
©

©

o

©
C2

NASA-CR-20_180

/d/-r

DEPARTMENT OF AEROSPACE ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529-0247

Research in Distributed Real - Time Systems

By

Dr. R. Mukkamala, Principal Investigator

Summary Report (1996-97)

For the period ending July, 1997

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Attn: Joseph Murray, Mail Stop 126

Hampton Virginia, 23681-0001

Under

Grant NAGI - 1114

Robert W. Wills, Technical Monitor

July 1997

DEPARTMENT OF AEROSPACE ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529-0247

Research in Distributed Real - Time Systems

By

Dr. R. Mukkamala, Principal Investigator

Summary Report (1996-97)

For the period ending July, 1997

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Attn: Joseph Murray, Mail Stop 126

Hampton Virginia, 23681-0001

Under

Grant NAG1 - 1114

Robert W. Wills, Technical Monitor

Submitted by the

Old Dominion University Research Foundation

P.O. Box 6396

Norfolk, VA 23508-0369

V
July 1997

Research inDistributedReal-Time Systems

R. Mukkamala

Computer Science Department

Old Dominion University, Norfolk VA 23529-0162

Summary Report (1996-97) and Request for Renewal (1997-98)

Abstract

This document summarizes the progress we have made on our

study of issues concerning the schedulability of real-time systems.

Our study has produced several results in the scalability issues of dis-

tributed real-time systems. In particular, we have used our techniques

to resolve schedulability issues in distributed systems with end-to-end

requirements. During the next year (1997-98), we propose to extend

the current work to address the modeling and workload characteriza-

tion issues in distributed real-time systems. In particular, we propose

to investigate the effect of different workload models and component

models on the design and the subsequent performance of distributed

real-time systems.

1 Introduction

The stringent demands to guarantee task deadlines in real-time sys-

terns have motivated both practitioners and researchers to look ways

to analyze systems prior to run-time. In our study, a new perspec-

tive of analyzing real-time systems that can guarantee meeting the

deadline guarantees as well as qualify the guarantees. We express

the qualification of the deadline guarantees through a scaling factor.

In simple terms, the scalability factor enables one to decide by how

much the execution time of each of the subtasks in a distributed task

be increased still retaining the deadline meeting guarantees.

In this work,wehavesolvedseveralschedulingproblemsusingthe
scalabilityfactor. Followingis a summaryof the results.The details
of the workarein the appendix[1,2, 3].

2 Summary of Work done during 1996-
97

The results from our work on scalability based admission control [3]
can be summarized as follows:

• Two heuristics were developed using scalability factor. Heuristic

1, referred to as R, uses non-optimal low-cost computation of the

scalability factors. Heuristic 2, referred to as S, uses an optimal

computation of the scalability factors.

• For low utilizations, we observe that both heuristics have similar

admissibility. Given that R is less expensive than S, we recom-
mend that the former be used under low utilizations.

• For a given value of number of channels amd a given tightness

of the deadlines, we observe that the admissibility of R falls

abruptly beyond a certain utilization factor. So R should be

used only when the utilization is lower than this bound.

• The performance of S, however, degrades gracefully beyond the

utilization bound. Hence, this has a better resilience to utiliza-
tion that R.

• As the number of channels increases, the success of heuristic S

improves compared to R.

• S has better performance with respect to rejecting inadmissible

channels compared to R. Thus S is to be preferred when the cost

of accepting inadmissible channels is high.

The results from our work on scalability in real-time systems with

end-to-end requirements [1] has the following conclusions:

• We have identified several issues of concern that researchers and

practitioners face during the design, development, and mainte-

nance of complex real-time systems.

• Wehaveshownthat the questionsposedby theseissuescanbe
formulatedfrom two viewpoints: componentchangesand task
changes.

• We reducedthe abovetwo problemsto two fundamentalprob-
lems,viz., a schedulabilityof a task-setwith arrival timesand
its scalability.

• Wehavepresentedoptimalsolutionsto the two problems.

The PhDthesis[2]summarizesmuchof theworkdoneduring the
last four years. It illustrates in a great detail the resultsobtained
in scalabilityof uniprocessorsystems,schedulabilityof task-setswith
specifiedarrival times,andthescalabilityin distributedsystemswith
end-to-enddeadlines.Thetechniquesdevelopedhavebeenillustrated
by taking data from OlympusAttitude and Orbital ControlSystem.
Thesignificantcontributionsof the thesisaresummarizedasfollows.

• We have addressed the need to handle complexity in real-time

systems in all phases, viz,. design, development, and mainte-

nance.

• We have presented a novel perspective to analyzing real-time

systems that in addition to ascertaining the ability of a system

to meet task deadlines also qualifies these guarantees.

• The need to qualify guarantees was shown to arise from several

scenarios such as scaling application requirements, inaccuracies

in task execution time estimations, and porting applications from

one platform to another.

• We presented an application of the scaling factor problem in the

context of real-time communications. We considered the problem
of admission control of real-time channels.

3 Proposed Work During 1997-98

In the 1997-98 period, for which we are now seeking funding, we pro-

pose to extend our current research on the following issues.

1. How does component modeling effect the end-to-end scheduling

in distributed real-time systems? In particular, we wish to look

at the micro elements such as the memory/cache modeling and

the macroelementssuchas the networks. As a result of this
work, weshouldhavea better understandingof the impactof
modelingon the designof thesesystems.Doescomplexmodels
meanbetter designs?

2. Howdoestraffic characterizationimpactthedesignandanalysis
of distributedreal-timesystems?This issuehascloserelation-
ship with the componentmodelingdiscussedabove.For exam-
ple, if weareconsideringthe memory/cachesystem,what are
differenttraffic characterizationsof the incomingreferencepat-
tern? Doesthis characterizationgreatly affect the designand
analysiswhereit is often used?Onceagain,weexpectto de-
velopseveraltrafficmodelsat differentcomponents(or sources)
in a distributedsystem. We shallevaluatetheir suitability in
differentapplications.

3. Sincejitter in responsetime is of particular concernto several
real-timeapplicationssuchasmultimediaand control applica-
tions, howaccuratelycan the end-to-endjitter be predictedor
controlled?Weareespeciallyinterestedin usingthis informa-
tion at the designstage.This stepwill usethe resultsfrom the
earliertwo steps.

References

[1] R. Yerraballi and R. Mukkamala, "Scalability in real-time systems

with end-to-end requirements," Journal of Systems Architecture,
Vol. 42, pp. 409-429, 1996.

[2] R. Yerraballi, "Scalability in Real-time Systems," PhD thesis, Old

Dominion University, 1996.

[3] R. Yerraballi and R. Mukkamala, "Scalability based admission

control of real-time channels," 17th [EEE Real-time Systems Sym-
posium, pp. 39-42, December 1996.

4

Reprinted from

JOURNAL OF
SYSTEMS
ARCHITECTURE

Journal of Systems Architecture 42 (1996) 409-429

Scalability in real-time systems with end-to-end requirements

Ramesh YerrabaUi L. Ravi Mukkamalla b

Department of Computer Science. Midwestern State Uniuersity, 3410 Taft Boulevard. Wichita-Falls, TX 76308-2099. USA

a Department of Computer Science, Old Dominion Unioersity. Norfolk. VA 23529-0162, USA

ELSEVIER

JOURNAL OF
SYSTEMS
ARCHITECTURE

The EUROMICRO Journal

Editors-in-chief

MARIAGIOVANNA SAMI, Politecnico di Milano, Diparti-
mento di Elettronica e Informazione, 1-20133 Milano,

Italy. Email: sami@elet.polimi.it

LUTZ R_CHTER, Universit_it Z0rich-lrchel, Institut fOr
Informatik, Winterthurerstrasse 190, CH-8057 Z,';rich,
Switzerland. Emaih richter@ifi.unizh.ch

Subject area editors

Computer architecture
ARNDT BODE, Technische Universit_t M0nchen, Institut for Informatik, Arcisstrasse 21, Postfach 202420, D-80333

M0nchen, Germany. Emaih bode@informatik.tu-muenchen.de

Computer arithmetics and DSP architectures
EARL SWARTZLANDER. University of Texas at Austin, Department of Electrical and Computer Engineering, Austin,

TX 78712, USA. Email: e.swartzlander@computer.org

Databases

CHRISTINE COLLET, LSR-IMAG, Campus, F-38041 Grenoble Cedex, France. Email: christine.collet@imag.fr

High-level synthesis and hardwarHoftware co-design
GIOVANNI DE MICHEl.I, Stanford University, Center for Integrated Systems, Room 129, Stanford, CA 94305-4070, USA.

Email: nanni@galUec.stanford.edu

Multimedia systems
MARTIN DORST, Institut for Informatik, Universit_it Z0rich, Winterthurerstral3e 190, CH-8057 Z0rich, Switzedand. Email:

mduerst@ifl.unizh.ch

Networking and communications
MARco AJMONE-MARSAN, Politecnico di Todno, Dipartimento di Elettronica, c.so Duca degli Abruzzi 24, 10129 Torino,

Italy. Ema/l: ajmone@polito.it

Parallel and dLstributed systems

PETER MILLIGAN, The Queen's University of Belfast, School of Electrical Engineering and Computer Science, Department
of Computer Science, Belfast BT7 1NN, United Kingdom. Email: p.milligan@qub.ac.uk
FF..RENCVAJOA, KFKI Research Institute for Measurement and Computing Technique, Department MSZKI, P.O. Box 49,

1525 Budapest 114, Hungary. Email: vajda@iff.kfkLhu
STEPHEN WINTER, University of Westminster, 115 New Cavendish Street, London, WtM 8JS, United Kingdom. Email:
wintersc_estminster.ac.uk

Realtime and embedded systems
NELLO SCAR_BO'R'OLO, Universit_t degli Studi di Modena, Dipartimento di Scienze dell'lngegneda, Via Campi 213,

1-41100 Modena, Italy. Email: scarabot@dsi.unimo.it

Robotics

JOHN BLLINGSLEY, University of Southern Queensland, Toowoomba, QLD 4350, Australia. Email: billings@zeus.

usq.edu.au

Software engineering
GERHARD CHRCX,IST,Johannes Kepler Universit;lt linz, Institut for Systemwissenschaften, Abt. for Systemtechnik und

Automation, Altenbergerstrasse 69, A-4040 Unz, Austria. Email: chroust@sea.uni-linz.ac.at

Standing special section editors

Communication systems and networks
MALCOLM TAYLOR, University of Liverpool, Department of Computer Science, Chadwick Building, P.O. Box 147, Liverpool

L69 3BX, United Kingdom. Email: m.j.taylor@compsci.liverpool.ac.uk

VHDL

DONATELLA SCIUTO, Poiitecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32,

20133 Milano, Italy. Email: sciuto@elet.polimi.it

Editorial office

ENZ_ CAPu'ro, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza L. da Vinci 32, 1-20133 Milano,

Italy. Emaih caputo@elet.polimi.it

JOURNAL OF

SYSTEMS

ARCHITECTURE

The EUROMICRO Journal

1. AIMS AND SCOPE OF THE JOURNAL

Journal of Systems Architecture is a journal covering all
aspects of systems architecture design and implemen-

tation. It ranges from the microarchitecture level via the
system software level up to the application-specific

architecture level. Aspects such as dedicated systems,
high-performance systems, parallel and distributed
architectures as well as additional subjects in the com-

puter and systems architecture area will fall within the

scope of this journal.
Hardware as well as software design techniques, tools,

and performance evaluation techniques will be dis-
cussed insofar as they are central to the digital archi-

tecture design process. Technology will not be a main
focus, but its use and relevance to particular designs
will be.

2. CONFERENCE REPORTS AND CALENDAR OF
EVENTS

Program chairmen and organizers of major internatio-
nal conferences who wish their conference to be fea-

tured in this journal, are invited to contact: Ms. Eefke
Smit, Elsevier Science B.V., Mathematics, Computer

Science and Cognitive Science Section, P.O. Box 103,
1000 AC Amsterdam, The Netherlands.

Tel.: 31-20-4852473, fax: 31-20-4852616, email:
e.smit@elsevier.nl

MEMBERSHIP APPLICATION FORM
Send a copy of this form to:

EUROMICRO
P.O. Box 2346

NL-7301 EA Apeldoorn
The Netherlands

Tel. (31) (55) 5795 503

Fax (31) (55) 5795 509
Email: euromicro@standby.nl

I want to become a personal member of EUROMICRO
for 1996 at Dfl. 125.00.

Name:

Address:

Country/:
Date:

Signature:

Payment enclosed _ Please bill me I-I

3. AUTHOR INFORMATION

Contributions (written in English) should be sent in four

copies to one of the Editors-in-chief. Manuscripts must
contain a compact summary (maximally 150 words)
and the full postal address (including email/fax) of all

authors. Electronic submissions (accompanied by a
paper printout and the original figures) are welcome.
The Editors-in.chief will arrange that the paper is trans-

mitted to the appropriate sub-editor who will then begin
the review process. A style manual for prospective
authors is available on request.
Authors' benefits:

1. 30% discount on all book publications of North-
Holland.

2. 50 reprints are provided free of charge to the princi-

pal author of each paper published.

4. THE EUROMICRO ASSOCIATION

Membership of the Euromicro Association includes a

personal subscription to the journal. The membership
fee for 1996 is Off. 125. Membership subscriptions are

for persona/use only, and should not be made avail-
able to libraries or circulated within institutions (e.g.
commercial companies).

All persons active in the field of systems architecture
are strongly encouraged to become members of
Euromicro or else contribute to the journal.

Membership benefits include a personal subscription to

the journal, reduced fees at the yearly Euromicro sym-
posia and other professional events within the Euro-

pean countries. In addition, Euromicro members will
receive timely announcements of events of interest to
them in their country. To receive a free information
leaflet about the Euromicro Association or to become a

member, write directly to: EUROMICRO, P.O. Box
2346, NL-7301 EA Apeldoorn, The Netherlands, or else

contact any of the editors.

5. PUBUCATION INFORMATION

JOURNAL OF SYSTEMS ARCHITECTURE (ISSN

1383-7621/0165-6074). For 1996 volume 42 is sched-

uled for publication.
Subscription prices are available upon request from the

publisher. Subscriptions are accepted on a prepaid
basis only and are entered on a calendar year basis.
Issues are sent by surface mail except to the following

countries where air delivery via SAL is ensured:

Argentina, Australia, Brazil, Canada, Hong Kong, India,

Israel, Japan, Malaysia, Mexico, New Zealand, Paki-
stan, PR China, Singapore, South Africa, South Korea,
Taiwan, Thailand, USA. For all other countries airmail
rates are available upon request.

Claims for missing issues must be made within six

months of our publication (mailing) date.
Please address all your requests regarding orders and

subscription queries to: Elsevier Science B.V., Custo-

mer Support Department, P.O. Box 211, 1000 AE
Amsterdam, The Netherlands. Fax: 31-20-4853432.

G The paper used in this pu_mticationmeets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Pager).
PuOlishea 10 times a year 0165-6074i96/$15.00 Printed in The Netherlands

JOURNAL OFSYSTEMS
ARCHITECTURE

ELSEVIER Journal of Systems Architecture 42 (1996) 409-429

Scalability in real-time systems with end-to-end requirements

Ramesh Yerraballi a,., Ravi Mukkamalla b

• Department of Computer Science, Midwestern State Unioersity, 3410 Ta_ Bouleuard, Wichita-Falls, TX 76308-2099, USA

b Department of Computer Science. Old Dominion University, Norfolk. VA 23529-0162, USA

Abstract

The stringent demands to guarantee task deadlines in real-time systems have motivated both practitioners and researchers

to look at ways to analyze systems prior to run-time. This paper reports a new perspective of analyzing real-time systems

that in addition to ascertaining the ability of a system to meet task deadlines also qualifies these guarantees. The guarantees

are qualified by a measure (called the sealing factor) of the system's ability to continue to provide these guarantees under

possible changes to the tasks. This measure is shown to have many applications in the design (task execution time

estimation), development (portability and fault tolerance) and maintenance (scalability) of real-time systems. The derivation

of this measure in end-to-end systems requires that we solve two fundamental problems - the uni-processor schedulability
problem and the uni-processor scalability problem. The uni-processor sehedulability problem involves finding whether a set

of tasks (with arbitrary non-zero arrival times) will meet its deadlines. The scalability problem seeks to find the maximum

scaling factor with which the execution times of a set of tasks can be scaled without invalidating its sehedulability. Optimal

solutions to these two fundamental problems are presented.

Keywords: Real-time systems; Schedulability; Scalability; End-to-end; Distributed systems

1. Introduction

A real-time system can be characterized by two

important components: the environment in which the

system is operating and the computer system that

controls/monitors the environment. The main issues

in the design of the first component concern interfac-

• Corresponding author. Email: ramesh@abacus.mwsu.edu

t This work is sponsored by a grant from NASA (NAG-I-I 114).

ing with the environment [11]. Solutions in this area

are primarily dictated by the technology. There are

many issues of concern in the design of the second

component, the computer system. The computer sys-

tem involves both the hardware and the software that

runs on them. The choice of hardware is dictated

primarily by such parameters as cost/availability

and the application at hand. The primary issue in the

software design is not so much, the particular choice

of language or programming paradigm as it is the

way the various tasks are scheduled.

1383-7621/0165-6074/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.
PII S 1383-7621(96)0003 1-8

R. Yerraballi, R. Mukkamalla /Journal of Systems Architecture 42 (1996) 409-429 411

are based on the critical instant argument, which

defines a worst-case condition for a task. According

to this argument, a task suffers its worst completion

time when it has to compete for the processor with

every higher priority task in the system. That is,

when it arrives at a time when all other higher

priority tasks also arrive. This instant is called the

critical instant. Accordingly, it is sufficient to look at

the completion time of this one instance in order to

ascertain the tasks schedulability. But does this com-

putation really give us the worst-case completion

time of a task? In other words given a task's charac-

teristics, will it ever suffer this completion in reality?

Notice that the critical instant argument clearly ig-
nores the arrival information of tasks and makes the

assumption that for a given arrival (relative to other

tasks) of a task, sooner or later (one of its instances)
it will meet a critical instant. It can be seen however

that, this is not necessarily true and the actual worst-

case completion time of a task can be less than or

equal to the completion time computed by the criti-

cal instant assumption. Therefore, ignoring the ar-

rival times of tasks and using the critical instant

argument leads to a pessimistic computation.
Can we tolerate the pessimism inherent to this

computation? The answer to this question depends

on the environment under consideration, viz., a uni-

processor or a distributed (more generally end-to-end)

system. In uni-processor systems, depending on the

assumptions (task independence for example) made,

practitioners [10] have argued that the cost of finding

a more precise measure of the task completion time
far oUtweighs the benefit gained (say, in terms of
saved resource utilization). However, there are con-

vincing arguments to the contrary by Tindell in [7].

He discusses scenarios that show the importance of

considering the task arrival information in schedula-

bility analysis. We believe that the importance can

be really felt in end-to-end systems and not so much

in uni-processor systems.

Recall from the previous section that the schedu-

lability of a task in an end-to-end system can be

reduced to a sequence of uni-processor schedulabil-

ity problems provided we are able to compute the

characteristics (period and arrival time) of the sub-
tasks. Let us assume for now that we have a mecha-

nism to compute the sub-task periodicities (the
mechanism will be described in detail later). We do

not require the arrival time information by the criti-

cal instant argument, since we are going to ignore it

anyway. We can use the critical instant argument

(ignoring the arrival time aik) to find the worst case

completion times of all sub-tasks T, k (! < k < m).

Clearly, the worst case completion time of the task T,
is given by the sum of the worst-case completion

times computed above. Observe that we have a

cumulative measure of pessimistic computations that

is bound to be more pessimistic.

Before we give a description of the problem we

are interested in addressing in this paper, we would

like to motivate the reader by briefly discussing the

source of the problem. In the previous section we
mentioned that the kinds of changes (that interest us)

that systems undergo manifest themselves as task

execution time changes. A brief discussion of these

changes follows.

The task parameters, deadline and periodicity are

dictated primarily by the environment. The arrival
time of a task is governed by the environment and

the inter-dependence between the tasks. The execu-

tion time of a task on the other hand is governed
among other things by: (I) the programming lan-

guage chosen, (2) the compiler, (3) the operating

system, and (4) the processor architecture (e.g.,

pipeline, cache). Therefore, finding the execution
times of tasks is complex and involved. In most

cases it is almost impossible to compute a determin-
istic measure of the execution time of a task. Most
research efforts use the worst-case task execution

time and not the mean execution time. While this

choice can be justified by the fact that the analysis is
based on the worst-case scenario, it nevertheless

results in an over-design of the system. Also, this

assumption can result in poor resource utilization.

R. Yerraballi. R. Mukkamalla /Journal of Systems Architecture 42 (1996) 409-429 41

• Arrival time of the task, a i.

• The periodicity of the task, p_.

• The deadline of the task, d_. The deadline is

assumed to be less than or equal to the period

(di < p_). In other words, an instance of a task has

to be completed before its next instance is ready.
• The execution times of the m sub-tasks (corre-

sponding to the m components in the system),

T i, ,Ti2 To,, : eit,eie e.,. In this model we

assume that a component is used only once by a

sub-task; relaxing this assumption complicates the

model without adding any quality to the results

that can be derived. If any task Tj does not have a
sub-task on a particular component R k then, the

corresponding sub-task's (T_t) execution time ejk,
is zero.

• Priority of task, Pr_. We assume that all sub-tasks

belonging to a task inherit the tasks priority. This
assumption can be easily relaxed without affect-

ing the results reported in this paper. For conve-

nience in representation, we assume that the tasks

are ordered (indexed) according to their priority,

i.e., T m is the highest priority task and the priority
decreases with the index.

The above notation can also be used to capture a

task-set in a single component system, for example,

the uni-processor system. If we restrict the number

of components, m to be 1, we have each end-to-end

task T_ comprising of a single sub-task T_n. Further

the other parameters, arrival time, period and dead-
line of the task are also those of the sub-task. In such

a scenario we drop the subscript describing the com-

ponent.

4. Problem statement and description

The problem we are interested in solving is the

"Scalability of task-sets in end-to-end real-time sys-

tems". The problem can be looked at from two
different viewpoints: (1) The first viewpoint stems

from assuming the scaling to occur as a result of;

change in one or more of the components in thq

system; and (2) the second viewpoint stems fron

assuming the scaling to occur as a result of a chang_
in the functionality of some or all of the sub-tasks il

the system.

4.1. Component change

A change in a component R r can result in a gait
(no adverse affect on schedulability) or a loss (ad-

versely affects schedulability) in the speed of pro

cessing for the sub-tasks running on it. The problert
of interest therefore is, to find the maximum facto_

by which all the sub-tasks on a particular componen

R r can be scaled such that the schedulability of the

task-set (comprising all n tasks that is) is unaffected

In the following formulation we assume that ,_

single component is undergoing a change. We car

however, generalize it to a sub-set of components
The problem of scaling occurring as a result of

component change can now be fore,ally posed as:

Problem I. Given a task-set T of n end-to-end task_

executing in a system of m, (m > 1), components,

find the optimal scaling factor I/sfc (corresponding

to a maximum sfc) with which the processing speed

of a given component r can be scaled (down),

without affecting the schedulability of the task-set.

In other words, we are interested in the maximal

component change the taskset can survive. The rea-

son for representing the scaling factor as a reciprocal

is obvious once we realize that a lowering in pro-

cessing speed of a component will reflect as an
increase in the execution times of sub-tasks running

on the component. For example, if the speed of the

component is S (instructions per unit time) then an

execution time requirement of a sub-task _k being

e_k (time units) implies that the number of instruc-

tions that the sub-task requires to execute are S × e_k.

If the processing speed is scaled down by 1/sfc

R. Yerraballi, R. Mukkamalla / Journal of Systems Architecture 42 (I 996) 409-429 415

• The periodicity of all sub-tasks T_k, (j<: i), which
are of higher priority than T_k and are running on

the same component R k.

Therefore, we need a mechanism by which we

can derive these two parameters (since these are not

given a priori). Note that, only the first sub-task of

any task is truly periodic. The arrivals of the consec-

utive instances of any sub-task T_, (1 < i < n; 1 < k
< m), are dictated by the completion times of the

sub-task preceding it, i.e., T_.__ i- These completions
are obviously non-periodic and so are the arrivals of

sub-task T,k. We however can impose a periodicity
on these sub-tasks by a proper justification. The

phase adjustment mechanism [3], is one such mecha-
nism that derives sub-task arrival times and also their

pcriodicities. The term phase here is used to denote
arrival time.

Imposing a period on the arrivals (of consecutive

instances that is) of a sub-task Ta, (1 < k g m),

implies that, even if the preceding sub-task T_.__
does finish at a particular time 4 (say Fi.k_ i), the

sub-task T_k will not be ready immediately. A finite

amount of time (say Wi. t_ i -F_.k-i) has to elapse

before the sub-task Ta is ready to execute. It is

necessary to limit this finite amount of wait time in
the sense that, if it is too large then it could hurt the

utilization of the component R k. On the other hand

this delay must be large enough to be able to accom-

modate all possible finish times (of its various in-

stances) of task T_.k_ i. Clearly, therefore, in the

limiting condition (delay _ 0) Wi. k_ t must be given
by the worst-case completion time of the sub-task

Ti,k- I"

An effect of this adjustment is that a sub-task T,k

will always be ready (or arrive) after a constant
amount of time from the arrival of the preceding

All references to time are relative to t = 0, unless otherwise

specified.

sub-task T,..k_ s- Therefore, knowing the arrival time
of the sub-task T, I, we can find the arrival of the

sub-task T,2, knowing which we can find the arrival

of T_3 and so on. It should be clear to the reader that
the above adjustment allows all sub-tasks belonging

to a task to inherit its period.

What the above adjustment has afforded us is, the

ability to treat each of the components indepen-

dently, provided we are able to find the worst-case

completion times W,k (Vi,k). Observe that we have

all the information about sub-tasks T, I (1 < i < n),

running on the first component, R t (that is, we have

their arrival times, periods and execution times).

Now the problem we wish to solve is finding the

worst-case completion times of these tasks. Once we

find these worst-case completion times we have all

the information about sub-tasks Ta, (1 < i < n), run-

ning on the second component, R 2 and so on. The

problem can be formally posed as:

Problem 4. Given a task-set T of n tasks executing

on a single component, find the worst-case comple-
tion times of all tasks in the task-set.

Now that we have a mechanism to test whether a

given task-set is schedulable, we have answered the

question of whether there exists a scaling factor as

defined by the two problems, Problem 1 and Prob-
lem 2. Clearly, if the tasks are so stringent that any
increase in the execution times of the sub-tasks

cannot be tolerated, then the scaling factors sfc (as

defined in Problem i) and sft (as defined in Problem

2) will both be equal to 1.0.
The end-to-end schedulability problem has been

reduced to m single component worst-case comple-

tion time computation problems and not m single

component schedulability problems. Therefore, we
cannot talk about extending a single component's

schedulability, unless we derive the sub-task dead-

lines. A major research issue in end-to-end schedul-

ing has been the derivation of sub-task deadlines.
Given an end-to-end task's deadline the problem of

R. Yerraballi, R. Mukkamalla / Journal of Systems Architecture 42 (1996) 409-429 417

arrivals), we can derive an alternate phasing A'
which has the characteristic that the arrival times

monotonically increase with the priority.

The following theorem is the basis for the ap-

proach.

Theorem 1. Given that the arrival times of tasks in a

task set are inverse monotonic with priority, the

worst-case response time instance of a task T_ be-

longs to the interval [a_,a I + LCM(Tj Ts)].

Proof. For task, Ts, the only tasks that it would have
to compete with, are the higher priority tasks

Tj,T 2 T_. We are therefore interested in finding

that point in time at which, the phasing of task T_
(given by a s +x_ × Ps, for the Xs-th instance) with

respect to other higher priority tasks is same as that

at time a s. Further, this point must be such that the

state of the scheduler must be same as it was at a i.

The relative phasing of task T/ with respect to the

task T_ can be captured as: Task T_ comes a_- a t
units of time after task T_. Assuming the existence of

a point where this phasing repeats, and further that

there are x I and x_ instances respectively of Tj and

Ti before this point, we have the following condi-
tion:

(ai+xiXp,)-(an +x xXp,)=a,-a,=_x tXp,

= x i x Pi.

We can derive similar conditions for task T_ other
tasks. The resultant condition is:

X I Xpl =X 2 Xp2 ---- ... =xiXpi-_" L,

where a_ + L is the desired point. Clearly the LCM

of p: is the solution for the above equation if we
assume integral values of Ps.

Next, we have to show that the state of the

scheduler with respect to the task T_ is the same at
both points a_ and a_ + L. We use the method of
mathematical induction to show this.

j m
at at + Pl at + xl.Pl

Ti..i

Ti

a(-i

a2 + x2.P2

al + x! .Pl

a2 + (x2 +l).p2

ai-I + xi-I -Pi-I

ai + xi -Pi

[= Ready Time[] Used Time

Fig. i. A task-set's execution between the start and L.

R. Yerraballi, R. Mukkamalla / Journal of Systems Architecture 42 (1996) 409-429 419

Algorithm 1

Arb to Iner

Begin{ Algorithm}

Input: A = {at,a 2..... a,,}, and Pl,P2 P_

Result: .4' = {dt,d z..... an}

Init: A' = A;

The first task arrival is unchanged.

for(i=2 ton) do

if (ai <di_,)

y---l;

while (ai + y × p_ < di_ I) do

y=y+ 1;
enddo

da = ai + y × pi;
endif

enddo

return A' ;

End{ Algorithm}.

be a2 + P2 which is 13. Now task T3's arrival time

a_ = 4 is less than d 2 = 13, therefore its new arrival

time aj's is a 3 + p, which is 20. Task 7"+ arrives at

a4 = 0 which is less than d 3 = 20, therefore its new
arrival time d 4 is a 4 + 2 × P4 which is 24. Now the
new arrival times of the tasks in the task set are

(d, = 5,d z = 13,d 3 = 20,d 4 = 24).

Before we discuss the mechanism in detail, it is

important to ascertain the relationship between the

original arrival pleasing and the modified arrival

phasing. Since the modified arrival pattern guaran-

tees the repetition of the task-set behavior, in order

to find the worst-case response time of any task, we

only have to look for its instances between its origi-

nal arrival time and the point at which the new

phasing repeats itself. The algorithm for the com-

plete mechanism follows:

Algorithm 2

We take an example (refer to Fig. 2) to demon-

strate the operation of the above algorithm. Consider

a task-set with four tasks (TI,T2,T3,T4), with the

following values for arrival times and periodicities:

(a I = 5,a 2 = 3,a 3 - 4,a 4 = 0), (Pl = 10,p2 = 10,P3
= 16,p4 = 12). The first task's arrival time remains

unchanged, however since the task T2's arrival is

before Tt's, its new arrival time, d2, is computed to

TI <....... _J
, , ,, . I I I
0 I I J • S l0 I_ 20 l_)4

I I = I°|

r_., i",': , I
o t 2)4 $ IO 15 20 _+J)4

It 2 I1' 2

P3
T) • I,.

, , *,| • • ,. |

• I l _ • s ll_ l_ 20 21+ so

II 3 • J

P4
T+ f,'-'"."." " _'.'.'/', ,

0 I I I + S IO i_ ;to Is
i 4 m' 4

Fig. 2. Conversion of arbitrary arrivals to increasing amvals:

Exmnple.

Begin(Algorithm}

Input: A = {at,a 2 a_}, and Pl,I ,...... P,

Find the modified arrival times, A', for tasks by

invoking the procedure Arb to_lncr;

repeat for each task T, in turn:

Find the completion times of all task instances

of Ti occurring in the interval a i, and d, +

LCM{Tj, j< i};
Find the maximum and report it as the worst-

ease completion time of the task T_;

Compare the worst-case completion time

against the deadline to see if T,. meets its
deadline;

End{ Algorithm}

We now consider an example (Table 1) task-set to

demonstrate the need for accommodating task ar-

rivals as opposed to adapting the critical instant

argument. In Table 1, the last two columns give
respectively the worst-case response times of the

tasks using the critical instant assumption (W c) and

our approach (W _). It is clear that the critical instant

R. Yerraballi. R. Mukkamalla / Journal of Systernz Architecture 42 (1996) 409-429 421

In the following, we give an algorithm to find the

optimal scaling factor when an arbitrary (RMS and

DMS being two instances) fixed priority assignment
is used. Before the details of the mechanism are

presented we would like to intuitively motivate the

idea behind it. We consider the case of scaling all

tasks (as opposed to a sub-set) to present the motiva-

tion. One approach would be to consider a succes-

sive approximation technique as taken by [10]. Incre-

mental factors are used to scale tasks and perform a

schedulability analysis to confirm if the increment is

acceptable. Clearly, such a technique would be ex-

pensive.

