus O(VI * Ai* logm). For the entire algorithm it is

o(1 1, -x • log,,, + IEI).
These bounds can be simplified further. The maximum size of the queue can be

bounded by the smaller of (1) the product of the maximum wavefront of the reordered

graph and the maximum degree, and (2) the number of vertices n. Then the com-

_ . eplexitv of ArravSloan is O([I"[* _* maxwf), while the complexity of H apSloan is

O(lll * _ * log(maxwf, _)). If we consider degree-bounded graphs, as finite element

or finite difference meshes tend to be, then the ArraySloan implementation has time

complexity O([I I * maxwf 4-IEI), while the time complexity of the HeapSloan imple-

mentation is O(II'] * log(maxwf)+ IEI).
These bounds have the unsatisfactory property that they depend on the maximum

wavefi'ont, a quantity that the algorithm seeks to compute and to reduce. However, it

is possible to remove this dependence from the bounds for important classes of finite

element meshes, as we illustrate now.

The class of d-dimensional overlap graphs (where d >__2) whose degrees are bounded

includes finite element graphs with bounded aspect ratios embedded in d dimensions and

all planar graphs [34]. Overlap graphs have O(n (e-1)/d) separators that split the graph

into two parts with the ratio of their sizes at most (d+ 1)/(d+ 2). Hence the maximum

32

wavefront can be bounded by O(rt (d-1)/d) for a modified nested dissection ordering that

orders one part first, then the separator, and finally the second part. The Sloan and

other envelope-reducing algorithms tend to do better than this modified nested dissection

ordering, so we can assume that the maxinmm wavefront for the Sloan algorithm is also

bounded by this bound.

With the above assumption, we can conclude that the HeapSloan implementation

requires O(n log n) time while the ArraySloan implementation requires O(fl (2d-1)/d) time

for a d-dimensional overlap graph. For a planar mesh (d = 2), the ArraySloan implemen-

tation requires O(na/2)-time, while for a three dimensional mesh with bounded aspect

ratios (d = 3), its time complexity is O(nS/a).

33

Form Approved
REPORT DOCUMENTATION PAGE OMBNo 0704-0188

Publicreportingburdenfor this collectionof informationisestimatedto average1 hourperresponse,includingthe timefor reviewinginstructions,searching existingdata sources,
gathering andmaintaining the dataneeded,andcompletingandreviewingthe collectionof information.Sendcommentsregardingthis burdenestimateor anyother aspectof this
collectionof information,includingsuggestionsfor reducingthisburden,to WashingtonHeadquartersServices,Directorate for InformationOperationsandReports, 12[S Jefferson
Davis Highway,Suite 1204, Arlington,VA 22202 4302, andto the Officeof Managementand Budget,PaperworkReductionProject {0704-0188), Washington,DC 20503

1. AGENCY USE ONLY(Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1997 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Two Improved Algorithms for Envelope and Wavefront Reduction

6. AUTHOR(S)

Gary Kumfert

Alex Pothen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8, PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-33

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201714

ICASE Report No. 97-33

II. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

'lb appear in BIT, 1997

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

Subject. Category 60,61

13. ABSTRACT (Maximum 200 words)

Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront

are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and

Scott: we describe enhancentents to the Sloan algorithm that. improve its quality and reduce its run time. Our test

problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the

weights in the Sloan algorithnt. We describe an efficient O n log r_ + m time implementation of the Sloan algorithm,

w here , is i he num ber of rows (vert ices), and m is the nu tuber of nonzeros (edges). On a collection of test problems,

the improved Sloan algorithm required, on the average, only twice the time required by the simpler Reverse Cuthill-

McKee algorithnl while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid

that combines a spectral algorithm for envelope and wavefront reduction with a refnement step that uses a modified

Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the

Sloan algorithn! at the cost. of greater running times. We illustrate how these reductions translate into tangible

benefits for frontal Cholesky factorization and incomplete factorization preconditioning.

14. SUBJECT TERMS

envelope reduction, Laplacian matrices reordering algorithms, spectral methods, Sloan

Algorithm, sparse matrices, wavefront reduction

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

35

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Farm 298(Rev. 2-89)
Prescribedby ANSI Std Z39-18
298 102