An alternative approach would be to incorporate

the scaling factor computation into the schedulability

test. This is the approach we have taken. The schedu-

lability test we use is the one proposed by Lehoczky

in [15]. The idea behind Lehoczky's schedulability

test is to ascertain the schedulability of each task in

turn starting from the highest priority task. The

schedulability of each task involves considering all

tasks that arc of higher priority than itself. Therefore,

the schedulability test of a task T_ can be interpreted

as follows: To ascertain whether task T_ will meet its

deadline while continuing to honor the timing re-
quirements of all higher priority tasks. Note that the

test does not consider whether the higher priority
task meets its deadline. It only makes sure that any

higher priority task will not wait for the processor

while a lower priority task is using it. In other words,

it ensures that in every p/(j < i) time units the task

corresponding task Tj would get e i units of the
processor's time. It is possible for example that a

higher priority task Tj gets its last unit of required

execution time between' dj and pj (note dj<pj;
1 < j < n), thus meeting its demand but not its dead-
line.

On the same lines our approach to finding the

scaling factor attempts to find the scaling factor for

each task in turn starting from the highest priority

task. The scaling factor (sf') obtained with respect

to a task T_ therefore guarantees that the task T,
would meet its deadline continuing to honor the

scaled (scaled by sf i) requirements of all higher
priority tasks. In other words, sf _ is the factor with

which the execution times of all tasks with priority

greater than Ti and including T,. can be scaled with-

out Ti missing its deadline even after accommodat-

ing all the scaled higher priority tasks. The required

scaling is then the minimum of all computed scaling

factors s_. A more detailed treatment of the solution
follows.

In the discussion above, we assumed that T = S in

order to simplify the explanation of the solution. In

this context we gave a definition of sf _ that needs a

slight refinement to adapt to the case that the set S is

tJi, f
U2I

W_t--casephasingforTi
(criticalimtant)

C0mplefion0fTi di

_U.I. 3.

UtR U2L U2R U3L U3R UkL UkR

I1 Maxkcd Unmarked=Used'lime ['] =UsedTtmc

Fig. 3. Task T,'s execution profile.

R. Yerraballi, R. Mukkamalla / Journal of Systems A rch#ecture 42 (] 996) 409-429 423

S is assumed to be sorted in the increasing order

of their priorities.

Assume that Th is the highest priority task in the
sub-set S.

Step 1: for (i=h; i< n; i + +) do

Step 1.1: Compute first approximation for the

completion time of task Ti' s first job:

c°mplo = _'S- I to t ej

Step 1.2: Calculate the next approximation for

completion time: complt÷ i = e_ + _s- ito;- 1

[complr/Pj| %
Step 13: if (compl,+ t > di)

then The job missed its deadline: Exit(-!);

Step 1.4: if (compll+ I _ c°mplt)

then we have not arrived at the completion

time of the task, so, goto Step 1.2;

Step 1.5: The completion time for the job is

compl,;
Step 1.6: Fit higher priority task instances that

would arrive between the points compl t and d_.

The scheduling points are U2t.,U_t Ukt.,

where, U,_- UmR- U.L, denotes the m-th used
time block (refer to Fig. 3).

Further we identify each used block as a sequence

of marked and unmarked sub-blocks where a

sub-block of block U. is marked (referred to as

U_, if it is the j-th marked sub-block of U_,) if it

belongs to the sub-set S and if its priority is

greater than that of task T_. Unmarked otherwise

Step 1.7: Compute the maximum possible scal-

ing factor sf : sf I -_ max i _ _,< k- i sf.
where

,;.: (,-., + -
I(,..,<,<

enddo

Step 2: sf = Minimum (sf i) Vi

Step 3: sf is the required optimal factor.

End{ Algorithm}.

7. Scaling In a single component system: With
arrivals

The following section describes a mechanism for

finding the scaling factor that incorporates the ar-

rivals of tasks. In order to simplify the presentation

we assume that the scaling factor we desire is a

common scaling factor for all tasks in the task-set.
The case of general scaling (sub-set scaling) can be

easily derived on the same lines. As we did when we
dealt with the problem of schedulability using arbi-

trary task arrivals in Section 5, we assume that the

arrival times of tasks are in increasing order of their

priorities. The important difference between the

treatment here and in the previous section, comes

from the fact that when we are finding the scaling

factor with respect to a particular task T_, we no

UI,LO UI,RU2.L U2._

di

Uk.I. Uk,R

t"7] =Used
Time

Fig. 4. Execution profile task T,'s first instance.

R. Yerraballi. R. Mukkamalla / Journal of Systems Architecture 42 (1996) 409-429 425

(U3.,- U2.L)/(U2 + Ui), it is possible that the
resultant factor does not scale U_ to occupy the

whole of the idle time between (UI.R,Uz.L), result-

ing in Uz being stretched beyond U3.z and conse-
quently the completion time being stretched be-

yond U3.z (we call this the unfavorable event for
this choice of scaling factor NFE2). Note that this

possibility has come up because the task T_ is not

ready to use the idle time between (Ui. R, UZ.L).

On the contrary, in the event that this factor

causes Uj to be scaled beyond the point U2.L (we
call this the favorable event for this choice of

scaling factor, FE2) then clearly the completion

time of task Ti will be within U3.z (in fact it will

be exactly U3.L).

We note that there are two possibilities (or events)
in favor of each of the above choices and two that

are not in favor. However, we will show that the true

answer lies in finding the minimum of these two

possible factors. That is, picking the minimum of
these two factors as the solution leads us to realize

that the unfavorable possibility is actually not possi-

ble. An explanation follows.

We have two possibilities to consider:.

• f<f': The favorable event (FEI) corresponding

to this choice of the factor is valid in giving us
the desired result. However, we have to show that

unfavorable event, NFEI will not occur. We show

this by contradiction: Let us say U_ gets scaled

beyond the point U2.L (i.e., the event NFEI does
occur), f', being the larger of the two, using it as

the scaling factor would scale U I beyond U2.L
too. But, since f has been derived to stretch both

U_ and U2 over (0,U3.L), if it does stretch U t into
the start of Uz, then there would be no idle time

between the points (0,U3.L). This implies that
f' <f because, the bumped time 7, say 8 (=f' ×

7 The excess scaled time that was carried from scaling UL

beyond the point U2, L.

U I -U2,L) and the scaled U2 (=f'× U 2 -(32)
together fitted within the interval between

(U2.R,U2.L), whereas f scaled only U 2 to occupy
the same interval. The conclusion that, f' <f

contradicts our assumption that f is the smaller of
the two factors. Hence the result.

f>f': The favorable event (FE2) corresponding

to this choice of the factor is valid in giving us
the desired result. However, we have to show that

unfavorable event, NFE2 will not occur. We show

this by contradiction: Let us say U_ does not get

Scaled beyond the point Uz. z when scaled by f'

(i.e., the event NFE2 does occur). Since, f>f',

U 2 does not go beyond U3.z when scaled by f'.
However, the very definition of NFE2 says that f

stretches U2 beyond U3.L. This is a contradiction.
Hence the result.

Observe that the favorable events in both choices

of scaling factors achieve the following: The comple-

tion time of the task T_ is stretched IL)the point U3. L.
We now extend this to the case that the number of

blocks of execution prior to the arrival of the first

instance task T_ is more than one. In fact, we wish to

extend this argument to the case that there are q - I
blocks of execution before the arrival of the first

instance of T_. The generalization is straightforward.
If there is more than one block of execution then the

scenario would be as in Fig. 4. The scaling factor

associated with stretching the completion time of the

first instance of task T_ to consume the first idle

interval beyond its completion would be given by:

Fq = Min , _"

r-Iloq r=2toq

U,l_- t.L - U_o.LI

Ur J

426 R. Yerraballi. R. Mukkamalla / Journal of Systems Architecture 42 (1996) 409-429

where q is the index of the block that contains the

arrival of the first instance of T,. We represent this

factor by Fq to signify that this is the factor with

which all tasks T_ (j,_ i) must be scaled to fill the
first idle interval after the completion (known to

overlap with the block Uq) of this instance of task T_.
The subscript q here is only to identify the block

which overlaps with the completion of this instance

of T_. The representation will become clear when we

proceed to the next stage of derivation, i.e., the

scaling factor for an arbitrary instance of T, (not just
the first that is).

Now consider the point corresponding to the

deadline of this instance of T,, a_ + di. Our aim is to

try to extend the completion of this instance at most

till this point. Clearly, if this point overlaps with a

used block (call it Uk+ I.L), then we cannot possibly
extend T,.t's completion beyond the start of this
interval. This is obvious from the fact that the over-

lapped block in question contains executions of

higher priority tasks that cannot be preempted by T,..

On the other hand, if the point in question does not

overlap with any used block then we can consider

filling only part of the idle interval that contains this

point, viz., the idle interval between the right end of
the used-block preceding the deadline point and the

deadline point itself. In this second case, we set

U,+ t.z = ai + d i = U,+ t.R, i.e., we create a zero sized
used block that overlaps with the deadline. Here k is

the index of the used-block that precedes the dead-
line.

Therefore, if we assume that there are k - q such

idle intervals beyond Uq and before the deadline of
this instance at d,! then we have to find k - q such

scaling factors F= (that is q < m < k). Now, the

general formula for F,_ is given by:

F,, = Min
U,_+ ,.L - Ut.L U,,+ ,.z - U2.L

E ur' E Vr
r-- I to m r-- 2 to m

Urn+ I.L -- f q.L

The scaling factor for the first-instance of T, is

the maximum among all computed factors for ac-

commodating the idle intervals beyond the instance's

completion and before its deadline. Therefore, the

required factor is:

sf 't= Max F_.
q<m<k

We now have to generalize the above formula for

any arbitrary instance of T_ (say the l-t.h). Clearly

there are x,. (refer to Section 5) instances of T_ that

have to be considered. Therefore, 1 ranges from 1 to

x i. If we find the scaling factors sf it for each of the

x,. instances of T_, then we can obtain the scaling
factor sf _ as the minimum among all these. This is

clear from the fact that picking a factor larger than

Uv.L Uv.g Uv,I.L Uvcq.g

Completion of I'th instance of task Ti Uk,I.L = di = Uk÷I.R

U1L Uq.R q+l.L qc-l.R Uk..L Uk.p.

ai + (l-I)*pi= Arrival of I'th instance of task Ti I [] = Used Tirtm

Fig. 6. Execution Profile of the l-th instance of T,.

R.Yerraballi, R. Mukkamalla / Journal of Systems Architecture 42 (1996) 409--429 427

the minimum results in at least one of the instances

missing its deadline. So. we have:

sf i= Min sf ij.
I<x_

In the general case, that is, when we wish to find

the scaling factor for an arbitrary instance 1 we
define the following notation (refer to Fig. 6):

scaling factor sf we follow the same lines as in

Section 5. Accordingly, the required scaling factor sf
is given by:

sf= Min sf i.
l'_i<n

The interested reader can find examples demon-

strating the solution presented here in [2].

• u: U_ is the used-block that contains the deadline

of the (t - 1)-th instance of T,.. If, however, U_ is
a zero-sized block then u is the index of the next

block following the deadline of the (l-l)-th

instance at ai+(l-1)×pi+d _. As a special
case, for the first instance u = I.

• q: Is the block that overlaps with the arrival of the

l-th instance of task T_. This is also the block that

contains the completion of the l-th instance.

• k: Uk+ t is the block that contains the deadline of
the l-th instance at a i + (1 - 1) × pi + d i. Note

that, if the deadline does not overlap with a used
block then we create a zero-sized used-block at

ai+(l- l)×p_+d_, k is then given by the

used-block that precedes this newly created zero-
sized block.

The formula for the scaling factor of an arbitrary

instance (say 1) of T_ is now given by:

Sf it== Max Fm,
q<m_k

where F,, is given by:

Fm= Sin -- , U,

rmu tO ,'ff r_v-_ [tO ra

tr,+,.L - uq.L/

E ur)
r-- q to m

We now have the scaling factor (sf i) with respect

to a task T,.. In order to find the final common

8. Conclusions

To summarize the contributions of the paper:

• We have identified many issues of concern that

researchers and practitioners face during the de-

sign, development and maintenance of a complex

real-time system.

• We have shown that the questions posed by these

issues can be formulated from two viewpoints:
(1) component changes, and (2) task changes.

We reduced the above two problems to two fun-

damental problems viz., schedulability of a task-

set (on a single componenO with arrival times,

and its scalability.

• We have presented optimal solutions to the two

problems.

Our solution to the problem of end-to-end schedu-

lability is an important result in that it addresses the

distributed aspect of real-time systems. Further, the
solution to the schedulability problem in the context

of tasks with arbitrary arrivals is an important contri-
bution to the field of static cyclic scheduling [13].

Currently, we are pursuing other applications of the

results presented in this paper.

We have found that the scalability result has an
immediate application to the problem of admission

control in networks with real-time traffic. The prob-

lem of admission control is equivalent to asking the

question: Having admitted (guaranteed) a set of mes-

sages (n - 1 of them), is it possible to accommodate

428 R. Yerraballi, R. Mukkamalla /Journal of Systems Architecture 42 (1996) 409-429

a new message without violating the guarantees of

the n - 1 prior messages? Clearly, a simple solution

would be to perform a schedulability of all n mes-

sages. However, this is an expensive solution in the
context of networks. An alternative is to use a heuris-

tic approach to assess the room to accommodate a

new message into the network. The heuristic we

propose to use is based on the scaling factor of the
n - 1 messages already in the network. This measure

is then compared against the requirement of the new

message to decide whether it can be admitted.
Also research efforts are underway to handle the

important research issue of deadline division among
sub-tasks of a task. We are attempting to use the

scaling factor metric as a heuristic in this process.

Finally, we are attempting to optimize the scaling

factor computation for special cases (schedulers) of

task priority assignments (e.g., R.MS, DMS).

References

[1] J.A. Stankovic, M. Di Natale, M. Spuri and G.C. Buttazo,

Implications of classical scheduling results for real-time sys-

tems, IEEE Computer 28(6) (June 1995) 16--25.

[2] R. Yerraballi, Scalability in real-time systems, Ph.D. Thesis,

Old Dominion University, 1996.

[3] R. Yerraballi and R. Mu "kkamala, Schedulability related is-

sues in end-to-end systems, Proc. of the First International

Conference on Engineering of Complex Computer Systems

(November 1995).

[4] R. Yerraballi. R. Mukkamalla. K. Maly and H. Abdel-Wahab.

Issues in schedulability analysis of real-time systems. Proc.

of the 7th Euromicro Workshop on Real Time Systems (June

1995) 87-92.

[5] D. Ferrari. A new admission control method for real-time
communication in an interoetwork, in: S. Son (ed.). Ad-

vances in Real-Time Systems (Prentice Hail. Englewood

Cliffs. NJ. 1995) 105-116.

[6] Ricardo Bettati, End-to-end scheduling to meet deadlines in

distributed systems, Ph.D. Thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign, 1994.

[7] K. Tindell, Adding timing offsets to schedulability analysis.

Technical Report YCS221, Dopunment of Computer Sci-

ence, University of York, Jan. 1994.

[8] K. Tinde11, Hoiisfic schedulability analysis for dis_buted

hard real-time systems, Technical Report YCSI97, Depart-

ment of Computer Science, University of York, Jan. 1994.

[9] Jia Xu, On satisfying timing constraints in hard real-time

systems. IEEE Trans on Software Engineering 19(1) (1993)

70-84.

[10] M.H. Klien et at.. A Practitioners Handbook for Real-Time

Analysis (Kluwer Academic Publishers. 1993).

[1,1] J.A. Stankovic and K. Ramamritham. Advances in Real-Time

Analysis (IEEE Computer Society Press. 1992).

[12] N.C. Audsley. A. Burns. M. Richardson. and A. Wellings.

Hard real-time scheduling: The deadline monotonic ap-

proach. Proceedings of the 8th IEEE Workshop on Real-Time

Operating Systems and Software (I 991).

[13] N.C. Audsley, K. Tindell and A. Burns, The end of the line

for static cyclic scheduling, Proceedings of the 5th Euromi-

cro Workshop on Real Time Systems (1993) 36-41.

[14] D. Ferrari. Real-time communication in an interoetwork.

Journal of High Speed Networks l(l) (1992) 79-103.

[15] John P. L'ehoczky, FLXed priority scheduling of periodic task

sets with arbitrary deadlines, Proceedings of the IEEE Real*

Time Systems Symposium (1990) 201-209.

[16] John P. Lehoczky, L. Sha and Y Ding, Rate monotonic

scheduling algorithm: Exact characterization and average

case, Proceedings of the 1EEE Real-Time Systems Sympo-

sium (1989) 166-171.

[17] T. Gonzales and S. Sahni, Flowshop and jobshop scheduling:

Complexity and approximation, Operations Research 26(I)

(1978) 220-244.

[18] J.Y. Leung and J. Whitehead, On complexity of fixed-prior-

ity scheduling of periodic, real-time tasks, Performance

Eualuation 2(4) (1982) 237-250.

[19] Garey M. and Johnson D, Computers and Intractability

(W.H. Freeman and Co., San Francisco, 1979).

[20] C.I... Liu and J.W. Layland, Scheduling algorithms for multi-

programming in a hard real-time environment, Journal of

ACM, 20(!) (1973) 46-61.

R. Yerraballi, R. Mukkamalla / Journal of@stems Architecture 42 (1996) 409-429 429

Ramesh Yerraballi is due to receive

his Ph.D. degree in Computer Science
from Old Dominion University, Nor-
folk, VA, in August 1996. He did his
Bachelors in Computer Science and En-

gineering from Osmania University, Hy-
derabad, India. Starting from the Fall of
96 he will be an Assistant Professor at

Midwestem State University, Wichita-
Falls, TX. Dr. Yerraballi's research in-
terests include real-time systems, dis-
tributed systems, high speed networks

and performance issues in operating sys-
tems and network protocols.

Ravi Mukkamalla received his Ph.D.

degree from the University of Iowa in
1987 and M.B.A. from the Old Domin-
ion University in 1993. Since 1987 he
has been with the Department of Com-
puter Science at the Old Dominion Uni-
versity, Norfolk, VA, where he is cur-
rently an Associate Professor. Dr.
Mukkamala's research interests include

distributed systems, real-time systems,
data security, performance analysis, and
high-speed networks. He has been

awarded the "Most Influencing Faculty
Award" for the College of Sciences in 1989 and 1994. His
research has been sponsored by NRL, DARPA, and NASA LaRC.

Scalability based Admission Control of Real-Time Channels

Ramesh Yerraballi

Department of Computer Science

Midwestern State University
3410 Taft Bird

Wichita Falls, TX 76308

e-mail: ramesh_davinci.mwsu.edu

Ravi Mukkamala"

Department of Computer Science

Old Dominion University

Norfolk VA 23529-0612

e-mail: mukka@cs.odu.edu

Abstract

This paper reports our continuing efforts and initial

results with the problem of admission control in real-time
networks. This problem was first addressed by the Tenet

group, and, their approach was based on the assumption

that the link level scheduling was EDD (Earliest Due

Date) based. Our work departs from this assumption

by addressing the problem in the context of any arbit-
rarlt dynamic/fized priority link level scheduling. Our

approach is based on ez'tending a result we have derived

in a different contezt, viz., Task Scalability. It involves

assessing the current capacity of a link in terms of its

ability to accommodate (scale to) new channels. This
assessment (called the admittance measure) is then heur-

istically compared against the traffic requirements of the

newly requested channel to decide its admissibility. A

simulation study was performed to study the effective-

ness of our approach in improving both utilization of the

link and admissibility of channels. Further, we demon-

strata the relevance of our heuristic by observing that it

reduces to the Tenet schedulability test, for the case of
EDD.

1 Background and Introduction

Admission control is the mechanism by which mul-

tiple real-timeconnectionscan simultaneouslyshare the

resourcesof a packet switching network without result-

ing in congestion. The connections require guaranteed

quality of service (QoS) that is initially (at connection

set up) agreed upon. Admission control comes into play

when a new real-time connection is being requested. A

real-time connection request is accompanied with a QoS

list that describes its requirements. Popular QoS require-

ments in the literature of distributed real-time systems

are - throughput, latency (or deadline), packet loss tol-

erance [2, 4, 6, 7] etc.

"This work is partly funded by a grant from NASA (NAG-I-
ll14)

A popular model used to characterize a real-time con-

nection is a real-time (RT) channel [10]. An RT channel

i is characterized by a source and destination (travers-

ing multiple links) and such parameters as, packet inter-

generation time (period: gi), packet size (message size:

mi) and end-to-end deadline (di). Derivation of the route

associated with the connection involves considering both

static (network topology) and dynamic (already existing

channels) information. In this paper, we assume that the

route is given (we are currently investigation the routing

problem also). The mechanism used to determine the

admissibility of a real-time channel involves verifying at

each intermediate link (along the route) in turn, whether

the RT channel's QoS requirements can be guaranteed. If
a channel's requirements can be met at each of the inter-

mediate links then we can accept the channel. If however,

the channel's requirements cannot be met at any of the
intermediate link then we can reject the channel. In fact
the first such link that deems the channel inadmissible

is sufficient to confirm that the channel would not be

admissible. Of all the QoS metrics, the latency/deadline

metric bears the most relevance to real-time systems. We
therefore restrict ourselves to this metric.

In order to test whether a channel's requirements will
be met at an intermediate link we have to know its dead-

line and its period at that link. Finding the period

is straightforward according to the phase adjustment

mechanism[9]. Phase adjustment is a mechanism which

allows us to extend the end-to-end period (given by the

inter-packet generation time) directly to the individual

links. Therefore, For a given RT channel its frequency
of arrival at an intermediate link is the same as its fre-

quency of occurrence at the source. Deadline derivation,

unlike period derivation is a tougher issue. Since the
service time of the channel on each of the links is the

same, one way to derive the deadlines would be to divide

the slack (given by the difference between the end-to-end

deadline and the total transmission time of the message)

of the RT channel equally among the intermediate links.

39

However,if one wishes, one can use a more sophistic-
ated heuristic [1, 8] to derive these deadlines. We are

presently also investigating other heuristics. Now, the

problem of finding the admissibility of an RT channel is
equivalent to solving the admissibility at each of the in-

termediate links [3]. Therefore, from here onwards when
we refer to the admissibility of an RT channel we mean

its admissibility at an intermediate link. The question of

admissibility at a link can be described by the following
test:

• Admissibility Test: Does the addition of the new

channel to the already established channels using
this link cause, either the new channel or one of the

already established channels to miss their deadline?

Different approaches to the admission control prob-

lem (in real-time systems) will differ in the way the above

question is answered. Therefore, a study in admission

control reduces to the study of this test. Any answer to

this question must consider: (i) The scheduling mech-

anism used at the link, and (ii) Is preemption allowed.

The Tenet approach assumes the local scheduling mech-

anism for messages to be based on the Earliest Due Date

(EDD). While a dynamic scheduling mechanism such as
EDD gives good performance, its both costly and also

results in more preemption. The problem of schedulabil-

ity of messages is analogous to the problem of schedulab-

ility of real-time tasks (in which context EDD was first

derived). However, unlike processors where saving the

state (and restoring it on being re-enabled) of a preemp-
ted process is simple, the same does not hold in the con-

text of messages. To the extent possible therefore, any

approach to message scheduling must minimize preemp-
tion.

Having said that the above schedulability test is ana-

logous to task schedulability we make the following ob-

servations regarding task schedulability:

• Schedulability analysis of a task-set is expensive

(time-wise). The only exception being EDD, which

has a simple computation that involves checking if

the resultant (on addition of the new channel) util-

ization is less than or equal to 100%.

• For static fixed priority schedulers [5], analyzing

the schedulability of a task-set involves verifying for
each task in the order of priority whether it meets
its deadline.

• The rate monotonic scheduler (RMS) (a static fixed

priority scheduler) has a simple schedulability test.
It involves checking if the resultant utilization is less

than or equal to n(21/n-1) (where rt is the number of

tasks). This condition is sufficient but not necessary

for schedulability when deadlines are allowed to be
less than or equal to task periods.

The cost involved in doing a precise schedulability
test as described by Lehoczky in [5] is unacceptable in

the case of message scheduling. This is primarily due

to the fact that such a test has to be performed in real-

time while the channel is being established. Therefore

any question of admissibility has to be answered in a

reasonably short time.

2 Basic Approach

We discussed how channel admissibility is analogous

to task schedulability and also the difficulty in using ap-
proaches to task schedulability directly in the context

of channels. In this section we present our approach to

channel admissibility that is based on a problem derived

in a different context [9, 8] - Task Scalability. The task
scalability problem can be defined as follows:

Task Scalability Problem: Given a set ofntasks.

Find the maximum common scaling factor by which
the execution times of all the tasks in the set can be

scaled, without affecting their schedulability.

Extending this problem to channels and using n- 1
channels instead of a it reduces to:

Channel Admissibility: Given a set of n- 1 chan-

nels. Find the maximum common scaling factor,
sf,__l, by which the service times of all the chan-

nels in the set can be scaled, without affecting their

schedulability.

The factor s/,_ I as defined above is a measure of the
room in the already established channels for accommod-

ating new traffic. In our approach to admissibility, we

use this metric in a heuristic comparison against the re-
quirements of the new channel whose admissibility we

are attempting to ascertain. The heuristic comparison
we use is:

m....._< s f,_- i - 1
g,, - s.f,_- i

where, m__ isthe utilization(traffic)requirementofthe
g

new channel. The intuitionbehind the above heuristic

willbecome obvious in the next section. An important
observation to be made in the use of the above heuristic

for admissibilityisthe factthat the scalingfactorcom-

putation does not occur at the time of channel request.

Itcan be computed immediately afteracceptingthe pre-

vious channel. This observation iscrucialin justifying

the cost involved inthe scalingfactorcomputation.

4O

3 Dynamic Scheduling of RT Channels

In [9] we showed that the common scaling factor in the

case of EDF (assuming periods are equal to deadlines)

is given by the reciprocal of the total utilization of the
RT channels.

1
s fn-1 -_

El<i<rt--1 m---x
_ _ g,

1

U,_-I

sf._,-t in the heuristic described in the pre-The term, .f._t ,
_vious section, can be viewed as the percentage improve-

ment possible in the utilization of the existing channels.

I The expression can be simplified into the form, 1 t
sf_-- I "

It can therefore be seen, how this heuristic turns out to

be equivalent to the deterministic test of Tenet (in the
context of EDD that is).

Table 1, shows a comparison of our approach (us-

ing the scaling factor) and Tenet's approach when the

scheduling mechanism chosen at a link is assumed to be
the EDD.

-Approach Computation Test

Tenet U. +- U._ 1 + _ U. < 1

Scaling s/.-1 (precomputed) _ < 1 x

Table 1:Admission Control Test

Clearly, Since s/,-1 = l_T_'-_' the test in column 3 for

the Scaling approach reduces to _ < 1 - U,_ t. Which

in turn can be rewritten as _ + U,-1 < 1. Which
is exactly, the admissibility test of the Tenet approach.

This confirms that, in the context of EDD our approach

reduces to the Tenet approach. The next section extends

our approach to general fixed priority link level schedul-

ing.

4 Fixed Priority Scheduling of RT Chan-

nels

We have shown in [9] that there is no straightforward

way to compute the scaling factor of a set of tasks (read

as RT channels in the present context) scheduled by a

general fixed priority scheduling mechanism. However,

in the particular case of RMS (again, assuming deadlines

are equal to periods), we can find a non-optimal scaling

factorthat is given by:

(n- 1)(2I/('_-D- I) (1)
s_-_ = U,,-i

This factorisnot optimal in the sense thatitispossible

to improve itfurther. In other words, failingto pass

the heuristic test (using the above factor) does not ne-
cessarily imply that the new channel will interfere with

the schedulability of the already existing channels. This

implies that, using the heuristic it is possible that a new
channel request is rejected even though it could have
been accommodated.

An alternative to the above computation is to use a

more precise computation, one which would help us ob-

tain an optimal scaling factor. We have shown in [9],

how such a computation works. An important consid-

eration in deriving this result is that deadlines are as-

sumed to be less than or equal to periods as opposed

to making a restricted assumption that they are equal.

This alternative is appealing in its ability to reduce the

number of rejections (as described in the previous para-

graph). However, it does not necessarily guarantee 100%

admissibility. 100% admissibility is said to be achieved

if the test never rejects a new channel that would have

not interfered with already accepted channels. The fail-

ure of this alternative to ensure 100% admissibility is due

to the fact that though the scaling factor computation is

precise, the comparison in which it is used is a heur-

istic. Note also, If the benefit (reducing the number of

rejections) obtained by using the optimal scaling factor

is not large enough (compared to using the non-optimal

computation), we cannot justify its use. Since, the basis

of the test is a heuristic, the only way one can confirm

the benefits is to perform a simulation study.

5 Results

The following preliminary observations were made
form the data collected from a simulation i performed to

assess the performance of the heuristic. The two cases

that were compared are, the heuristic (_) using the non-

optimal computation of the scaling factor (Equation 1)

and the heuristic (,9) using the optimal computation of

the scaling factor reported in [9].

• For low utilizations we observe that both the heurist-

ics have a similar admissibility. Given that the heur-

istic 7_ is less expensive (computation time-wise)
than ,9, under conditions of low utilizations one can
choose the heuristic _.

• For a given value of n (number of channels) and _¢
(parameter dictating the tightness of deadlines) we

observe that the admissibility of heuristic 7_ falls ab-

ruptly beyond a point given by the utilization bound.

For example, when n - 8 and _; - 60, the heuristic

7_ begins to reject channels when the total utilization

crosses beyond 72%.

• The performance of `9 degrades gracefully beyond

the utilization bound. For example, when n = 8

tThe plots from the simulation study axe not included here due

to space restrictions

and ,¢ = 80 the heuristic S continues to admit chan-

nels up to a total utilization of 92%. The probabil-

ity of acceptance decreases gradually (and steadily)
however. This implies that the heuristic has a better

ability to adapt to temporary overloads (increased
demand from one of the channels) in the network
traffic.

• As the number of channels increases, the perform-

ance degradation beyond the utilization bound is
slower in the case of heuristic S. This goes on to

support the ability of the heuristic to adapt to tem-

porary overloads (increase in the number of chan-

nels). The two sources of overload have been suc-
cessfully handled by the heuristic S.

• As the number of channels increases the success of

the heuristic S improves compared to the heuristic
7_.

• S has better performance with respect to rejecting

inadmissible channels compared to 7_. Thus proving

the sensitivity of the heuristic and its ability to avoid
incorrect admissions.

• In conclusion we can say that for low utilizations

both heuristics have similar performance (however

one should prefer the heuristic 7_ due it computa-

tional ease) but, at high utilizations 3 far outper-

forms 7_. Further, we can justify the cost of com-

putation involved in S by noting that the computa-

tion can be done before the actual channel request
is made.

6 Conclusions and Future Work

A significant contribution of the work reported in this

paper is a heuristic based admission control mechan-
ism that can be applied for any arbitrary scheduling

mechanism. The schedulers considered spanned both dy-

namic (EDD) and static (RMS) schedulers. Further, in

the static scheduling scenario, we can easily extend the

admission control mechanism to any fixed priority as-

signment. The need for being able to accommodate any

arbitrary priority assignment arises from the fact that

channels derive their importance (and so their priority)

from the inherent purpose they serve relative to other

channels and not by their demands (as characterized by

the parameter deadline in EDD and the parameter peri-

odicity in RMS).

In the treatment of the admission control problem
above, we have assumed that the route that a channel

traverses is given to us. We are currently investigating

mechanisms by which such a route can be built. The

mechanisms can exploit the scaling factor problem de-

scribed before. As described already the scaling factor
for a link's traffic (corresponding to the factor with which

the requirements of channels already passing through the
link can be scaled) gives a measure of the available room

in the link with regards to accommodating new chan-
nels. We can use this measure in building the route to

be traversed from a given source to destination. We are

considering two alternatives here: (i) Source routing, and

(ii) Hop-by-Hop Routing.

An important research issue that was alluded to in
section 1 was the derivation of a channel's deadline at in-

termediate links. We presented one approach to this de-

rivation that simply divides the deadline equally among
the links. It is our belief however, that this problem

needs further investigation and therefore has been, the

subject of our current research.

The heuristic used in comparing the new channel's re-

quirement against the links current load (characterized

by the scaling factor) was shown to work well in the con-
text of dynamic schedulers. However, in the context of

static schedulers, it is our belief that the heuristic needs
further validation.

References

[1] Ricardo Bettati. End-To-End Scheduling to meet Dead-
lines in Distributed Systems. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-

Champaign, 1994.

[2] D. Ferrari. Real-Time Communication in an Internet-
work. Technical Report TR-92-OTZ, International Com-
puter Science Institute, Berkeley CA, January 1992.

[3] D. Ferrari and C. C. Verma. A scheme for Real-Time
Channel Establishment in Wide-area Networks. IEEE
Journal on Selected areas in Communications, SAC-

8(3):368-379, 1990.

[4] D. D. Kandhtr. Networking in Distributed Real-Time Sys-
tems. PhD thesis, University of Michigan, 1991.

[5] 3. P. Lehoczky. Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines. Proceedings o] the
IEEE Real-Time Systems Symposium, pages 201-209,
1990.

[6] Nicholas Malcolm and Wei Zhao. Advances in Hard Real-
Time Communication with Local Area Networks. IEEE

Yrans on Computers, pages 548--557, 1992.

[7] L. Sha and S. S. Sathaye. A Systematic Approach to

Designing Distributed Real-Time Systems. IEEE Com-
puter, pages 68-78, September 1993.

[8] R. Yerraballi. Scalability of Real-Time Systems. phD
Thesis, Dept. o.f Computer Science, Old Dominion Uni-
versity, April 1996.

[9] R. Yerraballi and R. Muklcaznala. Scalability of Real-
Time Systems. To appear in the Special Issue o.f the Eur-
omicro Journal on Real-Time Systems: Journal of Sys-
tem Architecture, 1996-97.

[10] Q. Zheng. Real-Time Fault-Tolerant Communication in
Computer Networks. PhD thesis, Electrical Engineering:
Systems, University of Michigan, 1993.

l+2

SCALABILITY IN REAL-TIME SYSTEMS

Ramesh Yerraballi, Ph.D.

The Old Dominion University, 1996

Supervisor: Ravi Mukkamala

The number and complexity of applications that run in real-time environments

have posed demanding requirements on the part of the real-time system de-

signer. It has now become important to accommodate the application com-

plexity at early stages of the design cycle. Further, the stringent demands to

guarantee task deadlines (particularly in a hard real-time environment, which

is the assumed environment in this thesis) have motivated both practioners

and researchers to look at ways to analyze systems prior to run-time. This

thesis reports a new perspective to analyzing real-time systems that in addi-

tion to ascertaining the ability of a system to meet task deadlines also qualifies

these guarantees. The guarantees are qualified by a measure (called the scaling

factor) of the systems ability to continue to provide these guarantees under

possible changes to the tasks. This measure is shown to have many applic a-

tions in the design (task execution time estimation), development (portability

and fault tolerance and maintenance (scalability) of real-time systems. The

measure is shown to bear relevance in both uniprocessor and distributed (more

generally referred to as end-to-end) real-time systems.

However, the derivation of this measure in end-to-end systems requires

that we solve a fundamental (very important, yet unsolved) problem--the end-

to-end schedulability problem. The thesis reports a solution to the end-to-end

schedulability problem which is based on a solution to another fundamental

problem relevant to single-component real-time systems (a uniprocessor system

is a special instance of such a system). The problem of interest here is the

schedulability of a set of tasks with arbitrary arrival times, that run on a single

component. The thesis presents an optimal solution to this problem. One

important consequence of this result (besides serving as a basis for the end-

to-end schedulability problem) is its applicability to the classical approach to

real-time scheduling, viz., static scheduling. The final contribution of the thesis

comes as an application of the results to the area of real-time communication.

More specifically, we report a heuristic approach to the problem of admission

control in real-time traffic networks. The heuristic is based on the scaling factor

measure.

Copyright

by

RameshYerraballi

1996

iv

To my Parents

V

Acknowledgements

First and foremost I owe this thesis to the part of me that persisted inspire

of the frustrations of pursuing a seemingly never ending goal, that is a PhD

thesis. I'd like to thank my advisor Dr. Ravi Mukkamala for believing in my

abilities and constantly reminding me of what little was left for me to finish my

thesis. Though it was never "little", I am glad I took his advice. I would like

to acknowledge the financial support I received from NASA Langley Research

Center for pursuing my thesis. I thank Mr. Wayne H. Bryant, Assitant Division

Chief, Flight Electronics Technology Division, NASA LaRC, for approving and

funding my thesis proposal under the grant NAG-l-Ill4.

I would like to thank my committee - Dr. Kurt Maly, Dr. Hussein

Abdel-Wahab, Dr. Larry Wilson and Dr. John Stoughton for their support

and approval of my work. Both Dr. Maly and Dr. Wahab have tolerantly

guided me through the preliminary stages of my PhD. I'd like to acknowledge

Dr. Stoughton's valuable comments on the final thesis. Among other faculty,

Dr. Stephan Olariu and Dr. Chester Grosch have contributed significantly in

making my stay at ODU academically worthwhile. I'd also like to acknowledge

the arrival of Sameera (who has since become my wife) into my life in August

of 1994 which also overlapped with my finding most of the results reported in

this thesis. In a sense, this presents a case against the popular french saying

"The first sigh of love is the last sign of wisdom". I would like to thank all my

vi

colleaguesin the Computer Science department for giving me company through

the travails of graduate life. In particular I'd like to thank Dharmavani for her

prodding me not to quit my PhD. Lastly, I'd like to thank my high school

tutor, Mr. Gopalan, to whom [owe dearly for my academic achievements. He

built in me a fascination for logical reasoning and thought.

vii

Table of Contents

Abstract ii

Acknowledgements vi

List of Tables xi

List of Figures xii

Chapter 1.

1.1

1.2

1.3

1.4

Introduction 1

Issues in Real-Time Systems 3

Issues Addressed in this Thesis 4

Summary of Results 8

Organization of the Thesis 10

Chapter 2. System Model

2.1 Uniprocessor System Model

2.2

2.3

2.4

12

12

2.1.1 Systems with Independent Tasks 16

2.1.2 Systems with Dependent Tasks 17

End-to-End System Model 19

Real-Time Channel Model 20

Glossary of Notation 21

Chapter 3. Motivation and Relevant Background 23

3.1 Scheduling Theory 28

3.1.1 Static versus Dynamic Scheduling 28

3.1.2 Relationship between deadline and period 31

3.1.3 Precedence Constraints and Resource Sharing 32

3.2 Uniprocessor Schedulability 33

3.3 Other Relevant Work 34

viii

Chapter 4.

4.1

4.2

4.3

Problem Statement and Description 36

Scalability of Uniprocessor Systems 36

Scalability of End-to-End Systems 36

4.2.1 Component Change 37

4.2.2 Task Changes 38

Admission Control of RT Channels 45

Chapter 5.

5.1

5.2

5.3

5.4

5.5

Scalability in Uni-processor Environments 47

Problem Statement 47

Discussion of Possible Solution Approaches 48

Details of the Approach Taken 52

Proof for the Presented Solution 59

Examples Demonstrating the Solution 62

Chapter 6.

6.1

6.2

6.3

6.4

Schedulability of Task-Sets with Arrivals 66

Phase Adjustment 66

Problem Statement and Solution 69

Example Demonstrating the Solution 76

Discussion of the Result 78

6.4.1 Periodic flow shops 80

6.4.2 Ordered Access 81

6.4.3 Arbitrary order with no revisit 82

Chapter 7. Scalability in End-to-End Systems 83

7.1 Problem Statement and Solution 85

7.2 Example Demonstrating the Solution 96

Chapter 8. Admission Control for Real-Time Communication 98

8.1 Dynamic Scheduling of RT Channels 101

8.2 Fixed Priority Scheduling of RT Channels 104

Chapter 9. Summary of Results 115

9.1 Scalability in Uniprocessor Systems 116

9.2 Schedulability of Task-Sets with Arrivals 118

9.3 Scalability in End-to-End Systems 121

ix

Chapter 10.

Bibliography

Appendices

Appendix A.

Appendix B.

Vita

Conclusions 126

132

Simulation Results for Admission Control 140

The Olympus Attitude and Orbital Control Sys-
tem 153

157

X

List of Tables

2.1 Glossary of Notation 22

5.1 Example Task Table 62

5.2 Example 2 64

5.3 Example 3 64

6.1 Example task-set 76

7.1 Example Task Table 97

8.1 Admission Control Test 102

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

Task Table with Scaling Factors 117

Response times of Tasks 119

Decomposition of tasks 120

Analysis of Component R1 121

Analysis of Component R2 121

Analysis of Component R3 122

Analysis of Component R4 122

Schedulability of the End-to-End Tasks 123

Task Table with Scaling Factors 124

Scaling on Component R1 124

Scaling on Component R2 125

Scaling on Component Ra 125

Scaling on Component R4 125

B.1 Periodic Tasks 154

B.2 Periodic Tasks - continued 155

B.3 Sporadic Tasks 156

xi

List of Figures

5.1 Task T_'s Execution Profile 55

5.2 Effect of Scaling by s fl 60

5.3 Operation of Task Set in Example 1 63

5.4 Operation of Task Set in Example 2 63

5.5 Operation of Task Set in Example 3 65

6.1 A task-set's execution between the start and L 71

6.2 A task-set's execution between the start and L 75

6.3 Operation of example task set 78

6.4 End-to-End scenarios 79

7.1 Execution Profile Task T_'s First Instance 87

7.2 Figure 7.1 assuming q - 2 88

7.3 Execution Profile of the l'th instance of T_ 95

7.4 Operation of example task set 97

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

A.13

n =4anda=0.5 141

n =Sanda=0.5 141

n = 12 and _ = 0.5 142

n = 16 and _ = 0.5 142

n =4anda=0.6 143

n =8 anda=0.6 143

n = 12 and _ = 0.6 144

n = 12 and _ = 0.6 144

r_ = 4 and a = 0.7 145

n =8 ands=0.7 145

n = 12 and a = 0.7 146

n = I6 and _ = 0.7 146

n =4 and n=0.8 147

xii

A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24

n --

rt

Tt _---

/7, -_

Tt--_

Yt ---

Tt_

8 and ,¢ -- 0.8 147

12 and ,c = 0.8 148

16 and ,_ -- 0.8 148

4 and ,¢ = 0.9 149

8 and ,¢ = 0.9 149

12 and ,¢ = 0.9 150

16 and ,¢ = 0.9 150

4 and ,_ = 1.0 151

8 and ,¢ = 1.0 151

12 and ,_ -- 1.0 152

16 and ,¢ - 1.0 152

xiii

Chapter 1

Introduction

The scope of real-time systems has expanded over the last two decades to en-

compass a wide array of applications such as industrial process control systems,

nuclear power plants, air traffic control systems, aircraft navigation, robot nav-

igation and automobile control. While, in the past these systems were predom-

inantly centralized, most current approaches tend to be distributed in nature.

Further, the complexity of these systems (in addition to that added by its

distributed nature) has grown rapidly to a point where the dependability (or

determinism) of the system as a whole has become an important issue. Real-

time systems are primarily categorized into two types, hard real-time systems

and soft real-time systems. In hard real-time systems, the missing of task dead-

lines can lead to severe consequences and hence there is a strict need to meet

these deadlines. In contrast, soft real-time systems are characterized by the

fact that they can tolerate temporary deadline misses. Soft real-time systems

continue to operate even after missing deadlines, and the only consequence

being a temporary decline in performance and an increase in response time.

For example, a robot operating in a hazardous terrain would be a hard real-

time system and a system that periodically generates a weather report can be

considered a soft real-time system.

The stringent need to meet deadlines in hard real-time systems implies

that there is a need to analyze the system pre-runtime, to ascertain its ability

to guarantee performance (that is meeting deadlines). Therefore, this has mo-

tivated enormous efforts from practioners to investigate the system behavior

prior to its actual installation. In other words, though the system is said to

function in real-time, the guarantees it provides in meeting the timing require-

ments of the various tasks have to be ascertained a priori. This thesis presents

issues and finds solutions that we believe will aid practioners in guaranteeing

system behavior prior to run-time in hard real-time systems. The issues in

soft real-time systems overlap significantly with those in conventional systems

where the primary performance metrics are throughput and response time (an

average measure unlike deadline that is an absolute measure). These systems

have been well-studied and the results (pertinent to these systems) are directly

applicable to soft real-time systems.

A real-time system can be characterized by two important components:

the environment in which the system is operating and the computer system

that controls/monitors the environment. The main issues in the design of the

first component concern interfacing with the environment [41]. Solutions in this

area are primarily dictated by the technology. There are many issues of concern

in the design of the second component, the computer system. The computer

system involves both the hardware and the software that runs on them. The

choice of hardware is dictated primarily by such parameters as cost, availability

and the application at hand. The primary issue in software design is not so

much the particular choice of language or programming paradigm as it is the

mechanism by which the various tasks are scheduled.

1.1 Issues in Real-Time Systems

We observe that only the last issue (mentioned above) can be speculated over

because the others are more or less dictated by the environment and the ap-

plication at hand. This is the reason why we have efforts from numerous

researchers [40, 48] on the problem of scheduling in real-time systems. There

have been two important fronts of research: On one front there have been

efforts [2, 20, 22, 24] to find scheduling mechanisms that could guarantee per-

formance under different assumptions about the system. On a second front,

researchers [46, 19, 3] have tried to answer questions posed by schedulability

analysis. Both these are inter-related in the sense that schedulability analysis

is a mechanism to evaluate the effectiveness of a scheduler. To this end, in the

following discussion when we refer to schedulability we implicitly assume that

the tasks are being scheduled by an arbitrary scheduler (where appropriate,

we give a more detailed description of the scheduler assumed). If a scheduler

is built on a strong theoretical basis then its schedulability analysis can be a

trivial comparison. For example, a dynamic scheduling mechanism, the earli-

est deadline first (EDF) scheduler, has the theoretical property that, provided

the sum of the utilizations _ of the tasks in a task-set is less than 1, the EDF

scheduler guarantees to meet their deadlines (schedulable). Clearly, in this

case the schedulability test is a simple one. There are other cases where the

schedulability test is non-trivial [19, 50].

A common assumption that distinguishes one scheduling mechanism

(and thus the corresponding schedulability analysis) from another is the oper-

tThe utilization of a periodic task is given by the ratio of its execution time requirement

t,o its periodicity

ational environment of the real-time system. If the environmentis completely

known a priori, then wecan usea static approachto designa scheduler.The

schedulecan be practically pre-computed (as a list), with the schedulerbe-

ing a simple mechanismto pick the next task in the list. On the other hand,

if the environment is dynamic by nature and no a priori knowledgecan be

assumedabout the environment then the schedulingmechanismmust be dy-

namic, adapting to the changing needs of the system. Clearly, a dynamic

scheduler is more expensive (in terms of overhead) to implement compared to

a static scheduler.

The use of dynamic approaches are perfectly justified in systems where

the various internal (system) and external (environment) tasks characteristics

are not known a priori [40]. However, we observed that such systems are far

outnumbered by those where the environment is well understood, deterministic

(in the sense that the worst possible scenarios can be identified), and with tasks

whose timing, resource, communication and other requirements are known a

priori [49]. This thesis addresses a host of related problems that concentrate

on such static environments.

1.2 Issues Addressed in this Thesis

The problems of interest to us in this study are motivated by the evolutionary

nature of real-time system software. As real-time systems continue to grow

in size and scope there is a need to build portable standard software that

would be guaranteed to operate correctly both in the logical and the temporal

sense. By correctness in the logical sense, we are referring to the domain

of proving the correctness of a piece of software with regards to generating a

correct output for any given input (The traditional program correctness issues).

The emphasis of research in real-time systems has been not so much to prove

logical correctness as it has been to show that the output is produced in a

timely manner. Therefore, a logically valid output generated beyond a specified

time limit is deemed incorrect. In this thesis, we concentrate primarily on the

temporal correctness.

This notion of correctness (temporal that is) of a task in real-time sys-

tems has been captured by the concept of schedulability [46] of tasks. A task

is primarily characterized by the following parameters: the arrival time, the

execution time, the periodicity and the deadline. Schedulability analysis there-

fore attempts to ascertain whether or not each task will be able to complete

its required execution before its deadline for all its instances when scheduled

by an assumed scheduler. Tasks being periodic, they occur repeatedly at an

interval given by their period. Various such occurrences of tasks are referred to

as instances. The basic approach taken in schedulability analysis is to use the

information about tasks' arrival times, execution times and periodicities and

compute their worst-case completion times assuming that they are scheduled

by a given scheduler. The worst-case task completion times so computed are

compared against their deadlines to determine if the tasks will be schedula-

ble. Therefore, the worst-case completion time computation is the essence of

schedulability analysis.

We are not interested in deriving new schedulability tests but rather in

extending the guarantees made by schedulability analysis as a system undergoes

changes. The types of changes we are mainly interested in, manifest themselves

as changes in execution times of tasks. In Chapter 3 we discuss sources of such

changes pertinent to the design, development and maintenance of real-time

systems. More specifically, we are interested in the effects on the guarantees

made by schedulability analysis when some or all of the tasks' execution times

are scaled (up or down) 2. We refer to this problem as scalability of real-time

systems. There are two important scenarios in which the factor has relevance:

(i) Uniprocessor systems and (ii) end-to-end systems.

The problem of scalability in uniprocessor systems can be informally

defined as follows:

Given a task-set T, determine the maximum scaling factor with which

a subset (S) of these task-set's execution times can be scaled without

affecting the schedulability of the task-set.

If a task-set is not-schedulable 3 to start with then scaling a subset of

the task will in no way improve the situation and this case is of no interest to

us. On the other hand, if a task-set is schedulable to start with, then we are

guaranteed the existence of a scaling factor (possibly 1, in the case that the task-

set requirements are tight) that does not affect the task-set's schedulability.

The first step therefore is to find whether the given task-set is schedulable.

In the context of uniprocessor systems, Lehoczky's [19] schedulability test can

be used for this purpose. Finding the scaling factor now can be viewed as

extending this schedulability test to accommodate for changes in task execution

times. There are two possible approaches here: (i) using an approximation

2Scaling down of task execution times can be trivially handled, therefore from here 0n-
wards when we refer to scaling we mean scaling up

3That is, at least one of the tasks misses its deadline when scheduled by the assumed
scheduler.

techniqueby making small incrementsto the scaling factor (starting from 1)

andrepeatedlyperformingthe schedulabilitytest, or (ii) embeddingthe scaling

factor computation into the schedulability test. We have taken the second

approachfor performancereasonsthat will bedescribedin detail in chapter 4.

As opposedto uniprocessorsystemswherewehavea singleschedulable

resource,end-to-endsystems(e.g., a distributed system) havemore than one

schedulableresource.Thereforean end-to-endsystemcanbe characterizedby

tasksthat do not necessarilyexecuteon a singlecomponent4. Typically, a task

would compriseof a sequences of sub-tasksthat eachexecute on a different

component (e.g., processors,network) in the system. The requirementsof

period, deadlineand arrival time arespecifiedfor the task as a wholewith the

execution times beingspecifiedat the sub-task level. The problem of finding

the schedulability (worst-casecompletion time computation) of a task (T,) in

sucha scenariocan be reducedto solving the schedulabilityof the rn (number

of sub-tasks in task T,) sub-tasks in turn, provided we are able to compute

the characteristics (period and arrival time) of the sub-tasks (Tzk 1 < i <_

rt; t _< k <_ m). For reasons that will become clear in chapter 3, we cannot

use Lehoczky's schedulability test for the sub-tasks running on these individual

components.

The scalability problem in the context of end-to-end systems takes two

forms depending on whether we view the scaling to occur as a result of a

change in one or more of the components or a change to a subset of the sub-

tasks. Solving either of these two forms requires that we first find whether the

4We use the term component to indicate any schedulable entity in the system.
3The treatment in this study is restricted to sequential tasks, however, it can be extended

to more complex tasks.

given task-set (of end-to-end tasks) is schedulableto start with (we call this

end-to-endschedulability). Secondly,wehaveto extend this schedulabilitytest

to accommodatecomponentand/or task changes.

Wehaveinvestigatedthe applicability of the scalability problemin other

areasof real-time systems. Particularly, in the area of real-time communica-

tion. The application of interest to us is admissioncontrol in real-time (RT)

channels[9,8]. The roleof real-time channelsin communicationis analogousto

end-to-endtasks in distributed systems.Admissioncontrol posesthe question:

"Having guaranteedthe performancerequirementsof n - 1 real-time channels,

is it possible to admit a new real-time channel, while continuing to honor the

guarantees already made?" The problem of admission control is analogous to:

"Given a schedulable task-set of n - 1 end-to-end tasks, is it possible to ac-

commodate a new task without violating the schedulability of the n - 1 prior

tasks?"

1.3 Summary of Results

The primary contribution of this thesis to the area of real-time systems is

in presenting solutions to the following two fundamental problems related to

schedulability analysis. The first of these problems involves schedulability anal-

ysis of task-sets where tasks have non-zero arbitrary arrival times. The second

involves extending schedulability analysis to accommodate scaling up of task

execution times. The impact these problems (and their solutions) have on

the current state-of-the-art of real-time system research can be summarized

follows:

• Helpsreal-time systemdesignersin doing a preciseanalysisof task-sets.

Sucha preciseanalysis,asopposedto the pessimisticanalysisapproach

that waspopularizedby the RMA [6] (Rate Monotonic Approach)group

at SEI helpsprevent under-utilization of systemresources.

• The thesis identifies many important issues in real-time systems that mo-

tivate the need for using the arrival time information of tasks in schedu-

lability analysis. Prominently, the issues of data and resource sharing

among tasks, precedence constraints between tasks, controlling task jit-

ter can be addressed naturally by the use of task arrival times.

• The use of static schedules was popular in practice in real-time systems till

the late 70s. The approach however, suffered from the inability to guar-

antee task schedulability a priori as opposed to RMA, which was based

on the critical instant argument. As a by-product of doing a schedulabil-

ity analysis of task-sets with arrival times (reported here), we are able to

build static schedules whose ability to guarantee task schedulability can

be ascertained a priori.

• There is no known schedulability analysis approach in the context of dis-

tributed real-time systems (or more generally end-to-end real-time sys-

tems). Using the single-component schedulability analysis of tasks with

arbitrary arrivals, we are able to perform an end-to-end schedulability

analysis.

• The thesis reports the first effort in addressing the issues of scalability

and portability in real-time systems.

9

• The scaling problem is shown to help addressissuesof concernto de-

signers in the design,developmentand maintenancereal-time systems.

In the designphaseit allows us in analyzing the task-set by assuming

an arbitrary target environment which canbe later adaptedto a specific

target environment. In the developmentphaseit allowsus to add new

tasks or enhancethe existing task's functionality. In the maintenance

phase it helps address the ability of the system to tolerate faults.

• The scalability problem is also solved in the context of distributed sys-

tems.

• Lastly, we report a heuristic approach to the problem of admission control

in real-time traffic networks. The heuristic used is based on the study of

the scaling factor problem.

10

1.4 Organization of the Thesis

The rest of the chapters of the thesis are organized as follows. Chapter 2 lays

down the framework and terminology used through the rest of the paper. We

describe the uniprocessor system model and task characteristics of interest to

us. The special sense attributed to the arrival time parameter leads to the

consideration of dependent and independent task-sets. The end-to-end system

model is defined both in a restricted flow-shop sense and also a more generalized

sense. Finally, the real-time channel model used in the study of admission

control in real-time traffic networks is described.

In Chapter 3, we give a brief discussion on some theoretical background

in scheduling that is pertinent to this thesis. In particular we discuss the

work of Lehoczky in the context of schedulability analysisof fixed priority

schedulers.The useof the critical instant argument and its consequencesin

both uniprocessorand end-to-end systemsis critiqued. We also discussthe

limited work reported in the areasof end-to-end schedulingand admission

control.

In Chapter 4, the problemsof interest in this thesisare formally stated

and their solutionsareshownto reduceto solving three fundamentalproblems

that are the subject of the next four chapters.Chapter 5 presentsthe problem

of uniprocessorscalability. A pre-requisiteto solving the end-to-endscalabil-

ity problem is the end-to-endschedulability problem which is the subject of

Chapter 6. Chapter 7 considersthe end-to-endscalability problem from two

different perspectivesviz., componentchangeand task change.

The problemof admissioncontrol of real-timechannelsis the subject of

Chapter 8. Here,we discussa simulation study to comparetwo heuristics to

solvethe admissioncontrol problem.

Finally in Chapter 9, we describea detailed example that puts the

reported results in perspectiveand alsoconcludesthis thesis. The chosenex-

ample is derived from the casestudy of the "Olympus Attitude and Orbital

Control System"(AOCS). This case study was performed by Alan Burns and

his colleagues at University of York in association with British Aerospace Space

Systems Ltd. for ESTEC.

Chapter 2

System Model

In this chapter, we introduce the modeling assumptions and establish the no-

tation and terminology used in the rest of the thesis. We identify three models

relevant to the thesis viz., uniprocessor system model, end-to-end system model

and real-time channel model.

2.1 Uniprocessor System Model

The uniprocessor system model is characterized by the fact that there is only

one allocatable component in the system, viz., the processor. More generally,

this model can be referred to as "single component model. "1 The role of the

processor is to monitor/control the target environment. For example, if the en-

vironment is that of a chemical experiment, then the processor interacts with

the environment through sensors and actuators. The sensors serve to convey

the current information about the experiment as inputs to the processor. These

inputs together with locally (local to the processor) maintained state informa-

tion capture the state of the experiment. The processor performs predetermined

_The term component is used to refer to any independently schedulable resource. Ex-

amples include, processors, communication medium, input/output processors,disk storage
etc.

12

13

operations on these inputs (along with the information) and generates outputs

that are then conveyed to the experiment through the actuators. Therefore.

the interaction of the processor with the environment in which it operates can

be captured by the inputs and outputs.

The operations which process the inputs to compute the outputs are

contained in the tasks. In addition, to tasks that operate on the external inputs,

we can also have tasks that are triggered solely by internal events or timed

events. The operation of the complete system can be captured by specifying

the characteristics of its tasks. There is one distinguishing characteristic about

tasks that affect the complexity of the system, viz., task dependence. We

therefore identify the following two cases separately. The following description

applies for both these scenarios:

Here, n independent tasks, {T1,T2,... ,T,_}, capture the activity per-

formed on a processor. Each task Ti (i is called the identifier of the task T,) is

characterized by the following parameters:

• ei: The execution time requirement of a task. Note that if we look at the

model as a "single component model" then this parameter could mean

the service time requirement of the task from the component in question.

• ai: The arrival time of the first instance of a task. This parameter is also

referred to as the offset of the task. Given a task-set T we can assume

that the task that is the earliest to arrive (say a._,n) does so at time t = 0

(a..n = 0). Therefore all other task arrival times are relative to this

reference.

• p,: The periodicity of a task. Consistent with the assumptions of re-

searchers in real-time systems, we assume that tasks are of a periodic

nature. This parameter implies that a task would be ready for execution

every pl units of time. We refer to successive occurrences of a task as its

instances or jobs. Therefore the jth instance of task T, will be referred

to as T_. As opposed to periodic tasks, aperiodic tasks are characterized

by the fact that they are not strictly periodic. However, the minimum

inter-arrival time between successive occurrences of an aperiodic task is

assumed to be known. Note that in case the task is an aperiodic task we

treat this parameter (pi) to be the minimum inter-arrival time between

the task's successive instances.

14

• d_: The deadline of a task. Every instance of a task is required to complete

its execution before the task deadline. Therefore, if the first instance of

a task Ti arrives at time t = 0 then its deadline is at time t = di.

Subsequently, the jth instance will arrive at time t = a_ + (j - 1) × p_

and will have its deadline at time t = ai + (j - 1) × pi + di. Throughout

the study, we assume this parameter of a task to be less than or equal

to its period. In other words, the completion of a task's instance can be

delayed at most till its next instance arrival. In this study we assume

this to be a hard deadline. This assumption can be justified as follows:

The problems we are interested in, involve schedulability analysis which

is typically done offiine and before the actual system is built. [f the

offline analysis would show that a task's deadline cannot be met, then

the factors that the analysis failed to account for (compared to the real

system) would make the task's chances of meeting its deadline only worse.

15

Therefore it would seem only logical to assume the deadline to be a hard

deadline.

• Pri: The relative priority of the task in the system. We assume that every

task has a priority assigned to it. The priority could be dictated either by

the scheduler (e.g., the rate monotonic scheduler assigns priorities to tasks

based on their periods) or by the inherent importance of the task relative

to other tasks in the system. Unless specified otherwise, we assume that

the tasks are ordered in the non-increasing order of their priorities. A

simple transformation can convert this non-increasing order to a strictly

decreasing order. For example consider a task-set, T containing 5 tasks

with priorities, Prl = 9, Pr2 = 8, Pr3 = 8, Pr4 = 4, Prs = 2. Tasks

T2 and I"3 have the same priority. Since equal priorities are arbitrarily

broken, we can reassign T3's priority, (say to 6) to be smaller than T2's

(we use task identifiers to break conflicts between tasks). Note that if Pr5

was equal to 7 and the priorities had to be integers then we cannot assign

a new priority to 7"3. In such a case we can reassign new priorities to I14

and Ts in order to make room for T3. In other words, the transformation

guarantees that the first task 7"1 is the highest priority task and the

priority of task Tj is greater than T, if and only if j < i.

• W,: The worst-case response time. This is also referred to as the worst-

case completion time of task Ti. This term gives the worst possible time

elapsed between an instance of the task Ti's arrival and its corresponding

completion. Clearly, if the response time of the jth instance of the task

T, was W_ then, W, is given by the maximum W_ Vj.

The characteristic that distinguishes the two scenarios of independent

and dependent tasks arise from assumptions about the arrival time parameter.

16

2.1.1 Systems with Independent Tasks

The arrival time a, is the arrival of the first instance of a task. Task indepen-

dence is primarily captured by assuming that the arrival times of tasks do not

have any interdependence. Therefore leading to the assumption that the arrival

times of all tasks are equal to zero. This assumption has a significant impact

on the study of task schedulability. It allows us to use the critical instant ar-

gument. The critical instant argument is used in finding the schedulability of

the i'th task among n tasks scheduled by a fixed priority scheduler. It can be

briefly summarized as follows:

A task T, suffers its worst-case completion time (or response time) when

its arrival coincides with the arrival of every other higher priority task

Tj (i < j < 1). Such an arrival is called a critical instant for the task T,.

It is important to understand that the occurrence of the critical instant

for a task T_ is not mandatory, in the sense that given a task-set (of tasks with

arbitrary arrivals) a task is not guaranteed to encounter its critical instant. To

this end, we assume that the arrival times of tasks are given to be zero, thus

forcing the occurrence of the critical instant. Therefore, the critical instant

argument is sometimes referred to as the critical instant assumption.

2.1.2 Systems with Dependent Tasks

The case for considering task dependence has been addressed by many re-

searchers in different contexts [49]. Krithi Ramamrithm, in his discussion [41]

on the complex nature of real-time environments states that, task interdepen-

dence contributes significantly to the complexity. Alan Burns makes similar ob-

servations in the context of the case study on the Orbital Control System [5].

Here, we briefly list some situations that impose task dependence. We also

identify how these different situations can be addressed by incorporating the

offset (arrival time) parameter defined in the previous subsection.

• Data and Resource Sharing: It is important to regulate the accesses of

multiple tasks to a shared data item or resource. A costly solution to this

problem is to implement a concurrency control mechanism (such as the

priority ceiling protocol [33]). As an alternative to using a concurrency

control mechanism, we observe that by inhibiting two or more tasks from

accessing a resource simultaneously we can regulate their access [45]. Such

an inhibition can be achieved by deriving suitable arrival times (offsets)

for tasks. For example, if two tasks, T, and Tj, access a common resource

(or data item) then with the knowledge about their expected duration of

use of this shared resource one can arrive at their relative arrival times.

These arrival times can be computed such that the request by Tj always

follows the release by Ti. In other words, we can impose constraints on

the tasks to the effect that their accesses to the shared entity are ordered.

This situation can be described as an exclusion constraint that was solved

by imposing a precedence order on the tasks.

17

• PrecedenceConstraint: If the tasksinherently possessa precedencecon-

straint, then it would directly manifest itself as an offset in each task.

For example, if the partial results (outputs) generatedby a task Ti are

used (as inputs) by a second task Tj, then we are forced to impose the

condition that the task Tj will be ready to execute only after T, com-

pletes. Therefore, there is an inherent precedence constraint on Tj. The

conveyance of these partial results can be done either through shared

memory or through communication. Thus, inter-task communication can

also impose precedence constraints.

• Controlling Task Jitter: The irregularity in the response times (different

instances) of a task Ti can hurt the schedulability of tasks that depend

upon its output [27]. This entails an output jitter bounded (from above)

by the difference of the worst-case response time and the task's execution

time. The output jitter of a given task T_ can be reduced by dividing

it into two tasks Tj and Tk. Tj performs the bulk of the execution and

writes the results to a buffer shared by Tj and T_; T_ is released at an

offset from task Tj that is large enough to ensure that the data is always

available. This approach can also be used to bound jitter on input [45].

From the above discussions it is clear that, task dependence can be

captured by the notion of timing offsets for tasks. Further, given a task-set

and the details of inter-task dependencies, we can arrive at individual task

arrival times.

18

2.2 End-to-End System Model

This model differs from the uniprocessor system model (single component

model) in that it considers more than one independently allocatable compo-

nent in the system. A task in such a system can require execution on multiple

components. Hence, a task is no longer viewed as an indivisible entity but as

a sequence of sub-tasks. We assume that each sub-task of a task is associated

with a component. Therefore a task that uses r components is decomposed into

r sub-tasks, one corresponding to each component. A discussion of reasons and

guidelines for task-decomposition can be found in [49].

We assume that the components in the system are ordered. The tra-

ditional flow-shop model [4] is based on the assumption that all tasks in the

task-set access all resources and that they do so in the same order. A more gen-

eral view to flow shops would be to relax the requirement about tasks having to

access all resources but still maintaining the order constraint. This model will

be referred to as the ordered flow shop model. If there are m components in

the system, R1, R_,..., Rm, then a task T, can be considered to be a sequence

of sub-tasks T_1 --* Ti2 ---* • .. ---* T_m. In the case of traditional flow-shop model,

each sub-task T,k is required to have a non-zero execution time requirement on

the component it runs. Ordered flow shop model relaxes this constraint.

A sub-task T_k of task T; is characterized primarily by its execution time

requirement on the component (Rk) it runs. In the case of the ordered flow

shop model, if a component k is not used by a task T, then the execution

time requirement of the task T_k is assumed to be zero. The parameters of

periodicity and deadline are characteristics of a task and not that of the sub-

tasks. Since these parameters apply to the task as a whole (from the start

19

of the first sub-task to the end-of the last sub-task) we refer to these as the

end-to-end parameters of the task. The last parameter associated with the task

is its priority Pr_ which may be inherited by its sub-tasks. Alternatively, we

can allow individual sub-tasks of a task to be assigned priorities independently.

Unless otherwise specified, throughout this study, we assume that sub-tasks of

a task inherit its priority.

2O

2.3 Real-Time Channel Model

The two models described above are computational models. The real-time (RT)

channel model however is a communication model that abstracts the commu-

nication activity in reM-time packet switched networks [42, 38]. A real-time

channel is uni-directional 2. An entity (say a process) wishing to communicate

with another entity on a remote machine does so by establishing a real-time

channel that has certain characteristic timing and buffer space requirements.

A real-time (R.T) channel timing requirement can be defined by the

following parameters:

• The minimum message inter-generation time

• A mazimum message size

• An end-to-end deadline for the RT channel

It is reasonable to assume prior knowledge of these parameters for

many applications such as real-time timing control and monitoring, interac-

2A bi-directional R-T channel can be created by combining two uni-directional RT-

channels [54]

tire voice/video transmission and many other multimedia applications. In ap-

plications where these parameters are less predictable, estimates can be used.

Note that any guarantees that the underlying communication subsystem pro-

vides to the application is sensitive to the ability of the application to correctly

specify its requirements. In this thesis, we are not interested in how such a

correct specification is achieved, but given such a specification, how does the

underlying system guarantee its being met.

Formally, an RT channel can be defined as follows [53]:

Definition 2.3.1 A real-time channel Ci described by a tuple (g, rn, d) is a

connection between two nodes and require that every message at the source be

delivered to the destination in duration of time no longer than d, under the

conditions that the message inter-generation time is g, and the message size is

172.

This definition of an RT channel helps in network management and also

provides a convenient means of charging users for their connection requests. For

example, a user will pay lower connection fee for a voice channel than a video

channel since the former uses less bandwidth. A connection that demands a

low end-to-end delay (or deadline) is likely to cost more than one that tolerates

a higher end-to-end delay (or deadline).

21

2.4 Glossary of Notation

The following table summarizes the notation used throughout the thesis.

22

Table 2.1: Glossary of Notation

Notation Description
t Time

T A task-set

T, The i *h task in a task-set T

a, The arrival time of the first instance of task Ti

e, Execution time of task T_

p, Period of task T_

d_ Deadline of task T_

Pri Priority of task Ti

W, Worst-case response time of task Ti

T/ The jt_ instance of task T_
J

a i

T/k

Arrival time of the jth instance of task T_

Deadline of the jth instance of task Ti

The response time of the jth instance of task T,

The k th sub-task of task T_

a,k Arrival time of the first instance of task Tik

e,k Execution time of the sub-task Tik

Pik

d_k

Prik

Period of sub-task Tik, if known

Deadline of sub-task T_k, if known

Priority of sub-task Tik

W_k Worst-case response time of sub-task Tik

/L The component with an assigned index r in the system

Ci Real-time channel i

g_ The inter-message generation time of RT channel C,

m, The maximum message size of RT channel C_

di The end-to-end deadline of RT channel Ci

Chapter 3

Motivation and Relevant Background

W'e are interested in extending the current schedulability analysis to accommo-

date changes in task execution time. [t is only befitting to spend some time

in describing the principles and assumptions that underlie this analysis. Most

schedulability results [24, 19, 44, 46] are based on the critical instant argument,

which defines a worst-case condition for a task. Clearly, a task suffers its worst

completion time when it has to compete for the processor (or component in

question) with every higher priority task in the system. That is, when it ar-

rives at a time when all other higher priority tasks also arrive. This instant is

called the critical instant. Therefore, it is sufficient to look at the completion

time of this one instant in order to ascertain the task schedulability. But does

this computation really give us the worst-case completion time of a task? [n

other words, given a task's characteristics, will it ever suffer this completion in

reality?

Notice that the critical instant argument clearly ignores the arrival in-

formation of tasks and makes the assumption that, sooner or later at least

one of the instances of a task will face a critical instant. It can be seen,

however, that this is not necessarily true and therefore, the actual worst-case

completion time of a task can be less than or equal to the completion time

23

computed by the critical instant assumption. A simple examplewill clarify

this point: Considera task-setwith two tasks, Tl and T2 whose characteristics

are, al = 0, el = 2, pl = 12, dl = 10 and as = 3, e2 = 1,p2 = 12, d2 = 9 respec-

tively. Further assume that 7'1 is the task with the higher priority. Clearly,

task T2 will never encounter a critical instant because, its every instance will

be ready only 3 units of time after the arrival of T1. Further, T1 needing only

2 units of execution time will complete before T2's instance is ready. In this

scenario, the worst-case response time of task T1 will be 2 and that of T_ will

be 1. Ignoring the arrivals and using the critical instant argument will result

in T2's worst-case completion time being computed as 3 and not 1. Therefore,

ignoring the arrival times of tasks and using the critical instant argument leads

to a pessimistic computation.

Can we tolerate the pessimism inherent to this computation? The an-

swer to this question depends on the environment under consideration, viz., a

uniprocessor or a distributed (more generally end-to-end) system. In unipro-

cessor systems, depending on the assumptions (task independence for example)

made, practioners [6] have argued that the cost of finding a more precise mea-

sure of the task completion time far outweighs the benefit gained (say, in terms

of saved resource utilization). However, there are convincing arguments to the

contrary by Tindell in [45]. He discusses scenarios that show the importance of

considering the task arrival information in schedulability analysis I. We believe

that the importance can be really felt in end-to-end systems and in unipro-

cessor systems with dependent tasks and not so much in uniprocessor systems

with independent tasks.

24

_Look at the discussion in Chapter 2 about dependent and independent tasks.

25

Now, let us look at the problem of schedulability analysis in end-to-

end systems. The schedulability of a task in an end-to-end system can be

reducedto a sequenceof uniprocessorschedulability problemsprovided weare

able to compute the characteristics(period and arrival time) of the sub-tasks.

Let us assumefor now that we have a mechanismto compute the sub-task

periodicities (the mechanismwill bedescribedin detail later). Wedon't require

the arrival time information if we follow the critical instant argument, since

we are going to ignore it anyway. We can use the critical instant argument

(ignoring the arrival time aik) to find the worst-case completion times of all

sub-tasks Ti_ (1 _< k _< m). Clearly, the worst-case completion time of the task

Ti is given by the sum of the worst-case completion times computed above.

Observe that we have a cumulative measure of pessimistic computations that

is bound to be more pessimistic. Therefore, we can see that even if one can

tolerate the pessimism inherent in the critical instant argument, in the context

of uniprocessor systems, we cannot do so in the context of end-to-end systems.

Before we give a description of the problem we are interested in address-

ing in this study, we would like to motivate the reader by briefly discussing the

source of the problem. In the chapter l, we mentioned that the kinds of changes

(that interest us) that systems undergo, manifest themselves as task execution

time changes. A brief discussion of these changes follows.

Note that, the task parameters, deadline and periodicity are dictated

primarily by the environment. The arrival time of a task is governed by the

environment and the inter-dependence between the tasks. The execution time

of a task on the other hand is governed among other things by: (i) the pro-

gramming language chosen, (ii) the compiler, (iii) the operating system, and

(iv) the processorarchitecture (e.g., pipeline, cache). Therefore,finding the

execution times of tasks is complex and involved [31, 23, 1]. In most casesit

is almost impossibleto compute a deterministic measureof the executiontime

of a task. Most researchefforts usethe worst-casetask executiontime and not

the mean execution time. While this choicecan be justified by the fact that

the analysis is basedon the worst-casescenario,it neverthelessresults in an

over-designof the system. Also, this assumptioncan result in poor resource

utilization.

Using mean task execution times in the computation doesreducethe

pessimismbut unfortunately wecouldhavecaseswherethe guaranteesprovided

by the schedulability analysiscouldbe invalid (The numberof suchcasesbeing

determined directly by the variance in the computed mean execution time).

Therefore,it is necessaryto accommodatethe varianceinformation alongwith

the mean(for task execution times). For example,if the meanexecutiontime

of a task is _ and the varianceof this meanis a then it implies that the actual

executiontime is most likely to lie in the interval (3-a,, _+ _r). Schedulability

analysisdone usingthe meanexecution time will remain valid evenwhen the

actual execution time falls between (3 - a,, 3). However, the same does not

hold for the interval (_, _ + a). Assuming, the variance is expressed in terms

of the mean (which is quite a common practice), we can represent _ as fac × g,

where fac is a constant. If we can extend the analysis done by using the mean

execution time to accommodate the possibility of the execution time being

scaled by a factor sf then, it can be seen that this is equivalent to: allowing a

variance of f ac × _. Where, s f = 1 + f ac.

As a system evolves the functionalities of tasks expand, reflecting in

26

27

terms of improvement in the data handling of tasks. For example, as an air

traffic control system adapts to new traffic (say from monitoring 8 flights to 12

flights) though the tasks themselves (their code that is) might not change the

data handled by the tasks can change, resulting in an increase in the execution

times of the tasks. This increase does affect the schedulability guarantees made

using the previous execution times. Therefore, what we are interested in is,

finding a factor sf by which the execution times can be scaled (capturing the

data handling change) without invalidating the schedulability guarantees.

A more direct scenario that affects the completion time computation

occurs when the target platform changes. Any analysis performed (to guaran-

tee performance) assuming particular values of task execution times becomes

invalid once the target platform changes. For example, a faster processor could

result in a lower execution time (not invalidating the analysis), but a slower

processor would surely have an adverse affect on the schedulability analysis. As

a system evolves, though in general the overall system is likely to improve, the

performance of individual components (some processors for example) might not

always improve. Another instance where a target platform is in general slower,

arises in the case of prototype building and testing [51].

A last case where we observe the need to do schedulability analysis for

at least two target platforms arises in the area of fault tolerance. It is common

practice to provide fault-tolerant operation by the use of redundant components

(often at least one secondary component). In general, secondary components

provide only a minimal functionality (sufficient to keep the system operational

till the primary is fixed) and therefore tend to be slower. Any schedulabilitv

analysis guarantees provided with the primary component as the target will be

invalid once the system falls back onto the secondary.

From the above discussion we note that, what we need is a measure

(will be referred to as the scaling factor for obvious reasons) that in some sense

qualifies the schedulability analysis. Provided the task execution times (as a

result of the changes described above) satisfy a bound dictated by this measure

the schedulability analysis remains valid.

We now discuss the underlying theory derived from past results in the

area of real-time systems that is used in this study.

28

3.1 Scheduling Theory

Research in schedulability analysis has been focused mainly on uniprocessor

systems. In recent years the original fixed priority analysis [24] has been consid-

erably extended, relaxing many of the assumptions of the original computation

model. Lehoczky et. al.'s [20] efforts to find the worst-case timing behavior of

rate-monotonic tasks was the first in this direction. They have subsequently

extended this result further, to accommodate any fixed priority task assign-

ment [19]. In this thesis we make extensive use of this result.

The following, is a brief discussion of scheduling under different assump-

tions about the environment and tasks. A good source of related discussion

can be found in [48] and [40].

3.1.1 Static versus Dynamic Scheduling

Static scheduling mechanisms assume complete a priori knowledge about the

task characteristics including inter-task dependencies. Such assumptions are

valid in many of today's practical real-time systems[39]. For example, real-

time control of a processcontrol application might havea fixed set of sensors

and actuators,and a well definedenvironmentwhoseprocessingrequirements

areall knowna priori. The operation of the static schedulingalgorithm in such

a systeminvolvesproducing a fixed schedulefor what is calleda hyperperiod.

The fixed schedulerepeatsevery hyperperiod [48]. For example if the arrival

times of all tasks in a task-setare0 then the hyperperiod is given by the least

common multiple (LCM) of the task periods. A static scheduling algorithm

assigns a fixed priority to each task that remains unchanged for the lifetime of

the task.

It has been shown by Liu and Layland in their very well known pa-

per [24] that the rate monotonic priority assignment (RMS) guarantees the

schedulability of a task-set (of n tasks), if the utilization of the task-set is less

than or equal to n(21/" - 1). For large n this bound tends to 0.693. Further,

the RMS was shown to be an optimal static fixed priority assignment when the

deadlines of tasks coincide with their periods. Other significant results in this

direction were, Leung's [21, 22] formulation of an alternative (static fixed) pri-

ority assignment to accommodate tasks whose deadlines are less than or equal

to their periodicities. Audsley et. al. [2] allowed the addition of guaranteed

sporadic tasks and Tindell et. al. and Locke [26, 27] considered the possibility

of tasks having a release jitter.

If a real-time system operates in a dynamic environment where it is

impractical to assume complete knowledge of the processing requirements of

tasks (and their interactions) we use a dynamic scheduling mechanism. In such

a case the chosen dynamic scheduling algorithm is analyzed off-line using the

29

expected requirements of the dynamic environment. The same algorithm is

then used at run-time with the assumption that the run-time behavior of the

system does not depart markedly from the expected behavior for which the

scheduling mechanism was tested. A static or dynamic scheduling algorithm

can be applied in either of the cases, viz., the environment is known or changes

dynamically. However, what distinguishes the two is the performance guaran-

tees that can be made about the scheduling mechanism. For example, if the

assumption of complete a priori knowledge about the system does not hold

then, while a static scheduling algorithm can be used but it will not be able to

make any schedulability guarantees.

The earliest deadline first (EDF) scheduling mechanism [24] is the most

widely used dynamic scheduling mechanism. EDF runs that task among the

task-set that is ready to run and is closest to its deadline. Therefore, as a

task nears its deadline its priority relative to other tasks increases. The EDF

scheduler was shown to be an optimal dynamic scheduler in the sense that, if

there exists a scheduler that can guarantee that all the tasks would meet their

deadlines then, so will EDF. A drawback of the EDF scheduler is that in its

comparison of tasks, Ti, Tj, with deadlines, di, dj, there is no regard for their

execution times, ei, ej. Therefore, even if the two tasks' deadlines differ by a

small amount (di -d_ = +,), d_ will be chosen to run instead of dj even if

their execution times differ by a large amount (el << ej). The least laxity first

(LLF) scheduler [29] uses a different basis for priority assignment that partly

answers the need to accommodate the execution times of tasks. The laxity of

a task, T_ is the difference (di - ei), between the deadline and the execution

time of a task. It essentially captures the room for meeting the deadline of a

30

task. LLF schedulerhasalsobeenshownto be an optimal dynamic scheduler.

In summary,the choiceof a particular schedulingmechanismisgoverned

by suchconsiderationsas: (i) The assumptionsthat can be made about the

environment (static vs. dynamic), (ii) the guaranteesprovided by the sched-

uler beingconsidered,(iii) the cost in terms of computational overheadof the

schedulerand (iv) the constraintson the task characteristics(e.g., deadline<

periodof tasks).

31

3.1.2 Relationship between deadline and period

The classical scheduling result by Liu and Layland [24] is built on the assump-

tion that the deadlines of tasks are equal to the periods of tasks. In other

words, an instance of a task is required to be completed before its next in-

stance is ready. As already mentioned, the rate-monotonic priority assignment

(RMS) gives an optimal fixed priority scheduling mechanism for this scenario.

However, if the deadlines of tasks are allowed to be less than or equal

to their periods (i.e., d_ <_ pi VTi) then the optimality of RMS does not hold.

As shown by Leung and Whitehead in [22], the deadline monotonic scheduling

(DMS) mechanism is an optimal for this scenario. The DMS assigns the highest

priority to the task with the shortest deadline. This DMS scheme is optimal in

the sense that if any fixed priority scheme can schedule a task-set then so can

the DMS scheme. One should not confuse the deadline monotonic scheduler

with the EDF which is a dynamic scheduling mechanism where a task's assigned

priority can change dynamically. A special case of this scenario occurs when

the deadlines of tasks are a constant factor of their periods. In other words.

VT,,d, = x_ × pi, where n <_ 1. Note that both RMS and DMS would end up

being the same in this case.

The third scenario occurs less commonly in real-time applications (more

common in imprecise computation [25, 36, 37]), where the deadlines of tasks

can be beyond the end of their periods. This scenario was first studied by

Lehoczky [20], where he considered the possibility of _ (in the formulation of

the previous paragraph) being greater than 1. He showed that for a value of

_; = 2 the utilization bound of RMS increases from 0.693 to 0.811. He reported

simulation studies that show a more promising (close to 1.000) increase in the

achievable utilization.

32

3.1.3 Precedence Constraints and Resource Sharing

An inherent characteristicthat governs current complex real-timesystems is

the cooperation oftasks to achieve the goalof an application.Such cooperation

can be captured by varioustypes ofcommunication semantics. Depending upon

the chosen semantics, tasks experience precedence constraintsor blocking or

both. Blocking occurs due to the use of a synchronization mechanism (like

priorityinheritanceprotocol [33])to regulated resource sharing. Similarlythe

use of criticalsections to achieve concurrency control (Sha et. al. [34])can

resultin blocking. An alternativeto using a concurrency control mechanism

for regulating resource accesses is to impose strictorder on these accesses.

Such an order can be captured by imposing precedence constraintson tasks

that share the same resource. As was shown by Tindell et. al. in [45] and will

be explained in more detail in chapter 5 of this thesis, these two scenarios can

be captured by considering tasks to have arrival time characteristic in addition

to execution time, period and deadline.

3.2 Uniprocessor Schedulability

Most schedulability results [24, 19, 46] are based on the critical instant argu-

ment, which defines a worst-case condition for a task. As noted before, worst-

case completion time computation is the crux of schedulability analysis. The

critical instant argument gives us a situation under which a task will undergo

its worst possible completion:

Lemma 3.2.1 The worst-case completion time for task T, occurs when it ar-

rives at a critical instant, al = ... = a, = O.

This lemma tells us that any instance of a task that arrives at a point

in time when all higher priority tasks also arrive suffers the worst completion

time. We still have to compute this completion time. The following equation

gives a mechanism for this computation:

W, is = the smallest X for which(y_
j=ltoi--1

X

Pj

The above equation can be viewed in terms of demand and supply. The

term E3=1,o,-_ ej ix] captures the demand for processor time from all instances

of tasks with priority higher than i over X units of time. Therefore, the fraction

in the above formula gives the ratio of the demand to the supply. The shortest

supply X for which the demand is met, i.e., supply > demand, gives the

completion time of the task = Wi. Further, if this value Wi is less than or

equal to the deadline of the task (Di), then the task meets its deadline.

33

3.3 Other Relevant Work

The area of end-to-end scheduling is a relatively new are in real-time systems.

Prominent work in this area has been reported by Bettati in his thesis [4]. As

he showed in [4], the problem of finding an optimal scheduler for scheduling

end-to-end tasks is NP-complete [13]. To this end, he proposed and analyzed

heuristic approaches to solving this problem. The schedulability test he uses to

test his heuristic schedulers is based on the critical instant argument. As was

discussed before, this results in a pessimistic evaluation of the scheduler. It is

therefore possible that he rejected heuristics that did not perform well under the

pessimistic test but would in fact have been able to guarantee schedulability.

Other ongoing research on this problem was reported by Etamadi in [7].

He proposes to enhance the analyzability of end-to-end systems without mak-

ing constraining assumptions that restrict resource utilization. Further, he pro-

poses building robust application models that would allow enhancements like

synchronization, communication. Related work can also be found in [14, 30].

Finally, on the problem of admission control of RT channels [28, 9]. The

Tenet group's Ferrari et. al. were the first to deal with this problem extensively.

The principle they followed [8, 9] in the design of an admission control scheme

is based on verifying, whether the resources available on the path of the newly

requested RT channel are sufficient even in the worst possible case, to

1. provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to all the existing RT channels to continue

being satisfied.

34

The above verification depends upon the kinds of QoS parameters al-

lowed. The most important QoS parameter of concern to real-time system

designers is meeting a latency bound (deadline). We restrict our interest to

this parameter. There are two tests that are relevant in this context:

• Schedulability Test: Does the addition of the new channel to the already

established channels using this link cause either the new channel or one

of the already established channels to miss their deadline?

• Buffer Space Test: Is the available buffer space at the link sufficient to

allow the messages of the new channel to be stored for a length of time

equal to the delay faced by the channel at this link?

Different approaches to the admission control problem (in real-time sys-

tems) witl differ in the way the above two questions are answered. Therefore, a

study in admission control reduces to the study of these tests. The buffer space

test has been successfully addressed by the Tenet group [9]. We concentrate

mainly on the schedulability test because it is our belief that there is room for

improvement here. In particular, there are many situations that have not been

considered in this context.

35

Chapter 4

Problem Statement and Description

4.1 Scalability of Uniprocessor Systems

The uniprocessor scalability problem can be formally defined as follows:

Problem Definition 4.1.1 Given a task-set T consisting of n tasks, and a

subset S ofT. Find the maximum common scaling factor by which the execution

times of each of the tasks in the subset S can be scaled, without affecting the

schedulability of the task-set T.

As described in the previous chapter, the schedulability of tasks running

on a uniprocessor can be determined by lehoczky's [19] schedulability test. The

scalability problem now involves extending this test to compute the scaling

factor.

4.2 Scalability of End-to-End Systems

The problem of interest here is the "Scalability of task-sets in end-to-end real-

time systems". The problem can be looked at from two different viewpoints:

(i) The first viewpoint stems from assuming the scaling to occur as a result

of a change in one or some of the components in the system; (ii) The second

36

viewpoint stemsfrom assumingthe scaling to occur asa result of a changein

the functionality of someor all of the sub-tasksin the system.

37

4.2.1 Component Change

A changein a component R_ can result in a gain or a loss in the speed of

processing for the sub-tasks running on it. Clearly, if there is a gain in speed

of a component then this will not have any adverse affect on the completion

times of sub-tasks running on it. However, if the component is replaced by a

slower one then it will affect the completion times and hence the schedulability

of the sub-tasks running on it. The problem of interest therefore is, to find the

maximum factor by which all the sub-tasks on a particular component /_ can

be scaled such that the schedulability of the task-set (comprising all n tasks

that is) is unaffected.

In the following formulation we assume that a single component is un-

dergoing a change. We can however, generalize it to a sub-set of components.

The problem of scaling occurring as a result of a component change can now

be formally posed as:

Problem Definition 4.2.1 Given a task-set T ofn end-to-end tasks executing

in a system of m, (rn >_ 1) components, find the optimal scaling factor 1/sfc

(corresponding to a maximum a f c) with which the processing speed of a given

component r can be scaled (down), without affecting the schedulability of the

task-set.

In other words, we are interested in the maximal component change

the task-set can survive. The reason for representing the scaling factor as a

reciprocal will becomeobvious once we realize that a lowering in processing

speedof a componentwill reflect asan increasein the execution timesof sub-

tasks running on the component. For example, if the speedof the component

is S (instructions per unit time) then an execution time requirement of a sub-

task T,k being e_k (time units) implies that the number of instructions that the

sub-task requires to execute are S x e,k. If the processing speed is scaled down

by 1/sfc (implying that sfc > 1) then, we have the new speed S' = S x i/sfc.

Therefore, the amount of time it would take to execute S x e,k instructions a is

given by:

t S X eik

elk : St

S x e,k

S x 1/sfc

--" sfc ×eik

In this formulation, we assume that all sub-tasks that execute on com-

ponent r will be equally affected. That is for all sub-tasks Tj, (1 < j _< n)

running on component r their execution times as a result of the change would

become sfc x ey.. The next perspective to the scaling problem however, allows

for the possibility that only a subset of the sub-tasks running on a component

are affected as opposed to all sub-tasks being affected.

38

4.2.2 Task Changes

As opposed to a change in one or more components, we can envision one or

more sub-tasks being affected by a change. For example as a system evolves,

1Assuming that a change in the component is such that the same code is able to run on

the new component

to encompass more functionality, some of the sub-tasks (their code that is)

need to be modified (enhanced), resulting in an increase in their execution

times. Alternatively, enhancements could come in the form of increased data

handling, manifesting as an increase in the execution times of tasks (as before

we do not consider decreases because they do not violate prior schedulability

guarantees). The problem of scaling occurring as a result of task changes can

now be formally posed as:

Problem Definition 4.2.2 Given a task-set Tofn end-to-end tasks executing

in a system of rn, (m >_ 1) components, find the maximum scalin9 factor, sit

with which a subset of the sub-tasks (say S : {Tik, where I < i <_ n; 1 <_

k <_ m}) execution times can be scaled, so that the task-set T's schedulability

remains unaffected.

As it will be clear from the following discussion, solving the end-to-

end schedulability problem can be reduced to solving m independent (deemed

independent by an important transformation to be described later) single com-

ponent schedulability problems. In other words, solving the above formulated

scalability problem for a subset S will become equivalent to solving m single

component scalability problems on each of the subsets $1, $2,..., S,_. A subset

S, contains all sub-tasks Ti,, (Vi) belonging to S. If for a particular component

r, there are no sub-tasks T,, (Vi) in S then we set the corresponding set Sr = O

(null set).

:39

4O

We canobserveone step that is commonto the abovetwo formulations, viz.,

determining the schedulabilityof the given task-set T. This is the initial step

to be done in solving both these problems. Note that, if a task-set T is un-

schedulable to start with then, any adverse change either to a component or

to a subset of the sub-tasks is only bound to make the situation worse. The

problem of interest can therefore be posed as:

Problem Definition 4.2.3 Given a task-set T of n end-to-end tasks executing

in a system of rn components, find if the task-set is schedulable.

In order to find the schedulability of end-to-end task-set, we have to find

if each end-to-end task in turn will be schedulable, i.e., meet its deadline when

the individual sub-tasks compete for processing on their respective components.

Therefore, for each task we have to find its worst-case completion time which

can then be compared against its deadline. The worst-case completion time of a

task Ti can be computed by assuming that all its sub-tasks simultaneously suffer

their worst-case completions. The worst-case completion time of the task (T_),

is then given by the sum of the worst-case completion times of the individual

sub-tasks (Tik). For a given sub-task Tik, executing on the component R_, the

information we need to find its worst-case completion time is:

• The arrival time of all sub-tasks Tjk (j <_ i) 2, which are of higher priority

than Tik and are running on the same component, Rk.

2Unless otherwise specified, the arrival time of a sub-task T,k implies the arrival of its
first instance

• The periodicity of all sub-tasksTj_ (j <_ i), which are of higher priority

than T,k and are running on the same component R_.

41

Notice that when, i = n we have to find the arrival time and periodici-

ties of all sub-tasks in the system to determine the schedulability of the task T_.

Therefore, we need a mechanism by which we can derive these two parameters

(since these are not given a priori). Note that, only the first sub-task of any

task is truly periodic. The arrivals of the consecutive instances of any sub-task

Tik, (1 < i < n; 1 < k < m) are dictated by the completion times of the sub-

task preceding it, i.e., Ti,k-1. These completions are obviously non-periodic

and so are the arrivals of sub-task Tik. We however can impose a periodicity

on these sub-tasks by a proper justification. The phase adjustment mecha-

nism [51], is one such mechanism that derives sub-task arrival times and also

their periodicities. The term phase here is used to denote arrival time.

Imposing a period on the arrivals (of consecutive instances that is) of a

sub-task Tik (1 < k _< rn), implies that, even if the preceding sub-task T,,_-i

does finish at a particular time 3 (say Fi,k-l), the sub-task Tik will not be ready

immediately. A finite amount of time (say Wi,J,-I -Fi,k-l) 4 has to elapse before

the sub-task Tik is ready to execute. It is necessary to limit this finite amount

of wait time in the sense that, if it is too large then it could hurt the utilization

of the component Rk. This is due to the fact that, while the sub-task is being

intentionally delayed, the component R_ could be idle. On the other hand

this delay must be large enough to be able to accommodate all possible finish

3All references to time are relative to t = 0, unless otherwise specified

4Here, Wi,k-i is a constant for the task T,,k-a; therefore, the delay is a variable for each

instance of T/,__ 1

times (of its various instances) of task Ti,k-l. Clearly therefore, in the limiting

condition (delay = 0) Wi,k-i must be given by the worst-case completion time

of the sub-task Ti,k-l.

An effect of this adjustment is that a sub-task T,k will always be ready

(or arrive) after a constant amount of time from the arrival of the preceding

sub-task T,,k-l. Therefore, knowing the arrival time of the sub-task T,1, we can

find the arrival of the sub-task T_, knowing which we can find the arrival of

T,3 and so on. It should be clear to the reader that the above adjustment also

allows all sub-tasks belonging to a task to inherit its period.

What the above adjustment has afforded us is, the ability to treat

each of the components independently, provided we are able to find the terms

Wik (Vi, k). Observe that we have all the information about sub-tasks T,l (1 _<

i < n), running on the first component, R1 (That is, we have their arrival times,

periods and execution times). Now the problem we wish to solve is finding the

worst-case completion times of these tasks. Once we find these worst-case

completion times we have all the information about sub-tasks Ti2 (1 < i < n),

running on the second component, R2 and so on. The problem of interest can

therefore be formally posed as:

42

Problem Definition 4.2.4 Given a task-set T of n tasks executing on a single

component, find the worst-case completion times of all tasks in the task-set.

Observe that this problem is similar in sense to the schedulability prob-

lem solved by Lehoczky [19] (refer to Chapter 3). However, while his solution

using the critical instant argument can be used in the context of uniprocessor

43

systems,wecannot use it here(in the context of end-to-endsystemsthat is).

Finding a solution to this problem is oneof the resultsof this thesis.

Now that wedescribeda mechanismto test whethera given task-setis

schedulable,wehave answeredthe questionof whether there exists a scaling

factor asdefinedby the two problems,4.2.1and 4.2.2. Clearly, if the tasks are

so stringent that any increasein the execution times of the sub-taskscannot

be tolerated, then the scalingfactors sfe (as defined in problem 4.2.1) and sft

(as defined in problem 4.2.2) will both be equal to 1.0.

The end-to-end schedulability problem has been reduced to m single

component worst-case completion time computation problems and not m single

component schedulability problems. Therefore, we cannot talk about extending

a single component's schedulability, unless we derive the sub-task deadlines. A

major research issue in end-to-end scheduling has been the derivation of sub-

task deadlines. Given an end-to-end task's deadline the problem of finding an

optimal 5 division of this deadline among the sub-tasks is intractable [15] (NP-

complete [12]). This result has prompted a heuristic approach [4, 15, 30], two

such heuristics being: (i) divide the task's slack 8 equally among the sub-tasks;

(ii) divide the task's slack among its sub-tasks in a weighted proportion of their

execution times.

The above two heuristics vary mainly in their sensitivity to the execution

times of tasks. For example, the second heuristic is built on the assumption

that the shorter a task's execution time requirement, the more likely it will have

5In the sense that, if there exists a division that would help the task meet its deadline
then the mechanism should find it

_The slack of a task is given by the difference between its deadline and its execution time

its requirement met and thereforethe lower is the slackassignedto it. The

first heuristic is built on the assumptionthat the priority inherited by a sub-

task hasa greaterimpact on its ability to meet its executiontime requirement

than its executiontime itself. Thus the slack is divided equally amongall sub-

tasks. This allowsus to reducethe end-to-endscalability problem to m single

component scalability problems.

Now, finding the common scaling factor is a simple matter of finding

the minimum of the m scaling factors (each corresponding to one component).

The problem of interest therefore is the single component scalability problem,

which can be formally defined as follows:

44

Problem Definition 4.2.5 Given a schedulable task-set T of n tasks execut-

ing on a single component and a subset S ofT, find the maximum scaling factor

s f with which all tasks in S can be scaled without violating the schedulability

of any of the tasks in T.

Now, we can observe that solving the two problems 4.2.1 and 4.2.2

amount respectively to:

• Solving the single component scalability problem (4.2.5) with S = T.

• Solving the rn single component scalability problems and taking the min-

imum among these scaling factors.

We can now summarize this discussion on end-to-end scalability by not-

ing that, solving this problem entails finding solutions to the two problems,

4.2.4 and 4.2.5.

4.3 Admission Control of RT Channels

The problem of admission control of real-time (RT) channels was first inves-

tigated by Ferrari et. al. [9] at the Tenet group. Admission control is the

mechanism by which multiple real-time connections can simultaneously share

the resources of a packet switching network without resulting in congestion.

Further, the connections are guaranteed a particular quality of service (QoS)

that is initially (at connection set up) agreed upon. Admission control comes

into play when a new RT channel is being requested. An RT channel (or

a connection request) is accompanied with a QoS list that describes the re-

quirements of this connection. Popular QoS requirements in the literature of

distributed real-time systems are - throughput, latency (or deadline), packet

loss tolerance [28, 10, 35] etc.

The mechanism used to determine the admissibility of a real-time chan-

nel involves verifying at each intermediate link (along the path) in turn whether

the RT channel's QoS requirements can be guaranteed. If a channel's require-

ments can be met at each of the intermediate links then we can accept the

channel. If however, the channel's requirements cannot be met at any of the

intermediate link then we can reject the channel. In fact the first such link that

deems the channel inadmissible is sufficient to confirm that the channel would

not be admissible.

In order to test whether a channel's requirements will be met at an inter-

mediate link we have to know its deadline and its period at that link. Finding

the period is straightforward according to the phase adjustment mechanism.

However we do have to derive the deadline of the RT channel at intermediate

links. Since the service time of the channel on each of the links is the same

45

one way to derive the deadlineswould be to divide the slackof the RT chan-

nel equally amongthe intermediate links. However,if one wishes,one canuse

a more sophisticatedheuristic [15, 4] to derive thesedeadlines. This reduces

the problemof finding the admissibility of an RT channel to be equivalent to

solving the admissibility at eachof the intermediate link. From hereonwards

when werefer to the admissibility of an RT channel we mean its admissibility

at an intermediate link.

Now, the question that admission control has to answer when accepting

a new connection can be broadly phrased as:

Problem Definition 4.3.1 Given the QoS requirements of a new RT channel

is it possible to accept this channel without violating the QoS guarantees made

to RT channels that have already been accepted?

To summarize this chapter, we have defined four problems of interest:

* The uniprocessor scalability problem (4.1.1),

• The single component schedulability problem (4.2.4),

• The single component scalability problem (4.2.5), and

• The problem of admission control of RT channels (4.3.1).

The next chapter discusses the first of these problems. Note that, the third

problem in the above list is different from the first in that, it involves tasks

whose arrival times cannot be assumed to be zero (as in the critical instant

assumption).

46

Chapter 5

Scalability in Uni-processor Environments

As discussed in Chapter 1, a host of schedulability related issues translate into

a more general problem called the scaling problem. Observe that the scaling

factor as defined in the problem statement attempts to capture a common factor

by which a sub-set of tasks belonging to a task-set can be scaled together. In

our first attempt at this problem we made an assumption that the sub-set S is

the same as the task-set T. That is, we were interested in scaling the complete

task-set as opposed to a sub-set of tasks. A solution to this problem can be

found in [52]. The following discussion however considers the general scaling

problem as stated in Problem 4.1. The model assumed is the uniprocessor

model described in chapter 2. We repeat the problem statement here and

give a discussion about the possible approaches to the solution followed by the

details of the solution approach we have taken.

5.1 Problem Statement

• Given a task-set T consisting of n tasks, and a subset 5' of T. Find

the maximum common scaling factor by which the execution times of

each of the tasks in the subset S can be scaled, without affecting the

schedulability of the task-set T.

47

The particulars about the scheduling algorithm used to schedule these

tasks have not been specified in order to keep the problem general. The choice

of scheduler can be either a dynamic scheduler (like earliest deadline first) or a

fixed priority static scheduling algorithm. If the chosen scheduler is the latter

then the tasks are assumed to be numbered (decreasing order) according to

their priorities as dictated by the scheduler. The term, scaling factor is used

to refer to a scale up in the execution times and not a scale down. It can be

shown that if the execution time of a task is reduced then the schedulability of

the task (and other lower tasks) will remain unaffected.

The use of the term, "maximum" needs some explanation here. The

scaling factor we desire is one that cannot be improved upon. In other words,

given that sf is the maximal scaling factor and e is an infinitesimally small

quantity. Using sf to scale the tasks in S would not affect the schedulability

of the task set whereas using sf + _ as the scaling factor results in at least one

of the tasks in T being unschedulable.

48

5.2 Discussion of Possible Solution Approaches

We concern ourselves mainly with a static fixed priority scheduling mechanisms

because the above problem has a rather trivial solution when we assume a

dynamic preemptive scheduling algorithm (say EDF). It is possible to find a

feasible schedule using a dynamic scheduling mechanism provided the following

condition holds for the utilization [24]:

n

U = Y'_ e--5' _<1
YjET Pi

If the utilization of the task-set is greater than 1. then clearly the task-

set is not schedulable by any dynamic scheduling mechanism and further the

question of scaling the tasks is not relevant anymore. The above condition is

both a necessary and sufficient condition for EDF to be able to guarantee the

schedulability of the task-set. Therefore, meeting the above condition ensures

the existence of a scaling factor. Now, given such a task-set we can scale the

tasks in the sub-set such that the new utilization U' = 1.

+ U - _ e_

= x +U
Y $

49

The scaling factor of interest therefore is when U' = 1, given by:

s f._ -
I-U

e__+l

vjG$ P./

This factor is not valid in the ca.se of static fixed priority preemptive

scheduling algorithms because the above condition on utilization (i.e., U _<

1) does not necessarily guarantee the existence of a fixed priority scheduling

algorithm. A similar bound does exist for the rate monotonic scheduler (RMS: a

fixed priority scheduling mechanism), under the assumption that the deadlines

are equal to periods: n(21/_ - 1). The rate monotonic priority assignment is

known to be optimal in this case [20]. Further, the total utilization of the

task-set being less than or equal to n(2 t/" - I) is a sufficient (not necessary)

condition foroptimality.In other words the above condition guarantees that a

ratemonotonic priorityassignmentwillresultin the task-setbeing schedulable.

Therefore,one can say that a scalingfactorsf,ms (followingthe same derivation

as above but replacing the utilizationbound n(2I/_ - I) for l) given by the

followingequation does not violatethe schedulabilityof the task-set.

50

,-,(2'/" - l) - u

= e_, + 1
vies P._

The above computation of the scalingfactordoes give us a validfactor

in the sense that using thisfactorto scaletasks does not violatethe schedula-

bilityof the task-set.However, itisnot necessarilyoptimal in the sense that

the resultingutilizationbound is not a tight bound. In order to understand

why thisbound isnot tightone has to look more carefullyat the meaning of the

schedulabilitybound, n(2I/_- I).This bound isonly a sufficientand not a nec-

essaryconditionforthe task-setto be schedulableby the RMS mechanism [20].

Therefore itispossiblethat a task-setdoes not meet thisschedulabilitybound

and yet isschedulable by the RMS mechanism. Therefore we observe that a

more preciseanalysisisnecessary to get the maximal scalingfactor.

A second observation one has to make about the above scalingfactor

computation isthat,the computation derivesitsvalidityfrom the factthat the

rate monotonic priorityassignment isoptimal when deadlinesand periods of

tasks coincide. [fthiscondition (deadlinesequal periods) does not hold then,

we can no longeruse the above result.Ifthe deadlinesoftasks are known to be

lessthan theirperiods,then the deadline monotonic priorityassignment (DMS)

is known to be optimal [22]. However, there isno known sufficientcondition

51

on the total utilization. Therefore, in order to compute the scaling factor we

have to do a more precise analysis of the task-set.

As a special case of the scaling problem, if the sub-set S is same as T

then the scaling factor would be a simple reciprocal of the utilization in the

case of EDF (i.e., sf, a! = _). Similarly, in the case of RMS, the scaling factor

using the approach above would be, sf_,,, '_(21/"-1) (this is not optimal, as-- U

already discussed above).

In the following, we give the algorithm to find the maximal scaling

factor when an arbitrary (RMS and DMS being two instances) fixed priority

assignment is used. Before the details of the mechanism are presented we would

like to intuitively motivate the idea behind it. We consider the case of scaling

all tasks to present the motivation. Since we are interested in the common

scaling factor, one approach would be to consider a successive approximation

technique as taken by [6]. Incremental factors are used to scale tasks and

perform a schedulability analysis to confirm if the increment is acceptable.

Clearly, such a technique would be expensive.

An alternative approach would be to incorporate the scaling factor com-

putation into the schedulability test. This is the approach we have taken. The

schedulability test we use is the one proposed by Lehoczky in (refer to Chapter

2). The idea behind Lehoczky's schedulability test is to ascertain the schedula-

bility of each task in turn starting from the highest priority task. The schedu-

lability of each task involves considering all tasks that are of higher priority

than itself. Therefore, the schedulability test of a task T_ can be interpreted as

follows: To ascertain whether task T, will meet its deadline while continuing to

honor the timing requirements of all higher priority tasks. Note that the test

does not consider whether the higher priority task meets its deadline. It only

makes sure that any higher priority task will not wait for the processor while a

lower priority task is using it. In other words, it ensures that in every pj () < i)

time units the task corresponding task Tj would get ej units of the processor's

time. It is possible for example that, a higher priority task Tj gets its last unit

of required execution time between dj and pj (note dj < pj 1 <_ j <_ n), thus

meeting its demand I but not its deadline.

On the same lines our approach to finding the scaling factor attempts to

find the scaling factor for each task in turn starting from the highest priority

task. The scaling factor (sff) obtained with respect to a task T, therefore

guarantees that the task T_ would meet its deadline continuing to honor the

scaled (scaled by sf _) requirements of all higher priority tasks. In other words,

sf _ is the factor with which the execution times of all tasks with priority greater

than T, and including T_ can be scaled without T_ missing its deadline even after

accommodating all the scaled higher priority tasks. The required scaling is then

the minimum of all computed scaling factors sfi. A more detailed treatment

of the solution follows.

52

5.3 Details of the Approach Taken

An analogy can be drawn between the computation of the scaling factor sf _ and

assessing the schedulability of the task T_. In order to assess the schedulability

of task T, we compute the worst-case completion time of task T_ and compare it

against its deadline. This computation takes into account the execution time

l lt will not wait for the processor while a lower priority task is using it

53

demandsof higher priority tasks (but is independent of the higher priority

tasks' ability to meet their deadlines). Similarly in the computation of the

scaling factor with respect to task T_, we only account for the execution time

(scaled) demands of the higher priority tasks and not the ability of these tasks

to meet their deadlines.

We find such scaling factors for all tasks and the required scaling factor

is the minimum among these, i.e., sf = Minimum(sfi). Note that each of the

scaling factors af' only considers the schedulability of task Ti and any scaling

factor that is less than sf i will continue to guarantee its schedulability. Since

we are interested in a common scaling factor, the lowest of the scaling factors

.sf i h <_ i <_ n (The index h is defined below). In the following paragraphs,

we present the details of the technique for the general scaling problem and a

proof of its operation.

We make use of the schedulability test described in [19, 6] to find the

worst-case response times of tasks.

Note that in the previous section we assumed that T = S 2 in order to

simplify the explanation of the solution. In this context we gave a definition

of sf' that needs a slight refinement to adapt to the case that the set S is not

necessarily equal to T. The scaling factor sf i is the factor with which the tasks

in the set S with priorities higher than Ti can be scaled without affecting T,'s

schedulability, while continuing to honor the demands of all tasks with priority

higher than T_. The requirements of higher priority tasks include both: (i)

the requirements of higher priority tasks that are not included in S and (ii)

2}re assume that the tasks in S are sorted in a non-increasing order of their priority

the scaled(scaledby sf' that is) requirements of higher priority tasks that are

included in S. There are two important observations to be made:

54

• In the computation of the scaling factor sf _ the task Ti is not necessarily

a member of S. This is because there are tasks in T that do not belong

to S whose schedulability could be affected by the scaling of tasks in S.

And we cannot ignore them in computing the desired scaling factor.

• The number of scaling factors to be computed is equal to n - h. The

number of tasks in T of priority less than the highest priority task in S.

Clearly from the definition of sf _ in the above paragraph, we see that for

all tasks T, whose priority is greater than the any in S, sf _ is undefined.

The given sub-set S is assumed to be sorted by the decreasing order of

priorities. Let Th be the highest priority task (first task) in S 3. For each task

T, where h < i < n (starting from i = h and counting up), we find the scaling

factor by which all tasks in S whose index is _< i can be scaled, while continuing

to maintain Ti's schedulability (i.e., meeting its deadline and the demands of

all tasks with priority higher than Ti are honored).

Since we make the critical instant assumption, only the first task in-

stance of any task Ti needs to be considered for its schedulability [19]. Note

that only higher priority tasks affect the schedulability of a task, because lower

priority tasks will be preempted. We consider the execution profile of task

T,(i >_ h) along with all higher priority tasks Tj where j < i. In Figure 1, the

first continuous block (no idle time in between) of used time is represented as

3Task Th is the highest priority task that needs to be scaled.

U_. The notation Ux is also used to represent the length of this block. The jth

such used time block is represented as/_. Further, U3,L and Uj,R represent the

left and right boundaries of the block Uj (i.e., Uj = Uj,R -- L_,r_) respectively,

relative to the start time of consideration (i.e., U1,L, which can be assumed

without loss of generality to be zero). The first task instance of T, (refer to

Figure 5.1) completes at a point U1 units of time after it has arrived, with

all higher priority tasks also arriving at U1,L, the same instant as Ti arrives -

critical instant.

55

uIL)

W0tst--casc[_a_iag forTi
(cnticalOtrtantJ

C0mplethl of Ti di

I Marled Um_,_d=UsedT_me 0 =UsedTime

Figure 5.1: Task Ti's Execution Profile

The blocks of execution between the points U1,R (The earliest point in

time after the completion of task Ti at which the processor becomes idle) and d,

(deadline of T,) are : 0"2, Us,..., Uk (There are k used time blocks in all). These

blocks represent the higher priority tasks that would have to be accommodated

if we want to push the completion time of Ti towards di. Each block of used

time is divided into marked and unmarked sub-blocks. A sub-block of block U s

is said to be marked if the execution that spans it belongs to a task (or tasks)

that belong to the sub-set S. A marked sub-block, denoted as U_, indicates the

p'th marked sub-block in Uj. There are k such marked sub-blocks in all.The

way the scalingfactor, sf' for task T_ is computed is as follows:

sf'= max sf,_
l<m<k-I

56

where

Z
s f,,, = l<j<,,

ZZu
l<_j_<mvt

s fro in the equation above is the factor which when used to scale the

execution times of all tasks in S of higher priority than Tt, will be able to

stretch the completion time of task T_ at most till U,_+I,L. The first term in

the numerator {same as the denominator) is the total of the execution times of

tasks in S that are considered for scaling at this point (i.e., tasks in S whose

priority is higher than T,). The second term in the numerator is the total idle

time that these tasks are being scaled to consume. Therefore the right hand

usedtirne-_idletirneside of this equation in a simplified sense can be viewed as _s_dti,_

Observe that, each s f,,, is a valid scaling factor in the sense that it does not

result in T/missing its deadline. Since we are interested in the maximum scaling

factor, the maximum among these valid factors is the required solution. The

resultant scaling factor sf _ is therefore the maximum scaling factor w.r.t task

Ti. However, from the definition of sf _ one can see that the possibility of a

higher priority task missing its deadline is not accounted for in this factor (only

its demand is accounted for). Therefore, this scaling factor is valid only in the

context of task T_. In order to find a common scaling factor for the sub-set S

now, we have to find the minimum among all sf i (h < i < n).

To understand why the minimum has to be taken, note that w.r.t task

T; (h < i < n) any scaling factor value less than sf i will still continue to be

valid. However, w.r.t some other task T_ (h < i < n), where s f-' < sf', sf'

will not serve as a valid scaling factor. Observe that sf 3 will surely serve as a

valid scaling factor w.r.t both Ti and Tj. If we generalize this observation, it is

clear why the minimum is the required solution.

The complete algorithm to compute maximal scaling factor is given

below.

Oi

1 Algorithm Scale_Factor(T, S)

Parameters: T is the given task-set which is schedulable. S is the

sub-set whose scaling factor is desired. S is assumed to be sorted in

the increasing order of their priorities. Assume that Th is the highest

priority task in the sub-set S.

Step 1: For (i=h;i<n;i++)

Step 1.1: Compute first approximation for the completion time

of task Ti's first job:

cornplo = _ ej
j=ltoi

Step 1.2: Calculate the next approximation for completion time:

complt+l ei + E [complt] e 3

1=! to i-1 PJ

If (complt+l > di) then The job missed its deadline:Step 1.3:

Exit(-1);

Step 1.4: If (complt+l # complt) then we have not arrived at the

completion time of the task, so, goto Step 1.2;

58

Step 1.5: The completion time for the job is complt;

Step 1.6: Fit higher priority task instances that would arrive

between the points complt and d,. The scheduling points are

U2L, U3L,..., UkL 't. where, U,n = U, nR - U,_L denotes the rn th used

time block (refer to Figure 5.1). Further we identify each used

block as a sequence of marked and unmarked sub-blocks where a

sub-block of block U,_ is marked (referred to as U_, if it is the j'th

marked sub_block of U,_) if it belongs to the sub-set S and if its

priority is greater than that of task Ti. unmarked otherwise

Step 1.7: Compute the maximum possible scaling factor sf':

3f'= max sf,,_
l<m<k-1

where

Z
s f,., = 1<_j<_._

ZZvJ

Step 2: sf = Minimum (sf i) Vi

Step 3: sf is the required maximal factor.

4Uk is the used block of time that overlaps with the deadline d,. However, if the last block

of used time, U_, does not overlap with the deadline di, i.e., di < U_,L then we set Ukt. = dl

end

The fact that the above algorithm returns an maximal scaling factor is

confirmed by the following proof:

59

5.4 Proof for the Presented Solution

Following are the observations about the Solution that would help us prove

that the derived scaling factor is in fact maximal.

• There is no idle time in the interval [U1,L, U1,R], because if there were any

idle time then it would have been used by Ti resulting in Ti completing

before the point U1,R.

• Blocks of execution Ui(i >_ 2) belong to only higher priority tasks. This is

true because we have not taken any lower priority tasks into consideration

here.

The scaling factor we are trying to find for task Ti only guarantees that

the task Ti will meet its deadline, by using the processor at times when its

free (i.e., not executing any higher priority tasks). It is possible that the

scaling factor derived can cause a higher priority task to miss its deadline.

However, if a higher priority task does miss its deadline, it is not because

of task Ti but due to its own execution time and the execution times

of tasks higher than itself being scaled (this point is explained using an

example later).

To see the effect of scaling the tasks by a factor, we look at the first scal-

ing factor considered, namely a fl (_._ U_)+(U2,L-U,,R}= I_ u_) (refer to Figure 5.2).

60

New Compl_on ofTi

OldComp_mofTi {

_1 =
(Utl+_l)+ (U,_-Um)

UII +[fll
di

UIL) '[JIR _ U_

l--"

Wot_-¢_ l_asing f0cTi]l Marked Umad_

(criticali_ant) 11 :Us_lTIme 0 :Us_IT_e

Figure 5.2: Effect of Scaling by s fl

Since, this scaling does not affect the periods of tasks, if there were Ij instances

of a task Tj(j <_ i) in the interval (Ua.L, U2.L) before the scaling, there will still

be the same number of instances and further they will arrive at the same points

as before.

U, = U,,n -- U1.L = _ Ij x e3 where li = l
l<j<i

The processing requirement of task Tj(Vj < i), after scaling would become

I
' if (j E S), or eje i = s f, x ey, = ej, if (j _ S). However, So long as the

following condition holds true, task Ti would complete by U2,L:

l<_j<i

We can confirm that this is in fact true:

(6 × ,}) =
SiS

(6 x _f, x ej)

+ _ (6 ×_s)

= sf, x _ (I i×ei)
(_<j<i)_Oes)

+ _ (6 × _J)

vl

= U2,L

While the above shows that the scaling factor is valid in the sense that it

moves (forwards) the completion time of Ti to the point U2,L (this argument can

be extended to show that a factor sf,,_ will forward the completion time of task

T, at most till U,_+I,L), it does not necessarily guarantee to be the maximal

scaling factor. The maximal scaling factor is the largest such scaling factor

among all sf,_ where 1 <_ m <_ k. In order to see why this is so, observe that

any factor sf,_ would result in the task Ti finishing before its deadline, therefore

all s fro are valid, however, the one that is the largest (say sf,_ sf i) is the

desired result. To see why this is maximal, we note that any larger a factor

would result in Ti finishing beyond U,_,_+I,L and any smaller would leave more

room for scaling the tasks in question.

Observe that computation of scaling factor w.r.t task Ti only guarantees

that T, will meet its deadline honoring the processing requirements of all higher

priority tasks. The scaling factor thus obtained does not guarantee against

higher priorit_¢ tasks missing their deadlines. If any higher priority task misses

its deadline as a result of this scaling, then obviously, it would miss its deadline

61

in spite of Ti and therefore a prior scaling factor would prevail (an example

below demonstrates this). In this way we compute the scaling factor sf _. We

perform this computation for all values of i from h to n and find the minimum

of them, which is the desired final result.

62

5.5 Examples Demonstrating the Solution

The following examples demonstrate the various aspects of the technique. The

first example involves three tasks, whose characteristics are given in Table 5.1

and the sub-set S has only one task {T2}.

Table 5.1: Example Task Table

Task Id Period Exec Time Deadline

1 100 40 100

2 150 40 150

3 350 35 280

Figure 5.3 gives a pictorial description of how the technique works on

this example. The required maximal scaling factor is 1.5625. There are a few

important po!nts to note, that are not evident through this example. The next

two examples are used to show these.

The second example demonstrates that, when computing the scaling

factor w.r.t a given task Ti, it is not necessarily true that the last of the com-

puted scaling factors, viz., ark is the maximum of all s fro. To see an example

of this case, consider the following task-set:

The task-set T has two tasks and the sub-set S contains both of them.

The computation of sf 2 would be Max(lO0/80 = 1.25,145/120 = 1.20) = 1.25.

63

dl I

T2 completes

I', i',il
.._ dl I d21

U11

T]t comple'es at 195

Uit U21 dt 3

sirI = Max(lO0/40) = 2.50

sf2 = Mio_(60/40,70/40) = 1.75

]
d 3 --Max (85/80, 125/80) = 1.562.5

i | | i
0 IO0 200 300

"nine

i i
4OO

Figure 5.3: Operation of Task Set in Example 1

dt |

U'2t

_41 _ "['2 completes

3 3 ?.:
Ull Ui2 ',

i ! !

O lO0 145

= Max(lO0140) = 2.50

sfl = Max(lO0/80, 1451120) = 1.25

| i i |
200 300 400

Figure 5.4: Operation of Task Set in Example 2

Table 5.2: Example 2

Task [d Period Exec Time Deadline

1 100 40 t00

2 150 40 145

64

Note that the scaling factor sf 2 is not determined by the second s f2 (last)

computed scaling factor but by that factor which is the maximum. In this case

the factor s fl. This same variation on the example also gives us a case for the

point we made before, i.e., when computing the scaling factor w.r.t task Ti,

the maximum of all the factors sf,_, 1 <_ rn <_ k is to be taken. Clearly, if we

were to take sf 2 to be 1.20 (145/120) rather than 1.25 then there would still

be some room for scaling.

In example 1, we see that the scaling factors are decreasing as we go

form task i = 2 (_f2 = 1.75) to task i = 3 (sf a = 1.5625). This however, is not

true in general. A simple variation on the example will show us why. Consider

the task-set in Table 5.3 with S = {T2}.

Table 5.3: Example 3

Task Id Period Exec Time Deadline

1 100 40 100

2 150 40 150

3 350 35 30O

We now have sf a = Max(85�80,145/80) = 1.8125. Thus illustrating

that the scaling factors don't have to follow a decreasing trend as we add more

tasks. This example also illustrates that the desired maximal scaling factor is

the minimum sf', i.e., 1.75 and not 1.8125.

65

dl I

t T2 completes

"_ dlI d_l

Ull

T31 completes u 195

SfIt = Max(lO0/40)= 2.50

: dl I d2_ dl 2 dl 3

Ull U21 d_2
d3 !

s'_= Max(60/40,70/40)= 1.75

]
sq$ = Max (85/80.145/80)= 1.8125

I I I !

o 1o0 200 3O0

_me

| !

4OO

Figure 5.5: Operation of Task Set in Example 3

Chapter 6

Schedulability of Task-Sets with Arrivals

The source of this problem as discussed in Chapter 4 stems from the first stage

of solving the end-to-end schedulability problem. To recall, the problem of

interest here is the schedulability of tasks which have end-to-end schedulability

constraints, i.e., a task is a sequence of sub-tasks that execute on indepen-

dent components. However, the task as a whole has an arrival time, period

specification and a deadline requirement.

We showed in Chapter 4 that a solution to the problem of end-to-end

schedulability (and subsequently scalability) requires that we are able to solve

the single component schedulability of a set of tasks whose arrival times are

non-zero. The reduction was facilitated by an important transformation, viz.,

phase adjustment. Phase adjustment is a technique that allows us to derive

the parameters of arrival and periodicity of sub-tasks of a task. The princi-

ple behind the technique was briefly described in Chapter 4, a more detailed

description follows

6.1 Phase Adjustment

Clearly, the parameters of arrival and periodicity of the first subtask of any task

are known a priori (inherited from the task). However, subsequent sub-tasks

66

67

Tij (j > 1) of task Ti are not necessarily periodic in nature. Therefore, their

arrivals and their periodicities do not correspond directly to that of the tasks.

We have to account for this unpredictability in timing behavior of sub-tasks fol-

lowing the first sub-task. The first sub-task Tix has the same periodicity as the

original task Ti, therefore, it always arrives (or is ready to execute) at the start

of the period Pi. However, the subsequent sub-task arrival times are dependent

upon the completion time of the previous sub-task, i.e., if Tis _ Ti,s+l,j > 1,

then the arrival time of a particular instance l of T_,j+1 is dependent upon the

completion time of the.l th instance of sub-task Tis. Further, the completion

time of a sub-task instance is a function of its priority among the other ready

tasks on the component. Therefore, we observe that there is a dependency

between successive sub-tasks that has to be taken care of.

Phase adjustment is a mechanism that allows us to remove this depe n_

dence. Since a, is the arrival time or phase of task Ti, sub-task T,1 inherits the

phase of the task T,, i.e, a,l = ai. The I th job instance of sub-task Til arrives

at ai + (l - 1)pi. Let the worst-case completion time (or response time) of

sub-task T,1 be WCia, i.e., any instance of Til (call it the I th) would complete

no later than ail+ (l - 1)pi + WCil. We use the term WCil to adjust the

phase of the next sub-task Ti2. Therefore, the phase of Ti2, ai2 is given by

a,1 + WC, I. This also guarantees that consecutive instances of subtask T,2 will

repeat periodically at an interval of pi time units.

This can be further generalized to find the phase a,.j,of the sub-task T, s

as acs-t + WCi,3_1. Also all sub-tasks of task T, are now guaranteed to directly

inherit its period. We have the following a recurrence relation that captures

the arrival time of a sub-task T,S:

68

a, i - ai,j-! + WC_,j_I

In order to find a closed-form solution to this recurrence relation we have

to know the base values, a_ and WC_. We already showed how to obtain a,_

from a_. The worst-case completion time WCi1 of sub-task Til can be obtained

if we solve the problem of schedulability of tasks running on the component that

Til runs. A solution to this problem is the subject of this chapter. Assuming

for now that we do have a solution to this problem and hence are able to find

the worst-case completion time of T,1, we complete the requirements to convert

this to the following closed form:

j-1

a,_ = a_+ _ W C.
1----1

Having obtained the value of WC_1 we can now use it to find the arrival

time and hence the worst-case completion time of task T_2. Again, we are

assuming that we know how to compute the worst-case completion times of

subtasks running on a single component with non-zero arrivals. Note that the

schedulability test for the end-to-end task Ti would now be a trivial comparison:

if _1_<j_<_WCq <_ D_ then the task Ti is schedulable.

In the above discussion we have assumed that we have a mechanism that

computes the worst-case completion times of subtasks given their arrival times,

periodicities and priorities. This is the subject of the following discussion.

6.2 Problem Statement and Solution

We recall from Chapter 4, the formal statement of the problem (Problem 4.2.2)

of interest to us here:

Given a task-set T of n tasks executing on a single component, find the

worst-case completion times of all tasks in the task-set.

The solution to this problem is based on the following observations:

1. Is there a period L for the task-set such that, looking at the behavior

of a task T, during the interval ai and L is sufficient to determine the

worst-case response time of the task T,? Note that, if a, = 0, Vi, then L

is given by the LCM of the task periods. The worst-case response time

of a task T/ is the maximum response time of all instances of T, in this

interval.

2. For arbitrary arrival phasings of tasks, the repetition of the initial phasing

pattern 1 occurs at a point L units later (where L is given by the LCM

of the periods). The state of the scheduler (defined later) is not the same

at these two points. Therefore, repetition of phasing pattern does not

necessarily guarantee that the task-set behavior will repeat itself.

3. If the task arrival times are inverse monotonically increasing with the

priority, i.e., the highest priority task is the earliest to arrive (a, < aj if

i < j), then the repetition of the phasing pattern is an indication that

the task-set would repeat its behavior.

1The phasing pattern is the relative arrivals of the various tasks under consideration

69

4. Given an arbitrary task phasinga, we can derive an alternate phasing a'

which has the characteristic that the arrival times monotonically increase

with the priority. Further, this phasing can be used to determine the

worst-case response time of the tasks in task-set.

The following theorem is the basis for the approach.

Theorem 6.2.1 : Given that the arrival times of tasks in a task-set are inverse

monotonic with priority (ai <_ aj if priority of T_ is greater than priority of T3,

i.e, j > i), the worst-case response time instance of a task T, belongs to the

interval [ai, a, + LCM(T_,...,T_)].

Proof. For task, Ti, the only tasks that it would have to compete with, are

the higher priority tasks T1, T2,..., T,. We are therefore interested in finding

that point in time at which, the phasing of task T_ (given by a_ + z, × p_, for

the xl h instance) with respect to other higher priority tasks is same as that at

time a,. Further, this point must be such that the state of the scheduler must

be same as it was at ai.

The relative phasing of task T_ with respect to the task T1 can be cap-

tured as: Task T_ comes ai - al units of time after task T1. Assuming the

existence of a point where this phasing repeats, and further that there are

xl and xl instances respectively of 7'1 and Ti before this point, we have the

following condition:

7O

(a,+xi ×p_)--(al+xl ×pl)=ai-al

::_ X l × Pl _ Xi × Pi

71

We can derive similar conditions for task T, w.r.t other tasks. The

resultant condition is:

xl ×pl =x2 ×p2 =..-=x, ×p,= L

where ai + L is the desired point. Clearly the LCM of p_ is solution for

the above equation if we assume integral values of p_.

al al + Pl a I 4- x I .Pl . at + xt .Pl

1' I' 1' 1'
a'z ,, a2+pl 1 1 a2 +x2-P2 a2 +(x2+|)'P2

p n n
N

s_ + xi ,pi

[[_ = Ready TuneUsed Time

Figure 6.1: A task-set's execution between the start and L

Next, we have to show that the state of the scheduler with respect to

the task Ti is. the same at both points ai and a, + L. We use the method of

mathematical induction to show this.

Definition 6.2.1 : The state of the scheduler w.r.t task Ti at the time of

arrival of the k 'th instance of task Ti is given by Sik = {S_.,,..., S,k_l.i, S_i }.

The term S_i, is the amount of time that the task Tj ezecuted for, before the

point a, + (k - 1) × pi and since its first invocation (taken modulo its period).

72

Note that, since the state of the lower priority tasks Tj,j > i do not

affect the schedulability of the task T,, they don't figure in the system state

with respect to task Ti. Also note that, we are concerned only with the state of

scheduler at points that are arrival times of tasks because we seek to show that

the state at these points repeats. Further, S_i = 0, because, the last invocation

of task T,, viz., k - l'th should have completed before the arrival of the k'th

instance (otherwise we would have declared that the task missed its deadline

and thats the end of it).

Basis: Consider the point a, + L where we have already shown that the

phasing of the task T, is the same as it was at ai. The highest priority task,

7'1 has an arrival at al + xl x Pl and acquires the processor (being the highest

priority ready task). The duration of time between this completion and the

arrival of the task, T2 at a2 + x2 × P2 (refer to Figure 6.1), can be used byany

of the tasks Tj(2 < j < i). Note that this same duration at the beginning, i.e.,

when the first instance of 7"1 completes and the first instance of T2 is ready was

necessarily idle. However, the state of the processor with respect to task I"2 at

the point a2 + x2 × Pa is exactly the same as at the point a2, because, the lower

priority tasks would not affect the completion times of the instances of task Tl

and further the latest instance of task 7'2 would have completed. Therefore,

the state of the scheduler w.r.t task T2 at the point az + x2 x P2 is same as it

was at a2, viz., {S 1 11,2,S2,2}.

Inductive Hypothesis: Let us assume that the result holds for the

i - l'th task, i.e., the state of the scheduler w.r.t, task Ti-i at ai-i +xi-i x pi-l.

• _,-1 S 1 S 1vtz.,{Sl.,_l ' . cx,__ ¢_,-I "t l•. , }.Ji-2,i-I, *-'i-l,i-I J aS it was at ai-i, viz

Note that between the points a,-i + x,-1 × P,-1 and a, + xi × p_, the number

of tasks of priority higher than task Ti that would arrive are the same as in

the interval ai-i and ai. Further, since the task Ti has to complete before its

deadline (which is less than its period; If it does not then we just report so and

thats the end of it), each of the higher priority tasks would have gotten the

same amount of execution time in these two intervals, implying that:

,,-1 = Sj,i - S,__ 1 _

, S x'-_ and S 1 both O.Note that, when j = i - l the terms i-l,i-1 ,-1,,-1 are

Now, since the result we are trying to prove, holds for the task Ti-l, we have:

S_'-' =S 1 Vj<i-1
j,_-I j,_-I --

Therefore,

sT,:= s], vj < i 2

Which implies that the state of the scheduler at the point ai + xi x Pi

is the same as that at a,. Therefore, the result holds for the task Ti. []

Having shown that both, the phasing repeats after L units of time and

also that the state of the scheduler is same when this repetition occurs, the

result follows£]

In deriving the result in theorem 6.2.1 we have assumed that the arrival

times of tasks are such that the highest priority task is the earliest to arrive and

the arrival times increase with priority. However, in reality, this assumption

restricts the practicality of the result. In the following, we describe a mechanism

by which we can get rid of this assumption without hurting the result.

"_'-_ S I = 0._The last term when j = i has been conveniently added because 5i_l,i_ 1 = i--l,t--I

73

Givenan arbitrary arrival phasingof tasksthe following algorithm con-

verts it into an alternate phasing where the arrival times increasewith the

priorities.

2 Algorithm Arb_to_.Incr

Parameters: al,a2,...a_, and pl,p2,...p,_ the arrival times and pe-

riodicities of tasks T1, 7'2,... To respectively.

I !

Result: a_, a2, a,_,

Initialize: a' = a;

The first task arrival is unchanged.

for (i = 2 to n) do

If (a, < a__l)

y = 1; while (a_ + y x p_ < a__l)

y _ y+l;

end

a I _---ai+y×p_;

end

end

end

We take an example to demonstrate the operation of the above algo-

rithm. Consider a task-set with four tasks (T1, T2, T3, T4), with the following

values for arrival times and periodicities: (al = 5, a2 = 3, a3 = 4, a4 = 0),

(Pl = 10, P2 = 10, p3 = 16, p4 = 12). The first task's arrival time remains un-

changed, however since the task T_'s arrival is before Tl's, its new arrival time.

74

T1 •Pl •
..... I I

0 I 2 3 a 5 10 15 20
p

a I =a 1

P2
T2 /', ,I I

0 1 2 3 4 5 I0 15 20

a2 a'2

P3
T3 • •

l l I l I I l l l l l i l • ' t i , , • I . t J t • i

0 1 2 3 4 5 10 13 20 25

a 3 a 3

25 30

5 30

30

P4
T4 • •

I I I
0 I 2 3 4 5 10 15 20 25 30

a4 a'4

Figure 6.2: A task-set's execution between the start and L

aS, is computed to be a2 + p2 which is 13. Now task T3's arrival time a3 = 4

' = 13, therefore its new arrival time a_ is a3 + P3 which is 20.is less than a 2

' = 20, therefore its new arrivalTask T4 arrives at a4 = 0 which is less than a 3

time a 4 is a4 + 2 x P4 which is 24. Now the new arrival times of the tasks in

' = 24).the task-set are (al = 5,4 = = 20,a4

Before we discuss the mechanism in detail, it is important to ascertain

the relationship between the original arrival phasing and the modified arrival

phasing. Since, the modified arrival pattern guarantees the repetition of the

task-set behavior, in order to find the worst-case response time of any task,

we only have to look for its instances between its original arrival time and the

point at which the new phasing repeats itself.

The algorithm for the complete mechanism follows:

3 ,41gorithm

Parameters: al,a2,.., a,_, and Pl,p2,...p,_ the arrival times and pe-

riodicities of tasks Tl, :2"2,... T,_ respectively.

-Find the modified arrival times, a', for tasks by invoking the pro-

cedure Arb_to_incr.

-Repeat for each task T_ in turn:

*Determine if the task meets all its deadlines assuming a worst-

case phasing (i.e., ignoring arrivals). If it does not then, report

so and QUIT.

*Find the completion time of all task instances of T_ occurring

during the interval a, and a_ + LC M { Tj, j < i }.

*Find the maximum and report it as the worst-case response

time of the task Ti.

end

76

6.3 Example Demonstrating the Solution

Consider the task-set in Table 6.1 below.

Table 6.1: Example task-set

Task Prio Arrival Period

1 0 2

2 2 4

3 3 3

4 5 4

Exec Time Deadline

12 12

24 24

16 16

24 24

WC c WC"

2 2

6 4

9 6

15 l0

The computation of the response times of tasks in this task-set using

the mechanism described above is given in Figure 6.3. In the Table 6.1, the last

two columns give respectively the worst-case response times of the tasks using

the critical instant assumption and our approach. It is clear that the critical

instant assumption has resulted in the computation of a higher response time in

the case of the last three tasks. In order to best appreciate the merit of finding

the worst-case completion time of a task using the precise test described in

this chapter as opposed to using the critical instant assumption, we introduce

a couple of new measures of comparison, viz., apparent slack and slack savings.

Note that though both these worst-case response times are still within

the deadline bound, there is a difference in the apparent slack of tasks. We

define the apparent slack of a task 3 to be the difference between the deadline

of a task and its worst-case completion time. Note that a positive apparent

slack for a task guarantees its meeting its deadline. However, a larger apparent

slack signifies that a task is more capable with regards to, accommodating task

interdependence (eg., precedence), withstanding temporary overloads, accom-

modating aperiodics in the system, restricting jitter in end-to-end systems.

We define a measure called the slack savings, ss_ for a task T_ as the

ratio of the gain in the apparent slack per unit real slack:

-
ssi = d_ -- ei

Note that in the above example we have chosen the deadlines of tasks to be

equal to their periods. However, in general the deadlines can be less than or

greater than the periods. Also note that the example shows that the arrival

times are monotonic with priority, however, this need not be the case in general.

3as opposed to the original slack of the task which is independent of other tasks it has

to compete with and is defined to be the difference between the deadline and the execution

time of the task

77

78

Figure 6.3: Operation of example task set

In the above example we achieve the following slack savings: ssl = 0%, as2 =

10%, as3 = 23%, as4 = 25%.

6.4 Discussion of the Result

The reader will observe that the above treatment of the end-to-end schedula-

bility problem assumes that all tasks access the components in the same order.

This scenario is similar to the classical periodic flow shop model [4]. However,

as will become clear in the following discussion, this assumption can be relaxed.

We consider the following scenarios for the order in which the tasks use

the various components:

Case I: Periodic flow shops [15, 4]: All tasks execute on the same com-

ponents in the same order. Every task T_ has exactly r (the number of

components) sub-tasks, Tin "* T_2 --*,..., --* T_,, where each sub-task Ti:

executes on component j. This case is a special instance of the next case,

however, we treat it separately because of its practical significance.

* Case 2: The use of components by the tasks are ordered but the tasks

?9

TI

Ttt Tt2 Tt3 Tt4
Case 1

T2

T2 t T22 T23 T24

T3

T3 t T32 T33 T34

T|

Ttx Tt2 Tt3 Tt4
Case 2

T2

T2 x T22

T3

T3 t T32 T33

T1

Ttt Tt2 Tt3

Cue 3

T2

T2 t T22 T23 Tu

T3

T3 x T32 T33

Figure 6.4: End-to-End scenarios

don't necessarily access the same resources: We assume that any two

tasks T,, T3 that have subtasks that run on two components R_, Rl, do

so in the same order in both tasks. Further, the component used by a

sub-task Tij is not used by any other sub-task of T,.

• Case 3: Arbitrary order flow shops: The order in which the components

are used by a task can be arbitrary (as opposed to ordered access in

Case 2). There are two possibilities under this case, one which disallows

components from being reused and the second where components are

allowed to be reused.

SO

6.4.1 Periodic flow shops

If we assume an ordering of the r components in use to be in numerical order

then the function Res(Tij) can be taken to be equal to j (i.e., the jth compo-

nent). Therefore we now have n tasks with each task consisting of r subtasks

where the jth subtask of every task T, (Vi) runs on component number j.

In order to determine the schedulability of the task-set we have to study

the schedulability of each task in turn. Phase adjustment guarantees that sub-

tasks of a task inherit its periodicity and further they are independent of each

other. Therefore the schedulability test for a task T, is given by:

t"

a, + Y_ WC, j < Di

Where, WCi i is the worst-case completion time of the subtask T,j. In

order to find the worst-case completion of the subtask Ttj which runs on the

component j we have to consider all the subtasks that run on the component

j. Starting from j = 1, we see that for the first component we know the arrival

times, periods and priorities (note that the subtask priority can be explicitly

given or the subtask can inherit the original task's priority) of all subtasks

that run on it. That is, for a given subtask Til, its arrival time is a, and its

period is p_. We can find its worst-case completion time by the mechanism

described in the previous section. Let WC, I be the worst-case completion time

thus determined (Note that this worst-case completion time is the time taken

by the subtask to complete after its arrival).

We now fix the arrival time of the second subtask of T, (i.e., T_2) as a,.+

WC,1. This fixing of the arrival is a result of the phase adjustment mechanism

described before. Further it ensures that the second subtask will be periodic

with period, p_. We now know all the parameters (viz., arrival phasing, period

and priority) we need to determine the worst-ca_e completion time of the second

subtasks of all the tasks. Knowing the value of WC_2 (V/) we are able to find

the timing parameters of the third subtasks and so on.

81

6.4.2 Ordered Access

This a more general case than the periodic flow shop case in that tasks don't

necessarily access all the components. However, when they do access a particu-

lar component its relative order with respect to other components is honored in

all tasks. We once again assume that the components are numbered in order.

We do the following modification to the formal specification of this case:

We assume that each task Ti is a sequence of subtasks T,1 ---* 7',2 ---*

..... ---. T,_. However, if the task T, does not have a subtask running on com-

ponent j then the corresponding subtask T, 3 has an execution time, e,j = 0.

By specifying the model in this way we are able to treat this case similar to the

previous case. However, note that for all subtasks that have a zero execution

time their worst-case completion times are also zero.

8'2.

6.4.3 Arbitrary order with no revisit

The major problem with this ordering scenario is that it is not always possible to

find the timing parameters of all subtasks that run on a particular component.

For example in Figure 6.4 we see that task T1 uses the components in the order

R2 _ R4 _ R1, task T_ uses components R1 --* R3 _ R2 _ R4 and task

T3 uses components R2 --* R3 _ R1. Determining the parameters (mainly

arrival times) of subtasks that run on component RI, Tl,s, T2a, T_ involves

finding the worst-case completion times of subtasks Tla, TI,2, T3,xandT3a. It

can be seen that this is not possible without addressing the schedulability on

the components R'2, R3andR4.

An alternative approach to this case would be to ignore the arrival

information of tasks (and subtasks). Note however that the penalty of ignoring

arrival information is that we end up doing a pessimistic schedulability analysis.

Chapter 7

Scalability in End-to-End Systems

As shown in Chapter 4, the problem of scalability of tasks in end-to-end systems

manifest itself in two forms, viz., (i) Changes to components and, (ii) Changes

to Tasks. We have also shown that solving this problem in either of these two

flavors reduces to solving the following two problems 4.2.4 and 4.2.5.

4.2.4: Given a task-set T of n tasks (with non-zero arrival times) exe-

cuting on a single component, find the worst-case completion times of all

tasks in the task-set.

4.2.5: Given a schedulable task-set T of n tasks executing on a single

component and a subset S of T, find the maximum scaling factor sf with

which all tasks in S can be scaled without violating the schedulability of

any of the tasks in T.

The first of the two problems was the subject of the previous chapter.

This chapter is devoted to presenting a solution to the second. As shown in

the previous Chapter 4, the problem of schedulability in end-to-end systems

can be reduced to a series of single component schedulability problems. How-

ever, the single component schedulability problem has to accommodate task

arrival times. Similarly, the problem of scalability in end-to-end systems can

83

be reduced to a seriesof singlecomponentscalability problemsprovided we

accommodatetask arrival information into the computation. Further, to find

the scalability of a sub-taskwehaveto knowits deadlineand alsothe deadlines

of all other sub-tasksinvolved in its analysis. There is no straightforward way

to derivethe sub-taskdeadlines.

34

A major researchissuein end-to-endschedulinghasbeenthe derivation

of sub-taskdeadlines.Givenan end-to-endtask's deadlinethe problemof find-

ing anoptimal1division of this deadlineamongthe sub-tasksis intractable [15]

(NP-complete[12]). This result hasprompteda heuristicapproach[4, 15],two

suchheuristicsbeing: (i) divide the task's slack2equally amongthe sub-tasks;

(ii) divide the task's slackamongits sub-tasksin a weightedproportion of their

execution times;

The abovetwo heuristicsvary mainly in their sensitivity to theexecution

times of tasks. For example, the secondheuristic is built on the assumption

that the shortera task'sexecutiontime requirement,the morelikely it will have

its requirement met and therefore the lower is the slackassignedto it. The

first heuristic is built on the assumptionthat the priority inherited by a sub-

task hasa greater impact on its ability to meet its executiontime requirement

than its execution time itself. Thus the slack is divided equally amongall sub-

tasks. This allowsusto reducethe end-to-endscalability problemto rn single

component scalability problems.

1In the sense that, if there exists a division that would help the task meet its deadline
then the mechanism should find it

2The slack of a task is given by the difference between its deadline and its execution time

In our research, we have chosen the second heuristic because it is more

general of the two. The intuition behind the heuristic is to divide the slack of

the task proportionally among its sub-tasks. We can find the total slack of the

task T_ as sl, = di - _vj eq. We divide this among the sub-tasks in the ratio

of their execution times, eq. Therefore,

85

di: = ei: + x sli
Y'_vj e_j

The following section describes a mechanism for finding the scaling fac-

tor that incorporates the arrivals of tasks. We also give an informal proof for

its correctness. In order to simplify the presentation we assume that the scaling

factor we desire is a common scaling factor for all tasks in the task-set. Note

that the case of general scaling (sub-set scaling) can be easily derived on the

same lines.

7.1 Problem Statement and Solution

As we did when we dealt with the problem of schedulabilityusing arbitrary

task arrivalsin the previous chapter, we assume that the arrivaltimes of task

are in increasingorder of theirpriorities.Therefore, the highest prioritytask

TI isthe firstto arrive(time t = 0) and T, arrivespriorto Tj ifi < j.

The procedure for findingthe common scalingfactorof a task set,pro-

ceeds on the same linesas that for arrivaltimes being allequal to 0. We

find the scalingfactorsfi,with respect to each task i (I < i < N) and take

the minimum as the required result.Any scalingfactorsf ' has the following

sense: This isthe maximum factorby which alltask execution times can be

scaled such that the task T, will meet its deadline while continuing to honor all

higher priority task requirements (not necessarily their deadlines). However,

the difference comes in the fact that when we are finding the scaling factor with

respect to a particular task T_, we no longer can settle by considering only one

instance (the worst-case instance, which is the first instance using the critical

instant argument) hut we have to consider all instances of this task between

the points ai and ai + L (refer Chapter 6).

Following are some of the distinguishing characteristics of the problem

when compared to the treatment in Chapter 5.

86

• It would seem that it is sufficient to consider the worst-case execution

instance (of a task Ti) and apply the same technique as before (as in

Chapter 4) to find the scaling factor. However, this is not true for the

following reason: the scaling factor is determined by both the completion

and the idle time left before the deadline; the worst case-completion of

a task instance does not necessarily guarantee that the idle time left be-

tween its completion and its deadline after accommodating higher priority

tasks is a minimum.

• The critical instant assumption, in addition to restricting our considera-

tion to a single instance, has also allowed us to conveniently ignore any

higher priority tasks that would arrive prior to task Ti's arrival. The pos-

sibility of the following scenario (refer to Figure 7.1) has to be taken into

account for arbitrary arrivals: In computing the scaling factor for the first

instance of task T,, we cannot ignore the blocks of execution that precede

the point ai (i.e., U1,U2,...,Uq-1). This is so because, it is likely that a

factor computedignoring thesecould causethe usedblocksof execution

beforea, to be scaled in such a way that the begin time of tasks in the

block that ai belongs to, could be affected by tasks other than the ones

within. This results in the computed factor being invalid.

87

C_.m _ Ti

Un.LO Uut _z_ _ U_ U_

Figure 7.1: Execution Profile Task T/s First Instance

We now discuss the mechanism along with an explanation of why the

mechanism works. We are interested in computing the scaling factor sf _, with

respect to a particular task T_. We once again note that this factor does not

guarantee that all higher priority tasks would meet their deadlines, it only

ensures that the task T_ will meet its deadline in spite of honoring the require-

ments of higher priority tasks.

Let us consider the first task instance of task T,. Assume that there

is only one block of execution before the arrival of task T, at ai and there

are a number of blocks after the completion and before the deadline (refer to

Figure 7.2). We are interested in stretching the deadline as far as possible while

honoring the requirements of higher priority tasks. The only way this can be

accomplished is by stretching the completion a step at a time with each step

attempting to consume the next available idle time (Refer to Chapter .5 for

reasoning). The required result (the scaling factor with respect to this instance

of task Ti) would then be obtained by taking the maximum (because all these

factors are valid and we are interested in finding the optimal one) among such

computed factors.

88

di

uu. uut t_ u_a

Figure 7.2: Figure 7.1 assuming q = 2

We now look at how we can stretch the completion time to achieve the

motive described above. Since we assumed that there is only one block of

execution (obviously comprises of at least one instance of every higher priority

task), following are the points to note while trying to stretch the completion

time of the first instance of the task T_ to consume the first slot of idle time:

• If we ignore the block of execution before the arrival of task Ti then the

scaling factor would be f = v3,L-v_,, However, it is possible that thisu2

factor could result in the ignored block (i.e., U1) being scaled beyond the

point U2,z, (we call this the unfavorable event for this choice of scaling

factor, NFE1), thus invalidating the factor. On the contrary, in the event

that this scaling factor does not scale [/'1 beyond the point U2,L (we call

this the favorable event for this choice of scaling factor, FE1), this factor

is clearly valid and effective in stretching the task completion time till

U3,L-

• If instead, we use the scaling factor to be f, = u_,_-u,.Lu2+ul, it is possible

that the resultant factor does not scale Ux to occupy the whole of the idle

time between (Ux,R, U2.L), resulting in U2 being stretched beyond U3r_

and consequently the completion time being stretched beyond U3.L (we

call this the unfavorable event for this choice of scaling factor NFE2).

Note that this possibility has come up because the task T_ is not ready

to use the idle time between (U1,R, U2.L). On the contrary, in the event

that this factor causes U_ to be scaled beyond the point U_,L (we call this

the favorable event for this choice of scaling factor, FE2) then clearly the

completion time of task T_ will be within U3,L (in fact it will be exactly

U3,L).

89

We note that there are two pmsibilities (or events) in favor of each of the

above choices and two that are not in favor. However, we will show that the

true answer lies in finding the minimum of these two possible factors. That is,

picking the minimum of these two factors as the solution leads us to realize that

the unfavorable possibility is actually not possible. An explanation follows:

We have two possibilities to consider:

• f < f': The favorable event (FE1) corresponding to this choice of the

factor is valid in giving us the desired result. However, we have to show

that unfavorable event, NFE1 will not occur. We show this by contra-

diction:

Let us say U1 gets scaled beyond the point U2.L (i.e, the event NFE1 does

occur), f', being the larger of the two, using it as the scaling factor would

scale 5'1 beyond U2.L too. But, since f' has been derived to stretch both

U_ and U2 over (0, Us.L), if it does stretch U1 into the start of U2, then

there would be no idle time between the points (0, Us.L). This implies

that f' ,< f because, the bumped time 3, say _5(= f' x Ul - U2,L) and the

scaled U2 (= f' x U2 - U2) together fitted within the interval between

(U2,R, US,L), whereas f scaled only U2 to occupy the same interval. The

conclusion that, f' < f contradicts our assumption that f is the smaller

of the two factors. Hence the result.

• f > f': The favorable event (FE2) corresponding to this choice of the

factor is valid in giving us the desired result. However, we have to show

that unfavorable event, NFE2 will not occur. We show this by contra-

diction:

Lets say U1 does not get scaled beyond the point U2,L when scaled by f'

(i.e., the event NFE2 does occur). Since, f > f', U2 does not go beyond

Us,t, when scaled by f_. However, the very definition of NFE2 says that

f stretches U2 beyond Us,/,. This is a contradiction. Hence the result.

Observe that the favorable events in both choices of scaling factors

achieve the following: The completion time of the task T, is stretched to the

point Us,t,. We now extend this to the case that the number of blocks of ex-

ecution prior to the axrival of the first instance task T_ is more than one. In

fact, we wish to extend this argument to the case that there are q - I blocks

of execution before the arrival of the first instance of T_. The generalization is

straightforward. If there is more than one block of execution then the scenario

would be as in Figure 7.1. The scaling factor associated with stretching the

the excess scaled time that was carried from scaling U1 beyond the point U,L

9O

91

completiontime of the first instanceof task T, to consume the first idle interval

beyond its completion would be given by:

(Uq+I,L -- U1,L Uq+I,L -- U2,L Uq+I,L -- Uq,L)=Min ET::,o; ,oqu, '

Where q is the index of the block that contains the arrival of the first

instance of TI (from the fact that there are q - 1 blocks of execution before

its arrival). Note that this is also the index of the block that contains the

completion of T,, because, there cannot be any (processor) idle time between

a task's arrival and its completion. We represent this factor by Fq to signify

that this is the factor with which all T.i (j <= i) must be scaled to fill the

first idle interval after the completion (known to overlap with the block Uq)

of this instance (the first that is) of task Ti. The subscript q here is only to

identify the block which overlaps with the completion of this instance of T,.

The representation will become clear when we proceed to the next stage of

derivation, i.e., the scaling factor for an arbitrary instance of T, (not just the

first that is).

Now consider the point corresponding to the deadline of this instance

of Ti, ai + di. Our aim is to try to extend the completion of this instance

at most till this point. Clearly, if this point overlaps with a used block (call

it Uk+l,L), then we cannot possibly extend Til's completion beyond the start

of this interval. This is obvious from the fact that the overlapped block in

question contains executions of higher priority tasks that cannot be preempted

by Ti. On the other hand if the point in question does not overlap with any used

block then we can consider filling only part of the idle interval that contains this

point, viz.. the idle interval between the right end of the used-block preceding

the deadline point and the deadlinepoint itself. In this secondcase,weset

U_+_.L = ai +di = Uk+_.R, i.e., we create a zero sized used block that overlaps

with the deadline. Here k is the index of the used-block that precedes the

deadline.

Therefore, if we assume that there are k - q such idle intervals beyond

Uq and before the deadline of this instance at d_ then we have to find k - q

such scaling factors F_ (that is q _< m _< k). Accordingly, k is the index of the

used-block that precedes the deadline point al + di. Now, the general formula

for F,_ is given by:

(U,,,+,,r. - U,,L U,_+,,L - U2,L U,+,,L - U,,L)F_ = Min _,-_l-to-_ "_,' '"",°. u, g2;,_-,:o:

The scaling factor for the first-instance of Ti is the maximum among all

computed factors for accommodating the next idle interval. Clearly, each of

these factors is a valid factor in the sense that it does not extend the completion

time of the first instance beyond its deadline. Therefore, the required factor is

the maximum among such valid factors given by:

sf '! = Maxq_,,,<__ F,,,

We now have to generalize the above formula for any arbitrary instance

of Ti (say the l'th). Clearly there are xi (refer to Chapter 6 instances of T, that

have to be considered. Therefore, I ranges from 1 to zi. If we find the scaling

factors sf _ for each of the x, instances of Ti then we can obtain the scaling

factor sf i as the minimum among all these. This is clear from the fact that

picking a factor larger than the minimum results in at least one of the instances

missing its deadline. So. we have:

92

93

sf i = M/nl<_t_<_, s f"

Before, we find the general scaling factor sf il of an arbitrary instance of

Ti, it is important to notice some important considerations in dealing with the

second instance (which will easily extend to arbitrary instances). The second

instance of T,.is ready at time ai +p_. Its ability to start (i.e., get the processor)

is affected by higher priority tasks arriving beyond the point ai + p, and, also

those tasks executing between the deadline of its previous instance at a, +di and

the point a, + pi. Note that, we have already taken care of tasks arriving before

the point ai +di in finding the scaling factor of the first instance. Therefore, the

point ai +di for task Ti's second instance is equivalent to the point al (assuming

that the task arrivals are in increasing order; further this point can be taken

to be t = 0). In finding the scaling factor for this instance, we have to consider

used-blocks from that which overlaps ai + d_ (if this is a zero-sized block then

consider the next block), to the block that contains the arrival a, + pi on one

side. On the other side, we have to consider used-blocks between the block

that contains a, + pl to the block that contains the deadline of this instance

at ai + Pi + di (remember that if there is no such block that overlaps with the

deadline then we create a zero-sized used-block to overlap it).

Now in the general case, that is, when we wish to find the scaling factor

for an arbitrary instance I we define the following notation (refer to Figure 7.3):

• v: U, is the used-block that contains the deadline of the (l- l)'th instance

of T,. If however, U_ is a zero-sized block then v is the index of the next

block following thedeadlineof the (l- 1)'th instanceat a, + (1- 1) × p,+d,.

As a special case, for the first instance o = 1.

• q: Is the block that overlaps with the arrival of the/'th instance of task T,.

This is also the block that contains the completion of the/'th instance.

• k: Uk+l is the block that contains the deadline of the l'th instance at

at + (l - 1) x p, + di. Note that, if the deadline does not overlap with a

used block then we create a zero-sized used-block at ai + (l- 1) x pi + di. k

is then given by the used-block that precedes this newly created zero-sized

block.

The formula for the scaling factor of an arbitrary instance (say l) of Ti

(represented as sf il) is now given by:

s f it = Maxq<m<_h F,n

where F,,, is given by:

(Um+I,L -- Uv,L Um+I,L -- Uv+I,L Um+I,L -- Uq,L I
F'=Min_,_,=_-to-,,, U-_ ' E,=_+, ,o,,, U, '"" _--"__-qS_,, U-_,/

We now have the scaling factor (sf _) with respect to a task T,. In

order to find the final common scaling factor sf we follow the same lines as in

Chapter 5. Therefore, the required scaling factor sf is given by:

sf = Mini<i<_, s f"

The complete algorithm to find the scaling factor for task T, follows:

94

4 ,4lgorithm Scale_.Factor (T,)

95

Ut÷I.L = _ = Uk+IJ_

Ut Ue,._ U_L.L U_Li L_ Ut.j

ai+(l_l_*pi=Amvalofl,thinltlnceoftmtTt] [] =UsedTime

Figure 7.3: Execution Profile of the l'th instance of T,

Variables:

I = 0: task instance

sf't: the scaling factor for task i instance 1.

Step O: Initialization. sf' = oo

Step 1: For each task instance I of T, between ai and a_ + L Repeat

Step 1.1: Find the completion time for the job 1 = complt;

Step 1.2:

Fit equal and higher priority task instances that would arrive be-

tween the points G and ai + (l + 1) × di. The point G is al for the

first instance, l = 1 and for subsequent instances, I > 1 it is given

by the deadline of the previous instance, ai + l × di.

The scheduling points are, U1.L, U2.L,..., Uk,L. where, U,_ = U_.R-

U_.L denotes the mth used time block (refer to Figure 7.1).

The used interval among these blocks which overlaps with ai + l ×

Pi is = q (note that this is also the block that contains complt,

because there can be no idle time between the instances arrival and

it completion).

Step 1.3:

Compute the scaling factor sf il for job !:

Maxq<m<k Fm

where:

96

(U_+1,L - U_,L U_+_.__._,L_- U2,___LE'r =2,o v," "
Step 1.4: if (sf it < sf i) then sf i = sf it.

Step 2: 8f i is the desired scaling factor for task 7"/.

Um+l,L -- Um,L

end

Having obtained the scaling factor sf i for each i in turn we can now

determine the optimal scaling factor, s/for the task set, which is the minimum

of sf i, Vi.

7.2 Example Demonstrating the Solution

To demonstrate the solution we take an example with three tasks whose char-

acteristics are given in Table 7.1. The timing analysis is shown in Figure 7.4.

The scaling factor derivation for the first task is straightforward. The deriva-

tion for the other two tasks is shown in the figure. The common scaling factor

for this example task-set is 1.6363.

We compare the scaling factors obtained by taking the approach in

this chapter as opposed to the critical instant approach followed in chapter 5

to appreciate the benefits. If this task-set was subjected to the approach in

chapter 5 then the common scaling factor would be 1.3636. Using the approach

97

Table 7.1: Example Task Table

Task Id Period Arrival Exec Time Deadline

1 12 0 2 12

2 24 4 4 24

3 16 3 3 15

described in this chapter we get a scaling factor of 1.6363. This is a huge gain

considering that it is a multiplicative factor and not additive. This will become

more evident if we express the improvement in execution times as percentages.

U, • U_ U_, U41

't "2 U_°d2 t'Um _3_ 1.6363

a3 U_ m d31 us U_ Ut - d_ 2 - U|l dl 3 UIJL "d3 4 "UI3m

0 4. $ 12 16 2.0 24 21[32 36 40 44 48 52 56 60 64 6g

"Fsms --'-----b

Figure 7.4: Operation of example task set

Chapter 8

Admission Control for Real-Time

Communication

The model assumptions in this chapter are based on the Real Time Chan-

nel model described in Chapter 2. Admission control is the mechanism by

which multiple real-time connections can simultaneously share the resources of

a packet switching network without resulting in congestion. Further, the con-

nections are guaranteed a particular quality of service (QoS) that is initially

(at connection set up) agreed upon. Admission control comes into play when a

new RT channel is being requested. An RT channel (or a connection request) is

accompanied with a QoS list that describes the requirements of this connection.

Popular QoS requirements in the literature of distributed real-time systems are

throughput, latency (or deadline), packet loss tolerance [17, 28, 10, 35, 32]

etc.

The mechanism used to determine the admissibility of a real-time chan-

nel involves verifying at each intermediate [ink (along the path) in turn whether

the RT channel's QoS requirements can be guaranteed. If a channel's require-

ments can be met at each of the intermediate links then we can accept the

channel. If however, the channel's requirements cannot be met at any of the

intermediate link then we can reject the channel. In fact the first such link that

98

deems the channel inadmissible is sufficient to confirm that the channel would

not be admissible.

In order to test whether a channel's requirements will be met at an

intermediate link we have to know its deadline and its period at each of that

link. Finding the period is straightforward according to the phase adjustment

mechanism. However we do have to derive the deadline of the RT channel at

intermediate links. Since the service time of the channel on each of the links

is the same one way to derive the deadlines would be to divide the slack of

the RT channel equally among the intermediate links. However, if one wishes,

one can use a more sophisticated heuristic [15, 4, 47] to derive these deadlines.

This reduces the problem of finding the admissibility of an RT channel to be

equivalent to solving the admissibility at each of the intermediate link [11, /8].

From here onwards when we refer to the admissibility of an RT channel we

mean its admissibility at an intermediate link.

Now, the question that admission control has to answer when accepting

a new connection can be broadly phrased as:

• Given the QoS requirements of a new RT channel is it possible to accept

this channel without violating the QoS guarantees made to RT channels

that have already been accepted?

The principle followed by researchers (for example Tenet [8, 9]) in the

design of an admission control scheme is based on verifying, whether the re-

sources available on the path of the newly requested RT channel are sufficient

even in the worst possible case, to

99

1. provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to all the existing RT channels to continue

being satisfied.

The above verification depends upon the kinds of QoS parameters al-

lowed. The most important QoS parameter of concern to real-time system

designers is the meeting a latency bound (deadline). We restrict our interest

to this parameter. There are two tests that are relevant in this context:

• Schedulability Test: Does the addition of the new channel to the already

established channels using this link cause either the new channel or one

of the already established channels to miss their deadline?

• Buffer Space Test: Is the available buffer space at the link sufficient to

allow the messages of the new channel to be stored for a length of time

equal to the delay faced by the channel at this link?

Different approaches to the admission control problem (in real-time sys-

tems) will differ in the way the above two questions are answered. Therefore, a

study in admission control reduces to the study of these tests. The buffer space

test has been successfully addressed by the Tenet group [9]. We concentrate

mainly on the schedulability test because it is our belief that there is room

for improvement here. In particular, there are many situations that have not

been considered in this context. We broadly classify two situations which differ

in terms of the assumptions made about the scheduling mechanism used to

schedule channels on the intermediate links.

100

I01

8.1 Dynamic Scheduling of RT Channe|s

The Tenet schedulabi]itytestinvolvesa deterministictestat each intervening

[ink along the path. An assumption ismade that the scheduling mechanism

used at an intermediate linkisbased on the EDD [9](earliestdue date or pop-

ularlyreferred to as the earliest deadline first). The test is based on extending

the fundamental task scheduling result by Liu and Layland [24] to message

communication. It can be summarized as follows: A given set of RT-channels

(at a particular link) is schedulable t by the EDD policy if the sum of the uti-

lizations of the RT channels is less than one. The utilization of the i th RT

channel whose characteristics are a message service time of mi and a message

inter-arrival time of g_ is given by, ui = mi/gi. If the current total utilization

at a link is Ud,t then the utilization as a result of accepting the new connection

(i th) would be Uda = U_a + mi/gi, and the schedulability test would be to

check whether Usa < 1.

We have taken a different approach to the schedulability test that is

based on the scaling problem defined in Chapter 4. The principle involved

in the test can be described as follows. At each intermediate link an admit-

tance measure is computed that essentially captures the tightness of the traffic

already passing through the link. A new connection request is allowed or dis-

allowed depending upon whether a specific relationship between this measure

and the new connection's characteristics is satisfied. The computation of the

admittance measure is dependent upon the choice of the scheduling mechanism

and the characteristics of the connections already accepted. Further the tested

l all the RT channel deadlines will he guaranteed to be met.

relationship referred to above, is a heuristic comparisonbetweenthe current

admittance measureand the new connection'scharacteristics.

The admittance measureweuse is the scalingfactor (refer to Chapter

4) with which the message service times of channels already accepted can be

multiplied by, so that the channels' requirements can still be guaranteed. The

new connections characteristics are captured by its utilization demand. The

heuristic used can be explained as follows. Intuitively, the greater the scaling

factor greater is the potential to allow a new connection. Further, the room for

accommodating new connections is intuitively captured by the term,
3/_--I

This expression, can be viewed as the percentage improvement possible in the

utilization of the existing channels. The expression can be simplified into the

form, 1 0t_-_. We show later, how this heuristic turns out to be equivalent

to the deterministic test of Tenet (in the context of EDD that is).

The following table, shows a comparison of our approach (using the

scaling factor) and Tenet's approach. The scheduling mechanism chosen at a

link is assumed to be the EDD. We later show how the two approaches are

equivalent.

Table 8.1: Admission Control Test

Approach Computation Test

Tenet U, < 1
Sa

Scaling sf,_-I (precomputed) _--_ < 1
_n -- sl,,-i

L02

The second column in the table gives the computation that has to be

done in order to test for the admissibility of a new channel. This test can either

be done at the time the new connection is made (Tenet's approach) or it can be

103

precomputed(our approach). The advantageof completing this computation

beforethe channelis requestedis that it will causeminimal delayin ascertaining

admissibility. Further, it affords the designer to attempt a more sophisticated

computation because it is done prior to the actual channel admission test. The

third column gives the test performed when a new connection is requested.

We now show how the two approaches given in the table are equiva-

lent. In the case of Tenet, the admissibility test can be viewed as a simple

comparison to check if the total utilization resulting from the addition of the

new channel is above the allowed bound (1). Observe that the computation

in the second column involves the characteristics of the new connection, thus

making it a computation that has to be performed when the new connection is

requested. We can however, modify Tenet's approach so that the computation

(just compute U,,-1) is independent of the new channel characteristics and can

thus be done before hand. Further, this modification would result in the test

changing to: _ < 1 - U,,-1.

The reader is referred to Chapter 5 for a discussion of the scaling factor

problem. More specifically, in section 5.2, a special instance of this problem

is identified when the subset to be scaled S is the same as the given task-set

T. It was shown that the common scaling factor (in the case of EDF) is then

given by the reciprocal of the total utilization of the RT channels.

1
'-q fn-- 1 -"

_"_i <i<r_- ! m--'x

1

U_.-- 1

The test in third column can therefore be interpreted as the _ <
_-Tra --

[- U,_-l. Therefore, we see that the two approaches reduce to be the same.

Observe that, the computation of the scaling factor, s f,,-i is more involved

if the scheduling mechanism is not EDF. This is the subject of the following

section.

tO4

8.2 Fixed Priority Scheduling of RT Channels

Our next concern is to extend the approach described in the previous section

to, general fixed priority preemptive scheduling mechanisms. Note that the

Tenet approach is only valid for dynamic preemptive scheduling. We use the

same approach to admissibility as described in the previous section, except

that we have to pay special attention to the computation of the scaling factor.

We concentrate our attention to extending our approach to incorporate the

Rate Monotonic Scheduling (RMS) mechanism (a particular instance of the

fixed priority preemptive scheduling mechanism). An extension of the approach

to Deadline Monotonic Scheduling and more generally to any arbitrary fixed

priority scheduling mechanism is straightforward.

As we already have seen in Chapter 4, there is no straightforward way to

compute the scaling factor of a set of tasks (read as RT channels in the present

context) scheduled by a general fixed priority scheduling mechanism. However,

in the particular case of RMS, we can find a non-optimal scaling factor that is

given by:

(n- I)(2 _/_-') - l)
sr,_, = (8.1)

.I n- I Un- i

This factor is not optimal in the sense that it is possible to improve it further.

Unlike task schedulability where we were interested in an optimal scaling factor,

in the current context (admission control that is) the above computation does

carry a certain merit as will be demonstrated shortly. Though the heuristic

used in the admissibility test reduced to the deterministic test in the context of

EDD, this is not necessarily true in the current context. In other words, failing

to pass the heuristic test does not necessarily imply that the new channel will

interfere with the schedulability of the already existing channels. This implies

that, using the heuristic it is possible that a new channel request is rejected

even though it could have been accommodated.

An alternative to the above computation is to use a more precise com-

putation, one which would help us obtain an optimal scaling factor. We have

shown in Chapter 4, how such a computation works. This alternative is ap-

pealing in its ability to reduce the number of rejections (as described in the

previous paragraph). However, it does not necessarily guarantee 100% admis-

sibility. 100% admissibility is said to be achieved if the test never rejects a new

channel that would have not interfered with already accepted channels. The

failure of this alternative to ensure 100% admissibility is due to the fact that

though the scaling factor computation is precise, the comparison in which it is

used is a heuristic.

It is important to observe that, the scaling factor computation is not

performed at the time of a channel request and therefore we can afford the cost

involved in finding an optimal scaling factor. However, if the benefit (reducing

the number of rejections) obtained by using the optimal scaling factor is not

large enough (compared to using the non-optimal computation), we cannot

justify" it. Since, the basis of the test is a heuristic, the only way one can

confirm the benefits is to perform a simulation study.

tO5

106

Simulation Study

The goal of this study was to compare the two alternatives for admission control

(described above) when the underlying mechanism used to schedule the RT

channels is the Rate Monotonic Scheduling. An RT channel is characterized,

among other parameters by the source and destination of the channel. This

information is used to find the route of the RT channel. As already described

the admissibility test of an RT channel that traces a route of, say k links,

reduces to ascertaining its admissibility at each of the k links in turn. Therefore,

we restrict our study to admissibility at a single link. From here onwards when

we refer to the characteristics of an RT channel we don't mean its end-to-end

characteristics but its characteristics at an intermediate link.

We use the following notation in the following discussion:

z ",, U(a, b) to indicate that the random variable x is uniformly dis-

tributed over the interval from a to b.

x ,,_ N(/_; a) to indicate that the random variable z has a normal distri-

bution with mean/_ and standard deviation a.

There are two major steps to the simulation study:

1. The workload generation. The workload of interest to us is the generation

of characteristics of n RT channels at a link. We would like to characterize

the workload with a set of parameters that capture its essence. We use

the following two parameters to characterize (and distinguish between)

workloads:

107

(a) The utilization U, of the set of RT channels is used to identify the

cumulative demand of the workload.

(b) The laxity factor a, dictates in addition the closeness of the deadline

to the end of the period of the RT channels.

2. The simulation of the alternatives and their comparison. The two al-

ternatives of concern to us are, using the non-optimal scaling factor vs.

using the optimal scaling factor in the admissibility test. The details of

the comparison are explained later.

Before we explain the generation process, it is important to understand

what we are attempting to generate. We are interested in generating a workload

of n RT channels with a total utilization of U. For each RT channel C,, we

wish to know its service time m_, its inter-message generation time gi and its

deadline d_.

The following parameters were used in the generation process.

n: The number of RT channels in the link.

m: The mean service time of an RT channel.

U: The total utilization of the n RT channels. The utilization of an RT

channel Ci with service time mi and and inter-generation time of g, is

given by mi/gi.

to(0 < ,¢ < 1): Is the laxity factor.

_l(0 < #l < 1): This parameter controls the laxity of an RT channel. The

deadline of an RT channel C, with a laxity of I is given by m,+l × (g,-rn,).

i08

Therefore, greater the value of 1 (directly controlled by tq), closer is the

deadline to the period and more is the room for meeting its deadline.

o'l: The standard deviation of the normal distribution of the laxities of

the channels. We constrain this parameter so that following conditions

hold:

mut- S x _'t > O and

mut + 3 x a't < 1

The above two conditions guarantee [16] that the majority (_ 99.98%)

of the samples derived from the distribution, Nipt,et) are within the

bounds(0 and 1).

The approach taken for workload (n RT channels) generation can be

described as follows. We generate the characteristics of each RT channel C_ in

turn.

t. The service time mi of channel C_ is derived from a uniform distribution

over the range [1, 2 x m]:

m, ~ U(1;2 x m)

2. The utilization of ui of channel Ci is derived from a uniform distribution

over the range [0, 2 x _]:

U
u, ~ U(O;2 x -)

rt

3. The inter-generation time (or period) gi, of channel C, is obtained by

using its service time and utilization already generated above, as:

mi
gi -

ui

tO9

4. Channel C,'s deadline di is obtained as:

d, = rn, + _; x (g, - m,)

where x ,,, N(Izl; at)

A special case of interest in the simulation (discussed below) we need a

workload where the laxity factor of the RT channels is a constant. We can

generate a workload with such a characteristic by assigning the parameter

crt to be equal to zero and the parameter/zl to equal the constant desired.

Having generated the workload we are now in a position to compare

the two heuristic alternatives against the generated workload. As explained

before the test mechanism we use to determine whether a new RT channel

C,,(rn,,,g,_,d,_) can be admitted at a link, having already accepted n - 1 RT

channels is given by:

1
m_.2 < 1
g,, - s f,,-i

Where the term sfn-1 is the factor by which the n-I (already accepted) channel

service times can be scaled without violating their schedulability requirements.

The two alternatives we are interested in comparing differ in the way this

scaling factor is arrived at.

• "R,: Uses the non-optimal computation of sf,,-i given by Equation 8.1.

• S: Uses a precise (optimal) computation of the sf_-i described in Chap-

ter 4.

In order to explain the criteria that were chosen for the comparison it

is important to understand that the workload generated (of n RT channels]

[i0

is arbitrary in the sense that they can be either admissible (together) or not.

For a given workload however, we can test whether it is schedulable or not. In

other words, whether all the RT channels can be accommodated together or

not. We refer to the outcome of this test as the admissibility (denoted by A)

of the workload.

Observe that the above test finds the admissibility of a workload whereas,

the heuristics are designed to test whether a given RT channel can be admitted

to an already existing list of RT channels at a link. In other words, the out-

come ,4 can be either, .Ay,,: the workload can be admitted together, or .A_o:

the workload is not admissible together. On the other hand, the outcome of

the heuristic H (T¢. or S) test can be either, _v,,: admit the new channel, or

7"/,_odo not admit the new channel. However, the heuristic 7_'s decision can be

compared against A by defining the following criteria:

I. If the heuristic _ arrives at the decision ?_y,,when the workload is in

fact admissible (fl._e,), then we say that the heuristic has succeeded on a

YES match.

2. If the heuristic "H arrives at the decision _,_o when the workload is in

fact inadmissible (._o), then we say that the heuristic has succeeded on

a NO match.

3. If neither criterion 1 nor criterion 2 are met then we say that the heuristic

has failed.

Note that the reason for having two criteria for a match is because the

generated workload was arbitrary in the sense that it could either be feasible

or not. While we are primarily interested in a heuristic's ability to admit

(reach a YES match that is) an RT channel, we cannot ignore the impact of

an incorrect decision. The ability of a heuristic to reject infeasible workloads

(captured by criterion 2) is important in that it gives us an idea about the

heuristic's sensitivity. For example, it is possible that the heuristic admits a

new channel to only realize later that it would result in one or more of the

channels' guarantees being violated.

For a given total utilization U and number of channels n (input parame-

ters), the simulation involves generating workloads of n RT channels and testing

the admissibility of each of them. Before we use one of the two heuristics (R.

or S) to determine whether they admit a given channel, we first ascertain the

admissibility of the workload (.4 described before). Next, for each RT channel

(say Ci) in turn we test its admissibility (using a heuristic) assuming that the

n- 1 other channels have already been accepted. The test is repeated with the

two heuristics we are attempting to compare. If the heuristic we are testing is

say R., then the outcome of the test can be one of Rv_, (admit the channel Cz)

or R,_o (don't admit the channel Ci). We now compare this outcome against

the outcome from the admissibility test for the workload .4 which was already

computed. The comparison follows the criteria explained before. With respect

to this channel we record whether the heuristic achieved a match (could be a

YES or NO) or has failed. The simulation records the same for each channel

in turn and obtains the heuristic's performance on this particular workload

(This is repeated for the other heuristic also).

The performance of a heuristic for a given workload is characterized by

three parameters:

i12

1. The percentageof (the total n admissibility tests) tests that result in a

YES match.

2. The percentageof (the total n admissibility tests) tests that result in a

NO match.

3. The percentage of (the total n admissibility tests) tests that result in

failure.

Observe that, the generated workload is only one of an almost infinite

possible workloads with the same input parameters. Therefore we repeat the

above experiment for a large number of workloads and take an average perfor-

mance. Further we repeat this for different values of _ (or pl and sigrnat). The

results of the simulation are presented in Appendix A.

Simulation Results

The performance measure of primary interest to us is the admissibility of a

heuristic. And, we are interested in comparing the two heuristics to see which

of the two is better at admitting channels. Therefore, the graphs we present

here compare the performance using the percentage YES match (see above).

Recollect that, the heuristic T¢. assumes that the underlying scheduling

mechanism is the rate monotonic scheduling. It has been shown that the RMS

is an optimal scheduling mechanism [20] if the deadlines of tasks are a constant

factor of their periods. Therefore, we assume that the parameter t¢ is a constant

and not derived from a distribution. This assumption was made in order to

choose a scenario that is favorable to both heuristics (and not biased to either).

This assumption however has no impact on the second heuristic $.

tl3

Each graph is identified by the number of channels considered and the

parameter x. The z-axis gives the total utilization of the workload and the

y-axis gives the success of the heuristic. For low utilizations (less than 50%)

there is no need to do a complex test because the demand can be easily met.

We chose four different values of the number of channels (4, 8, 12, 16) and

varied the parameter _¢ between 0.5 to 1.0. It was observed that values of

less than 0.5 resulted in too many channels missing their deadlines.

Observations

• For low utilizations (less than 0.7) we observe that both the heuristics

have a similar admissibility. Given that the heuristic 7"¢.is less expensive

(computation time-wise) than S, under conditions of low utilizations one

can choose the heuristic 7?..

• For a given value of n and n we observe that the admissibility of heuristic

7"4,falls abruptly beyond a point on the z-axis given by the utilization

bound. For example, in Figure A.6 we can see that the heuristic TO.

begins to reject channels when the total utilization crosses beyond 0.72.

• The performance of S degrades gracefully beyond the utilization bound.

For example, in Figure A.6 we can see that the heuristic S continues

to admit channels up to a total utilization of 0.92. The probability of

acceptance decreases gradually (and steadily) however. This implies that

the heuristic has a better ability to adapt to temporary overloads [43, 26]

(increased demand from one of the channels) in the network traffic.

• As the number of channels increases, the performance degradation beyond

114

the utilization bound is slower in the case of heuristic ,5'. This goes on

to support the ability of the heuristic to adapt to temporary overloads

(increase in the number of channels). The two sources of overload have

been successfully handled by the heuristic S.

• As the number of channels increases the success of the heuristic 5" im-

proves compared to the heuristic 7_.

• In conclusion we can say that for low utilizations both heuristics have

similar performance (however one should prefer the heuristic TO. due it

computational ease) but, at high utilizations ,5' far outperforms TO.. Fur-

ther, we can justify the cost of computation involved in S by noting that

the computation can be done before the actual channel request is made.

Chapter 9

Summary of Results

As an example to demonstrate the results reported in this thesis, we choose

the "Olympus Attitude and Orbital Control System"(AOCS). A detailed case

study of this real-time system can be found in [5, 46]. The AOCS subsystem of

the Olympus satellite s acquires and maintains spacecraft positions as desired.

A detailed analysis of this system was performed by A. Burns and his colleagues,

as a result of which they have summarized a list of tasks (Appendix B, Figures

B.1, B.2 and B.3) that capture the system's functionality. They have identified

mainly two classes of tasks viz., periodic (Figures B.1, B.2) and sporadic tasks

(Figure B.3).

The class of periodic tasks in the AOCS case-study are consistent with

our definition and treatment of periodic tasks in this thesis. Sporadic tasks

on the other hand are tasks whose periodicity and arrival time are not known.

However, there is a known minimum intervM between successive arrivals of

these tasks. Also the arrival time parameter of a sporadic task is not known a

priori due to the nature of these tasks. Sporadic tasks typically occur due to

events such as exceptions and interrupts which are triggered by a logical state

t The Olympus satellite was launched in July 1989 as the world's largest and most powerful
civil three-axis-stabilized communications satellite. It provides direct broadcast TV and

'distance learning' experiments to Italy and Northern Europe.

115

of the system or an external event. These events are therefore a function of the

run-time characteristic of the system.

The treatment in this thesis has been restricted to handling only pe-

riodic tasks, however we can accommodate sporadic tasks by making a few

observations about their behavior. The minimum inter-arrival time parameter

associated with a sporadic task is a lower bound on its periodicity. For the

purpose of this chapter we choose the periods of sporadic tasks to have values

ranging from the minimum to the average periods of periodic tasks. Accord-

ingly the chosen values of periods for sporadic tasks have been listed in the

tables. Further, we have chosen the arrival times of these tasks to be zero, in

other words that the first occurrence of these tasks is at time t = 0. Clearly,

this is only one of the many possibilities but is su_cient to demonstrate our

point of interest here.

The following sections use this task-set to demonstrate the results re-

ported in chapters 5 to 7.

116

9.1 Scalability in Uniprocessor Systems

The above task-set (say T) is given for a uniprocessor system, where all the

tasks are known to execute on a central control computer. In order to apply

the result given in Chapter 5 we have to choose a subset (say S) of tasks in the

task-set that are to undergo scaling. For a lack of better knowledge about the

tasks we pick S = T, i.e., we are interested in finding the maximum common

scaling factor for all tasks in the task-set. Table 9.1 gives the results of this

analysis:

117

Table 9.1" TaskTable with ScalingFactors

Task Name Priority Period Arrival Exec Deadline Scale Factor

BUS_INTERRUPT 62 50 0.00 0.18 1.00 5.5556

REAL_TIME_CLOCK 27 50 0.00 0.28 9.00 19.5652

READ.BUS_[P 23 10 0.00 1.76 10.00 4.5045

COM MAN D.ACUTUATORS 20 200 50.00 2.13 14.00 2.2989

REQU EST.DSS_DATA 19 200 150.00 1.43 17.00 2.2546

REQUEST_WHEEL.SPEEDS 18 200 0.00 1.43 22.00 2.2296

REQUEST_IRES.DATA 17 I00 0.00 1.43 24.00 1.9736

TELEMETRY_RESPONSE 15 2O0 0.00 3.19 30.00 1.9543

PROCESS.IRES.DATA 14 I00 50.00 8.21 50.00 1.8463

REA D.YAW_GYRO 12 500 0.00 4.08 I00,00 2.4740

CONTROL_LAW 8 200 50.00 22.84 200.00 2.18770

P ROCESS.DSS.DATA 6 I000 200.00 5.16 400.00 2.1748

CALIBRATE_GYRO 5 1000 200.00 6.91 900.00 2.1645

TELECOMMANDS 4 500 0.00 2.50 187.00 1.7941

Scaling Factor for S = 1.7941

The mechanism used to find the scaling factor in the uniprocessor sce-

nario is based on the critical instant assumption. This result can be easily

improved by using a more precise mechanism that is based on the results in

chapter 7. However, as discussed in chapter 4 the critical instant assumption

is more suitable in uniprocessor systems. Further, it makes the scaling factor

computation more efficient and cheaper (in terms of processing time).

Another perspective of the scaling factor can be expressed in terms of

the utilization. The utilization of a task T, is given by the ratio of its execution

time to its periodicity, '-'. The total utilization of the task-set before scaling is
P_

given by:

e2 en
U- e_ + + +_

Pl P2 P_

118

For the task-set in our case study this is given by: 0.4619. The utiliza-

tion of the task-set after the scaling is performed is given by:

U' s f x _ ei ej
ies P_ jCT-S PJ

Where, sf is the maximum common scaling factor for the task in S.

In our example, S = T, therefore the second term in the above equation is

zero. The new utilization is now given by 1.7941 x 0.4619 = 0.8287. This

achievable improvement in utilization is promising for the application with re-

gards to, scalability, execution time estimation, portability and fault-tolerance

as described in chapter 3.

9.2 Schedulability of Task-Sets with Arrivals

As described in chapter 4, solving the problem of scalability in end-to-end real-

time systems involves solving the two problems of (i) schedulability of tasks

on a single component without ignoring arrival times and, (ii) scalability of

tasks with non-zero arrival times. The first of these problems was discussed in

chapter 6.

This section discusses this result by applying it the AOCS case-study.

Our first example involves, treating the AOCS as an end-to-end task system

with each task comprising only one sub-task which runs on the only component

in the system, i.e., the processor. Now, the determining the schedulability of

the tasks involves computing their worst-case response times. For comparison

purposes, the following table (9.2) gives the worst-case response times using

two different mechanisms, i,e., the critical instant approach (WC c) and. the

approach described in chapter 6 (WC_). The third column gives the percentage

improvementin the response time obtained by using our precise approach as

opposed to the critical instant approach. The fourth column gives the slack

savings achieved by using our approach. Slack savings (in percentage) is given

by the formula:

wc -
x 100

ssi = di - ei

While the percentage improvement obtained does have some merit in

explaining the need for a more precise approach, the slack savings parameter

qualifies the ability of a task to accommodate task interdependence (e.g., prece-

dence), withstand temporary overloads, accommodate aperiodics in the system

and restrict jitter in end-to-end systems.

Table 9.2: Response times of Tasks

119

T_k Name

BUS_INTERRUPT

REAL_TIME_CLOCK

READ_BUSAP

COMMAN D..ACUTUATORS

REQ U EST_DSS-DATA

REQUEST_WHEEL-SPEEDS

REQUESTARES-DATA

TELEMETRY_RESPONSE

P ROC ESS-I RES-DATA

REA D_YAW_GYRO

CONTROL.LAW

P ROC ESS_DSS.DATA

CALIBRATE.GYRO

TELECOMMANDS

Resp Time

WC c WC _

0.18 0.18 0.0

0.46 0.46 0.0

2.22 2.22 0.0

4.35 4.35 0.0

5.78 3.65 36.85

7.21 3.65 49.37

8.64 5.08 41.20

13.59 8.27 39.14

23.56 14.32 39.21

27.64 14.11 48.95

56.22 42.44 24.51

63.14 15.19 75.94

71.81 23.86 66.77

74.31 16.61 77.64

% Improvement Slack Savings (in %)

0.0

0.0

0.0

0.0

13.60

17.30

15.77

19.84

22.11

13.06

7.77

12.14

5.36

31.27

As a second demonstration of the results in Chapter 6, we consider an

actual decomposition of the task-set into sub-tasks. The chosen decomposition

120

is only one of the possible decompositions obtained by arbitrarily dividing and

assigning tasks to four components. The decomposed task-set is given in Figure

9.3.

Table 9.3: Decomposition of tasks

Task Name Resource(s)

BUS_INTERRUPT R1

REAL_TIME.CLOCK R2

READ_BUS_IP R3

COMMAND.ACUTUATORS R1

REQ U EST_DSS_DATA _I

REQUEST_WHEEL_SPEEDS _I

REQ U EST.I RES.DATA R4

TELEMETRY_RESPONSE R4

P ROCESS=I RES_DATA R1

READ-YAW_GYRO R1

CONTROL-LAW R{

P ROC ESS.DSS_DATA Rt

CALIBRATE_GYRO _2

TELECOMMANDS Sl

--,R4
R2

R3

""R2"" R3
""R3
""R2---,R4
""R3
---,R4

R2

The following tables (9.4, 9.5, 9.6, 9.7) give details of the analysis of

each component in turn. The parameter of the sub-tasks that run on the first

component R1, are directly inherited from the parent. Further, the deadline

parameter is not required in this problem since we are only interested in finding

the worst-case response times of tasks, which are given by the sum of the

response times of their individual sub-tasks. The arrival time parameter of

sub-tasks on component R2 (and subsequently R3 and R4) are obtained by the

phase adjustment mechanism.

The following table (9.8) compares the resulting worst-case response

times of tasks with their deadlines. Clearly, all tasks meet their deadlines.

121

Table 9.4: Analysis of Component R,

Task Name Priority Period Arrival Exec Response Time

BUS_INTERRUPT 62 50 0.00 0.18 0.18

COMMAND-ACUTUATORS '_0 200 50.00 1.13 1.31

REQUEST.DSS_DATA 19 200 150.00 0.43 0.61

REQUEST.WHEEL-SPEEDS 18 200 0.00 0.70 1.88

PROCESS_IRES_DATA 14 100 50.00 3.21 4.52

READ.YAW.GYRO 12 500 0.00 1.08 2.96

CONTROL.LAW 8 200 50.00 5.00 9.52

PROCESS_DSS_DATA 6 1000 200.00 2.10 3.98

TELECOMMANDS 4 500 0.00 1.00 3.96

Table 9.5: Analysis of Component R2

T_k Name Priority Period Arrival Exec R_p Time

REAL_TIME.CLOCK 27 50 0.00 0.28 0.28

REQUEST_DSS_DATA 19 200 150.61 1.00 1.00

PROCESS-IRES_DATA 14 100 54.82 3.00 3.00

CONTROL-LAW 8 200 59.52 5.00 5.00

CALIBRATE_GYRO 5 1000 200.00 3.0 3.28

TELECOMMANDS 4 500 3.96 1.50 1.50

Further, by comparing these response times against those in table 9.2 we ob-

serve the enormous improvement in response times of tasks.

9.3 Scalability in End-to-End Systems

As mentioned in the previous section, the second issue to be addressed in solving

the scalability problem in end-to-end systems is: scalability of tasks on a single

component with non-zero arrival times. This was the subject of Chapter 7. In

this section, we first compare the scaling factor obtained by incorporating task

arrival times against, that obtained by using the critical instant assumption

122

Table 9.6: Analysis of Component Rz

Task N&me Priority Period Arrival Exec Resp Time

READ_BUSAP 23 10 0.00 1.76 1.76

REQUEST_WHEEL_SPEEDS 18 200 1.88 0.73 0.73

PROCESS-IRES-DATA 14 I00 57.82 2.00 2.00

READ_YAW_GYRO 12 500 2.96 3.00 3.00

PROCESS_DSS_DATA 6 I000 203.98 3.06 3.06

Table 9.7: Analysis of Component R4

Task Name Priority Period Arrival Exec Resp Time

COMMAND-ACUTUATORS 20 200 51.31 1.0 1,0

REQUEST.IRES-DATA 17 I00 0.00 1.43 1.43

TELEMETRY.RESPONSE 15 200 0.00 3.19 4.62

CONTROL-LAW 8 200 64.,52 7.84 7.84

CAL[BRATE.GYRO 5 I000 205.28 3.91 4.68

(chapter 5). Table 9.9 gives the summary of this comparison. The maximum

common scaling factor by the precise approach is under the second column

(sf(actual)) and that obtained by the critical instant assumption in chapter 5

is under the third column (sf(orig)). The task-set is assumed to run on a

single component and accordingly each task has a single sub-task. The subset

S that has to be scaled is same as T. The common scaling factor sf(actual) is

2.1295 which is clearly greater than 1.7941 obtained by the other mechanism. In

terms of utilization the resultant task-set utilization is 0.9836 or 98.36%. Note

that, ideally one would expect to be able to obtain 100% utilization on scaling,

however, this is not achievable in the case of static fixed priority schedulers.

Recall that in chapter 4 problem of scalability of task-sets in end-to-end

real-times systems comes in two different forms: task changes and component

123

Table 9.8: Schedulabilityof the End-to-End Tasks

T_k Name Response Time Deadline

BUS_INTERRUPT 0.18

REAL_TIME_CLOCK 0.28

READ_BUS_IP 1.76

COMMAN D.ACUTUATORS 2.31

REQU EST_DSS.DATA 1.61

REQUEST_WHEEL_SPEEDS 2.61

REQ U EST_I R ES_DATA 1.43

TELEMETRY_RESPONSE 4.62

P ROC ESS_I RES _DATA 9.5 2

READ_YAW_GYRO 5.96

CONTROL_LAW 22.36

PROCESS_DSS_DATA 7.O4

CALIBRATE.GYRO 9.68

TELECOMMANDS 5.46

1,00

9,00

10.00

14.00

17.00

22.00

24.00

30.00

50.00

100.00

200.00

400.00

900.00

187.00

changes. The following modification of the case study demonstrates how our

approach to finding the precise scaling factor can be applied in an end-to-end

scenario where component changes can occur. The same decomposition used

in the previous is used here. The following tables (9.10, 9.11, 9.12 and 9.13)

give the details of the scaling factor computation for each of the components.

The deadline parameter for each sub-task is obtained by using a heuristic that

divides the slack of a task among its sub-tasks in a weighted proportion of their

execution times. Now, For example, if the set of components that undergo

change are {R2,P_} then the scaling factor is rain {5.3949, 6.4935} which is

5.3949.

124

Table 9.9: Task Table with Scaling Factors

Task Name Scaling Factor

sf(actual) sf(ori9)

BUS-INTERRUPT 5.5556 5.5556

REA L_TI M E.C LOC K 19.5652 19.5652

READ_BUS_IP 4.5045 4.5045

COMMAND_ACUTUATORS 2.2989 2.2988

REQ U EST_DSS_DATA 3.1423 2.2546

REQUEST_WHEEL_SPEEDS 3.6969 2.2296

REQU EST-IRES_DATA 2.9240 1.9736

TELEM ETRY.RESPONS E 2.5445 1.9543

PROCESS.IRES_DATA 2.5510 1.8463

READ_YAW_GYRO 2.5786 2.4740

CONTROL-LAW 2.1877 2.1877

PROCESS.DSS_DATA 2.2119 2.1748

CALl B KATE_GYRO 2.1885 2.1645

TELECOMMANDS 2.1295 1.7941

CornmonScalingFactor 2.1295 1.7941

Table 9.10: Scaling on Component R1

Task Name Priority Period Arrivd Exec Deadline SF

BUS-INTERRUPT 62 50 0.00 0.18 1.00 5.5556

COMMAND.ACUTUATORS 20 200 50.00 1.13 7.43 5.6696

REQUEST-DSS.DATA 19 200 150.00 0.43 5.11 8.3800

REQUEST.WHEEL.SPEEDS 18 200 0.00 0.70 10.77 5.7283

PROCESS.IRES.DATA 14 I00 50.00 3.21 19.55 4.3251

READ.YAW.GYRO 12 500 0.00 1.08 26.47 8.9427

CONTROL_LAW 8 200 5O.OO 5.00 43.78 4.5990

P ROCESS_DSS.DATA 6 I000 200.00 2.10 162.79 11.4286

TELECOMMANDS 4 500 0.00 1.00 74.80 8.4890

Common Scaling Factor = 4.3251

125

Table 9.11: Scaling on Component R2

Task Name Priority Period Arrival Exec Deadline SF

REAL_TIM E_CLOCK 27 50 0.00 0.28 9.00 32.1429

REQU EST_DSS_DATA 19 200 150.61 1.00 11.89 9.7641

PROCESS.IRES_DATA 14 100 54.82 3.00 18.27 5.3949

CONTROL_LAW 8 200 59.52 5.00 43.78 5.8554

CALIBRATE_GYRO 5 1000 200.00 3.0 390.73 13.6799

TELECOMMANDS 4 500 3.96 1.50 112.20 11.2510

Common Scaling Factor = 5.3949

Table 9.12: Scaling on Component R3

Task Name Priority Period Arrival Exec Deadline SF

READ_BUS.IP 23 I0 0.00 1.76 I0.00 5.6818

REQUEST_WHEEL.SPEEDS 18 200 1.88 0.73 11.23 4.0161

PROCESS_IRES_DATA 14 I00 57.82 2.00 12.18 3.2394

READ_YAW.GYRO 12 500 2.96 3.00 73.53 4.0462

P ROCESS_DSS_DATA 6 1000 203.98 3.06 237.21 4,6894

Common Scaling Factor : 3.2394

Table 9.13: Scaling on Component R4

Task Name Priority Period Arrival Exec Deadline SF

COMMAN D.ACUTUATORS 20 200 51.31

REQUEST_IRES_DATA 17 I00 0.00

TELEMETRY_RESPONSE 15 2o0 0.00

CONTROL_LAW 8 200 64.52

CALIBRATE_GYRO 5 1000 203.28

1.0 6.57 6.5727

1.43 24.00 16.7832

3.19 30.00 6.4935

7.84 112.43 9.0236

3.91 509.26 12.3508

Common Scaling Factor = 6.4935

Chapter I0

Conclusions

The significant contributions of this thesis can be broadly summarized as fol-

lows:

• We have addressed the need to handle complexity in real-time systems in

all phases of system design, viz., design, development and maintenance.

• We have presented a novel perspective to analyzing real-time systems that

in addition to ascertaining the ability of a system to meet task deadlines

also qualifies these guarantees.

• The need to qualify guarantees was shown to arise from the following

scenarios pertinent in the design, development and maintenance of real

time systems:

- Scaling application requirements: As a system evolves the function-

alities of tasks expand, reflecting in terms of increase in code size

and/or improvement in data handling of tasks. This increase af-

fects the schedulability guarantees made using the previous execu-

tion times. Therefore, what we are interested in is, finding a factor

by which the execution times can be scaled (capturing the data han-

dling change) without invalidating the schedulability guarantees.

126

- Task execution time estimation: Using mean task execution times

as opposed to worst-case execution times in schedutability analysis

reduces the pessimism (leading to over design and under-utilization

of resources) inherent in the computation. Unfortunately however.

using the mean could lead to cases where the guarantees provided

by the schedulability analysis could be invalid (The number of such

cases being determined directly by the variance in the computed

mean execution time). Therefore, it is necessary to accommodate

the variance information along with the mean (for task execution

times).

- Porting applications: Any analysis performed (to guarantee perfor-

mance) assuming particular values of task execution times becomes

invalid once the target platform changes. For example, a faster pro-

cessor could result in a lower execution time (not invalidating the

analysis), but a slower processor would surely have an adverse af-

fect on the schedulability analysis. As a system evolves, though

in general the overall system is likely to improve, the performance

of individual components (some processors for example) might not

always improve. Another instance where a target platform is in gen-

eral slower, arises in the case of prototype building and testing [51].

- Fault Tolerance: It is common practice to provide fault-tolerant op-

eration by the use of redundant components (often at least one sec-

ondary component). In general, secondary components provide only

a minimal functionality (sufficient to keep the system operational till

the primary is fixed) and therefore tend to be slower. Any schedu-

127

lability analysis guarantees provided with the primary component

as the target will be invalid once the system falls back onto the

secondary.

128

• The scaling factor problem (refer to Chapter 4) defines a quantitative

measure that in essence captures the above mentioned scenarios under a

uniform framework. The problem is generic in the sense that it leaves

such particulars as:

- the scheduling mechanism,

- deadline to period relationship, and,

- arrival information,

open. For example an instance of the problem could be to find the scal-

ing factor when the assumed scheduling mechanism is a static fixed rate

monotonic priority assignment, the task deadlines are less than or equal

to their periods, and, the task arrivals are arbitrary.

• The scaling factor problem was first formulated in the context of uni-

processor real-time systems. This scenario can be more generally re-

ferred to as the single component scenario. The tasks running on the

single component in question are evaluated with regards to their abil-

ity to meet their requirements (processing and deadline). Further, we

compute a measure that gives us the ability of these tasks to scale-up

without violating their guarantees. One important assumption made in

this context was that the arrival times of the various tasks can be as-

sumed to be zero. This assumption has helped us in using the critical

t29

instant argument to ascertain task schedulability and also in finding the

scaling factor. We demonstrated some justifications for the use of this

argument, particularly in the context of single component systems with

independent tasks.

• Unlike uniprocessor systems, in end-to-end systems, the scaling factor

problem appears in two different scenarios, viz., component changes and

task changes. We showed how both these scenarios arise and how they

can be reduced to solving the following fundamental problems:

- Compute sub-task parameters of periodicity and deadline.

- Given a task-set T of rt tasks (with non-zero arrivals) executing on a

single component, find the worst-case completion times of all tasks

in the task-set.

- Solve the scaling problem when the tasks have arbitrary non-zero

arrivals.

The first of the above problems involved finding sub-task periodicities

by a technique called phase adjustment and sub-task deadlines by using

a heuristic based on proportional division of the total slack of a task

among its sub-tasks. Our solution to the second problem is the subject

of Chapter 6. This problem has been observed to be relevant in many

other contexts in real-time systems, and a discussion to this end can be

found in the same Chapter. Chapter 7 presents a solution to the third

problem listed above. The complexity is introduced mainly by having to

accommodate task arrivals into the analysis. However, this consideration

adds validity to our work and also bridges the gap between theory and

130

practice by better modeling the behavior of current complex real-time

systems.

• Finally wepresentedan application of the scaling factor problem in the

context of real-time communication. The problemconsideredis the ad-

mission'control of real-time channels(Ferrari et. al. [9]). Admission

control is the mechanismby which multiple real-time connectionscansi-

multaneouslysharethe resourcesof a packetswitching network without

resulting in congestion. The mechanism used to determine the admissi-

bility of a real-time channel involves verifying at each intermediate link

(along the path) in turn whether the RT channel's QoS requirements can

be guaranteed. If a channel's requirements can be met at each of the

intermediate links then we can accept the channel. If however, the chan-

nel's requirements cannot be met at any of the intermediate link then we

can reject the channel. In fact the first such link that deems the chan-

nel inadmissible is sufficient to confirm that the channel would not be

admissible.

This problem is shown to be analogous to the end-to-end schedulability

problem with the exception that the solution cannot be based on evalu-

ating a channels admissibility by doing a complete (expensive) schedula-

bility test. To this end, we proposed a heuristic approach that is based

on the scaling factor computation. The room for accommodating a new

channel into a system is expressed in terms of the maximum scaling fac-

tor with which the requirements of the channels already in the system

can be scaled without violating their guarantees. This expression is then

compared against the requirements of the new channel that is to be con-

131

sidered for admission. The expression being of a heuristic nature, we

resorted to a simulation study (details in Chapter 8), the results of which

have demonstrated the effectiveness of our approach.

Bibliography

[1] R. Arnold, F Mueller, D. B. Whalley, and M. Harmon. Bounding Worst-

case Instruction Cache Performance. Proceedings of IEEE Real Time Sys-

tems Symposium, pages 172-181, December 1994.

[2] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard Real-

Time Scheduling:The Deadline Monotonic Approach. Proceedings of the

8th IEEE Workshop on Real-Time Operating Systems and Software, 1991.

[3] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for Enhancing the

Flexibility and Utility of Hard Real-Time Systems. Proceedings of the Real

Time Systems Symposium, pages 12-22, December 1994.

C4]Ricardo Bettati. End-To-End Scheduling to meet Deadlines in Distributed

Systems. PhD thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign, 1994.

[51A. Burns, A. J. WeUings, C. M. Bailey, and E. Fyfe. The Olympus At-

titude and Orbital Control System: A Case Study in Hard Real-Time

System Design. Technical Report YCS190, Department of Computer Sci-

ence, University of York, 1993.

[6] M. H. Klien et. al. A Practitioners Handbook for Real-Time Analysis.

Kluwer Academic Publishers, 1993.

132

133

[7] Reza Etemadi. End-To-End Scheduling in Hard Real-Time Multiproces-

sot Systems. Candidacy Report, Department of Computer Systems and

Engineering, Carleton University, Canada, 1995.

[8] D. Ferrari. Real-Time Communication in an Internetwork. Journal of

High Speed Networks, 1(1):79-103, 1992.

[9] D. Ferrari. A New Admission Control Method for Real-Time Communi-

cation in an Internetwork. S. Son, Ed., Advances in Real-Time Systems,

Prentice Hall Englewood Cliffs, N J, pages 105-116, 1995.

[i0] D. Ferrari. Real-Time Communication in an lnternetwork. Technical Re-

port TR-9_-07_, International Computer Science Institute, Berkeley CA,

January 1992.

[11] D. Ferrari and C. C. Verma. A scheme for Real-Time Channel Establish-

ment in Wide-area Networks. IEEE Journal on Selected areas in Commu-

nications, SAC-8(3):368-379, 1990.

[12] M. Garey and D. Johnson. Complexity Results for Multiprocessor

Scheduling with Resource Constraints. SIAM Journal of Computing,

4(4):396--411, 1975.

[13] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman

and Co., San Francisco, 1979.

[14] R. Gerber, S. Hong, and M. Saksena. Guaranteeing End-to-End Tim-

ing Constraints by Calibrating Intermediate Processes. Proceedings of the

Real-Time Systems Symposium, pages 192-205, December 1994.

134

[15] T. Gonzales and S. Sahni. Flowshop and Jobshop scheduling: Complexity

and Approximation. Operations Research, 26(1):220-244, 1978.

[16] R. dain. The Art of Computer Systems Performance Analysis. John Wiley

and Sons, Inc; Wiley Professional Computing, 1991.

[17] D. D. Kandlur. Networking in Distributed Real-Time Systems. PhD thesis,

University of Michigan, 1991.

[18] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-Time Communication in

Multi-hop Networks. Proceedings of the llth International Conference on

Distributed Computing Systems, 1(2):184-194, May 1991.

[191 J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbi-

trary Deadlines. Proceedings of the IEEE Real-Time Systems Symposium,

pages 201-209, 1990.

[20] J. P. Lehoczky, L. Sha, and Y Ding. Rate Monotonic Scheduling Algo-

rithm: Exact Characterization and Average Case. Proceedings of the IEEE

Real-Time Systems Symposium, pages 166-171, 1989.

[21] J. Y. Leung and M. L. Merill. A Note Preemptive Scheduling of Periodic,

Real-Time Tasks. Information Processing Letters, 11(3):i15-118, Novem-

ber 1980.

[22] J. Y. Leung and J. Whitehead. On Complexity of Fixed-Priority Schedul-

ing of Periodic, Real-Time Tasks. Performance Evaluation, 2(4):237-250.

1982.

135

[23] S. S. Lim, Y. H. Ba_, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park,

H. Shin, K. Park, and C. S. Kim. An Accurate Worst-case Timing Analysis

for RISC Processors. Proceedings of IEEE Real Time Systems Symposium,

pages 97-108, December 1994.

[24] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-

ming in a Hard Real-Time Environment. Journal of ACM, 20(1):46-61.

1973.

[25] J. W. S. Liu, K. J. Lin, W. K. Smith, A. C. Yu, J. Y. Chung, and W. Zhao.

Algorithms for Scheduling Imprecise Computations. IEEE Computer,

pages 58-68, May 1991.

[26] C. D. Locke. Best-effort Decision Making for Real-Time Scheduling. PhD

thesis, Carnegie-Mellon University, 1986.

[27] C. D. Locke. Software Architecture for Hard Real-Time Applications:

Cyclic Executives vs. Fixed Priority Executives. Real Time Systems,

4(1):37-53, March 1992.

[28] Nicholas Malcolm and Wei Zhao. Advances in Hard Real-Time Commu-

nication with Local Area Networks. IEEE Trans on Computers, pages

548-557, 1992.

[29] A. K. Mok. Fundamental Design Problems of Distributed Systems for the

Hard Real-Time Environment. PhD thesis, MIT., 1983.

[30] M. Di Natale and J. A. Stankovic. Dynamic End-to-End Guarantees in

Distributed Real-Time Systems. Proceedings of the Real Time Systems

S_mposium, pages 216-227, December 1994.

136

[31] C. Y. Park. Predicting Deterministic Execution Times of Real-Time Pro-

grams. Technical Report 9]2-08-02, Department of Computer Science and

Engineering, University of Washington, 1992.

[32] D. Picker and R. D. Fellman. Scaling and Performance of a Packet Queue

for Real-Time Applications. Proceedings of the Real-Time Systems Sym-

posium, pages 56-62, December 1994.

[33] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach. Kluwer Academic Publishers, 1991.

[34] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols:

An Approach to Real-Time Synchronization. IEEE Trans on Computers,

39(9):1175-1184, September 1990.

[35] L. Sha and S. S. Sathaye. A Systematic Approach to Designing Distributed

Real-Time Systems. IEEE Computer, pages 68-78, September 1993.

[36] Wei-Kuan Shih. Scheduling in Real-Time Systems to Ensure Graceful

Degradation: The Imprecise Computation and the Deferred-Deadline Ap-

proaches. PhD thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign, 1992.

[37] Wei-Kuan Shih and J. W. S. Liu. On-line Scheduling of Imprecise Com-

putations to Minimize Error. Proceedings of the Real-Time Systems Sym-

posium, pages 280--289, December 1992.

[38] W. Stallings. Data and Computer Communications. Macmillan Publish-

ing Company, New York, 1994.

137

[39] J. A. Stankovic, M. Di Natale M. Spuri, and G. C. Buttazo. Implications

of Classical Scheduling Results for Real-Time Systems. Department of CS.

University of Massachussetts: Technical Report 95-23, June 1994.

[40] J. A. Stankovic, M. Di Natale M. Spuri, and G. C. Buttazo. Implications

of Classical Scheduling Results for Real-Time Systems. IEEE Computer,

28(6):16-25, June 1995.

[41] J. A. Stankovic and K. Ramamritham. Advances in Real-Time Analysis.

IEEE Computer Society Press, 1992.

[42] A. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,

N.J., 1989.

[43] P. Thambidurai and K. S. Trivedi. Transient Overloads in Fault-Tolerant

Real-Time Systems. Proceedings of the Real-Time Systems Symposium,

pages 126-133, December 1989.

[44] S. R. Thuel and J. P. Lehoczky. On-Line Scheduling of Hard Deadline

Aperiodic tasks in Fixed Priority Systems. Proceedings of the Real-Time

Systems Symposium, pages 160-171, December 1993.

[45] K. Tindell. Adding Timing Offsets to Schedulability Analysis. Technical

Report YCS$$I, Department of Computer Science, University of York,

January 1994.

[46] K. Tindell. Holistic Schedulability Analysis for Distributed Hard Real-

Time Systems. Technical Report YCS197, Department of Computer Sci-

ence. University of York, January 1994.

[47] C. Venkatramani and T. C. Chiueh. Supporting Real-Time Traffic on

Ethernet. Proceedings of IEEE Real Time Systems Symposium, pages

282-286, December 1994.

138

[48] J. Xu. On Satisfying Timing Constraints in Hard Real Time Systems.

IEEE Trans on Software Engg, 19(1):70-84, January 1993.

[49] R. Yerraballi. Replication in Distributed Real-Time Systems: Candidacy

Report. Department of CS, Old Dominion University, 1994.

[50] R. Yerraballi and R. Mukkamala. Scalability of Real-Time Systems. Sub-

mitted to the Special Issue of the Euromicro Journal on Real-Time Sys-

tems: Journal of System Architecture, February 1995.

[51] R. Yerraballi and R. Mukkamala. Schedulability Related Issues in End-

to-End Systems. Proceedings of the First International Conference on

Engineering of Complez Computer Systems, November 1995.

[52] R. Yerraballi, R. Mukkamala, K. Maly, and H. Abdel-Wahab. Issues in

Schedulability Analysis of Real-Time Systems. Proceedings of the 7th Eu-

romicro Workshop on Real Time Systems, pages 87-92, June 1995.

[53] Q. Zheng. Real-Time Fault-Tolerant Communication in Computer Net-

works. PhD thesis, Electrical Engineering: Systems, University of Michi-

gan, 1993.

[54] Q. Zheng and K.G. Shin. Fault-tolerant real-time communication in dis-

tributed computing systems. Proceedings of 22nd Annual International

Symposium on Fault-tolerant Computing, pages 86-93, 1992.

Appendices

Appendix A

Simulation Results for Admission Control

140

141

100

8O

6O

4O

2O

0

I

0.5 0.55

I I I I I

+

I l I, I

0.6 0.65 0.7 0.75

I I l

RMA
SCAL +

AN AN _ .,'N ./_ AN

V xf "_" _1T _l_ _ _ "4r

I I I 1

0.8 0.85 0.9 0.95

Figure A.I: n = 4 and i¢ = 0.5

100

8o

6o

40

2o

0

0.5 0.55

T T--_ 1 r "f_----r--

RMA _--

J l £ l J. l

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.2: n = 8 and _ = 0.5

100

8O

6O

4O

2O

0

0.5

I I I I I I I I 1

RMA
SCAL +

+
+

+

I I I I I I I i I

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.3: n = 12 and ,¢ = 0.5

142

100

8O

6O

4O

2O

0

0.5

T I r 1" T

RMA @--
SCAL +

+++

1 L .1. l

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 I

Figure A.4: n = 16 and _: = 0.5

143

I00

80

60

40

20

"-------'T

0
l

0.5 0.55

1 r 1

+

+

+

1 r 1

RMA _--
SCAL +

.L l J._.k.

0.6 0.65 0.7 0.75

t J. ! .t_

0.8 0.85 0.9 0.95

Figure A.5: n = 4 and s; = 0.6

100

80

6O

4O

2O

0

0.5

I 1 I

I I I I

0.55 0.6 0.85 0.7

I I I

+
+

I I

RMA
SCAL +

+

+

r V V V V _ _ _P_ _

I I I I 1

0.75 0.8 0.85 0.9 0.95

Figure A.6: n = 8 and x = 0.6

144

I00

8O

6O

4O

2O

B

0

0.5

I I I I

$----_-4_ _. +, + +

i I I I

0.55 0.6 0.65 0.7

I I

+

f I

RMA _-
SCAL +

++

O¢90¢k_¢_v
I I i I I

0.75 0.8 0.85 0.9 0.95

Figure A.7: n = 12 and r = 0.6

I00

80

6O

4O

20

0

0.5

I I I I

0.55 0.6 0.65 0.7

I I I I

-4-,_-4_-_. +. +

÷

I I I I

RMA
SCAL +

+

÷

+

y v v N_

I I I I I

0.75 0.8 0.85 0.9 0.95

Figure A.8: n = 12 and _; = 0.6

145

I00

8O

6O

4O

2O

0

0.5

I I I I I I I I

_ RMA _--

+ + SCAL +

, i I I I I I I I I

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.9: n = 4 and r = 0.7

I00

8O

6O

4O

20-

0

0.5

T I I I 1 ! I I

RMA

I I I I a i 1 i i

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.10: n = 8 and t: = 0.7

146

I00

80

6O

4O

2O

0

0.5

| I f I I I I I

RMA @--

I I l I I I I , I I

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.II: n -'- 12 and _; = 0.7

100

8O

6O

40

2O

0
I

0.5 0.55

I I I I | I I | I

RMA _--
"+ + SCAL +-

+÷

]-
+

t I | I I I I I

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.12: n = 16 and _; = 0.7

147

I00

8O

6O

4O

2O

0

0.5

I I I I I I

+
+

+

I i

RMA _--
SCAL +

I I I I I

0.55 0.6 0.65 0.7 0.75

+÷+

v" v'O v'O00 _ _
I I I I

0.8 0.85 0.9 0.95

Figure A.13: n = 4 and _; = 0.8

100

80

6O

4O

2O

0

0.5

I I I I I !

+
+

I !

RMA
SCAL +

÷

+

+

>00¢ v'O v"O___

I I I I I I 1 I I

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.14: n = 8 and _ = 0.8

148

I00

8O

6O

4O

2O

0

0.5

I I I I I l I | I

RMA
+ + + SCAL +

+
+

+

÷

+

v _ v v -

I I I I I I I I 1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.15: n = 12 and _ = 0.8

I00

8O

6O

4O

2O

0
!

0.5

I I ! I I I f I

RMA
-'-_--_--_ + +-+ 4- SCAL +.-

I I l I

0.55 0.6 0.65 0.7

+÷

I I I I 1

0.75 0.8 0.85 0.9 0.95

Figure A.16: n = 16 and _ = 0.8

[49

I00

80

60

40

20

0

0.5

I I 1 I I

¢¢¢¢<> ++_

I I I I I

0.55 0.6 0.65 0.7 0.75

I I

RMA _'-
SCAL +

+
+

+ +

000_0¢¢
I l I I

0.8 0.85 0.9 0.95

Figure A.17: n = 4 and a = 0.9

100

80

60-

40

20

0

0.5

I I I I I I I I l

RMA 6.--
_" _ _ _ _ _" + + SCAL +

++

+

+

+

z V ¢
I t I I I I l I l

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

!
l

Figure A.18: n = 8 and _¢= 0.9

150

I00

80

60

40

20

0

I

0.5 0.55

I I I I I I I I I

RMA
+ + + + SCAL + -

I I l } I i I I

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.19: n = 12 and t¢ = 0.9

I00

80

60

40

20-

0

I

0.5 0.55

I I I l l I l

__ ++-+.-÷__

+ +

I I

RMA _--
SCAL +.

-b

+

>¢¢^^ ¢¢¢¢Cv v

I I I I I I 1 I

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure A.20: n = 16 and _ = 0.9

151

I00

80

6O

4O

2o

0

0.5

I I I I I

___ ++__

I I I I I

0.55 0.6 0.65 0.7 0.75

+
+

I I

RMA
SCAL +

+

+

+
I

_x A A A A A A _[_

f v v v v v v v

I I I 1

0.8 0.85 0.9 0.95

Figure A.21: n = 4 and s = 1.0

100

8O

60

4O

20

D

0
I

0.5 0.55

I I ! I I

¢__< ++++

i I i

0.6 0.65 0.7

I I

RMA _--
SCAL +

+

+

+

÷
A A A A A A A A

_ v v v v v v v _ [

Il I I I I

0.75 0.8 0.85 0.9 0.95 1

Figure A.22: n = 8 and t¢ = 1.0

L52

lO0

8O

6O

4O

2O

I

0

I

0.5 0.55

I i I | I F t

__<++++
+

+

I I

RMA
SCAL +

+

+

÷

,f v v v v v v v v v _ir

I I | I I I I I

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.23: n = 12 and t: = 1.0

100

8O

6O

4O

2O

0

0.5

I I l [

I I I I

0.55 0.6 0.65 0.7

I I I I I

RMA
+ +' + q" SCAL +-

++

+

I I I I I

0.75 0.8 0.85 0.9 0.95 I

Figure A.24: n = 16 and x = 1.0

Appendix B

The Olympus Attitude and Orbital Control

System

The first two tables list the periodic tasks in the system and the last table lists

the sporadic tasks. The parameter of periodicity of sporadic tasks is a derived

parameter chosen for our study and not specified in the original study. The

first parameter, critical level, is not used in our study, but essentially adds to

the priority information of tasks. In general we could have had HARD, SOFT

or FIRM categories of criticality and a special category called INTERRUPT,

that implies that the corresponding task should be executed non-preemptively.

In this case study there is only one task that is not categorized as HARD. Since

this task (BUS_INTERRUPT) is assigned the highest priority, it is guaranteed

to run un-preempted, satisfying the requirement of tasks that are categorized

as INTERRRUPT.

The periodicity of sporadic tasks was chosen randomly to lie between

the minimum inter-arrival and the average periodicity of periodic tasks. The

minimum inter-arrival time parameter of sporadic tasks gives a lower bound on

successive arrivals and is very rarely encountered in practice. Therefore, even if

two successive arrivals of a sporadic task do occur at this minimum interval the

probability of the next instance also occurring at this interval is very remote.

[53

154

Table B.I: Periodic Tasks

Task Name Characteristic Value

REAL_TIME.CLOCK

READ_BUS_IP

COMMAND.ACU'TUATORS

REQUEST_DSS_DATA

REQUEST_WHEEL_SPEEDS

Critical Level HARD

Priority 27

Period 50.00

Arrival Time 0.00

Execution Time 0.28

Deadline 9.00

CriticalLevel HARD

Priority 23

Period 10.00

ArrivalTime 0.00

Execution Time 1.76

Deadline 10.00

Critical Level HARD

Priority 20

Period 200.00

Arrival Time 50.00

Execution Time 2.13

Deadline 14.00

Critical Level HARD

Priority 19

Period 200.00

Arrival Time 150.00

Execution Time 1.43

Deadline 17.00

Critical Level HARD

Priority 18

Period 200

Arrival Time 0.00

Execution Time 1.43

Deadline 22.00

155

Table B.2: Periodic Tasks - continued

Task Name Characteristic Value

REQUEST_IRES_DATA

PROCESS_IRES_DATA

CONTROL_LAW

PROCESS_DSS_DATA

CALIBRATE_GYRO

Critical Level HARD

Priority 17
Period 100.00

Arrival Time 0.00

Execution Time 1.43

Deadline 24.00

Critical Level HARD

Priority 14

Period 100.00

Arrival Time 50.00

Execution Time 8.21

Deadline 50.0

Critical Level HARD

Priority 8

Period 200.00

Arrival Time 50.00

Execution Time 22.84

Deadline 200.00

Critical Level HARD

Priority 6

Period 1000.00

Arrival Time 200.00

Execution Time 5.16

Deadline 400.00

Critical Level HARD

Priority 5
Period 1000.00

Arrival Time 200.00

Execution Time 6.91

Deadline 900.00

156

Table B.3: Sporadic Tasks

Task Name Characteristic Value

BUS_INTERRUPT

TELEMETRY_RESPONSE

READ_YAW_GYRO

TELECOMMANDS

Critical Level INTERRUPT

Priority 62

Min Inter-arrival 10.00

Period 50.00

Arrival Time 0.0

Execution Time 0.18

Deadline 0.63

Critical Level HARD

Priority 15

Min Inter-arrivM 100.00

Period 200

Arrival Time 0.00

Execution Time 3.19

Deadline 30.00

Critical Level HARD

Priority 12

Min Inter-arrivM 100.00

Period 500.00

Arrival Time 0.00

Execution Time 4.08

Deadline 100.0

Critical Level HARD

Priority 4
Min Inter-arrival 200.00

Period 500.00

Arrival Time 0.00

Execution Time 2.50

Deadline 200.00

